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1. Let k be an oriented knot in 3-dimensional euclidean space R3

and F a closed tubular neighbourhood of k. The boundary of F is
a torus T, and W = Rs—V+T is the closed complement of F.
An oriented Jordan curve (i.e. a homeomorph of a circle) on T which
bounds on F (on R3— V-\-T) but not on T is called a meridian

m
FIG. 1.

(longitudinal circuit). If m^ and ra2 are any two meridians, one has
m^ ~ ±m 2 on T; likewise qx ~ ±q2 on T for any pair qx, q% of longi-
tudinal circuits.

By a topological mapping $ one can carry V into a tubular neigh-
bourhood V* of an unknotted curve k* in such a way that the
longitudinal circuit of V is carried into a longitudinal circuit q* of F*.
The 3-space in which V* lies will be designated by R3*. Fig. 1 and
Fig. 2 show the situation in the case when k is a trefoil knot.

Let I be an arbitrary knot in the interior of F. Then I, as a 1-cycle
in F, is homologous in F to some multiple of k, say

l~nk on F. (1)
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By a suitable orientation of I we can arrange that n ^ 0.
shows an example in which k is a trefoil knot and n = 0.

The knot I is carried by the topological mapping <j> into a knot I*
in the interior of F*. The purpose of this paper is to prove the two
following theorems:

FIG. 2.

FIG. 3.

THEOREM I. For n = 0 the homology invariants of I and I* are the
same.

In other words: if Mg and M* are the fir-sheeted cyclic covering
manifoldsf of J?3 with the branch lines I and I* respectively, the
homology groups and linking invariants of Mg and M* are equal for

f Seifert-Threlfall, Lehrbuch der Topologie (Leipzig 1934) §§ 58 and 77.
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g = 2, 3,..., and the homology groups of Mx and M*, considered as
groups with operators,")" are isomorphic.

THEOREM II. Between the L-polynomials \(x), A,,{x), Afc(x) of the
knots I, I*, and k the following equation holds

( a ! » ) . (2)

In the case n = 0 formula (2) reduces to

A,(z) = A,.(z). (3)

For we then have

But it is known that Afc(l) = 1 for any knot k. Besides (3) is a
consequence of Theorem I.

In the special case when the knot I lies on the boundary T of V,
formula (2) expresses a theorem due to Bxirau.J A theorem due to
Alexander! to the effect that the L-polynomial of a composite knot
is the product of the L-polynomials of the factors is another special
case of Theorem II (here n = 1).

Theorem I illustrates the limits of the homology invariants of a
knot in so far as the properties of knot k do not appear in the
homology invariants of I. A special case of this fact is the theorem
of Whitehead's|| on the L-polynomial of a 'doubled knot'.

2. Proof of Theorem I.
The ^-sheeted cyclic covering manifold Mg is the union of the

complexes Vg and Wg corresponding to the decomposition of Rs into
F and W. Vg is the gr-sheeted cyclic covering manifold of V with
branch line I. Wg decomposes into g homeomorphs W, W,..., TFto>

of W, since every closed curve of W is homologous to zero in Rz—l,
n being equal to zero. The intersection of Vg and WM is a torus Ty

(y = 1, 2,..., g). Let qy be the covering of the longitudinal circuit q
lying on T' and let alt a2,..., a, be a set of generators of the homology

t H. Seifert, 'ttber das Geschlecht von Knoten', Math. Annalen, 110 (1934),
671-92.

% W. Burau, 'Kennzeichnung der Schlauchknoten', Abh. math. Semin.
Hamburg. Univ. 9 (1932), 125.

§ J. W. Alexander, 'Topological invariants of knots and links', Trans.
American Math. Soc. 30 (1928), 275-306.

|| J. H. C. Whitehead, J. of London Math. Soc. 12 (1937), 63.
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group of dimension 1 of Vg. Then the homology group of Vg is defined
by a set of m relations

2 / V a r ~ ° onFff (p =• 1, 2,..., m). (4)
T="l

t

Let ? y ~ 2 v a T o n Tff ( y = l,2,. . . ,gr). (5)
T=-l

Then the homology group of Mg is defined by the relations (4) and

toav~0 on Mg (y = 1, 2,..., g). (6)
T—1

On the other hand let us consider the (/-sheeted cyclic covering
manifold M* = V* + W* of R3* with branch line I*. Corresponding
to the mapping <j> of F on V* (cf. § 1) there exists a homeomorphic
mapping <f>g of Vg on F* which carries the torus Ty into the torus T*,
the longitudinal circuit qy into the longitudinal circuit q* and the set
of generators av o2,..., at of Fff into the set of generators a*, «*>•••. a *
of F*. Then we have the relations

i p ^ T a * ~ 0 onF* (/* = 1, 2 m) (4*)
T - l

and ? ? ~ I < V a ? o n F ? (y = 1, 2,..., ?), (5*)

since ^ is a homeomorphic mapping. It follows that the homology
groups of Mg and M* are isomorphic.

In order to determine the linking invariants of Mg, we consider
(besides av a2,..., at) t 1-dimensional chains a'x, a2,...,aj on Vg such that
a'T ~ o T o n F , and oT and a\ do not intersect for T, A = 1, 2,..., t.
Because of formulae (4) and (5), there are 2-chains Alt A2,..., Am

and Bv Bz,..., Bg on Vg such that
t

boundary A = 2 p»TaT (M = 1. 2 . - , » » )
T = l

and boundary 5 y = 2 V ar—?y (y = 1. 2 . - , y)-

Then the linking invariants of Mg are determined by the t(t+g)
intersection numbersf

S(AT,a'a), S(By,a'a)

( T , a = 1,2,..., t; y= l,2,...,g).
If we define a'*, A*, B* as the images of a'T, AT, By under the mapping
<f>u, it follows tha t

S(AT, a'o) = 8{A*t a'*), S(By, a'a) = S(Bf, a'*),

t H. Seifert, 'Die Verschlingungsinvarianten der zyklischen Knoteniiber-
lagerungon', Abh. math. Semin. Hamburg. Univ. 11 (1935), 84-101.
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provided that the orientation of Vg is carried into the orientation of
V* under the mapping (f>g. Therefore the linking invariants of Mg

and M* are the same.
The assertion that the 1-dimensional homology groups of Mm and

M * are operator isomorphic follows from the fact that they are
obtained from the operator isomorphic groups of Ko aD-d ^S by
adding the relations qy ~ 0 and g * ~ 0 ( — o o < y < +oo).

3. For the proof of formula (2) we make use of the following facts
(cf. Seifert):f For any knot c there can always be found an orientable
surface F without singularities whose boundary is c. By cutting B3

along F we obtain a bounded 3-dimensional manifold M whose
boundary consists of the two exposed faces of the cut, i.e. of F and
a homeomorpbic copy xF of F. Let h be the genus of F, let
alt a2,..., a2A be a (1-dimensional) homology basis of F and let
xa1,xai,...,xa2h be the corresponding basis of xF. Then there are
homologies of the form

2ft _

a< - 1 y^-xa)) ~ 0 in M (i = 1, 2 2h). (7)

All homologies between o1(..., a^, xax,..., xaih that exist in M are
consequences of (7).

The matrix F = (yw), from which all homology invariants of c
can be derived, may be called a homology matrix of c. The matrix F
is uniquely determined up to the choice of the spanning surface F
and its homology basis alt a2,..., a2ft. The L-polynomial Ac(a;) of c is
the coefficient determinant of the system (7)

Ac(x) = I E - F + X F I , (8)

where E is the unit matrix of order 2h.

4. We may assume n > 0, since for TO = 0 Theorem II is a conse-
quence of Theorem I. We begin by constructing an oriented non-
singular surface JJ» bounded by I*. To this end we choose on the
boundary T* of V* a set of n non-intersecting longitudinal circuits
q\, q*,..., q* and orient them so that they all become homologous to

n
k* in V*. Since we have the homology I* ~ ]Tg* in V", it follows

v - l

that there exists in V* an oriented non-singular surface F^» with
n

boundary I* — 2 q* • From F$, we obtain the desired surface Ft, by
v - l

t H. Seifert, 'Uber das Gesohlecht von Knoten', Math. AnnaUn, 110 (1934),
571-92.
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adjoining n non-intersecting 2-cells Fqi, Fqi,..., Fq- which lie in
W* = B3*— V*+T* and have the boundaries q*, q*,..., q* respec-
tively.

Next we construct a surface F, bounded by I. The homeomorphic
mapping (f>~1 of V* upon V carries the surface Ff. into a surface Ff
whose boundary consists of I and n longitudinal circuits qx, q2,..., qn

of V, images of q*, q*,..., q* respectively. Since qx ~ 0 in W, there
exists an oriented non-singular surface Fgi in W with boundary qL.
By an isotopic deformation Fqi can be carried into a 'parallel' surface

FIG. 4.

Fqt in W with boundary g2 such that Fqi and Fqt do not intersect.
By a second deformation Fgt can be carried into a surface Fqt in W
with boundary q3 such that Fqt intersects neither Fgi nor Fqt, and so
on. jp , Fqi, Fg , Fgn form together an orieritable non-singular
surface Ft bounded by I. Fig. 4 shows the situation in a schematic
cross-section; / ? is omitted and n = 3.

The genus of Ft is obviously

hi*-\-nhk,

where A,», hk denote the genera of Ft* and Fqi respectively.

5. I shall now construct a homology basis of dimension 1 on Ft.

Let oi« ai«,..., afli
be a homology basis on Fqi and

a<"\ aW af t (v = 1, 2,..., n) (9)

the basis on FQr which corresponds to it with respect to the above-
mentioned deformation of Fqi into Fqr. On Ff* we select a homology

6J,6,V..6^. (10)
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One can assume that these chains all lie on F?t, since the 2-cells
F*t, F*t,..., F*H can obviously be avoided. By the homeomorphic
mapping tf)-1 of F* on F the chains (10) are carried into the chains

61. 6,,..., few (11)

on F%. The chains (9) and (11) constitute the desired homology basis
ofF,.

6. In order to obtain the L-polynomial of the knot I we cut R3

along the surface Ft according to the general rule of § 3. I shall use
the following notation. By the cutting process the complexes R3, V,
W, T go into R3, V, W, T. The two exposed faces of the cut are
designated by Ft and xFt. Ft consists of the ra-f-1 surfaces Fqv Fqt,...,
Fq%, F^, and similarly xFt is the union of the surfaces xFgi, a;^,,...,
xFgn, xFl The homology basis a<»,..., aQ, a{%.., a ^ , blt b b2hl.
of Ft corresponds to the homology basis xa^\..., xa$k, xd^\..., xa$k,
xbv xb2,..., xb^. of xFt. The notation used in Rz* difEers only in the
addition of a superscript star.

7. In R3* we have relations of the form (cf. § 3)

«•? -^yfKbf-xbf) ~ 0 in &: (i = 1, 2,..., 2V)- (12)

The homology matrix of the knot I* is

T,. = (y^). (13)

The left side of (12), being a chain in V* and homologous to zero in
£3* = v*+W*, must be homologous to a chain on V* n W* = T*.
Thus it is homologous to a linear combination of the chains
9i>9* »•••>{£:

By the homeomorphic mapping <̂ ~x of F* on F the homology
(14) corresponds to the following homology on F:

i J i onV. (15)

If we consider this homology in R3 = V-\- W, it simplifies to

f>i ~IVn^-*6*) ~ ° in ^S (» = !> 2.-
since qf -~ 0 in W.
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We still need the homologies belonging to the a[v). They have the
following general form (cf. § 3):

^ - 1 2 T&W-xaf*) "JivWi-**,) in &• (17)
The left side of (17) is a chain in W, the right side a chain in V.
Therefore there is a certain chain on V n W = T to which either side
is homologous (in V or W respectively). The most general such chain
is a linear combination of qlt q2,—, qn, but these are ~ 0 in W. So
it follows that r '

°ir) - I I •f${af)—*df)) ~ 0 in W

(t = l , 2 2hk; v = l,2,,.,n). (18)

In order to determine the matrices

(yf)
we identify in W the surfaces F^t and xFq , Fq% and xFQn. Hereby W
goes into a complex WQl, which may be described as the complex W
cut along Fgt. The chains o ^ and xa^ are thereby identified
(n = 2, 3,..., n), so that (18) reduces to

S ^ P - a a J " ) ~ 0 inJFCl (» = 1, 2,..., 2hk). (19)

But this is exactly the system of relations (7) formed for the knot qt

and the surface FQl. So we see from (19) that F11 is just the homology
matrix of ql or, what is the same thing, of k (k and qx are equivalent
knots, since k can be deformed in V into qj. If we designate the
homology matrix of k by Ffc, we have the result F11 = Ft, and in the
same way one proves

F - = Ffc (v = 1, 2,..., n). (20)

Now we note that the homologies

xaW r+s O M in W (i = 1, 2,..., 2hk; v = 1, 2,..., »—1) (21)

hold, provided that the qv have been enumerated in the right way.
But we know that (16) and (18) are a complete system of homologies
in B3 between the chains 6<; ajv), xbt, xafK So (21) must be a conse-
quence of (16) and (18) and therefore, because of the special form
(16) and (18), of (18) alone.

If we write the variables a[v) and xatp in the order
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the coefficient matrices of (18) and (21) are

31

E-r f c - r 1 2

_r<" E-r f c

pin

E-R

p21

P12

pn2

pin

p2n
(22).

and

0 - E 0

0 0 - E

0 0 0 - E

E 0

0 E

0 0

0 0

0 0

E 0.

(23)

In both matrices we add the right half to the left and obtain

rfc n 2 . r1*E 0

0 E

and

E —E 0

0 E —E

0 0 0

0

0

E

0 0

0 0

E - E

(22')

pn2

E 0

0 E

0 0

0 0

0 0

E 0.

(23')

The rows of (23') can be linear combinations of the rows of (22') only

Hence we find for the homology matrix F, of I (see (16) and (18))

pu

pnl

0

pin

pnn

0

0

0

rfe-E

r*-E
0

rfc •

rfc-E .
0

rfc
rfc

rfc
0

0

0

•0
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and for the i-polynomial &{(x) of I

A,(z) = \E--Tl+xTl\
E—T f c+a;r f c . —r f c+a;r f c

. (24)

E—rfc+a;(rfc—E) . E-Ffc+a;rfc

The first factor is the L-polynomial A,»(a;) of I*; the second factor
has in the diagonal E—Ffc+a;rfc, above the diagonal — Ffc-f xrk, and
below the diagonal E—Ffe+x(Ffc—E). This determinant can be com-
puted as follows. Subtract successively the (n— l)th row from the
nth, the (n—2)th from the (n— l)th,..., the first row from the second.
There results

E-Ffc+zr,
-xE

0

'k -rk+xrk
E

-xE

— Tk+xTt
0

0

'k - F f c + a : r f c
0

0

0 0 . — xE E

Next add x times the »th column to the (n— 1 )th, x times the (n— 1 )th
column to the (n—2)th, etc. This gives

0

0

E

0

0

E

Thus (24) becomes
A,(x) =

This completes the proof.




