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1. Let & be an oriented knot in 3-dimensional euclidean space R3
and V a closed tubular neighbourhood of k. The boundary of V is
a torus T, and W = R*—V+7T is the closed complement of V.
An oriented Jordan curve (i.e. a homeomorph of a circle) on 7' which
bounds on V (on R®*—V4T) but not on T is called a meridian

[, o o= o

Fia. 1.

(longitudinal circuit). If m, and m, are any two meridians, one has
my ~ +m, on T; likewise ¢, ~ ¢, on T for any pair ¢,, g, of longi-
tudinal circuits.

By a topological mapping ¢ one can carry V into a tubular neigh-
bourhood V* of an unknotted curve k* in such a way that the
longitudinal circuit of V is carried into a longitudinal circuit g* of V*.
The 3-space in which V* lies will be designated by R3*. Fig. 1 and
Fig. 2 show the situation in the case when k is a trefoil knot.

Let I be an arbitrary knot in the interior of V. Then [, as a 1-cycle
in V, is homologous in V to some multiple of k, say

l~nk onV. (1)
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24 H. SEIFERT

By a suitable orientation of [ we can arrange that » > 0. Fig. 3
shows an example in which k is a trefoil knot and » = 0.
The knot [ is carried by the topological mapping ¢ into a knot I*

in the interior of ¥*. The purpose of this paper is to prove the two
following theorems:

Fia. 2.

A\

([~

Fia. 3.

THEOREM 1. For n = 0 the homology invariants of | and I* are the
same.

In other words: if M, and M} are the g-sheeted cyclic covering
manifoldst of R® with the branch lines I and I* respectively, the
homology groups and linking invariants of M, and M} are equal for

t Seifert-Threlfall, Lehrbuch der Topologie (Leipzig 1934) §§ 58 and 77.
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g = 2, 3,..., and the homology groups of M, and M%, considered as
groups with operators,} are isomorphic.

TrEOREM II. Between the L-polynomials Afx), An(x), A(x) of the
knots 1, 1*, and k the following equation holds

Ay(z) = Dp(@)A (™). (2)
In the case » = 0 formula (2) reduces to
Ayz) = Ay(). (3)

For we then have
Ap(a™) = Ap(x) = Ag(1).

But it is known that A,(1) = 1 for any knot k. Besides (3) is a
consequence of Theorem I.

In the special case when the knot ! lies on the boundary T of V,
formula (2) expresses a theorem due to Burau.] A theorem due to
Alexander§ to the effect that the L-polynomial of a composite knot
is the product of the L-polynomials of the factors is another special
case of Theorem II (here n = 1).

Theorem I illustrates the limits of the homology invariants of a
knot in so far as the properties of knot ¥ do not appear in the
homology invariants of I. A special case of this fact is the theorem
of Whitehead’s|| on the L-polynomial of a ‘doubled knot’.

2. Proof of Theorem 1.

The g-sheeted cyclic covering manifold M, is the union of the
complexes ¥V, and W, corresponding to the decomposition of R® into
V and W. V, is the g-sheeted cyclic covering manifold of V with
branch line I. W, decomposes into g homeomorphs W', W”,..., W@
of W, since every closed curve of W is homologous to zero in R®—1,
n being equal to zero. The intersection of ¥, and W% is a torus T,
(y =1, 2,..., 9). Let g, be the covering of the longitudinal circuit ¢
lying on 7, and let a,, a,,..., a, be a set of generators of the homology

+ H. Seifert, ‘ Uber das Geschlecht von Knoten' Math. Annalen, 110 (1934),
571-92.

1 W. Burau, ‘Kennzeichnung der Schlauchknoten’, Abk. math. Semin.
Hamburg. Univ. 9 (1932), 125.

§ J. W. Alexander, ‘Topological invariants of knots and links’, Trans.
American Math. Soc. 30 (1928), 275-306.

{| . H. C. Whitehead, J. of London Math. Soc. 12 (1937), 63.
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group of dimension 1 of ¥,. Then the homology group of ¥, is defined
by a set of m relations

thlpma., ~0 onV, (p=12,..,m). C(4)
Let g, ~Télay,a, onV, (y=12,..,9) (5)
Then the homology group of M, is defined by the relations (4) and
Tz_‘:lay,a, ~0 onM, (y=1,2,.9). (6)

On the other hand let us consider the g-sheeted cyclic covering
manifold M} = V}+ W7 of R®* with branch line [*. Corresponding
to the mapping ¢ of V on V* (cf. § 1) there exists a homeomorphic
mapping ¢, of ¥, on ¥ which carries the torus 7, into the torus 77,
the longitudinal circuit g, into the longitudinal circuit ¢} and the set
of generators a,, a,,..., a, of ¥, into the set of generators af, a3,..., af
of V}. Then we have the relations

t
2 Purr~0 onVy (p=1,2,..,m) (4*)
T=1
t
and q;',' ~ o,af onVy (y=1,2..9), (5%)
T™=]1

since ¢, is a homeomorphic mapping. It follows that the homology
groups of M, and M7 are isomorphic.

In order to determine the linking invariants of M, we consider
(besides a,, ay,..., a,) t 1-dimensional chains a3, ay,..., a; on ¥, such that
a, ~a, on V, and a, and a) do not intersect for =, A =1, 2,..., ¢.
Because of formulae (4) and (5), there are 2-chains 4,, 4,,..., 4,,
and B,, B,,..., B, on ¥, such that

¢
boundary 4, = 3 p,.a, (p=1,2,.,m)
7=1

¢
and boundary B, = > o,,a,—q, (y=1,2,..,9).
T=1

Then the linking invariants of M, are determined by the t(t4-g)
intersection numberst
8(4,,a0),  S(By ay)
(o=1,2,..ty=12..09).
If we define a ¥, A%, B; as the images of a_, 4, B, under the mapping
é,, it follows that .
S(Af’ (l:,) = S(A:’a’;*): S(-By: a:'l) = S(B;: a’a*):

+ H. Seifert, ‘Die Verschlingungsinvarianten der zyklischen Knoteniiber-
lagerungen’, Abh. math. Semin. Hamburg. Univ. 11 (1935), 84-101.
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provided that the orientation of ¥, is carried into the orientation of
V5 under the mapping ¢,. Therefore the linking invariants of M,
and M} are the same.

The assertion that the 1-dimensional homology groups of M, and
M} are operator isomorphic follows from the fact that they are
obtained from the operator isomorphic groups of V,, and V3 by
adding the relations ¢, ~ 0 and gy ~ 0 (—o0 <y < +0).

3. For the proof of formula (2) we make use of the following facts
(cf. Seifert):t For any knot ¢ there can always be found an orientable
surface F' without singularities whose boundary is ¢. By cutting R®
along F we obtain a bounded 3-dimensional manifold M whose
boundary consists of the two exposed faces of the cut, i.e. of F and
a homeomorphic copy xzF of F. Let h be the genus of F, let
@y, @g,..., Gy, be a (1-dimensional) homology basis of F and let
xa,, T&y,..., Ty, be the corresponding basis of zF. Then there are

homologies of the form
2h

a; —jzly,.,(a,—m;) ~0 inM (i=1,2,.,2h). (7
All homologies between a,,..., agy, za,,..., Tay, that exist in M are
consequences of (7).

The matrix I' = (y;;), from which all homology invariants of ¢
can be derived, may be called a homology matriz of c. The matrix T’
is uniquely determined up to the choice of the spanning surface F
and its homology basis a,, ay,..., @y, The L-polynomial A (z) of ¢ is
the coeiﬁcxent determinant of the system (7)

Ay(x) = |[E—T+42T, - (8)
where E is the unit matrix of order 2h.

4. We may assume n > 0, since for n = 0 Theorem II is a conse-
quence of Theorem I. We begin by constructing an oriented non-
singular surface F« bounded by !*. To this end we choose on the
boundary T'* of V* a set of » non-intersecting longitudinal circuits
g%, ¢3,..., g% and orient them so that they all become homologous to

k* in V*. Since we have the homology * ~ iq:‘ in V*, it follows
ve=]l
that there exists in V* an oriented non-singular surface F{, with

boundary I* — i g¥. From FY, we obtain the desired surface ¥, by
ye=1 :

t H. Seifert, “Uber das Geschlecht von Knoten’, Math. Annalen, 110 (1934),
571-92.
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adjoining n non-intersecting 2-cells F;, Fy;,..., Kz which lie in
W* = R3*—V*4+T* and have the boundaries g, ¢3,..., ¢¥ respec-
tively.

Next we construct a surface F, bounded by I. The homeomorphic
mapping ¢~ of V* upon V carries the surface F{, into a surface ¥J
whose boundary consists of [ and n longitudinal circuits ¢;, ¢,,..., g,
of V, images of gf, ¢F,..., ¢* respectively. Since g; ~ 0in W, there
exists an oriented non-singular surface F, in W with boundary ¢,.
By an isotopic deformation F, can be carried into a ‘parallel’ surface

F1c. 4.

F,, in W with boundary ¢, such that F,, and F, do not intersect.
By a second deformation F,, can be carried into a surface F,, in W
with boundary g, such that F,, intersects neither ¥, nor ¥, and so
on. F}, ¥, F,,.., F, form together an oriertable non-singular
surface ¥ bounded by I. Fig. 4 shows the situation in a schematic
cross-section; £ is omitted and n = 3.
The genus of F;is obviously
ko +nhy, ‘
where A, h;, denote the genera of Fj» and F, respectively.

5. I shall now construct a homology basis of dimension 1 on F,.

Let a®, afV,..., ag}),
be a homology basis on F,, and
a,aP,...af, (v=12..,n) (9)

the basis on F, which corresponds to it with respéct to the above-
mentioned deformation of ¥, into F,,. On K« we select a homology

basis b2, b,..., bEe. (10)
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One can assume that these chains all lie on F},, since the 2-cells
F;, Fg,..., F§ can obviously be avoided. By the homeomorphic
mapping ¢! of V* on V the chains (10) are carried into the chains

by. byy-.., byns (11)

on FJ. The chains (9) and (11) constitute the desired homology basis
of F,

6. In order to obtain the L-polynomial of the knot I we cut R?
along the surface ¥ according to the general rule of § 3. I shall use
the following notation. By the cutting process the complexes R3, V,
W, T go into B3, V, W, T. The two exposed faces of the cut are
designated by # and xF. F consists of the n+-1 surfaces ¥, F,

. v Foureeos
F,, F?, and similarly zF] is the union of the surfaces zF, , zF,

. ay’ [' I
zF, , zF}. The homology basis a{V,..., al), a{,..., af), b,, b,..., by,
of F,corresponds to the homology basis za{V,..., zall), za®...., zaf}),
xby, xb,,..., by« of zF,. The notation used in R3* differs only in. the

addition of a superscript star.

7. In E®* we have relations of the form (cf. § 3)
B — S gbE—zb¥) ~ 0 in B (i =1,2,.., 2.  (12)
=1
The homology matrix of the knot I* is

Lo = (7). (13)
The left side of (12), being a chain in ¥* and homologous to zero in
R3* — V*4 W*, must be homologous to a chain on V* n W* = T*.
Thus it is homologous to a linear combination of the chains
gt 92+ In:

b —:g‘yg‘)(b;‘-—-xb;’) ~ i a;qf on [4d (14)
=1 =1

By the homeomorphic mapping ¢! of V* on ¥V the homology
(14) corresponds to the following homology on V:

j=1 i=1
If we consider this homology in B® = V4 W, it simplifies to
b‘ —%.Yg‘)(bj—zbj) ~ O in .ﬁs (i = l, 2,..., 2"’[.)’ (]6)
i=1

since g; ~ 0 in w.
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We still need the homologies belonging to the af?. They have the
following general form (cf. § 3):

af — 2 Z 71"(a§f"—xa§"’)~§n M(b,—axb;) in R (17)

The left side of (17) is a chain'in W, the right side a cham in V.
Therefore there is a certain chainon ¥ n W = T to which either side
is homologous (in ¥ or W respectively). The most general such chain
is & linear combination of g¢,, ¢,,..., s but these are ~ 0 in W. So
it follows that ~

2h —
a — zk i y§ @@ —za)) ~ 0 in W
j=1 pm1
(t=1,2,.,2k v=1,2,...,%). (18)
In order to determine the matrices ' ’
vt = (y)

we identify in W the surfaces F, and zF,,,..., F,_and zF,. Hereby w
goes into a complex W& , which may be described as the complex W
cut along F,. The chains a{* and za{® are thereby identified
=273, n), 80 that (18) reduces to

a® _jz‘l),%}(a;n_ M ~0 inW, (i=1,2..,2k). (19)

But this is exactly the system of relations (7) formed for the knot ¢,
and the surface F,. So we see from (19) that I''! is just the homology
matrix of ¢, or, what is the same thing, of k (k and ¢, are equivalent
knots, since ¥ can be deformed in ¥V into ¢,). If we designate the
homology matrix of k by I}, we have the result " = I}, and in the
same way one proves

=T, (v=1,2,..,n). (20)
Now we note that the homologies
zaP? ~aP+) in W (5=1,2,.,2k v=1,2,..n—-1) (21)

hold, provided that the g, have been enumerated in the right way.
But we know that (16) and (18) are a complete system of homologies
in B3 between the chains b,, af”), zb;, za{. So (21) must be a conse-
quence of (16) and (18) and therefore, because of the special form
(16) and (18), of (18) alone.

If we write the variables af? and za{” in the order

a®, a®,..., a{; zal), zaf®,..., za{™,
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the coefficient matrices of (18) and (21) are

E-T, —I'* | _Is|T, TIn . [in
-t E-I, . I | L, . . [zn
(22).
—m . E~L|Im TI= . T,
and
-E 0o . O|E o0 . 0 0
0 0o —E . o| 0 E
_ (23)
0 o o . —-E[0 o . E o
In both matrices we add the right half to the left and obtain
' E 0 . o |I I'™ . T[m
o E . o | L, . I
. : (22)
0 0 . E | ez | T
and
E -E 0 . 0 O]E o
o0 E —E . o0 0|0 E 0
(23)
0o 0o o . E —El 0o o . E o

The rows of (23’) can be linear combinations of the rows of (22') only

if .
Fk_E (v > F’)’

e — {
L (v <m).

Hence we find for the homology matrix I} of I (see (16) and (18))

rm . I 0 (I, I, . L | 0 )
o ' . I-EL . Lo
T lrm . opw)lo || . . . L],
0 . 0 I L—EL—-E . L | 0
| 0 o0 . 0 ||
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and for the L-polynomial Az) of I
A(z) = |E—D+2T
E—TI 4=zl . — 4zl
= [E—Tp+42ls|. . . . . (24)
. E—Fk+x(Pk—E) . E—Pk-{-xl‘k
The first factor is the L-polynomial Au(z) of I*; the second factor
has in the diagonal E—TI}+ I}, above the diagonal —I}+zI;, and
below the diagonal E—I},+4-«(I},—E). This determinant can be com-
puted as follows. Subtract successively the (n—1)th row from the

nth, the (n—2)th from the (n—1)th,..., the first row from the second.
There results

E—Pk'*‘xl-‘k _I‘k+ka . —'Pk+zpk —Pk-{-ka
—zE E . 0 0
0 —xE. . 0 0
0 0 . —zB E

Next add « times the nth column to the (n—1)th, z times the (n—1)th
column to the (n—2)th, ete. This gives

E— I‘k+x"Pk - Pk+x"—l Fk . — Fk+ka
0 E . 0
| 0 0 : E

.= IE_Pk+ank| = Ak(x”).
Thus (24) becomes
Az) = Ap()A (=)
This completes the proof.





