ON THE HOMOLOGY INVARIANTS OF KNOTS

By H. SEIFERT (Heidelberg)

[Received 10 January 1949]

1. Let k be an oriented knot in 3-dimensional euclidean space R^3 and V a closed tubular neighbourhood of k. The boundary of V is a torus T, and $W = R^3 - V + T$ is the closed complement of V. An oriented Jordan curve (i.e. a homeomorph of a circle) on T which bounds on V (on $R^3 - V + T$) but not on T is called a meridian

F1G. 1.

(longitudinal circuit). If m_1 and m_2 are any two meridians, one has $m_1 \sim \pm m_2$ on T; likewise $q_1 \sim \pm q_2$ on T for any pair q_1 , q_2 of longitudinal circuits.

By a topological mapping ϕ one can carry V into a tubular neighbourhood V* of an unknotted curve k^* in such a way that the longitudinal circuit of V is carried into a longitudinal circuit q^* of V*. The 3-space in which V* lies will be designated by R^{3*} . Fig. 1 and Fig. 2 show the situation in the case when k is a trefoil knot.

Let l be an arbitrary knot in the interior of V. Then l, as a 1-cycle in V, is homologous in V to some multiple of k, say

$$l \sim nk$$
 on V . (1)

Quart. J. Math. Oxford (2), 1 (1950), 23-32

H. SEIFERT

By a suitable orientation of l we can arrange that $n \ge 0$. Fig. 3 shows an example in which k is a trefoil knot and n = 0.

The knot l is carried by the topological mapping ϕ into a knot l^* in the interior of V^* . The purpose of this paper is to prove the two following theorems:

F1G. 3.

THEOREM I. For n = 0 the homology invariants of l and l^* are the same.

In other words: if M_{g} and M_{g}^{*} are the g-sheeted cyclic covering manifolds[†] of R^{3} with the branch lines l and l^{*} respectively, the homology groups and linking invariants of M_{g} and M_{g}^{*} are equal for

† Seifert-Threlfall, Lehrbuch der Topologie (Leipzig 1934) §§ 58 and 77.

g = 2, 3,..., and the homology groups of M_{∞} and M_{∞}^* , considered as groups with operators, \dagger are isomorphic.

THEOREM II. Between the L-polynomials $\Delta_l(x)$, $\Delta_{l^*}(x)$, $\Delta_k(x)$ of the knots l, l^* , and k the following equation holds

$$\Delta_l(x) = \Delta_{l^{\bullet}}(x) \Delta_k(x^n). \tag{2}$$

In the case n = 0 formula (2) reduces to

$$\Delta_l(x) = \Delta_{l^*}(x). \tag{3}$$

For we then have

$$\Delta_k(x^n) = \Delta_k(x^0) = \Delta_k(1).$$

But it is known that $\Delta_k(1) = 1$ for any knot k. Besides (3) is a consequence of Theorem I.

In the special case when the knot l lies on the boundary T of V, formula (2) expresses a theorem due to Burau.[‡] A theorem due to Alexander[§] to the effect that the *L*-polynomial of a composite knot is the product of the *L*-polynomials of the factors is another special case of Theorem II (here n = 1).

Theorem I illustrates the limits of the homology invariants of a knot in so far as the properties of knot k do not appear in the homology invariants of l. A special case of this fact is the theorem of Whitehead's on the *L*-polynomial of a 'doubled knot'.

2. Proof of Theorem I.

The g-sheeted cyclic covering manifold M_g is the union of the complexes V_g and W_g corresponding to the decomposition of R^3 into V and W. V_g is the g-sheeted cyclic covering manifold of V with branch line l. W_g decomposes into g homeomorphs W', $W'', \ldots, W^{(g)}$ of W, since every closed curve of W is homologous to zero in R^3-l , n being equal to zero. The intersection of V_g and $W^{(\gamma)}$ is a torus T_{γ} ($\gamma = 1, 2, \ldots, g$). Let q_{γ} be the covering of the longitudinal circuit q lying on T_{γ} , and let a_1, a_2, \ldots, a_t be a set of generators of the homology

† H. Seifert, 'Über das Geschlecht von Knoten', Math. Annalen, 110 (1934), 571–92.

[‡] W. Burau, 'Kennzeichnung der Schlauchknoten', Abh. math. Semin. Hamburg. Univ. 9 (1932), 125.

§ J. W. Alexander, 'Topological invariants of knots and links', Trans. American Math. Soc. 30 (1928), 275-306.

|| J. H. C. Whitehead, J. of London Math. Soc. 12 (1937), 63.

H. SEIFERT

group of dimension 1 of V_a . Then the homology group of V_a is defined by a set of m relations

$$\sum_{\tau=1}^{t} \rho_{\mu\tau} a_{\tau} \sim 0 \quad \text{on } V_{g} \quad (\mu = 1, 2, ..., m).$$
 (4)

Let

$$q_{\gamma} \sim \sum_{\tau=1}^{s} \sigma_{\gamma\tau} a_{\tau} \quad \text{on } V_{g} \quad (\gamma = 1, 2, ..., g). \tag{5}$$

Then the homology group of M_a is defined by the relations (4) and

$$\sum_{\tau=1}^{t} \sigma_{\gamma \tau} a_{\tau} \sim 0 \quad \text{on } M_{g} \ (\gamma = 1, 2, ..., g).$$
 (6)

On the other hand let us consider the *q*-sheeted cyclic covering manifold $M_a^* = V_a^* + W_a^*$ of R^{3*} with branch line l^* . Corresponding to the mapping ϕ of V on V* (cf. § 1) there exists a homeomorphic mapping ϕ_a of V_a on V_a^* which carries the torus T_y into the torus T_y^* , the longitudinal circuit q_{ν} into the longitudinal circuit q_{ν}^* and the set of generators $a_1, a_2, ..., a_t$ of V_a into the set of generators $a_1^*, a_2^*, ..., a_t^*$ of V_a^* . Then we have the relations

$$\sum_{\tau=1}^{t} \rho_{\mu\tau} a_{\tau}^{*} \sim 0 \quad \text{on } V_{g}^{*} \quad (\mu = 1, 2, ..., m)$$

$$q_{\gamma}^{*} \sim \sum_{\tau=1}^{t} \sigma_{\gamma\tau} a_{\tau}^{*} \quad \text{on } V_{g}^{*} \quad (\gamma = 1, 2, ..., g),$$
(4*)
(4*)

 (5^{*})

ŀ

and

since ϕ_g is a homeomorphic mapping. It follows that the homology groups of M_{a} and M_{a}^{*} are isomorphic.

In order to determine the linking invariants of M_{q} , we consider (besides $a_1, a_2, ..., a_t$) t 1-dimensional chains $a'_1, a'_2, ..., a'_t$ on V_a such that $a'_{\tau} \sim a_{\tau}$ on V_{q} and a_{τ} and a'_{λ} do not intersect for τ , $\lambda = 1, 2, ..., t$. Because of formulae (4) and (5), there are 2-chains $A_1, A_2, ..., A_m$ and $B_1, B_2, ..., B_q$ on V_q such that

and

boundary
$$A_{\mu} = \sum_{\tau=1}^{t} \rho_{\mu\tau} a_{\tau}$$
 $(\mu = 1, 2, ..., m)$
boundary $B_{\gamma} = \sum_{\tau=1}^{t} \sigma_{\gamma\tau} a_{\tau} - q_{\gamma}$ $(\gamma = 1, 2, ..., g).$

Then the linking invariants of M_g are determined by the t(t+g)intersection numbers[†]

$$S(A_{\tau}, a'_{\sigma}), \qquad S(B_{\gamma}, a'_{\sigma}) \\ \tau, \sigma = 1, 2, ..., t; \ \gamma = 1, 2, ..., g).$$

 $(\tau, \sigma = 1, 2, ..., t; \gamma = 1, 2, ..., g).$ If we define a'_{τ} , A^*_{τ} , B^*_{γ} as the images of a'_{τ} , A_{τ} , B_{γ} under the mapping ϕ_{u} , it follows that

$$S(A_{\tau}, a_{\sigma}') = S(A_{\tau}^*, a_{\sigma}'^*), \qquad S(B_{\gamma}, a_{\sigma}') = S(B_{\gamma}^*, a_{\sigma}'^*),$$

† H. Seifert, 'Die Verschlingungsinvarianten der zyklischen Knotenüberlagerungen', Abh. math. Semin. Hamburg. Univ. 11 (1935), 84-101.

27

provided that the orientation of V_{σ} is carried into the orientation of V_{σ}^* under the mapping ϕ_{σ} . Therefore the linking invariants of M_{σ} and M_{σ}^* are the same.

The assertion that the 1-dimensional homology groups of M_{∞} and M_{∞}^* are operator isomorphic follows from the fact that they are obtained from the operator isomorphic groups of V_{∞} and V_{∞}^* by adding the relations $q_{\gamma} \sim 0$ and $q_{\gamma}^* \sim 0$ ($-\infty < \gamma < +\infty$).

3. For the proof of formula (2) we make use of the following facts (cf. Seifert):[†] For any knot c there can always be found an orientable surface F without singularities whose boundary is c. By cutting \mathbb{R}^3 along F we obtain a bounded 3-dimensional manifold \overline{M} whose boundary consists of the two exposed faces of the cut, i.e. of F and a homeomorphic copy xF of F. Let h be the genus of F, let $a_1, a_2, ..., a_{2h}$ be a (1-dimensional) homology basis of F and let $xa_1, xa_2, ..., xa_{2h}$ be the corresponding basis of xF. Then there are homologies of the form

$$a_i - \sum_{j=1}^{2h} \gamma_{ij}(a_j - xa_j) \sim 0$$
 in \overline{M} $(i = 1, 2, ..., 2h).$ (7)

All homologies between $a_1, ..., a_{2h}$, $xa_1, ..., xa_{2h}$ that exist in \overline{M} are consequences of (7).

The matrix $\Gamma = (\gamma_{ij})$, from which all homology invariants of c can be derived, may be called a *homology matrix* of c. The matrix Γ is uniquely determined up to the choice of the spanning surface F and its homology basis $a_1, a_2, ..., a_{2\lambda}$. The L-polynomial $\Delta_c(x)$ of c is the coefficient determinant of the system (7)

$$\Delta_c(x) = |\mathbf{E} - \Gamma + x\Gamma|, \qquad (8)$$

where E is the unit matrix of order 2h.

4. We may assume n > 0, since for n = 0 Theorem II is a consequence of Theorem I. We begin by constructing an oriented nonsingular surface F_{l^*} bounded by l^* . To this end we choose on the boundary T^* of V^* a set of n non-intersecting longitudinal circuits $q_1^*, q_2^*, ..., q_n^*$ and orient them so that they all become homologous to k^* in V^* . Since we have the homology $l^* \sim \sum_{\nu=1}^n q_{\nu}^*$ in V^* , it follows that there exists in V^* an oriented non-singular surface $F_{l^*}^0$ with boundary $l^* - \sum_{\nu=1}^n q_{\nu}^*$. From $F_{l^*}^0$ we obtain the desired surface F_{l^*} by \dagger H. Seifert, 'Über das Geschlecht von Knoten', Math. Annalen, 110 (1934), 571-92. adjoining *n* non-intersecting 2-cells $F_{q_1^*}$, $F_{q_2^*}$,..., $F_{q_n^*}$ which lie in $W^* = R^{3*} - V^* + T^*$ and have the boundaries q_1^* , q_2^* ,..., q_n^* respectively.

Next we construct a surface F_l bounded by l. The homeomorphic mapping ϕ^{-1} of V^* upon V carries the surface $F_{l^*}^0$ into a surface F_l^0 whose boundary consists of l and n longitudinal circuits q_1, q_2, \ldots, q_n of V, images of $q_1^*, q_2^*, \ldots, q_n^*$ respectively. Since $q_1 \sim 0$ in W, there exists an oriented non-singular surface F_{q_1} in W with boundary q_1 . By an isotopic deformation F_{q_1} can be carried into a 'parallel' surface

FIG. 4.

 F_{q_2} in W with boundary q_2 such that F_{q_1} and F_{q_2} do not intersect. By a second deformation F_{q_2} can be carried into a surface F_{q_2} in W with boundary q_3 such that F_{q_2} intersects neither F_{q_1} nor F_{q_2} , and so on. F_l^0 , F_{q_1} , F_{q_2} ,..., F_{q_n} form together an orientable non-singular surface F_l bounded by l. Fig. 4 shows the situation in a schematic cross-section; F_l^0 is omitted and n = 3.

The genus of F_l is obviously

$$h_{l^*} + nh_k$$

where h_{l^*} , h_k denote the genera of F_{l^*} and F_{a_1} respectively.

5. I shall now construct a homology basis of dimension 1 on F_i . Let $a_{11}^{(1)}, a_{21}^{(1)}, \dots, a_{2N_k}^{(1)}$

be a homology basis on F_{a_1} and

$$a_1^{(\nu)}, a_2^{(\nu)}, ..., a_{2h_k}^{(\nu)} \quad (\nu = 1, 2, ..., n)$$
 (9)

the basis on F_{q_r} which corresponds to it with respect to the abovementioned deformation of F_{q_1} into F_{q_r} . On F_{i^*} we select a homology basis $b_1^*, b_{2h^*}^*, \dots, b_{2h^*}^*$ (10)

One can assume that these chains all lie on $F_{l^*}^0$, since the 2-cells $F_{q_1}^*$, $F_{q_2}^*$,..., $F_{q_n}^*$ can obviously be avoided. By the homeomorphic mapping ϕ^{-1} of V^* on V the chains (10) are carried into the chains

$$b_1, b_2, \dots, b_{2h^*}$$
 (11)

on F_i^0 . The chains (9) and (11) constitute the desired homology basis of F_i .

6. In order to obtain the L-polynomial of the knot l we cut R^3 along the surface F_i according to the general rule of § 3. I shall use the following notation. By the cutting process the complexes R^3 , V, W, T go into $\overline{R^3}$, \overline{V} , \overline{W} , \overline{T} . The two exposed faces of the cut are designated by F_i and xF_i . F_i consists of the n+1 surfaces F_{q_1} , F_{q_2} ,..., F_{q_n} , F_i^0 , and similarly xF_i is the union of the surfaces xF_{q_1} , xF_{q_2} ,..., xF_{q_n} , xF_i^0 . The homology basis $a_1^{(1)}, \ldots, a_{2h_k}^{(1)}, a_1^{(2)}, \ldots, a_{2h_k}^{(n)}, b_1, b_2, \ldots, b_{2h_i}$, of F_i corresponds to the homology basis $xa_1^{(1)}, \ldots, xa_{2h_k}^{(1)}, xa_1^{(2)}, \ldots, xa_{2h_k}^{(n)}, xb_1, xb_2, \ldots, xb_{2h_i}$. The notation used in R^{3*} differs only in the addition of a superscript star.

7. In \overline{R}^{3*} we have relations of the form (cf. § 3)

$$b_i^* - \sum_{j=1}^{2h_{i^*}} \gamma_{ij}^{(l^*)}(b_j^* - xb_j^*) \sim 0$$
 in \vec{R}^{3*} $(i = 1, 2, ..., 2h_{l^*}).$ (12)

The homology matrix of the knot l^* is

$$\Gamma_{l^*} = (\gamma_{ij}^{(l^*)}). \tag{13}$$

The left side of (12), being a chain in \overline{V}^* and homologous to zero in $\overline{R}^{3*} = \overline{V}^* + \overline{W}^*$, must be homologous to a chain on $\overline{V}^* \cap \overline{W}^* = \overline{T}^*$. Thus it is homologous to a linear combination of the chains $q_1^*, q_2^*, \dots, q_n^*$:

$$b_i^* - \sum_{j=1}^{2h_i} \gamma_{ij}^{(l*)}(b_j^* - xb_j^*) \sim \sum_{j=1}^n \alpha_j q_j^* \quad \text{on } \overline{V}^*.$$
 (14)

By the homeomorphic mapping ϕ^{-1} of V^* on V the homology (14) corresponds to the following homology on \overline{V} :

$$b_i - \sum_{j=1}^{2h_i} \gamma_{ij}^{(l^*)}(b_j - xb_j) \sim \sum_{j=1}^n \alpha_j q_j \quad \text{on } \overline{V}.$$
(15)

If we consider this homology in $\overline{R}^3 = \overline{V} + \overline{W}$, it simplifies to

$$b_{i} - \sum_{j=1}^{2h_{i}} \gamma_{ij}^{(l*)}(b_{j} - xb_{j}) \sim 0 \quad \text{in } \bar{R}^{3} \quad (i = 1, 2, ..., 2h_{l^{*}}), \qquad (16)$$

since $q_i \sim 0$ in \overline{W} .

H. SEIFERT

We still need the homologies belonging to the $a_i^{(\nu)}$. They have the following general form (cf. § 3):

$$a_{i}^{(\nu)} - \sum_{j=1}^{2h_{k}} \sum_{\mu=1}^{n} \gamma_{ij}^{\nu\mu} (a_{j}^{(\mu)} - x a_{j}^{(\mu)}) \sim \sum_{j=1}^{2h_{i}} \gamma_{ij}^{(\nu)} (b_{j} - x b_{j}) \quad \text{in } \bar{R}^{3}.$$
(17)

The left side of (17) is a chain in \overline{W} , the right side a chain in \overline{V} . Therefore there is a certain chain on $\overline{V} \cap \overline{W} = \overline{T}$ to which either side is homologous (in \overline{V} or \overline{W} respectively). The most general such chain is a linear combination of $q_1, q_2, ..., q_n$, but these are ~ 0 in \overline{W} . So it follows that

$$a_{i}^{(\nu)} - \sum_{j=1}^{2h_{k}} \sum_{\mu=1}^{n} \gamma_{ij}^{\nu\mu} (a_{j}^{(\mu)} - x a_{j}^{(\mu)}) \sim 0 \quad \text{in } \overline{W}$$

(i = 1, 2,..., 2h_k; $\nu = 1, 2, ..., n$). (18)

In order to determine the matrices

$$\Gamma^{\nu\mu} = (\gamma^{\nu\mu}_{ii})$$

we identify in \overline{W} the surfaces F_{q_2} and $xF_{q_2},...,F_{q_n}$ and xF_{q_n} . Hereby \overline{W} goes into a complex \overline{W}_{q_1} , which may be described as the complex W cut along F_{q_1} . The chains $a_i^{(\mu)}$ and $xa_i^{(\mu)}$ are thereby identified $(\mu = 2, 3,..., n)$, so that (18) reduces to

$$a_i^{(1)} - \sum_{j=1}^{2h_k} \gamma_{ij}^{11}(a_j^{(1)} - xa_j^{(1)}) \sim 0 \quad \text{in } \overline{W}_{q_1} \quad (i = 1, 2, ..., 2h_k).$$
(19)

But this is exactly the system of relations (7) formed for the knot q_1 and the surface F_{q_1} . So we see from (19) that Γ^{11} is just the homology matrix of q_1 or, what is the same thing, of k (k and q_1 are equivalent knots, since k can be deformed in V into q_1). If we designate the homology matrix of k by Γ_k , we have the result $\Gamma^{11} = \Gamma_k$, and in the same way one proves

$$\Gamma^{\nu\nu} = \Gamma_k \quad (\nu = 1, 2, ..., n). \tag{20}$$

Now we note that the homologies

2

$$ca_i^{(\nu)} \sim a_i^{(\nu+1)}$$
 in \overline{W} $(i = 1, 2, ..., 2h_k; \nu = 1, 2, ..., n-1)$ (21)

hold, provided that the q_v have been enumerated in the right way. But we know that (16) and (18) are a complete system of homologies in \overline{R}^3 between the chains b_i , $a_j^{(v)}$, xb_i , $xa_j^{(v)}$. So (21) must be a consequence of (16) and (18) and therefore, because of the special form (16) and (18), of (18) alone.

If we write the variables $a_i^{(\nu)}$ and $xa_i^{(\nu)}$ in the order

$$a_i^{(1)}, a_i^{(2)}, \dots, a_i^{(n)}; xa_i^{(1)}, xa_i^{(2)}, \dots, xa_i^{(n)},$$

ON THE HOMOLOGY INVARIANTS OF KNOTS

the coefficient matrices of (18) and (21) are

$\mathbf{E} - \Gamma_{k}$	$-\Gamma^{12}$	•	$-\Gamma^{1n}$	Γ_{k}	Γ^{12}		Γ^{1n}	
$-\Gamma^{_{21}}$	$\mathbf{E} - \Gamma_k$	•	$-\Gamma^{2n}$	Γ^{21}	Γ_k .	•	Γ^{2n}	(22)
•	•	•	•	•	•	•	•	
$-\Gamma^{n1}$	$-\Gamma^{n_2}$	•	$\mathbf{E} - \Gamma_k$	Γ^{n1}	Γ^{n_2}	•	Γ_k	

and

0	$-\mathbf{E}$	0	•	0	E	0		0	0	
0	0	$-\mathbf{E}$		0	0	Ε	•	0	0	(93)
•	•	•	•	•	•	•	•	•	•	(23)
0	0	0		$-\mathbf{E}$	0	0	•	\mathbf{E}	0.	

In both matrices we add the right half to the left and obtain

\mathbf{E}	0		0	$ \Gamma_{k}$	Γ^{12}	•	Γ^{1n}	
0	\mathbf{E}	•	•0	Γ ²¹	Γ_k	•	Γ^{2n}	(22')
•			•	.	•	•	•	()
0	0		\mathbf{E}	Γ ⁿ¹	Γ^{n2}		Γ_{k}	

and

\mathbf{E}	$-\mathbf{E}$	0	•	0	0	Έ	0	•	0	0	
0	E	$-\mathbf{E}$	•	0	0	0	Ε	•	0	0 (2	3′)
•	•	•	•	•	•	•	•	. •	•	•	
0	0	0	•	Е	$-\mathbf{E}$	0	0	•	\mathbf{E}	0.	

The rows of (23') can be linear combinations of the rows of (22') only if (T - T - (- - - -))

$$\Gamma^{
u\mu} = egin{pmatrix} \Gamma_k - \mathbf{E} & (
u > \mu), \ \Gamma_k & (
u < \mu). \end{cases}$$

. `

Hence we find for the homology matrix Γ_l of l (see (16) and (18))

$$\Gamma_{l} = \begin{pmatrix} \Gamma^{11} & & \Gamma^{1n} & 0 \\ & & & \\ \hline \Gamma^{n1} & & \Gamma^{nn} & 0 \\ \hline 0 & & 0 & \hline \Gamma_{l^{*}} \end{pmatrix} = \begin{pmatrix} \Gamma_{k} & \Gamma_{k} & & \Gamma_{k} & 0 \\ \Gamma_{k} - E & \Gamma_{k} & & \Gamma_{k} & 0 \\ & & & & \\ \hline \Gamma_{k} - E & \Gamma_{k} - E & & \hline \Gamma_{k} & 0 \\ \hline 0 & 0 & & 0 & \hline \Gamma_{l^{*}} \end{pmatrix},$$

32 ON THE HOMOLOGY INVARIANTS OF KNOTS

and for the L-polynomial $\Delta_l(x)$ of l

$$\Delta_{l}(x) = |\mathbf{E} - \Gamma_{l} + x \Gamma_{l}|$$

$$= |\mathbf{E} - \Gamma_{l} + x \Gamma_{l} \cdot | \cdot \begin{vmatrix} \mathbf{E} - \Gamma_{k} + x \Gamma_{k} & \cdot & -\Gamma_{k} + x \Gamma_{k} \\ \cdot & \cdot & \cdot \\ \mathbf{E} - \Gamma_{k} + x (\Gamma_{k} - \mathbf{E}) & \cdot & \mathbf{E} - \Gamma_{k} + x \Gamma_{k} \end{vmatrix}$$
(24)

The first factor is the L-polynomial $\Delta_{l^*}(x)$ of l^* ; the second factor has in the diagonal $\mathbf{E} - \Gamma_k + x\Gamma_k$, above the diagonal $-\Gamma_k + x\Gamma_k$, and below the diagonal $\mathbf{E} - \Gamma_k + x(\Gamma_k - \mathbf{E})$. This determinant can be computed as follows. Subtract successively the (n-1)th row from the *n*th, the (n-2)th from the (n-1)th,..., the first row from the second. There results

$\mathbf{E} - \Gamma_k + x \Gamma_k$	$-\Gamma_k + x\Gamma_k$	•	$-\Gamma_k + x\Gamma_k$	$-\Gamma_{k} + x\Gamma_{k}$	1
-xE	Ε	•	0	0	
0	$-x\mathbf{E}$	• .	0	0	.
•	•	•	•	•	
0	0		$-x\mathbf{E}$	\mathbf{E}	

Next add x times the nth column to the (n-1)th, x times the (n-1)th column to the (n-2)th, etc. This gives

Thus (24) becomes

$$\Delta_l(x) = \Delta_{l^*}(x)\Delta_k(x^n).$$

This completes the proof.