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PREFACE TO ENGLISH EDITION 

The first German edition of Seifert and Threlfall’s “Lehrbuch der 
Topologie” was published in 1934. The book very quickly became the leading 
introductory textbook for students of geometric-algebraic topology (as 
distinguished from point set or “general” topology), a position which it  held 
for possibly 30 to 35 years, during which time it was translated into Russian, 
Chinese, and Spanish. An English language edition is, then, long overdue. 
The translation presented here is due to Michael A. Goldman. 

In spite of the fact that with the passage of time our understanding of the 
subject matter has changed enormously (this is particularly true with regard 
to homology theory) the book continues to be of interest for its geometric 
insight and leisurely, careful presentation with its many beautiful examples 
which convey so well to the student the flavor of the subject. In fact, a quick 
perusal of the more successful modern textbooks aimed at advanced under- 
graduates or beginning graduate students reveals, inevitably, large blocks of 
material which appear to have been inspired by if not directly modeled on 
sections of this book. For example: the introductory pages on the problems of 
topology, the classification of surfaces, the discussion of incidence matrices 
and of methods for bringing them to normal form, the chapter on 
3-dimensional manifolds (in particular the discussion of lens spaces), the 
section on intersection theory, and especially the notes at the end of the text 
have withstood the test of time and are as useful and readable today as they 
no doubt were in 1934. 

This volume contains, in addition to Seifert and Threlfall’s book, a 
translation into English, by Wolfgang Heil, of Seifert’s foundational research 
paper “The topology of 3-dimensional fibered spaces” [“Topologie dreidi- 
mensionales gefaserter Raum,” Acta Mathematics 60, 147-288 (1933)l. The 
manuscript treats a simple and beautiful question: what kinds of 
3-dimensional manifolds can be made up as unions of disjoint circles, put 
together nicely? Using practically no technical machinery, Seifert takes hold 

ix 
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of the question, lays down a set of ground rules, and with exceptional clarity 
of thought and particular attention to detail weaves a theory which 
culminates in the complete classification of his “fibered spaces” up to 
fiber-preserving homeomorphism. 

The manuscript is a model of mathematical exposition, and on these 
grounds alone it is worthy of translation, preservation, and study by new 
generations of mathematicians. But the primary reason for publishing this 
translation is, in our minds, because the ideas in the paper have proved to be 
at the origins of so many different flourishing areas of current research. We 
give a brief review. 

The question that Seifert asks and answers is not an idle question. The first 
paragraph of the paper shows that Seifert understood well the crucial role 
that the manifolds which have since come to be known as Seifert fibered 
spaces were likely to play in the classification problem for compact 3- 
manifolds. In fact it could be said that Seifert anticipated the theory of 
geometric structures on 3-manifolds, as it is evolving at this writing. 

Although Seifert only classified his fibered spaces up to fiber-preserving 
homeomorphism, the classification has turned out (with some exceptions) to 
be topological (Orlik, Vogt, and Zieschang [lo]). This classification was 
generalized by Waldhausen [ 1 I] to a related classification of “graph 
manifolds” which are Seifert fiber spaces (now with nonempty torus 
boundaries) pasted together along their boundaries, much as one pastes 
together 3-manifolds along 2-spheres in the boundary to obtain connected 
sums. Conversely, it has been proved that one may decompose a 3-manifold 
into simpler pieces by splitting along essential 2-spheres and tori. This 
procedure is summarized in the following theorem (Kneser [7], Milnor (81, 
Johannson [6],  Jaco and Shalen [4]): 

Let M 3  be closed, orientable. Then M 3  has a unique decomposition 
as a connected sum of prime 3-manifolds M , # M , #  . . . # M , .  
Moreover, for each prime summand Mi, there is a finite collection of 
disjoint essential tori in Mi such that Mi split along these tori 
consists of pieces that are either Seifert manifolds or prime M. that 
contain no essential tori. Moreover, a minimal such collection is 
unique up to isotopy of Mi. 

1 

Now Thurston has announced the remarkable result that if M is prime, 
Haken, and contains no essential tori, then M admits a unique complete 
hyperbolic metric. If the word “Haken” could be removed from Thurston’s 
theorem, we would have a complete classification theorem for 3-manifolds. 
At this writing, a beautiful classification seems very close, and Seifert’s 
contributions appear to have been seminal. 

Next, we remark on connections with the theory of fiber bundles. Seifert 
has given, in effect, a classification of O(2) bundles over surfaces. The 
question of the existence of a cross section for such a bundle emerges in 
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Seifert’s paper and is illustrated with beautiful examples. All of this is quite 
remarkable, because in 1933 the concept of a fiber bundle was not known, 
and i t  is only with hindsight that we recognize it as such. 

In another direction, we see in Seifert’s work the origin of the theory of Lie 
groups acting on manifolds, generalizing the action of the circle group on 
3-manifolds. Seifert classified the standard free actions of S ‘  on S 3 .  Later it 
was shown in Jacoby [ 5 ]  that in fact the only free S ‘  actions on S 3  are the 
standard ones, so that Seifert’s result gives a complete classification. Toral 
actions with only finite isotropy groups turn out to be a beautiful generaliza- 
tion of Seifert’s ideas (Conner and Raymond [2]). Seifert showed that the 
complicated structure of a Seifert fiber space unwinds in an appropriate 
covering space, and similar behavior occurs for S ’ X S ’ actions. (Raymond 
described this to us as a “global uniformizing process.”) 

Singularity theory is yet another area that can be traced, in its early origins, 
to Seifert’s paper. We mention in this regard first the work of Hirzebruch and 
Von Randow, who, in resolving singularities for surfaces, were led to consider 
graph manifolds. The connection between these manifolds and singularities 
was further developed by Neumann, Orlik and Wagreich, and thence 
generalized further to the study of isolated singularities of algebraic surfaces 
admitting more general actions by Arnold, Dolgachev, and others. 

Yet another application to 3-manifolds appears in the recent work of 
Morgan [9], which shows how the existence of a nonsingular Morse-Smale 
flow on a 3-manifold is related to the singular fibrations of Seifert. 

Finally, we note recent work of Bonahon [ I ]  deriving from ideas of 
Montesinos, which shows that the decomposition of a 3-manifold into Seifert 
manifolds and prime M 3  which contain no essential tori has an analog in 
knot and link theory, with a “union” of “rational tangles” (Conway [3]) 
replacing “Seifert fiber space.” 

Seifert’s paper is, in brief, a mathematical classic. We recommend it to 
graduate students and research mathematicians for its beauty, originality, 
clarity, and (as it seemed to us when we first encountered it) freshness of 
ideas, as well as for insight into the historical foundations of mathematics. 

JOAN S. BIRMAN 
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PREFACE TO GERMAN EDITION 

The original stimulus to the writing of the present textbook was a series of 
lectures which one of us (Threlfall) presented at the Technische Hochschule, 
Dresden. But only a part of this course was incorporated into the text. The 
main content has been developed subsequently in a close daily exchange of 
thoughts between the two authors. 

In this book we attempt to give an introduction and overall survey of the 
presently flourishing discipline of topology; however, we do not want to reach 
our goal merely by stating and proving propositions in their full generality. 
Rather, we wish to describe those concepts which have proven to be of value, 
and those meihods which have been successful and appear promising to us, 
by means of worked-out examples. 

Specialized knowledge is not assumed in advance. References to the 
literature are given in footnotes whenever less-well-known propositions are 
given without proof, so that one may find the proof in the form required. 

We restrict our treatment to combinatorial or algebraic topology but make 
wide use of these methods, avoiding set theoretical difficulties wherever 
possible. Accordingly, the concepts of the simplicia1 complex and of the 
manifold, as introduced by L. E. J. Brouwer are central to our treatment. For 
the reader who is not intimately acquainted with group theory and its 
presently used notation, we have appended the group theoretical propositions 
that are used in a concluding chapter. If required, it might be read between 
the second and third chapters. As far as possible, the chapters have been 
made independently readable. A detailed alphabetical subject index is given. 
The comments presented at the conclusion of the book give an indication of 
further literature on the subject and should guide the way to a deeper study 
of those topics which have only been given a first treatment in this book.* 

~ 

Numbers in square brackets refer to the alphabetical references in the Bibliography; small 
superscripted numbers refer to the comments following Chapter XII. 

xv 
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Several topics could not be treated at all, because of restricted space. It was 
especially painful to us to have to omit the Alexander duality theorem as well 
as the Alexandroff theory of closed sets and projection spectra. We hope to 
close these gaps in a further volume, in the event that other textbooks of 
topology do not do so in the interim. 

For the appearance of this book we are indebted, first of all, to Professor 
E. Trefftz who not only sacrificed his leisure time to its development but also 
provided encouragement by involving himself in our problems with under- 
standing and by contributing practical advice. In the same spirit we thank the 
Arbeitsgemeinschaft der Dresdener Mathematiker for their cooperation, and 
Professor C. Weber in particular. We were assisted by our outside colleagues 
L. Bieberback and K. Reidemeister who read the proofs, and F. Hausdorff, 
H. Kneser (cf. $58 in particular), and B. L. van der Waerden whose Prague 
lecture [ I ]  and verbal stimulation were of influence upon the arrangement of 
the book. In addition we thank Candidates Math. Mr. W. Hantzche and Mr. 
H. Wendt of Dresden for numerous particular improvements in the proof. 

Dresden, January 1934 H. SEIFERT 
W. THRELFALL 
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CHAPTERONE ILLUSTRATIVE MATERIAL 

1. The Principal Problem of Topology 

The subject of topology deals with those properties of geometric figures 
which are unchanged by topological mappings, that is, by mappings which 
are bijective (i.e., one-to-one correspondences) and bicontinuous (i.e., 
continuous, with continuous inverses). A geometric figure is understood to be 
a point set in 3-dimensional space (or in a higher dimensional space). A 
continuous mapping is a mapping which is realized by continuous functions 
in a Cartesian coordinate system for this space. The mapping functions need 
be defined only for the points of the figure, and do not have to be defined 
over the whole of the space. Those properties which remain unchanged under 
topological mappings are called the topological properties of the figure. Two 
figures which can be mapped topologically onto each other are said to be 
homeomorphic. 

For example, the surface of a hemisphere and a circular disk are 
homeomorphic, because one can map the hemisphere topologically onto the 
disk (shaded in Fig. 1)  by means of an orthogonal projection. More generally, 
any two surfaces which can be deformed one to the other, by means of 
bending and distortion, are homeomorphic. As examples: the surface of a 
sphere, the surface of a cube, and an ellipsoidal surface are homeomorphic; 
an annulus and a cylindrical surface of finite length are homeomorphic. 

FIG. 1 

1 
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It is an easy matter to discover arbitrarily many examples of homeomor- 
phic figures, including among them figures which do not appear to be 
homeomorphic on first glance. Such is the case for the Euclidean plane and 
for a spherical surface from which one point has been removed. Each can be 
mapped topologically onto the other, by means of a stereographic projection. 
They are each, moreover, homeomorphic to an open disk (16, second and 
third examples). 

In general, it is more difficult to prove that two point sets are nof 
homeomorphic than to prove that two points sets are homeomorphic. I t  is 
clear that a point and a line interval are not homeomorphic, because as point 
sets they cannot even be put into one-to-one correspondence. I t  is also easy to 
see that a line interval and a disk cannot be mapped topologically one onto 
the other: For if A , B , C  are three arbitrary points of the disk we can 
transform A continuously to B without passing through C ;  this property of 
the disk is preserved under a topological mapping. However, it does not hold 
for the line interval because, when one continuously transforms one endpoint 
of the interval to the other endpoint, it must necessarily pass through the 
midpoint of the interval. This simple reasoning fails, on the other hand, when 
we compare a disk to a solid sphere. For if we characterize the disk by the 
property that it contains closed curves* which separate it, then we must prove 
that there is no closed curve which separates the solid sphere. This is not 
obvious! Why cannot a closed curve lie in a solid sphere in such a way that i t  
passes through all points of some surface which separates the solid sphere? In 
fact, this cannot happen; however, it no longer suffices to use ideas as simple 
as those used for the line segment and the disk to prove that the disk and the 
ball, and analogous pairs of figures in higher dimensions, are non- 
homeomorphic (see 933 for the proof). 

The concept of homeomorphism plays the same role in topology that the 
concept of congruence plays in elementary geometry. Just as two figures are 
not essentially different in elementary geometry when they are congruent, two 
figures are not essentially different in topology when they are homeomorphic. 
In contrast, however, while two congruent figures can always be moved 
rigidly one onto the other by means of a congruence transformation of the 
whole space, in the case of homeomorphic figures there need not exist a 
topological mapping of the whole space which carries one onto the other. For 
example, it is not possible to transform a circle topologically to a knotted 
curve, in particular the trefoil knot (Fig. 2), by means of a topological 
mapping of the whole of 3-space (and certainly not by means of a 
deformation). On the other hand, the two curves are homeomorphic, since 
one can map the points of the knot bijectively and bicontinuously onto the 
points of the circle. The relation of homeomorphism thus holds for the points 
of the knot but not for the embedding space. 

Editor’s note: “Closed curve” means “simple closed curve” in this discussion. 



1. THE PRINCIPAL PROBLEM OF TOPOLOGY 3 

FIG. 2 FIG. 3 

Likewise, an untwisted closed band and a closed band which is twisted by 
an integer multiple of 2 71 radians (Fig. 3) can be mapped topologically one 
onto the other, but not by means of a topological mapping of the whole of 
3-space. One can see this by cutting the band into two congruent rectangular 
strips, and then identifying corresponding points of the strips with one 
another. 

Knots and circles, twisted and untwisted bands, are topologically 
equivalent figures and differ only in the manner in which they are embedded 
in 3-dimensional space. The difference between a knot and a circle, or a 
twisted and an untwisted band, will vanish if one considers 3-dimensional 
space to be a subspace of 4-dimensional space and allows deformations in the 
latter space. In that case circle and knot, as well as circle and ellipse, can be 
deformed to one another without self-intersection.' 

From now on, then, we will make a distinction between the intrinsic 
topological properties of a figure, that is, those properties which are preserved 
under all topological mappings of the figure, and the remaining properties, 
which depend upon the figure's placement in space, and which are preserved 
only under topological mappings of the whole space. 

We shall illustrate this difference by an additional example. When a circle 
is rotated in space about a line in its plane which does not intersect the circle, 
i t  will sweep out a ring-shaped surface, or torus. A generating circle will pass 
through a given point 0 of the torus. We will call this circle a meridian a of 
the torus. In addition, the point also lies on the circle which was swept out by 
the point during the rotation; we will call this latter circle a longitude b of the 
torus (Fig. 4). Meridian and longitude circles can be distinctively 
characterized by observing that a meridian can be contracted to a point by 
shrinking through the interior of the solid ring which is bounded by the torus, 
while a longitude cannot. The figure consisting of a torus and a meridian 
cannot, then, be mapped to the figure consisting of a torus and a longitude by 
means of a topological mapping of the whole of space onto itself. This 
distinction between a meridian and a longitude is not, however, an intrinsic 
property of the torus. For the torus can be mapped topologically onto itself in 
a way such that meridian and longitude circles are interchanged, though not 
by means of a deformation in 3-space. To do this, let us consider the torus to 
be an elastic skin, and let us cut it along a and b. We can then bend and 
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I J 
a- 

FIG. 4 FIG. 5 

distort the cut surface to form a plane square (Fig. 5).  If we now rotate the 
square by 180" about a diagonal, we obtain a topological mapping of the 
square onto itself such that a and b are interchanged. A like mapping of the 
torus onto itself will correspond to this mapping of the square. Another 
typical example, illustrating the distinction between intrinsic topological 
properties and topological properties of the embedding, is that of orientability 
and two-sidedness of a surface; this example will be discussed in the next 
section. 

There is, then, a distinction among topological properties, which is 
analogous to that occurring in differential geometry, where it is well known 
that the intrinsic metric properties which belong to a surface, independent of 
its position in space, are determined by its first fundamental form, in contrast 
to the metric properties of the figure consisting of surface and space together, 
which are determined by the second fundamental form. 

The principal problem of topology is to decide whether two given figures 
are homeomorphic and, when possible, to enumerate all classes of 
nonhomeomorphic figures. Although extensive theories exist which treat 
arbitrary subsets of Euclidean space, * we will not deal with the concept of a 
figure in that generality. To do so would entangle us in set theoretic 
difficulties. The concept of a complex, as introduced by L. E. J. Brouwer, and 
further narrowed down during the course of our investigations to that of a 
manifold, will be sufficiently restrictive so that it bypasses the set theoretic 
difficulties but will also be broad enough to include almost all figures of 
interest. The topology which we treat here is not, then, set theoretic topology 
but is a topology of complexes and manifolds. 

References to the literature are given in Tiebe-Vietoris [ I ,  I]. 
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The property which distinguishes a complex from an arbitrary point set of 
a space is its triangulability: a complex is a point set consisting of finitely 
many or countably infinitely many not-necessarily straighi-line intervals, 
triangles, tetrahedra, or corresponding higher dimensional building stones, 
assembled together as a structure. This assembly does not necessarily have to 
occur in an embedding space. If we so desire, we can fully dispense with the 
embedding space. As a consequence of the triangulability property, most 
so-called pathological point sets will be excluded from our considerations. A 
close connection with objects of geometric interest is then achieved, even to 
the extent that the topology of complexes has been called an India-rubber 
topology. Examples of complexes are: all Riemann surfaces; Euclidean space 
of arbitrary dimension; open subsets and algebraic curves and surfaces lying 
within that space; the projective plane and projective 3-space; all Euclidean 
and non-Euclidean space forms, 38 regions of discontinuity of metric groups 
of motions* and, finally, position and phase spaces of mechanical systems. 

In order to approach the solution of the principal problem of topology, we 
seek topological invariants and suitable properties of complexes which can 
serve to indicate differences between them. The most important of those 
properties are the homology groups and the fundamental group belonging to 
a complex. They stand at the center of our investigations. 

For the time being, however, we will try to see how far we can take the 
principal problem without using these aids. Without further preparation, we 
move to a subproblem. We ask: What nonhomeomorphic closed surfaces 
exist? 

2. Closed Surfaces 

As in the preceding section, let us cut apart the torus along meridian and 
longitude circles, to give a plane square. This square, taken together with the 
specification that opposite edges are to be regarded as equivalent (that is, are 
not to be regarded as different), is called the Poincare fundamental polygon 
of the torus. This polygon will completely determine the torus, with regard to 
intrinsic topological properties. On the other hand, metric and embedding 
properties of the torus, such as surface area and position in space, are not 
determined. Surface topology does not concern itself with such properties. 
From the standpoint of surface topology, all tori obtained from the 
fundamental polygon by bending and joining of corresponding edges are 
equivalent. As an example, a rotationally symmetric torus is not regarded, 
topologically, as a different surface than a knotted tube! The procedure 
illustrated here, of cutting a surface into one or more polygons, can be 
directly generalized to provide the definition of a closed surface. 

Edifor’s note: See Threlfall and Seifert [ 11 for a discussion of this concept. 



6 I.  ILLUSTRATIVE MATERIAL 

We consider a closed surface to be a structure which can be assembled 
from finitely many polygons by joining the polygon edges pairwise. In this 
way, the closed surface can be lifted out of the space surrounding it and can 
be given an independent existence as a “2-dimensional manifold.” This is a 
concept which will later be given an exact definition. 

The cutting of the torus into a square is the first step of a procedure which 
leads to the representation of an infinite set of closed surfaces by polygons, 
each polygon having a pairwise association of edges. We demonstrate this 
procedure as follows. Let us cut an  approximately circular hole out of a torus. 
Let the boundary I of the hole pass through the point 0. After making a 
deformation, we obtain a perforated torus or handle (Fig. 6) .  We form a 
pentagon by cutting open the handle along curves a and b and spreading it 
flat. We can also form the pentagon by cutting the hole from a torus which 
has previously been cut into a square (Fig. 7), and then cutting the hole 
boundary I at point 0. The pentagon has one free edge, the hole boundary I, 
while the other edges are associated pairwise with one another (Fig. 8). 

Let us now take two handles which have been cut into pentagons and join 
them along their hole boundaries (Fig. 9). Upon erasure of the common hole 
boundary I we obtain an octagon having pairwise association of edges (Fig. 
10). We generate the double torus (also called a “pretzel surface”) by bringing 
the corners together at one point and rejoining corresponding edges.2 In the 
figure, we express the pairwise association of edges by marking the paired 
edges with the same letter and placing arrows on them, so that the arrows fall 
in coincidence tip on tip when the edges are joined. We can describe the 
association of edges, and thereby describe the closed surface, by means of a 
single formula. I t  is obtained by running around the edges in a given sense 
and furnishing an exponent to each edge, which is either + 1 (usually not 
written explicitly) or - 1 ,  the sign depending upon whether the edge in 
question is traversed in the sense of the arrow or in the sense opposite to the 
arrow. For the case of the double torus, using the orientation of edges shown 
in the figure and using an appropriate sense of traversal, the expression reads: 

FIG. 6 FIG. 7 FIG. 8 
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If we cut a circular hole out of the double torus, in such a way that the 
boundary of the hole passes through point 0, we can attach an additional 
handle to the double torus, along the hole boundary. Upon erasing the hole 
boundary we obtain a 12-gon. Since one can regard the double torus as being 
a sphere with two handles attached (after making an inessential deformation), 
we see that this 12-gon will, after assembly, be a sphere with three handles 
attached. In general, one will obtain a 4h-gon after cutting apart a sphere with h 
handles attached, or after cutting apart a torus with h - 1 handles attached. The 
pairwise association of edges over the 4h-gon, which is the fundamental 
polygon of the sphere with h handles, is determined by the sequence of edges 

a ,b ,a ; 'b ; '  . * a h h h  b a - ' b L 1  

on the boundary circle. Each expression a,b,a,- '6,- I corresponds to a handle, 
which can be obtained as a pentagon when one cuts four edges from the 
polygon by making a diagonal cut 1. 

The sphere surface, that is the 2-sphere, can also be defined by means of a 
bijective and bicontinuous identification of the edges of a fundamental 
polygon. We obtain the polygon by cutting the 2-sphere along an arc a having 
endpoints 0 and P. This gives a 2-gon having the boundary circle 

aa-' 

which, in contrast to the other fundamental systems, contains two distinct 
vertices, which are not to be identified (Fig. 11). To  generate the 2-sphere the 
edges of the 2-gon are folded together like the wings of a coin purse, about 
hinge joints at 0 and P, whereupon the circular disk closes to form a 
spherically shaped sack. 

The sphere with h handles attached provided us with only half of the 
topologically distinct closed surfaces. Just as these surfaces are derived from 
the handle, the remaining surfaces are derived from the Mobius band. 

The Mobius band is a closed band which has been twisted by 7 radians 
(Fig. 12). I t  is swept out by a line segment c having initial point 0 and 
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endpoint P ,  when the midpoint M rotates about an axis which does not 
intersect the segment and the segment moves in such a way that the axis and 
the segment always remain coplanar and, in addition, the segment rotates in 
that plane by an angle of n radians about its midpoint during a full  rotation 
of this plane about the axis. 

Upon cutting the Mobius band along the segment c we obtain a rectangle 
having the boundary circle 

and having two distinct (nonequivalent) vertices 0 and P (Fig. 13). The free 
edges r' and r" form the boundary of the Mobius band; this boundary is a 
single closed curve, topologically a circle. The remaining two edges c and c, 
which are to be joined together, do not appear with different exponents on 
the boundary circle, as was the case for the fundamental polygons 
encountered previously. On the contrary, they have the same exponent with 
respect to a traversal of the boundary circle. One accordingly says that they 
are inversely identified (or identified in the second way), while the previous 
case would be called direct identification (or identification in the first way). 

The handle and the Mobius band are each bounded by a single topological 
circle, that is, by a curve homeomorphic to a circle. But they differ in the fact 

P 

FIG. 13 
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that the handle is two-sided and the Mobius band is one-sided in Euclidean 
3-space. This means the following. If a fly were to creep along the Mobius 
band without crossing the boundary it  could at some time-for example, by 
running along the middle line of the band-arrive at a position antipodal to 
its initial position. Thus, unlike the handle, the Mobius band does not have 
two sides, separated by its boundary, which could be painted black and white, 
respectively, so that the colors do not meet, except at the boundary. On the 
contrary, i t  has only a single side. 

One can justifiably raise the objection that this one-sidedness has not yet 
been established to be an intrinsic property of the surface and, therefore, no 
valid reason exists for the impossibility of topologically mapping the band 
twisted by 7r radians onto the untwisted band. If, however, instead of allowing 
the fly to creep along the surface, one pushes a small directed circle having 
three numbered points 123 within the surface, where one can no longer allow 
any thickness, then one can bring the circle on the Mobius band into inverse 
cover with itself so that the points 123 of the surface fall, respectively, upon 
the points 321 (Fig. 13). If this is possible for a surface, then we call the 
surface nonorientable and in the other case we call the surface orientable, 
because one can then extend the orientation defined by a small directed circle 
in the neighborhood of a point to every point on the surface in a unique way. 
Orientability is an intrinsic property of a surface. Two-sidedness, on the other 
hand, can only be defined when one embeds the surface in a 3-dimensional 
space; it depends upon the type of embedding and must not be confused with 
orientability. I t  will be shown later ($76) that orientable surfaces cannot, in 
fact, be embedded in Euclidean 3-space in such a way that they lie one-sided 
in this space; however, they can be embedded as one-sided surfaces in other 
3-dimensional manifolds. 

One may regard the torus, which is a closed surface, as having been 
obtained from a handle (see Fig. 6) by capping the circular handle boundary 
with a disk or, equivalently, by capping that boundary with a perforated 
sphere. One can close a Mobius band in the same way, by attaching a circular 
disk to the boundary of the band. The latter operation cannot, of course, be 
accomplished in 3-dimensional space unless self-intersections are allowed 
($64). One can show. however, that this stitching together can be 
accomplished without self-intersection in 4-dimensional space; the closed 
Mobius band is thus a surface lying without self-intersection in 
4-dimensional s pace.^ The possibility of embedding the surface in a space is 
not at all essential, however, for the study of the intrinsic topological 
properties of a surface. We will, in fact, be able to fully discuss the intrinsic 
topological properties of the closed Mobius band after we have obtained its 
representation by topologically mapping the boundary of a circular disk onto 
the boundary of a Mobius band and by regarding corresponding points as 
being identical to one another. In the neighborhood of each point the closed 
Mobius band will behave like a piece of plane surface. The question of 
whether the closed band can be inserted as a whole into 3-space, or whether 
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the entire boundary of the disk can be jointed to the entire boundary of the 
Mobius band in 3-space, is a separate question. 

The closed Mobius band is, along with the 2-sphere, a fundamentally 
important closed surface in mathematics. It is called the projective plane. In 
projective geometry one is accustomed to seeing it introduced not as a closed 
Mobius band, but rather by closure of the Euclidean plane by adding an 
improper line. In this interpretation, the points of the projective plane 
(described by a projective coordinate system) are in one-to-one correspon- 
dence with equivalence classes of 3-tuples of real numbers x I : x 2 : x 3 ,  where 
only the class 0 : O : O  is to be excluded.* If one interprets x I , x 2 , x 3  as 
homogeneous Cartesian coordinates, **  so that x = x,/x3 and y = ~ 2 / ~ 3  are 
ordinary Cartesian coordinates on the Euclidean plane, then the Euclidean 
plane together with the “improper” (infinitely distant) line x3 = 0 gives the 
projective plane. Alternatively, if one interprets x I ,  x2.x3 as Cartesian 
coordinates of 3-dimensional space, then the points of the projective plane 
can be placed in one-to-one correspondence with the manifold whose 
“points” are lines which pass through the origin. 

We will now demonstrate the topological equivalence of the manifold of 
these lines and the manifold of points of a closed Mobius band. Let us 
describe a sphere of unit radius about the center of the pencil of lines. Each 
line of the pencil will intersect the sphere in two, diametrically opposite, 
points. The points of the projective plane can be mapped, in this way, 
bijectively and bicontinuously onto pairs of diametrically opposite points of 
the unit sphere. If, in the set of all points of the sphere, we regard those points 
which lie diametrically opposite to one another as being the same point, then 
we obtain the projective plane. In describing the projective plane, we can 
restrict ourselves to points of the lower hemisphere as representatives of 
projective points. If we cross the boundary of the lower hemisphere, that is, 
the equatorial circle, then we jump over to the diametrically opposite point of 
this circle. If we now project the lower hemisphere normally upon the tangent 
plane E at the south pole S (Fig. 14), we will then have mapped the projective 
plane onto the surface of the unit circular disk which has been closed by 
identifying diametrically opposite points of its boundary circle. The points of 
the boundary circle will thereby correspond, in pairs, to points of the 
improper (infinitely distant) projective line which closes the Euclidean plane 
to give the projective plane. 

*Editor’s note: The interested reader will find a more detailed discussion of this point of view 
in Section 14. The equivalence relation intended here is 

(x,,x*,xj)-(x;,x;,x;) if xi =hi, 

i = 1,2,3, for some nonzero real number A. The symbol x , : x 2 : x 3  is used to describe the 
equivalence class. 

**See Kowalewski [ I ,  Section 14, p. 321. For general purposes one can find the basic facts of 
projective geometry described in a form suitable for our use in, for example Klein [2, Chapter I], 
Bieberbach [I], Hilbert and Cohn-Vossen [I], and Weyl (41. 
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We can recognize from this mapping, first of all, that the projective plane 
corresponds to the closed Mobius band. We need only to cut a central band 
out of the disk, along parallel line segments r' and r" equally distant from the 
center point of the disk (Fig. 15). Upon identification of diametrically 
opposite points of the boundary circle, this band becomes the Mobius band. 
The two remaining disk segments can be joined along the two b edges to form 
a circular disk having boundary r'r", which closes the Mobius band (Fig. 16). 

Since the projective plane is represented topologically by a closed Mobius 
band, the Mobius band can then be regarded as a punctured projective plane. 
This gives rise to a new representation of the Mobius band. Topologically, it 
is obviously unimportant where the circular hole is punched into the 
projective plane, with regard to the bordered surface which arises. We can 
then locate the hole at the middle of the circular disk which closes to the 
projective plane when diametrically opposite points on its boundary are 
identified. This gives the representation of the Mobius band shown in Fig. 17. 
Diametrically opposite points of the outer boundary circle are to be 
identified. The inner circle is the boundary of the Mobius band. The original 
form of the Mobius band (Fig. 13) is produced by cutting the circular annulus 
along the dotted segments and joining it together along the outer semicircles. 

We see, second of all, that the mapping onto the circular disk provides us 
with the fundamentalpo!vgon of the projective plane. We regard the unit disk as 
a polygon, that is, a 2-gon which is bounded by the edges a and a .  As before, 

0 

p @  

FIG. 15 FIG. 16 FIG. 17 
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the identification of diametrically opposite points on the boundary circle is 
given by means of the formula 

The initial point of the edge a falls in coincidence with its endpoint, at  the 
point 0 of the projective plane (Fig. 18), and a is the image of a projective 
line through which one can cut the projective plane to give the fundamental 
polygon. With this, the projective plane has been included in the series of 
closed surfaces which can be represented by a fundamental polygon. The fact 
that the projective plane is a closed surface in Euclidean 3-space is not nearly 
so well known as the fact that a torus is a closed surface in Euclidean 3-space. 
This is so because the projective plane cannot be inserted into Euclidean 
3-space without having self-intersections. Neither can any other nonorient- 
able closed surface (for proof see S64). 

n 

aa . 

FIG. 18 

The Mobius band, the punctured projective plane, and the annulus with 
identification of diametrically opposite points along a boundary circle are 
topologically equivalent surfaces. It follows from this equivalence that one 
can generate one and the same new surface, from an arbitrary closed surface, 
when one cuts a hole in the latter surface, and sews in either a Mobius band 
or a punctured projective plane along the hole boundary, or closes the 
boundary by the process of identifying diametrically opposite points. The 
Mobius band sewn into a circular hole is sometimes called a cross-cap.* 

All other closed surfaces are now obtained by sewing an arbitrary number 
of Mobius bands onto a multiply punctured 2-sphere. We use the same 
procedure as for the handles. We cut a hole, having boundary I and passing 
through the point 0, in the projective plane (Fig. 18). When we cut the 
projective plane at point 0 the fundamental polygon of the projective plane is 
transformed to a triangle having boundary circle ad .  Let us join two such 
triangles, having boundary circles a,a,l  and a2a21- I ,  along their hole 
boundaries and erase the seam line I ;  this generates a quadrilateral with 
boundary circle 

a I a I a2a2 

*The justification for this name, as well as an explicit pictorial description, can be found in 
Hilbert and Cohn-Vossen [ 1, p. 279). 
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(Fig. 19). This quadrilateral is the fundamental polygon of a sphere with two 
attached Miibius bands. 

The surface just described is known by the names of “one-sided tube” and 
“nonorientable ring surface.”* If we cut its fundamental polygon along the 
diagonal m opposite to the seam line I and join the two resulting triangles 
along their edges a,, then we get a new quadrilateral, having the boundary 
circle a,ma,  ’m (Fig. 20), which can obviously be sewn together to give the 
same surface. Upon joining the two edges a , ,  the quadrilateral can be 
regarded as a cylinder (Fig. 21). Its two boundary circles m are to be 
identified pointwise. but in such a way that they cannot be superimposed by 
making a displacement parallel to the surface lines, for this would generate a 
torus. The identification is to be made so that those points coincide which 
come together by tipping a circle over about a line x normal to the cylinder 
axis and passing through the cylinder midpoint. 

This identification by superposition of boundary circles can be carried out 
in Euclidean 3-space only if we allow the cylinder to intersect itself (Fig. 22). 

FIG. 22 FIG. 23 

Editor’s note: This surface is commonly referred to as a Klein bottle in the English language 
literature. 
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If we slice the one-sided tube which results along its length, i t  will split into 
two Mobius bands, one of which is illustrated in Fig. 23. 

When we attach k Mobius bands to the 2-sphere we obtain a closed 
surface, which can be given the fundamental polygon having boundary circle 

alala2a2. . akak. 

We are not sure, yet, whether the closed surfaces which we have generated 
exhaust all of the closed surfaces, nor have we proven that no two of them 
can be mapped topologically one onto the other. The first doubt can be 
removed easily; we will do so in $38. To prove topological distinctness, on the 
other hand, requires the concept of the homology groups and proof of their 
topological invariance ($39). 

The surfaces just described do not exhaust all surfaces. We have obtained 
only closed surfaces; these are characterized by the two properties that they 
can be covered by finitely many polygons and that they have no boundary. 
Surfaces which require infinitely many polygons for a polygonal covering are 
said to be infinite.4 The Euclidean plane and the hyperboloid of one sheet are 
examples of infinite surfaces. 

3. Isotopy, Homotopy, Homology 

The methods which we will use to prove nonhomeomorphism of manifolds, 
for example, closed surfaces, rest, roughly speaking, upon a classification of 
the ways in which lower dimensional objects can be mapped continuously 
into these manifolds. We illustrate this with the simplest example, curves on 
surfaces. 

We first consider curves which are free of double points and have a definite 
sense of traversal, that is, topological images of oriented circles. One obvious 
classification of all such closed curves is to consider two curves a and b to be 
equivalent if each can be continuously deformed to the other on the surface. 
We consider first of all, isotopic deformations. These are deformations such 
that the curve a remains free of double points in all of its intermediate 
positions during its transformation to b. In that case a and b are said to be 
isotopic. For example, any two meridian circles having the same orientation 
on a torus are isotopic. Likewise, the plane curves I and I1 of Fig. 24 are 
isotopic but I is not isotopic with 111. Isotopic deformations are difficult to 
deal with mathematically and they will play a subordinate role in comparison 
to homotopic deformations. 

In a homotopic deformation of a to b i t  is not required that the curve 
remain free of double points at all intermediate positions. Rather, a can 
intersect itself arbitrarily during its transformation to b. If a and b, which we 
no longer assume are free of double points, can be transformed into one 
another by a homotopic deformation they are said to be homotopic, or more 
precisely, freely homotopic. Isotopic curves are of course homotopic. All four 
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curves of Fig. 24 are homotopic to c e another. Each curve is also ull 
homotopic, that is, can be shrunk to a point. A meridian circle of the torus 
and a second meridian circle traversed in the opposite sense are not 
homotopic. Likewise, a meridian and a longitude of the torus are not 
homotopic and no meridian or longitude is null homotopic. 

We can also explain the homotopy of two curves without making reference 
to a deformation. We do this as follows: two curves a and b are homotopic on 
the surface 5 if an annulus (Fig. 25)  can be mapped continuously (but not 
necessarily topologically) into the surface 5 so that its two oriented boundary 
circles 5 and b are mapped to a and b. If this is possible then there will exist a 
homotopic deformation of a to b corresponding to a concentric transforma- 
tion of 5 to b and conversely: when one transforms a homotopically to b then 
a “singular annulus,” that is the continuous image of an annulus, will be 
swept out. 

A generalization now appears obvious, which will lead us to the coarsest 
and certainly most important classification of closed curves: the homology 
classes. We need only to replace the annulus, which is a twice punctured 
2-sphere, by a twice punctured orientable surface of arbitrary genus h (Fig. 26 
shows the case h = 1) and map it continuously (but not necessarily 
bijectively) into 5. If this mapping can be accomplished so that the hole 
boundaries 5 and b (oriented as in the figure) transform to two given curves a 
and 6 ,  then a and b are said to be homologous to one another. For example, 
the curves a and b on the surface 3 shown in Fig. 27 (sphere with three 
handles) are homologous to one another because they form the boundary of 
each of the two twice punctured tori into which is separated by a and b. As 
we will see later the homology classes can be regarded as elements of an 
Abelian group, the I-dimensional homology group. This group is a 
topological invariant of the surface 3. With its aid we will be able to prove 
the distinctness of the surfaces classified in the previous section. By way of 
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example: there exists only one homology class on the sphere, two exist on the 
projective plane, while the homology groups of the remaining closed surfaces 
are infinite. Of course, these concepts, which are discussed here only 
superficially, require more precise definition and the theorems require proof. 
This will be the main objective of a later chapter. 

4. Higher Dimensional Manifolds 

There is a complete theory answering the question of how to classify the 
topologically distinct surfaces; however, the corresponding problem in 3 or 
more dimensions is unsolved. In fact, one cannot even completely classify the 
topologically distinct 3-dimensional spaces. The higher dimensional case is, 
moreover, not just of abstract interest. Problems in the theory of differential 
equations and in the theory of two independent complex variables lead back 
to this question. Admittedly, the subject matter of such a theory is difficult to 
grasp intuitively. All of the orientable closed surfaces appear in complex 
variable theory, as Riemann surfaces, but only two closed 3-dimensional 
spaces have played a prominent role in mathematics, outside of topology. 
These are projective 3-space and the 3-sphere. 

Projective 3-space arises from the requirement that one completes 
Euclidean 3-space by adding new points, so that projective transformations 
become one-to-one correspondences in the new point set, that is, are bijective. 
As is well known, one accomplishes this by closing Euclidean 3-space by 
adding an improper plane, the image plane of the vanishing plane of a 
projective mapping of Euclidean 3-space. In contrast to Euclidean 3-space, 
projective 3-space is a closed space; it can be covered with finitely many 
tetrahedra ($14). 

Euclidean 3-space closes to form the 3-sphere, when we require that 
conformal mappings, which are circle preserving mappings of Euclidean 
3-space, (Klein [ l ,  Section 501; Blaschke [ I ,  Section 40]), be one-to-one 
correspondences. Among these mappings is the mapping by reciprocal radii. 
Under this mapping, the center point of the unit ball (the ball of inversion) 
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has no image in Euclidean 3-space. We now wish to close Euclidean 3-space 
in order to generate the 3-sphere by adding the image point of this one point 
(and not the points of a whole improper plane as we did to obtain projective 
3-space). The closing used here is the 3-dimensional analog of the closing of 
the Euclidean plane to generate the 2-sphere. We will see in $14 that the 
3-sphere is the natural generalization of the 2-sphere to a space of 3 
 dimension^.^ 

The other higher dimensional manifolds which occur in mathematics are 
often not point manifolds, and their elements are objects of other types. We 
are already familiar with the case of a manifold which does not consist of 
points but is, nonetheless, 2-dimensional: the set of all nonoriented lines 
passing through a point of 3-dimensional Euclidean space. This manifold can 
be mapped onto the projective plane so that neighboring lines map to 
neighboring points. Another example is given by the set of all of the positions 
of a mechanical system. A particularly simple case, for example, is the plane 
double pendulum. This consists of two rigid rods I, and f2 bound together by 
a hinge joint B.  One of the rods is hinged at its free end to a fixed support 
point A (Fig. 28). Otherwise, the double pendulum is freely movable in the 
plane. The totality of different positions which it can assume may be 
described by means of the two angles which the rods subtend with respect to 
the vertical direction. Each position is described by the values of the two 
parameters q and I), each of which is determined up to a multiple of 277. The 
totality of positions can then be described by means of a square in the 
(q,+)-plane, having side length 277, whose opposite edges are to be identified. 
The torus can be mapped continuously onto the same point set. We can then 
relate all of the positions of the double pendulum to the points of the torus in 
such a way that points lying close to one another on the torus correspond to 
positions of the double pendulum which are close to one another. A periodic 
motion of the double pendulum which returns it to its initial position will 
map to a closed curve on the torus.6 

Instead of fastening the two rods with hinges we could use spherical joints. 
The totality of positions of the resulting spherical double pendulum can be 
mapped to pairs of points on two spheres, so that neighboring positions 
correspond to neighboring points on each of the spheres. Each position is 

FIG. 28 
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specified by four parameters, for example, the geographic latitude and 
longitude on each of the spheres. The “position space” of the spherical double 
pendulum is, therefore, a 4-dimensional manifold. 

The set of all oriented lines of projective 3-space forms a Cdimensional manifold which is 
topologically equivalent to the manifold consisting of pairs of points on two spheres, as we now 
show. We consider real projective 3-space to be embedded in the complex projective space whose 
points are the equivalence classes of ratios of four complex numbers xI:x2:x3:x4, where only the 
quadruple 0:O:O:O is to be excluded. We first claim that the set of oriented real lines embedded in 
this space can be mapped in one-to-one correspondence and bicontinuously onto the points of 
the null sphere, that is, the set of points (xlrx2,x3.x4) which satisfy 

x ;  + x; + x: + x i  = 0, 

where each xi ( i  = I, . . . , 4 )  is a complex number. Each real line cuts the null sphere in two 
distinct complex points P and F, which are conjugate. Conversely, each pair of conjugate 
complex points of the null sphere determines a real line g which connects the points. If P I ,  P 2 ,  
and P, are three real points on g, then when we orient g we specify a particular cyclic ordering of 
the three points, for example, P l P 2 P , .  Since the cross ratios 

are conjugate nonreal complex numbers, then just one of them, let us say A, has a positive 
imaginary part. This property of the cross ratio A remains unchanged on cyclic permutation of 
P I P I P , .  This can be seen by inspection, for we have 

and 

The oriented line g is therefore uniquely associated with the point P .  The line g with its 
orientation reversed is then directed toward the point P since 

has a negative imaginary part. This establishes a one-to-one correspondence between the oriented 
lines and the points of the null sphere. The null sphere is covered by two families of complex 
lines.* Let r be a line of the “right” family and let I be a line of the “left” family. Through each 
point P of the null sphere there will pass exactly one line of the left family which intersects r at a 
particular point P,; likewise, exactly one line of the right family will pass through P and intersect 
I at  a particular point P,. Thus each point P on the null sphere will be in one-to-one 
correspondence with a pair of points, one lying on r and the other lying on 1. Our claim that the 
oriented real lines of projective 3-space can be put in one-to-one correspondence with point pairs 
on two spheres will be demonstrated when we have shown that all of the points of r constitute a 
(real) 2-sphere and all of the points of I constitute a 2-sphere; that is, all of the points, real and 
complex, on a (complex) projective line constitute a real sphere surface. One can convince 
oneself of this by introducing a projective coordinate system pI : p2 on the projective line; p1 : p2 
will run through all possible complex numbers, including 00. But these numbers will just 
correspond to the 2-sphere. 

* Klein [ I ,  Section 451, Study [I] ,  or Bieberbach [2]. 
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Like the position space of the spherical double pendulum, the manifold of 
all real oriented lines of projective 3-space is related to the manifold of pairs 
of points on two spheres in such a way that neighboring lines correspond to 
neighboring point pairs. 

Not only the positions of mechanical systems but also their states of 
motion give rise to multidimensional manifolds, the so-called phase spaces.’ 
By the state of motion of a point mass we mean its position in space and the 
magnitude and direction of its velocity. Let us assume, for example, that a 
single mass point is constrained to move on the surface of a solid sphere in 
the presence of a gravitational field. Let us also assume that its energy, which 
is the sum of its kinetic and potential energies, is constant and independent of 
time and is sufficiently large that the particle can run through the highest 
point of the sphere on its given path. Every possible state of motion is then 
described by means of the position of the point on the sphere-this requires 
two parameters-and by the direction of its velocity-this requires a third 
parameter, for the magnitude of the velocity is already determined from the 
initially given total energy and the particle position. The states of motion are 
therefore in one-to-one correspondence with the directed line elements of the 
sphere surface. The phase space is a 3-dimensional manifold. We will see 
(414, Problem 2) that this manifold can be mapped onto projective 3-space. 
The states of motion thereby correspond to the points of (real) projective 
3-space, in the sense that states of motion which differ only slightly will be 
mapped to neighboring points. 

Earlier we departed from the naive concept of a figure as a point set in 
Euclidean 3-space when we closed the Mobius band to give the projective 
plane, and again when we described surfaces by sewing polygons together. 
While embedding in 3-space is justifiable as a natural intuitive aid to the 
description of 2-dimensional manifolds, freedom from a surrounding space 
becomes a necessity when one describes higher dimensional manifolds. To 
represent them by means of points sets and imbed them in a higher 
dimensional Euclidean space would be an artificial and impractical 
procedure.* Up to now, our concept of topological mappings and 
homeomorphism has gone together with embedding in a space, because we 
defined the continuity of a mapping of two figures as the continuity of the 
corresponding coordinate mapping functions. But, in contrast, we have also 
stated that the manifold of double pendulum positions coincides with the 
point set which forms the torus. Thus we need to define the concept of 
continuity in a way which is independent of coordinate mapping functions. 

What is it, then, that position and phase spaces have in common with point 
sets of Euclidean spaces, making them capable of supporting continuous 

Editor’s note: I t  is, however, true that every manifold can be embedded in Euclidean space of 
sufficiently high dimension. 
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mappings? In these spaces one knows which elements (positions and states of 
motion) give rise to the immediate neighborhood of an element! For each 
element there exist subsets (which admittedly can be chosen in a multiplicity 
of ways) that form the neighborhoods of that element. A mapping which is a 
one-to-one correspondence will now be continuous if it transforms 
neighborhoods to neighborhoods!* It is known that the point sets of the 
2-sphere and the torus can be put in one-to-one correspondence, because they 
have the same cardinality. The fact that the two surfaces are non- 
homeomorphic means that the bijective mapping cannot be chosen so that 
neighboring points always transform to neighboring points. In order, then, 
that a mathematical entity be a topological object, and thereby keep a 
spacelike character, one must determine its neighborhoods. In general, one 
will not be in doubt about which subsets form the neighborhoods of an 
element. For example, in Euclidean 3-space, a neighborhood of a point must 
always contain all points of a solid sphere, that is, a ball, described about the 
point. We will get a larger or a smaller neighborhood according to whether 
we choose the ball to be larger or smaller. In the 3-sphere, a point set will be a 
neighborhood of the newly introduced improper point only if it contains all 
points outside of a sufficiently large ball. The neighborhood of a projective 
line must contain all lines which lie interior to a sufficiently “slender” 
one-sheeted hyperboloid containing the line in question as its axis, and so 
forth. 

By tracing continuity and topological mapping back to the concept of a 
neighborhood we shall have liberated the figures in question from their 
embedding space to such an extent that the embedding space can be set aside, 
and itself be regarded as a figure equivalent to the other spacelike objects of 
topology, such as closed surfaces. If, as we will want to do, we retain the idea 
of space as a continuous point set, in order to introduce a geometry, then the 
concept of a neighborhood will be tied most deeply to the intrinsic nature of 
space itself. We will become acquainted with significant concepts and 
theorems which make no mention of distance, rectilinearity, or even of the 
dimension of a space. But the concept of the points which lie in a 
neighborhood of a point must be retained if we are still to speak of a point set 
as a space. If no other properties of the point set are specified, then we will 
call it a neighborhood space (IS).** 

The concept of neighborhoods serves, first of all, to define mathematically 
the most general concept of space; that is, to construct it, to make it 
independent of vague intuition, and to trace it back to the fundamental 

Editor’s note: This heuristic statement is not quite correct. Actually, a bijective mapping is 
continuous if its inverse transforms neighborhoods to neighborhoods. It then follows that a 
one-to-one correspondence is bicontinuous, and hence a homeomorphism if, under the 
correspondence, neighborhoods correspond to neighborhoods. 

**Editor’s note: The concept of a neighborhood space, introduced here, will ultimately be 
related to the more familiar concept of a topological space. 
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concepts of set theory. But more than this, the concept of neighborhoods 
provides a mathematical tool of the greatest utility and breadth; wherever we 
can determine neighborhoods for a set of mathematical objects, so that 
certain axioms are satisfied, then we will be able to speak of this set as a 
space in the widest sense and we will be able to apply concepts and theorems 
derived for arbitrary neighborhood spaces to any particular object in 
question. 

When we treat the concepts and theorems of this introductory chapter 
rigorously, using the methods of synthetic geometry, and we subordinate 
them to a theory of neighborhood spaces, we shall have to begin anew and 
remove ourselves from all immediate intuition. Only occasionally will 
examples allow us to recognize the relationship between our general 
investigations and the geometric problems of this chapter. Individual 
geometric problems will not appear in the foreground again until Chapter VI 
(on surface topology). In spite of this, the theme of the next chapter is not 
exclusively general neighborhood spaces. Rather, we shall deal with special 
neighborhood spaces, the complexes already mentioned. The area between 
our very broad concept of neighborhood spaces and the restrictive concept of 
complexes is occupied by set theoretic topology, not treated by us, which 
includes the theory of point sets (see Hansdorff [ I ,  21; Alexandroff [12]) and 
dimension theory (see Tietze and Vietoris [ l ,  V]; Nobeling [l]) in general 
topological spaces. 
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5. Neighborhood Spaces 

A finite or infinite nonempty set of mathematical objects, which will be 
called points, is called a neighborhood space if, to each point, certain subsets 
are assigned as neighborhoods of that point; these neighborhoods must 
satisfy both of the following axioms: 

AXIOM A. Each point P of the neighborhood space has at least one neigh- 
borhood; each neighborhood of P contains P .  

If ILn is the neighborhood space we denote a neighborhood of P by 

U ( P  I m)* 
AXIOM B. Given a neighborhood U(P I m), each subset of ILn containing this 

neighborhood is also a neighborhood of P .  

Examples of neighborhood spaces are (1) the set ILn of all integers such 
that, for each integer, any subset of ILn containing that integer is declared to 
be a neighborhood of that integer; (2) the same set when one declares that 
each subset which contains an integer itself and the integers immediately 
preceding it and following it is a neighborhood of that integer; (3) the same 
set when the only neighborhood of each point is declared to be the entire set. 

These examples are presented only to indicate the broad generality of the 
concept of a neighborhood space.8 Otherwise they play no role in the 
investigations to follow. 

On the other hand, the example of n-dimensional Euclidean space or 
Euclidean n-space '8" is important. A point in R" is an n-tuple of real numbers 
x,,x2, . . . , x,,. 3" consists of the totality of these numerical n-tuples.' We 
call x, ,x2 , .  . . , x, the coordinates of the point ( x I , x 2 , .  . . , x,). We will 
agree that a subset of %" will be a neighborhood of a point ( j s l , .Y2,  . . . , js,) if 
it contains all interior points of some cube surrounding (El ,E2,  . . . , js,,), i.e., 

22 
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if it contains all points (x,,x,, . . . , x,,) which satisfy the inequalities 

lx,--Ej1<q ( i = 1 , 2  , . . . ,  n ) .  (1) 

Thus, a given subset of %" is a neighborhood of the point (X,,X,, . . . , En) if 
and only if there exists an TJ such that the q-cube about ( X , , Z , ,  . . . , F,,) 
belongs to that subset. In particular, the whole of 9In is a neighborhood of 
each of its points. With this specification of neighborhoods Euclidean space 
becomes a neighborhood space. 

The distance between two points ( x I , x 2 ,  . . . , x,,) and (XI, X,, . . . , En) will 
be understood to be the nonnegative number 

A definition of neighborhoods which is equivalent to the one given previously 
is the following: Each subset of '8" which contains all points of a ball 
neighborhood about (XI ,E,, . . . , En) is a neighborhood of (X,,X,, . . . , En); 
the points of the ball neighborhood are those points whose distance from the 
given point (XI ,X,, . . . , En) is smaller than an appropriately chosen E > 0; 
they therefore satisfy the inequality 

n c (x; - X;), < E 2 .  (3) 
i =  I 

In particular, the points of this ball neighborhood, taken by themselves, form 
a neighborhood of (XI, E,, . . . , En). We sometimes call such a neighborhood 
a (ball) &-neighborhood of the point (ZI, X,, . . . , 55,); we will have a larger or 
a smaller &-neighborhood depending upon the choice of E .  In ordinary 
language, a neighborhood is thought to be a set of points which does not 
contain any points which are too distantly situated. In contrast, here, we call 
a point set a neighborhood whenever we can find all points of a sufficiently 
small ball neighborhood in it. 

Given two sets 9l and '8 we define their set theoretic union 9l + 23 to be the 
set of those points which belong either to set 9l or to set 23 or to both sets. We 
define the set theoretic intersection of sets '3 and '8 to be the set of those points 
which belong to both 9l and to '8. If the intersection of two sets is empty then 
we say that the sets are disjoint. 

If % is a nonempty subset of a neighborhood space '332 we will define, once 
and for all, the neighborhood U(Q I Yt) of a point Q of 8 to be the 
intersection of any neighborhood U(Q I 2T) with %. In this way 8 becomes a 
neighborhood space. Axiom A is obviously satisfied. Axiom B is satisfied 
since any subset 23 of 8 which contains the neighborhood U(Q 1 8) is the 
intersection of the neighborhood U(Q 1 9Jl) + '8 of Q in 9Jl with the subset 5% 
and is therefore a neighborhood of Q in 3. Each non-empty subset of a 
neighborhood space is, again, a neighborhood space. Since Euclidean n-space has 
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already been made into a neighborhood space, with this prescription all subsets of 
Euclidean n-space become neighborhood spaces and the neighborhoods in them 
are completely determined. This is true in particular for all curves and surfaces 
in Euclidean 3-space. 

As an example, let !Dl be the real number line R' and let R be the point set 0 5 x < 1. Here a 
subset of X is a neighborhood of the point x = 0, U(0 I R), whenever there exists an E such that 
all points in 0 5 x < E belong to this subset. 

Now let 92 be an arbitrary, possibly empty, subset of a neighborhood space 
YR and let P be a point of 'm. P is called 

an accumulation point of 92 if each neighborhood U ( P  1 'm) of P contains 
infinitely many points of 'n, 

a boundary point of 92 if each neighborhood U( P I 'm) contains points which 
lie in in and also points which do not lie in in, 

an interior point of in if there exists a neighborhood U(P I YJl) which is 
contained in Y2; in this case P necessarily belongs to R. 

The set of all boundary points of in forms the boundary of in. Each point of 
in is either a boundary point or an interior point. 

In the example above, for the subset R:  0 5 x < 1 on the real line all points 0 5 x 5 1 are 
accumulation points of R; x = 0 and x = 1 are boundary points; the points 0 < x < 1 are 
interior points. 

The empty subset has neither accumulation points, boundary points, nor interior points. 
If R coincides with D, then all points are interior points. 

The subset R of YR is said to be open relative to 'm if no boundary point of 
iR belongs to 9, and closed relative to 'm if all boundary points of in belong to 
8. 

I t  makes no sense to say that a particular neighborhood space in is open or 
closed or to say that a point of in is a boundary point or an interior point if 
one is not at the same time given the enveloping neighborhood space %J?, since 
these concepts are defined only with reference to the latter space. A subset iR 
may, for example, not be open relative to 'm while it is open relative to a 
subset of 'm. In particular, the subset in is open relative to itself. 

The interval 0 5 x 5 1 is a closed interval of the real number line; 0 < x < 1 is an open 
interval; 0 S x < 1 is neither an open nor a closed interval. The empty subset, just like the subset 
X = W ,  is both open and closed at the same time. 

I t  is clear that the set theoretic union of arbitrarily many open subsets is 
itself open; the intersection of arbitrarily many closed sets is closed. 

An open subset is also characterized by the fact that it contains a 
neighborhood of each of its points. A closed subset is characterized by the 
fact that it is the complement of an open subset.* 

*One defines the complement of the subset Fn of a set Illz as the totality of all points of !lV 
which do not belong to X. I t  is denoted by !lV - R. 
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One defines the closed hullof a subset Yi! of 9Jl to be the intersection of all 
closed subsets of 9.V which contain Yi!. The closed hull of 9 is therefore the 
smallest closed subset of %It which contains 3. 

I t  is important to distinguish the concept of a [imit point of a sequence from 
that of a boundary point of a subset. An infinite sequence (in which one and 
the same point may occur repeatedly) converges to a point, which is a limit 
point of the sequence, whenever almost all points of the sequence (that is, all 
but finitely many points) lie in an arbitrary neighborhood of that point. With 
our basic concept of a neighborhood space it can happen that a sequence is 
convergent and still converges to different points, * an inconvenience which 
point sequences in Euclidean spaces and complexes do not exhibit. 

6. Mappings 

I f ,  to each point P of a neighborhood space ‘u one assigns exactly one point 
P ‘  of a neighborhood space 8, then one has a mapping T of 8 into ’H. The 
point P‘  = T ( P )  is called the image point of P .  The set 91’ of all image points 
of 8 is called the image set of ‘u. The set ‘u’ is a subset of ‘H and may coincide 
with the whole of Y. The mapping of 91 into 8 is said to be one-to-one if 
distinct points of ’21 always have distinct images in ‘H. In this case there exists 
an inverse mapping of Yl’ onto 3,  which associates the original point P to each 
point P’  of 3’. This mapping is denoted by T - ’ .  One says that a mapping 
takes the set ’u into the set ’H when the image points comprise a subset of ‘H 
(possibly coinciding with ‘H) and one speaks of a mapping of i?l onto ‘H 
whenever each point of 23 is an image point, that is, i?l’ = 9. 

If ‘u is transformed by a mapping T into a subset of 8 and ‘H is 
transformed by an additional mapping U into a subset of a neighborhood 
space 0, then ‘2I is mapped into CS at the same time. This mapping is called the 
product of the mappings T and U and is denoted by UT. One must pay 
attention to the order of the factors, which is determined so that the image of 
a point P is given by U( T (  P ) )  = U T ( P ) .  

A mapping of ‘21 into 23 is said to be continuous at apoinf P of N if, for each 
neighborhood U ( P ’  I 9) of the image point P ‘  there exists a neighborhood 
U ( P  I ‘u) whose image is contained in U ( P ’  I ‘23). The mapping is said to be 
continuous if  it is continuous at each point. 

This definition is in agreement with the classical definition of continuity. A 
function y = f ( x )  maps the x-axis, a real number line, into the y-axis, another 
real number line; this mapping is said to be continuous at the point P = X if,  
for a given E > 0, there exists a S > 0 such that I j ( x )  -f(X)l < E for all x in 
the interval Ix - XI < 6. That is, to a given &-neighborhood U ( P ’  18) of the 
image point y = f ( x )  there corresponds a &-neighborhood U ( P  I 8)  of  the 
original point X which maps entirely into the &-neighborhood (Fig. 29). 

*This occurs, for example, when the whole set is defined as the only neighborhood of each 
point. Each infinite sequence will then converge to every point. 
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More generally, each mapping T of a subset % of Euclidean rn-space %"' 
having coordinates x I , x 2 ,  . . . , x, onto a subset %' of %" can be carried out 
by means of n functions 

y k  = fk(xI,x2, * .  . 7 x,) (k  = 192;. . . n).  (1) 

We find 

THEOREM I.  The mapping T is continuous if and on@ ij the mapping functions 
(1) are continuous. 

As is well known in analysis, a function of several variables y = f ( x I , x 2 ,  
. . . , xm)  is said to be continuous at a point K ,  ,FZ,  . . . , K, if for each given 

E > 0 there exists a 8 > 0 such that 

1 f ( X I J 2 ,  . . . , xm)  - f ( K , , K , ,  . . . , Km)l < E 

IX i  - K;l < 8. 

for all points of the domain of definition off which satisfy the inequalities 

ProoJ: Call the &cube neighborhood B6(P I 9) of a point P of 9f the set of 
all points of 3 which lie inside the &cube about P. In each neighborhood 
U(P I %) there lies a &cube neighborhood when 6 is chosen to be sufficiently 
small. For U(P I 8)  is the intersection of 3 with a neighborhood U(P 1 $7") 
and the latter neighborhood contains a 8-cube. 

(a) Let the mapping T be continuous. Let B3,(P' I a') be a given &-cube 
neighborhood of the image point P' of P. Because of the continuity of T 
there exists a neighborhood U(P I %) whose image lies in Be(P' I 3'). In 
U(P I 9) there lies a &cube neighborhood which then will also map into the 
given &-cube neighborhood. This means that the mapping functions (1) are 
continuous. 

(b) Let the mapping functions ( I )  be continuous. 

For a given neighborhood U(P '  I 3')  there exists an &-cube neighborhood 
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m e ( P ’  I a’) contained within it. Thus there exists a 6-cube neighborhood 
‘B,(P I %) whose image belongs to Be(P’ I a’) and hence also to U(P’ I a’), 
so that T is continuous. 

into the neighborhood 
space 8 is continuous, then the mapping of 2l onto the image 8‘ of ‘ill is also 
continuous. Conversely, if the mapping of 3 onto a‘ is continuous, then the 
mapping of 2l into 8 is continuous. 

Proof. An arbitrary neighborhood U(P’  I a’) is the intersection of a 
neighborhood U(P’ 1 8) with 5%’. When 8 is mapped continuously into % 
there exists a neighborhood U(P I 8)  whose image lies entirely in U(P’ I ‘13) 
and therefore lies within the intersection of U(P’ 1 % )  and 8’, that is, in 
U(P’ I a’). Since U(P’ I a’) was chosen arbitrarily this implies that the 
mapping of 5% onto 3’ is continuous. 

Conversely, if the mapping of 5% onto %’ is continuous, then for an 
arbitrary neighborhood U(P’  I B) we form the neighborhood U(P’ I W), 
which is the intersection of U(P’  I 8) and 8’. Since the mapping of % onto a’ 
is continuous there exists a neighborhood U(P I a) whose image belongs 
entirely to U(P’ I a). In other words: the definition of continuity is the same, 
whether one chooses the neighborhoods of P’ in 3’ or in %. 

THEOREM 111. If 3 is mapped continuously onto a’ and if a subset 112 of 9l is 
thereby transformed to the subset 8’ of %‘, then the mapping of 112 onto 112‘ is also 
continuous. 

Proof. Corresponding to an arbitrary neighborhood U(P’ 1 ‘24’) of an image 
point P‘ there exists a neighborhood U(P ti!€), of the point P of 112 which 
maps into U(P’ I a’) because of the continuity of the mapping of 3 into %’. 
The intersection of U ( P  I a) with % is a neighborhood of P in 112 which then 
also maps into U(P’ I a’). Thus the mapping of % into a’ is continuous and 
therefore, by the previous theorem, the mapping from 112 onto 112’ is 
continuous. 

THEOREM IV. If 2l is mapped continuously onto a’ and a‘ is mapped 

THEOREM 11. If a mapping of the neighborhood space 

continuous[y onto a’’, then % is also mapped continuously onto a”. 
This is obvious. 

A mapping T of 9l onto a’ is said to be topological* when T is one-to-one 
and both T and its inverse mapping T - ’  are continuous. If U(P  I a) is a 
neighborhood of a point P, there exists a neighborhood U ( P ’  I a’) which 
maps into U(P 1 %) due to the continuity of T-’ .  This implies that the image 
of U(P I a) under the mapping T is a point set containing U ( P ’  I a’) and is 
again a neighborhood of P‘. Thus we have: 

Editor’s note: Cf. the first footnote in Section 1 .  
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THEOREM V. A topological mapping and its reciprocal mapping each trans- 
form neighborhoods to neighborhoods. Conversely, each one-to-one mapping 
having this property is topological. 

We speak of a topological mapping of 9l into % if 9l maps topologically 
onto a subset 8’ of ‘$3, which may also coincide with 8. 

Two neighborhood spaces are said to be homeomorphic to one another if 
they can be mapped topologically onto one another. 

Theorems I11 and IV are still valid when stated for topological mappings 
instead of continuous mappings. I t  follows from this that two neighborhood 
spaces which are each homeomorphic to a third neighborhood space are also 
homeomorphic to one another. (Homeomorphism is a transitive property.) 

We are interested only in those properties of neighborhood spaces and their 
subsets which are preserved by topological mappings. As a counterexample, 
the property that a subset of a Euclidean space is a straight line is not of this 
nature because the straightness is generally lost after mapping topologically to 
another Euclidean space. 

In contrast, the property that a subset of a neighborhood space !Dl be a 
neighborhood of a point, say P ,  is a topologically invariant property. For 
under a topological mapping of Im onto ‘117’, a neighborhood of point P of YJ 
will transform to a neighborhood of the image point P‘  in Im’. The same is 
true for the concepts: boundary point, interior point, and accumulation point 
of a subset; limit point of a sequence; and open subset and closed subset. For 
example, the property that a point R of Im is the boundary point of a subset 
% is not destroyed by a topological mapping of YJ onto Im’. That is, if R 
transforms to R ‘  and (n to 8’ by this mapping, then R’ is also a boundary 
point of 3’. To see why this is true observe that the neighborhoods of R in YJ 
are in one-to-one correspondence with those of R ’  in Im’. Thus, in each 
neighborhood of R‘ there exist both points which belong to %’ and points 
which do not belong to 3’ since the corresponding statement is true for R in 
‘117. One proves the topological invariance of the other concepts mentioned 
above in similar fashion. The property that a mapping of 9l into 23 is 
topological or continuous is itself a topological invariant; that is, if one 
replaces TU and ‘$3 by homeomorphic neighborhood spaces %’ and B’, then the 
corresponding mapping is, respectively, always topological or continuous. 

EXAMPLE I .  The topological mapping of the interval 0 S x 5 1 of a real number line onto the 
interval 0 d y S I of another real number line. From Theorem I the mapping is achieved by means 
of a continuous function y = f ( x ) .  The function f ( x )  must assume every value between 0 and 1 
exactly once. I t  is known from the subject of analysis that such a function must be either 
monotonically increasing or monotonically decreasing. I t  follows that f ( x )  takes either its largest 
or its smallest value at x = 0, so that boundary points of the one interval transform to those of 
the other interval. 

EXAMPLE 2. Stereographic projection of the punctured 2-sphere onto the Euclidean plane. 
Considered as a subset of Euclidean 3-space, the unit 2-sphere 

x; + x: + x: = 1 
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is a neighborhood space and remains so when one punctures it, that is, removes one point, for 
example, the north pole (0, 0, I). The punctured 2-sphere is homeomorphic to the Euclidean plane. A 
topological mapping is produced by stereographic projection of the punctured sphere from the 
north pole onto the equatorial plane, i.e., the Euclidean plane x j  = 0. The mapping is one-to-one, 
since the only point of the sphere which cannot be mapped in this manner, the north pole, is 
removed. To show continuity of the mapping from the sphere to the plane we must find, for any 
neighborhood of a point P' of the plane, a neighborhood of the original sphere point P that maps 
entirely into the former neighborhood. An arbitrary neighborhood of P' will always contain an 
E'-neighborhood, that is, a circular disk with P' as center point. A spherical cap about the 
original point P, formed by the intersection of the sphere with a spatial E-neighborhood of P, is 
also a neighborhood of P. As is known from the properties of stereographic projection, this latter 
neighborhood maps into a circular disk which contains P' as an interior point but not necessarily 
as center point. If one chooses the cap to be sufficiently small, then one can insure that its image 
falls in the previously mentioned e'-neighborhood of P'. One can show in a like manner that the 
mapping from the plane to the sphere is continuous. Thus it is topological. 

Another proof follows from Theorem I if one constructs the mapping functions and proves 
their continuity. In order to distinguish image point coordinates from coordinates of the original 
point we will introduce a ( I  ,I,-coordinate system in the equatorial plane, coinciding with the 
(xI , x,)-system. For a sphere of radius r ,  where r = 1 in our case, the mapping formulas become 
(where we can just as well write them out simultaneously for the case of n dimensions):* 

These are in fact well defined and continuous for all points of both the punctured sphere and 
the equatorial plane. 

EXAMPLE 3. The Euclidean plane is homeomorphic to the interior of a disk. To produce the 
topological mapping one projects the points of the lower unit hemisphere, excluding the 
equatorial boundary circle, first radially outward from the center (Fig. 14) onto the plane and a 
second time perpendicularly onto the Euclidean plane tangent to the south pole. Both mappings 
are topological. Since two topological mappings carried out in succession yield a topological 
mapping, it follows that the inverse of the second mapping composed with the first mapping 
yields a topological mapping of the interior points of the unit disk onto the Euclidean plane. 

Problems 

I .  Show that the following are homeomorphic: a cylindrical surface of finite height h, 
excluding its two boundary circles; a hyperboloid of one sheet in Euclidean 3-space; an annulus, 
exclusing its two boundary circles, and a twice punctured sphere. 

2. The boundary circle of a disk has been mapped topologically onto itself. Show that this 
mapping can be extended to a topological mapping of the entire disk onto itself. 

3. Let '1R be a subset of a Euclidean space and let P be a point not belonging to '1R. Prove that 
if P is a boundary point of 107, then P is also a point of accumulation, and conversely. 

*Editor's note: The ( n  - I)-sphere is regarded here as the set of points (xI ,x2,  . . . , x,) E R" 
which satisfy the equality x:  + x i  + . . . + x i  = r2 .  Euclidean ( n  - I)-space is regarded as the 
set of points (El  ,&, . . . , ("-, ,0) E R". 
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7. Point Sets in Euclidean Spaces 

The point sets with which we will deal later are of a special type. They 
are homeomorphic to subsets of a Euclidean space. Their structure is far 
more specialized than the structure of a general neighborhood space. This is 
expressed in the fact that many theorems valid for subsets of Euclidean 
spaces cannot be derived from Axioms A and B of $5 ,  In this section we shall 
be concerned with neighborhood spaces '112 which are themselves subsets of 
Euclidean spaces. 

Based upon the definition of neighborhoods in Euclidean spaces ($5) and 
the definition of neighborhoods in subsets ($9, a subset 9 of !lX is a 
neighborhood U(P 1 (m) of a point P in '112 if and only if all points of !JR 
whose distance from P is less than a certain E > 0 belong to 9. The set of all 
points of '112 which are less distant than E from P,  that is, the intersection of 
the &-ball described about P with '112, is called an &-neighborhood U,(P I '112). 
U , ( P  1 22) is obviously an open subset of %Jl relative to '112, because the sign < 
and not S occurs in the inequality (3) of $5 .  

An important property not possessed by every neighborhood space but 
possessed by every subset !lX of a Euclidean space is the property that two 
distinct points P and Q have distinct neighborhoods.* Such neighborhoods 
are cut from !lX, for example, by sufficiently small &-balls about P and Q. 

It follows from this that a convergent sequence, that is, a sequence almost 
all of whose points lie in each neighborhood of P, has the point P as the only 
limit point. This is true because, due to the existence of disjoint 
neighborhoods, almost all points cannot lie simultaneously in each 
neighborhood of P and also in each neighborhood of a different point Q. 

Among the theorems of elementary analysis concerning subsets of 
Euclidean spaces, we shall need the accumulation point theorem, the 
maximum value theorem, and the uniform continuity theorem. 

THEOREM I (ACCUMULATION POINT THEOREM). Each bounded infinite subset 
of a Euclidean space has at least onepoint of accumulation.** 

A point set is said to be infinite if it contains infinitely many points. A subset 
of a Euclidean space is said to be bounded if the absolute values of all 
coordinates are smaller than some finite bound. 

THEOREM 11. The continuous image of a bounded closed subset of a Euclidean 
space in another Euclidean space is again bounded and closed. 

Proof. Assume that the continuous image 9Jl' of the closed bounded set Yt 
is not closed and bounded. Then there exists a point sequence P;,P;.  . . . , 

Edifor's note: In current usage a space which has this property is said to be a Hausdorffspuce. 
*+The proof is found in Knopp [I, Part I, p. 22). The proof given there for 2 dimensions can be 

extended immediately to n dimensions. 
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consisting only of points of m', which either converges to a limit point R not 
in m' or does not converge at all to a point of accumulation. If one chooses a 
preimage point Pi in 2R for each P;, then by assumption the set P , , P 2 , .  . . 
possesses a point of accumulation R belonging to IDZ. In each neighborhood 
of its image point R '  there will then lie infinitely many points of the sequence 
P i ,  P i ,  . . . , which contradicts the assumed nature of this point sequence. 

An immediate corollary is 

THEOREM I I I  (MAXIMUM VALUE THEOREM). A continuous function which is 
defined in a bounded closed subset of a Euclidean space takes a maximum and a 
minimum value. 

This is true because the subset can be mapped by means of the continuous 

One can formulate the uniform continuity theorem as follows: 

THEOREM IV. If a bounded closedpoint set 'u of a Euclidean space is mapped 
continuously into a neighborhood space B and i f  a particular neighborhood 
U*(Q I B) is arbitrarily assigned to each point Q of B, then there will exist a 
6 > 0 such that the image of the &neighborhood of each point P of % will be a 
subset of U*(Q 1 g), where Q is the image of P. 

Proof: Assume that the theorem is false. Then for each 6 of the sequence 
l/2,1/3,1/4,. . . , I / ; ,  . . . there will exist a point Pi whose ( l / i ) -  
neighborhood will not be mapped into a neighborhood U*(Q I B). The 
sequence P , ,  P,, . . . has an accumulation point P in 8, because 'u is closed 
and bounded. If U*(P' 1 B) is the previously chosen neighborhood of the 
image point P' of P, then from the continuity of the mapping there will exist 
a neighborhood U(P 1 % )  whose image is covered by U*(P' 18). Since 
infinitely many points of the sequence lie in U(P  I 'u), there will exist an i 
which is sufficiently large so that the (1 /;)-neighborhood of Pi will lie entirely 
in U(P 1 %), so that its image is completely covered by U*(P' I 8). This gives 
a contradiction. 

If the sets % and 23 coincide and the continuous mapping is the identity, 
one gets the corollary 

THEOREM V. If an arbitrary neighborhood U*(Q I 3 )  is assigned to each 
point Q of a bounded closed Euclidean space, then there exists a 6 > 0 such that 
the 6-neighborhood of each point P of % will be covered by a neighborhood 
U*(Q I Yl) of an appropriately chosen point Q. 

function into the real number line. 

The usual formulation of the uniform continuity theorem is 

THEOREM VI. When a bounded closed subset 'u of a Euclidean space is 
mapped continuously into another Euclidean space 8, then for each E > 0 there 
exists a 6 > 0 such that any two points of % whose distances from one another is 
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< 6 are transformed to two points of 8 which are at a distance < e from one 
another. 

Proof: In Theorem IV choose the (e/2)-neighborhood of Q as U*(Q 18) 
for all points Q of 8. There will then exist a 6 > 0 such that the 
&neighborhood of an arbitrary point of '21 will map into an ( ~ / 2 ) -  
neighborhood of an appropriately chosen point Q of 8. If P I  and P, are 
points of 9l having a distance < 6 from each other, then the 6-neighborhood 
of P I  will include P,. Since the image of the &neighborhood in '23 is covered 
by an (e/2)-neighborhood, the image points Pi and Pi in B will have a 
distance from each other < E. 

For later use we present some additional propositions and definitions 
related to point sets in Euclidean spaces. 

THEOREM VII. Let 'm be a subset of a Euclidean space or be homeomorphic 
to such a subset. Let P be a point of (m, let 0 be a neighborhood of P relative to 
IDZ, and let 0 ,  be a neighborhood of P relative to 0. Then Q I  is a neighborhood of 
P relative to 9Jl. 

Proof. 0 contains an &-neighborhood U,(P I 'm) as a neighborhood of P in 
'132. Likewise, 0, contains a &neighborhood U,(P I 0). If 17 is the smaller of 
the two radii E and 8, then U,(P I (m) will belong to 0 and U,(P I 0) will 
belong to 0,.  In that case U,(P I 2JI) will also belong to 9,. The 
neighborhood 0,  thus contains all points of (m which are at a distance < 17 
from P and is therefore a neighborhood of P relative to 92, as required. 

Now let 9 be a subset of (m. The closed hull (n' of 9 relative to (m was 
defined in $5 to be the intersection of all closed subsets of I.m which contain 
R. Thus all boundary points of % relative to (m belong to 8'. It is in fact true 
that the closed hull 9' is formed exactly by (n and its boundary, @. To 
demonstrate this we must show that the set union 8 + 9 is a closed subset of 
'132. If R is a boundary point of 9 + 9 relative to (m, then an &-neighborhood 
U,(R I 'm) will contain a point of (n + (n which is either a point of (n or a 
boundary point R of 9. In the latter case R will lie at a distance < E from R .  
Since there exist points of 9 which are arbitrarily close to R (from the 
definition of boundary points), it then follows that there will exist points of % 
which are at a distance < e from R .  That is, R is a boundary point of 9 and 
therefore belongs to 9. One can prove in like manner that the boundary of (n 

relative to 92 is a closed subset of 5N. 
Let 'm, and (m, be two disjoint bounded closed sets in '8" and let d(P,P,) 

be the distance of a point P I  of '132, to a point P, of (m,. The greatest lower 
bound 6 of all the distances d(P,P,) is called the distance between the sets 92, 
and 2R2. The greatest lower bound is adopted because (m, and (m, are closed 
and bounded. It is > 0 because they are disjoint. 

The diameter of  a closed bounded set in W" will be defined to be the least 
upper bound of the distances of any two points of the set. 
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8. Identification Spaces 

I t  frequently occurs in geometry that one must split up the points of a 
neighborhood space into classes of equivalent points and must then introduce 
these classes as “points” of a new neighborhood space. For example, if one 
projects the points of Euclidean 3-space onto a plane, this process can be 
regarded as a division of 3-space into classes: all points having the same 
image under the projection, that is, all points of a projection line, form one 
class; one no longer regards the points as being different but instead one 
identifies them with the projection point. Another example: We are given a 
group of translations of the Euclidean plane; the group is generated by a 
displacement x’ = x + a in the x-direction and a displacement y’ = y + b in 
they-direction. We decide to regard points as equivalent and put them into 
one class if they can be transformed to one another by means of translations 
belonging to the group. That is, points are equivalent if their x- and 
y-coordinates differ by integer multiples of a or b, respectively. One may 
select an appropriately chosen representative from each class in such a way 
that these representatives comprise the interior points of a rectangle to which 
a corner point and two sides are added (Fig. 30), that is, all points whose 
coordinates satisfy the inequalities 0 I x < a and 0 i y  < b. When one now 
“identifies” equivalent points of the Euclidean plane the torus is generated, 
since the side x = a is equivalent to the side x = 0 and the side y = b is 
equivalent to the sidey = 0. 

Finally, we want to use the procedure of identification to construct surfaces 
by joining the sides of polygons. For example let us consider the point set 
consisting of two triangles in the Euclidean plane (Fig. 31). We will declare 
that points are equivalent if they correspond to one another in a particular 
topological mapping of a side of one triangle onto a side of the other triangle. 
Let us identify equivalent points. The two triangles will then join together to 
form a quadrilateral. 

We shall now define the process of identification in terms of the 
fundamental concepts of set theory: sets, subsets, and mappings. 

FIG. 30 FIG. 31 
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Let the points of a neighborhood space W be divided into classes (subsets) 
so that each point belongs to exactly one class. Let us call the points of a class 
equivalent points. We shall not exclude the possibility, for example, that one 
class consists of a single point, while another class consists of infinitely many 
points. We form a new set W’ whose “points” are the classes of equivalent 
points of W .  This gives a natural mapping from W onto W’; one assigns as 
image of a point P of ‘m its class P’ of W’. The set W‘ will be made into a 
neighborhood space by means of the following prescription: If P,, P,, . . . 
are all of the points of Fm which map into one and the same point P‘ of W‘, 
choose a neighborhood U(Pi I W )  at each point Pi and form the set theoretic 
union of these neighborhoods U(P, I W )  + U(P2  I W )  + * . The image of 
this union set is declared to be a neighborhood U(P’ I W’) of P‘ in ‘m’. The 
neighborhoods in W’ defined in this manner obviously satisfy Axiom A. They 
also satisfy Axiom B. For if U’ is a subset of 1111’ containing U(P’ 1 fm’), then 
the preimage set U giving rise to U’, that is, the set of all points which map 
into points of U’, is a neighborhood E(Pi 1 W )  of the arbitrary preimage point 
Pi of P’; for E(Pi I ‘m) contains the neighborhood U(Pi I W).  U’ is the image 
of the union set E(P, 1 W )  + U ( P 2  I W )  + . * - = U and therefore by 
definition is a neighborhood of P’. 

We say that W‘, as well as any neighborhood space homeomorphic to W’, 
arises by means of identification of equivalent points. 

If one replaces W by a homeomorphic neighborhood space M and declares 
points in M to be equivalent if they correspond to equivalent points in W ,  
then by identifying equivalent points in M one obtains a neighborhood space 
which is obviously homeomorphic to W‘. 

For each neighborhood U(P’ I W’) there exists a neighborhood of the point 
Pi ,  U(Pi I W),  whose image belongs entirely to U(P’ I W’). Thus we have 

THEOREM I. The mapping of W onto W’ is continuous. 

If, on the other hand, a neighborhood space ’D7 has been mapped onto an 
arbitrary neighborhood space W’, the question may be asked: when can W’ 
be considered to arise from W by means of identifying points which map to 
the same point of W’. To answer this we have 

THEOREM 11. When a neighborhood space W is mapped continuously onto a 
neighborhood space W, the image space ‘m’ will arise by means of identification 
of points of W having the same image point in ‘m’ on& i f ,  for every point P’  of 
W‘ and arbitrarily chosen neighborhood U ( P ‘  I W‘), the neighborhood 
U(P’ I ‘m’) is the image of a set theoretic union U(P, I ’II) + U ( P ,  1 ’m) + * * . 
of neighborhoods of the points P , ,  P,, . . . which map to P ’ .  

Proof. It is to be shown that each neighborhood U(P’ I W’) is the image of 
a set union of the form U(P, 1 W) + U(P,  1 ‘m) + * * * . Because we assume 
continuity there exists for each of the points Pi a neighborhood U(Pi  I W )  
which maps into U(P’ 12R’). The set U of all points of 2R that map into 
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U(P’ I fm’) contains u ( P j  I fm) as a subset and is therefore itself a 
neighborhood U(Pi 1 W) of Pi, from Axiom B. Thus U(P’ I W’) is the image 
of the set union U( P I  1 fm) + U( P, 1 fm) + . . . . 

We shall now prove formally the almost self-evident fact that one can 
proceed stepwise with the identification of points and will arrive at the same 
result regardless of the order of the steps: 

If fm’ arises from W by means of identification of equivalent points and 9X” 
arises from fm’ by means of identification of equivalent points, this results in a 
mapping of ‘117 onto W’; fm” arises from ‘117 by identifying all points of W which 
map to the same point of fm“. 

Proof. A point P“ of ‘117” is the image of the points P i ,  P i ,  . . . of fm’, P,‘ is 
itself the image of the points Pi,, Pi2, . . . of W, The mapping of W onto W” 
is continuous, and thus from Theorem I1 it suffices to show that 
C j C j U ( P v  I fm) maps to a neighborhood of P“. The neighborhood 
CjU(Pv 1 %I) transforms to a neighborhood of U(P,’ I m’) since m‘ arises by 
means of identification of the points Pi,, Pi2, . . . . Furthermore, CiU(P,’ 1 fm’) 
transforms to a neighborhood U(P” I %I”) since W” arises from %Jl’ by means 
of identification of the points P i ,  P;,  . . . . Thus C,C,U(Pv I a) maps to the 
neighborhood U( P ” I fm”). 

THEOREM 111. Let 2.R be a bounded closed point set of a Euclidean space 
whose points are divided into equivalence classes. Let ‘117 be mapped continuously 
onto a point set W’ in another Euclidean space in such a way that equivalent 
points of ‘117 map to the same point of fm‘ and nonequivalent points of fm map to 
distinct* points of 92’; then fm’ arises from fm by means of identification of 
equivalent points. 

Prooj From Theorem I1 one needs only to show that if P I ,  P,, . . . are all 
of the points which map to P‘ and if U(P, I gnl) is an arbitrary neighborhood 
of P,, then the image of the set union U(P,  1 fm) + U(P, 1 E) + * * is a 
neighborhood U(P’ I W’). Obviously this image is a subset %’ of m’ such that 
%’ contains P‘. If we were to assume that %’ were not a neighborhood of P‘, 
then in each &-neighborhood of P‘ there would exist points of W’ which do  
not belong to 3’. In particular, corresponding to each E of the sequence 
1/2,1/3, . . . , I / i ,  . . . there would then exist a point Q,’ which would 
belong to the (1/i)-neighborhood of P’ but not to 3’. Let Q , , Q 2 ,  . . . be 
arbitrary points in the preimage of the sequence Q ; , Q ; ,  . . . such that Q,‘ is 
the image of Q,. Then because ‘117 is bounded and closed the sequence 
Q I , Q z ,  . . . will have at least one point of accumulation, Q .  Each 
neighborhood of the image point Q’ of Q will then contain infinitely many 
points of the sequence Q,’, Q ; ,  . . . because the mapping is continuous. Since 
P‘ is the only accumulation point of this sequence, it follows that Q’ = P‘. 

*This is not of course always possible, for an arbitrary division into equivalence classes. 
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Therefore Q is one of the points P , ,  P,,  . . . . Suppose, for example, Q = P I .  
Then infinitely many of the points Q l , Q 2 ,  . . . lie in U ( P ,  I Yl) and thus 
infinitely many of the points Q ; ,  Q; ,  . . . lie in Yl'. This is a contradiction; 
thus %' is in fact a neighborhood of P' .  

We are now in a position to answer the question: When does the continuity 
of two out of the three mappings coupled by means of the relation $q~ = x 
(first cp, then +!) imply continuity of the third mapping? As noted earlier, x is 
continuous whenever both cp and + are continuous. In contrast, the continuity 
of J ,  and x does not imply that of cp, since, for example, x will be continuous 
for an arbitrary choice of cp when J ,  transforms all points to a single point. It 
follows from Theorem 111, however, that the continuity of cp and x will imply 
the continuity of + under certain conditions. We have 

THEOREM IV. Let a bounded closed set 'm of a Euclidean space be mapped 
into another Euclidean space by means of a continuous mapping cp. Subsequently 
map the image 2Jt' into an arbitrary neighborhood space by means of a mapping 
+ (which we do not assume in advance to be continuous). If 'm" is lhe image of 
im' and the mapping +cp = x is a continuous mapping of 'm onto Yl", then + is 
also continuous. 

Proof. Let P' be an arbitrary point of 'm' and let P" = J,(P') be its image 
in (Xn". Let P , , P , ,  . . . be all points of %X which are mapped by cp to P' .  
Because of the continuity of x there will exist, for a given neighborhood 
U( P" I YY'), neighborhoods U ( P ,  I 'm), U( P, I Vl), . . . , all of which are 
mapped into U ( P "  1 SIR"). I f  one now declares that all points of 'm which 
transform to the same point of 'm' are equivalent, then from Theorem I11 'm' 
arises from 2Jl by means of identification of equivalent points. The set union 
U ( P ,  I ?A) + U ( P ,  I 'm) + . . * thus transforms to a neighborhood U(P'  1 'm') 
which, in turn, maps into U(P"  1 ,"). That is, + is continuous at P' and is 
therefore continuous at each point of 93'. 

In Theorem IV, if cp is a one-to-one mapping which is continuous in the 
direction %X %X' and one sets + = cp-', then +cp is the identity mapping of 

onto itself and is therefore continuous. We have thus proven 

THEOREM V. A one-to-one continuous mapping of a bounded closed subset of 
a Euclidean space is a homeomorphism. 

EXAMPLE 1. Let the set 9Jl be a disk, including its boundary circle. When all points of the 
boundary circle are identified the 2-sphere results. For one can map the disk onto the 2-sphere 
continuously so that the map is one-to-one except on the boundary circle. Map the disk radii, 
directed from the disk center point to the disk boundary, onto the sphere meridians of longitude 
directed from south pole to north pole. The boundary point of a radius will always map to the 
north pole. From Theorem 111 the 2-sphere arises from the disk by identifying all points which 
map to the north pole. 

EXAMPLE 2. In the set of all lines passing through a point in Euclidean 3-space declare that a 
neighborhood of a line g is the subset of all lines which belong to a circular cone about this line 
(and also any set of lines containing the subset of all lines belonging to such a cone). A 
neighborhood space homeomorphic to this neighborhood space will arise from the 2-sphere by 
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means of identificntion of diametrically opposite points of the sphere. This gives the 
neighborhood space htroduced in 82, called the “projective plane.” 

9. n-Simplexes 

Let n + 1 linearly independent points 

be given in the m-dimensional Euclidean space, Bm; 0 5 n 5 m. [We say that 
n + 1 points are linearly independent if they do not lie in an (n - 1)- 
dimensional linear subspace.*] Let the coordinates of the point Pi be 

pil,  pj2, . . . , plm (i  = 0,1, . . . , n). ( 1 )  

Assign a mass 

pi 2 0 

to each point Pi in such a way that the sum of all the assigned masses is equal 
to 1: 

& + P I +  . . .  + p n = l .  (3) 

These masses then determine a centroid X ,  that is, a point which has the 
coordinates 

n n n 

XI = c PIP119 x2 = C PIPl23 . . . )  xm = C pipim. (4) 
0 0 0 

We call p,,, p1 , . . . , pn the barycentric coordinates of X ;  they are constrained 
by the conditions (2) and (3). For each choice of po, p l ,  . . . , 1.1, satisfying (2) 
and (3) one obtains a centroid X ;  as po, p l ,  . . . , pn are allowed to vary over 
all real numbers satisfying (2) and (3), a set of such centroid points will be 
generated in IH“. This set of points is said to constitute a “rectilinear” or 
“geometric” n-simplex, 0.” in the Euclidean space !Tim. Accordingly, 62’’ is a 
closed subset of the Euclidean space. The points Po,  P I ,  . . . , P,, are called the 
vertices of the n-simplex. The simplex is fully determined by specifying its 
vertices, and can be described by its vertices as well as by a single symbol, &”. 

. . . , 5, to replace the 
coordinate system x , ,x2 ,  . . . , x, by using a linear transformation with 
nonvanishing determinant. Let rll,ri2, . . . , rim be the coordinates of PI in 
the new coordinate system. Then the two sides of (4) transform in the same 

Introduce a parallel** coordinate system 

*Cf. Schreier and Sperner [ I ]  for the fundamental concepts of affine geometry which are not 

**Editor’s nofe: The term “parallel” is used very loosely here; the intended meaning is “a new 
explicitly explained here. 

coordinate system obtained from the old one by a linear transformation’’ (not by a translation). 
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way, and one obtains the equations 
n n n 

i - 0  i - 0  i = O  
5'1 = c P;=,I, 5 2  = c P;T;2, . . . ,  [rn = c piTim* ( 5 )  

Thus the coordinates of the centroid are expressed in the same way by 
barycentric coordinates in all parallel coordinate systems. 

In particular, one can choose the coordinate system . . . , 5, so that 
&, t2, . . . , 5, are parallel coordinates in the linear subspace 2" to which (5.. 

belongs. In that case T ~ , ~ + ~ , T ; , ~ + ~ ,  . . . , T;,,, are all equal to zero and the 
system ( 5 )  becomes 

n n n 

One can specialize even further and can take the vectors going from Po 
outward to the vertices P I ,  P,, . . . , P,, as basis vectors of the coordinate 
system, so that T;; = I for i = 1,2, . . . , n and all other vy are equal to zero, so 
that the system of equations 

51 = PI, 5 2  = p27 . . * ,  t n = p n  (7) 

results. In this coordinate system the barycentric coordinates p I ,  p2, . . . , pn 
coincide with the parallel coordinates. The points in 0" satisfy the inequalities 

20, 52z00, . . . ,  5,ro, 
t1+ t2+  * * *  + & S l  

in this case. 
The simplex, taken as a subset of the Euclidean space, is itself a 

neighborhood space. An &-neighborhood of a point of the simplex consists of 
those points which are common to the simplex and to an &-ball described 
about that point. 

The 0-simplex is a single point, the I-simplex is a line segment, the 
2-simplex is a triangle, and the 3-simplex is a tetrahedron. 

Those points whose nth barycentric coordinate is equal to zero, that is 
p,, = 0, constitute an (n - 1)-simplex, the (n - 1)-dimensional face en,-' of En, 
which lies opposite to the point P,,. This is so because formulas (2) to (4) hold 
for these point sets when one replaces the index n by n - 1. In the same way, 
the face El- '  lies opposite to the vertex P,. 

A k-dimensional face of the simplex 0" is a point set for which n - k 
barycentric coordinates are equal to zero and only the remaining k + 1 
coordinates vary subject to (2) and (3). A k-dimensional face is also a simplex 
Ek. In particular, the I-dimensional face simplexes are called the edges of 0.. 
The vertices of a k-dimensional face are also vertices of (5." and, conversely, 
each arbitrary set of k + 1 vertices of (5." spans a k-dimensional face. There 
then exist (TI:) k-dimensional faces of (5.". 
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The simplex En consists of the totality of line segments which connect 
points of the face @:-I with the opposite vertex P,,. This is so because one 
can find the centroid of n + 1 mass points by first finding the centroid of the 
masses po, pl, . . . , p,,- I (this is a point of @;-I)  and then finding the 
centroid of a mass + p1 + . . . + p n P I  concentrated at this point and the 
mass p,, at P,,. The desired centroid lies on the line segment connecting the 
latter two points. Each point of the connecting segment is a point of 0" since 
one can let the mass p,, decrease from I to 0 without changing the ratios of 
the remaining n masses; during this decrease the centroid of all the masses 
moves along the line segment connecting P,, to the point on the opposite face 
determined by the fixed mass ratio. 

When one connects all points of a point set SlN of a Euclidean space with a 
fixed point P by means of straight line segments, then one calls this procedure 
projection to the point set %V from the projection center P .  The totality of 
connecting line segments is called the projection cone. The n-simplex then 
arises by means of projection to one of its ( n  - 1)-dimensional faces from the 
vertex opposite to that face. One can generate the n-simplex En by means of 
successive projections, starting with an 0-simplex. One first obtains an edge 
by projection to a vertex Po from another vertex, for example P I .  By 
projection to that edge from a new vertex P ,  one obtains a 2-simplex, and so 
forth until En is finally obtained by means of a projection to an 
( n  - 1)-dimensional face from the last vertex P,, not previously used as a 
projection center. 

Convexity is an important property of an n-simplex. A convex region of a 
Euclidean space is defined to be a closed bounded set such that for each pair 
of points of the set, all points of the line segment connecting them are also 
contained in the set. The dimension of a convex region is defined to be the 
dimension of the lowest dimensional linear space, C r  which contains the 
convex region. The convex region possesses interior points relative to Qr since 
it contains r + 1 linearly independent points and thereby contains a whole 
r-simplex which, in turn, contains interior points relative to '2'. We call the set 
of boundary points relative to Cr the boundary of the convex region and call the 
interior points relative to Qr the inner points of the convex region. Later, in 
Chapter V, we shall be able to show that boundary and inner points of a 
convex region differ from one another with regard to intrinsic topological 
properties, independent of any embedding into a Euclidean space. One 
should take care not to confuse inner points with interior points of a convex 
region relative to an arbitrary Euclidean embedding space. Inner points are 
interior points only if the dimension of the convex region is the same as that 
of the embedding space. Otherwise, each point of the convex region is a 
boundary point of the region relative to the embedding space. A 
0-dimensional convex region consists of a single inner point. 

The projection cone to a convex region '23 from a point is again a convex 
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region. Two arbitrary points QI and Q2 of the projection cone can always be 
projected into certain image points in '3 (not necessarily uniquely 
determined); the latter points can be connected by a line segment belonging 
entirely to B, and the projection cone to this segment will contain the line 

Because the n-simplex 0." arises by means of a series of projections from a 
point Po,  which is a 0-dimensional convex region, it follows that 0." is itself a 
convex region and, in fact, is n-dimensional. It is, moreover, the smallest 
convex region which contains the n + 1 vertices of 0". For this reason one 
says that it is the convex hull of the n + 1 points. 

As a convex region the n-simplex has a definite boundary, which obviously 
consists of all of its faces. The remaining points are inner points. A 0-simplex 
has no boundary; it consists of a single inner point. 

Every simplex has a definite midpoint. This is the point having barycentric 
coordinates 

segment ( Q 1 Qz). 

po = p, = * . * = pn (= l / (n  + 1)). 

A linear (affine) mapping of an n-simplex 0" onto an r-simplex '0" can be 
obtained by mapping the vertices of 0" to the vertices of '0.'. That is, one 
assigns a vertex of '0' to each vertex of 0." and omits no vertex of '0' in the 
procedure; the masses of 0" are placed at the image vertices and the centroid 
of 0" is assigned to the image centroid. Each point of 0." is thereby given a 
uniquely determined image point in '0'. This linear mapping is determined 
uniquely by the mapping of the vertices. 

If r < n, the mapping of 0" onto '0' is said to be degenerate. In this case at 
least two vertices of 0" will collapse into some vertex of '0.'. On the other 
hand, if n = r, the mapping is topological. Each face of 0" is mapped linearly 
onto the face of '0' which is "spanned" by the images of its vertices. 
Therefore if two vertices collapse into one vertex, the whole edge spanned by 
them will collapse into this vertex. 

To describe the linear mapping of 0" onto '0' analytically, choose parallel 
coordinate systems t1 ,t2, . . . , S,, and '5, ,'t2, . . . , '5, respectively, in the 
linear spaces 2" and '2" to which 0" and 'El belong. Let 

7r.. Y 

'Ti/( 

( i = O , l , .  . . , n , j =  1,2,. . , , n )  

(i  = 0,1, . . . , n, k = 1,2, . . . , r )  

be the coordinates of the vertices P o , P l ,  . . . , P,, of 0" and let 

be the coordinates of the image points ' P o , ' P l ,  . . . , 'P,,; several of these 
points may, of course, coincide. The coordinates of the centroid of the masses 
p,,, pI, . . . , pn placed at P o , P I ,  . . . , P,, are, from Eq. (4), 

n n n 

51 = C &nil, ( 2  = p i ~ i 2 ,  * * 3 t n  = C ~ i ~ j n  (8) 
i - 0  i - 0  i - 0  
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and the centroid of the masses po, pl, . . . , p,, located at  the image points 
'Po , 'PI ,  . . . , 'P, ,  correspondingly has coordinates 

n n n 

1=0 r = O  r = O  
'51 = 2 pr'n; , ,  '52 = 2 Pr'7Tr27 . . . 9 '5, = 2 pi'rir. (9) 

p o + p L 1 + . * .  + p , , = l  (3) 

If one solves the system of equations (8) taken together with the equation 

relating the masses po, p l ,  . . . , p,, (which is always possible because the 
points Po, P I ,  . . . , P,, are independent) and sets their values into (9), one gets 
a system of linear equations having the form 

The linear mapping of (3'' onto 'W is, therefore, given by a uniquely 
determined linear mapping of 2" onto '2,. 

A simplex becomes oriented when one specifies a particular ordering of its 
vertices. Two orderings of the vertices which agree up to an even 
permutation* of the vertices determine the same orientation. An oriented 
simplex E" is given by means of the ordering of its vertices Po, P I ,  . . . , P,, . 
We denote it by 

E n  = +(POP,  . . . P,,). 

Upon transposing Po and PI the orientation of the simplex reverses and we 
denote the simplex having reverse orientation by 

- E" = - (POPI . * * P,,) = + ( P I P o  + * * P,,). 

We use a Latin letter to distinguish an oriented simplex from a nonoriented 
simplex. When we wish to denote a nonoriented simplex by its vertices we 
write 

@ , , = ( P O P , . * .  P,,), 

without a sign in front. Our definition of orientation almost suggests itself, 
because a linear mapping of the n-simplex onto itself which is determined by 
a permutation of its vertices will have a positive or negative determinant, 
respectively, according to whether the permutation is even or odd. To see this 
we note that each permutation of the n + 1 vertices can be obtained by means 
of a succession of transpositions of two vertices. A linear mapping which 
permutes only two vertices, let us say P I  and P2, has a negative determinant. 
We have only to choose Po as the initial point and choose the edges directed 
towards other vertices as basis vectors, and in this coordinate system the 

See. for example, van der Waerden [3, Vol. 1, p. 241. 
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mapping will take the form 

x; = x2, x; = XI ,  x; = x3, . . . ,  x;=x, 

and therefore will have determinant - 1. The reasoning breaks down but the 
conclusion also remains true for the trivial case n = 1. Accordingly, for 
example, all even permutations of the regular tetrahedron are geometrically 
distinguishable from the odd permutations by the fact that they can be 
effected by rigid rotations about the tetrahedron midpoint. 

To simplify matters formally we also orient the 0-simplexes. Here the 
orientation consists only of assigning a plus or minus sign to the simplex in 
question. 

For the case n = 1 the orientation +(POP,) determines a traversal of the 
segment for which Po serves as “initial vertex” and P I  serves as “final vertex.” 
An oriented 1-simplex can then be described as a line segment with an 
arrowhead upon it, directed from the initial point to the final point. 

In the case n = 2, the ordering +(PoP,P2)  and its even permutations 
+ ( P I P 2 P o )  and + ( P 2 P o P , )  describe one and the same cyclic traversal of 
edges, thus a definite traversal sense is given to the triangle. The orientation 
of a triangle can therefore be indicated by a circular arrow drawn inside it. 

In the case n = 3 the orientation +(PoPlP2P3) determines a screw sense. A 
screw which bores into the tetrahedron from the vertex Po and turns 
according to the ordering of the other three vertices will be a right-handed or 
left-handed screw according to the orientation of the tetrahedron. 

Up to now we have considered simplexes of a Euclidean space and their 
linear mappings. If we now map such a simplex en topologically onto a 
neighborhood space ‘Dz (so that each point of ‘Dz becomes an image point), 
then we can also call the image @” a simplex, or more precisely a topological 
simplex, and we call en the preimage of @”. If one regards the same 
neighborhood space ‘Dz as the image of another preimage, P”, we consider the 
topological simplexes 0” and @’ to be the same if and on@ if en can be mapped 
linearly onto P” so that corresponding points have the same image point in ‘Dz. 

The following concepts can then be carried over to a topological simplex 
from its preimage: edge, i-dimensional face, midpoint, straight line segment 
connecting two points, boundary, inner point. One cannot, however, speak of 
the distance between two points, since this changes during a linear mapping 
of two preimages onto one another. One can also consider the rectilinear 
simplexes of Euclidean spaces to be topological simplexes; here, preimage 
and image coincide and the mapping is the identity mapping. When one 
speaks simply of “a simplex” one refers always to a topological simplex, 
which of course can also be a rectilinear simplex in particular circumstances. 

If, for example, we project the surface of a tetrahedron from the 
tetrahedron midpoint onto a circumscribed 2-sphere, then the four rectilinear 
2-simplexes of the tetrahedron transform to four topological simplexes of the 
2-sphere (spherical triangles). 
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Exactly as for a rectilinear simplex, one can orient a topological simplex by 
giving an ordering of its vertices and one can do this in two distinct ways. 

It is also clear what is meant by a linear mapping of two topological 
simplexes 0." and '0.". This is a topological mapping of @" onto '0." which, 
when viewed as a mapping between the corresponding rectilinear simplexes e" 
and 'e" is a linear mapping of rectilinear simplexes. 

10. Simplicia1 Complexes 

Complexes are special neighborhood spaces which are constructed out of 
simplexes. In the future we will deal exclusively with such spaces. We shall 
study complexes in general in Chapters 11-V, VII, VIII and XI and we shall 
study certain special complexes, i.e., manifolds, in Chapters VI, IX, and X. 
Complexes will be the basic concept in all investigations which follow. 

A complex is a neighborhood space which can be simplicially decomposed. 
Simplicia1 decomposition of a neighborhood space 9 is defined as follows: 
Let either a finite number or a countable infinity of simplexes (that is, 
topological images of rectilinear simplexes), having dimensions 0 through n,  
lie in R. Along with each simplex, all of its faces should belong to this set of 
simplexes. The simplexes provide a simplicia1 decomposition of the space Q if 
the following four conditions are fulfilled: 

(k l )  Each point belongs to at least one simplex. 
(k2) Each point belongs to only finitely many simplexes. 
(k3) Two simplexes are either disjoint, or one of them is a face of the other, 

or they have a common face consisting of the set theoretic intersection of the 
two simplexes. 

[The definition of equality of topological simplexes is to be kept in mind 
here. In order for two topological 2-simplexes of Q to have a face in common 
i t  is not sufficient that their preimage triangles map to the same point set of Q 
under the topological mapping. Rather, the mapping of the preimage triangles 
into 9' must be such that corresponding points of the two linear preimage 
faces (which are linearly related to one another and not merely related by an 
arbitrary topological relation) have the same image point in Q.] 

(k4) If P is a point of the neighborhood space Q and if U(P I E,), 
U( P I E2), . . . , U( P I Q,) are neighborhoods of P in the simplexes 0., , 
E2, . . . , E,, respectively, where these simplexes comprise all of the simplexes 
of the simplicial decomposition* which contain P, then the set theoretic union 
U(P 1 0,) + U(P 1 E2) + . . . + U(P 1 E,) is also a neighborhood U(P I Q) of 
P in Yf. 

*The dimensions of the simplexes 0, ,@,, . . . , 0, lie between 0 and n.  We have not indicated 
the dimonsion index, which is always superscripted. 
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If the neighborhood space R can be divided into simplexes in this way, then 
it is called a complex. I f  we select, out of the various possible ways to 
decompose a complex into simplexes, one such way, then we call the complex 
divided into simplexes in this particular way a simplicial complex or, more 
precisely, a simplicially decomposed complex or a complex with a simplicial 
decomposition. It is customary to designate two simplexes of R as being 
incident if one of them is a face of the other. A simplicial complex is said to 
be n-dimensional if it contains at  least one n-simplex but none of higher 
dimension. 

We shall see in the course of the development that practically all 
topologically important figures are complexes. This is indicated by the 
following lemma: 

LEMMA. A point set S? of a Euclidean space %"' which consists of a finite or 
countably infinite number of geometric simplexes of dimensions 0 through n is a 
simplicial complex if, in addition to condition (k3) (which states that the 
simplexes do not overlap or penetrate one another) the following condition is 
fulfilled: each point of Q has a neighborhood which has points in common with 
only a finite number of simplexes. 

Proof: As a subset of the Euclidean space, the point set R is a 
neighborhood space. The given simplexes and their faces will form a 
simplicial decomposition of 9'. Since the conditions (kl) and (k2) are 
obviously satisfied and condition (k3) is assumed to hold, it remains only to 
prove (k4). The neighborhood U( P I &,) mentioned in condition (k4) includes 
a certain &,-neighborhood of P relative to 0;; it is formed by all points of 6, 
which have distance less than E~ from P in If one chooses q to be a 
positive number smaller than E ,  . E ~ ,  . . . , E, and also so small that the 
q-neighborhood of P has points in common only with the simplexes 
&, , E2, . . . , Gr (which is always possible according to the conditions of the 
lemma), then this q-neighborhood of P relative to R is a subset of 
U( P I E,) + U( P I E2) + . . . + U( P I E,) and therefore this set union is also a 
neighborhood of P relative to R and thus satisfies condition (k4). 

EXAMPLE 1. The 2-sphere is a complex. From the last lemma, the tetrahedron with plane faces 
in Euclidean 3-space is a simplicial complex. It can be mapped topologically onto a 2-sphere 
circumscribed about its midpoint, by means of a projection from its midpoint. The topological 
image gives a simplicial decomposition of the 2-sphere. One can get another simplicial 
decomposition of the 2-sphere from the octahedron or icosahedron. For this see 8 14. 

EXAMPLE 2. The Euclidean plane is a complex, since one can tile it with equilateral triangles. 

EXAMPLE 3. An individual triangle of the Euclidean plane is also a complex, of course, but its 
decomposition into infinitely many triangles as shown in Fig. 32, for example, is not a simplicial 
decomposition. Condition (k4) is violated at the vertex point P. Here, the set union 
U(P 1 0,) + U(P I E2) + . . . + U(P  I Er)  is not a neighborhood U(P  1 52). It consists only of the 
point P. Aside from the simplex P there exists no simplex of the decomposition to which P 
belongs. 

Additional examples may be found in 814. 
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For use later we indicate how one can construct a simplicial complex from 
its individual simplexes by means of identifications. Let us assume that a 
preimage is assigned to each simplex of the decomposition, the preimages 
being located in a Euclidean space of sufficiently high dimension. These 
preimages may all be disjoint from one another. Taken together they form a 
neighborhood space ‘351 which is mapped continuously onto Q, since each 
individual simplex is mapped topologically onto a subset of R. If one now 
declares that all points having the same image point in 9 are equivalent and 
identifies them, then one obtains exactly the simplicial complex S .  For if one 
selects arbitrary neighborhoods in !D? of those preimage points which map to 
a given point in Q, then, from (k4), the image of the set theoretic union of 
these neighborhoods is a neighborhood of the image point. Thus, by Theorem 
11 of $8, S arises from 9J by means of identification of equivalent points. 

FIG. 32 FIG. 33 

11. The Schema of a Simplicia1 Complex 

Two simplexes of the simplicial decomposition of a complex never have all 
vertices identical, because of (k3). Because of this property one can describe a 
simplicial complex by means of its vertices and a directory listing the 
simplexes which they span. Such a list is called a schema of the complex. The 
schema of the complex illustrated in Fig. 33, consisting of a triangle and a 
line segment, then reads 

( P o P , P , ) ;  (POPI); (PIP,); (P2Po);  (P*P3);  (Po) ;  (PI); (Pz): ( P 3 ) .  

Another type of scheme, the incidence matrices, will be used later to describe 
complexes. 

If two simplicial complexes Q and Q’ have the same schema, then they are 
homeomorphic. More precisely, they can be mapped topologically onto one 
another so that the simplexes of one map linearly to those of the other. In 
order to effect this topological mapping we notice first that a point P of Q is 
an inner point of exactly one simplex of the simplicial decomposition. For by 
(kl) 1’ belongs to at least one simplex and is therefore an inner point of this 
simplex or of one of its faces. From (k3) there cannot exist two simplexes 
such that P is an inner point of each simplex. If C? is the simplex of R that has 
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P as an inner point, then one looks for the vertices of R’ which correspond to 
the vertices of @. These are the vertices of a simplex E’ which is mapped 
linearly onto @ by means of the assignment of vertices. The image point P‘ of 
P is the image of P under the desired mapping of Q onto R’. We have now 
produced a one-to-one mapping of Q onto $2’. The mapping is also 
topological. For if U(P’ I 9’) is a neighborhood of P‘ in Q’ and 
@; , @;, . . . , @: are the simplexes to which P‘ belongs, then the intersection of 
U(P 1 nl) with the simplexes 0: ( i  = 1,2, . . . , or r )  is a neighborhood 
U(P’ 1 @;) of P’ in the simplex @:, according to the definition of 
neighborhoods in a subset of a neighborhood space. Since the simplex Ei  has 
now been mapped topologically onto @: by means of the linear mapping 
which was constructed, then the neighborhood U(P’ I @;) corresponds to a 
neighborhood U(P 1 @;) in Ei. By (k4) the set union U(P  I GI) + 
U ( P  I E2) + * - - + U(P I G r )  is then a neighborhood of P in 9. Its image in 
R’ belongs to U(P’ I Q’). Thus the mapping is continuous in the direction 
R + Q’ and since Q was not distinguished a priori from Q’, the mapping is also 
continuous in the reverse direction and is, hence, topological. 

We will now discuss the question of when a set %I having either a finite 
number or a countable infinity of elements, in which certain “distinguished” 
subsets are defined, can be the schema of an n-dimensional simplicia1 
complex, in the sense that the elements of %I are in one-to-one 
correspondence with the vertices of the complex and the distinguished subsets 
are in one-to-one correspondence with the sets of vertices of simplexes. The 
following three conditions are clearly necessary: 

(Schl) Each subset of a distinguished subset is again a distinguished 
subset, since all face simplexes of a simplex of a simplicial complex also 
belong to the complex. 

(Sch2) The number of elements in a distinguished subset is less than or 
equal to n + 1. 

(Sch3) Each element occurs in only a finite number of distinguished 
subsets, because of (k2). 

To show that these are also sufficient conditions we will construct the 
corresponding geometric complex in the (2n + I)-dimensional Euclidean 
space !)I2”+’. With this goal in mind we establish a one-to-one relation 
between the elements of %I and a set of points in !)I2“+’ having the same 
cardinality as %I. These points must satisfy two conditions: 

(1) They have no point of accumulation. 
(2) Each set of k + 1 points span a k-dimensional linear space, for 

k 2 2n + 1; that is, the smallest linear space to which they belong is 
k-dimensional. 

These conditions can always be fulfilled, for if one chooses the first r points 
P I ,  P,, . . . , P, so that condition (2) is satisfied, then one can choose the point 
P,+] so that its x,-coordinate is at least 1 greater than any of the 
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x,-coordinates of P I ,  P,, . . . , P, and in addition so that P,+ , belongs to none 
of the linear spaces which are spanned by each k of the points P I ,  P,, . . . , p, 
( k  5 2n + 1). The latter condition can be fulfilled because the finitely many 
linear spaces to be avoided have at  most the dimension 2n. In that case (2)  is 
also satisfied for the points P I ,  P2, . . . , P,+ ,. It then follows that (2 )  holds 
for the entire sequence. Condition (1) holds because the xl-coordinates 
increase without bound in case the point set is infinite. 

We now let the p-simplex spanned by associated points of the sequence 
correspond to a distinguished subset of p + 1 elements in B. We thus obtain 
a finite or infinite set R of geometric simplexes of dimensions 0 through n in 
% ’ “ + I .  From the lemma of $10 i t  easily follows that R is a complex. Let us 
consider two simplexes OP and @ of R. If k + 1 is the number of vertices 
which belong to at least one of the two simplexes E P  and Oq, then 
k + X 5 2n + 2 becausep d n and q 5 n .  As a consequence of (2 )  these k + 1 
vertices span a k-simplex Q k ,  of which &P and OQ are faces. Therefore (3’ and 
Oq are either disjoint or have a common face as their intersection. We must 
also show that there exists a neighborhood of each point Q of R such that this 
neighborhood has points in common with only finitely many simplexes. We 
circumscribe a ball of arbitrary radius e > 0 about Q. Let XI be the 
x,-coordinate of Q. In R there exist only finitely many vertices having 
x,-coordinate smaller than X, + E .  From (Sch3) there are only finitely many 
simplexes of R incident with these vertices. Only these simplexes can protrude 
into the &-ball about Q.  Thus, from the lemma, St is a complex. 

It follows immediately from our construction of R that R has exactly the 
schema of B. We have, at the same time, proved the theorem: 

One can embed each n-dimensional complex geometrically in a (2n + 1)- 
dimensional Euclidean space; that is, for each n-dimensional complex there is a 
geometric complex in % ’ “ + I  having the same schema. 

The schema of a simplicial complex gives a better overall view of the structure of possible 
simplicial complexes than the original, more complicated definition. It also opens up to us the 
possibility of another approach to the study of topology, the strictly combinatorial method. We 
will not pursue the strictly combinatorial method in this book. In that approach the schema is not 
merely an aid to the description of the complex. On the contrary, the schema itself defines the 
simplicial complex. Other simplicial complexes which are related to the original simplicial 
complex can be obtained from it by means of certain combinatorial alterations (combinatorial 
subdivision for example). Simplicia1 mappings* then take the place of homeomorphism. The 
detailed development of this way of thinking will be illustrated by an example that we will use 
occasionally to study surface topology ($37). In strict combinatorial topology the individual 
simples is a distinguished set of finitely many vertices. These are not bound together by 
“continuous space sauce.’) The (at most countably many) vertices of the schemas and their 
distinguished subsets are the objects under study and simplicial mappings are the relations, 

Editor’s note: The concept of “elementary relatedness” appears in the German original. We 
have translated this very freely here because we felt that usage has changed sufficiently to render 
the original text meaningless to a reader in 1978. Later, in $37, the concept of “elementary 
relatedness” will appear again; however, there it will be defined with some care, and we shall 
adhere to the original text. 
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whereas for us the (continuously many) points and their neighborhoods are the objects and 
continuous mappings are the relations.” 

12. Finite, Pure, Homogeneous Complexes 

A simplicial complex R is said to be finite or infinite, respectively, according 
to whether it is built of finitely many or infinitely many simplexes. In a finite 
complex each infinite point set has at least one accumulation point; since 
only finitely many simplexes are available there must exist a simplex in which 
infinitely many points of the set lie. On the other hand, if R is infinite then 
the set of midpoints of all the simplexes gives an example of an infinite set 
without an accumulation point. For if P is an arbitrary point of R, then the 
set theoretic union of the simplexes El ,@, ,  . . . , B, to which P belongs is a 
neighborhood of P, from (k4), and this neighborhood contains only finitely 
many points of that set, namely the midpoints of the simplexes 
B, , O.,, . . . , O., and their faces. Thus the concepts of “finite” and “infinite” 
are recognized to be topological invariants.* A finite simplicial complex cannot 
be homeomorphic to an infinite simplicial complex. If a complex admits a 
simplicial decomposition into finitely many simplexes, then it has no 
simplicial decomposition into infinitely many simplexes (cf. Example 3 of 
$10). We are thus justified in speaking simply of finite and infinite complexes, 
omitting the word “simplicial.” As an example, the 2-sphere is a finite 
complex; when one point is removed i t  becomes an infinite complex, the 
Euclidean plane, as we saw in $6. 

If one selects an arbitrary nonempty set of simplexes in a simplicial 
complex, then these simplexes together with their faces form a subcomplex R,  
of R, which is obviously again a simplicial complex. 

A subcomplex R, is said to be isolated (in R) if each simplex of R which has 
a simplex of R, as a face likewise belongs to R , .  Q can be decomposed in a 
unique way into a definite maximal number 7 (which may be a), of isolated 
disjoint subcomplexes. If 7 = 1, then Q is said to be connected. A connected 
simplicial complex is obviously also characterized by the fact that one can 
join any two vertices, let us say P and Q, by an edge path; that is, by a 
sequence of oriented edges, the first having P as its initial point and the last 
having Q as its final point, also the final point of an arbitrary edge coinciding 
with the initial point of the succeeding edge. 

One can characterize an isolated subcomplex in a topologically invariant 
manner as a nonempty subset of R which is simultaneously open and closed 
or, what is the same, as a nonempty subset without boundary. 

Proof. It is clear that an isolated subcomplex is a nonempty subset without 
boundary. Conversely, let 8 be an arbitrary nonempty subset of R without 

EdirorS note: What has just been observed is that a finite simplicial complex is compact while 
an infinite simplicial complex is not compact. 
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boundary. I f  P is a point of ill and @ is a simplex of the simplicial 
decomposition of .yt‘ such that P lies in E’, then all of 0’ is contained in 8. For 
suppose that P‘ is a point of Q’ which does not belong to Yt. We then 
parameterize the line segment connecting P to P‘ (linearly) with a parameter 
s varying from 0 to 1 and form the least upper bound S of the parameter 
values of all points belonging to %. In each neighborhood of the point 
determined by the parameter value S there are points which do not belong to 
9 as well as points which belong to 91. That is, is a boundary point of %, in 
contradiction to our assumption. Thus 8 is a subcomplex R,  of Q which 
contains along with each point P all of the simplexes of Q on which P lies. 
Thus. 9, is also isolated. 

Because of this topological characterization of an isolated subcomplex 
there also follows the topological invariance of the concept “connected” and of 
the integer r. 

An n-dimensional simplicial complex is said to be pure if each k-simplex 
( k  < n) is a face of at least one n-dimensional simplex. Otherwise i t  is said to 
be impure. By the boundary of a pure n-dimensional simplex we mean the 
totality of (n - I)-simplexes which are incident with an odd number of 
n-simplexes. 

As an example, suppose that a pure complex consists of four plane triangles 
of Euclidean 3-space having one edge in common, and that these triangles are 
located like the pages of an open book, spreading out fanwise from the book’s 
spine. The boundary is then formed by all of the triangle edges with the 
exception of the common edge. The present definition of boundary is in 
agreement with the definition of the boundary of a simplex given earlier in 
99, since an individual simplex is a pure complex. The boundary of a convex 
region, defined in 99, as well as that of the closed n-ball, defined in $14, will 
also be included in the present definition as soon as we have shown that the 
convex region and the closed n-ball are pure complexes (0 14). 

In Chapter V we shall develop methods to prove that the concepts 
“n-dimensional, pure, boundary” are topological invariants. These later 
results are mentioned to justify the fact that we occasionally refer to a 
complex !+I by using the notation Q”, indicating its dimension with a 
superscript. At present we note only that the dimension 0 is a topological 
invariant. A 0-dimensional complex consists exclusively of isolated points. 
Each point is its own neighborhood. This is not true in higher dimensions. 

Among the complexes, the homogeneous complexes deserve special mention. 
An n-dimensional complex is said to be homogeneous if to each of its points 
there corresponds a neighborhood of that point which can be mapped 
topologically onto the interior of an n-dimensional ball. The interior of the 
n-ball is formed by those points of Euclidean n-space whose coordinates 
satisfy the inequality x: + xf + . . + x,’ < 1. As an example, the 2-sphere is 
a homogeneous 2-dimensional complex. In contrast, the closed disk is a 
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nonhomogeneous complex because the boundary points do not satisfy the 
homogeneity condition. This will be shown in Chapter V. Likewise, the edge 
complex of the tetrahedron is a nonhomogeneous 1 -dimensional complex. 

Although the question of whether a particular complex is homogeneous is 
easily determined intuitively in low dimensions (for example, Euclidean 
3-space is clearly a homogeneous complex), it is not so accessible to 
mathematical treatment in more than three dimensions ($68). Therefore we 
do not place it at  the center of our investigations. 

13. Normal Subdivision 

Our ultimate goal, to read off properties of the complex which are 
independent of the choice of decomposition from a given simplicial 
decomposition of a complex, cannot be reached by a procedure of classifying 
the various possible decompositions of the complex. The multiplicity of 
decompositions makes it difficult to obtain an overall view. To approach our 
goal it will be necessary, however, to learn how to derive further decom- 
positions of a complex, starting from a given simplicial decomposition. It is 
only after we have obtained a sufficiently fine decomposition that we will be 
able to compare it to another arbitrary decomposition or to the complex 
considered merely as a point set (Chapter V). 

Subdividing a simplicial complex consists of decomposing each simplex 
into smaller subsimplexes in such a way that a simplicial complex again 
results. Later, we shall need only one particular type of subdivision, the 
so-called normal subdivision. It is obtained in the following way. One first 
subdivides each edge of the simplicial complex through its midpoint, 
decomposing the edge into two 1-simplexes. This provides a subdivision of 
the boundary I-simplexes of each 2-simplex of the simplicial complex. Project 
these subdivided boundary 1 -simplexes linearly from the midpoint of each 
2-simplex. We have already defined the midpoint of a topological simplex by 
use of rectilinear preimage simplexes ($9); the projection of our subdivided 
boundary edge is first defined in the preimage simplex and subsequently 
carried over to the topological simplex. Each 2-simplex then decomposes into 
six 2-simplexes, because the projection cone of a 1-simplex is a 2-simplex. 
Proceeding further, one projects the subdivided 2-simplex boundary faces 
from the midpoint of each 3-simplex. From each 3-simplex one obtains a set 
of 4! 3-simplexes and, additionally, new 2-simplexes and 1-simplexes and also 
a new 0-simplex, the projection center. One proceeds in this way up to the 
n-simplexes. Figure 34 shows a normally subdivided 2-simplex. 

The normal subdivision of a simplicial complex R is again a simplicial 
complex. This follows from the lemma of $10 if one embeds Q in a Euclidean 
space and performs the subdivision in that Euclidean space. 
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FIG. 34 
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Since the normal subdivision is known to be a simplicial complex, one can 
again form its normal subdivision. Proceeding in this way, one can arrive at a 
g-fold normal subdivision. By choosing g sufficiently large, one can make the 
subsimplexes arbitrarily small. More precisely, we have the following lemma. 

LEMMA. A subsimplex of the g-fold normal subdivision of a geometric 
n-simplex En will be (properly) contained in a simplex similarly positioned to 65'' 
and diminished in size by a factor [ n / ( n  + l)]g. 

ProoJ We will need only to prove the particular case g = 1 since the 
lemma will follow directly by a g-fold application of this special case. If En is 
the subsimplex of En = (POP, . . . P,,) under consideration, then there is no 
loss of generality if one assumes that its vertices M o , M , ,  . . . , M,, are just the 
midpoints of the faces (Po) , (PoPl) ,  . . . , (POP, * P,). The barycentric 
Coordinates of MI are ($9) 

& = P I =  * a *  = p 1 = 1 / ( i + 1 ) ,  p , + , = p l + 2 = " '  = p , , = o .  ( I )  

In the parallel coordinate system . . . , 5, whose basis vectors are 
directed from Po to the vertices P I ,  P,, . . . , P,, the coordinates 5 ,  ,t2, . . . , [,, 
coincide, respectively, in that order, with the barycentric coordinates 
p,, p l ,  . . . , p,, (99). @' is determined by means of the inequalities 

(4 
[, 2 0, t2 L 0, . . . ,  ~,,20, 

. . .  +[,,i 1. 

Let us look at the simplex '62" which is positioned similarly to &" and reduced 
in size by a factor n / ( n  + 1): 

[, 20, C2 20, . . . )  &ZO, 

6, + t2 + * * + [,, 5 n / ( n  + I ) .  (3) 

Since the coordinates ( I )  of MI ( i  = 0, I ,  . . . , n )  satisfy the inequalities (3), 
then the vertices of E" belong to 'En and, because of its convexity, E" itself 
belongs to 'En. 

Let a neighborhood space be divided into simplexes so that (kl), (k2) and (k4) are satisfied and 
two simplexes are either disjoint, identical or possess one or more common faces. Show that one 
obtains a simplicial complex by normally subdividing all simplexes. (Prove by induction over the 
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dimension of the complex that @3) of $10 also holds for the normal subdivision; that is, if two 
simplexes are not disjoint or identical, they can only intersect along a common face.* 

14. Examples of Complexes 

The concept of a complex is of great generality. To indicate the breadth of 
the concept we shall prove that several important and well-known 
neighborhood spaces are complexes. This will also provide material for 
illustrative examples later in the text. 

The Closed n-Ball 

inequality 
The set of points of Euclidean n-space %" whose coordinates satisfy the 

x:+x,2+ * . .  + x , 2 5 1  ( n r l )  ( 1 )  

is called a standard unit ball of the Euclidean space. A topological image of 
the standard unit ball is called a closed n-ball.** In the case n = 2 it is also 
called a closed disk. The points for which the equality sign is valid in Eq. (1) 
form the boundary of the standard unit ball and (after a subsequent 
topological mapping) the boundary of the closed n-baff (cf. $9). Topological 
invariance of the boundary will be established in Chapter V. 

Each convex n-dimensional region B in 8" is a closed n-ball. 

To prove this we circumscribe a standard ball f about an inner point 0 of 
23 in such a way that the whole ball lies in B. Let f be the boundary of 
the ball (Fig. 35). We first show that a ray directed outwards from 0 
intersects the boundary of B in exactly one point. Because B is bounded, 
the ray intersects at least one boundary point of 23. As the boundary of B is a 
closed subset of 8" (§7), then among those points of the ray which lie in 
there will exist a point of maximum distance from 0. Call this point p. All 
points of OF with the exception of F are inner points of B. To see this we 
join by line segments to all points of f .  Since B is convex, all of the 
connecting line segments lie in 23. One can therefore construct a ball about 
each point of the segment OF such that the ball lies entirely in 23. This is the 
ball located in similitude to f ,  with respect to as center of projection (Fig. 

be called p .  A one-to-one mapping 
of % onto f is produced by making the correspondence %+p. This mapping 
is continuous in the direction p. For if the mapping were discontinuous 
at the point p ,  then for a given neighborhood U ( P  I 8) there would exist a 

35). 
Let the intersection point of OF with 

- -  

*Editor's nofe: We have taken the liberty of altering the term "inzident" in the origmal 

**Editor's nofe: The term n-dimensional element is used in the older German literature. The 
German text to "identical, " because the problem seemed unclear to us any other way. 

term elementary surface parch (Elementarflachenstuck) describes the case n = 2. 
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FIG. 35 

sequence of pointsg,,J2, . . . of f converging to jj such - -  that all points of the 
image sequence P I ,  P,, . . . would lie outside ll(P I 8). This sequence of 
image points has an accumulation point on (P which must lie on the ray OF 
and can therefore only be the point F. This would imply that almost all points 
of F , ,  F2, . . . lie in U(P I (P), which contradicts our assumption of 
discontinuity at p. 

The mapping is also continuous in the direction P + p ,  from Theorem V, 
$8, and is therefore topological. 

One can extend the mapping from '% onto ? to a mapping of the full region 
8 onto the closed ball f by mapping the segment OF linearly onto the 
segment Op. 

Since the geometric n-simplex is a convex region of Euclidean n-space %", 
it can then be mapped topologically onto the closed n-ball. We have thus 
proved that the closed n-ball is a pure complex. 

The ti-Sphere B" 

satisfy the equation 
The set of points of Euclidean (n + 1)-space %"+' whose coordinates 

2 x: + x: + * . . + x, + I = 1 (n 2 0) 

is called the n-dimensional unit sphere of %'+I.  A topological image of this 
set is called the n-sphere or n-dimensional spherical space and is denoted by 
B". The O-sphere is a pair of points. 

The boundary of an (n + 1)-dimensional convex region '8"" is an n-sphere, 
for we have just presented a topological mapping of 8'" onto the 
(n + 1)-dimensional standard ball such that the boundary of B"+' transforms 
to the boundary of the ball. I t  follows immediately that the n-sphere is 
homeomorphic to the boundary of an (n + 1)-simplex. This provides the 
simplest simplicial decomposition of the n-sphere. For the case n = 2 this 
decomposition is formed by the four triangles of a tetrahedron. 

On occasion we shall require another simplicial decomposition of 65" 
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besides the tetrahedral decomposition. We will require the generalization of 
the octahedral subdivision of the 2-sphere to dimension n. 

Let 
D , , D 2 ,  f f * ,  Dn+l  

(1,0,0,. . . , O),(O,l,O,. . . ,O), . . . , (O,O,O,. . . , I ) .  

be unit vectors directed from the origin 0 of %’+’ to the points 

The vectors 

E I D , , & ~ ~ , ,  * &,+lD,+I  ( e k  = * 1) (2) 

“span” an (n + I)-simplex, namely the (n + 1)-simplex whose vertices are 0 
and the endpoints of the vectors (2). There exist 2“+’ sign combinations in (2) 
and, therefore, the same number of simplexes. Each pair of these simplexes 
either intersects in a face which is spanned by its common vectors or else has 
only the point 0 in common. In the latter case the vectors of one of the 
(n + 1)-simplexes are directed opposite to those of the other simplex. The 
2”“ simplexes form a simplicia1 complex, from the lemma of 810. As is easily 
seen, it is convex and is therefore a closed (n + 1)-ball. Its boundary, an 
n-sphere, is formed by 2”” n-simplexes whose vertices are the endpoints of 
the set of vectors (2). This is the “octahedral” decomposition of the n-sphere. 
It  is center symmetric, in contrast to the tetrahedral decomposition, that is, it 
transforms to itself by the interchange of diametrically opposite points, that 
is, by the mapping 

x; = - X I ,  x;= -x2,  . . .  9 x;+l= -x,+1. 

The n-sphere is decomposed into two n-hemispheres by the hyperplane 
x,,+ I = 0. These n-hemispheres are closed n-balls, as one can recognize when 
one projects them parallel to the x, + , axis into the hyperplane x, + I = 0. The 
n-sphere thus arises from two closed n-balls by mapping their boundaries 
topologically onto one another and identifying corresponding points.” 

Another way to generate the n-sphere is to identify those boundary points 
of the closed n-ball 

x;+x;+ * * *  + x i s 1  

which are located mirror symmetrically with respect to the equatorial 
hyperplane x,, = 0, for the equatorial hyperplane decomposes the closed 
n-ball into two n-balls whose boundary spheres are to be identified. 

The punctured n-sphere is the n-sphere with one of its points removed. The 
punctured n-sphere is homeomorphic to Euclidean n-space, IR”. This can be 
seen by noting that the formulas of stereographic projection ($7) remain valid 
for arbitrary dimension n. It is therefore possible to artificially make the 
stereographic projection into a one-to-one correspondence by adding an 
improper (or infinitely distant) point to W”, the image of the center of 
projection, and by choosing as its neighborhoods the images of the 
neighborhoods of the projection center on the n-sphere. These neighborhoods 
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are point sets in Bn which contain all points outside of a sufficiently large 
n-ball and of course also contain the improper point itself. Putting this in 
another way, the n-sphere is obtained from Euclidean n-space by the addition 
of a single improper point. 

The Simplieid Star 6t" 

Given a finite (n - 1)-dimensional simplicial complex P-' one can obtain 
from it an n-dimensional simplicial complex called a simplicial star Gt". The 
simplicial star will often be used later in the text. The schema of this complex 
is obtained from that of Q n - '  by choosing an additional vertex 0 and joining 
each i-simplex 0, = (POP, . . . P,) with 0 to generate an (i  + I)-simplex 
(OPoP,  . . . P,). The point 0 is called the centerpoint and the complex F-' is 
called the outer boundary of the simplicial star. (Note that the outer boundary 
of a simplicial star is not the same as the boundary of a simplex or a convex 
region.) As an example, all simplexes of a simplicial complex which have a 
vertex in common form a simplicial star. Figure 36 shows a 2-dimensional 
simplicial star; the simplexes of the outer boundary R' appear in heavy print. 

Each convex n-dimensional region of Euclidean n-space whose boundary is 
a complex Gn- '  consisting of geometric (n - 1)-simplexes may be used to 
construct an n-dimensional simplicial star. One needs only to project the 
geometric simplexes from an inner point 0 of the convex region. From the 
lemma of 5 10 concerning complexes in Euclidean spaces, an n-dimensional 
complex will be generated by this procedure and it is an G;t" because its 
schema is that of an Gt". 

FIG. 36 

n-Dimensional Projective Spare 8" 

The lines passing through the origin 0 of Euclidean (n + I)-space W"" 
(n ;* 2) form a complex v, n-dimensional projective space. The lines are to be 
regarded as "points" of a neighborhood space, where one takes as a 
neighborhood of a line g the subset of lines passing through the points of a 
nei1;hborhood in %"+' of some arbitrary point of g. In particular, the lines 
which join 0 with all points of an &-ball neighborhood of a point of g other 
than 0 form a special neighborhood of g, a "circular cone" about g. A line g 
will intersect the unit n-sphere G" of 'illn+' in two diametrically opposite 
points, P, and P, . One obtains a projective space when one declares each point 
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of the set W = @" to be equivalent to the point diametrically opposite to it. Pairs 
of diametrically opposite points are thus in one-to-one correspondence with 
the lines which comprise !@". To see that Qn is generated by means of this 
pairwise identification of points, one has now only to show that the set 
theoretic union of two arbitrary neighborhoods, U ( P ,  I 'Irr) and U ( P 2  I W ) ,  is 
transformed by this pair association to a neighborhood of g and that one 
obtains all neighborhoods of g in this manner. We leave the proof to the 
reader. 

One may also obtain p" from an n-ball by identifying diametrically opposite 
points on its boundary [which is  an (n - 1)-sphere]. We described this 
representation of !$" in $2 for the case n = 2; clearly it can be extended to the 
case of arbitrary dimension. 

The points which lie on a given line passing through the origin of % " + I  

have (real) coordinates 
x,,x29 * f , x,+1 

which differ only by a common factor. One can then place such a line (and 
therefore also projective points) in one-to-one correspondence with 
( n  + 1)-tuples of x I , x 2 ,  . . . , x,+,, which are determined up to a nonzero 
multiplicative factor. The (n + 1)-tuple consisting exclusively of zeros is to be 
omitted [since no line corresponds to this (n + I)-tuple]. A neighborhood of 
such a "projective point" X,:X2: * * 9 : X n +  is formed by all projective points 
x I : x 2 :  * :x,,+~ for which 

[ X I  - X,I < E ,  . . . , IXn+ I - ' n +  II < '9 

- for fixed values of XI, X2, . . . , x,+ I . These projective points correspond to all 
lines which are directed from the origin 0 of % " + I  toward the points of a 
cube neighborhood in %"+' of the point ( K , , X 2 ,  . . . , The size of such 
a neighborhood depends not only upon the projective point X,:X2:  . . . . * % + I  

and the choice of E ,  but also upon the choice of the common factors of the Xj. 
One obtains a simplicia1 decomposition of V by normally subdividing the 

octahedral decomposition of the n-sphere @" given earlier and identifying 
diametrically opposite simplexes. One requires that the identifications be 
performed on the normal subdivision rather than on the octahedral 
decomposition itself because condition (k3) for complexes would otherwise be 
violated. Two arbitrary n-simplexes of the octahedral decomposition of G" 
would have the same vertices if the diametral point identification were 
performed directly on the octahedral subdivision (cf. the problem at the end 
of 813). 

Topological Products 

Given two neighborhood spaces % and 8 one can derive a new 
neighborhood space, the topological product % X 8, by means of the following 
definition: A point A x B of the topological product % X 8 corresponds to a 

- 
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point pair consisting of the point A of 2l and the point B of 23. A 
neighborhood of the point 7 X is formed by all points A X B for which A 
lies in a neighborhood of in 'B; in 
addition each set containing such a set is also declared to be a neighborhood 

As an example, the Euclidean plane is the topological product of two real 
number lines, the x,-axis and the x,-axis. 

More generally, if 91 and are point sets of the Euclidean spaces %a and 
%', respectively, then ,)I X 'I\ can be regarded as a point set of the Euclidean 
space % t o + b  = ?)la x '3'. To see this let 

X I , X 2 , .  . . 3 xa 

in Y I  and B lies in a neighborhood of 

of AXE. 

( A )  

x a + I ' x a + 2 '  * ' 9 ' a + b  ( B  1 
be the coordinates of a point A of 2l and let 

be the coordinates of a point B of %. We then choose as the point A X B the 
point having coordinates 

'I?X29 . . . ? X a ? X a + l ?  * * .  7 x a + b *  

Obviously the set of points A X B, considered as a subset of !)la+', is a 
neighborhood space homeomorphic to the topological product Z X 3. 

( A  X B )  

Problem 

If  % and 'I) are convex regions of dimension a and p in the Euclidean spaces W" and Wb, 
respectively, then the topological product, regarded (as above) as a subset of the Euclidean space 
Wa+b, is a convex region having dimension a + /3; its boundary is formed by the topological 
product of the boundary of (II with B taken in set theoretic union with the topological product of 
the boundary of 'I) with '2L. 

THEOREM. The topological product of two complexes is again a complex. 

Proof. Embed a simplicial decomposition of the complex 91 into a 
Euclidean space and embed a simplicial decomposition of 'H into !Rb; this 
is possible from 8 1 I .  Then 2l x 8 is a point set of the Euclidean space 
%a X %' and is in fact the set theoretic union of those sets consisting of the 
product of a simplex of 3 with a simplex of T3. Each such product, E" X E p  is 
a convex region of dimension a + /3, whose boundary is formed by the 
( a  + B - I)-dimensional regions @ ; - I  x E P  and B" x @!-I (cf. the preceding 
problem). Here denotes a face of E" and Ef- '  denotes a face of Bp. 
The simplicial decomposition of '11 X % in % a + b  can be constructed by means 
of a sequence of projections. One first divides each I-dimensional region 
(straight line segment) through its midpoint. After the ( k  - 1)-dimensional 
regions have been simplicially decomposed one projects the boundary of a 
k-dimensional region from an inner point, obtaining the simplicial 
decomposition of the k-dimensional region. One can simplicially decompose 
regions of any dimension in this way. The set of simplexes obtained in this 
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way satisfies the necessary conditions for the lemma of 810 and one thus has 
a simplicial decomposition of 9.l X 8. 

For use later we prove the following lemma: 

LEMMA. Let the topological product W X t of a complex W and the unit 
interval 0 2 t 2 1 be mapped into a simplicia1 complex W by a mapping f as 
follows: For each point P of R" let f ( P  X 0) and f ( P  X 1) belong to the same 
simplex of Qm and let the interval P X t transform linearly to the segment 
joining f ( P  X 0) and f ( P  X 1). 

I f  the restriction o f f  to the subsets $2" X 0 and R" X 1 is continuous, then f is 
continuous everywhere. 

Proot We regard W as a subset of a Euclidean space %' having 
coordinates x I  , x2 ,  . . . , xn. R" X t is then a subset of the Euclidean space 
B' X B', where % I  denotes the real number line with coordinate t .  Likewise 
we regard f"' as being embedded geometrically in a Euclidean space 3' 
having coordinates y I  , y 2 ,  . . . , yb. The mapping is then accomplished by 
means of the mapping functions 

Yi(XI,X2,. * .  , xu, t )=y;(x1.x2, .  . . , Xu,O).(1 - t )  

+y;(x1,x2, - * , xu, 1) * t ( i =  1,2,. . . , b ) .  

Since y , ( x ,  ,x2,  . . . , xu,O) and y i (x I  ,x2 ,  . . . , xu, 1) are continuous functions 
of x 1  , x2 ,  . . . , xu by assumption (cf. §6),  it follows that yi(xI  ,x2, . . . , xu, 1 )  is 
continuous in x I  , x2 ,  . . . , xu, t ;  hence f is continuous. 

Problem 

1. Show that (3" is generated by identification of all boundary points of the closed n-ball. 
2. If one assigns the point A of % to each point A X E of the topological product % X '8, then 

this is a continuous mapping of % X b onto 1. 
3. A mass point is constrained to move with constant speed on (a) a torus, (b) a 2-sphere. 

Show that the phase space is (a) the topological product of the torus and the circle G';  (b) 
projective 3-space (P3.l2 

4. Prove: The unit 3-sphere of Euclidean 4-space W4, which has the equation 

x ;  + x; + x$ + x: = I ,  (3) 

can be decomposed into two solid tori (topological product of the closed disk and the circle): 

x :  + x i  5 x: + x: and 

These solid tori are congruent, i.e., they can be transformed to one another by a rigid Euclidean 
motion about the midpoint of the sphere. The common boundary surface, whose points satisfy 
Eq. (3) and also 

x: + x i  2 x: + x:. 

x ;  + x; = x: + x: (4) 

can be transformed, by a stereographic projection, to a torus of revolution. The stereographic 
projection is defined by projecting from the north pole (O,O,O, I )  to the equatorial hyperplane 
x4= 0. The hyperplane is taken to have Cartesian coordinates E l , & , . &  and the torus of 
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FIG. 31 

revolution has the &-axis as its axis of rotation. One sees in this way that the 3-sphere (which is 
obtained by adding the image of the north pole to the equatorial hyperplane) may be 
decomposed into the union of two solid tori. The “core” of the first solid torus is the unit circle in 
the (6, ,[,)-plane, and the core of the second solid torus is the &-axis plus the point at infinity 
(Fig. 37). 

5. Show that the torus of Problem 4 can be mapped topologically onto itself by means of a 
rigid motion in spherical 3-space in such a way that longitude and meridian circles are 
interchanged (cf. 51 and the problem in 046). 

6. When one identifies diametrically opposite points of the unit 3-sphere, transforming it to 
projective 3-space q3, then the torus mentioned above becomes an hyperboloid of one sheet 
which is defined in projective coordinates x,:x2:xJ:x4 by Eq. (4). It is homeomorphic to the torus 
and likewise decomposes $’ into two solid tori. Both projective and spherical 3-space can 
therefore be decomposed, by means of a torus, into two solid tori. (These solid tori can be 
transformed to one another projectively or by spherical rigid motions respectively.) Carry the 
proof through in detail. 

I. Prove: Each nonempty open subset of Euclidean n-space is an infinite complex. (Scoop out the 
subset by means of n-dimensional cubes which are continually made finer and subdivide these 
simplicially .) 



We have already become acquainted with the concept of a complex and its simplicia1 
decomposition. All of the investigations which follow are directed toward the unsolved problem 
of completely classifying complexes and investigating their properties. By the “properties” of 
complexes we mean those properties which are independent of the individual simplicial 
decomposition and are preserved by topological mappings. In spite of this, we shall begin by 
investigating a fixed simplicial decomposition of a complex. In the next chapter we shall prove 
that important properties learned by studying the simplicial decomposition, namely, the 
homology groups, are independent of the particular simplicial decomposition and are 
topologically invariant. 

The considerations in this chapter are purely combinatorial. No use is made of the concepts of 
neighborhood or continuity. Rather, it suffices to describe an n-dimensional complex simply by 
presenting its schema, that is, a set of “vertices” in which certain distinguished subsets are 
declared to be “simplexes” and for which the conditions (Schl) through (Sch3) of $ 1 1  are 
satisfied. For simplicity, we shall only deal with finite complexes. 

15. Chains 

A simplicial k-dimensional chain or simplicial k-chain in the finite 
n-dimensional simplicial complex R” consists of a collection of k-simplexes of 
Q“, each being assigned a definite orientation and a definite positive 
multiplicity. 

The k-chain 0 is defined to be the k-chain which consists of 0 k-simplexes. 
For k > n the k-chain 0 is the only k-chain. Each oriented k-simplex, counted 
with multiplicity 1, is a k-chain. 

To say that an orienteu simplex E k  appears in a k-chain with multiplicity a 
is the same as saying that the oppositely oriented simplex - Ek appears in the 
chain with multiplicity - a. If a k-simplex does not appear in a k-chain one 
says that it occurs with multiplicity 0. 

We now define the sum of two chains U k  and V k .  It is again a k-chain, 
U k  + V k ,  which is obtained in the following manner: If an oriented simplex 
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E," appears in U k  with multiplicity u, and appears in V k  with multiplicity u,, 
then E," appears in  the chain U k  + V k  with multiplicity u, + u,. If one 
regards all k-simplexes of 9" as having been given fixed orientation and 
denotes these simplexes by E," ( K  = 1,2, . . . , a k ) ,  then a k-chain is uniquely 
represented by an (Y k-dimensional integer-valued vector 

( u i , u 2 . .  . . t u,k). ( U k  1 
Two chains U k  and V k  are added by adding their corresponding vectors.* 
But this implies that the k-chains form an Abelian group, ** in particular, an 
ak-dimensional lattice X k .  The oriented simplexes EF, E,k, . . . , E,"* can be 
used as a basis for the group ($86). We then have 

U k  = UIEF U2E,k 4- * . . U,kE,k*, 

where, as always, we use additive notation when dealing with Abelian groups. 
As a rule of computation let us note that when m u k  = 0 and m # 0, it follows 
that U k  = 0, because all elements of X k  have infinite order. 

16. Boundary, Closed Chains 

If @ - I  IS a face of the oriented simplex E k ,  then the orientation of E k  will 
at the same time determine a particular "induced orientation" of O k -  
according to the following rule: If Po is the vertex of E k  lying opposite the 
face E k - '  and E k  = t ( P o P I  - * Pk),  then the orientation induced in E k - '  is 
given by & ( P , P 2  . . . Pk) .  The boundary of an oriented simplex E k  is defined to 
be the (k - 1)-chain formed by the (k - I)-dimensional faces of E k  in which 
each face simplex appears with the induced orientation and with multiplicity 
I . +  Let E,f-',Ef-', . . . , EL-' denote the (k - 1)-dimensional face simplexes 
of E k ,  with each Elk-' given an arbitrary orientation. Then the boundary of 
E k  is the ( k  - 1)-chain 

k k 

r = O  r = O  
G J l a E k = E ~ ( - I ) ' ( P o P I  + . * P l - i P l + l  * . . P k ) =  z ~ , E , k - ' .  

Here el = 1 or E, = - 1, respectively, according to whether the arbitrarily 
oriented simplex Elk-' does or does not possess the induced orientation. We 
use the symbol '34 a to denote a boundary. 

*The superscript k on a k  indicates dimensionality, as do all superscripts, and is not to be 
interpreted as an exponent. 

**The concepts used in the treatment to follow, namely, vector, lattice, Abelian group, direct 
sum, etc., are defined in Chapter XII. 

'One should take care to distinguish between the boundary (chain) of an oriented simplex and 
the boundary of a nonoriented simplex (more generally, of a pure complex; see 5 12). The former 
is a linear combination of oriented simplexes, the latter a point set. 
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The boundary of an arbitrary k-chain uk = Cz: IuKE,k 
sum of the boundaries of the individual k-simplexes: 

at ak 

%auk = % a  C u K ~ , k =  C uK%aE,k. 

%a( uk L vk ) = %auk %a vk,  

I ( - 1  K =  1 

Accordingly, we have the rules of computation: 

%drnuk = rn%auk, 
also, 

%3rnUk = 0 and m = 0 imply 9 a U k  

I l l .  HOMOLOGY GROUPS 

is defined to be the 

= 0, (3) 

for according to (2) we have %amUk = m%aUk and from this it follows that 
%.auk = 0. 

The boundary of a 0-dimensional chain is defined to be the integer 0. 
A k-chain is said to be a cycle or is said to be closed if its boundary 

vanishes; that is, the boundary of the k-chain is the (k - ])-chain 0 in the 
case k # 0, or the integer 0 in the case k = 0. Thus every 0-chain is closed. 

Because of (l), the sum and the difference of two closed chains are again 
closed chains. The closed k-chains therefore form a sublattice ak of the 
lattice X k  of all k-chains. In the case k = 0, ak coincides with Zk.  

For the boundary chains we have the important lemma: 

Every boundary chain is closed. 

Prooj Since each (k - 1)-dimensional boundary chain is the sum of 
boundary chains of oriented k-simplexes, it suffices to show that the 
boundary of an oriented k-simplex E k  is closed. We may assume here that 
k > 1 since the boundary of a 1-simplex is closed, as is every 0-chain. Let 

E k  = (POPIP, * * Pk)  

and let G k p 2  be a given (k - 2)-simplex which is incident with E k .  I t  is no 
restriction to assume that exactly P,, P, ,  . . . , P k  are its vertices, since one 
can bring any k - 1 vertices whatever into last place in the symbol 
(POPIP, * + Pk) by means of an even permutation. From the definition of a 
boundary we have 

AaEk = ( P I P 2 .  . * P k )  - (POP2 * * * P k )  + * * * 

and therefore 

% a a a E k  = (P, . . p k )  - (P, + .  . P k )  + . . . 
The only simplexes in %a%dEk which contain the vertices P,, . . . , P k  and 
only these vertices, are the two simplexes above. Since they cancel each other, 
the simplex (P, . . Pk) does not appear in %a E k .  Thus %a %a E k  = 0. 
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FIG. 38 

EXAMPLE. Let P be the complex illustrated in Fig. 38, a simplicia1 decomposition of the 
annulus. The triangles, each taken with multiplicity I ,  form a 2-chain U 2 ,  where the triangle 
orientations are indicated by means of circular arrows. We traverse all of the edges, in order to 
determine the boundary of U 2 .  The edge ( P I P , )  will not appear in l a U 2  because the only 
triangles bordering on it, + ( P 4 P I P s )  and + ( P 2 P , P l ) ,  induce opposite orientations, namely, the 
respective orientations + ( P I P , )  and + ( P , P , ) .  In like manner the edge (PIP4) or any other 
intermediate edge will not appear in % M U 2 .  On the other hand, the edge (P,PJ will be given the 
orientation + ( P I P 2 )  from the only bordering triangle, + ( P , P , P d .  Thus + ( P , P J  appears in the 
boundary of U 2  with multiplicity I .  l a U 2  will then consist of all of the edges of the inner and 
outer contours, where each edge is counted once and is taken with the orientation of the arrow. 
l a U 2  is in fact closed. The edges of the inner and of the outer contours, taken separately, form 
closed chains, Bil and E d .  For example, the orientation +(P2) is induced at the vertex P ,  by the 
edge + ( P , P 2 )  while the orientation - ( P 2 )  is induced at P, by the edge +(P2P,) .  

17. Homologous Chains 

Although every boundary chain on $2" is closed, not every closed chain is a 
boundary chain. As an example, the outer contour Bl  of the annulus which 
was just introduced, does not bound. Whenever a closed k-chain U k  is the 
boundary of a (k + I)-chain U k + '  on Q", then U k  is said to be bounding or 
null homologous; in symbols 

U k  -0. 

More precisely, one must say U k  -0 on P', which indicates that U k + '  lies on 
$". Correspondingly, if f is a subcomplex of P' to which U k + '  belongs, one 
says that 

uk-O on f. 

If U k  -0 on f ,  then also Uk -0 on R", but the converse is not necessarily 
true. 

More generally, two closed or nonclosed chains are homologous to one 
another if they differ by a null homologous chain, that is, if their difference is 
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null homologous: 

uk-  v k  iff uk - ~ ~ - 0 .  
A relation U k  - V k  is called a homology. 

Because null homologous chains are closed, it follows from U k  - V k  that 
%a( U k  - V k )  = 0, that is, %ha U k  = %a V k ;  thus homologous chains have the 
same boundary. If  U k  -0 and V k  -0, so that 

uk = vk = %a vk+l ,  

then from Eq. ( I )  in $16, 

uk 2 vk = %a(uk++' lr vk+I) ,  
so that U k  5 V k  - 0. The sum and the difference of null homologous chains are 

again null homologous chains. Thus the null homologous k-chains form a 
sublattice, Ylk of the lattice ak of all closed k-chains. One can therefore add 
homologies, subtract them, and multiply them by an integer. On the contrary, 
as we will see immediately in an example, it is not permitted to divide them 
by a common factor. Thus in general it does not follow that mUk -0 implies 
U k  -0. 

We have, furthermore: If U k  - V k  and V k  - W k ,  then U k  - W k .  That is, 
if U k  - V k  -0 and V k  - W k  -0, then also their sum U k  - W k  -0. One 
can then divide all of the closed k-chains into equivalence classes of 
homologous chains, the so-called homology classes. As an example, the null 
homologous k-chains form such a homology class. 
EXAMPLE 1. We shall determine the I-dimensional homology classes of the annulus (Fig. 38). 

We use the notation and results of the previous section; we had 

therefore 

so that B; and - B,' belong to the same homology class. 
Each arbitrary closed I-chain U I is homologous to a multiple of B,' . Suppose that U' contains 

an edge of the outer contour, for example. One can replace this edge by the two other sides of the 
adjacent triangle, by adding the boundary A' of this triangle, oriented suitably, to U'. Since 
A' -0, this replacement transforms U '  to a chain homologous to U1. There thus exists a chain 
'U' homologous to U ' ,  which no longer contains any edge of the outer contour. If a "diagonal" 
edge appears in ' U ' ,  for example, +(PIP, ) ,  one can likewise replace this by the edges 
+(PIP4) + (P4P,), and, if one proceeds in the same manner with all of the diagonal edges 
appearing in 'U', one obtains a chain " U' which contains neither outer nor diagonal edges, is 
closed, and is homologous to U1.  But in that case "U' can only contain edges of the inner 
contour. For if a radial edge were to appear, for example, ( P , P 3 ,  then due to the fact that " U I 
is closed the orientations induced in the vertex P, would have to cancel and since no edges of 
"U' are incident with P2 aside from (P5P2), then ( P , P 3  would have to appear with multiplicity 
zero in U'. Thus "U' lies entirely on the inner contour and, due to the fact that it is closed, must 
contain all edges of the inner contour equally often. Thus we have shown that 

" U ' = rnBi', 

where rn is an integer. 
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We have proven in this way that each closed I-chain is homologous to one of the chains 

O,+B,',?28,', ?3B:,. . .  . 
No two of these chains are homologous to one another. For suppose that 

m'B,' - m"B, ' ;  

then (m' - m")B,' = mB,' -0. I t  would follow from this that m = 0 and thus m' = m". For if the 
chain mB,' is the boundary of a 2-chain, then any triangle adjacent to the inner boundary will 
appear in the 2-chain with multiplicity m. But since no intermediate edges can appear in the 
boundary of the 2-chain, then all other triangles must appear with multiplicity m; thus the 
2-chain is equal to m u 2 .  The boundary of this is m(E: + B,'), which is equal to mB,' only if 
m = 0. This shows that there exist infinitely many homology classes and the multiples of B,' are 
their representatives. 

EXAMPLE 2. Let sf" be the projective plane q2 with the simplicia1 decomposition shown in Fig. 
39. The disk shown in Fig. 39 transforms to the projective plane, as discussed in $2, when one 
identifies diametrically opposite edges and vertices. With this stipulation the figure is nothing 
other than an abbreviated description of the schema of the simplicia1 complex which represents 
(he projective plane. Thus, for example, the two points P of the figure are one and the same point 
in the projective plane and the I-chain A '  which consists of the four oriented vertices of the 
upper semicircle, counted once, is the same as the chain formed from the four edges of the lower 
semicircle. All triangles are oriented so that for each intermediate edge of the disk opposite 
orientations are induced by the two triangles adjacent to that edge. One then obtains a 2-chain 
U 2  having % 3 U 2  = +2A' for the orientations chosen in the figure. Thus 2A' -0. The most 
general 2-chain which has a multiple of A ' as a boundary is a multiple of U 2 ,  for example, kU2. 
For an intermediate edge of the disk cannot appear in the boundary of this 2-chain; thus all 
triangles appear equally often. But the boundary of kU2 is 2kA'. This means that A ' ,  which is a 
closed I-chain of the projective plane (a projective line), is not - 0 but that 2A'-0. Thus A'  -0 
does not follow from 2A I - 0. 

An arbitrary closed I-chain U '  is either -0 or - A ' .  That is, there exist only two 
I-dimensional homology classes. If the chain U I does not already lie on the boundary of the disk 
of the figure one can, as for the case of the annulus, push it step by step to the rim, by replacing 
each intermediate edge with two edges of a suitably oriented adjacent triangle. This results in a 
I-chain ' U '  - U ' ,  lying on the periphery of the disk. This I-chain can only be a multiple of A I ,  

since it is closed in q2. Since an even multiple of A '  is null homologous, ' U '  and U '  are either 
-0 or - A ' .  
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18. Homology Groups 

In group theoretic terms the homology classes are nothing other than the 
residue classes of the lattice ak of closed k-chains relative to the sublattice !Jlk 
of null homologous k-chains. Two closed chains U k  and V k  are homologous 
if and only if their difference is null homologous, that is, the two chains 
belong to the same residue class of 9Ik in ak. Thus the k-dimensional 
homology classes themselves form an Abelian group if one defines the sum of 
two homology classes H f  and H t  to be the homology class determined by the 
sum of a chain from H f  and a chain from H: (elementwise addition). This 
group is the factor group a k / R k .  It is called the kth homology group Qk of the 
simplicial complex 9”. 

As long as we are dealing with a particular simplicial decomposition of the 
complex, it is not self-evident why we pay attention to the factor group of the 
lattices of the closed chains by the null homologous chains and not, for 
example, all k-chains by the closed k-chains. The reason is that the homology 
groups are a topologically invariant property of the complex. They are 
independent of the choice of simplicial decomposition. Their topological 
invariance is intuitively reasonable, as will be illustrated by the examples of 
the annulus, the projective plane, and the torus, It is not, however, easy to 
prove this. The proof will in fact occupy the whole of the next chapter. 

The groups X k ,  Gk, and Rk are lattices, that is, free Abelain groups having 
finitely many generators. In contrast, the homology group Qk will in general 
possess nonzero elements of finite order. On the other hand, .Qk will still have 
only finitely many generators, since it is a factor group of the finitely 
generated group ak. Thus $jk is the direct sum of finitely many cyclic groups, 
namely, p k  free cyclic groups, and a number p k  of cyclic groups of finite 
orders ct,c,k, . . . , c : k ,  where each c k  is a divisor of the preceding one (§86).* 
The integerpk and the orders c f , c t ,  . . . , c,$ are determined uniquely by the 
group Qk and are characteristic of the group. The integer p is called the kth 
Betti number and c f , c t ,  . . . , cp”” are called the k-dimensional torsion 
coefficients of the simplicial complex R”. The name “torsion coefficient” will 
be justified later by the example of the lens spaces (961). 

If one selects a generating element from each of the p k  + p k  cyclic groups 
whose direct sum is .Qk and, further, selects a representative k-chain from 
each of the generating elements, which in fact are homology classes, one 
obtains p + p closed k-chains 

Each arbitrary closed chain U k  is then homologous to a linear combination 

*The superscript k denotes dimension and is not an exponent. 
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Since c,!'A,!' - 0 one can arrange that 0 5 [,, < c,k. On the other hand, the vv 
can vary without bound. With this normalization the coefficients $, q, are 
clearly determined by Ilk. One calls such a system of p k  + p k  closed k-chains 
(1) a k-dimensional homology basis. It is important that the kth homology 
group is not only an abstract group determined by its Betti number and 
torsion coefficients, but also that i t  is realizable by a hamology basis. 

The appearance of a torsion coefficient c: indicates topologically the 
existence of a closed k-chain which becomes homologous to 0 only after a 
c,k-fold repetition. 

The Betti number pk  gives the maximum number of homologously 
independent closed k-chains. Finitely many k-chains UF, . . . , U,!' are said to 
be hornologously independent if no homology of the form 

flu; + t2u; + * .  . + t,u,"-o 
holds them, unless all the coefficients vanish. If, on the other hand, there 
exists a nontrivial homology involving them, they are said to be hornologously 
dependent. In the homology basis ( I )  each of the chains A,!' is itself 
homologously dependent, since c:A,k - 0; on the other hand, the chains 
E,k, B,k, . . . , B;k are homologously independent because 

vlB,k + v2B; + * * + vpkBpk* 

is homologous to 0 only when all of the q vanish. No more than pk 
homologously independent k-chains can exist, since by (2) an appropriate 
multiple, for example, the cF-fold multiple, of an arbitrary closed k-chain will 
be homologous to a linear combination of thepk  chains B,k,B,k, . . . , BFk. 

The 0th homology group of a connected simplicia1 complex is always the free 
cyclic group. 

One can choose an oriented 0-simplex, for example EP, as a homology 
basis. Consider all of the 0-simplexes EF, E:, . . . , E$ to be oriented with the 
+ sign. If 

U o =  ulEP + u2E,0 + * * . + u,oE,OO 

is an arbitrary 0-chain, then one can connect the vertices EP and E," by an 
edge path, since S E  is connected, and one can orient its edges so that 
successive edges induce opposite orientations at  a vertex. By doing this the 
edge path becomes a 1-chain I/' and we have 

6SldU' = + ( E P -  E,"); 

hence E,"- E: .  Thus U o  is homologous to the (uI + - . * + uao)-fold multiple 
of E P .  N o  nonzero multiple of EP is homologous to 0. For at the boundary of 
a I-simplex one vertex occurs with multiplicity + 1 and the other vertex with 
multiplicity - 1. The sum of these multiplicities is 0. This is also the case for 
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the boundary of an arbitrary 1-chain. That is, the sum of the vertex 
multiplicities is 0 for each null homologous 0-chain. Consequently, EP is a 
homology basis and the 0th homology group is the free group with one 
generator. 

The 0-dimensional homology classes can be characterized more simply by 
use of the concept of the sum of the coefficients o j a  0-chain, as follows: we 
define the sum of the coefficients of a 0-chain to be the sum of the 
multiplicities of all of the 0-simplexes of the chain when oriented with the + 
sign. For example, in the chain U o  the sum of the coefficients in 
u I  + . - . + ua0. One can then say: In a connected complex two 0-chains are 
homologous to one another if and only if the sum of the coefficients is the 
same for both chains. 

One can prove easily that the 0th homology group is the free Abelian group 
of T generators if $2" consists of T isolated subcomplexes. Thus there exist no 
0-dimensional torsion coefficients. 

For k > n the homology group Qk of 32" consists of the null element alone. 
For there exists just one kth homology class. It contains only the single 
k-chain 0. 

For k = n there exist just as many homology classes as closed n-chains. 
That is, it always follows from U" - V" that U" = V",  for there exists no 
( n  + 1)-chain other than the ( n  + 1)-chain 0. One calls a sequence of k-chains 
Up, . . . , U," linearly dependent or linearly independent respectively according 
to whether an equation 

t,up + I& + * * * + t,u; = 0 

does or does not hold, where not all coefficients are zero. One can then say: 
For k = n linear dependence is the same as homologous dependence. The nth 
Betti number p "  is therefore equal to the maximum number of linearly 
independent closed n-chains. There are no n-dimensional torsion coejf icients. 
From mU" - 0  it follows that mU" = 0 and when U" # 0, then m = 0. 

Let us mention briefly how one defines homology groups for infinite 
complexes. A chain is again an aggregate of finitely many simplexes. 
Boundary, closedness, and homology are defined as for finite complexes. The 
elements of the homology group for the dimension k are again the homology 
classes of the k-dimensional closed k-chains. On the other hand, the 
homology groups of an infinite complex will not in general have a finite 
number of generators, so that they can not be characterized by Betti numbers 
and torsion coefficients. 

19. Computation of the Homology Groups in Simple Cases 

In the annulus ($16) each 1-chain U '  is homologous to a multiple of 
the chain Bi' and no multiple of Bi' is -0. The homology group 6' is 
therefore the free cyclic group, and Bi' is a homology basis. As we have 

1. 
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already shown, 8" is the free cyclic group: Q2 consists only of the zero 
element, since there exist no closed 2-chains other than 0. The Betti numbers 
are 

p " =  I ,  p l =  1, p 2 = 0 .  

Torsion coefficients are absent in all dimensions. 
2. The projective plane ($17). There are two I-dimensional homology 

classes; @ I  is therefore the group of order 2, and the chain A ' (the projective 
line) forms a homology basis. Since there are no closed 2-chains, *'CJ2 consists 
of the zero element: 

p " =  I ,  p ' = o ,  p 2 = 0 .  

There is one I-dimensional torsion coefficient, having the value 2. 
Let a simplicia1 decomposition of the torus be given by the square 

shown in Fig. 40. Opposite sides of the square are to be identified (cf. §l) .  
The edges belonging to the decomposition can be classified as either 
boundary or inner edges. Boundary edges are those that lie on either of the 
sides a and b of the square. The inner edges can be classified as either 
vertical, diagonal or horizontal edges. To determine the homology groups we 
proceed as in the case of the annulus: 

For each closed 1-chain U 1  there exists a I-chain homologous to it, 
composed entirely of boundary edges. Each inner vertical or diagonal edge 
can be replaced by the other two sides of the adjacent triangle lying to its 
right, namely, by addition of a null homologous boundary chain of this 
triangle. Each inner horizontal edge can be replaced by the other two edges of 
the triangle lying underneath it. After finitely many such steps we arrive at  a 
homologous chain ' U  I U I which lies on the rim of the square. Since ' C J  I is 
closed, all oriented edges of the square side a must occur equally often, for 
example, a-fold, and likewise all oriented edges of side 6 must occur equally 
often, for example, &fold. 

Let us call the closed I-chain arising from all of the singly counted edges of 
the square side a (with orientation as shown in the figure) a ' ,  and let us 
correspondingly introduce the I-chain b l ,  so that we have 

3. 

1. 

U 1 - - ' U '  = (YU' + Pbl. 

FIG. 40 
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The homology classes of the closed chains a' and b' are then the generators 
of the homology group for the dimension 1. 

11. One has aa' + /3b' -0 if and only if a = /3 = 0. To prove this we 
orient the triangles of the square so that opposite orientations are induced in 
all inner edges by the two adjoining triangles. The 2-chain U 2  which consists 
of all these oriented triangles then has no boundary at all because opposite 
sides of the square are to be regarded as identical on the torus. Now assume 
that the chain aa' + /3b1 -0; then this I-chain is the boundary of a 2-chain 
which contains all triangles equally often, since the inner edges must cancel 
out. That 2-chain is therefore a multiple of U 2  and, likewise, is thus closed. 
Thus aal + /3b1 = 0, and a = /3 = 0 because the chains a' and b' have no 
common 1-simplex. This means that the homology group 6' is the free 
Abelian group having two generators, and a' and b' (the meridian and 
longitude circles of the torus) form a homology basis of .&I. 8' and Q2 are free 
cyclic groups. One then has 

pO=1, p l = 2 ,  p 2 =  I .  

There are no torsion coefficients. 

If we had decomposed the square of Fig. 40 by more than three vertical 
and horizontal edges, and the corresponding diagonal edges, we obviously 
would have obtained the same homology groups for this simplicial complex. 
One can also prove that one gets the same result for any other not-too- 
complicated simplicial decomposition of the torus. One would then suspect 
that the homology groups are independent of the chosen decomposition of 
the torus and that they are in fact determined by the torus as a neighborhood 
space. But until we have completed the proof of this (Chapter IV) we must 
allow the possibility that there exist decompositions which lead to a result 
different from that obtained with the present decomposition. 

4. The simplicial star. Let SY be a simplicial star with center point 0 and 
outer boundary a"-' and let U k  be an arbitrary closed k-chain on R" (k < 0). 
One can transform U k  to a homologous chain ' U k  in which no k-simplex of 
p- I appears. For example, if the simplex E k  = &(POP,  . . * Pk) of P-' 
appears in U k  with multiplicity u, then one subtracts the u-fold boundary of 
the simplex 

Ek+' = & ( O P O P I  . . * P k )  

from U k  and one obtains a chain homologous to U k  such that E k  no longer 
appears. In this manner one removes in sequence all simplexes of U k  which 
lie on en-' and one finally obtains a chain ' U k  - U k  whose k-simplexes are 
all incident with 0. But in that case ' U k  = 0. For if a simplex ' E k  appears in 
' U k  with multiplicity ' u ,  then the face ' E k - '  of ' E k  lying opposite to vertex 0 
will likewise appear with multiplicity ' u  in the boundary of ' U k .  This is 
because ' E k  is the only k-simplex in $2" that has ' E k - '  as a face and 0 as a 
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vertex. Thus ' u  = 0 follows from CR,a'Uk = 0. We have then shown that for 
k > 0 each closed k-chain on a simplicial star is null homologous, 

P o =  1, p l =  . . . = p "  = 0. 

There are no torsion coefficients. 
5. The n-simplex. Since an n-simplex can be regarded as a simplicial star 

whose center point is a vertex and whose outer boundary is the opposing face, 
all homology groups of an n-simplex except the 0th group are trivial. 

6. The n-sphere. We use the tetrahedral decomposition ($14). Accor- 
dingly, the n-sphere B" is the boundary of an (n + 1)-simplex, E n + ' .  From 
(9, a closed chain U k  on 6" is null homologous on V"" when k > 0; that is, 
U k  is the boundary of a chain U k + ' .  But Uk+ '  itself lies on W, except when 
k +  1 = n + I .  Thus for O <  k < n, U k N O  on B". In the case k =  n, U k + '  
must be equal to a multiple of the chain which consists of the oriented 
simplex E n + ' ,  that is, 

Uk+l = U ~ n + I ,  

because E n + '  is the only (n + ])-simplex which occurs, thus 

U k  = u?iIdE"+'.  

Since u kR a E "+ I is not - 0 on G" when u # 0, for 6" is only n-dimensional, 
we have thus shown that the homology groups of the boundary of an 
(n + 1)-simplex all consist of the null element, except for the 0th and nth 
groups, which are free cyclic groups: 

1, p 1 -  - p  2 -  - . . .  = p n - l = o ,  p " =  1, 

and torsion coefficients are absent. 
More difficult examples, with arbitrarily many torsion coefficients of 

arbitrary value, can be found among the 3-dimensional manifolds discussed 
in Chapter IX, for example, in $61 and in $62, Problem 4. 

20. Homologies with Division 

In addition to the lattices X k ,  ak, 9tk, we shall also consider the lattice %Ik, 
which consists of all k-chains for which a nonzero multiple of the chain 
belongs to illk. The chains which have this property obviously form a lattice. 
For if cUk and dVk belong to 'nk(c,d # 0), then so does cd( Uk ? V k ) .  That 
is, the sum and the difference of two chains U k  and V k  also belong to Dk. !Jlk 
is a sublattice of Bk and Dk in turn is a sublattice of ak. For the chain cUk 
belonging to illk is closed, as are all chains of Rk, and it follows that U k  is 
closed by formula (3) of $ 16. One then has the following sequence of lattices 

x k ,  ak, %Ik,  TIk 

in which each one contains the lattice following. 
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The chains of Qk are said to be division-null homologous (symbolically: 
x 0). This signifies that there exists an integer c # 0 such that c U k  - 0. One 
also calls division-null homologous chains “boundary divisors.” Two 
arbitrary chains T,k and T,k of Zk are said to be division-homologous, 

T F x  T i ,  

if their difference is x0. Such a relation is called a division homology. 
The fact that one may add, subtract, and multiply division homologies by 

integers is only another expression of the lattice property of Dk. In contrast to 
ordinary homologies one can also divide them by a nonzero factor, and hence 
their name. The relation 

b W k x O  (1)  

indicates that c (b  W k )  - 0 for some appropriate c # 0. When, however, b # 0 
this relation has the same meaning as 

W k X O .  ( 2 )  
Thus (2) follows from ( I ) .  

We now examine the decomposition of Dk into residue classes relative to 
the sublattice Bk. These residue classes are homology classes which have 
finite order, when considered as elements of the homology group 
Qk = a k / B k .  This is so because, for each chain of Bk, there will exist a 
nonzero multiple which belongs to Bk. Since, conversely, each chain having a 
multiple which is null homologous lies in Bk, then Dk consists of exactly the 
homology classes of finite o;der. Expressed in another way, the factor group 
Dk/Bk is the subgroup of the homology group which is formed by elements 
of finite order. This subgroup is called the torsion group for the dimension k. 
Its order is equal to the product of the k-dimensional torsion coefficients. 

If, on the other hand, one decomposes ak relative to the sublattice Dk, then 
there results a division of all closed chains into classes of division- 
homologous chains. The factor group is called the Betti groupI3 for 
the dimension k. Based upon the group theoretic relation (183) which states 
that 

a k / B k  is isomorphic to (@,“/‘ftk)/(Sk/Bk), 

one can also regard the Betti group as the factor group of the homology group 
ak = a k / B k  relative to the torsion group Bk/Bk.  Since Qk is the direct sum of 
the torsion group and a free Abelian group of pk-generators then the Betti 
group is itself a free Abelian group of pk-generators. Introduction of the lattice 
Bk thus allows a decomposition of the homology group into a finite part, the 
torsion group, and an infinite part, the Betti group. It is to be noted, of 
course, that the Betti group is not to be spoken of as a subgroup but as a 
factor group of the homology group. 

The homology basis now consists of a torsion basis and a Betti basis. One 
represents the torsion group as a direct sum of cyclic groups of orders 
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c ,  k k  , c 2 ,  . . , , c i k  where the c," denote the k-dimensional torsion coefficient; 

one selects a generating element (that is, a particular homology class) from 
each of these cyclic groups and chooses a representative chain from each of 
these classes. These p k  chains form a torsion basis. 

Correspondingly, if one represents the Betti group as a direct sum of p k  
free cyclic groups, selects a generating element from each of these groups (this 
is a class of chains division-homologous to one another), and chooses a 
representative chain from each of these classes, these p k  chains form a Betfi 
basis. Each arbitrary closed chain is then division-homologous to a linear 
combination of the p k  basis chains. In the homology basis 

of Section 18 the A form a torsion basis, and the B k  form a Betti basis. The 
transformation from one Betti basis 

to another, 

'BF,'B,k, . . . , ' B $  

is accomplished by means of an integer-valued unimodular transformation 

P k  
'B,!'x b,,B,k ( p =  1,2 , . . . ,  p k ) .  

,= 1 

In the case of the torus ($19, Example 3) the torsion basis is empty so the 
torsion group consists of the null element; the chains a' (= B : )  and b' 
(= B i )  form a Betti basis; these chains are the meridian circle and the 
longitude circle. In the case of the projective plane ( Q  19, Example 2) the Betti 
basis is empty, so the Betti group consists of the null element; the chain A I ,  

the projective line, forms a torsion basis. 
We now collect together and summarize the various groups and lattices 

encountered so far: 

Sk 
6Yk 
bk 
xk 
@k = (p/p 
bk / !Itk 

the lattice of all k-chains, 
the lattice of closed k-chains, 
the lattice of division-null homologous k-chains, 
the lattice of null homologous k-chains, 
the homology group, 
the torsion group, 

or @k/ (%k/ iJ lk )  the Betti group. 

21. Computation of Homology Groups from the Incidence Matrices 

We have previously defined the homology groups of an arbitrary simplicia1 
complex. We now derive a general procedure allowing their computation, at 
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least for a finite complex. Toward this goal we assume that all simplexes are 
given with fixed orientations (the 0-simplex with the + sign) and are denoted 
by 

E," ( K =  1,2, .  . . , a k , k = O , l , .  . . , n ) .  

For 0 5 k 5 n - 1 one has the boundary relations 

a k  

%aEl+'  = C E,"~E," (A = 1,2, . . . , a"+'). (1)  
K =  1 

The matrix 

(&,"A) = Ek ( k  = O,1, . . . , n - 1) 

can be regarded as a table of rows and columns. The left entries are the 
oriented simplexes of dimension k ,  while the upper entries are the oriented 
simplexes of dimension k + 1. The intersection of the Kth row and hth column 
is the coefficient E,"X with which the oriented simplex E," appears in the 
boundary chain of the simplex E l + ' .  The coefficient &,kh is + 1, - 1, or 0, 
respectively, depending upon whether the oriented simplex E," has the 
orientation induced by E l + ' ,  the opposite orientation, or is not at all incident 
with E l + ' .  The matrix Ek is called the incidence matrix, for the dimension k ,  
of the simplicial decomposition of the ~ornplex . '~  

The incidence matrices Eo and E' of a simplicial complex consisting of a 
single 2-simplex E2, assigned the orientations of Fig. 41, are 

+ I  0 + I  

FIG. 41 

The simplicial complex is completely determined by the incidence matrices. 
For by means of them all of the ( k  - 1)-dimensional faces of a simplex E," 
are determined, from each face the ( k  - 2)-dimensional faces are determined, 
and so forth until the vertices of E," are finally determined. Thus the schema 
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of the complex is given and, thereby, the complex itself. It must then be 
possible to read all of the properties of a simplicia1 complex from the 
incidence matrices. This is true in particular for the homology groups, which 
we shall now obtain from the incidence matrices. 

If k > 0 in Eq. ( I ) ,  then taking the boundary of both sides yields 
a k  a k - l  

%a%aE;-I= C &,kx%aE:= C C & : - I E ; - ~  
K - 1  K - 1  i - 1  

since the boundary of a closed chain is zero. The individual coefficients are 
all zero because the E," - are linearly independent: 

a* 

I ( =  1 
C e,b-'~,kh= O ( i  = 1,2, . . . , a k - l ,  A = 1,2, . . . , ak+ l ) ,  

a system of equations which we can replace, using the algebra of matrices, by 
the single matrix equation 

(2) Ek-IEk - - 0  ( k = 1 , 2  , . . . ,  n - I ) .  

These equations are the arithmetic expression of the fact that each boundary 
chain is closed, for they merely say that the boundary of the boundary of 
each ( k  + I)-simplex vanishes. 

The oriented simplexes 

E,k,E,k, ,  . . , E$ 

form a basis for the lattice of all k-chains X k .  In each dimension 
k = 0,1, . . . , n we now introduce a new basis 

u:, u;, . . . , u:.k 
to replace it. In place of the boundary relations (1) there will hold the 
boundary relations 

to give the new matrices ' E k .  Since, as before, the boundary of a chain 
boundary vanishes, equations 

JEk- I IEk = 0 

hold. We now attempt to find a new basis for each of the lattices X k  
(k = 0, 1, . . . , n )  so that the new matrices take the simplest possible form, the 
normal form Hk. We carry out the transformation from the original bases of 
the Ek to the final bases stepwise. Each step consists of changing only one 
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basis chain for a particular dimension. The change is made by means of one 
of the following elementary transformations: 

(a) replacement of E,' by U,' = E: + E,! (7 # v); 
(b) replacement of E,' by U,' = - E,'. 

After a transformation (a) all chains U,,! coincide with the old E,,!, except for 
U:. Only the incidence matrices El-' and E' are thereby changed. In El-' the 
change is restricted to the 7th column. To find this we form 

a ' - l  a,- l  

a =  I a =  I 
GjlaU,' = Gjla(E: + E L )  = (&iT-' + ~ 6 , - ' ) U i - l =  '.$-'Ui-' 

giving, 
r ' - 1  = 
EOT &LT- I + &;"- I .  

Thus, to obtain 'El-' one must add the vth column of E'-' to the 7th column. 
In the left entry of the matrix E' one replaces E,' by U,' = E,' + E:. Upon 
forming 

aau;+l = q.aEi(+l = . . . + E ; A ~ :  + . . . + E , ! A ~ ;  + . . . 

p =  I 

one recognizes that 
! I -  - .+ for p f  U, 

1 1 -  I I 
%A - %A - %A * 

That is, 'E' is obtained from E' by subtracting the 7th row from the vth row. 
An elementary transformation (b) changes the sign of the 7th column of 

El-' and the 7th row of E'. 
Just as we used an elementary transformation to transform the basis 

consisting of the oriented simplexes E to a basis consisting of the U ,  we can 
apply an elementary transformation to the basis consisting of chains U and 
transform it to a basis consisting of chains V .  The matrices ' E k  will be 
subjected to the same kind of operations as those just performed on the 
matrices E". In particular, one can perform a row addition in E' by using the 
transformations (a) and (b). One changes the sign of the 7th row of E', applies 
the transformation (a), and then once again reproduces the original sign of 
the 7th row. 

The elementary transformations (a) and (b) of chains can be used to effect 
elementary matrix operations, that is, row and column addition, and 
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multiplication of a row or column by - l.* One can bring an integer-valued 
matrix to the normal form of $87, by using such transformations. In this 
normal form, the invariant factors are in the main diagonal beginning from 
the upper left, and their number is equal to the rank of the matrix; all other 
elements are 0. 

We begin the normalization process for the incidence matrices by bringing 
the matrix Eo into the normal form.** Using appropriate elementary 
transformations we rearrange the invariant factors: they will no longer stand 
in the main diagonal, upper left (Fig. 42). Instead they will cut off the upper 
right-hand corner of the matrix Eo (Fig. 43). Their number is equal to the 
rank y o  of EO. While doing this, row rearrangements are simultaneously 
carried out on E', since each left entry of El must agree with the 
corresponding upper entry of Eo. As before, EOE' = 0, so the last yo rows of 
the rearranged matrix El must consist only of zeros. The upper a' - yo  rows 
of the matrix E' must be given further manipulation. Their rearrangements 
correspond to column rearrangements of Eo, which now may be permitted to 
occur only in the first a' - yo  columns, since the latter consist only of zeros 
and the values of the E: will be unchanged. Eo will then have assumed its final 
form, which we call Ho. By performing column rearrangements of El, which 
have no effect on the matrix Ho, EL is brought into the normal form HI in 
which the invariant factors have positions corresponding to those in Ho. The 
remaining matrices up to and including En-' are rearranged stepwise in like 
manner. 

The incidence matrix Ek has now been transformed to its normal form H k .  
I t  contains only zeros, except on a segment cutting off the upper right-hand 

I-Chains 

I 
b-af- 

FIG. 42 FIG. 43 

*The elementary operations (a) and (b) are, by the way, special cases of integer-valued 
unimodular transformations which transform the E' basis to a new U' basis. It is generally true 
that, when o is held fixed, the rows of variables q!T-l transform cogrediently in the index T to the 
E,'; when A is held fixed, the rows of variables E,'~ transform contragrediently, because of formula 
(1). Since we make no general use of integer-valued unimodular transformations of chains, we 
can restrict ourselves here to the operations (a) and (b). We refer to Section 71 for the general 
case. The fact that each integer-valued unimodular transformation can be realized by a sequence 
of transformations (a) and (b) will not be used, and we therefore omit its proof. 

**The fact that matrices Eo, El, . . . , E" are incidence matrices of a simplicia1 complex plays 
no role in the normalization process. We make use only of the relation Ek- IEk  = 0. 
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FIG. 44 

corner (Fig. 44). Along this segment there are first p k  integers different than 
one: cf,c;, . . . , c : k ,  each of which is a divisor of the integer preceding and 
which we recognize to be the k-dimensional torsion coefficients; these are 
followed by y - p ones. 

Having normalized the incidence matrices, our goal is now easily reached. 
The lattices X k ,  ak, 9tk of all k-chains, closed k-chains and null homologous 
k-chains, respectively, are determined as follows. 

Among the k-chains in the upper entries of H k - '  (k = 1,2, . . . , n) the last 
y k -  I chains have nonzero boundary, since the invariant factors cF-' ,  
czk-', . . . , c,!kII' stand in the last y k - '  columns of H k - ' .  Let us call these 
chains 

cf,c;, . , c,!k-L. 
Let us call the first yk-chains in the left entry of Hk 

. . . , A p .  k 

They are division-null homologous (x 0). For the invariant factors 
cf,c;, . . . , c,!k are in the last y k  columns of Hk,  so one has the boundary 
relations 

Ad C;" = c;A; (A = 1,2, . . . , y k ,  k = 0, 1, . . . , n - 1). (3) 
The chains C k  and A will not appear for every value of k from 0 through n. 
For example, the Co are missing for k = 0 since every 0-chain is closed, and 
the A are missing for k = n since no (n + 1)-simplexes exist and thus there 
exist no division-null homologous n-chains other than the n-chain 0. I t  is 
clear that a chain A k  cannot be a Ck-chain since the A k ,  as division-null 
homologous chains, are closed while the Ck are not. On the other hand, the 
a k  basis chains will not in general be exhausted by the chains A k  and C k .  
Call the remaining chains 

B,k, B; ,  . . . , Bp"*. 

They, like the A k ,  are closed, but are not division-null homologous and they 
number 

(4) p k  = a k  - ,,k - .,k-' 
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for 0 < k < n.  For k = O,po = ao - yo, and for k = n,pn = a" - y " - ' .  If one 
specifies as a convention that y - l  = y n  = 0, then formula (4) is valid for all k 
from 0 through n.  

Because the upper entries of H k - l  represent a basis of the lattice X k  of all 
k-chains (k = 1,2, . . . , n),  each k-chain can be written in the form 

y k - l  
Y k  P k  

V k  = c xfA:+ 2 y,kB,"+ c z,"C,". 
A =  I p= I Y =  I 

Since the chains A f  and B: are closed V k  is closed only if 
, , k - l  

u =  I u =  I 

which is the case only when all z," are equal to 0, since the chains A:-'  are 
linearly independent. Also, in the case k = 0, there is no chain C,", and each 
closed chain is a linear combination of the chains A: and B:. 

Thus, for k = 0,1, . . . , n,  the lattice CYk of closed k-chains will be spanned 
by the yk-chains A: and thepk  chains B,". 

We now look at the sublattice 'nk of null homologous k-chains. In order for 
a closed k-chain 

Y k  PA 

V k  = C ~ f A f +  C y,kB,k 
A =  1 p= I 

(k = O ,  1 , .  . . , n - 1) ( 5 )  

to be null homologous it  must be the boundary of a (k + 1)-chain, and since 
the ( k  + I)-chains A:" and B;+l  are closed, i t  must be the boundary of a 
linear combination of the chains Cf+' .  I t  must therefore be of the form 

Y k  

A =  I A =  I 

Because of the linear independence of the chains A: and B,", the right-hand 
sides of Eqs. ( 5 )  and (6) must coincide coefficient for coefficient; thus we 
must have 

Accordingly, the k-chain ( 5 )  is homologous to 0 if and only if the 
coefficients satisfy the conditions 

x: = 0 (mod cf), y," = 0. (7) 

These equations also hold for k = n because the chain A "  is lacking and the 
only null homologous n-chain is the n-chain 0. Thus two closed k-chains V k  
and ' V k  belong to the same homology class ( k  = 0, I ,  . . . , n )  if  and only if  

xh" E'X: (mod c ; )  and y," = 'y,". (8) 



When one reduces the coefficients x t  appearing in ( 5 )  modulo c t  to the 
interval 

osg < c; ,  

one obtains a homologous chain 

(9) 

In this chain all A; are missing for which c: = I ,  because of the 
normalization condition (9), so that the first sum only runs from 1 through 
p k ;  here p k  denotes the number of invariant factors of the matrix Ek which 
are different than unity. The coefficients (; and q: are unambiguously 
determined by V k .  because of (8). 

In  other words: The cyclic subgroups of the homology group Qk which are 
generated by the homology classes of the chains A / , A t ,  . . . , A:k have orders 
c l  , c 2 ,  . . . , c : ~ ?  from ( 7 )  and (8); those generated by the homology 
classes of the chains B f ,  B,k, . . . , B;k are free Abelian groups. Due to (10) 
each element of the homology group can be unambiguously represented as a 
sum of elements of these subgroups, one element occurring in the sum for 
each subgroup. <Qk is thereby the direct sum of these subgroups; A f . A , " .  
. . . , ;:t together with B,k, B,k, . . . , B,$ form a homology basis; the chains 

B f , B , ,  . . . , B:k form a Betti basis for the dimension k. The integer 
,,k = a k  - y k  - y k - l  is the Betti number and cf ,c ,k , .  . . , c,kk are the 
k-dimensional torsion coefficients. The homology groups have therefore been 
determined and we have proved the following theorem: 

THEOREM. I f  a k  is the number of k-simplexes in the simpliciul complex At", 
and i f  y k  is the rank of the incidence matrix Ek,  then the Betti number for the 
dimension k is 

k k  

p k  = a k  - , ,k  - y k - l  

(?-I = y"  = 0), and the torsion coefficients for the dimension k ure those 
invariant factors of Ek which differ from 1 ;  they are missing for k = n .  

We sometimes call the Betti numbers and torsion coefficients the numerical 
invariants of the complex, to distinguish them from other invariant math- 
ematical objects associated with the complex, such as, for example, the 
fundamental group, which will be derived later. 

22. Block Chains 

While the determination of the homology groups from the incidence 
matrices is always possible in principle, the actual computation may be quite 
involved. For example, if one starts from the simplicia1 decomposition of the 
torus given in Fig. 40 one has a' = 9, a' = 27, a2 = 18; one must perform 
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computations with matrices having 27 rows, which are tedious even to write 
down, let alone to transform into normal form. 

A simpler procedure for computation of the numerical invariants and 
homology groups is clearly desirable. We can find such a procedure. We 
choose as terms of the k-chains not individual simplexes, as was done 
previously, but whole chains, so-called blocks. Just as we assembled 
individual simplexes together to form k-chains, we build block chains from 
finitely many blocks and use these block chains as a foundation for the 
construction of the homology groups. 

For each dimension k = 0, 1 ,  . . . , n we select a finite set of simplicial 
chains 

Q:,Q,", . . . , Q,"X 
which we call k-blocks and which satisfy the following conditions: 

(B11) Q f ,  Q,", . . . , Q,"* are linearly independent; that is, 

f , Q :  + t2Q; + . * . + lztQ:k = O 

implies 1 ,  = 1, = . * . = t , k  = 0. 

This condition will always be satisfied, for example, when no two blocks 
Q: and Q/" have a k-simplex in common. 

A linear combination of blocks is called a block chain. Because the blocks 
are linearly independent, two block chains CfpQ: and C'tpQ," will be equal 
if and only if I ,  = ' f i  , 1, = ' f  . . . , f z h  = ' t ck .  Since the block chains are 
simplicial chains, each block chain will have a well-defined boundary and 
there will exist closed and null homologous block chains. 

We require further of the blocks: 

(B12) The boundary of a (k + I)-dimensional block chain is a k-dimen- 

Obviously i t  suffices to require that the boundary of each (k + I)-block be 

sional block chain. 

a k-block chain: 

K =  1 

(B13) 

(B14) 

For each closed simplicial k-chain there exists a homologous block 
chain. 

If a k-block chain is null homologous, that is, the boundary of a 
simplicial (k + I)-chain, it is also the boundary of a (k + 1)-dimensional 
block chain. 

The conditions (B1 1) through (B14) are consistent, because the oriented 
simplexes of Qn form a particular block system for which the four conditions 
are obviously satisfied. 
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For the computation of the homology groups it now suffices to use the 
coarse structured block chains instead of the fine structured simplicial chains. 
The computational procedure is exactly the same as the procedure used 
earlier, only one begins not with incidence matrices of the simplicial complex, 
but with block incidence matrices 

which are given by the boundary relations ( I ) .  Nevertheless, we will repeat 
the derivation in order to indicate at which points conditions (B11) through 
(B14) are used. 

If one takes the boundary on both sides of (I), for k > 0, the (k - I)-chain 
0 must result since the boundary of a boundary vanishes. Thus 

which, due to the linear independence of the Qk-I, is equivalent to 

ak 

K = l  
c Z Y k  E,.- - o or Ek- 'Ek  = 0. 

By carrying out unimodular transformations upon the blocks Q which 
correspond to the entries of the matrices, we bring the matrices E k  
simultaneously to the normal form iik, as was done in $21. 

The block chains which correspond to the entries of the matrices Hk are 
always linearly independent; for each dimension they decompose to three 
types: 

1. The chains x: (A = 1,2, . . . , u k ) ;  they are division-null homologous. 
2. The chains B, ( p = 1,2, . . . , p k ) ;  these chains are also closed, but no 

nonzero multiple is a boundary of a (k + 1)-block chain. 
3. The chains c: ( v  = 1,2, . . . , yk-'); these chains are not closed and we 

have 
qacpk = F v k - l x k - l  

Y .  

Here uk  is the rank of Ek,  ?: are the invariant factors of Ek, and 
p - a y y (with 7-I = 0 and 7" = 0). It now follows, as earlier: 
The most general closed k-block chain is a linear combination of the 2; and 
the B,. The null homologous k-block chains, which due to (B14) are also 
boundaries of (k + 1)-clock chains, are the chains and the linear 
combinations which result from them. Each closed block chain, and hence 
[from (B13)] each closed simplicial chain, is thereby homologous to one and 
only one linear combination 

- k  - - k  - - k  - - k -  I 
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where 0 5 (,, < F: and the range of the qp is not restricted. Consequently, 
those xk for which the associated invariant factor is # 1, together with the 
B k  form a homology basis. The Bk alone form a Betti basis for the dimension 
k .  The Betti number is therefore 

- 

k - - k  - - k  - - k  - - k - l  P - P  - - ( y  Y Y 

and the torsion coefficients are those invariant factors c," = 5," of Ek which 
are not equal to 1. 

EXAMPLE 1. One can use the following chains as a block system on the torus ($19): the vertex 
0, the I-chains u' and b' (meridian and latitude circles), and the 2-chain U2 which is formed by 
the coherently oriented 2-simplexes. (BI1) is satisfied because the k-blocks have no common 
k-simplex. (B12) is satisfied because they are closed chains. (B13) is satisfied for k = 0 because any 
pair of 0-simplexes of a connected complex is homologous; it is satisfied for k = 1 because we 
have shown that each closed I-chain - aa' + Bb'; i t  is satisfied for k = 2 because all closed 
2-chains are multiples of the block chain lJ2 consisting of all 2-simplexes. Finally, (814) is 
satisfied, since for k = 0 the only null homologous 0-block chain is the block chain 0; for k = 1 
we proved under (11) of $19 that the only null homologous I-chain composed of the blocks a' 
and b' is the I-chain 0; there are no null homologous 2-chains. The block matrices then read 

From these matrices one can verify that the homology groups are as computed earlier. 

EXAMPLE 2. A block system for the octahedral decomposition of the 2-sphere ($14) is formed 
by two diametrically opposite vertices of the equatorial circle, the two semicircles joining them 
(each consisting of two I-simplexes) on the equatorial circle, and the two hemispherical surfaces 
into which the sphere is bisected by the equatorial circle. 

From this block system one can obtain a block system for the projective plane as follows. After 
making a normal subdivision, one identifies diametrically opposite blocks of the 2-sphere to form 
a single block of the projective plane. The resulting block system has exactly one block for each 
dimension. This procedure can be extended to the case of arbitrary dimension, and one can 
thereby compute the block incidence matrices and hence the homology groups of projective 
n-space !Q". We will not perform this calculation, because it is somewhat complicated to prove 
that we are in fact dealing with a block system. We shall later find a simpler way to obtain these 
homology groups ($31). 

The concept of the block chain will be a significant tool in the theory of 
manifolds, for example in $41, 961, and $67. 

23. Chains mod 2, Connectivity Numbers, Euler's Formula 

The concepts of chain and boundary and the related developments of the 
previous sections depend in an essential way upon the concept of the 
orientation of a simplex. One can construct an analogous theory of chains 
which disregards all orientations. Just as the homology groups and Betti 
numbers were obtained by means of chains of oriented simplexes, the 
connection groups and connectivity numbers will be obtained by means of 
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chains of nonoriented simplexes, also referred to as chains mod 2. It will later 
prove to be the case that the theories and methods valid for oriented chains 
carry over immediately to chains mod 2. Admittedly, connection groups are 
of limited importance, in the sense that they can be derived from homology 
groups. Occasionally, however, because they possess a greater generality, they 
allow general statements to be made in cases where the homology groups fail. 
For example, they will be used later to extend theorems such as the duality 
theorem, which holds only in orientable manifolds for ordinary chains, to 
nonorientable  manifold^.'^ 

In the treatment which follows we shall disregard the orientation of the 
simplexes or, what amounts to the same thing, we shall identify each oriented 
simplex with itself, oppositely oriented. In this case the double of a chain Uk,  
U k  + U k ,  is the same as the chain U k  - U k  = 0. It necessarily follows that 
two chains 

and 

U k  = u,E:  + u2E,k + . . ‘ + U,&,“X 

‘ U k  = ’ u , E ~  + ‘ U 2 E , k  + * ‘ * + ‘U ,kE:k  

are regarded as being the same if their corresponding coefficients differ by 
even integers, that is, u, = ’u, (mod 2) for v = 1,2, . . . , ak .  One also calls the 
chains congruent mod 2. One can associate to each class of mod 2 congruent 
chains Uk, ’ U k  a unique k-dimensional subcomplex. A nonoriented simplex 
Ok will belong to this subcomplex if and only if the associated oriented 
simplex E k  occurs in Uk, and hence also in ‘ U k ,  with odd multiplicity.* This 
subcomplex is called the subcomplex belonging to U k  (and likewise to ’ U k ) .  
(It does not necessarily consist of all of the simplexes appearing in U k ! )  A 
“chain mod 2” is now nothing other than a k-dimensional pure subcomplex. 
The reason that we choose the terminology “chain mod 2” and not 
“subcomplex” is because later, when we study singular chains mod 2, the 
term subcomplex will be inappropriate. Nevertheless, we shall denote chains 
mod 2, like complexes, with German letters. 

We now define the sum and the bcundary of chains mod 2. For this, we 
begin with ordinary chains. 

If 
W k  = uk + V k ,  

and Bk, Uk, and 23‘ denote the associated chains mod 2, then we define as 
the sum Uk + Bk the chain mod 2 

Bk = Uk + Bk. 
According to this definition, Uk + Bk consists of all simplexes which appear in 
U k  + V k  with odd multiplicity and therefore appear with odd multiplicity in 

Here, in contrast to 8 12, it is necessary to consider the “empty subcomplex” to be among the 
subcomplexes. 
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exactly one of the chains U h  or V k ,  that is, of all nonoriented simplexes which 
uppear in ~ . Y N C I ! V  otze of the chains mod 2, Ilk or 8". On the contrary, if a 
simplex E' belongs to lIh as well as V+'? then i t  no longer appears in the sum. 

We saw earlier that each chain can be represented by a vector, the 
components of which are the multiplicities of the simplexes appearing in the 
chain. In this way, chain addition was reduced to vector addition. Vector 
representation is also possible for the chains mod 2. In the latter case the 
components of the vectors are not integers, but are residue classes mod 2. We 
shall indicate the residue classes of the even and of the odd integers by the 
symbols 0 and i respectively. We then have the rules of computation 

0 + 0 = 0 .  c i + i = i ,  i + i = o ,  
" "  " 0 . 0 = 0 ,  i j . i = o  1 . 1 = 1 .  

The computation rule i + i = 0 states, for example, that the sum of two odd 
numbers is an even number. A chain mod 2, Uk, can then be written as a 
vector 

11" = ( f i l  , 62, . . . , f i m k ) ,  

where ir = i or 0, according to whether the simplex CF" does or does not 
appear, respectively, in 11'. The sum of l Ik and 

\Hk = (61,6~, . . . , G m k )  

is given by 

+ 2jk = ( f i l  + 6 i , f i 2  + 62, . . . , f i u k  + cat). 

In particular, the simplexes @.f,&:, . . . , @ t k  correspond to the unit vectors 

@ . f = ( i , o , .  . . , 0 ) ,  cF:=(o , i ,  . .  . , 0 ) ,  . . . ,  @ : k = ( o , ( j , . .  . ,  i), 

so that one can also write for lIk, 

We will adopt the convention that one can simply write Q" instead of iQ" and 
one can simply omit Ogk. I f  all ir = 0 we write U" = 0. 

We have already agreed that the boundary of an oriented simplex E' is the 
sum of its ( k  - I)-dimensional faces, furnished with the induced orientations. 
Since we dispense with all orientations in the theory of chains mod 2, we will 
have to regard % d Q k  as the chain mod 2 formed from all of the nonoriented 
faces of Q k :  

here ;,:-I = i or 0 according to whether @;"-' is or is not incident, 
respectively, with (3:. The boundary of an arbitrary chain mod 2. ( l ) ,  is then 
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defined as the sum of the boundaries of the individual simplexes, 

.k 

I (=  I 
%auk = 2 ii,%ao:. 

Consequently, a ( k  - 1)-simplex Of-' will belong to AaUk if and onh if it is 
incident to an odd number of simplexes of U k .  For 0-dimensional chains mod 2 
the boundary is the number 0. 

One can now carry over the concepts defined for ordinary chains to chains 
mod 2. 

A chain mod 2 is said to be closed if its boundary vanishes; 

%auk = 0. 
As an example, in the projective plane (Fig. 39) the totality of triangles is a 
closed chain mod 2 because exactly two triangles are incident on each edge. 
On the other hand, as we know, there are no closed 2-chains on the projective 
plane. As another example, each pure unbounded subcomplex in the sense of 
812 is a closed chain mod 2. 

All 0-dimensional chains mod 2 are closed. 
A chain mod 2, U k ,  is said to be null homologous if it is the boundary of a 

( k  + 1)-chain mod 2. More generally, two (not necessarily closed) chains mod 
2 are said to be homologous to one another if their difference is null 
homologous. 

Every null homologous chain mod 2 is closed, since the boundary of an 
individual ( k  + 1)-simplex is a closed chain mod 2. 

One may now divide the closed chains mod 2 into homology classes. These 
homology classes form a group, Qk when addition of two homology classes is 
defined by means of addition of two representatives. Qk is obviously the 
analog of the homology group Qk and is called the kth connectivity group of 
the simplicia1 complex R". For a finite complex R", 6k is a finite Froup, 
because there are only finitely many distinct chains mod 2, namely, 2" ; thus 
there are only finitely many homology classes. Since Uk + Uk = 0 always, 
each element of 6k is of order 2. $k is therefore the direct sum of finitely 
many, say q k ,  groups of order 2. The integer q k  is called the kth connectivity 
number of of W.** 

A series of chains mod 2 

u;,u;, . . . , uy 

i,u; + i,u; + * - * + i,uy = 0 

(3) 

(4) 

is said to be linearly independent if a linear equation 

implies all i = 6. If the chains mod 2 in (3) are also closed, then they are said 

*The k is a superscript, not an exponent. 
**The name will first be explained in the theorem of 941. 
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to be homologously independent if a homology 

implies all i= 0. Otherwise, one speaks of linearly or homologously 
dependent chains mod 2, respectively. As an example, r different k-simplexes 
are linearly independent. 

One can obtain a system of homologously independent k-chains mod 2 by 
selecting the nonzero group element (that is, a homology class mod 2) from 
each of the q k  groups of order 2 whose direct sum is ,$k and then selecting a 
representative for each homology class. The selected chains are obviously 
homologously independent. Such a system of q k  chains mod 2 is called a 
k-dimensional connectivity basis. No more than q homologously independent 
chains mod 2 can exist. For if Ut,U:, . . . , U: are homologously independ- 
ent, then among all of the possible linear combinations + 
irU:, no two combinations can be homologous to one another. Thus there 
exist at least 2' different homology classes. As there can only exist 2'7' 
homology classes in all, since q k  is the order of 6k, it follows that r 5 q k .  The 
k-th connectivity number is therefore the maximum number of homologously 
independent k-chains mod 2 ,  and consequently represents the analog of the 
Betti number. 

We previously computed the Betti number p k  from the incidence matrices. 
We can now derive the connectivity number q k  from the incidence matrices 
mod 2 ,  which arise from the boundary relations (2): 

+ izUg + . . 

E k - I  = ( $ I )  ( i  = 1,2,. . . , a k - l  , K =  1,2,. . . , a k , k =  1,2,. . . , n ) .  

The procedure is almost word for word the same as before. Chains mod 2 
replace the chains used previously and the elements of the incidence matrices 
are no longer integers but are the residue classes 0 and i .  The matrix equation 
Ek-'Ek = 0, upon which the normalization procedure essentially rests, is 
replaced by the equation 

E h - 1 0 k  = O ,  

Here 0 is an abbreviation for a matrix of a k - l  rows and a k + '  columns 
having all elements 0. The second of the elementary transformations (a) and 
(b) of $21 is no longer needed, because replacement of a chain mod 2 by its 
negative is the same as the identity transformation, since i = - i .  In the 
normal form Hk of the incidence matrix mod 2 Ek all elements are now equal 
to 0 except for elements of a diagonal segment which cuts off the upper 
right-hand corner of H k ;  these elements are equal to i. Let their number be 
a k .  

The chains mod 2 corresponding to the rows and columns of the matrices 
E 0 , E I .  . . . , E n -  I are, for each k, the a k  k-simplexes of R". These are linearly 
independent and each k-chain mod 2 is a linear combination of them. This 
property is obviously preserved under elementary transformations and will 



also hold for the chains mod 2 which stand in the entries of the normalized 
matrices Ho,H', . . . , I+-' . For each dimension they decompose into three 
types, Yl;,B;, and 6). The 0: (v = I ,  2, . . . , a k -  I )  are the last a k  chains in 
the upper entry of H k - l .  They are not closed, for an element i appears in 
each column. The 91; (A = 1,2, . . . , s k )  are the first a k  chains in the left entry 
of H k .  They are null homologous since one has 

%ao;+I=sf; ( A =  1,2.. . . , a k ) .  ( 6 )  

The remaining chains mod 2 are called '8; ( p = I ,  2, . . . , akSkSk-' ). They 
are closed but are not null homologous.* 

The most general closed k-chain mod 2 is a linear combination of the 91; 
and the 'Pi. Since the ill; are -0, it is then homologous to a linear 
combination 

a k  - 6 k  - 6 k - 1  

c ip;. (7) 
p= I 

On the other hand, no such linear combination is -0, since only the 9: 
appear in the boundary relations (6) .  Consequently the 6; represent a 
k-dimensional connectivity basis, and the kth connectivity number is 

(8) k - a k  - 6 k  - g k - 1  
4 -  

where we set 6 - I  = 6" = 0; a k  is the rank of H k ,  that is, the number of rows 
in the subdeterminant having the largest number of rows which is not equal 
to 6, that is, = 1. This rank does not change under row and column additions. 
Thus a k  is also the rank of the original incidence matrix mod 2, Ek.  

There is a relation between the Betti number p k  and the connectivity 
number q k ,  which we shall now derive. Assume that the incidence matrix Ek 
has gk even invariant factors, that is, y k  - g k  odd invariant factors (including 
those which have value 1). The diagonal form Hk of Ek will contain a 
( y k  - gk)-rowed subdeterminant of odd value, namely, the product of the 
y k  - g k  odd invariant factors, whereas all ( y k  - g k  + I)-rowed subde- 
terminants are even. The same is true for E k ,  because the divisors of the 
determinant are invariant with respect to elementary transformations (Section 
87). If one goes from Ek to the incidence matrix mod 2, Ek,  by replacing each 
even element with 0 and each odd element with i ,  it follows that Ek has a 
( y k  - gk)-rowed subdeterminant of value i,  while all ( y k  - gk + 1)-rowed 
subdeterminants are equal to 6. Consequently the rank 6 k  of Ek is 

k k  s k = y  - g .  

*The chains mod 2 a!, B:, and 6; are not in general the chains mod 2 associated with the 
chains A:, B,", and C: introduced in $21. For example, if a chain C,! lies above an even torsion 
coefficient in the normalized incidence matrix H k - ' ,  then the associated chain mod 2 is closed 
and does not appear among the chains mod 2 6;. 
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When we set this value into (8) it  follows that 

From $21, the expression in parentheses on the right is the Betti number p k ,  
giving 

where we set 

qk = p k  + gk + gk-1, 

g- I = g" = 0. 

(9 )  

The kth connectivity group is therefore determined by the homology groups of 
dimension k and (k - l).These homology groups determine the Betti number 
p and the k-dimensional and ( k  - I)-dimensional torsion coefficients and 
thus determine g k  and g k - ' ,  which, in turn, determine the connectivity 
number q and consequently the connectivity group. 

The connectivity number q k  is never smaller than the Betti number p k .  
Block chains can also be defined for the chains mod 2 and they can be 

used for the computation of the connectivity groups. The conditions required 
to specify them correspond to the conditions (BII) through (B14). We leave 
the details as an exercise for the reader. 

Among the complexes whose homology groups we have computed, only the 
projective plane ($19) possesses a torsion coefficient and, in fact, an even one. 
Here g' = I ,  so that q1 = p l  + g'  = I ,  q2 = p 2  + g' = I ,  in agreement with the 
fact that there exists a chain mod 2 not homologous to zero of dimension 1 (a 
projective line), and one of dimension 2, formed by all of the triangles of the 
simplicia1 decomposition. In all of the other examples, the connectivity 
numbers coincide with the Betti numbers, due to the absence of torsion 
coefficients. 

The Euler Characteristic 

formulas (9), and uses g - '  = g" = 0 one obtains 
When one forms the alternating sums of connectivity numbers given in the 

n n c ( -  qkqk= c ( -  l ) k p k  
k = O  k = O  

Then because of the formulas 

(42 I ) ,  

Y k  - y k - l  ( W ) ,  

p k  = a k  - ,,k - y k - l  

and 
p k  = ck - 

the right-hand side becomes 
n n c ( -  ( -  I)W, 

k = O  k = O  
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in which a k  is the number of k-simplexes of a simplicial decomposition and 
E k  is the number of k-blocks of a block system. One then has the relation 

n n n n 

- N = 2 ( -  I)kpk= C (- I)&qk= C ( -  l )kak= C ( -  l)kEk. (10) 
k = O  k - 0  k - 0  k=O 

The number N is called the Euler characteristic of the simplicial complex P. 
If we assume the result, first proved in the next chapter, that N is a 

topological invariant of 9" and is independent of the particular simplicial 
decomposition, then formula (10) describes the Euler polyhedral formula, 
extended to complexes of arbitrary dimension. We shall check the formula for 
the case of the tetrahedron surface; the Betti numbers of this surface were 
found in Example 6, $19. The numbers of simplexes a k  can be counted 
directly. One gets 

L L 

C ( - l ) k p k = l - O + I =  C ( - 1 ) k a k = 4 - 6 + 4 = 2 = - N ;  
k = O  k = O  

thus the Euler characteristic of the tetrahedron is -2. One should compare 
this result with Chapter VI, $38 and $41. 

Problems 

I .  Verify the formulas C;,o(- 
2. Show that the relation N(W) = ZN(543") holds between the Euler characteristic N(b") of the 

n-sphere and the Euler characteristic N(p") of projective n-space. 
3. Let Q' be a I-dimensional connected complex having a' 0-simplexes and a' I-simplexes. 

With the help of the formula -aoa' = - p o + p ' ,  prove that one can remove exactly 
- a0 + a' + I 1-simplexes from the complex (but no more) without disconnecting the resulting 
"edge complex" having the same vertices. 

= x;&- I)%' in the examples of $19. 

24. Pseudomanifolds and Orientability 

We now turn our attention to a special class of complexes, the 
pseudomanifolds, which represent a first step, using methods available to us 
now, toward the manifolds. 

A closed pseudomanifold is defined as follows: 

(PMI) It is a pure, finite n-dimensional simplicial complex (n 2 I); by 
"pure" we mean that each k-simplex is a face of at least one n-simplex (purity 
condition). 

(PM2) Each (n - 1)-simplex is a face of exactly two n-simplexes 
(nonbranching condition). 

(PM3) Every two n-simplexes can be connected by means of a series of 
alternating n- and (n - 1)-simplexes, each of which is incident with its 
successor (connectivity condition). 

A closed pseudomanifold is said to be orientable if each of its n-simplexes 
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can be oriented coherent&, that is, oriented so that opposite orientations are 
induced in each (n - 1)-simplex by the two adjoining n-simplexes. If no 
coherent orientation is possible, the pseudomanifold is said to be 
nonorientable. 

A closed n-chain on an orientable and coherently oriented closed 
pseudomanifold is completely determined whenever one knows how often a 
single, arbitrarily chosen, oriented n-simplex appears in the chain. This is so 
because each of the n-simplexes adjoining this simplex must appear equally 
often for, from (PM3). one can reach each n-simplex by moving successively 
through adjoining simplexes; hence all n-simplexes must appear equally often. 
Consequently the nth homology group 8" is the free cyclic group. In other 
words, the nth Betti number isp" = 1. A basis for this group is one of the two 
chains which arise by virtue of the coherent orientation of the pseudomani- 
fold. One can likewise show, for a nonorientable pseudomanifold, that there 
are no closed n-chains other than the chain 0, so that 8" consists only of the 
null element; p"  = 0. One can thereby recognize whether a closed pseudo- 
manifold is orientable by inspecting the nth homolog!; group: the necessary 
and sufficient condition for orientability is that the nth Betti number p" have the 
value 1. 

On the other hand, The nth connecfivity number for both orientable and 
nonorientable closed pseudomanijolds is always q" = 1. For there exists exactly 
one nonvanishing closed n-chain mod 2, the collection of all n-simplexes. 

We shall see later ($36) that the property of a complex being a 
pseudomanifold is a topologically invariant property. The proof will be 
carried through by reducing the defining properties (PM 1) through (PM3) to 
homology properties (among which we include the connectivity numbers) and 
proving that the homology properties are topologically invariant. It is then 
important that one can replace the condition (PM3) by the condition q" = 1. 
More precisely, the set of conditions 

is equivalent to 

(11) (PMI), (PM2), q" = 1. 

We have just seen that q" = I is a consequence of (I). Conversely (PM3) 
follows from (11): the n-dimensional chain mod 2, U", of all simplexes which 
can be connected by a series of alternating incident simplexes of dimensions n 
and n - I with a given n-simplex B", is closed. For by (PM2) each 
(n - 1)-simplex of YP", and therefore also of U", is a face of exactly two 
n-simplexes. I f  there existed other n-simplexes besides those of U", then they 
would likewise form a closed n-chain mod 2; thus q" would be at least = 2. 
This is a contradiction; thus U" must exhaust all of R". 

One can also make several general statements about the (n - 1)th 
homology group of a closed pseudomanifold. 
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THEOREM I. The normal form H"-' of the incidence matrix En-' has the 
form ( 1 )  for an orientable pseudomanifold R", and has the form (2)  for a 
nonorientable pseudomanifold: 

I .  . I  

H" - 

0 
1 
0 

0 
0 

0 

0 
0 
I 

0 
0 

0 

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

In the case (2)  its rank is equal to the number of columns; in the case (1) its 
rank is one less than the number of columns. On& in the case ( 2 )  does there 
exist an invariant factor other than 1 and it has the value 2. 

ProoJ Since each ( n  - 1)-simplex of .P is incident with exactly two 
n-simplexes, there must be exactly two nonzero elements in each row of En-', 
each of value 1. The connectivity condition (PM3) states that whenever one 
divides the columns of En-' into two classes in any arbitrary manner, there 
will exist a row whose two ones are in columns belonging to different classes. 
After this, it is a purely arithmetic fact ($87) that there will only exist the two 
normal forms (1) and (2). The matrix (1) belongs to an orientable 
pseudomanifold because the n-chain in the upper entry of the first column is 
closed. In the case (2) such a closed chain does not appear; thus the 
pseudomanifold is nonorientable. 

Since the invariant factors of En-' which differ from 1 are the 
( n  - 1)-dimensional torsion coefficients, the theorem is equivalent to the 
following theorem. 

THEOREM 11. A closedpseudomanifold R" has no ( n  - 1)-dimensional torsion 
coefficients i f  it is orientable; if it is nonorientable, it has exactly one, of value 2. 
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I n  the nonorientable case there exists a closed (n - I)-chain U " - l ,  uniquely 
determined up to null homologous chains, which is not itself null homologous 
but which is null homologous when doubled. One obtains such a chain U " - '  
as follows. Let E ; ,  E; ,  . . . , E,:. be arbitrarily oriented n-simplexes of Q". The 
n-chain 

U " =  E ; +  E ; +  . ' .  + E,". 

has a nonzero boundary because St'" is nonorientable. An (n - I)-simplex will 
occur in ?flaU" either 0 times or twice, according to whether the two 
adjoining n-simplexes induce opposite or like orientations in i t ,  respectively. 
Thus 4 a U" is the double of a chain U " - l .  Therefore U " - '  when doubled is 
null homologous. If U " - l  itself were already the boundary of an n-chain V",  
then one would have 

2u"-1 = cfl a2 v" = w u n  

9R a( U" - 2 V" ) = 0. 

and thus 

Since, except for the n-chain 0, there exists no closed n-chain on a 
nonorientable pseudomanifold, i t  follows that U" = 2 V",  in contradiction to 
the fact that U" contains each n-simplex only once. 

A pseudomanifold with boundary is defined by three properties. Two of these 
are (PM 1)  and (PM3); in place of (PM2) one has the condition (-2): Each 
(n - 1)-simplex is incident with at most two n-simplexes and there exists at  
least one (n - I)-simplex which is incident with only one n-simplex. 

The boundary of a pseudomanifold with boundary, according to the 
definition of the boundary of a pure complex (footnote, P 16), consists of the 
totality of those (n - 1)-simplexes which are incident with a single n-simplex. 
All points and simplexes which do not lie on the boundary are called inner 
points and simplexes. 

A pseudomanifold with boundary is said to be orientable if the n-simplexes 
can be oriented coherently, that is, so opposite orientations are induced in 
each inner (n - 1)-simplex. 

The annulus (316) and the Mobius band (Fig. 45) are the simplest 
examples, respectively, of orientable and nonorientable pseudomanifolds with 
boundary. In Fig. 45 both sides c must be identified. 

C mo E 

P 
FIG. 45 
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Another example of a pseudomanifold with boundary is a simplicia1 star 
Gt", having center point 0, whose outer boundary % " - I  is a closed 
pseudomanifold. Properties (PM 1) and (PM3) are satisfied for Gt" because 
they are satisfied for the outer boundary. (m2) is satisfied because an 
(n - 1)-simplex of the outer boundary is incident with one n-simplex, while 
all other (n - 1)-simplexes (which are incident with 0) are incident with two 
n-simplexes. If %"-I  is orientable, then Gt" is also orientable, and conversely. 
Let 

O P ,  * * * P , - ,  

be an (n - 1)-simplex of GP incident with 0 and let 

be the two n-simplexes incident with it. For the orientations given these 
induce opposite orientations in ( O P ,  - P , - , ) .  If one now furnishes the 
faces of E n  and ' E n  which lie on % " - I  with the induced orientations 

then they likewise induce opposite orientations in the common face 
( P I  . . P , - , ) .  I t  follows from this that a coherent orientation of the 
n-simplexes of Gt" implies a coherent orientation of the (n - 1)-simplexes of 

and conversely. Obviously the coherently oriented outer boundary is the 
boundary of the coherently oriented star Gt". 

We have seen that a closed n-chain on a closed orientable pseudomanifold 
is a multiple of the coherently oriented pseudomanifold. A corresponding 
theorem is valid for an orientable pseudomanifold with boundary if one 
considers n-chains upon it whose boundaries lie on the boundary of the 
pseudomanifold. The proof is the same as in the case of the closed 
pseudomanifold. 

The orientability of a closed pseudomanifold is determined by a condition 
on the nth Betti number: p"  = 1. No corresponding theorem holds for 
pseudomanifolds with boundary. For example, the homology groups of the 
(nonorientable) Mobius band are the same as those of the (orientable) 
annulus. For this reason it is simpler to prove topological invariance of 
orientability for closed pseudomanifolds than for pseudomanifolds with 
boundary. For the former, it is an immediate consequence of the invariance 
of the homology groups (Chapter IV), but in the latter case one requires 
invariance of the boundary and the deeper methods of Chapter V. 

a n -  1 



CHNTER FOUR SIMPLICIA L A PPROXIMA TIONS 

In this chapter we shall prove the topological invariance of the homology groups derived from 
the schema of a simplicial complex. To do this we introduce singular k-dimensional simplexes 
($25) in the complex a”’; these are continuous images of rectilinear simplexes of a Euclidean 
space. We form singular chains ($26) from the singular simplexes and define addition, boundary, 
and the properties of being closed and null homologous (bounding) for these singular chains. The 
singular chains are then divided into singular homology classes. The classes form the kth singular 
homology group of the complex ($27). This group is defined in a topologically invariant manner 
($27) and is not dependent upon any particular simplicial decomposition of SE”. If a simplicial 
decomposition of C is now given, it  will be shown that each singular chain on sf” can be 
transformed to a simplicial chain of a suitable normal subdivision without changing the essential 
topological properties of the singular chains. This is achieved by means of the process of 
simplicial approximation ($30), after a preceding normal subdivision. One obtains, in this way, a 
proof that the singular and the simplicial homology groups coincide (028). The fundamental 
approximation theorem ($28) guarantees the existence of an approximating simplicial chain. 

The term “simplicial approximation” generally refers to the transformation from a continuous 
mapping of a complex to a “simplicial” mapping. The statement that one can transform each 
continuous mapping to a simplicial mapping, and in fact do so by means of a “deformation, ” is 
the content of the deformation theorem ($31). Finally, in this regard, we shall examine the 
behavior of the homology groups under deformations of mappings. 

25. Singular Simplexes 

A singular k-simplex X k  is a point set V2 of an n-dimensional finite or 
infinite complex* Qn which can be regarded in a definite way as a continuous 
image of a rectilinear simplex gk of a Euclidean space. We shall use German 
letters to indicate that we are dealing with nonoriented simplexes. 

Should it be necessary to regard a given point set as being the image of gk 
on one occasion and as being the image of another k-simplex gk on another 
occasion, we shall consider the two singular k-simplexes, which both comprise 

*The fact that 9”’ is a complex is actually unnecessary, since one can define singular simplexes, 
chains, and homology groups just as well in an arbitrary neighborhood space, for example, in an 
arbitrary nonempty subset of a complex. However, the definition is of value only for 
complexes. l6 
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the same point set YJt of Q" to be identical if gk can be mapped linearly onto Zk 
so that points associated by the linear mapping correspond to the same point 
in Q".* 

The simplexes gk and j k  are both calledpreimuges of the singular simplex 
X k .  We shall use lower case letters to denote preimages. 

If the preimages of two singular simplexes cannot be mapped linearly in the 
manner just mentioned then the singular simplexes are not identical, even in 
the case that they comprise the same point set !PI in $". 

The dimension, k of X k  can be larger, equal to, or smaller than the 
dimension n of the complex in which X k  lies. 

EXAMPLES. A simplex of a simplicial decomposition of sf" can be regarded as a singular 
k-simplex. It is the topological image of a rectilinear preimage simplex of a Euclidean space. 

A single point of a complex is a singular k-simplex if one lets all points of a rectilinear 
k-simplex be mapped into it. A triangle, lying in Euclidean space, which has been arbitrarily 
crumpled or even in some cases compressed onto a line or a point, is a singular 2-simplex. A 
Peano curve (Hausdorff [2, p. 2021) in the Euclidean plane is a singular I-simplex. 

Under the mapping of gk into P, an i-dimensional face g' of gk will be sent 
to a subset 8 of YJl. Then 9, regarded as the image of g', is said to be an 
i-dimensional face X' of the singular k-simplex X k .  It is obviously a singular 
i-simplex. The singular simplexes X k  and Xi are said to be incident. 

A singular k-simplex X k  can be oriented by orienting the preimage, gh.  We 
will use Roman letters to denote oriented simplexes. An oriented singular 
k-simplex X k  is then a point set YJl of a complex R", which is in a definite way 
the continuous image of an oriented k-simplex x k .  If one replaces the 
preimage x k  by another geometric simplex X k  and one can map x k  linearly 
onto X k ,  preserving the orientation, so that associated points are sent to the 
same point of !PI, then the two oriented singular k-simplexes are considered to 
be identical. 

there corresponds an oppositely 
oriented simplex, which we denote by - X k .  It is obtained when we reverse 
the orientation of x but leave the mapping of x onto 2Jl unchanged. X k  and 
- X k  determine the same nonoriented singular simplex X k .  

It may happen that X k  and - X k  are identical, that is, there is an 
orientation-reversing, linear map of x onto itself, such that associated points 
correspond to the same point of X k .  In this case, the oriented singular simplex 
X k t  and also the corresponding nonoriented X k ,  are said to be degenerate. A 
nondegenerate simplex is simultaneously covered by two oppositely oriented 
simplexes; for a degenerate simplex these two coincide. 

To each oriented singular simplex X 

EXAMPLE 1. A (k - I)-simplex Ek-I of a simplicia1 decomposition of 9'" can be regarded as a 
singular &-simplex 3' if one maps the preimage $, having verticesp,, p , ,  . . . ,pk, linearly onto 
E k - I  so that two vertices, for example pk- I and pk, are mapped to the same vertex of E k - ' .  
The preimage gk admits an orientation reversing linear mapping onto itself, namely, the mapping 

Editor's note: This equivalence relation does not appear in modem singular homology theory. 
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which transposes the vertices pk and pk - I and leaves all other vertices fixed. Associated points 
map to the same point of the point set W = E k - ' .  The simplex X k  is then a degenerate singular 
simplex on P. In general, a singular k-simplex is degenerate whenever it arises by means of a 
linear mapping of its preimage gk onto a simplex of lower dimension, E k - i  (i > 0) ($9). 
EXAMPLE 2. Let the preimage be a I-simplex, the segment (popl) = g' of the real number line 

(Fig. 46). A singular simplex XI of the Euclidean plane will arise when one folds together the 
segment so that points symmetric to the midpoint m fall on one another. It is degenerate, because 
the mirror image of the segment about the midpoint m is a linear self-mapping of g' which 
reverses the orientation, taking associated points (that is, mirror image points) to the same point 
of 5 ' .  The resulting I-simplex would be singular but not degenerate if the folding were modified 
so that po and pI again fell together at one end point and m mapped to the other end point, but 
points which are symmetric with respect to m do not always have the same image. 

EXAMPLE 3. If all k + 1 vertices of a singular simplex Xk are different, then the simplex is not 
degenerate. Upon an orientation-reversing, linear mapping of the preimage gk onto itself, at least 
one vertex will be mapped to a different vertex. 

On the other hand, a singular k-simplex (k > 0) will always be degenerate if it consists of a 
single point into which all points of the preimage are mapped. 

A @simplex is never degenerate. This is because we recall that we have also oriented the 
0-simplexes ($9). 

26. Singular Chains 

A singular k-chain consists of finitely many, in some cases 0, nondegenerate 
singular k-simplexes of a complex R", each of which is provided with a 
definite orientation and a definite positive multiplicity. If the oriented 
singular simplex X k  appears with multiplicity a in the chain, then we also say 
that the oppositely oriented simplex - X k  appears with multiplicity - a in the 
chain, and if a singular simplex does not appear at all in the chain, we say 
that it appears with multiplicity 0. 

Each k-simplex of a simplicial decomposition can be regarded also as a 
singular k-simplex, for it is the topological image of a geometric simplex. 
Thus the simplicial chains studied in Chapter 111 are at  the same time singular 
chains. Simplicia1 chains are only defined with respect to a particular 
simplicial decomposition of R" and consist of simplexes of this simplicial 
decomposition; in contrast, the singular chains are built up out of singular 
simplexes, independent of any particular simplicial decomposition of P. 

The k-chain 0, in which no singular simplex appears at all, is included 
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among the singular k-chains. It is also to be counted among the simplicial 
chains. 

Two singular k-chains are added by adding the multiplicities with which 
each oriented singular simplex appears in the two chains. 

The singular k-chains of P form an Abelian group under the operation of 
chain addition. In general this group has uncountably many generators since 
these can be taken to be the nondegenerate singular k-simplexes having fixed 
orientations. The zero element is formed by the k-chain 0; the negative of an 
element is obtained by reversing the orientation of all singular simplexes 
appearing in the chain or, what is the same thing, by retaining all of the 
orientations and multiplying all of the multiplicities by - 1. Consequently, a 
singular chain V k  in which the singular oriented simplexes Xf,X[, . . . , X,! 
(and we require Xt # X,k # * * # Xt) have multiplicities u, ,u2, . . . , ur, 
respectively, and all other singular simplexes appear with multiplicity 0, can 
be written as a sum 

V k  = U,Xf + u,x; + * - .  + u,x,!. (1) 

From the definition of a singular chain there immediately follows the rule 
of computation: If mVk = 0 and m # 0, then V k  = 0. This rule would not be 
valid if we had also allowed degenerate simplexes in the definition of the 
chains. 

The sum (1) also makes sense even if we do not assume that the singular 
simplexes 37, . . . , Xf are distinct from one another, that is, we allow 
identical or oppositely oriented simplexes to appear and these can be added 
or can cancel. On purely formal grounds perhaps it is even desirable to also 
allow degenerate singular simplexes to appear; these do not count as terms of 
the chain, of course, but are equivalent to 0. In the future, when a sum (1) 
appears, all these possibilities will be allowed unless explicitly stated to the 
contrary. 

The reason why we have not defined a singular chain simply as the continuous image of a 
particular simplicial chain of preimage simplexes is that we could not define an addition for such 
chains that would be independent of the choice of the preimage complex. It is important that we 
define the singular homology groups in such a way that they are topological invariants of the 
complex sp". For this purpose additivity of the singular chains is indispensable. 

27. Singular Homology Groups 

be degenerate, and if 
if x k  (k > 0) is a preimage of the oriented singular simplex Xk, which can 

% . a x k  = 
Y 

we define the boundary of X k  to be the singular (k - 1)-chain c , X , " - '  and 
we write 

%axk = Ex;-! (1) 
Y 
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FIG. 41 FIG. 48 

Here A',"-' is the oriented (k - I)-dimensional face of X k  whose preimage is 
the oriented face x,"-' of x k ,  provided with the orientation induced by X k .  
Degenerate face simplexes X," ~ may appear even if X k  is nondegenerate. 

An example of this is given by a triangle X 2  (Fig. 47) folded into a horn shape (Fig. 48); the 
horn has one face, which arises when the preimage face ( p l p 3  is folded at the midpoint m and 
the halves of (p ,p2)  are joined, while no other points of the preimage are identified. As we saw in 
Section 25, the folded side becomes a degenerate simplex when each pair of points equidistant 
from m on (p Ip2 )  is brought into coincidence. Since degenerate simplexes are not counted in a 
singular chain, %ax2 consists of the two singular I-simplexes which together form the rim of the 
horn. 

In this example one can assume that the complex into which the singular simplexes are inserted 
is Euclidean 3-space. 

The definition of the boundary of a singular k-simplex Xk is independent 
of the particular choice of preimage x k  of X " .  For if X" is another preimage 
of X k ,  then according to the definition of equality of singular simplexes there 
exists a linear mapping T of x k  onto X k  with preservation of orientation such 
that corresponding points have the same image point in X k  when mapped by 
T. But T also maps the simplexes of % a x k  = C,x,"-' linearly with 
preservation of orientation onto the simplexes of % a X k  = E,T,"-'. Thus 
again, according to the definition of equality of singular simplexes, the chains 
C,x,"-' and c,js,"-' transform to the same singular chain %axk. 

The boundary of a singular simplex can vanish. This occurs, for example, 
in the case of a segment xi  bent to form a circle. Its boundary consists of two 
0-simplexes which differ only in orientation. 

I t  is clear that the boundary of the oppositely oriented simplex - X k  is 
equal to the negative of the boundary of Xk: 

%a( - x k  ) = - %,axk. 
If, in particular, X k  is degenerate, then X k  coincides with - X k ,  so one has 

%31aXk=$Ra(-x"= -%axk. 
But from the rule of computation given in $26, a chain which is equal to its 
negative is the chain 0. The boundary of a degenerate singular simplex X k  is 
therefore the ( k  - I)-chain 0. 
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The boundary of a singular k-chain is defined to be the sum of the 
boundaries of its individual k-simplexes: 

A a C vyxyk = C u, % ax; 
Y Y 

If equal, oppositely oriented, or degenerate simplexes (which are equivalent 
to 0) appear in the sum CvuyXyk, then their boundaries are also equal, 
oppositely oriented, or 0, respectively; thus the right hand side of (2) is always 
one and the same singular chain, regardless of how one writes the left-hand 
side. The boundary of a 0-dimensional chain is always the number 0. 

A singular k-chain is said to be closed if its boundary vanishes. It is said to 
be null homologous if it is the boundary of a singular (k + 1)-chain. It follows 
that 0-dimensional singular chains are always closed. One can prove that the 
sum and difference of closed chains are again closed chains and can prove 
that the sum and 'difference of null homologous chains are again null 
homologous, in the same way as shown for the simplicial chains (s16). 

The boundary of a singular (k + 1)-simplex X k + '  and consequently that of 
an arbitrary singular (k + 1)-chain is a closed singular k-chain, since the 
boundary of the preimage x k + l  is closed. In other words: each null 
homologous singular chain is closed. 

Two singular chains, which are not necessarily closed, are said to be 
homologous to one another (on Q") if their difference is null homologous. In 
order for two chains to be homologous, their boundaries must coincide (cf. 
0 16). One can define homologies with division for singular chains. A singular 
chain is said to be division-null homologous (%O) when it has a nonzero 
integer multiple which is null homologous. 

The closed singular k-chains decompose into classes of homologous chains. 
These classes are the elements of a group, the kth singular homology group 
where the sum of two homology classes is defined to be the homology class 
containing the sum of two singular chains representing the two homology 
classes. In contrast, the homology groups which were derived from a 
simplicial decomposition in Chapter 111 will be referred to as simplicial 
homology groups, until we have proven that they coincide with the singular 
homology groups. 

Since the proof of this coincidence will establish that the simplicial 
homology groups are topologically invariant, we should first convince 
ourselves that the singular homology groups are topologically invariant. We 
shall, in fact, investigate the more general question of how the singular 
homology groups behave under a continuous mapping cp of the complex 9" 
into a complex K" (which can also coincide with W). Under cp a singular 
simplex X k  of Q" will transform to a singular simplex, Ik of K". For the 
preimage x k  of X k  will first be given a continuous mapping f onto Xk and 
then be given the continuous mapping 'p into K". The product mapping cp f 
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is again a continuous mapping. The reverse oriented simplex - X k  will map 
to - Ek. In the case that X k  and - X k  are equal to one another, Ek and - Ek 
will also be equal to one another. That is, a degenerate simplex transforms to 
a degenerate simplex. (On the other hand it is of course possible that the 
image of a nondegenerate simplex can be degenerate). Consequently, a 
singular chain 

V k  = c v,x; 

will have a completely determined image, Cv,Z: .  The image of the sum of 
two singular chains, V k  + ' V k  is equal to the sum of their images, that is, to 

c 
Furthermore, the boundary of a chain transforms under rp to the boundary of 
the image chain. We can thus state 

THEOREM I :  A continuous mapping q of a complex SY' into a complex K" 
carries singular chains to singular chains, and each equation relating the chains 
of Q" to their boundaries is preserved in the passage to K". 

In particular, closed chains are transformed to closed chains and null 
homologous chains are transformed to null homologous chains. Thus each 
(singular) homology class in $Iw has a well-defined image homology class in 
K". Since the sum of two homology classes corresponds to the sum of their 
images, we have proved the important theorem: 

THEOREM 11: Under a continuous mapping rp of a complex Q" into a com- 
plex, K", the kth singular homolog), group of Q" will be mapped by a 
homomorphism 9 ($83), into the kth singular homology group of K". If  K" and 
K" are homeomorphic and rp is a topological mapping of F' onto K", then 9 is 
an isomorphism; homeomorphic complexes therefore have the same singular 
homology groups. 

The last part of the theorem follows from the fact that under a topological 
mapping the assignment of the singular chains of P to those of K" is 
one-to-one. 

Problems 

I .  Assuming the approximation theorem, according to which the singular and simplicia1 
homology groups coincide, prove that each homomorphic (automorphic) self-mapping of the first 
homology group of the torus (819) can be accomplished by means of a continuous (topological) 
self-mapping of the torus. 

2. Under the same assumption as above, show that an annulus cannot be mapped onto itself 
topologically so that one boundary circle maps onto itself with preservation of orientation while 
the other boundary circle maps onto itself with reversal of orientation. 
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28. The Approximation Theorem, Invariance of Simplicial 
Homology Groups 

Simplicial homology groups can be calculated for a complex which has 
been provided with a simplicial decomposition. The topological invariance of 
these groups has not yet been established, for it might happen that they 
depend upon the choice of the simplicial decomposition. According to their 
definition the singular homology groups are topologically invariant, but on 
the other hand we have no method to compute them, that is, to determine 
their Betti numbers and torsion coefficients. We shall now proceed to prove 
the coincidence of the singular and simplicial homology groups of a complex 
and the consequent topological invariance of the simplicial homology groups. 

The proof is based upon the following theorem: 

APPROXIMATION THEOREM: If R" is a finite or an infinite complex provided 
with a fixed simplicial decomposition and A is a singular k-chain on and 
furthermore if the boundary* A k-' of A k  is a simplicial chain of the 
decomposition of R" [in particular it can be the ( k  - 1)-chain 01, then there will 
exist a simplicial chain lk homologous to A '. 

From 927 xk will also have A k - '  as boundary. The dimension k of the 
chain A k  can be smaller than, equal to, or even larger than the dimension of 
the simplicial decomposition of R". 

In particular, if one choses A to be closed, then A k-' = 0 and it follows 
that: 

(I) Each closed singular k-chain is homologous to a simplicial k-chain. 

On the other hand, if one replaces k by k + 1 in the approximation 
theorem, there follows: 

(11) If a simplicial k-chain is the boundary of a singular (k + 1)-chain, 
then it is also the boundary of a simplicial ( k  + 1)-chain. 

The coincidence of the simplicial and singular homology groups follows 
from (I) and (11). The closed k-chains of a simplicial homology class, 
regarded as singular chains, belong to the same singular homology class. This 
is true because simplicially homologous chains are also singular homologous. 
A singular homology class is, then, uniquely associated with each simplicial 
homology class. Different simplicial homology classes correspond to different 
singular homology classes, for two simplicial chains which are not simplicially 
homologous cannot be singular homologous, because of (11). Finally, each 
singular homology class contains some simplicial homology class, because of 
(I). The simplicial and singular homology classes are therefore in one-to-one 
correspondence. The correspondence is also an isomorphism. That is, to the 
sum H ,  + H2 of two simplicial homology classes there corresponds to the 

For the case k = 0 the condition that the boundary A k - '  be simplicial is of course, vacuous. 
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sum H I  + H, of the two associated singular homology classes. H I  + H, is 
formed by selecting a representative from the class H I  and a representative 
from the class H ,  and adding these; but one can choose closed simplicial 
chains from HI and H,, respectively, as the representatives. 

The proof of coincidence of the singular and simplicial homology groups 
thus reduces to the proof of the approximation theorem. Before proving it 
($30) we shall make several observations with regard to prisms in Euclidean 
spaces. 

29. Prisms in Euclidean Spaces 

In $9, we saw that a linear self-mapping of a rectilinear simplex x "  
preserves orientation if and only if the determinant of the transformation is 
positive. More generally, if x "  and ' x "  are any two oriented rectilinear 
n-simplexes in n-dimensional Euclidean space %", they are said to have the 
same orientation if the linear mapping of 8" which transforms X "  to ' x "  with 
preservation of orientation has positive transformation determinant. If "x,, is 
a third n-simplex which has the same orientation as ' x " ,  then x " obviously 
has the same orientation as "x". We say that an orientation of the whole space 
8" is given by an oriented n-simplex and all simplexes with the same 
orientation as x"  determine the same orientation of %". 

Let xg" be the g-fold normal subdivision of the rectilinear simplex x k  lying 
in 8". An orientation of the linear subspace Qk of 3" in which x k  lies is given 
by means of the orientation of x k .  One can thus orient all of the subsimplexes 
of xg" like x k .  When we speak of the normal subdivision of an oriented 
simplex x k  we always mean that the subsimplexes are oriented in this way. In 
the case k = 0 the oriented subdivision coincides with the oriented 0-simplex 
itself. 

Aprism a k + l  is the point set swept out by a rectilinear simplex gk during a 
translation in a Euclidean space of dimension at least k + 1, which transforms 
it to another simplex qk; we assume that the translation vector does not lie in 
the k-dimensional linear space which is spanned by g k .  We call g k  and its 
faces g l  (0 i i 5 k) the floor faces of the prism 6 k + 1 ;  we call gk and its faces 
the roof faces of this prism. Obviously each i-dimensional face of g k  will 
describe a prism d i + l  during the translation, which we call an (i + 1)- 
dimensional wall face. The midpoint of gk sweeps out the axis of the prism. 
An arbitrary point of g k  sweeps out an axis parallel interval. The midpoint of 
the prism axis is called the midpoint of the prism. Each wall face also has a 
midpoint, since it is itself a prism. In the case k = 0 one obtains a segment as 
a I-dimensional prism. For k = 1 one obtains a parallelogram; for k = 2 a 
triangular prism. In the following discussion we shall always assume k > 0. 

If ak+'  is another (k + 1)-dimensional prism, then there exists a linear 
mapping of a k + I  onto z k + l  such that the floor simplex gk transforms to the 
floor simplex g k .  This linear mapping is uniquely determined by the linear 
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mapping of gk onto gk, which one can still prescribe arbitrarily; the midpoint 
of hk+' will transform to the midpoint of 3 k + ' .  

The prism d k + l  is convex, due to the convexity of the floor simplex. That is, 
the prism is a closed bounded point set of a Euclidean space which contains, 
for each pair of points, the entire line segment connecting them. A ray 
directed outward from the midpoint of d k + l  will intersect the boundary of 
d k + l ,  which consists of g k ,  uk and the wall faces 6': (v = 0, 1,2, . . . , k) ,  in 
exactly one point. 

One can confirm all of the above properties of a k + I  analytically. One selects 
a vertex of gk as origin of coordinates and chooses the vectors u,, 
b2, . . . , bk which point to the other vertices of gk as basis vectors, as well as 
the vector t which is swept out by the origin during the translation generating 
the prism. The prism will then be formed by the end points of the position 
vectors: 

h , b ,  h,U, 4- * . . -k hkDk + Tt 

( o s X ; ~ 1 , ~ , + ~ , +  * . .  + A k S l , 0 S T S l ) .  

We shall not go into more detail. 
We now decompose h k + l  into simplexes. This can be done in infinitely 

many ways. Here we are only interested in particular simplicial decomposi- 
tions which we shall need later. We first form the g-fold normal subdivision 
of the roof face u k .  We also allow g to take the value 0; in this case the prism 
remains undivided. We then divide all wall faces of d k + I  according to the 
following procedure: Each 1-dimensional wall face is subdivided into two 
1-simplexes through its midpoint. After the i-dimensional wall faces 3; have 
already been subdivided, one projects the boundary of each ( i  + 1)- 
dimensional wall face 8;' from its midpoint, and for the case i = k one 
projects the entire prism boundary from the prism midpoint (cf. $14). The 
boundary of consists of the nonsubdivided floor face ~ 1 ,  the g-fold 
subdivided roof face t):, and certain wall faces 8: which are already 
subdivided. One obtains the required simplicial decomposition of d k +  I by 
dividing all of the wall faces in this way, beginning with the dimension 1 and 
continuing to the prism d k + I  itself. Figures 49 and 50 illustrate two simple 
cases. 

FIG. 49. k = 1, g = 0. FIG. 50. k = 1, g = 2. 



29. PRISMS I N  EUCLIDEAN SPACES 105 

We now orient the prism a k + ' ,  that is, we orient its individual (k + 1)- 
dimensional subsimplexes coherently inside the (k + ])-dimensional linear 
space in which 8"" lies. The totality of the simplexes oriented in this manner, 
each taken with multiplicity + 1, is a chain, which we call z k + ' .  The floor 
simplex gk of a"+' receives the orientation which is induced in it by the 
incident (k + I)-simplex of z k + l  and we will subsequently call this oriented 
simplex x". The orientation of the floor face is carried to the subdivided roof 
face gk,  by means of the translation. This gives rise to the chain y k  which 
contains all of the oriented simplexes of the g-fold normal subdivision of qk 
(cf. Fig. 50). In a corresponding manner, the chains zyk,xyk-', yyk-l are 
defined on the k-dimensional wall faces and on the (k - 1)-dimensional floor 
and roof faces of a k + l .  One can orient the face simplexes xyk-' of the floor 
simplex x k  so that 

Besides (l), there are additional connection formulas which hold involving 
the simplicia1 chains which were just obtained: 

aazk+l = X k  - y k  - zz;. (4) 
Y 

Equation (2) expresses as a formula the fact that the boundary of the 
normal subdivision of the roof face is equal to the normal subdivision of the 
boundary. Equation (4) states that the boundary of the prism consists of the 
floor face, roof face, and the k-dimensional wall faces, all subdivided, pro- 
vided with orientations, and regarded as chains. Equation (3) follows from 
(l), (2), and (4). Considered as a boundary chain, the right-hand side of (4) is 
closed and its boundary is the (k - 1)-chain 0. This fact, taken together with 
( I )  and (2), gives (3) directly. 

Formulas (2) and (4) are obviously correct except possibly for signs. A 
simplex E k  of the boundary of z k +  must always lie on x or y or on one of 
the chains zyk, because every other k-simplex of a"+' is incident with exactly 
two (k + 1)-simplexes which induce opposite orientations in that k-simplex 
because they are coherently oriented.** If E" is an oriented simplex of the 
chain zyk, then a particular orientation will be induced in it by the only 
( k  + 1)-simplex E k + '  of z k + l  incident with it; this determines the sign with 

Editor's note: These formulas hold when the orientations of the 2." and they,!-' are chosen 
properly. 

**If a linear self-mapping of the linear (k + 1)-dimensional space in which a k + l  lies transforms 
one (k + I>simplex incident with Ek to the other and leaves the points of Ek fixed, then it has a 
negative transformation determinant. 
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which E k  appears in the chain % a r k + ' .  Any other oriented simplex is 
assigned the same coefficient, because the simplexes of z," are coherently 
oriented and the simplexes of z k + '  are also coherently oriented. Now the sign 
of x k  is certainly correct in (4) because the orientation of z k + '  was directly 
determined by the requirement that it induce the given orientation in x k .  
Likewise the sign of y k  is correct; for the orientation of y k  was transferred 
from x k  by means of the translation. Thus we must have the formulas 

Similarly, we also have the formulas 

(3') = .,"-I - v , " - I  + . . . , 
where the dots denote certain (k - 1)-dimensional wall faces z f - ' .  

When we form the boundary of the right-hand side of (4'), that is, the 
boundary of the boundary of z k + ' ,  it must vanish. With the aid of (l), (T), 
(3') one gets 

Comparing coefficients, 

q u = & =  1, 

completing the proof of formulas (2) through (4). 
When one maps a prism ak+' continuously into a complex P, and denotes 

the singular images of the chains x k ,  y k ,  z k + ' ,  xyk-', yyk-', z," by X k ,  Y k ,  
Z k + ' ,  X,k-' ,  Y,"-', Z,", respectively, then from Theorem I of $27 the 
connection formulas (1) through (4) are also valid when one replaces the 
symbols in lower case type by the corresponding symbols in capital letters. 
We shall now map a finite number of prisms, ak+', ' a k + ' ,  . . . , continuously 
into $2". Using arbitrary integer coefficients, we form a singular chain 

~ k = a x k + ~ a l x k + .  . . 
from the singular images X k ,  ' X k ,  . . . of the oriented floor simplexes x k ,  
IXk , .  . . of 8 k + ' , '  8 k + l  , . . . . In a corresponding way we form the chains 

~k = ayk + ' a 'yk  + . . . 
C k + l  = a z k + '  + ralZk+' + . . . 
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Based upon the formulas ( I )  through (4) rewritten in capital letters, we then 
have the connection formulas for these chains: 

'%aAk = A k - ' ,  (1) 

30. Proof of the Approximation Theorem 

The construction of a chain xk which approximates the singular chain A 
will be accomplished by the process of simplicial approximation. The vertices 
of the singular k-simplexes of A will be replaced by neighboring vertices of 
the simplicial decomposition of P. This will be done so that the vertices of 
each simplex of A k  transform to vertices of a simplex (not necessarily 
k-dimensional) of <W. This is possible only when the simplexes of A k  are 
sufficiently fine. Otherwise, two vertices of a singular simplex of A could lie 
in simplexes of the simplicial decomposition of Q" which are far apart, and 
the vertices neighboring them would not belong to the same simplex of P. 
One must then, on occasion, subdivide the given singular chain prior to the 
process of simplicial approximation. Accordingly, the construction proceeds 
in two steps: 

Step 1: 
Step 2: 

Before carrying out the construction, we dispose of the case where the 

Transformation to a subdivision of A '. 
Simplicia1 approximation of this subdivision. 

singular k-chain to be approximated, A k ,  is 0-dimensional. If 

A ' =  a X o + ' a ' X o +  . . . , 
then one connects the point X o  linearly with a vertex Y o  of a simplex of P to 
which X o  belongs (cf. 09). Orient Y o  with the same sign as X o .  The 
connecting segment can be regarded as an oriented singular 1-simplex Z '  
having boundary X o  - Yo.  The chain 

po= ayO+ 'a'yO+ . . . 

In what follows we shall now assume that k > 0. 
We assume further that P is finite. We may make this assumption without 

loss of generality because a singular chain A k  in an infinite complex $I?'' is 
always contained in a finite subcomplex of the simplicial decomposition. This 
is true, first of all, for an individual singular simplex X k .  For if X k  had points 
in common with infinitely many simplexes of P, there would exist a sequence 
of points belonging to X k  which had no accumulation point. One can regard 

is then a simplicial 0-chain homologous to A '. 
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this sequence as the image of an infinite sequence of points of the preimage 
x k ,  which has an accumulation point H. But the mapping of x k  onto X k  
could not then be continuous at the point H, contrary to the definition of a 
singular simplex. Since A consists of finitely many singular simplexes, A 
also lies on a finite subcomplex of R". Thus, if the approximation theorem 
can be proved for finite complexes it will also be valid for infinite complexes. 

Step 1: Subdivision of the Singuler Chain A 

(a) Connecting prisms. We first examine an individual oriented singular 
simplex X k  in P, which may be degenerate. As a preimage of X k  we choose 
the oriented floor simplex x k  of a prism a k + ' ,  which we have simplicially 
decomposed so as to have a g-fold subdivided roof simplex, as described in 
the previous section. We map the prism a k + '  continuously into the complex 
Q" so that x k  transforms in the prescribed manner to X k  and each segment 
parallel to the axis goes to a point. This may be described as parallel 
projection of the prism into its floor simplex, followed by mapping the image 
onto X k .  The roof simplex y k ,  or rather the chain y k  consisting of the 
oriented subsimplexes of the g-fold normal subdivision, is thereby mapped to 
a singular chain Y k ,  which is called the g-fold normal subdivision of X k .  The 
chain z k + '  is mapped to a singular chain Z k + ' ,  which we call the connecting 
chain of X k  with Y k .  

The g-fold subdivision and the connecting chain are unambiguously 
determined by X k  and do not depend upon the choice of the prism a k + ' .  For 
if g k + l  is another prism which is both subdivided and oriented like a k + ' ,  then 
there exists a linear mapping T of a k + '  onto , j k + '  such that the oriented floor 
simplex x transforms to the oriented floor simplex X k .  Since corresponding 
points of x k  and Ek have the same image point in X k  and each segment 
parallel to the axis in a k + l  and , j k + ' ,  respectively, transforms to a point, any 
two points corresponding to one another by virtue of T, one point lying in 
ak+'  and the other in b k + ' ,  will have the same image point in P. Finally, 
since the subsimplexes of a k + '  are mapped by T to those of , j k + ' ,  preserving 
orientations, the singular chains Z k + '  and Zk" are equal; likewise Y k + '  and 
Fk+' are equal according to the definition of equality of singular simplexes. 

For an arbitrary singular chain A we define the g-fold subdivision Bk to 
be the sum of the g-fold normal subdivisions of the individual simplexes; we 
define the connecting chain C k + '  to be the sum of the connecting chains of 
the individual simplexes. Thus if 

(1') A k = a X k + ' a ' X k + .  . . 
and if we denote the g-fold normal subdivision and connecting chain of (''A'', 
respectively, by (')Yk and (')Zk+',  then 

(2') 

(3') 

~ k =  a Y k + ' a ' y k +  . . . , 
C k + l  = aZk+'  + ' a ' ~ k + l  + . , . . 
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If a simplex on the right-hand side of (1') is degenerate, for example X k ,  so 
that X k  = - X k .  then i t  is obviously true that Y k  = - Y k  and Z"' = 

- Z k + l ;  hence Y A  = 0 and Z"+' = 0. The normal subdivision B k  and the 
connecting chain C k +  I are therefore unambiguously determined by A and 
do not depend upon whether one does or does not use degenerate simplexes 
in ( I ) .  

(b) Connection formulas. The mapping of the prism d k + l  onto the 
singular simplex X k  sends each axis parallel interval of a wall face 6; to a 
single point. Thus the chains x:-', y,"- I ,  and z," which lie on 6': will map, 
respectively, to the face Xyk-l of X k ,  the g-fold subdivision Y,"-' of X,k-I,  
and the chain Z," connecting A',"-' with Y,"-' .  A corresponding statement is 
valid for the prisms ' z A + ' .  . . , belonging to the remaining singular simplexes 
'Xk,. . . . From formula (1') of this section and formula ( I )  of the previous 
section, the boundary of A k  is the chain 

a C X F - ' + ' a C ' X , k - I +  . . .  . (4') 

( 5 ' )  

~ h - 1  = 

The normal subdivision of A k - l  is then the chain 

~ h - 1  = ~ : - ' + ~ a C ' y : - '  + . . . 

and the chain connecting A k -  I with B k - l  is 

so that the connection formulas ( I )  through (IV) of $29 give 

(1') 

(11') 

(111') 

(IV') 

6 R a A k  = A k - I  

" f laBk = B k - l ,  

9flack = ~ k - 1  - gk-1 

q ack+l = A k - ~k - ck. 

Formula (11') states that the boundary of the g-fold normal subdivision of the 
singular chain A 

One can make the subsimplexes ofjqk,'yk, . . . arbitrarily small by making 
g sufficiently large, and from the theorem of uniform continuity ($7), the 
singular k-simplexes of the g-fold normal subdivision B k ,  of A k  will also 
become arbitrarily small. More precisely: If one considers R" to be a 
geometric complex in a Euclidean space of sufficiently high dimension, which 
is always possible according to Section 11, and takes the distance between 
two points of R" to be the Euclidean distance in this space, then one can 
make the diameter of the singular simplexes of B k  arbitrarily small by 
choosing a sufficiently fine subdivision of A '. 

The subdivision of the singular chain A has thereby been achieved and we 
proceed to step 2. 

is equal to the g- fold normal subdivision of its boundary. 
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Step 2 SimpUeial Approximntloo of the Subdivided Chain A 

(a) Connecting prisms. If B k  is a singular chain and P is a vertex of a 
singular simplex of B k ,  then we will define a singular simplicial star with 
center point P as the totality of singular simplexes of B k  which have P as a 
vertex. We will now assume that the subdivision B of A is sufficiently fine 
that each singular star of B k  will lie in the interior of at least one star of the 
simplicial decomposition of G?". This is possible from Theorem V of $7; one 
chooses the interior of a simplicial star of P as a neighborhood U * ( Q / P )  of 
a point Q. There then exists an E > 0 such that the &-neighborhood of an 
arbitrary point of SY lies in the interior of a star of G?". One needs only carry 
the subdivision of A far enough so that the diameter of each simplex of B k  is 
less that ~ / 2 .  

In order to emphasize the analogy of the present step to step 1, we shall 
now denote the singular chains Bk-' and Bk, that is, the g-fold subdivisions 
of the chains A - and A k, respectively, by Ak- and by 

Ak = c r I k  + + . . . 
where we again leave undecided whether equal, opposite, or even degenerate 
simplexes appear on the right-hand side. Let P I ,  P,, . . . be the vertices of the 
singular simplexes Z k , ' E k ,  . . . , where vertices which might happen to 
coincide with one another are written down only once. Each vertex PA is the 
center point of a singular star consisting of k-simplexes of Ak. The 
approximation of Ak is now made as follows: An approximating vertex Q, 
belonging to the simplicial decomposition of P is assigned to each vertex P A .  
The vertex Q, is in fact chosen so that the simplicial star of P having center 
point Qh will contain the singular star of Ak having center point P, in its 
interior. The vertex Q, which approximates P, is in general not uniquely 
determined by P A ,  since there may be several simplicial stars of G?" which 
contain the singular simplicial star having center point P, in their respective 
interiors. But once the vertex Q, has been chosen the remaining part of the 
construction becomes completely unambiguous. The essential step in the 
simplicial approximation is the transition from the singular vertices PA to the 
approximating simplicial vertices Q,. Figure 51* shows an example of a 
singular 1-chain (in heavy outline) in a complex 9, consisting of rectilinear 
equilateral triangles. 

We shall now first examine an individual singular simplex, for example, Ek. 
If PI ,  P, ,  . . . , P ,  are its vertices, then the associated vertices Q , ,  Q, ,  . . . , Q, 
are the vertices of a simplex of the simplicial decomposition of Q"; in 
contrast to the vertices P,, the vertices Q, do not all have to be distinct from 
one another. The stars having center points Q , , Q , ,  . . . , Q, will all contain 

Edifor's note: Figure 51 contains an error. The condition that each singular simplicial star 
must lie in the interior of a star of the simplicial decomposition is violated for the singular stars 
having midpoints Pa and P e .  One probably needs to redraw the figure anew and replace P ,  by 
two nearby points. 
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FIG. 5 1  

the singular simplex Zk in their interiors and will therefore have some 
arbitrary point P of Z k  as a common interior point.* The point P belongs to a 
particular simplex @J of 9". A star Gi of Q'I which contains P in its interior 
must contain Ej and @j cannot lie on the outer boundary of Gt; thus the 
center point of Gt must be a vertex of EJ. Points Q,,Q,, . . . , Qp are 
therefore the vertices of an i-dimensional face 0' of Ej or those of Ej itself. 
Since 0-' and P both belong to the simplex Ej one can connect each point of 
E' with P and thus with each point of Z k  by a straight line segment.** 

We now again take the oriented floor simplex x k  of a (k + 1)-dimensional 
prism jk+' as the preimage of Ek and we define a continuous mapping of d k + l  

into R" by means of the following conditions: 

1. x transforms to Zk in the manner previously prescribed. 
2. y k ,  which is not yet subdivided, is mapped linearly onto @' in the 

following way: if a vertex PA (A = 0, 1, . . . , k )  of the floor simplex trans- 
forms to a singular vertex P,, ( p = 1,2, . . . , p )  of Ek,  then the corresponding 
vertex qh of the roof simplex y k  transforms to the vertex Q,, of O', which 
approximates the vertex P,,. 

An axis parallel interval ( p q )  of j k + '  is mapped linearly onto the 
straight line segment connecting the image points P and Q in E" and (5'; such 

3. 

I t  should be remembered that an interior point of a simplicia1 star is a point which does not 

**This rectilinearity is to be understood in relation to 0' (cf. 59). 
lie on the outer boundary of the star. 
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a connecting segment exists because, as we have seen, one can connect each 
point of Ek rectilinearly with each point of Ei. In Fig. 51 the connecting 
segments in Q" are indicated by straight line segments. 

The mapping of h k + l  into Q" has now been determined uniquely. Its 
continuity follows from the lemma of $14. By means of this mapping the 
simplex 0' becomes an oriented singular simplex with preimageyk. As such it 
is denoted by Hk and from now on it will be called the (simplicial) 
approximation of zk. 

The chain z k + l  lying on the prism h k + l  transforms, under the continuous 
mapping into R", to a singular chain Zk+l ,  which will be called the connecting 
chain of E k  with its apprqximation Hk.  

For the singular chain 

( 1 " )  Ak = a l k  + l a ' E k  + . . . 
we now define the approximation Bk as the sum of the approximations of the 
individual singular simplexes, that is, 

(2") Bk = aHk + ' , 'Hk + . . . 
and we define the connecting chain rk+l as the sum of the connecting chains 
of the individual singular simplexes: 

r k + l  = & + I  + r a p + l  + . . . . 
The fact that the approximating and connecting chains, after initial 

selection of the approximating vertices, are uniquely determined by Ak, and 
do not depend upon whether one writes degenerate simplexes on the right- 
hand side of Ak, follows as in step 1. In Fig. 51 the approximation 6' is shown 
in heavy dashes. 

Bk is a simplicial chain, since a singular simplex (')tik is either a 
k-dimensional simplex of the simplicial decomposition of P or is a 
degenerate singular simplex (Example I in $25). In the latter case it is 
equivalent to the symbol 0. 

(b) Connection formulas. When the prism a k + l  is mapped according to the 
conditions 1 through 3 into Q", the mapping of each wall face 8': satisfies the 
corresponding conditions: 

1. The floor simplex .,"-I of 8: transforms to the face S;-' of Ek.  
2. In the linear mapping of y k  onto the simplex (?' of the simplicial 

decomposition of Q", the facey,k-' o f y k  will also be mapped linearly onto a 
simplex Bh that is either 0' itself or a face of E'. If a vertexp, of .,"-I now 
transforms to the vertex P,, of Sf-', then the corresponding vertex qx of yyk-l 
will transform to the approximating vertex Q,, of P,,, from the construction of 
the mapping of the prism 8 k + l .  

3. Since, under the mapping of d k + '  each axis parallel interval (pq) will be 
mapped linearly onto the segment (PQ) connecting the image points, this also 
holds true in particular for the axis parallel intervals of the wall face 8 : .  

(3") 
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This shows that the chains xyk-',yyk-',zyk lying on 8: map, respectively, to 
the face of Z", to the approximation H:-' of Z:-' and to the chain Z/: 
connecting Z f l  with Ht-'. 

A corresponding statement holds for the prisms ' & " + I ,  . . . belonging to the 
remaining singular simplexes 'Z", . . . . From Eqs. (1") of this section and (1) 
of the previous section, the boundary of A" is 

(4") 

( 5 " )  

(6" 1 

(1") 

(I 11 " ) 

(IV") 

+ * * a .  Ak- '  = a x  - " - I +  zv / a - p ; - l  

H;-I+ ~ C ' H : - ~ +  . . . , 
The approximation of A"-' is then 

6"-1 = 

and the chain connecting A"- '  with Bk- '  is 

r k =  aCz:+iaC'z:+ . . . , 
and the connection formulas (I) through (IV) of $29 hold: 

6j aAk = Ak- ' ,  

%aBk = B k - l ,  (11") 

%ark = ~ k - 1  - gk-1 

% a r k + '  = A" - 6" - rk. 

Formula (11") states that the boundary of the approximation of the singular 
chain is equal to the approximation of its boundary. 

Final Step 

I t  still remains to bring together the results of steps 1 and 2. We shall add 
the connecting chains rk and r"+I of step 2 to the connecting chains Ck and 
Ck+l of step 1 and obtain new connecting chains 

vk = ck + rk, 
~ k +  I = c&+ I + r k +  1. 

When one remembers that B" and Bk-' were renamed, respectively, Ak 
and Ak- ' ,  it  now follows from the connection formulas (1') through (IV') and 
(I") through (IV") that 

(1) 

(111) 

(IV) 

%aAk =A"- ' ,  

%ak = & - I ,  (11) 
%aVk = A " - 1  - gk-1 

6 k a v k + I = ~ k - - k -  v k .  

The previous investigations are valid for an arbitrary singular chain A". We 
shall now, for the moment, make the assumption that A "  is closed, that is, 
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A k - 1  0. In this case, the normal subdivision B k - '  and its approximation 
Bk- I , as well as the connecting chains C k ,  p, and therefore also V k ,  all 
vanish. Formula (IV) simplifies to 

Vk+l = A k  - Bk. 

In other words, there exists a simplicial chain homologous to each closed 
singular chain. 

is simplicial. By a 
g-fold normal subdivision of A - one obtains the chain B - I and from this 
one obtains the simplicial approximation Bk- ' .  We claim that Bk- '  = A & - ' ,  
because, in general, when one simplicially approximates the g- fold subdivision 
B ' of an arbitrary simplicial chain A ', one again obtains the chain A '. 

The claim is correct when i = 0. In that case the 0-dimensional chain A' 
coincides with its g-fold normal subdivision and each 0-simplex of A' remains 
fixed during the simplicial approximation. Let us assume that the claim has 
been proved for ( i  - 1)-dimensional chains A ' - ' ,  in particular, for the 
boundary of an i-simplex E' of A '. Denote the g-fold normal subdivision of 
E' by E i .  On simplicially approximating Ei one obtains a chain U'. By the 
inductive hypothesis, %aEi transforms to ClLaE'. Since the boundary of the 
approximation is equal to the approximation of the boundary, we have 

Now assume further that the boundary A k - '  of A 

%a U' = %aE'. (1) 

If e' is a subsimplex of E;, then under the approximation the vertices of e' 
will transform to certain vertices of E'; thus e' itself will transform either to 
EE' ( E  = ? 1) or to a face of E'. In the latter case the approximation of e i  is 
degenerate and makes no contribution to the approximation of E'. The 
approximation U' can therefore only be a multiple of E' and, using (I), one 
has U' = E'. 

If then, 
A ' =  y E ' + ' y , ' E ' +  . . . 

is an arbitrary simplicial i-chain of R" and if 

B' = + ty'J7? + . . . 
is its g-fold normal subdivision, then its simplicial approximation is 

B' = yu' + ry'u' + . . . 
= Y E ' +  ' y ' E ' +  . . . 

= A '. 
Thus the claim is proved for the dimension i ,  and (by induction) in general. 

We can therefore set A k - '  = Bk- '  in the formulas (I) through (IV). 
Formula (111) becomes 

%a vk = 0, 
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that is, V k  is closed. By construction, moreover, V k  lies* on the subcomplex 
a k -  1 which is formed by all of the (k - 1)-simplexes of A ' - I .  By simplicially 
approximating V k  in the complex a"-' one obtains a homologous simplicial 
k-chain on a"-'. But this must be the k-chain 0 since A k - '  contains no 
k-simplexes. Consequently, V" - 0. Together with formula (IV), which one 
can also write as A - Bk - V k  - 0, this gives A - Bk. 

This completes the proof of the approximation theorem. The topological 
invariance of the simplicial homology groups has been demonstrated and at the 
same time all concepts and theorems which are based upon homology properties 
have been proved to be topological properties of the complex.** For example, the 
Betti numbers and torsion coefficients are invariant, since they are determined 
directly by the homology groups. The connectivity numbers are invariant, because 
they can be expressed in terms of the Betti numbers and the number of even 
torsion coefficients. The Euler characteristic is invariant and is the same for all 
decompositions of a complex, since it is the alternating sum of the Betti numbers. 
It is easy to show that the properties listed above of the simplicial 
decompositiom of a complex do not change when we go to new 
decompositions by means of certain subdivisions and gluings such as we shall 
encounter in Section 37. We do  not have to investigate explicitly those 
subdivisions of the simplicial decomposition at all, for we have already 
demonstrated that any two decompositions of one and the same complex are 
identical as far as properties listed above are concerned, independent of 
whether or not they have a common subdivision. 

The result we have achieved goes much further than this proof of 
invariance. We could have constructed a bridge from one simplicial 
decomposition to another using simpler methods." But-and this should be 
stressed particularly-we have defined the homology groups in a topologically 
invariant manner and have thereby freed ourselves once and for all from the 
simplicial decomposition by which the complex is constructively presented to 
us. Thus in the future we shall not have to make step by step approximations. 
This significant advantage, particularly in regard to mapping theorems for 
manifolds, repays the effort we expended in obtaining the invariant 
definition. 

31. Deformation and Simplicia1 Approximation of Mappings 

The theorem to which we now turn our attention is also an approximation 
theorem. However, it deals not with the approximation of singular chains but, 
rather, with approximations of continuous mappings of a complex P into a 

*It  is obvious that the chain C k  appearing in the sum V k  = Ck + lies on ak- ' .  That it is 
also true for 

**It should be remembered here that the kth singular homology group and also the kth 
simplicial homology group ($18) are also defined for k > n (the dimension of the simplicial 
decomposition) and that the coincidence of the two has been proved. 

follows from the previous considerations in this section. 



116 I V. SIMPLICIA L APPROXIMA TlONS 

complex K". In order to formulate the theorem we must introduce two 
concepts which play an important role in topology. These are the concept of 
the deformation of a mapping and the concept of a simplicial mapping. 

For simplicity we shall assume that the complex P is finite. Let us map it 
in two different ways into Km, by means of two continuous mappings go and 
g,. We will say that go is homotopically deformable to g, if there exists a 
''continuous family of mappings between go and g,." By this we mean the 
following: there exists a family of mappings such that to each value of the 
parameter 1 ,  varying in the interval 0 S t 5 1, there corresponds a mapping g,; 
the given mappings go and g, correspond, respectively, to the particular values 
I = 0 and t = 1, and the image g,(P) of a point P of W will depend in a 
continuous way on the parameter t and the point P. 

An equivalent definition of a homotopic deformation is the following: Let 
$2'' X t be the topological product of R" and the unit interval 0 5 t 5 1. Then 
the mapping go will be homotopically deformable to the mapping g, if and 
only if there exists a continuous mapping f taking P X t into K" in such a 
way that f ( P  X 0) = go(P) and f ( P  X 1) = g , ( P ) .  For a family of mappings of 
9'" into K" is defined by the mapping of P x f if one sets 

conversely, * a continuous mapping f od P X t is defined by a continuous 
family of mappings g, of 9'' by means of Eq. (1). 

The second definition is preferred, because the whole family of mappings g, 
is given by a single mapping f of the topological product. Q" X t is called the 
deformation complex of R" and t is called the deformation parameter. 

It is convenient to embed the deformation complex into a Euclidean space 
in the following manner: we embed the finite simplicial complex W in the 
linear subspace t = 0 of the Euclidean space %'+I  having coordinates 
x,,x,, . . . , x,, t preserving the simplicia1 decomposition of P. According to 
Section I1 this is possible whenever r 1 2 n  + 1. We then subject W to the 
translation which carries the linear subspace t = 0 to the linear subspace 
t = 1; Q" thereby sweeps out the deformation complex P X t. 

If go is deformable to g,, then obviously g, is deformable to go. If g, is 
deformable to still another mapping g,, then go is also deformable to g,. 
Because of this, one can regard the continuous mappings of P into K" as 
being divided into classes of mappings which are homotopically deformable 
to one another, the so-called mapping classes. 

We have only required continuity of the mappings g, (0 9 t S 1). If the 
mappings are all topological as well, then we speak of an isotopic deformation 
of the mapping go to the mapping g,. We do not require that the mapping f of 
the deformation complex into K" be topological. A congruent displacement 

Editor's note: The hypothesis that g is simultaneously continuous in both t and P is needed 
here. 
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of a circular disk, Qz in the Euclidean plane K2 is an example of an isotopic 
deformation. 

I t  may happen that K" coincides with 9". so that g, is a self-mapping of P. 
In the particular case that go is the identity mapping, the continuous family of 
self-mappings g, will be called a homotopic (or isotopic, respectively) 
deformation of the complex 9" into itsev. In the treatment to follow we shall 
deal only with homotopic deformations and we shall, therefore, usually omit 
the adjective "homotopic." 

A simplicial mapping of a simplicial complex 58" into a simplicial complex 
K" is defined to be a continuous mapping of R" into K" such that each 
simplex &' of the simplicial decomposition of R" ( i  = 0,1, . . . ,n)  is mapped 
linearly onto a simplex X J  (J 5 i )  of K" (Section 9). If one is given the image 
vertex in K" for each vertex of Q", then the simplicial mapping is completely 
determined from this combinatorial information. The only condition required 
of the assignment of vertices, is that the vertices of each simplex of Q" map to 
the vertices of some simplex of K". 

The theorem which we wish to prove states, in its essentials, that each 
continuous mapping of YP" into K" is deformable to a simplicial mapping, 
provided that the simplicial decomposition of R" is sufficiently fine. 

Let go be a continuous mapping of P' into K". By making a sufficiently 
fine subdivision of R" we can ensure that the image of each simplicial star of 
R" lies entirely in the interior of a simplicial star of K". To each vertex P, of 
R" we assign a vertex II, of K" such that the star with center point II, 
contains the image of the star with center point P, in its interior. If we denote 
the vertices of an i-simplex &' of R" by Po,P , ,  . . . , Pi, then the stars of K" 
having center points IIo,II,, . . . , II, will, respectively, each contain the 
image go(&') in its interior; here, the vertices II, need not all be distinct from 
one another. I t  follows that II,, II,, . . . , II; are vertices of a simplex of K". 
For if go(P) is the image of an arbitrary point P of &' and X is a simplex of 
K", on which the point go(P)  lies, then each one of the stars with center 
points II,,,II,, . . . , II; will contain go(P)  in its interior. Thus II,,II,, . . . , I I i  
are vertices of X and consequently are vertices of a simplex XI of K". A 
simplicial mapping g ,  of 9" into K" is thus determined by assigning the 
vertices P, of Q" to the vertices II, of K". 

The image point g l ( P )  of the previously mentioned point P of &' belongs to 
X i  and thus, like go(P) ,  belongs to X and can therefore be connected with 
go(P)  by a straight line segment. But this also shows that go can be deformed 
to g ,  . One lets the point go(P)  move along the connecting segment to g , ( P ) ;  
in some cases this may amount to staying "in place." More precisely: We 
define a continuous mappingf of the deformation complex .W X f into K" by 
means of the specifications: f ( P  X 0) = go(P), f ( P  X 1) = g , ( P ) ,  and the 
segment traversed by P on Q" x t when t increases from 0 to 1 maps linearly 
onto the segment connecting the points go(P)  and g , ( P )  (which may be a 
single point). Continuity of the mappingf follows from the lemma in 4 14. Our 
result is 
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THEOREM I. (DEFORMATION THEOREM). Each continuous mapping of a 
complex 9" into a complex K" can be deformed (homotopically) to a simplicia1 
mapping, provided that P has a sufficiently fine simplicia1 decomposition. 
During the deformation the image of a point P of P will leave none of the 
simplexes of K'" to which it belonged at the start of the deformation; that is, it 
will move only on the lowest dimensional simplex of K" to which it belonged at 
the start of the deformation. 

From Theorem I1 of $27, a continuous mapping of P into K" induces a 
homomorphism from the kth homology group of P to the kth homology 
group of K'". We shall now examine the influence of a deformation of the 
continuous mapping upon the homorphic mapping between the homology 
groups. 

. THEOREM 11. Let go and g, be mappings o f P  into K". Let A k  be a singular 
chain on R" having boundary A k - ' .  Let Ak, having boundary Ak- ' ,  and Bk, 
having boundary B k - ' ,  be the images of A k  and A k - '  under go and g,,  
respectively. If go is deformable to g,, then there will exist singular connecting 
chains rk and rk + I which satisfy the connection formulas: 

% a r k  = ~ k -  I - ~ k -  1 

%ark+' = Ak - Bk - rk. 
p will lie on the point set which the image set of A k -  ' sweeps out during the 
deformation; I'k+' will lie on the point set which the image set of A sweeps out 
during the deformation. In particular, if A k - '  = 0 (so that A k - l  = 0 and 
@ - I  = 0), then = 0 and Ak - Bk (cf. Fig. 52). 

Embed the deformation complex P x f into the Euclidean space 
%'+' as done above in this section. Let the chain A be given by the sum 

Proof. 

A k  = a x k  + 'a 'Xk  + . . . . 
If x k  is a preimage simplex of X k  and ak+'  is a prism erected over it having 
roof face qk,  then we can map ak+'  continuously onto the subset of P x f 

I 

FIG. 52 
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which is swept out during the translation by the points of the singular simplex 
X k :  x k  is mapped as before to the singular simplex X "  of P X 0, while each 
axis parallel interval of & k + l  transforms linearly to the segment swept out by 
the image of its floor point in Q" X t during the translation. We decompose 
d k + l  simplicially and orient the subsimplexes as in $29. The oriented sim- 
plexes or chains 

X k ,  y k ,  2 k +  I ,xyk-l, yyk-I,zyk 

will then transform to singular chains 

on R x t, under the mapping of d k + l  into R" X i. We proceed in the 
corresponding way for the remaining singular simplexes of A and adding, we 
obtain the singular chains 

B k = a Y k + ' a ' y k +  . . .  
Ck+l = UZk+I + JUIZk+l + . . . 

C k  = UCZyk + 'UC'Zyk + . . . , 
Y Y 

and the connection formulas of $29 hold. 
The singular chains C k + '  and C k  lie entirely in the subsets of Q"' X t which 

are swept out by the chains A and A ' - I ,  respectively, under the translation. 
This is clear for C k + l .  For C k ,  we should note that the point set swept out by 
A k - '  is not, in general, the same as the set theoretic union of the point sets 
which are swept out by the individual singular simplexes Xyk-','Xyk-l, . . . . 
For it may happen that such a simplex may belong formally to the right-hand 
side of A k - l  but will not belong at all to A k - l ,  either because it is degenerate 
or because it is cancelled out by other simplexes. If now 

we need only to prove that also 

and 
(K)Zk = 2 ("Z,". 

P 

But this follows immediately from the construction and from the definition of 
equality of two singular simplexes. 

Under the mapping of !f?" X t into K"' the singular chains A k ,  
, ~ k ,  ~k - I r k  r k  + I 

9 ,  > ,  transform to the chains Ak, Ak - I 3 ,  
~ k - I  Bh gk-I Ck ch+l 
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of the theorem. From Theorem I in $27, the connection formulas are pre- 
served: 

%aAk = A ~ - I ,  (1) 

%3Bk = B k - ' ,  (11) 

(111) 

(IV) 

%ark = Ak- I - Bk- 1 

% a r k + '  = Ak - Bk - rk 

Having obtained formulas (111) and (IV), we have proved the connection 
formulas of the theorem. The chain rk lies on the image of the point set 
which A k - '  sweeps out during the translation on W X t; the chain rk+' lies 
on the image of the point set which A k  sweeps out during this translation. 
This completes the proof of Theorem 11. 

Since, according to Theorem 11, the images of a closed singular chain A 
under the mappings go and g , ,  which are deformable to one another, are 
homologous to each other on K"' we have 

THEOREM 111: The homomorphic mapping of the kth homology group of .Q" to 
the kth homology group of K", which is generated by a continuous mapping of P 
into K", from Theorem 11 of $27, will remain unchanged under homotopic 
deformation of the mapping. I t  is, consequently, an invariant of the mapping 
class. 

In particular, this is true when we deal with a deformation of a complex Q? 
into itself. Then Q" coincides with K"' and go is the identity mapping. Since 
the self-mapping of the homology groups of W generated by go is the identity 
mapping, we have 

THEOREM IV. The homomorphic self-mapping of the homology groups of a 
complex 9" generated by a deformation of W into itself is the identity mapping. 

Theorem 111 gives us a necessary though by no means sufficient condition 
that two mappings of Q" into K"' belong to the same mapping class. For 
example, let Q" = K" be the n-sphere G", that is, the boundary of an 
( n  + 1)-simplex On+' = (POP, * * PnPn+,), and let the self-mapping g,  of G" 
be defined by means of the linear mapping of @ " + I  which fixes the vertices 
P , , P , ,  . . . , P,+, individually while interchanging Po and PI .  We ask: Does 
g, belong to the mapping class of the identity? That is, can one deform g ,  
homotopically to the identity mapping? The chain* %aE"+'  on G" forms a 
homology basis for the nth homology group of G", which is the free cyclic 

transforms to - E " + '  = +(PIPo . P,+,); thus %ilaE"+' transforms to 
-%dE"+' .  Thus the homorphism of the nth homology group, induced by g,  

group. Under the mapping, the oriented simplex En+'  = +(POP, . . . P"+J 

*As always, En+' denotes the simplex En+' provided with a definite orientation. 
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is not the identity. Consequently, from Theorem IV, g, cannot belong to the 
mapping class of the identity. 

Problem 

Consider the mapping which interchanges diametrically opposite points of the unit n-sphere in 
Euclidean (n + I)-space. For which dimensions will i t  belong to the mapping class of the 
identity? (Express the diametral point interchange as a product of mirror reflections.) 

As a further application of Theorem 11, we shall determine the homology 
groups of projective n-space !Qn. 

We first determine the dimensions for which !Q" is orientable. For this 
purpose, we remember that q" arises from the n-sphere B" by means of 
identification of diametrically opposite points. We coherently orient a 
centrally symmetric simplicial decomposition of the n-sphere, for example, 
the octahedral decomposition (9 14). Since the diametral point interchange is 
the product of n + 1 mirror reflections and the orientation of B" is reversed 
by each reflection, the orientation of G" will be preserved or reversed 
according to whether n is odd or even. For odd n, two oriented n-simplexes of 
G" map to the same oriented n-simplex of Q" and one obtains in this way a 
coherent orientation of !Q". For even n, on the other hand, it is impossible to 
orient !Q", because a coherent orientation could be "pushed back" to give a 
coherent orientation of G", whereas in the transformation of B" to !Q", paired 
coherently oriented n-simplexes of G" map with opposite orientations to an 
n-simplex of q". (One should verify the relationships for dimensions n = 2 
and n = 3.) Thus 9" is orientable for odd n and nonorientable for even n. 

We now introduce projective coordinates x,,x2, . . . , x,,+~ into Q", as in 
$14, and denote by qk the projective subspace described by the equations 

Xn+1 = 0. 

In the sequence !@",Q'-', . . . , Q',!Q0 each of the projective spaces is 
contained in its predecessors. 

In order to determine a homology basis for dimension k (0 < k < n) we 
begin with a closed singular k-chain U k .  If U k  happens to pass through the 
point (O,O, . . . , 0, I) ,  then we push it away from this point by means of a 
simplicial approximation in a simplicial decomposition of V which has this 
point as the midpoint of an n-simplex. We then remove from V the interior 
points of a small ball about the point (O,O, . . . , 0,l) which does not intersect 
U" to form a bounded pseudomanifold and we transform the latter to the 
projective space $ " - I  by means of a family of transformations 

x; = XI ,  x; = x2, * . . , x:, = X", x;+1 = txfl,1, 

where t runs from 1 to 0. This transforms U k  to a homologous chain ' U k  
(Theorem 11). If k < n - 1, one repeats the same procedure in Q"-' and 
pushes 'Uk into q"-2. In this way one finally arrives at a chain V k -  U k  
which lies in Qk. If k is even, so that !Qk is nonorientable, then all closed 
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k-chains of p k  are homologous to 0 on pk; that is, for even k the kth 
homology group of '@" consists of the null element alone. If k is odd, then 
there exists a closed k-chain P k  on p k  which arises by means of the coherent 
orientation of !Qk such that any other closed k-chain V k  on p k  is homologous 
to a multiple of P k .  For odd k, the kth homology group of p" is cyclic and P k  
forms a homology basis. More precisely, it has order 2. For Qk+' is a 
nonorientable pseudomanifold and consequently has exactly one k- 
dimensional torsion coefficient, which has the value 2 ($24). Thus 2 P k  - 0 in 
( 5 B k + ' .  It is certain that P k  itself is not already null homologous in pk+l .  It is 
also not -0 in W. For if P k  were the boundary of a chain U k + '  of V, then 
one could push U k + '  into the subspace pk+l by means of the procedure 
already applied to v, while leaving P k  pointwise fixed. P k  would then be the 
boundary of a chain V k + '  of '$Ik+', which is not the case. Our result is 

The odd dimensional homology groups of projective n-space V have order 2, 
and those of even dimension consist of the null element alone; on& the 0th 
homology group is an exception for each value of n and the nth for odd n;  these 
are free cyclic groups. 

One can use the coherently oriented projective subspaces P I ,  P 3, P 5 ,  . . . as 
homology bases of the odd dimensions.'* 



c m m R  FIVE LOCAL PROPERTIES 

The invariance proof gwen in the preceding chapter has given us the homology groups as our 
first topological invariants of a complex. But the homology groups give only a coarse 
classification of complexes. Complexes which have the same homology groups are not necessarily 
homeomorphic. This is demonstrated by the example of an interval (I-simplex) and a disk 
(2-simplex). These complexes have the same homology groups; the 0th homology group is the 
free group having one generator, while all other groups consist of the null element alone ($18 and 
$19). Nevertheless, the two complexes cannot be mapped topologically one onto the other. This 
was demonstrated in $1. 

Homology groups were invariants “in the large, ” and cannot be calculated until the whole 
complex is known. On the other hand, the difference between a line segment and a disk is 
already apparent in arbitrarily small neighborhoods of points belonging to those respective 
complexes. Even the neighborhoods cannot be mapped topologically one onto the other. In this 
chapter we shall produce “local” invariants, which we shall call properties of a complex at a 
point, and which are determined when one studies an arbitrarily small neighborhood of the point 
in question. The most important of these local invariants are the “homology groups at a point.” 
With their aid we shall prove the invariance of dimension, which up to now has been defined 
only for simplicial decompositions, and we shall prove the invariance of boundary, of the 
property of being a pseudomanifold, of orientability, and other properties.” 

Our results will be valid for infinite complexes as well as for finite complexes. 

32. Homology Groups of a Complex at a Point 

Let R” be a connected simplicial complex of dimension n > 0 and let P be 
a point of en. Draw a straight ray outward from P in the i-simplex to which P 
belongs, in the simplicial decomposition of Q”. This ray will leave the simplex 
at a point Q. The totality of all intervals (PQ) which one can extend outward 
from P exactly fills the subcomplex 52 of all simplexes of Q” to which P 
belongs. We call 52 the simplicial neighborhood of P in Q”; 52 is a neighborhood 
of P in Q” because of condition ( k 4 )  of $10. On the other hand, the set of 
endpoints Q of all intervals ( P Q )  forms the so-called neighborhood complex 3 
of P in Yf”; % is not a neighborhood of P ,  but on the contrary consists of the 
totality of simplexes of 52 which do not contain P. In particular, if P is a 
vertex of the simplicial decomposition, then L? is the simplicial star with 

123 
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center point P and outer boundary %. If P is not a vertex, then one can 
always find another simplicial decomposition in which P is a vertex, simply 
by projecting from P to the neighborhood complex 3 of P. 

We now define the kth homology group of Q" at the point P to be the kth 
homology group of the neighborhood complex 3 of P. The homology groups 
of R" at P are, then, defined with respect to a particular simplicial 
decomposition of R". We will show, however, that they are in reality 
independent of the simplicial decomposition and are therefore topological 
invariants of Rn.,' 

EXAMPLE 1. Let P be an inner point of an n-simplex 0" of R" (n > I ) .  The 
neighborhood complex 3 will be formed by the boundary of 0" and is 
therefore an (n - 1)-sphere. The homology groups of dimensions 1 through 
n - 2 of R" at P will then consist of the null element, those of dimensions 0 
and n - 1 are free cyclic groups (819). 

EXAMPLE 2. Let P be an inner point of an (n - I)-simplex En- '  of .P such 
that E n - '  is incident with n-simplexes Ey,@;, . . . , 0; (Fig. 53). If n > I and 
B , ,  B,, . . . , Bk are the vertices of @;,@;, . . . , which lie opposite to the 
common face, then the neighborhood complex 3"-' of P consists of k 
simplicial stars Gt?-',BK-', . . . , Gtnk-' having center points B , ,  B, ,  . . . , Bk 
and whose common outer boundary is GnP2, the boundary of E n - ' .  We wish 
to compute the (n - I)th homology group at P. For this purpose we orient the 
(n - 1)-simplexes of (3tL-I coherently and such that the resulting (n - 1)- 
chain St;-' together with the simplex E n - '  having fixed orientation forms a 
closed chain.* This is possible because St;-' and E"' together form the 
boundary of the simplex E:. We then have 

%dst,.-' = -%dE"-l .  (1 )  

The k - 1 closed (n - I)-chains 

st;-, - st;-l,st;-l - st,"-', . . . , st,":; - st,"-' 

c a,(St,"-' - st,"-y-o 

(2) 

are homologously independent on 3"- ' .  For it follows from 
k -  I 

v =  1 

that 
k -  1 c a,st,"-'- (;$; a")st,"-l -0. 
u =  I 

We can replace the homology symbol by the equality sign since no 
n-simplexes appear in the complex an-' on which this homology holds (918). 
Thus a, = a, = - . * = a,- , = 0, since no two chains Stp and St, have a 
common ( k  - 1)-simplex for p # Y. 

Recall that we indicate the transformation from nonoriented to oriented objects by using 
Roman instead of German letters. 
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FIG. 53 

On the other hand, each closed ( n  - I)-chain U " - '  on 91"-' is a linear 
combination of the chains St:-' .  For if  an ( n  - I)-simplex of St:-' appears 
in U " - '  with multiplicity b,,, then, because U " - '  is closed, all ( n  - 1)- 
simplexes of St:-' must appear in it with multiplicity b,,. Consequently, 

( J n - I  = b , S t ; - '  + b,Sf;-I + . . . + bkSt,,?', 

Because of ( I ) .  !.ddU"-' is equal to zero only if C t = l b r  vanishes. In that 
case, however, one can bring U " - '  to the form 

k -  I 

Y =  I 

Thus the ( n  - ])-chains (2) describe a homology basis for the dimension 
n - 1.  For n > I ,  the ( n  - 1)th homoloa group of %"-' is the free Abelian 
group having k - 1 generafors. 

In  the case n = I ,  P is the common vertex of the I-simplexes so that '21' 
consists of k points, and the ( n  - 1)th homology group of 'u' is the free 
Abelian group having k generators. 

In  order to prove that the homology groups at P are independent of the 
particular simplicial decomposition of $I", we shall consider two simplicial 
stars on yt", D and Q', having the same center point P. We only require of 
these simplicial stars that they are neighborhoods of P in Q"; we do not 
require that there exist a simplicial decomposition of Qn such that Q or D' is a 
simplicial neighborhood of P. I t  is not possible to prove that the outer 
boundary 91 of Q is homeomorphic to the outer boundary 3' of a'. For the 
existence of such a homeomorphism of ')I onto 'u', would imply that there 
exists a continuous mapping 'p of ,2I into 3' and a continuous mapping 4 of 2l' 
into 91 such that the mapping 4'p (first 'p, then 4) of 3 into itself and, likewise, 
the mapping cpJ/ of 91' into itself are each the identity mapping. Rather, we 
shall be able to prove 

THEOREM I. There exists a continuous mapping 'p from 3 into 91' and a 
continuous mapping +!I from 3' into 'u such that the mappings J/cp of 'u into itself 
and cplc/ of 91' into itself are both deformable to the identity. 

The proof appears later in this section. 
From Theorem I there follows 

THEOREM 11. 2l and %' have the same homology groups. 



126 Y. LOCAL PROPERTIES 

Proof: From $27, under the mapping rp of 8 into 8’ the kth homology 
group Qk of 8 will be mapped by a homomorphism 9 into the kth homology 
group ‘Qk of 8’. Likewise, a homomorphic mapping, I,!J, will be carried out 
under the mapping $. Since the self-mapping $rp of ‘u is deformable to the 
identity mapping, the associated homomorphic self-mapping $4 of the group 
Qk is the identity mapping of the group ($31, Theorem IV). By the same 
reasoning, the homomorphic self-mapping 94 is the identity. This implies, 
however, that the homomorphic mappings 9 and + are one-to-one corre- 
spondences and that 9 is the reciprocal mapping of +. Groups Qk and ‘Qk are 
therefore isomorphic. 

If, in particular, 8 and 8’ are neighborhood complexes of P in two 
different simplicial decompositions of W, then from Theorem I1 follows 

THEOREM 111. The homology groups at P are independent of the simplicial 
decomposition used. 

One gets the result, at the same time, that the determination of the 
homology groups at P does not require a simplicial decomposition of all of 
W. It suffices to know a simplicial star Q which is a neighborhood of P and 
whose center point coincides with P.  The homology groups at P are then the 
homology groups of the outer boundary 8 of S2 and are therefore already 
determined by an arbitrarily small neighborhood of P. 

Proof of Theorem I .  First, we make a few introductory comments. The 
simplicial star Q consists of the totality of straight line segments ( P Q )  
connecting P to the points Q of 8. Starting from P,  when one marks off a 
fraction of each of the segments ( P Q ) ,  say I l k ,  then one obtains from the 
totality of segments ( P R )  = ( l / k ) ( P Q )  a new simplicial star !dl having outer 
boundary Iu,. The star 3,  arises from Q by means of a “proportional 
shrinking,” and it is therefore homeomorphic to S2. Each arbitrary 
neighborhood U ( P / Q ” )  of P contains such proportional diminutions of Q .  
For the intersection of U ( P / Q “ )  with Q is a neighborhood U ( P / Q )  of P, from 
55,  and in it lies a proportional diminution of S2. On the other hand, each 
proportional diminution 8, of 52 is a neighborhood of P in Q and therefore, 
from Theorem VII of $7, is also a neighborhood of P in Q”. The totality of 
segments ( R e )  forms a “zone,” which we will denote by (8,8J (Fig. 54). To 
“project” this zone onto “J (or A ,, respectively) will mean that we map each 
segment ( R e )  into the endpoint Q (or R ,  respectively). In like manner we can 
define a proportional diminution, a zone, and a projection of the zone for the 
simplicial star Q’, where it is to be noted that a straight line segment in Q’ is 
not in general a straight line segment in S2, 

We now look at a nested sequence of six simplicial stars 

Q ,  > 1 522,  Q;,  Q 3 ,  Q; ,  (3) 

where S 2 , , Q 2 , 5 2 ,  are proportional diminutions of Q, and Q’,,Q;,S22; are 
proportional diminutions of 52‘ and each star of the sequence lies entirely in 
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FIG. 54 

the interior of its predecessor. One can construct these stars sequentially by 
setting 52 = 52, and then choosing 52; as a proportional diminution of 52' such 
that it lies entirely in the interior of 52, .  One constructs Q2 in the same way, 
and so forth. We shall denote the outer boundaries of the stars (3) by 

31, PI;, 9l2, 9li, 3 3 , 9 l i .  

(~l ,Pl,) ,(9[;, '11;),(3, ,33),(3;,~i) ,  

(4) 
They give rise to four zones: 

in which the outer boundaries 3;  , '$I2, S;, 3,, respectively, lie. For example, 
3; lies in the zone (94, , Y12) because '11; belongs to the point set !2, - Q2, for by 
assumption '11; belongs to 52,  and, on the other hand, 52, lies in the interior of 
52; and thus can have no point in common with %;. 

Since P I , ,  %,, '11, are homeomorphic to 9l, while a;, 9li, 9li are homeomor- 
phic to W', i t  will suffice to introduce mappings cp and I) of the theorem as 
mappings of 91, into and '11; into a2, respectively. We define mappings cp 
and I) as follows: Project the zone (9l',,3i) onto 91;. The outer boundary 912, 
which belongs to this zone, is thereby mapped by a continuous mapping cp 
into 3; .  On the other hand, when we project the zone ('11,,913) onto a,, 'Ir; is 
mapped by a continuous mapping, J I  into 912 (Fig. 55) .  

If go denotes the identity self-mapping of 8,  and g, denotes the 
self-mapping @, then the claim that go is deformable to g, is equivalent to 

FIG. 55 
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the following claim: We can map the topological product 912 X t of 'u, with 
the unit interval (0 5 t S 1) into 91, by a continuous mappingf in a way that, 
for each point L of 212, f ( L  X 0)  = go(L) = L and f ( L  X 1) = g , ( L ) .  To  
constructfwe decompose U2 x t into two parts, 91, X r and 91, X 5, where r is 
the half-interval 0 5 t d f and d is the half-interval f 5 t 5 1. We map these 
two parts in the following way: For each point L of a, the half-interval L X r 
is mapped linearly onto the straight line segment connecting L = go(L) with 
cp(L), that is, onto the projection ray which L describes during the projection 
of the zone (ill;, a;) onto 3;. The half-interval L X 5 is mapped linearly onto 
the straight line segment connecting cp(L) with rc/cp(L) = g l ( L ) ,  that is, onto 
the projection ray which q ( L )  describes during projection of the zone ( V 1 2 , Y 1 3 )  
onto Y12.  Given the two partial mappings, one obtains a mapping f of the 
whole of V12 x t; this mapping is continuous, from $14. The image of 912 X r 
belongs to the zone (a',, 91;), the image of a2 X 5 belongs to (942, ?I3); thus the 
image j (S2 x t) belongs to (aI,a3). If we project the zones (91,,912) and 
(V12,913) simultaneously onto a,, then the point set @, x t) will likewise be 
pushed onto 912. Since the pointsf(L X 0) = go(L) = L andf(L X 1) = +cp(L) 
= g l ( L )  already lie on 912, they remain unchanged under this projection. 
From Theorem IV of 56, the mapping f followed by this projection is a 
continuous mapping, f(V12 X t), which is what we are looking for. Thus the 
deformability of Ic/cp to the identity mapping has been proved. The 
deformability of CPJ, to the identify mapping follows in a corresponding 
manner. 

Another way of expressing the invariance of the homology groups at a 

THEOREM IV. If two complexes Q and @' are homeomorphic in neighborhoods 
of the points P of 9 and P' of R', that is, there exist neighborhoods 
w of P and w' of P' which can be mapped topologicalh onto one another so that 
P and P' correspond to one another, then the homology groups of YB at P 
coincide with the homology groups of R' at P' .  

Proof. Choose a simplicial star 52 on w having center point P so that 52 is a 
neighborhood of P. Under the topological mapping of w onto w', 52 will 
transform to a simplicial star 3' having center point P'. Since neighborhoods 
transform to neighborhoods under topological mappings, 9' is a neighbor- 
hood of P'. The homology groups at P and at P' are the homology groups of 
the homeomorphic outer boundaries of 52 and a', respectively, and are 
therefore isomorphic. 

Problems 

point is the following 

I .  What are the homology groups at a point of Euclidean n-space? 
2. Show that it is impossible to map an open subset of a Euclidean space topologically onto an 

3. If 0' ( k  < n) is a topological simplex in R", show that there exist points which do not 
open subset of a Euclidean space of higher dimension. 

belong to (3' in each neighborhood of an arbitrary point, P of Qk. 
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33. Invariance of Dimension 

Several of the concepts introduced previously were defined in terms of a 
particular simplicial decomposition of a complex, for example, dimension, 
pseudomanifold, and orientability. They might, then, not really describe 
properties of the complex but, instead, describe properties of the simplicial 
decomposition. Given two distinct decompositions of one and the same 
complex, i t  is conceivable that one decomposition might be 3-dimensional 
and the other 4-dimensional, one might be orientable and the other 
nonorientable, one might be bounded and the other unbounded. We now 
possess the means to show that something of this nature cannot, in fact, 
occur. All possible simplicial decompositions of a complex will, for example, 
be simultaneously n-dimensional or orientable or bounded. We shall free 
these concepts from any simplicial decomposition and, in doing so, shall 
ensure their invariance with respect to topological mappings. For example, if 
the complexes .$TI and $1, are homeomorphic and $, is n-dimensional, then $1, 
is also n-dimensional. That is, an n-dimensional simplicial decomposition of 
RI  will transform to an n-dimensional simplicial decomposition of Q2 under 
the homeomorphism from 9, to R,. 

We shall prove the invariance of the following concepts: dimension, pure 
complex, boundary, closed pseudomanifold, orientability, bounded pseudo- 
manifold. The proofs will be carried out in a way that the concept in question 
is characterized independently of any simplicial decomposition. In this 
context, the homology groups at a point, which we know to be topologically 
invariant, play a decisive role. 

We begin with the invariance of dimension. We have already characterized 
the 0-dimensional complexes in an invariant way, without making reference 
to a simplicial decomposition: The 0-dimensional complexes are those 
complexes which consist only of isolated points. 

In an n-dimensional simplicial complex Q" (n > 0) there exists at least one 
n-simplex &", but no simplexes of higher dimension. At the midpoint of &", 
the (n - I)th homology group differs from the null element; it is the free 
Abelian group having one or, for n = I ,  two generators, respectively (Example 
1, $32). At each point of R" the homology groups for each and every 
dimension greater than n - 1 consist of the null element alone, since the 
neighborhood complex of the point only contains simplexes having dimension 
n - 1 or less. This gives the following invariant characterization of 
dimension: 

34. Invariance of the Purity of a Complex 

Let 9" be an arbitrary complex, not necessarily pure, having a particular 
simplicial decomposition. Let 6' be the set of all i-simplexes of 9" which are 
not faces of (i + I)-simplexes; 6' can also be empty. The set 6' can be 
characterized independently of a simplicial decomposition, as follows: 6' 
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consists of all isolated points of W; for i > 0, Q' is the closed hull (i.e., the 
closure) '6' of those points P of R" which possess the following two 
properties: 

1. The ( i  - 1)th homology group at P is the free Abelian group on two 
generators if i = 1, and the free cyclic group when i > 1. 

2. There exists a neighborhood of P whose points also have property 1. 

It is clear that 0' is contained in 'a'. For all inner points of the i-simplexes 
of 6' possess properties 1 and 2 and therefore belong to '0'. Since '0' is 
closed, the boundary points of the i-simplexes of 6' will also belong to '6'. 
Conversely, if a point P possesses properties 1 and 2, then let Q' be a simplex 
of highest dimension on which P lies. Because of property 1, j cannot be 
smaller than i. I f  i t  were true tha t j  > i ,  then in each neighborhood of P there 
would exist inner points of Q' at which the ( i  - 1)th homology group would 
be the free cyclic group for i = 1 and the null element for i > 1, in 
contradiction to property 2. The simplex of highest dimension on which P 
lies, Q', is therefore an i-simplex and belongs to 6'. 

THEOREM 1. The dimension, n of a complex R which does not consist 
exclusively of isolated points is the smallest integer having the property that the 
homology groups of dimension n, n + 1, . . . at each point of R consist on+ of 
the null element. 

In  particular, homogeneous complexes of different dimension cannot be 
homeomorphic. This follows immediately from Theorem IV of 032. We then 
get 

THEOREM 11. In a homogeneous complex Rn, the homology groups at each 
point are those of the ( n  - ])-sphere. 

For each point P of 1P" has as a neighborhood a simplicia1 star whose outer 
boundary is homeornorpbic to the ( n  - 1)-sphere. 

One is relieved of the temptation to view the theorem of the topological invariance of 
dimension as an intuitively obvious fact when one observes that the invariance holds only for 
topological mappings. I t  does not hold for mappings that are one-to-one but not continuous, nor 
does it hold for mappings which are continuous but not one-to-one. A line segment, for example, 
can be mapped one-to-one onto the surface of a triangle, because both point sets have the same 
cardinality; i t  can also be mapped continuously onto the triangle, as demonstrated by the Peano 
curve which passes through each point of the triangle but has multiple points.*' 

Since 0' is closed, the closed hull of all the points P ,  that is, 'ai, belongs to 0'. 
Thus '0' is also contained in O', so that '0' = 0'. 

If, therefore, Q; and yi'; are distinct simplicia1 decompositions of the same 
complex Q", and 0; and 0; are the subcomplexes formed in R? and R;, 
respectively, by all i-simplexes which are not faces of ( i  - 1)-simplexes, then 
6; and 0; are both the same point set, '0'. 
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A pure n-dimensional complex is a complex such that the subsets '0' through 
are empty. I t  has thus been characterized in an invariant manner. t o n -  I 

35. Invariance of Boundary 

Let Qn (n > 1) be a pure complex having a particular simplicial decom- 
position and let 2z-I (v = 1,3,4,5, . , . ) be the set of those (n - 1)- 
simplexes with which exactly v n-simplexes are incident. 

We shall characterize Q;-I topologically. At an inner point of an (n - 1)- 
simplex of S;-I the (n - I)th homology group is the free Abelian group 
having v - I generators ($32, Example 2). When we denote by 2; the closed 
hull of all points P at  which the (n - I)th homology group is the free Abelian 
group having v - I generators, then accordingly 2i-I belongs to Q;. In 
general, Q;-I and 2; will not coincide, but we can show that Q ; - '  is 
determined by 2; in a topologically invariant manner.* 
2; is a subcomplex of the simplicia1 decomposition of 9" (or is empty). For if 

the free Abelian group having (v - 1) generators is the (n - l)th homology 
group at P .  then this group is also the (n - I)th homology group at all inner 
points of the simplex CF of lowest dimension on which P lies. All of these 
points have the same neighborhood complex and, therefore, the same 
homology groups. Thus all inner points of @ belong to 2;. Since Si is closed, 
all boundary points of @ will also belong to S;. Therefore, along with P, the 
simplex of lowest dimension on which P lies will also belong to 2;. But 2; is 
at most (n - I)-dimensional. For at  the inner points of an n-simplex of P' the 
(n - 1)th homology group is the free Abelian group of one and not v - 1 
generators, since the value v = 2 was excluded. 

If in 2; there exists an (n - 1)-simplex E n - ' ,  then there are exactly v 
n-simplexes of Q" incident with this simplex. For only in this case is the 
( n  - I)th homology group at an inner point of E n - '  the free Abelian group 
having v - 1 generators (Example 2, $32). Thus @ " - I  belongs to 2i-I and 
consequently 2;-' consists of the totality of (n - I)-simplexes of 2;. From 
$34, however, this subcomplex of 2; is determined in a topologically invariant 
manner by 2;. Since 2; in turn is determined in a topologically invariant 
manner by the given complex, i!;-I is associated in a topologically invariant 
manner with Sf". In the case n = 1,  S;-I consists of the totality of points of Q' 
at which the 0th homology group is the free Abelian group having v 
generators. 

Previously, we defined the boundary of a pure n-dimensional complex to 
be the totality of (n - I)-simplexes which are incident with an odd number of 
n-simplexes. From now on we define the boundary of a pure complex, in a 
topologically invariant manner, as the set theoretic union of the subcomplexes 

*The following example shows that, in general, 52; is larger than L!;-': let P consist of two 
is formed by the common vertex; 52; is empty. tetrahedrons which have one common vertex; 
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2;-I 2"-I p - I  , , , . . . . With this definition the topological invariance of the 
boundary of a simplex, of a closed n-ball, and of a convex region are assured. 

Problems 

Prove that the annulus and the Mobius band are not homeomorphic. 

36. Invariance of Pseudomanifolds and of Orientability 

We have already shown that property (PMI) of a closed pseudomanifold, 
that it is a pure finite complex, is topologically invariant ($12 and $35). We 
can formulate property (PM2) in a topologically invariant manner, as follows: 
the invariant subcompiexes 2:-' of those (n - 1)-simplexes which are 
incident with exactly v # 2 n-simplexes are all empty. It was shown in $24 
that the connectability condition (PM3) is equivalent to the requirement that 
the nth connectivity number q" = 1; the topological invariance of the 
connectivity numbers was proved in $30. 

The orientability of a closed pseudomanifold can be expressed by the fact 
that its nth Betti number is p"  = 1. The invariance of this was shown in $30. 

If an orientable closed pseudomanifold W has been simplicially decom- 
posed in two distinct ways and the decompositions have been oriented 
coherently, then we can regard the two oriented decompositions as two 
singular closed k-chains BY and B;.  Since the nth homology group is the free 
cyclic group and since the homology classes of B ;  and B; both generate the 
nth homology group, B ; -  ? B;.  If the + sign holds, then we say that the 
two simplicial decompositions have the same orientation. 

We can define the orientation of Q" without making reference to a 
particular simplicial decomposition by letting B ;  be an arbitrary singular 
closed n-chain which has the property that each closed n-chain is homologous 
to a multiple of B ; .  We will call such an n-chain an orienting n-chain on V. I f  
B; is another orienting n-chain, then B ;  and B; will determine the same or 
opposite orientation on R" according, respectively, to whether B ;  - BT or 

If an orientable pseudomanifold R", which has been oriented by a chain 
B ", is mapped topologically onto another pseudomanifold K" (which can also 
coincide with Q"), which in turn has been oriented by the chain B", then B" 
will transform to an oriented chain ' B "  of K". In this case, ' B " -  2B". We 
speak of a mapping with preservation or reversal of orientation according to 
whether the positive or the negative sign holds. The "mirror reflection" of the 
n-sphere, considered in $31, is an example of a mapping with reversal of 
orientation. 

The pseudomanifolds with boundary can easily be related to the closed 
pseudomanifolds with the help of the concept of doubling. We define 
doubling for a bounded pure complex 9" (n > 0) as follows: We take a 

B r -  - B; .  
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homeomorphic copy 'St" of .It", and we identify points of the boundary of St" 
with points of the boundary of ' i t "  which correspond to them by virtue of the 
homeomorphism between St" and ' S i " .  For example, we double a disk by 
attaching a second disk to i t ,  joining boundary to boundary; a 2-sphere then 
results. 

We can now characterize a pseudomanifold with boundary in a 
topologically invariant manner, as follows: A pseudomanifold with boundary is 
a bounded pure complex whose doubling is a closed pseudomanifold. The 
pseudomanifold with boundary is orientable if and on+ if its doubling is 
orientable. 

We leave the proof, which is purely combinatorial, to the reader. 



cmmmsix  SURFACE TOPOLOGY 

The principal problem of topology, the homeomorphism problem, can be solved in dimension 
2, using methods which cannot be generalized to higher dimensions. For this reason we shall 
develop surface topology independently of our previous results, which were valid for arbitrary 
dimension. We shall start with polygons, instead of with a simplicia1 complex, and we shall 
construct closed polyhedral surfaces by identifying sides of polygons. 

37. Closed Surfaces 

A topological polygon is a closed disk in the Euclidean plane whose 
circumference is divided by r points ( r  2 2) into r segments. The points are 
called the vertices of the polygon and the segments are called the sides of the 
polygon. Each topological image of this disk is also a polygon. The 
designations of vertices and sides in the preimage carries over to the image. 

For r 2 3  each polygon can be represented as a bounded convex closed 
2-ball subset of the Euclidean plane having straight sides. 

Let a* (2  I )  disjoint polygons be given in the Euclidean plane. Let certain 
sides of the polygons be mapped topologically onto one another, so that the 
boundary points of a given side necessarily map to the boundary points of the 
image (Example I ,  $6). We will call the set @ of polygons whose sides are 
mapped onto one another in this manner a system ofpobgons. 

We first devote our attention only to systems of polygons for which the 
total number of sides is even and each side is paired with exactly one other 
side by the topological mapping. 

In the system of polygons @, points which map into one another are to be 
considered equivalent in the sense that points in a neighborhood space are 
equivalent (98). We can then recognize the following classes of equivalent 
points in @: an inner point of a polygon is equivalent only to itself; an inner 
point of a polygonal side is equivalent to exactly one other point: a vertex 
may be equivalent to one, several, or even no other points. 

134 
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The pairing of polygonal sides can be arbitrary, except that it must satisfy 
the condition that the polygons cannot be partitioned into two classes so that 
the sides of the polygons in each class are paired only among themselves 
(connectedness condition). 

When equivalent points of @ are identified, a point set 2J? will be defined. 
Like m, this point set is a neighborhood space. We call 9JI a closed surface or 
a closed 2-dimensional manifold. Here the adjective “closed” implies, first, 
that the surface can be built of finitely many polygons, that is to say, it has no 
infinitely distant points and, second, it possesses no free edges, that is, i t  has 
no boundary. 

The identification of polygonal sides will determine those polygonal 
vertices which belong to a single equivalence class and form a single point of 
the surface. Assume that there are ao different equivalence classes of vertices 
in the system of polygons. That is, let the polygonal vertices map to (YO 

distinct points on the surface. We will call these a’ points vertices of the 
polyhedron. They are to be regarded as distinct from the polygonal vertices 
from which they arise by identification. We will call the images of polygonal 
sides (polyhedral) edges; we call the images of polygons (polyhedral) surface 
elements. Let them be, respectively, a’ and a* in number. The polyhedral 
edges and surface elements are continuous images of the polygonal sides and 
polygons but, in general, are not topological images. For example, the two 
boundary points of a polygonal side may become equivalent as a 
consequence of the association of sides; that is, the points map into the same 
polyhedral vertex. The polyhedral edge will then have a self-intersection and 
will be a topological circle on the surface. Surface elements can also exhibit 
self-intersections. These occur along one or more polyhedral edges or possibly 
only at  vertices; they always appear, for example, whenever a single polygon 
is used in the construction of the closed surface. An example of this is the 
system of polygons consisting of a single quadrilateral polygon which covers 
the torus ($1). 

In the future, when we deal with a surface whose points are divided in a 
particular way into surface elements, edges, and vertices, we shall speak of a 
polyhedral surface or of a polygonally decomposed surface. On the other 
hand, when we are not concerned with such a particular classification and 
wish to study the surface as a neighborhood space, we shall speak simply of a 
surface. The concepts of surface and polyhedral surface are related to one 
another in the same way that the concepts of complex and simplicia1 complex 
are related ($10). As an example, the cubic surface and the dodecahedron are 
distinct polyhedral surfaces which are homeomorphic to the same surface, the 
2-sphere. 

In all we have three concepts, which must be kept distinct; the system of 
individual disjoint polygons @, for which certain points have been declared 
to be equivalent; the polyhedral surface YJ2 which results from @ after 
equivalent points have been identified, but for which the assignment of 
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FIG. 56 

surface points to individual vertices, edges, and surface elements is still 
essential; and the closed surface determined by the system of polygons, in 
which such a polygonal division has been dispensed with. 

We now give a less obvious example of a polyhedral surface. The polygonal 
decomposition of this surface, unlike that of the cubic surface or 
dodecahedron, cannot be embedded in Euclidean 3-space with planar surface 
elements. The system of polygons consists of two quadrilaterals, II, and 112 
(Fig. 56); equivalent sides are indicated with the same letter, and equivalent 
vertices are likewise indicated by the same letter. Arrows indicate the sense of 
association of equivalent polygon sides, i.e., arrow tips should always fall on 
arrow tips. We have a’= 2, a’ = 4, a2 = 2. I t  will turn out that the surface 
determined by this system of polygons is Klein’s bottle (§2 and 939). 

In the treatment which follows, our interest shall be not in the particular 
system of polygons but, rather, in the surface which it determines. We now set 
ourselves the task of discovering when two systems of polygons determine the 
same surface, that is, finding when the polyhedral surfaces produced by the 
identification of equivalent points are different polygonal decompositions of 
the same surface. 

Two systems of polygons will certainly generate the same surface if they 
can be topologically mapped onto one another so that equivalent points in 
one system of polygons transform to equivalent points in the other system. 
We will not regard such systems of polygons as being distinct. 

This implies that to define the surface we need only to know how the 
boundary points A‘  and B‘ of a polygonal side a‘ map to the boundary points 
A “  and B ”  of the associated polygon side a “ ,  not the detailed definition of 
the topological mapping of a‘ onto a ” .  There exist only two essentially difSerent 
mappings of two associated polygon sides from one onto the other. One mapping 
pairs A’ with A ” ;  the other pairs A’ with B “ .  

Proof. If two topological mappings T and T* of a’ onto u” both send A’ to 
A “ and B ’  to B ”, then the self-mapping S of a’, which arises when one first 
carries out T and then (T*)-  ’, is topological and leaves the boundary points 
A’ and B ’  of a’ fixed. 

If a’ is a side of the polygon II, then there exists a topological mapping of 
II onto itself such that a‘ is mapped by S to itself while all other sides of II 
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remain fixed pointwise (Problem 2, $6). One gets the same system of polygons 
when one replaces II by its image. This image is again the polygon n. 
However, the points of a’ and a” are now equivalent as a consequence of the 
mapping T*. Thus, one can replace T by any other topological mapping T* 
which maps boundary points in the same manner as T and obtain the same 
surface by identification of equivalent points. 

If ,  for example, we represent all polygons by straight sided polygons of the 
Euclidean plane, then we may assume that associated sides are mapped onto 
one another by a linear mapping. 

We now orient the polygonal sides. That is, we choose one of the two 
boundary points of each side as initial point and the other as endpoint of the 
side; associated sides coincide, so that initial point maps to initial point and 
endpoint maps to endpoint. We also orient the polygons. To orient a polygon, 
we orient all of the polygonal sides coherently so that each vertex occurs once 
as initial point and once as endpoint of the adjacent sides. The orientation of 
a side in the coherent orientation of the polygonal boundary is called the 
orientation induced by the polygonal orientation. We can orient a polygon, 
like a side, in two different ways. In the figure we shall denote the orientation 
of a side by means of an arrow along the side, that of a polygon by means of 
a circular arrow inscribed in the polygon. 

The orientation of the polygon will determine a sense of traversal of the 
boundary, that is, a cyclic ordering of the sides. We think of the polygon and 
its sides as having fixed orientations and designate associated sides by the 
same letter. We can then describe the system of polygons by a purely 
combinatorial schema. We write down the sides of each polygon in the order 
in which they follow in a traversal of the polygonal boundary, all on one row, 
and we give them the exponents + 1 (which we shall omit in the future) or 
- I, according to whether their given orientation does or does not coincide, 
respectively, with that induced by the polygon. This schema will completely 
determine the system of polygons and therefore, also the surface. In the row 
of ordered sides of a polygon, the labels assigned to the sides indicate the 
pairwise identification of sides, and the exponents determine which of the two 
essentially distinct ways the associated sides are to be topologically mapped 
onto one another. 

We can make the following changes in the schema without changing the 
system of polygons: we can cyclically permute the entries in the row; we can 
reverse the orientation of any edge, which we indicate by changing its 
exponent; we can reverse the orientation of the polygon, which amounts to,  
making an anticyclic interchange of the letters of the corresponding row, 
together with a simultaneous change of all exponents of this row. 

As an example we give the schema for the previously introduced system of 
polygons: 

Polygon II,: bad ‘ e - ’ ,  
Polygon II,: abde. 
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“1. : 

FIG. 51 FIG. 58 

We now examine the question: When do two systems of polygons generate 
the same surface? From one system of polygons we may generate other 
systems of polygons which determine the same surface: we do this by means 
of the following elementary transformations. 

A cutting or a subdivision of dimension 1 involves dividing each side of an 
associated pair of sides into two sides by adding a pair of associated vertices, 
while keeping fixed the original mapping of corresponding points. The 
passage from the subdivided system back to the original is called a 
composition or a gluing of dimension 1 (Fig. 57). A cornposition or gluing of 
dimension 2 involves uniting two different polygons along a pair of equivalent 
sides to form a single polygon by identifying these sides. The reverse process, 
cutting a polygon into two polygons, is called a subdivision or a cutting of 
dimension 2 (Fig. 58). 

Two systems of polygons which transform one to the other by means of 
finitely many such elementary transformations are said to be elementarily 
related. Since neither an elementary transformation of dimension I nor an 
elementary transformation of dimension 2 will change the surface determined 
by the system of polygons, and since from 88 one may perform the iden- 
tifications step by step, it follows that elementarily related systems of polygons 
determine homeomorphic surfaces. 

Elementarily related polyhedral surfaces have two important properties in 
common, Euler characteristic and orientability. These concepts were defined 
in $23 and $24 for complexes and pseudomanifolds, respectively, from a 
simplicial decomposition. Since we have not yet defined surfaces as simplicial 
complexes, we now define Euler characteristic and orientability anew for a 
polyhedral surface and derive these properties from the schema of its system 
of polygons. We shall explain the connection between our new and old 
definitions in 039. 

We define the Euler characteristic of a polyhedral surface to be the number 

N = - a o +  a ’  - a*, 

where a’, a ’ ,  a2 denote the number of polyhedral vertices, edges, and surface 
elements, respectively. As an example, for the quadrilateral which covers the 
torus it is 

N = - l + 2 - 1 = 0 ;  
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for the cube surface it is 

N =  - 8 +  1 2 - 6 =  -2 .  
Elementarily related polyhedral surfaces have the same Euler characteristic. 

Under an elementary transformation of dimension 1, a' and a' each change 
by I while a' is unchanged. Under an elementary transformation of 
dimension 2 only a' and a' change, each by 1. 

We say that a polyhedral surface is orientable when the polygons of its 
system of polygons can be oriented so that opposite orientations are induced 
in the two members of a pair of associated sides. This is expressed in the 
schema of the system of polygons by the fact that upon appropriately 
orienting the polygons, each side will appear once with the exponent + 1 and 
once with the exponent - 1 .  I t  can be checked easily that the property of 
orientability remains unchanged under subdivision and under gluing. The 
polyhedral surface in the example earlier in this section is nonorientable. 

We therefore obtain this result: A necessary condition for two polyhedral 
surfaces to be elementari!y related is that they have the same Euier characteristic 
and that either both are orientable or both are nonorientabie. 

These conditions are also sufficient. This will be proved by showing that all 
polyhedral surfaces which have the same Euler characteristic and orientability 
can be brought to a common normal form by means of subdivision and 
gluing. 

38. Transformation to Normal Form 

The reduction to normal form is made in six steps. 

Step 1 

We start with a system of a* polygons ( a 2  > 1). By means of a2 - 1 gluings 
of dimension 2 we obtain a single polygon. The sides of this polygon are 
identified pairwise with one another. The schema of this system of polygons, 
consisting of but a single polygon, can be written as a single row in which 
each letter appears twice. If a letter appears once with exponent + 1 and once 
with exponent - I ,  then the sides designated by that letter are said to be of 
the first type; otherwise, they are said to be of the second type. We have 
defined the polyhedral surface to be orientable if and only if all sides are 
identified so as to be of the first type. 

As an example, if one deals with a surface homeomorphic to the 2-sphere, 
that is, a so-called Eulerian surface, one can obtain the single polygon by 
erasing from the polyhedral surface the planar network contained in it. This is 
a network such as one constructs to form a model of the polyhedral surface 
by folding together a piece of cardboard. One then needs only to erase the 
inner edges of the network. 
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Step 2: Side Cancellation 

If a pair of sides appear in the sequence aa- '  and other sides are also 
present, so there are at least four sides, then the adjacent sides a and a-I may 
be identified or, stated in another way, cancelled. This results in a polygon 
whose schema can be obtained from the schema of the original polygon by 
crossing out the sequence of edges a a - ' .  

Cancellation can be reduced to subdivision and gluing as follows. If 

MMMvrneH aa-'- 
is the schema of the polygon (Fig. 59), where wavy lines denote sequences of 
sides which do not need detailed description. we can assume that there is at 
least one side to the left and one to the right of a a - ' .  A subdivision of 
dimension 2 gives two polygons 

-ax and x-'a-'-, 
where the newly created edge is designated by x (Fig. 60). By means of a 
gluing. the sides a and x can be merged into new side, y ;  similarly, x -  ' and 
a - '  are merged intoy- ' .  The result is two polygons (Fig. 61), 

-y and y-l- 

These two polygons are again united to form a single polygon by means of a 
gluing of dimension 2. 

We proceed in this manner until we either arrive at a 2-gon or a polygon of 
at  least four sides in which no sequence of sides aa-l  appears. The two 
possible schemata of a 2-gon are 

aa- '  and aa. (0) 

Both have the desired normal form. From now on, we may assume that we 
are dealing with a polygon of at least four sides in which no sequence of sides 
aa - ' appears. 

FIG. 59 FIG. 60 FIG. 61 

Steb 3: Transformation to a Polyhedral Surface Having a Single Vertex 

Let the polygon obtained in step 2 be an r-gon ( r  2 4). Denote equivalent 
vertices by the same letter. Either all vertices are equivalent or else, besides a 
class P of vertices, there exists still another class. In the latter case we can 
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FIG. 62 

transform the polygon into a polygon in which the number of vertices in P 
has been diminished by 1.  For on the boundary of the polygon there exists a 
Q-vertex Q which together with a P-vertex bounds an edge m. A sequence 
QmP or PmQ will then occur on the boundary. Let us designate the second 
polygonal side adjacent to the P-vertex by a. Its second boundary point is 
either a Q-point Q, a P-point, or a point of another equivalence class. We 
connect this second boundary point by means of a diagonal d to the first 
polygon vertex Q and by a subdivision of dimension 2 we decompose the 
r-gon into a triangle A and an (r - 1)-gon I'I (Fig. 62). The side a' associated 
with a belongs to II. Otherwise, a would have to coincide with either m or  
m I .  I n  the former case an edg,e sequence mm would appear in A and we 
would have Q = P, contrary to our assumption. I n  the second case m and 
m - '  could be canceled. contrary to our assumption concerning the nature of 
the r-gon. We now identify a and a' by means of a gluing of dimension 2 and 
thus obtain a new r-gon which contains one less occurrence of P and one 
more of Q. 

Either the new polygon has sides which can be canceled or the new 
polygon will have the same properties as the original one. In the latter case we 
repeat the procedure just given and again reduce the number of P-vertices by 
1. We proceed further until we can again cancel sides, which will occur at the 
latest when only one P-vertex remains on the boundary. Cancellation then 
yields either a 2-gon, which is a desired normal form, or a polygon having all 
its vertices equivalent, or a polygon having fewer than r vertices, not all of 
which are equivalent, in which case we repeat the whole process. 

Step 4: Cross-Cap Normalization 

After having brought the normalization to this stage, if the polyhedral 
surface is nonorientable then at least two associated sides will be of the 
second type, for example the two sides c of Fig. 63. The polygon schema is 
then 

C. ( 1 )  P C M m m m M .  

We decompose this polygon into two polygons by means of a diagonal a 
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C r---"-Jc / / 4A 
Cross -cap Normalization 

FIG. 63 FIG. 64 

which joins the endpoints of the 2 sides c. The schema of the transformed 
system of polygons is 

We now glue the two polygons together along c. This gluing gives the polygon 

mmmmmaamrrmmm, 

having the sequence of sides aa, which we call a cross-cap (cf. $2) .  The process 
of transformation of the schema is illustrated in Fig. 63 and 64. If a pair of 
sides of the second type appears in the new polygon, then we can unite these 
sides to a cross-cap without destroying the cross-cap already present. We 
proceed until we have united all pairs of sides of the second type to 
cross-caps. If this exhausts all of the sides, then we have arrived at the normal 
form (cross-cap form) of the nonorientable surface: 

alala2a2 - ' k  a k .  ( k )  

Fork = 1 we get the 2-gon obtained previously. 

Step 5: Handle Normalization 

I f .  on the other hand, the surface is orientable or side pairs of the first type 
still appear after the cross-cap normalization, then there must exist two pairs 
of sides of the first type which alternate on the boundary. i.e., with 
appropriate orientation these sides form a sequence (Fig. 65) 

M M M M . I M A C -  d - ' -  C-I- d p  
on the polygon boundary. 

For i f  the pair of sides c did not alternate with another pair of sides of the 
first type then all sides of the sequence c +-.---- c - '  would be paired 
among themselves, since we have assumed that the cross-cap normalization 
has been completed: the vertices of the sides lying between c and c - '  would 
be equivalent to one another and to the end points of the two sides c .  By 
virtue of the connectedness condition for the association of sides the initial 
point of a side c could never be equivalent to these vertices. This however 
contradicts the result of step 3, that the polygon has been normalized to have 
only equivalent vertices. 

The two crossed pairs of sides can be transformed by means of elementary 
transformations to a sequence of sides aba-'b-', as illustrated in Figs. 65-67. 
Such a sequence is called a handle, based on the description given in $2. The 
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Handle Normahzation 
FIG. 65 FIG. 66 FIG. 61 

uniting of crossed pairs of sides will not destroy previously obtained 
cross-caps or handles for these belong to sequences of sides included in the 
wavy lines, and are not disturbed by subsequent modifications. If the given 
surface is orientable, then we can bring it to the normal form (handle form) 

a,b,a;'b;'a2b,a;'b;' . . . a h h h  b a-'bn-'. ( h )  

Step 6 Transformation of the Handles into Cross-Caps 

The only case remaining is where both handles and cross-caps appear. In 
that case we can replace each handle by two cross-caps by means of 
elementary subdivisions and gluings of dimension 2. The transformation 
process consists of cutting apart the given polygon (Fig. 68)  and gluing i t  
together again so that the six sides in question become of the second type 
(Fig. 69) and subsequently applying the cross-cap normalization of step 4 
(Figs. 7CL72). 

We have thus reduced each system of polygons to one of the following 
normal forms consisting of a single polygon, the fundamental polygon: * 

aa- ' ,  (0)  

a,b,a~'b~'a,b,a;Ib; '  . a,b,,a;'bi', ( h )  

( k )  a,ala2az * * * akak. 

The fundamental polygons (0) and ( h )  on the one hand and ( k )  on the 
other differ in orientability and they differ from each other in the value of the 
Euler characteristic, which can be calculated from the fundamental polygon 
to be 

N =  - 2 + 1 -  1 =  -2, (0') 

N = - 1 + 2 h  - 1 = 2 ( h  - l),  (h')  

N =  - 1  + k -  I = k - 2 .  ( k ' )  

These formulas also give the relationship between the number of handles h, or 

*lUustrations of the fundamental polygon are found in: Fig. 11 for (0); Fig. 5 for h = 1 and 
Fig. 10 for h = 2; Fig. I8 for k = 1 and Fig. 19 for k = 2. 
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a 

FIG. 68 FIG. 69 

-m 

FIG. 72 

the number of cross-caps k, and the Euler characteristic of a surface. 
Orientable surfaces will always have an even Euler characteristic. We have 
seen that the characteristic N and the orientability do not change under 
elementary transformations, so we have the following result: 

THEOREM. Two polyhedral surfaces are elementarily-related if and on4 i f  
they have the same Euler characteristics and orientability?2 

With this result we have made major progress towards our goal of 
classifying all closed surfaces. We now know that there are no closed surfaces 
other than these given in the rows (0), (h), and (k) .  However, it is still 
conceivable that two fundamental polygons determine the same surface even 
though they are not elementarily related. In the next section we shall show 
with the help of the invariance theorems established in the previous chapter 
that this is not the case. 

Problems 

having the following ordering of sides (symmetric normal form): 
1. Show that a closed surface of Euler characteristic N can be covered by a single polygon 

c,c2. . .  cN+*c;'e;' .  . .  C = '  N + 2 *  
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Here the negative sign occurs for the last exponent only if the surface is orientable, that is, N is 
even. What characteristic will the surface have in the case of odd N, if one retains the minus sign 
in the last exponent? 

2. Bring the system of polygons of the example in 937 to normal form. 

39. Types of Normal Form: The Principal Theorem 

By means of repeated subdivision we can derive from a given system of 
polygons ’D an elementarily related system of polygons which consists 
entirely of triangles and which becomes a simplicial complex when equivalent 
points are identified. This complex obviously possesses the properties (PM 1) 
through ( P M 3 )  of a closed pseudomanifold ($24). 

Neither the Euler characteristic nor the orientability changes during the 
cutting. The definitions in 337 of the Euler characteristic and orientability 
coincide with the definitions given in $23 and $24 in the particular case that 
the polyhedral surface is a simplicial complex. Since we have shown, in $36 
and $30 that the orientability of a pseudomanifold and the Euler char- 
acteristic of a simplicial complex are topologically invariant properties, i t  
follows that two closed polyhedral surfaces can be homeomorphic only if  they 
have the same Euler characteristic and orientability. In particular, the 
surfaces given by the fundamental polygons (0). (h ) .  and ( k )  are all distinct. If 
two polyhedral surfaces coincide in characteristic and orientability however, 
they are elementarily related and, from the theorem of $38, are therefore 
homeomorphic. We summarize our result in the 

PRINCIPAL THEOREM OF SURFACE TOPOLOGY. Two closed surfaces are 
homeomorphic if and on!y if they have the same Euler Characteristic and 
orientability. The most general orientable closed surface is the 2-sphere with h 
handles attached ( h  2 0). The most general nonorientable closed surface is the 
2-sphere with k cross-caps attached ( k  2 1). 

The number of handles h of an orientable surface is called the genus of the 
orientable surface. The number of cross-caps k of a nonorientable surface is 
called the genus of the nonorientable surface. Genus is related to the Euler 
characteristic N by the appropriate formula (0), (h’), or ( k ’ )  of $38. 

Previously, we defined a closed surface as a neighborhood space which can 
be derived from a system of polygons. An equivalent definition, which takes 
note of the fact that a closed surface is also a complex, is the following: A 
closed surface is a finite, connected homogeneous 2-dimensional complex. 

Proof. Since a closed surface is a pseudomanifold, it is a finite connected 
2-dimensional complex. The homogeneity condition, that is, the existence at  
each point of a neighborhood homeomorphic to the interior of a disk, is 
obviously fulfilled for interior points of the fundamental polygon. It is 
fulfilled for interior points of a polygonal side because there is exactly one 



146 VI. SURFACE TOPOLOGY 

side equivalent to it. One obtains such a disk neighborhood for a polygonal 
vertex by cutting a small triangle from the fundamental polygon at each 
polygonal vertex. By identifying sides of the triangles one forms a cycle 
homeomorphic to a disk (or in the trivial exceptional case of two cycles, to 
the 2-sphere). 

Conversely, if R2 is an arbitrary finite connected homogeneous complex, 
then from Theorem I1 of $33 the homology groups at each point P of R2 are 
those of the circle and it follows from Example 2 of $32 that exactly two 
triangles are incident with each edge of a simplicial decomposition of @ and 
that the neighborhood complex of a vertex of R2 is a circle. One may then 
regard R2 as arising from its triangles by means of a stepwise identification of 
sides. The connectedness condition ($37) is fulfilled because we assumed that 
R2 was connected ($12). Thus R2 is a closed surface in the sense of the 
definition of $37. 

Problems 

I.  Show that each closed 2-dimensional pseudomanifold Ftz of Euler characteristic N = - 2 is 
homeomorphic to the 2-sphere. 

2. In 3' we are given a finite I-dimensional connected complex R' of Euler characteristic N, 
which is constructed of straight line segments. A small 2-sphere of fixed radius is drawn about 
each point of 9". Show that the envelope of the spheres is a closed surface of Euler characteristic 
2N. 

40. Surfaces with Boundary 

A surface with boundary is a neighborhood space which arises from a system of polygons when 
equivalent points are identified by gluing polygonal sides. Points of two polygonal sides are 
defined to be equivalent when they are equivalent under a given topological mapping of the 
sides. Whereas for closed surfaces there is exactly one other side equivalent to each side, for 
surfaces with boundary certain polygonal sides remain free. At least one such must exist. The 
free sides are called boundary sides. We require that the connectedness condition of $37 must 
hold for surfaces with boundary, as well as for the closed surfaces. Just as for a closed surface, 
the sides and polygons of a surface with boundary can be oriented and the surface with 
boundary can be described by a combinatorial schema. 

If a', a', a* are the number of nonequivalent vertices, sides, and polygons, respectively, of the 
system of polygons, then we also define the number 

N = - a o + a ' - a 2  

to be the Euler characrerisfic of the surface with boundary. 
A surface with boundary is orienfable if its polygons can be oriented so as to induce opposite 

orientations in each pair of associated sides. 
Euler characteristic and orientability remain unchanged under elementary subdivisions and 

gluings, just as for the case of surfaces which have no boundaries. By means of a sequence of 
subdivisions one can also transform a surface with boundary to a simplicial complex which is a 
pseudomanifold with boundary; thus the characteristic and orientability are topological 
invariants of the surface with boundary. 

The method of classifying surfaces with boundary is the same as that used to classify closed 
surfaces. We present certain normal forms, to which each surface with boundary can be brought 
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FIG. 73. h = 2, r = 2. 

by elementary transformations, and we show that nonhomeomorphic surfaces have different 
normal forms. Each normal form consists of a single polygon and this polygon has the schema 

qlI lq; '  . qz12q;' . . . q,I,q;'. a,b,a;Ib;' . . . a,,b,,a;Ib;I ( r  > ~ , h  20) 

for the orientable case, and: 

q11,q;' . q21,q;' . . . q,I,q;'. alal  . . . akak ( r  > ~ , k  > 0) 
for the nonorientable case. The schema arises from the normal form of a closed surface by 
inserting a sequence of sides of the form q l l , q ;  I . . . q,1,q,; I .  Sides I , ,  I,, . . . , I, are the boundary 
sides. When we identify each pair of sides q, and q,- of the normal polygon, we get the 
fundamental polygon of a closed surface into which r holes have been cut (Fig. 73). 

To bring an arbitrary surface with boundary given by a system of polygons to normal form, we 
start with a simplicial decomposition of the surface with boundary. As stated previously, the 
surface with boundary is a pseudomanifold with boundary whose boundary is a I-dimensional 
subcomplex, W. 

We assume in advance that each triangle of the simplicial decomposition either has one side or 
one vertex lying on the boundary or that i t  does not intersect the boundary at all. We are allowed 
to make this assumption; if a given simplicial decomposition does not have this property, we 
need only transform to the normal subdivision. 

If A is a triangle which meets the boundary, that is, A has either one vertex or one side in 
common with A, then there are exactly two sides which protrude from the boundary and are 
incident with A. By a side protruding from W we mean a side which has one vertex lying on W but 
does not itself belong to R, that is, the other vertex does not lie on W. Conversely, corresponding 
to each side which protrudes from the boundary there are exactly two triangles which protrude 
from the boundary and are incident with that side. The set of all triangles and sides which 
protrude from W will, then, necessarily decompose into finitely many cyclic sequences of 
alternating triangles and sides, such that each member of such a sequence is incident with both of 
its neighboring members. 

If 
A , u , A ~ u ~ ~  . . A3uS 

is such a cyclic sequence, then we form a single polygon Il from the triangles A, ,A,, . . . , A, by 
first adjoining A, and A, along a, , then A, and A, along a,. and so forth until we finally adjoin 
As- , to A, along a,- The edge a, will then appear twice in II, once as a side of A,, in which 
case we designate it by a;, and once as a side of As, which we designate as us. We proceed in like 
manner for the remaining sequences. I t  is clear that an arbitrarily selected edge of A must lie on 
the boundary of one of these polygons, let us say on Il. But the totality of edges of A which 
appear on Il will then form a single connected sequence of edges. For if P, is the vertex of ai 
which lies on W, then for i > 1 the totality of points of A, which lie on A will consist of the edge 
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FIG. 74. Polygon II, s = 7. 

P,-  ,P, if the point P,-  I is distinct from Pi and will consist of the point P,- I = Pi when points 
Pi- I and P, coincide. When i = I ,  Pi- I is to be replaced by the vertex P i ,  that is, the vertex of u; 
which lies on R. Consequently the edges of the sequence P ; P , P 2 .  . . P, in II, and only these 
edges, belong to R. Certain of the vertex points can coincide; for example, in Fig. 74, 
P ,  = P ,  = P4 = P,. If we now join the edges of the sequence of edges to form a single side I of II 
by means of gluings, and we omit the prime mark from the side u; so as to return to our previous 
side designation, then there results a sequence of sides 

a, h; ' 
on the boundary of II. The polygons obtained in this manner are then composed with the 
remaining triangles of the simplicia1 decomposition which do not protrude from R by means of 
gluings to form a single polygon. This polygon will have the schema 

m m ~ ~  blllb;' m m m r r b J 2 b ; I  b , l , b ; l ~ .  

The I, denote the only boundary sides and the wavy lines denote sides which are associated in 
pairs among themselves and do not require detailed specification (Fig. 75). 

The sequences of sides b,lib; I can be brought to a single unbroken sequence by cutting and 
reassembling the polygon. Figure 76 shows, for example, how one unites the first pair of 
sequences. Here, neither the other sequences of sides of the form bjl,b; nor sequences of sides 
denoted by wavy lines are ripped apart. By repeating this unification procedure we arrive at a 
polygon which has only painvise associated sides, apart from a sequence q, l ,q ;  I . . . q,I,q; I. 

The latter sequence has the same surface point as initial point and endpoint; for the initial point 
of q ,  is equivalent to the endpoint of 4;' because of the association of sides, and is therefore 
equivalent to the initial point of q2 and so forth and is, finally, equivalent to the endpoint of 4;'. 
We can, then, cut off the sequence by means of a diagonal I having two equivalent boundary 
points, both of which we denote by 0. This gives rise to a polygon which has a single boundary 
side i. We can carry over the normalization procedure for closed surfaces to this polygon, and 
decrease the number of vertices not equivalent to 0, replacing them by 0 vertices. All vertices of 

FIG. 75 FIG. 76 
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the polygon will finally become 0 vertices. After completing the normalization procedure, we 
rejoin the cut-off polygon along i. The desired normal form of the surface with boundary will 
then be obtained. The normal forms differ in the number of boundary sides, Euler characteristic, 
and orientability, three properties which we know to be topological invariants. Thus different 
normal forms describe nonhomeomorphic surfaces. 

Problem. Show that the double ($36) of an orientable surface of genus h having r holes is a 
closed surface of genus h = 2h + r - 1. Show that the double of a nonorientable surface of genus 
k having r roles is a closed surface of genus k = 2 k  + 2 r  - 2.  

41. Homology Groups of Surfaces 

Since the homology groups of a complex are determined by its numerical 
invariants (Betti numbers and torsion coefficients), it is easy to calculate them 
for closed surfaces. From the generalized Euler polyhedron formula ($23), the 
Euler characteristic is 

N = -po  + p '  - p 2 .  

Since the surface is a connected complex, from 5 18, p o  = 1. Since it is either 
an orientable or a nonorientable pseudomanifold, p 2  = 1 in the case of 
orientability and 0 in the case of orientability. From $24 we have 

N = p l  - 2 

N = p '  - 1 

in the orientable case, 

in the nonorientable case. 

Thus we have obtained the first Betti number in terms of the Euler 
characteristic. From $38 i t  can also be given in terms of the genus h or k ,  
respectively, of the surface: 

p l  = N + 2 = 2h 

p l  = N + I = k - 1 

in the orientable case, 

in the nonorientable case. 

There are no torsion coefficients for the orientable case: for the 
nonorientable case there is a single I-dimensional torsion coefficient, which 
has value 2 ($24). 

The I-dimensional homology group of the orientable closed surface of genus h 
is therefore the free Abelian group with 2h generators, and that of the 
nonorientable closed surface of genus k is the direct sum of a free Abelian group 
having k - 1 generators and a group of order 2. 

The homology groups of dimensions 0 and 2 are not of special interest, 
since that for dimension 0 is the free cyclic group for each connected complex 
($18) and that for dimension 2 is already determined by the general property 
that a closed surface is a closed orientable or nonorientable pseudomanifold; 
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from 824 it is the free cyclic group in the orientable case and consists of the 
null element alone in the nonorientable case. 

To find a 1-dimensional homology basis we use the 

LEMMA. The vertices, edges and surface elements of a pobhedral surface form 
a block system. 

A block system (822) is always defined with respect to a simplicial 
decomposition of a complex. We shall use any simplicial decomposition YP2 
which can be obtained from the given polyhedral surface by subdivisions. 
Instead of referring to vertices, edges, and surface elements we must, more 
precisely, refer to the chains which are formed from oriented vertices or the 
chains which result from subdivided and coherently oriented edges or surface 
elements, for blocks are simplicial chains. 

Prooj It is simple to check that conditions (B11) and (B12) are satisfied for 
each dimension, that (B13) is satisfied for dimensions 0 and 2, and (B14) is 
satisfied for dimension 1; we omit the proof here (cf. $22). We shall simul- 
taneously prove (B13) for dimension k = 1 and (B14) for dimension k = 0 by 
showing that if U ' is a simplicial 1-chain on R2 and if the boundary of U I is 
an 0-block chain, that is, %haU' is formed from polyhedron vertices, then 
there exists a 1-block chain V '  which is homologous to U ' .  (B14) is implied 
by this statement for k = 0, and likewise (B13) for k = 1, if in particular one 
chooses U '  to be a closed chain. V '  is constructed by pushing U '  across 
surface pieces to the polyhedron edges. Let us look at the subchain U,!, of U I ,  

which lies over the inner 1-simplexes of a particular surface element ll of the 
polyhedral surface; inner 1-simplexes of R2 are those which do not belong to 
a polyhedral edge of Q2. The chain U i  determines a chain 'U,,l, on the 
polygon TI of the system of polygons which generates the polyhedral surface. 
Now %3'U; is a 0-chain on the boundary of 'll which has a sum of 
coefficients equal to 0. Since a 0-chain which has a sum of coefficients equal 
to 0 is always -0 on a connected complex (OlS), there exists a 1-chain 'U: 
on the boundary of TI which has the same boundary as ' U i .  Then 'UA - 'U,' 
is closed and is therefore null homologous in II, as is each closed 1-chain on 
the disk. The chains Ud and U,' of R2, which correspond to the chains 'Ud 
and 'U:, are likewise homologous to one another. If we replace lJi by U: 
and in the same way we push the chain U ,  out of the remaining surface 
elements, then we obtain a chain V '  homologous to U ' ,  and all of its 
simplexes belong to the polyhedral edges. Since, by assumption, 9 a V '  
= '%ha U I is a block chain, all 1-simplexes of a coherently oriented polyhedral 
edge appear in V '  equally often. That is, V '  is a block chain, as desired. 

The lemma allows us to compute the homology groups of a polyhedral 
surface generated by a system of polygons in a new way. It also allows us to 
find a homology basis. We need only to construct the block incidence 
matrices (022) and bring them simultaneously to normal form. We shall 
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perform the computation only for the fundamental polygons (0), ( h ) ,  and (k) 
of $38 (cf. Figs. 11, 10, and 19). The matrices are 

0 I 0 0 . "  0 : I :  

To bring the incidence matrix Eo of (0) to normal form we add the first row 
to the second row. The normal form Ho is then 

and a 0-dimensional homology basis is formed by the point 0. The incidence 
matrix El of (0) is already in normal form, as are both of the incidence 
matrices of (h) .  Consequently, for the closed surface of genus h the 2h  
I-chains a , , b , ,  . . . , a,, 6, form a 1-dimensional homology basis, which is at  
the same time a Betti basis. 

To bring the incidence matrices ( k )  to normal form we subtract the first 
row in El from the remaining rows, obtaining 

0 I 0 0 . ' '  0 

Here the 1-chains Cf-,a, ,a, ,  . . . , a, form a homology basis. The I-chains 
u2, . . . , a, form a Betti basis, in agreement with the fact that the first Betti 
number p '  is equal to k - 1. 

While the first Betti number p '  differs for orientable and nonorientable 
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surfaces, the connectivity number for all surfaces is q' = N + 2. This is 
because N = - qo + q' - q2 ($23), and qo = q2 = 1 ($23). 

We obtain a connectivity basis when we construct the incidence matrices 
mod 2 Eo and E'. We do this by replacing all even integers in the incidence 
matrices Eo and F' by the residue class 6 and replacing all odd integers by the 
residue class i.  The matrices Eo and E' are already in normal form for the 
surfaces ( h )  and ( k ) .  Thus the edges of the fundamental polygon form a 
1 -dimensional connectivity basis, when considered as chains mod 2. The 
2-sphere ( h  = 0) is the trivial exceptional case. The geometrical meaning of 
the number q' is indicated by the following theorem. 

THEOREM. The connectivity number for dimension 1, q' = N + 2, is equal to 
the maximum number of essential cuts which do not disconnect fhe surface. 

By an essential cut* we mean a cut sequence of edges forming a closed 
path free of double points on a simplicial decomposition of the surface. That 
is, an essential cut is a 1-dimensional subcomplex ($23) in which each vertex 
is incident with exactly two edges. A system of r essential cuts, where we 
assume that no two have an edge in common, "disconnects" the surface if 
there exist two triangles of the simplicial decomposition which cannot be 
connected by a sequence of alternating incident triangles and edges (that is, 
edges not belonging to the essential cuts). The fact that there are at least 
N + 2 essential cuts which do not disconnect the surface (upon making an 
appropriate choice of simplicial decomposition) is shown by inspection of the 
edge complex of the fundamental polygon ($38). But if the system of essential 
cuts consists of r > N + 2 essential cuts f I ,  f,, . . . , f,. then as chains mod 2 
they are homologously dependent because the connectivity number N + 2 is 
the maximum number of homologously independent chains mod 2 ($23). 
There thus exists a 2-chain mod 2, that is, a 2-dimensional subcomplex U2, 
whose boundary is formed by a linear combination of these essential cuts 

aau2 = Elf ,  + E,f, + * * a + irfr, 

where not all E. vanish. Since we assume that no two essential cuts f ,  and f, 
ever have an edge in common, tbe right-hand side of the above equation is 
# 0 and thus U2 is neither the chain 0 nor the whole surface. If, now, B2 is the 
complementary complex of U2, that is, those triangles of the simplicial 
decomposition of the surface which do not belong to U2, then we cannot 
connect a 2-simplex of B2 with a 2-simplex of U2 without passing across an 
essential cut. The surface will therefore be disconnected by any q' + 1 
essential 

Remark. A narrow strip which surrounds an essential cut on a 
nonorientable surface will be either an annulus or a Mobius band. 
Accordingly one says that the essential cut is respectively 2-sided or 1-sided. 

Tramlator's note: The term regressive cur also appears in the literature. 
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(We can obtain such a strip, for example, by selecting all triangles of the 
2-fold normal subdivision of the given simplicia1 complex which have vertices 
or edges incident with the essential cut.) I f  a nonorientable surface becomes 
orientable by cutting i t  along the essential cut, then the essential cut is said to 
be orientability producing. 

Problem 

Using the results of Problem I of 838, show that there exists an orientability producing 
essential cut on each nonorientable surface. Each orientability producing essential cut is 
respectively 2-sided or I-sided according to whether the genus k is even or odd. (The Euler 
characteristic remains unchanged on cutting. Use the fact that the Euler characteristic of an 
orientable closed surface is always even.) 



CHAPTERSEVEN THE FUNDAMENTAL GROUP 

It is only in 2 dimensions that the homology groups are sufficient to completely classify all 
manifolds. In higher dimensions, the most important topological invariant which allows one to 
distinguish different complexes and manifolds is the fundamental group. This invariant will often 
distinguish between two manifolds or complexes in cases where their homology groups coincide. 
There exists only one fundamental group of a complex. It provides information with regard to 
the behavior of I-dimensional paths of the complex. In general it is a non-Abelian group. Efforts 
to define fundamental groups for each dimension of a complex, in analogy to the homology 
groups, have not yet led to important results.. 

Llke the homology groups, the fundamental group of a complex is a global invariant. But also, 
like the homology groups, it allows a local invariant to be defined, the fundamental group at a 
point. 

42. The Fundamental Group 

If an oriented interval i i j  has been mapped into a finite or infinite complex 
R”, then we say that apath w has been determined in R”. The image points of 
R are called the points of the path. I f  P and are, respectively, the initial 
point and endpoint of R, and P and Q are their respective images, then P is 
called the initial point and Q is called the endpoint of w,  and we say that w 
“leads” from P to Q .  If R is traversed continuously from to g, then the 
image point is said to traverse the path w continuously from P to Q. The 
image point may remain in fixed position in the complex R”, for the definition 
does not exclude the possibility that C is mapped to a single point. In this 
case w consists of a single point. 

If there is a topological mapping between the preimage R and another 
oriented interval R’ under which initial and endpoints correspond, then R’ is 
also mapped uniquely and continuously into P‘, via a detour through Z, and 
it therefore determines a path w‘. We do not regard w and w’ as different 
pathsz4 Obviously the points of w coincide with those of w’. 

+Editor’s note: A rich and extensive theory of higher homotopy groups has developed since 
1933. 

154 
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If we choose the unit interval 0 5 s 5 1 of the real number line as 1, with 
s = 0 as initial point and s = I as endpoint, then each s-value in the interval 
0 S s S 1 determines a unique point of w.  The points of the path w can be 
related in infinitely many ways to a parameter which runs from 0 through 1. 
If s' is another such parameter, then s and s' are related by a topological 
transformation, that is, a monotone coordinate transformation. We can 
interpret s as the time at which a point of the path is traversed. 

If u is a path from P to Q and 1) is a path from Q to R ,  then we can join 
these paths to form a single path: we compose the preimages ii and 6 to give a 
single preimage J, and we map them as before. The image of 1 is a path w 
and we denote this path by 

w = uu. 

The path w arises, then, by first traversing u and then u. 
The inverse path w - I  of w is obtained by reversing the orientation of the 

A path whose initial point coincides with its endpoint is said to be closed. 
A sequence of finitely many directed edges of a simplicia1 decomposition of 

$" such that the endpoint of each edge coincides with the initial point of the 
succeeding edge forms an edgepath which leads from P to Q, where P is the 
initial point of the first edge and Q is the endpoint of the last edge. It is to be 
regarded as the product of the individual edges. As a 1-simplex, each oriented 
edge is a continuous (in fact topological) image of an oriented geometric 
I-simplex, that is, of an oriented interval, and is therefore a path in the sense 
of our definition. 

A path will be (homotopically) deformed if the mapping of its preimage 1 
into R" is homotopically deformed holding the initial point P and the 
endpoint Q of the path fixed. Let t be a parameter varying from 0 to 1. If a 
mapping g, of W into 9" is defined for each value of t ,  in particular the 
mappings go of 1 onto wo and g, of W onto w , ,  and if the image point g , ( R )  of 
a point of 1 is simultaneously continuous in R and t and, furthermore, if 
the image points of the initial point of 1 are the 
previously named points P and Q, respectively, then the path wo is said to be 
homotopically deformable to w1 and the paths w, and w ,  are said to be 
homotopic to one another in the complex 9". Obviously w I  is also deformable to 
w,. We shall assume from now on that homotopic paths always have a 
common initial point and a common endpoint. 

As in the case of a deformation of a mapping, we can now describe all of 
the mappings g, of the path E by means of a single mapping f of the 
deformation complex i7 x t ,  where W x t denotes the topological product of J 
and the unit interval t (0 5 t 5 I ) .  In particular, we may choose i i j  X t to be a 
rectangle of the Euclidean plane, the deformation rectangle. We can now give 
the following interpretation to the definition of the deformation: w, is 
deformable to w ,  if one can map the deformation rectangle 1 x t into F by a 
continuous mapping so that the sides 1 X 0 = Z0 and J X 1 = G I  transform 

preimage W. 

and final point 
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FIG. 77. The preimage interval. FIG. 78. The deformation rectangle. 

FIG. 79. The mapping into P. 

to the paths wo and w I ,  respectively, while the other two sides x t and 
X t transform to the points P and Q ,  respectively. Here 5 X 0 denotes the 

topological product of the preimage interval W and the point 0 of the inter- 
val t. 

The relation between f and the mappings g, is given by the equations 

as in the case of deformation of mappings. The difference between the 
present case and our earlier case lies only in the additional requirement that f 
must transform the sides X f and 0 X f to the respective points P and Q 
(Figs. 77-79). 

The deformation of a string or rubber band with fixed endpoints in Euclidean 3-space is a 
special case of the deformations considered here. The string has no double points and it cannot 
cut itself during the deformation, whereas, for example, knots can be unknotted by moving 
through themselves during a homotopic deformation. In addition, deformations of a string are 
realizable by isotopic deformations of the surrounding space into itself, and this is not in general 
true for arbitrary homotopic deformations of a path in a complex. 

If wo is deformable to w I  and w I  is deformable to w 2 ,  then wo is also 
deformable to w 2 .  We need only to identify the sides which map to w I  of the 
deformation rectangles mapping wo to w I  and w I  to w 2 ,  and do so in a 
manner that points to be identified have the same image point in P. This is 
always possible since both of the sides are preimages of the same path w ,  . We 
then obtain a new rectangle which is mapped continuously into 9" so that 
two parallel sides transform to wo and w 2 ,  respectively, and the other two 
sides transform to P and Q, respectively. That is, wo is deformable to w2.  The 
relation of deformability is, then, transitive. Based on this fact, one can divide 
the paths connecting two points into classes of mutually deformable paths. 

If 
w,=a.-.bc,d...e 
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is a path in 57’’ which is the product of the paths a ,  . . . , b,co, d, . . . , e and if 
co is deformable to c , ,  then wo is deformable* to 

w, = a . + . bc ,d .  . . e.  

We show this as follows. By our assumptions there exists a continuous 
mapping of the “center” rectangle of Fig. 80 such that To maps to co, T ,  to c , ,  
and the two vertical sides to the common initial and endpoints, respectively, 
of co and c ,  (Fig. 8 I). The mapping of the center rectangle is then extended to 
a mapping of the entire rectangle under which ii X 0, . . . , 6 x  0,d x 
0, . . . , i? X 0 map to the paths a,  . . . , b,d,  . . . , e and each vertical interval 
of the subrectangles other than those in the center rectangle maps to a single 
point. 

If in a product path ah the first factor consists of a point path, then ab is 
deformable to 6 ;  if the second factor consists of a point path, then ab is 
deformable to a. 

Proof. In  the rectangle of Fig. 82 the lower side has been divided into two 
parts, iio and KO. Each point of has been connected by a straight line 
segment to a point on the opposite side 6, which corresponds to the point on 
b0 by virtue of a linear mapping. Likewise, all points of iio have been 
connected by straight line segments to the initial point of 6,. We can map the 
rectangle continuously onto i, so that each connecting segment transforms to 
its endpoint lying on 6,. If we map 6, onto the path 6 ,  we then have a map of 
the rectangle into .Ytn such that Cobo transforms to ab and the two vertical 
sides of the rectangle transform to the initial point and endpoint, respectively, 
of 6. But this says that ab is deformable to b. 

FIG. 81 

FIG. 82 

*The path c, can also be the first or last factor in the product. 
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When a path w is deformable to KO, where wo consists of a single point, 
then w is said to be deformable to a point, or null homotopic. A closed path w 
is therefore null homotopic in P if one can map a rectangle continuously into 
Q" so that one side K transforms to w and the remaining three sides transform 
to the initial point of w. 

Let the complex R" be Euclidean n-space %". Each closed path 
in this space is null homotopic. To show this, let each point of w run with a 
constant speed to the initial point P of w in one second; then construct the 
corresponding mapping of the deformation rectangle. 

The same conclusion holds when Q" is an n-simplex, B", for example, a 
rectilinear simplex lying in 8". In particular, in the case n = 1, a path 
consisting of an interval a which runs out and back from its initial point is 
null homotopic on a. It follows from this that any path w which runs out and 
back, that is, a path of the form w = uu-I in an arbitrary complex, is null 
homotopic. We need only to map the oriented interval a continuously onto 
the path u to obtain a continuous mapping of the deformation rectangle into 
the complex such that one side maps to the path w and the remaining sides to 
the initial point of w. 

The null homotopic paths can also be characterized in the following way: A 
closed path w is null homotopic if and 0.5 if it can be spanned by a singular 
disk. A singular disk is the continuous image of a closed disk in 8". 

For instead of mapping the deformation rectangle directly into R" by a 
continuous mapping x which sends K to w and the other sides to the initial 
point, one can perform the mapping in two steps. First map the rectangle by a 
continuous mapping rp onto a closed circular disk R2 so that the side PI maps 
to the circumference of the circle, the other three sides to a point 0 (Fig. 83), 
and the vertical intervals of the rectangle map to the corresponding chords of 
the circle; then map the circular disk into the complex Q" by means of a 
mapping $ such that x = +cp, which is obviously possible. From Theorem IV 
of 18, I) is continuous. Thus if w is null homotopic, it spans a singular disk. 
On the other hand, if we are given the continuous mapping $ of the closed 
circular disk, then the mapping +cp = x of the rectangle is also determined. 

We now make the additional assumption that the complex Q" is connected. 
In that case any two points can be connected by a path. We shall examine all 
possible closed paths in Q" which emanate from some arbitrarily chosen fixed 
initial point 0. These paths will be decomposed into classes of mutually 

EXAMPLE. 

0 4 
FIG. 83 
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deformable paths, so-called path classes. For the moment we shall denote the 
path class in which the path w lies by 

{ w ) .  

The path classes become elements of a group, the so-called fundamental 
group25 or path group 3 of the connected complex Q" when we define the 
product of two classes as follows: the product of two path classes, { w I )  and 
( w 2 )  is the path class { w I w 2 }  of the product path w I w 2 .  This specification is 
independent of the particular choice of representative paths w I  and w2 
selected from their path classes. For if we replace w I  and w2 by two other 
paths w; and w i  which are deformable, respectively, to w I  and w 2 ,  then (from 
earlier in this section) w',w; is deformable to the path w I w 2 .  

The product operation satisfies the group axioms: 

1. The associative law is obviously satisfied. 
2. There exists a unit element, namely, the class of null homotopic paths. 

For if one places a null homotopic path in front of or behind an arbitrary 
path then, from earlier in this section, the latter does not change its path class. 

3. To each element there corresponds a reciprocal element. This is the 
path class of the inverse path. For a path running out from and then back to 
its initial point is null homotopic. 

In general, the commutative law does not hold, and it is not necessarily 
true that { w , ) ( w 2 )  = { w 2 ) { w l ] .  In contrast to the homology groups, the 
fundamental group is not, in general, Abelian. We shall discuss the 
relationship between the fundamental group and the homology groups in 548. 

The path class ( w I ) (  w 2 )  contains not only the product path wIw2 but also each path arising 
from it by means of a deformation in which the initial and endpoints (which coincide with 0) are 
kept fixed. This is true in particular for a path w which arises by pulling the middle of wIwz away 
from the point 0 (Fig. 84). Paths wI and w2 do not have to belong to different path classes; they 
can in fact coincide. 

Considered as an abstract group, the fundamental group is independent of the 
choice of initial point 0 and is in fact completely determined by the connected 
complex Q". For if we choose a point 0' as initial point of the closed paths, 
instead of 0, we can traverse a path u from 0 to 0' and we can associate a 
path class 

{ w )  = ( t j w ' u - I )  

FIG. 84. ( w )  = (wI)(w2). 
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with the class ( w ' }  of paths departing from 0'. This association does not 
depend upon the choice of representative. Conversely, we can associate the 
class { u - ' w u }  of paths departing from 0' with the class { w }  of paths 
departing from 0. This assignment is just the inverse of the previous one. For 
by our first prescription we go from { w ' }  to { w }  = ( u w ' u ~ I } ,  while by our 
second prescription we go from { w }  to 

{ u - ' w u )  = { ~ - ' ( u w ' u - ~ ) u }  = { w ' } .  

The association of path classes belonging to 0 and 0' is therefore a 
one-to-one correspondence. It is also an isomorphism. To the product 

{ w ; >  (41 = ( w ; w ; )  

{ uw;w;u- ' )  = { uw;u- '  . uw;u-'> = { uw;u-I )  { u w ; u - ' ) ,  

there corresponds the path class 

which is the product of the associated path classes. In the above 
transformations we have made use of the facts that the path 0u-I is null 
homotopic and the path class is not altered by the addition of null homotopic 
paths. 

The isomorphism between the fundamental groups %( 0) (with initial point 
0) and S(0 ' )  (with initial point 0') is dependent upon the particular choice 
of auxiliary path u. If we choose an auxiliary path u in place of u, then 
instead of the association 

{ w } + { u - ' w u }  (1) 

( 2 )  

one has the association 

( w ) + { u - ' w u }  = (u- 'uu- 'wuu- 'u)  = ( ( u - l u ) u - l w u ( u - l u ) - l ) .  

We must, then, transform* all elements of S(0 ' )  by the fixed element { u - ' u }  
in order to obtain the isomorphism (2) from the isomorphism (1). That is, the 
isomorphism between S ( 0 )  and %(Of) is on!y determined up to an inner 
automorphism of %( 0'). 

We saw in $27 (Theorem 11) that when a complex 9" is mapped into a 
complex K" by a continuous mapping q, the kth homology group of ,P is 
mapped by a homomorphism into the kth homology group of K"'. We shall 
now derive a corresponding theorem for the fundamental group. 

The mapping cp will transform an arbitrary path w on Q" to a path w' on !P". 
For the preimage R of w will first be mapped by a continuous mappingfonto 
w and will then be mapped continuously by cp. The product mapping pf is 
again continuous and therefore determines a path w' in K". If wo and w I  are 

'That is, we must multiply on the left by (u-I t ) )  and on the right by ( u - ' o ) - ' .  Such a 
transformation produces an inner automorphism of the fundamental group (see, for example, 
Speiser [ I ,  p. 1211). 
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two paths in A?" which are deformable one to the oiher, then the image paths w; 
and w; are also deformuble one to the oiher. The deformation rectangle 
0 I s 5 I ,  0 5 t 5 I can be mapped continuously into Q" so that the parallel 
sides t = 0 and i = 1 transform, respectively, to wo and w ,  and the other 
parallel sides transform, respectively, to the common initial point A' and the 
common endpoint B' of wb and w ; .  That is, wb and w; are homotopic in K". 
Finally, the product of two paths obviously transforms to the product of their 
images. 

If 0 is the initial point of the closed paths of the fundamental group 3 of 
R", then we select the image point 0' as the initial point of the closed paths of 
the fundamental group F of K". Since homotopic paths map to homotopic 
paths, to each path class of 3 there will correspond a particular image path 
class of 3. Since the image of the product of two classes is the product of the 
images, then this mapping of 3 into F is a homomorphism. Even if one does 
not choose 0' as initial point, but instead chooses another point 52 of K", we 
can still speak of a homomorphic mapping of the fundamental group 3. For 
there holds an isomorphism between the groups F(0') and F(52) which is 
determined by means of an auxiliary path joining 0' to 52. The homomorphic 
mapping of ;F into F(0) followed by the isomorphic mapping onto F(0) is a 
homomorphic mapping of 3 into F(52). We shall call this homomorphism +. If 
we change the auxiliary path, then + will be changed by an inner 
automorphism F(52) (from earlier in this section). We then have the following 
theorem: 

THEOREM . When a complex !fP is mapped into a complex K" by a continuous 
mapping cp, then ihe fundameniul group 3 of YP" will be mapped info ihe 
fundamental group F of K" b,v a homomorphism +. The mapping + is deiermined 
on@ up to an inner automorphism of F. If  9" and K" are homeomorphic and cp is 
a topological mapping of R" onto K", then + is an isomorphism. That is, 
homeomorphic complexes have isomorphic fundamenial groups. 

The last part of the theorem follows immediately from the fact that under a 
topological mapping there is a one-to-one correspondence between the paths 
$2" and the paths of K". 

43. Examples 
EXAMPLE 1. The fundamental group of the topological product of two complexes R, and R2 is  

equal to the direct product of the fundamental groups of the two facton. 

Proof is as follows. From B14, each point P of the topological product R, X Q2 can be uniquely 
represented in the form 

P = P I  x P,. (P 1 
If  @ is an arbitrary complex and g is a continuous mapping of 9 into R, X R2 which sends the 
point P of R to the point P of Q, x R2, that is, 

F+ P, ( g) 



162 Vll .  THE FUNDAMENTAL GROUP 

then because of equation (P) there is determined a continuous mapping g, 

F+ P I  

of 9 into R, and a continuous mapping g, 

F+ P2 

of 9 into W,. Conversely, if the continuous mappings g, and g, are given, then a continuous 
mappingg is determined by virtue of equation (P). In particular, if 9 is an oriented interval, then 
paths w ,  w ,  , and w2 in R, X R,, R, ,  and R,, respectively, are determined by the mappings g, g,, 
and g,. To each path w in sf, X sf, there corresponds a pair ofpaths w ,  and w,. and conversely. 

If, on the other hand, 9 is a rectangle which is mapped by g into R,  X R, so that three sides 
transform to a point 0 = 0, X 0, while the fourth side transforms to a path w ,  then under the 
mapping gi (i = 1,2) the same three sides will transform to the point 0, and the fourth side will 
transform to the path w,. Thus w ,  , w2 is the pair of paths which is associated with w. If w is then 
null homotopic in R, X R, it follows that w ,  will be null homotopic in R, and w2 will be null 
homotopic in 8,. The converse is also true: If w ,  and w, are both null homotopic, then there 
exists a mapping g, of the rectangle 9 into Ri such that three sides transform to 0, and the fourth 
side transforms to wi . The mapping g determined by g, and g, transforms these three sides of 
to 0, x 0, and the fourth side to w. 

If we choose a point 0, in Ri as initial point of the closed paths and likewise choose 0, X 0, 
as initial point in R, X R,, then the path classes of PI X R, will be in one-to-one correspondence 
with the pairs of path classes of R, and sf,. Since the product of two path classes of R, X R, is 
obviously formed by forming the products of the corresponding path classes of Q, and sf,, 
respectively, the fundamental group of Q, X R, is the direct product of the fundamental groups 
of $2, and 9,. 

EXAMPLE 2. The fundamental group of the n-simplex and also that of Euclidean n-space IR" 
consists of the unit element alone, because each closed path w is null homotopic. 

EXAMPLE 3. For n > I ,  the fundamental group of the n-sphere G" consists of the unit element 
alone. For if a closed path w of G" does not pass through the point 0' diametrically opposite to 
the base point 0 of w, we may deform w to 0 by moving each point of w to 0 linearly in one 
second along its great circle through 0 and 0'. If, however, w passes through 0', then we may 
approximate the mapping of the preimage W, as was done previously in 331, in a simplicial 
decomposition of G" such that the diametral point 0' becomes an inner point of an n-simplex 
and the point 0 is a vertex. This deforms the path w so that it no longer passes through 0', 
although 0 remains as initial point, whence the present case reduces to the previous case. We 
cannot avoid the use of a simplicial approximation in the proof, since it can happen that a path 
passes through every point of the n-sphere. 

EXAMPLE 4. If the fundamental group of a complex consists of the unit element alone, the 
complex is said to be simply Connected. Such a complex is characterized by the fact that one can 
deform each closed path in the complex to a point or, what amounts to the same thing, each 
closed path can be spanned by a closed disk. Of course this cannot always be done topologically. 
On the contrary, in some circumstances one may have to allow singularities (branch points, fold 
lines, self-intersections, and the like). The question of to what extent a complex is determined by 
the condition that it be simply connected is related to important unsolved problems of topology, 
even when one restricts oneself to homogeneous complexes. The question is easily answered in 1 
dimension. There exists only one finite I-dimensional connected homogeneous complex, the 
circle (I-sphere); there exists only one infinite 1 -dimensional connected homogeneous complex, 
the real number line. The real number line is simply connected. In the case of 2 dimensions we 
shall show in 347, by determining the fundamental groups of all homogeneous finite complexes 
(that is, of all closed surfaces), that the 2-sphere is the only simply connected finite homogeneous 
complex. The Euclidean plane is the only simply connected infinite homogeneous 2-dimensional 
complex.26 In 3 dimensions it appears likely that the 3-sphere is the only simply connected finite 
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homogeneous complex (Poincarss conjecture). In 4 dimensions the topological product of two 
2-spheres is an example of a homogeneous finite complex which is simply connected, from 
Example 1, but is not homeomorphic to the esphere, because the Betti number for the dimension 
2 isp2 = 2, whilep2 = 0 for the 4-sphere (from $19): 

44. The Edge Path Group of a Simplicia1 Complex 

The fundamental group has been defined for a connected complex in a 
topologically invariant manner. However, in order to calculate this 
topological invariant for a connected complex we must proceed as we did in 
the case of the homology groups and go to a particular simplicial 
decomposition of the complex. With its aid we define a new group, the edge 
path group, which is not defined as a topological invariant, but it is 
computable. We shall subsequently prove, by means of a simplicial 
approximation, that the edge path group and fundamental group coincide. 
The fundamental group of a connected complex has already been defined 
in a topologically invariant way. The topological invariance of the edge path 
group will then follow. 

We first consider a finite or infinite complex R" having a fixed simplicial 
decomposition. Let its edges be oriented in some particular way and let them 
be denoted by a, , a 2 ,  . . . . We shall first deal only with edge paths on P, that 
is, with products 

w = a"a" , . . . a; ( & , = * l , E m = ? l  ) . . . ,  & , = * I ) ,  

where the endpoint of a? will always coincide with the initial point of a2 and 
so forth. We shall also include paths having no edges, that is, paths consisting 
of an isolated vertex as an edge path. 

To avoid confusion we shall on occasion refer to the paths and defor- 
mations considered in $42 as continuous paths and continuous deformations, 
in contrast to the edge paths and the combinatorial deformations, which we 
shall now define. 

When we traverse the boundary of a 2-simplex CF2 of $" ir! a particular 
sense, starting from a particular vertex, we obtain a closed edge path, for 
example 

we call this path a boundary parh of the triangle. Each triangle has six 
different boundary paths, since we can depart from each of the vertices in 
two opposite directions. 

a F ~ a f ~ F 3 .  
I 2 3 7  

We can show that the Betti number p 2  of the topological product of two 2-spheres 9, and sf, 
is not equal to zero, as follows: Under the mapping g, of Example I the direct product 8, X P, 
(P2 is a point of .Q2) will he mapped topologically onto the 2-sphere R, .  After simplicially 
decomposing and coherently orienting R,  X P,, we shall find a 2-chain U 2  which is not null 
homologous in 9, X 9,. For if it were null homologous, then its image ' U 2  under the mapping g, 
would also be null homologous, from Theorem I of $27. But 'Uz is the coherently oriented 
2-sphere 9, and therefore is not null homologous on R, . 
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We can generate new edge paths from an edge path by means of the 

( a )  Insert or remove an edge which runs back and forth. The edge path 

following elementary combinatorial deformations, ( a )  and ( p) :  

a? . . . a$aEq . . . azEz 
P 4  

is replaced by 
a?. . . a$aEpa-EpaEq. . . a:; 

P P P  4 

here the initial point of a: must coincide with the endpoint of a? and thus 
must also coincide with the initial point of a?. In the other direction, a term 
a?ap-Ep may be deleted from the expression for an edge path.* 

By a repeated application of ( a )  we can insert an arbitrary edge path u 
which runs back and forth into an edge path w = w l w z  so that the initial 
point of u coincides with the endpoint of w , .  We thereby obtain the edge path 
w ' =  w,uu- 'w2 from w .  

( p )  Insert or remove the boundary path of a 2-simplex. One traverses a 
given path w up to a particular vertex, then traverses the boundary path of a 
2-simplex beginning and ending at this vertex and, finally, traverses the 
remainder of path w .  

We now introduce a third elementary combinatorial deformation which is 
derived from the previous deformations. 

(y) In an edge path w we replace an edge a f '  which belongs to the 
boundary path a,Ea;h;3 of a 2-simplex by (a;h;3)-' or, inversely, we replace a 
sequence a3-Eh;E2 by a:'. That is, we can let the path "jump over" a triangle. 
The operation (y) can be produced by carrying out the deformations ( p )  and 
( a )  (see Fig. 85, for which = 1, E~ = - 1, E~ = - 1). 

Two edge paths w and w' which can be transformed one to the other by 
finitely many elementary combinatorial deformations are said to be 
combinatorially deformable to one another or combinaroria/ly homotopic. 
Combinatorially homotopic edge paths always have the same initial point and 
end point. 

Let us now assume that the complex P' is connected. The closed edge 
paths departing from a given fixed vertex 0 are decomposable into classes of 
combinatorially equivalent paths, the so-called edge path classes. The edge 
path classes are elements of a group 8 k ,  the edge path group of the given 
simplicia1 decomposition of R", provided one takes the product of two edge 

If w is closed, however, and the first edge is the inverse of the last edge, that is, 

w = a t .  . . a,-,, 

then a;l cannot be canceled out against a;". That is, the initial and end points of an edge path 
remain fixed under cornbinatorial deformations. 
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FIG. 85 

path classes [ w,] and [ w z ]  to be the edge path class [ w I  w2]. This determination 
is clearly independent of the particular selection of the representative paths 
w I  and w2 from the classes [ w , ]  and [w2] .  We easily check that the group 
axioms are satisfied. as for the definition of the fundamental group, and that 
the group does not change when we select another vertex 0' in place of 0 to 
be the initial point of the edge path. 

The edge path group sA of the complex Q" coincides with its fundamental 
group. To show this we first notice that each combinatorial deformation can 
be realized by a continuous deformation, for the boundary of a triangle and a 
path running back and forth are both continuously null homotopic and each 
may be eliminated after contraction to a point (§42), assuming of course that 
some path remains after this. If we then choose the same vertex 0 of the 
simplicia1 decomposition of Q" as the initial point of the continuous paths of 
8 and as the initial point of the edge paths of sk ,  then each edge path class 
[w]  lies within the continuous path class { w ) .  The subsequent proof that ?ik 
coincides with CT: proceeds in much the same way as the proof of invariance of 
the homology groups. We must establish two properties: 

Each closed continuous path having 0 as initial point is continuously 
deformable to an edge path. That is, at least one [w]-class lies within each 
(w}-class. 

If an edge path having initial point 0 is continuously null homotopic 
in Q", then i t  can also be transformed to 0 by means of combinatorial 
deformations.*' That is, at most one [w]-class lies in each (w}-class. The 
elements of 5 and itfk are therefore in one-to-one correspondence. Since we 
can use edge paths in particular to form products of elements of 8, we have 
an isomorphism as well. 

(I)  

(11) 
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We shall prove both claim (I) and claim (11) with the help of the 
deformation theorem of 33 1. 

(I) If w is an arbitrary closed path departing from 0 and having the 
preimage i?, then we can deform the mapping go of i? onto w to a simplicial 
mapping g ,  of a sufficiently fine subdivision of W. The initial point and end 
point of i? will both map to the point 0 during the deformation, since the 
deformation does not move any image point from the simplex of R" to which 
it initially belonged. The path gl(Z), which arises from w = go(@) by 
deformation is therefore either the point 0 or consists only of edges of Q", 
between which some point paths may be inserted. We may eliminate the 
latter, from $42, so that w is deformed to an edge path. 

(11) If w is a closed edge path which can be contracted to the initial point 
0 by means of a continuous deformation, then a deformation rectangle 
PPoQoQ can be mapped continuously into R" so that the side @transforms 
to w and the remaining three sides transform to 0 (Fig. 86). We mark the 
points on Z which correspond to the vertices of the subintervals of w,  
construct vertical lines through these points of division, and complete the 
decomposition of the rectangle, which was started in this way, by means of 
additional vertical and horizontal lines to form a grid which is sufficiently 
fine so that the rectangles meeting in each vertex of the division will map into 
the interior of some simplicial star of R". This is always possible, from the 
uniform continuity theorem (87). We subdivide the grid by means of 
diagonals to form a simplicial complex B2. From the deformation theorem, 
the mapping go of @' into R" can be deformed to a simplicial mapping g ,  . I f  
w' denotes the subdivided rectangle edge W, then the image go(&) is the 
subdivided edge path w .  Under the deformation of go to g ,  the image of a 
subinterval of the path PPoQoQ will always be the point 0, since during the 
deformation of the mapping no image point leaves a simplex of R" to which it 
belonged at the start of the deformation. The sides PP,, PoQo, QoQ, however, 
all map under go to the 0-simplex 0. For the same reason, a dividing point of 
go&) will continually remain fixed under the deformation if it is a vertex of 
Q!': if, however, the dividing point is an inner point of an edge u of w ,  then it 
will transform to a vertex of a. The path gl(i$), which arises from the 
deformation of g,,(i%), will then consist of the same edges as w (aside from 
certain interpolated point paths, which we eliminate) but will also contain, in 

-- - - 

-- - - 

-- - -  - -  

FIG. 86 
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general, certain edges which run back and forth. In any case, we can arrive at  
gl($ from w by means of a series of combinatorial deformations of the type 

We now transform w' on g2 to the path PPoQoQ by a series of 
combinatorial deformations. This can be done, for example, by first replacing 
each subinterval of w' by the two other sides of the subtriangle adjoining it. 
We thereby obtain a sequence of segments leading from to a which 
consists alternately of vertical and diagonal segments. We replace each 
diagonal segment by the other two sides of the triangle lying underneath i t  
and then eliminate the resulting segments which run back and forth. The new 
interval path is P P  I Q LL Q We apply the same procedure to F , a ,  as was 
previously applied to PQ and we proceed in this manner until we finally 
arrive at PPoQoQ. Each combinatorial deformation applied to will 
determine a combinatorial deformation of g,(k), as a consequence of the 
simplicial mapping g,  , and this may, of course, also be the identity mapping. 
An operation ( p )  applied to a triangle E2 of a2 will correspond in $I" either to 
an operation ( a ) ,  an operation ( p ) ,  or to the identity, depending upon 
whether E2 transforms to a triangle, an edge, or a vertex, respectively, of Q". 
An operation (a )  applied to a segment Q 1  of E2 will correspond to either an 
operation ( a )  or to the identity, depending upon whether Q' transforms to an 
edge or to a vertex of $?". 

We can then transform w to g,(k) and then into the image of the path 
PPoQoQ by means of combinatorial deformations. But this image is the point 
0. Thus w is combinatorially null homotopic. 

This proves the coincidence of the invariantly defined fundamental group 
5 with the combinatorially defined edge path group g k .  We shall, from now 
on, denote both groups with the same symbol. 

It also follows, because these groups are the same, that the fundamental 
group of a complex Q" is not changed when one eliminates the inner points of all 
simplexes of dimension higher than 2. For the edge path group depends only 
upon the 0-, I - ,  and 2-simplexes of the decomposition, that is, upon the 
2-dimensional "skeleton complex" of the simplicial decomposition of SY'. 

__ - - 
(a) .  

_- - - 

-- - - 

__ - - 

45. The Edge Path Group of a Surface Complex 

The result of $44 has reduced the problem of representing the fundamental 
group of a given complex Q" by means of generators and relations to the 
simpler problem of finding the edge path group of a 2-dimensional simplicial 
complex. The generators and relations can then be found, in principle, by 
using a procedure which we shall learn in $46. The relations which one 
obtains with the help of a simplicial complex are quite numerous and difficult 
to understand. and if one wishes to use them one must simplify them by 
eliminating redundant generators. We can arrive at considerably simpler 
relations if we apply the computational procedure not to a simplicial complex 



168 VII. THE FUNDAMENTAL GROUP 

but to a surface complex built up of polygons. We shall now define the 
surface complex. 

Although previous investigations were carried out for arbitrary complexes, 
we shall restrict ourselves here to finite complexes, for the sake of simplicity. 

An edge complex consists of finitely many intervals with certain boundary 
points identified. We do not exclude the case where the end points of a single 
interval are identified. We shall call the image of an interval in the edge 
complex an edge. Examples are the edge complex of the normal forms of 
closed surfaces or the edge complex of the cube. 

An edge complex can be transformed to a 1-dimensional simplicia1 
complex by subdividing its edges. I t  wlll then be a complex in the sense of 
$10. 

We orient an edge by orienting its preimage. We shall denote the arbitrarily 
oriented edges, which we can regard as particular paths on the edge complex, 
by a, and the rever-se oriented edges by a,-’. 

We form “edge paths” out of the paths a, and their inverse paths; these are 
paths of the form 

where the endpoint of an edge will always coincide with the initial point of 
the next edge. 

A surface complex will arise from the edge complex by “spanning” certain 
closed edge paths by disks. Let 

w = a‘ /a%.  . . a: 
I m  

be a closed path which consists of at least one edge. Take a circular disk of 
radius I and parametrize its boundary by arc length s: 0 i s < 27. Similarly, 
describe the closed path w by the same parameter s. Points of the disk 
boundary are then to be identified with path points having the same value of 
the parameter s. We describe the resulting neighborhood space by saying it 
arises from the edge complex by spanning a disk over the closed path w ,  
namely, the image of the circular disk for which w is now the boundary. Paths 
w ,  w - I ,  and the paths arising from them by cyclically permuting their edges 
are then the boundary paths of the disk. It should be noted that w does not 
have to be free of double points; for example, it is possible that w = aa-I .  

When one repeats this process of spanning disks finitely often, a surface 
complex will be obtained from the edge complex. We shall also speak of an 
edge complex itself as a surface complex (with no spanning disks). 

We can define an edge path group in a surface complex R as in a simplicial 
complex. For this purpose we choose a fixed vertex 0 as the initial point of 
the edge paths and we divide the closed edge paths departing from 0 into 
edge path classes. Two such closed edge paths are put into the same class if 
they can be combinatorially deformed into one another. The combinatorial 
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deformation is defined as in the case of a simplicial complex ($44), except 
that we must modify the operation ( p )  to deal with polygons instead of 
triangles: 

( a )  Insert or remove an edge which runs back and forth. 
( /3) Insert or remove the boundary path of a disk. 

An edge a which is the boundary path of a disk can be eliminated from any 
path in which it appears (Fig. 87). 

FIG. 81 

The edge path classes are the elements of the edge path group F F k  of the 
complex $1, when multiplication of classes is defined as earlier. 

We shall now show that the edge path group % k  is the same as the 
fundamental group ;F of 9. In the special case that 9 has been simplicially 
decomposed this has already been proved in 544, since the surface complex R 
is then either a simplicial complex St2 or 9'. We shall reduce the general case 
of an arbitrary surface complex Q to this known case by repeatedly 
subdividing to arrive at a simplicial complex and showing that the edge path 
group does not change during each subdivision. 

We distinguish two different types of subdivision: 

( U I )  Subdivision of an edge: an inner point on an edge of the surface 
complex R is declared to be a new vertex, whereupon the edge is decomposed 
into two subedges. 

(U2) Subdivision of a surface element: the preimage of the surface 
element, which is a Euclidean disk, is decomposed by a chord into two parts. 
The endpoints of the chord transform under the mapping of the boundary to 
vertices of the edge complex. The chord transforms to a new edge, and the 
two parts of the disk transform to two new surface elements. 

Upon subdividing, a surface complex is transformed to another surface 
complex. By repeatedly subdividing, we can arrive at a simplicial complex, 
starting from an arbitrary surface complex $?. We first divide all surface 
elements into triangles and then form the 2-fold normal subdivision of the 
resulting triangle complex. 

If we denote by ft the surface complex obtained from Q by a single 
subdivision (UI)  or (U2), then the claim that Q and 6 have the same 
fundamental group is equivalent to the following two claims: 
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1. A closed edge path of & emanating from 0 is combinatorially 
deformable in 6 to an edge path of R. 

2. A closed edge path w of R emanating from 0 which is combinatorially 
null homotopic in @ is also combinatorially null homotopic in R. 

Proof of 1. Suppose & arises from R by subdivision of an edge a at a point 
T.  Then edge a is divided into two subedges b and c which may be regarded 
as paths in such a way that bc = a (Fig. 88). .The endpoint Q of a does not 
necessarily have to differ from the initial point P. If one of the sequences 
bb - I ,  cc - I ,  b - 'b or c - Ic appears in an edge path W of 6, then we can remove 
i t  by a combinatorial deformation (a). We repeat this until b" and c ' I no 
longer appear in w or occur only in the sequences bc (= a)  or c - ' b - '  
(= a -.I). In this way we transform W combinatorially to a path of R. 

If Q arises from Q by subdivision of a surface element II, then ll 
decomposes into two surface elements P and X which are separated from one 
another by the new edge d (Fig. 89). Let the boundary paths of P and Z be 
du-'  and dv- ' .  Should the edges d ' I  appear in an edge path W of 6, we can 
replace them by u ' ' by means of a combinatorial deformation ( p )  followed 
by (a). This will deform w combinatorially to a path w of R. 

Proof of2. If the edge path w of R is transformed by a sequence of single 
combinatorial deformations inside S? to the sequence of edge paths 

then these edge paths of @ will not in general be edge paths of R. We shall 
now give a rule which assigns an edge path w, of R to each path w, so that 
each path in the sequence of paths 

w = W O , W l ,  w 2 , .  . . , w, 

arises from its predecessor by means of one or more combinatorial 
deformations inside .Q and so that wr = 0. This will show that w is 
combinatorially deformable to 0 inside R. 

If 6 arises from $2 by subdividing edge a, the rule of assignment is: to each 
edge of @ which differs from b or c we assign the self-same edge of 9. The 
edge a ' ' is assigned to the edge b * ' and no edge at all is assigned to the edge 
c. The edge path w, which is associated with the edge path 3, is then 
obviously a closed edge path in Q emanating from 0. 

W I , W 2 ,  . . . , wr = 0, 

A 

P a 4 *e 
- *F--+-+ V 

FIG. 88 FIG. 89 
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If we now complete the transformation from W, to W , + l  by means of a 
combinatorial deformation (a)  applied to an edge different than b or c, or by 
means of a deformation ( p), then the transformation from w, to w,+ I is 
accomplished by the same deformation. But if w,+, arises from W, by means 
of a deformation (a)  applied to b or c, then w , + ~  arises from w, by a 
deformation ( a )  applied to a (or else w, = w,+ ,). 

arises from R by subdivision of a surface element, 
then we choose the following rule of assignment: each of the edges of @ 
different than d will be assigned the self-same edge of R, and the edge d will 
be assigned the path u. The addition or removal of dd-I in @ will then 
correspond to the addition or removal of u u - '  in R, which can be achieved 
by means of deformations (a) .  To the deformations ( p )  applied to the 
polygons P and X there will correspond combinatorial deformations in R 
which can be reduced to deformations ( p )  and (a). In this way we have 
proved the invariance of the edge path group Sk under subdivision and have 
thus proved that ;Fk coincides with the fundamental group 5. 

If, c n  the other hand, 

46. Generators and Relations 

We again denote the oriented edges of the surface complex 9' by 
a, ,a , ,  . . . , a,, and denote the initial point of the closed edge paths by 0. In 
order to arrive at a system of generators we select for each vertex of Q a fixed 
path, the so-called auxiliary path, which leads from 0 to that vertex. The 
auxiliary path of 0 will consist of the point 0 alone. To each oriented edge a, 
there will then correspond a unique closed path A ,  departing from 0, which 
is obtained by traversing the auxiliary path from 0 to the initial point of ai, 
traversing a, to its endpoint and, finally, returning to 0 along the inverse 
auxiliary path of the endpoint. A, is a particular edge path 

A, = (P,(Q") ( A )  

and, as such, belongs to a particular edge path class, which we shall 
henceforth also denote by A,, omitting the rectangular brackets. Not all of the 
classes A I ,  A, ,  . . . , A,, need be distinct. 

These edge path classes can serve as generators of the edge path group. We 
can combinatorially deform each closed edge path emanating from 0 to a 
product of edge paths A,.  I f  w = F(a,), for example, w = a,%: . . a: is such 
a path, then i t  is in fact combinatorially deformable to the edge path 

W = F ( A , )  = A Y A Z  . . . A,'. 

by general application of the operation (a) .  The path W arises from w by 
introducing an auxiliary path running back and forth between each pair of 
successive edges. 

Now for the relations! The existence of a relation 

R ( A , )  = 1 



172 VII. THE FUNDAMENTAL GROUP 

FIG. 90 

means that the edge path class R ( A , )  is the identity, that is, the edge path 
P ( A , )  is combinatorially deformable to the vertex 0. 

It is possible to present a finite number of relations from which all other 
relations follow. These relations are of two types: 

(I) If, in equation ( A )  we replace the edge (I, by the closed edge path A,, 
we get 

This is a correct relation, for the left-hand side comes from the right-hand 
side by removing auxiliary paths which run back and forth. There are as 
many relations of the type (I) as there are edges in the simplicia1 
decomposition of our (finite) complex. 

Figure 90 shows an example. Certain edges are shown which may be considered to lie on an 
arbitrary complex. Choose the path h, = ola; I as the auxiliary path to P,; choose h, = a,o,a; I 

as the auxiliary path to P,. Let ho denote the auxiliary path from 0 which consists of a single 
point. The auxiliary paths to P I ,  P4, and P, are indicated in the figure. We then have, for 
example, the path 

A ,  = h,a,h, I = a,a; I . a, . a4a; 'a, I = cp3(av) 

4 = cp,(A,). (1) 

and the path 

cp3(A,) = (hoaIh; l ) (h la ; 'h ; ' ) .  h,a,h<' . ( h , ~ ~ h , ' ) ( h 4 ~ ; ' h ; ' ) ( h , ~ , ' h , ) ,  

where we still must regard the paths h, as being composed of their individual edges. The above 
paths are combinatorially deformable into one-another usimg only opearations (a). The path 
classes A ,  and cp,(A,) then do, in fact, coincide.* 

(11) If u,%Z . . (12 is a boundary path of a surface element II, then the 
path A,"AZ . * A,'. is combinatorially deformable to 0 and therefore 

(11) A 7 A 2  . . - AZEx = 1 

is a correct relation. For the path is, first of all, deformable to that path which 
leads from 0 along the auxiliary path to the initial point of a$ on the surface 
element II, runs around II, and then returns to 0 along the same auxiliary 

expression qi(A,) means "substitute the symbol A,, for a, in the word cpi(av)." 
Editor's note: The intended relation in this example is A ,  = A ' A ;  'A,A,A; 'A; I. The 
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FIG. 91 

path (or rather, its inverse path). This deformation is made by removing the 
auxiliary paths running back and forth to the other vertices of n, that is, by 
repeated application of the operation (a ) .  By applying the operation ( p )  to 
the surface element n we obtain the path hh- '  which can be deformed 
combinatorially to 0 by repeated application of (a ) .  

This deformation process is illustrated in Fig. 91 for a triangle n. Here we 
choose E/ = E~ = I .  E,, = - 1, and we deform the corresponding path A,A;'A, 
to the point 0. 

There are as many relations of the type (11) as there are polygons in R. 

The relations ( I )  und (11) form a system of defining relations, that is, the 
left-hand side of an arbitrary relation R(AJ = 1 can be reduced to 1 by appbing 
the relations (1) and (11) and the trivial relations A,A,-l = AI-IAi = I .  

ProoJ The relation R ( A , )  = I states that the edge path R(cp,(a,)), which we 
shall denote by w,(u,), is combinatorially null homotopic. Therefore there 
exists a sequence of paths 

wo(au)? wl(a,)  9 . . . wm(au) 

such that ?(a,)  ( j  = 1,2, . . . , m )  arises from wj-'(a,)  by means of an 
operation ( a )  or ( p )  and such that wm(a,) contains no factors at all. By 
applying the relations (I)  the left-hand side R ( A , )  of the given relation will 
transform to f?(q,(AJ) = w,(A,). We then form the sequence of products 

WO(A")? WI(A, ) ,  . . . t wm(A,) = 1. 

If ?(a,) follows from ? - I ( u , )  by applying the operation (a) ,  then w,(A,) 
follows from ? - ' ( A , )  by applying the trivial relation A,A,,-' = I or 
A;'A, = 1. But if ?(a,)  arises from wj- '(a,)  by applying the operation (0) to 
a polygon n of R, then we get wj(A,)  from W , - ~ ( A , , )  by applying the relation 
(11) associated with the polygon n. We can therefore transform R ( A , )  by 
repeated application of relations (I) and (11) and the trivial relations to the 
successive terms of the sequence w,(A,), w,(A, ) ,  . . . , w,,,(A,). The last of these 
is the empty product. 

As an example we choose the I-dimensional simplicial complex which consists of the sides of a 
traingle (Fig. 92), that is, a simplicia1 decomposition of the circle or I-sphere. The initial point 0 
is a vertex of the traingle. The auxiliary paths are h,  = a ,  to the vertex P, and h, = 0;' to the 
vertex P,; the path h, consists only of the point 0. 
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FIG. 92 

The edge paths are 

A ,  = hoa,h;' = a l a ; l  = v l (av ) ,  

A ,  = h,a,h;l = ala2a3 = q2(av), 

A ,  = h,a,h; I = a; 'a, = cp3(a,). 

The relations are 

(I); no relations (11). 1 A ,  = A , A ; ~ =  I 

A ,  = A ~ I A ,  = I 

A ,  = A,A,A,  

There then remains one generator, A,, and all relations become trivial. The fundamental group 
of the circle is therefore the free cyclic group. The path classes are obviously represented by closed 
paths which traverse the circle 0, I ,  2, . . . times in one or the other sense. 

Likewise, the fundamental group of the annulus, of the solid torus, and, more generally, of the 
topological product of the circle and the closed n-ball is the free cyclic group. For it is the direct 
product of the fundamental group of the circle and the fundamental group of the closed n-ball 
(543, Example 1) but the latter consists of the unit element (543, Example 2). 

If we span a surface element over the triangle (Fig. 92), then we obtain an additional relation 

A,A,A3 = 1 

so that now A, = 1, in agreement with the fact that the fundamental group of the closed n-ball 
consists of the unit element. 

Problem 

If r is a rotationally symmetric torus lying in 9t3, show that it is impossible to map 9t3 
topologically onto itself so that r is transformed to itself and meridian and longtude circles are 
interchanged. (Consider the meridians and longitudes as elements of the fundamental group of 
the solid torus bounded by r.) 

47. Edge Complexes and Closed Surfaces 

As a further application of the methods developed in the previous section 
we will compute the fundamental groups of edge complexes and closed 
surfaces. 

Let a , ,  u2, . . . , a , ~  be the edges of an edge complex A?'. We first consider 
the simple case where R' has only a single vertex, 0. In that case all a, are 
closed paths, the auxiliary paths disappear, and the closed paths A ; ,  which 
represent the generating path classes of the fundamental group, become equal 
to the a,. The relations of type (I) become Ai  = A, and are therefore trivial. 
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There are no relations of type (11). Thus the fundamental group is the free 
group having 

a ' = N + l = - c ~ O + ( ~ ' + l  

generators; here a' = 1 and a' are, respectively, the number of vertices and 
edges of the edge complex and N = - a o  + a' denotes the Euler 
characteristic. The result is obvious immediately. For each path is a product 
of closed edge paths a, = A;, so that the path classes A; are generators of the 
fundamental group, and a product n i A ;  can be the unit element of the 
fundamental group only if the path n j A :  can be deformed to 0 by applying 
the operation (a ) ,  that is group theoretically, if n , A Y  can be reduced to 1 by 
applying the trivial relations AjA, - I  1 and A;IAj = 1. 

For an edge complex St'' having more than one vertex, we can reduce the 
computation of the fundamental group to this simple case. There exists an 
edge, let us say a,,  for which the initial point P and the endpoint Q are 
different. If h is the auxiliary path to P,  we choose ha, as the auxiliary path to 
Q. The closed path A ,  which belongs to a ,  is then the path h * a, . ( h a , ) - ' ,  
that is, the relation A ,  = 1 belonging to a,. 

If we now have 

A; = g-~,(a") 

the associated realtion is 

( i  = 2,3, . . . , a ' ;  v = 1,2, , . . , a ' ) ,  

A ,  = cp,(Av). 

Using the relation A ,  = 1 we get from this the system of defining relations 

A, = $ ; ( A p )  ( i ,  p = 2,3, . . . , a ' ) .  

Here #,(A,) is that product path which arises from cp,(a,) by omitting all 
factors a,. But the above relations are exactly the relations for the complex $f 
which one gets from 9' when one omits the edge a,  and identifies the vertices 
P and Q ,  that is, one contracts the edge a ,  to a point. For upon cancellation 
of a ,  the system of auxiliary paths of Q' transforms to a system of auxiliary 
paths in Qi  and the closed paths A,' belonging to the edges of Rf  are just the 
same paths A,' = $,(up), so that we get 

A,' = $,(A;)  

as relations of the fundamental group of Ytl, that is, the relations (1). Thus 
and @! have the same fundamental group. 

If there is more than one vertex in Q;, we apply the above procedure once 
again and do so repeatedly until we arrive at a complex Ql having a single 
vertex. The Euler characteristic N = - ao + a' is obviously the same for all of 
the complexes 9',,Qi, . . . , Ql. But, as we have seen, the fundamental group 
of 9; is the free group having N + 1 generators. We have achieved the 
following result: The fundamental group of an edge complex Q' is the free group 
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having N + I generators, where N is the Euler characteristic, - a' + a' ,  of the 
edge complex. 

After equivalent sides have been identified, the fundamental polygons of 
closed surfaces ($38) will belong to the surface complexes. For example, the 
fundamental polygon of the torus consists of one vertex 0 and two edges a 
and b (meridian and longitude circles), and one surface element that is 
spanned over the edge path aba-lb- ' .  The generators of the fundamental 
group correspond to the edges a and b. Let them be denoted by A and B. No  
auxiliary paths appear, since only one vertex is present. The relations of type 
(I) become identities and there is only one relation of type (11), which 
corresponds to the one surface element, and which states that the boundary 
path of the surface element is null homotopic in the surface complex. It is 

ABA - I B  - I  = I .  

This relation shows that the generators A and B commute. The fundamental 
group of the torus is, then, the free Abelian group having two generators. 

Exactly the same considerations can be applied to other fundamental 
polygons, and lead to the result: 

THEOREM The fundamental group of the orientable closed surface of genus h 
(sphere with h handles attached, h = 0, 1,2 . . . ) can be generated bv 
N + 2 = 2h elements which are connected by the one relation 

A I l l  B A - ' B , - ' .  . AhBhAiIB,,-l = 1.  

The fundamental group of the nonorientable surface of genus k (sphere with k 
cross-caps attached k + I ,  2 . . . ) has N + 2 generators and the one relation 

A f A : .  . - A: = 1. 

Except for the fundamental group of the 2-sphere ( h  = 0), which consists of 
the unit element alone, and that of the projective plane ( k  = l), which has 
order 2, all of the fundamental groups of closed surfaces are of infinite order. 
For they have a Betti number of value N + 2 = 2h > 0 in the orientable case 
and a Betti number of value N + 1 = k - 1 > 0 in the nonorientable case 
($86). 

Problems 

I .  Determine the fundamental groups of the surfaces with boundary. 
2. Using Problem 1 of 838, show that the group having the one relation 

A , E , A ; ~ B , - ~  . . . A ~ E ~ A ; I E ~ - I  = I 

is isomorphic to the group having the one relation 

c,c,. . . c,,c;'c;'. . . c,l = I .  
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48. The Fundamental and Homology Groups 

The preimage W of a path w in a complex Q“ is a geometric 1-simplex which 
is mapped continuously onto w .  The path w then represents an oriented 
singular simplex, and consequently, a singular I-chain. If we choose a 
different preimage, W’ of w instead of E, then we obtain in the same way a 
singular simplex w’ which is in general different than w, even though w and w’ 
coincide as paths. This is due to the fact that we have defined equality of 
paths so as to allow their preimages to map to one another topologically, 
while our definition of equality of singular simplexes requires that the 
preimages map to one another linearly. I t  is possible to show, however, that 
the singular simplexes w and w’, which may on occasion be different, describe 
homologous chains. For there exists a topological mapping of R onto R’ with 
preservation of orientation such that corresponding points have the same 
image point in the complex Q“. The preimage k thereby transforms to an 
oriented singular simplex El on W’ which has the same boundary as W’. Thus 
W’ - WI -0, as is the case for each closed I-chain on an interval. This 
homology is preserved, however, under a mapping of the interval W’ onto w 
(§27), and since W, transforms to w and W’ transforms to w’, i t  follows that 
w - w’. Accordingly, to each path w there will correspond a I-chain with the 
same designation and which will in fact depend upon the choice of preimage 
W of w but whose homology class will be uniquely determined. We can 
therefore speak of paths which are homologous to one another. If a path is 
closed, so also is the singular chain belonging to it. 

THEOREM I .  To the product w = w ,  w2 of two paths there corresponds the sum 
of the associated chains, that is, the chain w - w I  + w 2 .  

Proof: The preimage of w , w z  is an interval W which is composed of two 
subintervals, 8, and Wz. On that interval w I  + w2- W and this homology is 
preserved in their images in .I?“. 

THEOREM 11. I f  two paths wo and w ,  are homotopic, then they are also 
homologous. (The converse is not necessarily true.) 

Proof: If Go, El,  U, C are the sides of the deformation rectangle belonging 
to the deformation of wo to w ,  (Fig. 93), then on this rectangle there holds the 
homology 

k, - Ro+ u - 5 - 0 .  

FIG. 93 
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One then has for the images 

W I  - w o +  u - 0-0. 

However, since ii and ij map to points, u and u are degenerate singular 
simplexes ($25), so that w I  - wo - 0. 

As an example to show that homologous paths do not have to be 
homotopic, we have the waist section path I on the double torus (later in this 
section), which is null homologous but is not null homotopic. 

On a connected complex, Qn, we can uniquely associate a homology class 
to each path class and since the sum of the corresponding homology classes is 
associated to the product of two path classes, we have a homorphic mapping 
x of the fundamental group 8 into the homology group 8'. To study this 
homorphism more closely it will be sufficient to look at edge paths and 
simplicial chains on a simplicial decomposition of Q". We choose a vertex 0 
as the initial point of the closed paths. Since we can convert an arbitrary 
closed simplicial 1-chain to a closed edge path departing from 0, by means of 
adding back and forth running edge paths, it follows that each homology 
class is the image of at least one path class. That is, x is a homorphism of 8 
onto 6'. It is therefore characterized by means of the normal subgroup (n of 
8 which corresponds to the null element of @ I .  We claim that 92 is the 
commutator group of 8. 

Proof. Each commutator FlF2F,-'F;' of 8 will transform to the null 
element of 6' because 8' is Abelian. We need only to show the converse, that 
each element of in belongs to the commutator group; that is, the path class of 
an arbitrary null homologous path w belongs to the commutator group. If 

I =  I 

is a 2-chain with the boundary w ,  then for each triangle E: one chooses an 
edge path r, which departs from 0 along a path u, to a vertex of E:, runs 
around El2, and returns to 0 along u;' .  The traversal around El2 is to be 
made in the sense required for the chain rj to be the boundary of E:. Since 
each path r, is null homotopic, the edge path w is deformable to the edge path 

Also, since 
r ; I  . . . ).,a 

is, like w ,  the boundary of U 2 ,  both paths are equal when considered as 
chains. Thus w is the chain 0 and it traverses each 1-simplex equally often in 
both directions. We can now transform 

w' = f( Uj )  
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by means of combinatorial deformations to the edge path 

W' = f (  Aj) ,  

where A, denotes the closed edge path belonging to aj(§46). In W' each path 
Aj appears equally often with the exponents + I  and - 1 ,  so that upon 
making the fundamental group Abelian W' transforms to the null element. 
That is, the path class of W ' ,  which is the path class of w' and w, belongs to 
the commutator group. 

This proves 

THEOREM 111. The first homology group 6' of a connected complex QY' is the 
Abelianized fundamental group (factor group of the fundamental group 5 
relative to its commutator group). 

We can easily verify this theorem in the special case of closed surfaces by 
comparison of the results of $41 and $47. 

We have characterized a null homotopic path as a path which may be 
spanned by a singular disk. We now give a similar characterization for null 
homologous closed paths. 

THEOREM IV. A closed path w i s  null homologous if and only if it is the 
boundary of an oriented surface which lies in the complex, possibly with 
singularities. 

ProoJ When considered as an element of the fundamental group, w 
belongs to the commutator subgroup, from Theorem 111, and is therefore 
deformable to a product of commutators 

u 2 ) u - $ q l  . .  ' U  u u - 1  - 1  
I l l  h h h  ' h  

The closed path 

is therefore null homotopic and can be spanned by a disk which has as its 
preimage a (4h + I)-gon having boundary 

Upon being mapped into If", this polygon closes to a surface with boundary 
of genus h which lies in the complex (possibly with singularities) and whose 
boundary is the path w. (The case h = 1 is illustrated in Figs. 6-8.) 
Conversely, i f  a path w can be spanned by such a surface, that is, one can 
map a surface with boundary continuously into the complex Q" so that the 
boundary of the single hole transforms to w, then w is null homologous. For i t  
follows from the orientability of the spanned surface that there will exist a 
singular 2-chain on it whose boundary is precisely the path w ,  regarded as a 
1-chain. 
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FIG. 94 

An example of a path which may be spanned by a surface of genus I but not by a disk is the 
waist section I of the double torus. This path separates the two rings of the double torus (Fig. 94). 
It is the boundary of a torus with boundary, as can be seen by cutting the double torus along 1. 
This confirms the fact that the element of the fundamental group which is represented by I ,  
namely L = (ABA - 'B  - ' ) - I ,  is a commutator. On the other hand, I cannot be spanned by a disk 
because this element is npt the unit element of the fundamental group. 

We can see this as follows. The fundamental group 8 has a single defining relation 

ABA - ' B  - 'CDC - ID - I = I. (1) 

Upon introducing additional relations 

A = D ,  E = C  

we get a factor group 5 of 8 ($83). Elimination of C and D shows that 5 is the free group having 
two generators, A and B .  The relation A E A  - ' B  - '  = 1 therefore does not hold in 8 and thus can 
not hold in 3. 

The waist section is thus null homologous but not null homotopic on the double t o m .  

49. Free Deformation of Closed Paths 

Until now we have always kept the initial point fixed when we deformed 
closed paths. On occasion we must also deal with deformations under which 
the initial point moves. We will call thesefree deformations, in contrast to the 
constrained deformations previously considered. When we refer simply to "a 
deformation" without supplying a qualifying adjective, we shall always mean 
a constrained deformation. 

The exact definition of a free deformation is: 
Two closed paths wo and w ,  on a complex Q" are said to be freely 

deformable to one another or freek homotopic if it is possible to map a 
deformation rectangle F X T continuously into Q" so that the side F X 0 = Fo 
transforms to wo and the side F x 1 = F, transforms to w , ,  while each pair of 
corresponding points X t and X of the other two sides map to the same 
point of 9". 

X T and 0 X T then transform to the same path u 
which connects the initial point Po of wo with the initial point P ,  of w l .  If the 
side F X 0 is displaced parallel to itself across the rectangle to the opposite 
side, then the image path will experience the free deformation and the initial 
point Po of wo will traverse the path u. 

The oriented sides 
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The relation between the free and constrained deformations is provided by 
the following lemma. 

LEMMA . I f ,  during a free deformation of a closed path wo to a path w I ,  the 
initial point Po of wo describes a path v ,  then wo can be deformed to uw I u  - by a 
constrained deformation. Conversely, if a path wo can be deformed to a path 
u w I v - I  by means of a constrained deformation, then wo and w I  are free4 
homotopic. 

Proof. We consider two rectangles, '31 and 2 whose boundaries are divided 
and designated as in Fig. 95. We may consider Z to arise from '31 by letting 
the two sides U' and U" of '31 shrink to points, that is, by identifying all of the 
points of each individual side. This can be done by means of a continuous 
mapping 'p of '31 onto ir_ (indicated in the figure) which transforms the paths 
Wo, FI, 3, and E" to the paths of Z having like designation. If wo is freely 
deformable to w I  and the initial point of wo describes the path u, then there 
exists a continuous mapping \c, of 3, into $8" which transforms Wo to wo and W I  
to w I  and transforms each of the other two sides 5' and 6" to u. The mapping 
$'p = x will then transform the sides E' and ii" of !Jl to points and will 
transform the other two sides to the paths wo and U W ~ U - ~ ,  which is equivalent 
to the existence of a constrained deformation between these two paths. 

Conversely, when there is a constrained deformation from wo to U W ~ U - ~ ,  

the mapping x of !R into Q" is specified and a continuous mapping \c, of '3. is 
defined by means of the equation x =  +'p, from $8, Theorem IV. The 
mapping rC, transforms Wo to wo and W I  to w I ,  but transforms the other two 
sides to v .  

When there is a constrained homotopy between two paths with common 
initial point, they are also freely homotopic. We can see that the converse is 
not generally true from the paths m and a of Fig. 94. Path m is freely 
deformable to a via the position m'. But m and a are not homotopic. For m is 
homotopic to bab-' and the path classes of m and a,  namely, BAB - I  and A ,  
are different because 

A ( B A B - ' ) - I =  A B A - I B - I Z  1, 

which was proved at the end of $48. 
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THEOREM. Two closed paths, wo and w I  which start from a common initial 
point 0 are free4 homotopic if and on4 if they represent conjugate elements W ,  
and W ,  of the fundamental group, that is, if there exists an element V such that 

All paths which belong to a single conjugacy class of the fundamental 

The proof is an immediate consequence of the lemma. 
We review our three possible ways of dividing into classes, the closed paths 

emanating from 0: 

1. The narrowest division into classes is division into path classes. Two 
paths belong to the same path class if they are deformable to one another, 
keeping 0 fixed. The path classes form the elements of the fundamental 
group. 

2. All paths in a single conjugacy class in the fundamental group coincide 
with the set of all paths freely deformable to one another. In general these 
classes do not form a group. 

3. All paths of residue class of the fundamental group relative to its 
commutator group form a class of homologous paths. These homology classes 
form the homology group 

w,= vw,v-l .  

group will then be freely homotopic to one another. 28 

50. Fundamental Croup and Deformation of Mappings 

A continuous mapping cp of a connected complex Qm into a connected 
complex K" induces a homomorphism of the fundamental group 8 of P 
into the fundamental group F of K". The homomorphism CP is only 
determined up to an inner automorphism of F (842). We shall now prove that 
this homomorphism does not change under deformation of the mapping cp. 

If the initial point 0 of 8 transforms under cp to the initial point 52 of F and 
if 52 describes a path u with end point 52,  under the deformation of cp to a 
mapping cpI and, finally, if w' and w; are the images of a closed path w 
departing from 0 under the mappings cp and ql, then w' will be freely 
deformed to w; during the deformation of cp to cp,. From the lemma of $49 the 
paths w' and uw;v-'  are then homotopic. Path w is then mapped by cp and cpI 
into the same path class of F, up to an inner automorphism. 

In  particular, under a deformation of a complex W into itself, the fundamental 
group of the complex will be mapped to itself by an inner automorphism. 

51. The Fundamental Croup at a Point 

Earlier, in Theorem I11 of 132, we saw that the homology groups of the 
neighborhood complex of a point P are the same for all simplicia1 
decompositions of a complex P. This theorem is also valid for the 
fundamental group. 
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THEOREM. I f  211 and ‘u2 are the outer boundaries of two simplicia1 stars with 
center point P on a complex P then ‘ul and N2 have the same fundamental 
group, provided that the simplicial stars are neighborhoodr of P in Q” and that 
‘ul (and consequently also ‘u2) is a connected complex. 

This fundamental group is called the fundamental group of the point P .  

Proof. From Theorem 1 of $32 there exists a continuous mapping cp of Yll 
into 212 and a continuous mapping I) of 212 into Yl, such that the 
self-mappings J/cp and CprCI of ‘u, and 912, respectively, are deformable to the 
identity. The homomorphisms + and 4 induced by cp and I) on the 
fundamental group of 3 ,  and the fundamental group s2 of ‘$I2 then have 
the property that the homomorphisms induced by 4+ of and tjn) of s2 are 
inner automorphisms, from $50. But this implies that + is a one-to-one 
mapping of onto g2. that is, an isomorphism. For if HF;) = HF;) were to 
hold for distinct elements F; and F,”, then we would also have 
+ H F ; )  = +HF,”),  which is impossible if ++ is an inner automorphism of 
Furthermore, if F2 is that element of 32 which transforms to a given element 
F; under the automorphism +# of s2, then the element +(F2)  of 5, 
transforms to F; under the homomorphism +. That is, each element of s2 is 
the image of an element of sl. This proves that Cp is one-to-one. 

52. The Fundamental Group of a Composite Complex 

Frequently, the determination of the fundamental group of a complex R 
can be simplified by decomposing R into two subcomplexes having known 
fundamental groups. Let R’ and R” be two connected subcomplexes of a 
connected n-dimensional simplicial complex R. We require that each simplex 
of R belongs to at least one of the two subcomplexes. The intersection 6 of Q‘ 
and 9‘‘ is not empty, because 9 is assumed to be connected. We require that 
6 also be connected. 

Let 3, 5’, 3”, and 3% be the fundamental groups of R, R’, Q”, and 6. 
Choose a point 0 of 6 as the initial point of the closed paths. Each closed 
path of 9 will then also be a closed path of R‘ and of R”. Consequently, to 
each element of &, there will correspond an element of 3’ and an element of 
5”. We then have: 

THEOREM I. 8 is a factor group of the free product 3’ 0 3”. We obtain 8 
from the free product, when one identifes any pair of elements of %’, and 85.; 
which correspond to the same element of &. That is, we introduce relations 
between the generators of 3’ and the generators of 8” by setting those elements 
equal to one another. 

Proof. According to the general prescription for the computation of the 
fundamental group, each vertex of Q is to be connected to 0 by an auxiliary 
path. If the vertex belongs to 6, then we may assume that the auxiliary path 
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lies entirely in D, since we have required that D be connected. Likewise, the 
auxiliary path is to lie entirely in R’ when the vertex lies in Q’ and is to lie 
entirely in R” when the vertex lies in 9”. 

A simplex of arbitrary dimension of R will belong either to $’ and not to 
R”, or to R” and not to Q’, or to both R’ and R“, that is, to 6. This 
determimes a partition of the simplexes of R into three disjoint subsets: @’, 
.@”, and 6. 

The generators A ,  of 8 may be placed in one-to-one correspondence with 
the edges a, of R ($46). According to whether a, belongs to @’, @”, or 6 we 
shall rename the corresponding generator A ,  of 8, respectively, 

- - q, K,”, or Dj.  

The relations of type (I)  of 8 are in one-to-one correspondence with the 
edges of R; the relations of type (11) of 8 are in one-to-one correspondence 
with the triangles of Q. We shall partition the relations into three classes, 
according to whether the edge (or triangle) belonging to the relation lies in @’, 
.@”, or D. The relations for these three classes are then 

R;(D,,K,‘)= 1 ( i =  1,2, .  . . , K ‘ ) ,  (W 
R:( D.,K.”) J J  = 1 ( i  = 1,2, . . . , K ” ) ,  (9”) 

(D) R, (D) ( D j ) =  1 ( i =  1,2 , . . . ,  6). 

Because of the particular choice of auxiliary paths, the 8; do not appear in 
the R;, the K/‘ do not appear in the R; and neither appear in the Ri(D). 

The relations (9) are obviously the defining relations of the fundamental 
group 8% of D. The relations (D) + (@’) and (D) + (@”), respectively, define 
the fundamental groups 8‘ of R’ and 8‘‘ of R”. Finally, since 
(D) + (@) + (R”) are the defining relations of R, they can obviously be 
replaced by the following system of relations: 

D.’ J J  = D.” for all j .  ( b )  

The relations (8’) together with the relations (8”) are the relations of the 
free product of and 8” ($85). The relations (b )  indicate that two elements 
Di of 3’ and DY or 8“ which correspond to the same element, Dj of D are to 
be identified. 
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The theorem becomes particularly simple to state in the case that the 
fundamental group of ib reduces to the unit element. In that case, the 
fundamental group of Q is the free product of the fundamental groups of R' and 
Q". 

If we Abelianize all of the fundamental groups in Theorem I, then we get, 
taking account of Theorem 111 of $48: 

THEOREM 11. The homology group @' of 3? is a factor group of the direct 
product of the homology groups '8' of Q' and "@' of YB". I t  is obtained by setting 
each element of '@' equal to that element of "@' which corresponds to the same 
element of the homologv group @a of 6. 

We shall not derive the corresponding theorem for the homology groups of 
higher dimension. Its statement is not as simple.30 

As an application of Theorem I, we shall determine the fundamental group of a torus knot. To 
define the torus knot we draw m axis parallel lines on the surface of a cylinder of finite length 
located in Euclidean 3-space W3 the lines being uniformly spaced at an angular interval of 2n/m 
radians. We shall bend the cylinder into a torus. However, before bending the cylinder, we twist 
the floor and roof faces by an angle of 2nn/rn radians. This is shown in Fig. 96 for the case 
m = 3 and n = 5 .  We then bend the cylinder to form the torus so that points which lay over one 
another before the bending are identified. In the case when m and n are relatively prime integers, 
the m axis parallel lines will close on the torus to a single closed curve, which we shall call the 
torus knot belonging to the integers m,n.* We now bore the knot out of W3. That is, we let a 
small ball, having its center point on the knot, glide over the knot and we remove from !R3 those 
points which were swept over by the interior points of the ball. We then complete W3 to form the 
3-sphere G3 by adding a single improper point (814). The part of G3 remaining after the knot has 
been bored out is a 3-dimensional complex R which has a thin tube (topologically a torus) lying 
around the knot as its boundary. This can easily be rigorously formulated, as can the process 
described intuitively above. The complex R is called the exterior space of the knot. The 
fundamental group of R is called the knot group. To determine the knot group we decompose G3 

FIG. 96 

*Next to the circle, the torus knot 2,3 is the simplest of all knots, the trefoil knot, which is 
shown in Fig. 2. 
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FIG. 97 

into two subsets whose common boundary is the torus on which the knot lies. The tube will then 
be split along its length to form two half-tubes. The complex Q will be decomposed to form two 
solid tori, from Problem 4 of $14, such that a winding groove of semicircular profile has been 
milled out of each torus. We shall designate the “finite” solid torus as the subcomplex R’ and we 
shall designate the other solid torus, which contains the point at infinity, as the subcomplex 9”. 
The intersection SD of the two subcomplexes is a twisted annulus which covers the ungrooved 
portion of the torus on which the knot lies (Fig. 97). From 946, the fundamental group B’ of Q’ is 
the free group on one generator A (renamed K; in the proof of Theorem I). The fundamental 
group of Q“ is the free group on one generator B. We represent A by the core of the solid torus 
R’ and we bend this curve so that it passes through a point 0 of the median line of the annulus 
59. We choose this point 0 as the initial point. We represent B by the core of the other solid torus 
W’; for example, it can be the axis of rotation of the torus on which the knot lies. We likewise 
deform B so that it passes through the point 0. We take the median line D of the annulus as the 
generator of the fundamental group of P), which is also the free group on one generator ($46). 
The group o 5’’ is the free group on two generators A and B. Considered as an element of 5’. 
D is equal to A m ,  but considered as an element of D”, D is equal to B“,  when the paths A and B 
are appropriately oriented. We then obtain the knot group of the t o m  knot m, n by introducing the 
relation 

A m =  B” 

between the two generators. 

a circle by means of an isotopic deformation of Euclidean 3-space, bec- 1.- 

infinite cyclic.” 

It follows from this that a torus knot m, n such that m > 1 and n > 1 cannot be fiansforrned to 
k v ’  proup ‘ Q  IC’ 

Problems 

I .  Assume that the space W4 has been completed by adding a point at infinity to form the 
4-sphere G4. A closed sequence of edges consisting of straight line segments, free of double 
points, has been bored from W4. Show that the fundamental group of the exterior space consists 
of the unit element. (Apply Theorem 1 to G4, which is decomposed into two subcomplexes, the 
exterior space I and the bore 8. The bore is the topological product of the circle and the 3-ball. 
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The intersection 50 of I and '8 is the topological product of the circle and the 2-sphere. The 
fundamental group of Ca is unchanged when I is completed with 23. Why does the argument fail 
in three dimensions?) 

2. Find a Cdimensional homogeneous complex whose fundamental group is the free group on 
r generators. (Bore out a small 4-ball from each of r topological products of the circle and 
3-sphere, and by using a 4-sphere with r holes construct a complex having the desired properties.) 

3. Find a 4-dimensional homogeneous complex having an arbitrarily prescribed fundamental 
group with finitely many generators. (Bore out a path w which is free of double points, from a 
homogeneous complex @. Complete the resulting complex with boundary P with a topological 
product of the 2-sphere and the disk. This gives a homogeneous complex 'sf4 whose fundamental 
group is obtained from that of d by adding the relation w = 1.) 
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The fundamental group is closely related to the coverings of a complex. We illustrate this by 
an example. When we let a cylindrical ring of radius 1 roll on a plane, it will roll over an infinite 
strip on the plane (Fig. 98). This strip can be wound infinitely often around the ring, so that it  
covers the ring infinitely many times. The initial point 0 of the closed paths on the ring will 
repeat periodically on the strip at distances of 297. A path on the strip which leads from one of 
these periodically repeated points to another such point can be projected through the strip to a 
path on the ring which wraps around the ring several times. Each element of the fundamental 
group of the ring can be represented by a path which loops the ring. On the other hand, the path 
connecting two of the periodically repeated points on the strip is determined up to a homotopy 
by the initial point and the endpoint of the path. That is, the initial point of the path can be 
transformed to the endpoint by making a displacement of the strip. This displacement determines 
the path, up to a homotopy. We can, therefore, relate the fundamental group of the ring to the 
group of covering movements of the strip, also called the group of “covering transformations, ” 
which displaces the strip by multiples of 2n into itself. 

In like manner we can regard the fundamental group of each complex as being the group of 
covering transformations of a particular covering complex, the universal covering complex. The 
rest of the unbranched coverings of the complex, and we shall only deal with unbranched 
coverings,corresponds to the subgroups of the fundamental group. Thus a knowledge of the 
fundamental group will provide us with a complete picture of the possible covering complexes. 

FIG. 98 

53. Unbranched Covering Complexes 

Let R and 6 be finite or infinite connected complexes. We say that-6 covers 
Q or 6 is a covering of R if there exists a continuous mapping G of R onto R 
which satisfies the following conditions: 

188 
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(UII)  At least one point P“ of 6 is mapped to each point, P of Q. We say 
that P‘ lies above P ,  and that P is the groundpoint or base point of p .  

(U12) I f  F , , F 2 ,  . . . are all the points lying above P ,  then there exist 
“distinguished neighborhoods” U( P), U(P‘,), U( P2), . . . such that G maps 
lI(F,),U(FJ, . . . topologically onto U ( P ) .  (This is the nonbranching 
condition.) 

(U13) Each point of 6 which lies over a point of U(P) belongs to at least 
one of the distinguished neighborhoods ll(F,), lI(F2), . . . . (This is the 
nonbounding condition.) 

The condition (U12) characterizes the mapping G as being locally topological and thereby 
excludes such objects as fold lines, or the branch points which occur when Riemann surfaces are 
regarded as covering spaces of the 2-sphere. We shall deal only with unbranched covering 
complexes. 

The condition (U13) insures that each path f of the base complex lifts to the covering complex, 
as we shall show in $54. The following example shows that (U13) is not a consequence of (UII) 
and (U12). Let the base complex be an annulus. Let the covering complex be a half-open 
rectangular strip which includes the two length sides but not the two width sides, u and b of Fig. 
99. We map the covering complex onto the annulus so that the open ends overlap. In this case 
conditions (U11) and (U12) are satisfied but no (U13). That is, given a point P lying under either 
line u or line b, there exist points lying above an arbitrary neighborhood of P which do not 
belong to any distinguished neighborhood. A path which winds twice about the inner circle of 
the annulus cannot be lifted to the covering complex in such a way that the covering path is 
projected to the base complex by the mapping G .  

We should note that the base complex is obtained from the covering complex by identifying 
points which have the scme image. Theorem I1 of $8 is applicable, because an arbitrary 
neighborhood of a point P maps to a neighborhood of the base point P under the mapping G. 

The torus is a simple example of a covering complex. We shall map a torus, Q, shoyn cut open 
to a rectangle in Fig. 101, onto another torus R so that each of the four squares of R transforms 
congruently to the single square of Q. We thereby produce a fourfold covering of the torus I by 
9. We can regard the covering torus as arising from the base torus by taking four congruent 
copies of R (sheets) lying above R, cutting each of them along a meridian circle (the vertical sides 
of Fig. 100) and joining them cyclicly to one another (Fig.101). If we think of the torus as lying in 
ordinary 3-space as a ring surface generated by a rotation, the rneridip circle will become a 
closed curve along which R penetrates itself.. But when we regard Q as a two-dimensional 

FIG. 99 

Editor’s note: The intended meaning is evidently that the torus is to be regarded as a torus of 
revolution. The covering torus K is to be thought of as a cylinder which is embedded in 3-space 
so that the four points which project to a given point P lie directly above P; also the two 
boundary circles of the cylinder are to be identified. 



Vl l l .  COVERING COMPLEXES 

FIG. 100 FIG. 101 FIG. 102 

manifold, existing independently of an embetding into 3-space, then the points of this curve are 
distinguished in no way from other points of R. 

Two covering complexes are regarded as being equivalent if there is a 
topological mapping between them such that corresponding points lie above the 
same ground point. It is possible, however, that homeomorphic complexes can 
be defined to be covering complexes of one and the same base complex in 
equivalent ways. 

E ~ P L E S :  We can find a fourfold covering of a torus SE by a torus 6' sych that 6" and the 
torus R used previously are inequivalent covering complexes. To construct I' cut open the four 
sheets 0-f SE along meridian and longitude circles and reidentify with a cross-over. Figure 102 
shows SE' cut open to form a square, and subdivided into four squares so that points located 
congruently with respect to each of the four subdivision squares project to the same point of SP. 

We now give two additional examples of covering complexes, which will be used later. Let the 
base complex Q be the double torus, which we embed in ordinary 3-space as a sphere with two 
handles. We consider three congruent copies to be laid over it, with their handles cut open. In the 
first example, we sew the first and secood copies together with a cross-over at the left handle cut 
(Fig. 103) and we rejoin the third copy to itself there so that it again runs smoothly; at the right 
handle cut we sew copies 2 and 3 together with a cross-over, while the first copy is rejoined to 
itself and again runs smoothly. In the second example, we rejoin each of the three copies to itself 
at the left handle cut, as if the left handle cut had never been made; at the right handle cut the 
three copies are sewn cyclically to one another. The meridian circles at the handle cuts become 
closed curves along which the covering surface has self-intersections, in so far as the surface does 
not run smoothly over the cuts, and either two or all three of the copies cross through one 
another there. The self-intersections are indicated schematically in Fig. 103. 

:x 
3 

I 

2 J-- 35 (Irl 
FIG. 103 



54. BASE PATH AND COVERING PATH 191 

I 
FIG. 104 

I I  
FIG. 105 

We obtain another model of the covering surface when we cut open the base double torus to 
form its fundamental polygon, an octagon, and join two congruent copies to this polygon in an 
appropriate manner. The covering surface then appears as a single polygon having painvise 
equivalent sides. In Fig. 104 and 105 equivalent vertices and equivalent edges have been given 
the same designations; those vertices, edges, and surface elements which lie above the same base 
element are distinguished by means of accent marks. In each of the two examples, the covering 
syface is orientable and its Euler characteristic is three times that of the base surface: 
N = 3N = 6. For each vertex, edge and surface element in the base space is covered by exactly 
three vertices, edges, and surface elements respectively. The covering surface has genus h = 4 
($39). 

54. Base Path and Covering Path 

is the mapping of w onto 6', 
then T =  GT is a continuous mapping of w into Q and this mapping 
determines a path W in YP. We call W the ground path or base path belonging 
to I@ and we say that I@ covers the path W .  We will now prove not only that 
each path @ of 6' projects to a particular ground path W of Q but also the 
converse. Each path of the base complex can be lifted to the covering 
complex in as many ways as there are points lying above the initial point A of 
W .  

THEOREM I .  I f  W is a path in R leading from A to B and k is a point of 6 
lying above A ,  then there exists exactly one path i@ which covers W and has 
initial point A'. 

I f  w is thegreimage of a path 6' in yi\ and 
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Prooj We choose the oriented unit interval w (0 5 s i 1) as the preimage 
of W.  Let T be the mapping of w onto W. If T‘ is then an arbitrary 
continuous mapping of w into R, the resulting path F f  will be a covering path 
of W if and only if Gf’ maps w to W ;  that is, there exists a topological 
self-mapping S of w such that corresponding points s and S(s) have the same 
image in R under T and G f ’  respectively: T(s)  = G f ’ S ( s ) .  From the 
definition of equality of two paths, the same path will be defined by the 
mapping f’ as by f ‘ S  = f. We thus obtain the most general covering path @ 
by mapping w into k by a continuous mapping f such that Gf= T .  
Expressed in another way: For each value of s the point f(s) lies above s. 
The proof of Theorem I is thereby reduced to the proof of the following 
lemma. 

LEMMA. Let the unit intervaj 0 S s 2 1 be mapped continuously into Q by a 
mapping T. If i is a point of R lying above A = T(O), then there exists exactly 
one continuous mapping, f of the unit interval into 6 such that f ( 0 )  = A” and 
f ( s )  lies above T ( s )  for each value of s .  

Prooj (a) Existence of f. Assign an arbitrary distinguished neighborhood 
U(P) to each point P of R. We divide the unit interval w into n equal parts 
r I , r 2 , .  . . , r,,, making n sufficiently large so that the image T(ri)  of each 
subinterval belongs entirely to a distinguished neighborhood Ui  (of a point 
whose identity is of no special interest). The fact that this is possible follows 
from the uniform continuity theorem ($7, Theorem IV) when one chooses a 
distinguished neighborhood U(P) of each point P as the neighborhood 
U*(P/!B) of the theorem. We now select a distinguished neighborhood G I  
which lies above U,  and contains the point i. Such a neighborhood exists 
because of (U13). The mapping G maps fi, topologically onto U,  ; thus we can 
map the image T(r , ) ,  which lies in U,, topologically into fi, and thereby 
obtain a mapping f I  of the first subinterval, r , ,  into fi, such that the initial 
point s = 0 of r ,  transforms to A”. The second subinterval, r,, is mapped in the 
same way. We select a neighborhood fi, lying above the distinguished 
neighborhood U, in which T(r,)  lies such that U, contains the image of the 
endpoint of r l ,  that is, the point f , ( l / n ) ,  and maps f ( r 2 )  topobgically into 
U,. We obtain in this way a continuous mapping f, of r2 into U, such that 
fl( 1 / n )  = f2( 1 / n ) .  We proceed in this manner and obtain in sequence the 
mappings T I ,  T, ,  . . . , T,, of the subintervals r l , r 2 ,  . . . , r,, such that 
c ( i / n )  = f +  , ( i / n ) .  These partial mappings taken together define a mapping 
f of the unit interval into 6, of the required nature. 

(b) Uniqueness of f. Let f‘ be another continuous mapping of the unit 
interval, which satisfies the conditions of the lemma. Then f and f‘ will 
coincide with each other up to a certain value of the parameter s* (2  0). They 
will also coincide at s* itself, because the mappings are continuous. There will 
then exist a distinguished neighborhood fi* of the point f ( s * )  = f ’ ( s * )  which 
is mapped topologically by G onto a distinguished neighborhood U* of the 

- . .  - 
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point lying underneath, T(s*). Furthermore, because f and f’ are 
continuous, there exists an E > 0 such that all points f ( s )  and f ’ ( s )  for which 
E 2 1s - s* l  lie in fi*. Since f ( s )  and ?(s) both lie above the same base point 
T ( s )  of U*, f ( s )  = ?(s) because the points of U* are in one-to-one 
correspondence with the points of t*. Thus ? and ?‘ also coincide up to the 
parameter value s + E ,  and therefore coincide everywhere. 

We now apply Theorem I to define the number of sheets of the covering 
complex. 

Let P and Q be two arbitrary points of Q. It is possible to show that the 
points lying above P are in one-to-one correspondence with the points lying 
above Q. To do this we construct a path W from P to Q and we assign to 
eachgoint PI lying above P the endpoint of the path lying above W which 
has PI as initial point. In the other direction, to each point & lying aboye Q 
we assign the endpoint of the path which lies above W - ’  and has Qk as 
initial point. From Theorem 1 these paths exist and are unique. The latter 
assignment is clearly the inverse of the former assignment, so that there exists 
a one-to-one correspondence between the points lying above P and the points 
lying above Q .  Consequently, the same number of points of 6 lie above each 
point of &’, ler us say g for example. This number is called the multipliciry of the 
covering or the number ofsheets. The number g can be either finite or infinite. 

Theorem I allows us to compare paths in the base and the covering 
complexes. The following theorem does the same for the path classes. I t  states 
that one can project a deformation of a path in the covering complex to the 
base complex and one can lift a deformation of a path in the base complex to 
the covering complex. 

and let W,  and 
W ,  be the corresponding ground paths leading from A to B.  If @, is deformable 
to k?, , then W ,  is deformable to W ,  . Conversely, i f  W ,  and W,, are tw_o paths in 
R from A to B which are deformable one to the other and i f  W, and W ,  are the 
two covering paths starting out from poinr A” lying above A ,  then these covering 
paths lead to the Same endpoint B’ above B and they are also deformable one to 
the other. 

The proof of the first part follows from the continuity of the mapping G 

THEOREM 11. Let k?, and k, be two paths in .6 from 2 to 

642). 

The converse statement appears to be just as apparent but it is, in fact, far 
less simple to prove because we must map the deformation rectangle from the 
base complex into the covering complex, although no globally continuous 
mapping is available; rather, the mapping is topological only in a 
(distinguished) neighborhood. 

The deformability of W, to W ,  signifies that one can map the deformation 
rectangle 8, having coordinates 0 5 s S 1, 0 I t S 1 (Fig. 106), continuously 
into R by means of a mapping T so that the oriented sides t = 0, t = 1 
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FIG. 106 

transform to the paths W,, W ,  and the sides s = 0, s = I transform to the 
points A and B .  We shall construct a continuous mapping f of R into 6 such 
that, for each point (s, t )  of 8, f ( s ,  t )  lies above T(s ,  t )  and T(0,O) = k. This 
will map the unit interval t = 0 continuously so that the point F(s,O) lies 
above the point T(s,O) for each value of s and T(0,O) = A”. From our 
previous lemma, this interval will then transform to the path @, lying above 
W, and start@ at k. In like manner, the unit intervals s = 0, s = 1 transform 
under f to A and the endpoint B’, respectively. Finally, the side t = 1 
transforms to the covering path I@, which, consequently, must terminate at B’. 
This will prove the deformability of @, to @, . 

To construct f we subdivide the deformation rectangle 8 by n equidistant 
horizontal and n equidistant vertical lines into n2 rectangles rik, 

( i  - l ) /n  i s 5 i / n ,  ( k  - l ) /n  5 t i k / n  

and make n sufficiently large so that the image T(rik) of each subdivision 
rectangle belongs completely to a distinguished neighborhood U, (of an 
appropriate point). This is always possible, by the uniform continuity 
theorem. We now construct f stepwise by mapping the individual subdivision 
rectangles into 6. We begin with r , ,  and select a distinguished neighborhood 
G I ,  lying above U,, and containing the point 2. Such a neighborhood exists, 
by (U13). The image T(r , , ) ,  which lies wholly in U , , ,  will be mapped 
topologically into 0,  ,. We thereby have found a topological mapping f, , of 
r , ,  into f i l l  under which f,,(O,O) = 2 and f,,(s,r) lies above T(s,t). We next 
select a distinguished neighborhood lying above U,, which contains the point 
f , , ( l / n , O ) ,  that is, the image of the lower right-hand vertex of r , , ,  and we 
map ~ ( r ~ , )  topologically into?,, to give a continuous mapping f,, of r2,  into 
G 2 , .  The mappings f,, and T2,  coincide on the common side of r , ,  and r 2 , .  
For the initial point (l/n,O) of this segment will be mapped to the same point 
by both mappings and, since f , , ( l / n , t )  and f, ,( l /n,z) both lie over the 
same point T(l/n,t)  it follows from the lemma that f , , ( l / n , t )  = f 2 , ( l / n , t ) .  
Repeating the same procedure we now map the rectangle r3,  continuously by 
f3, into R so that f 2 , ( 2 / n , 0 )  = f 3 , ( 2 / n , 0 )  and we prove in like manner that 
the common side of r2,  and r3,  is mapped in the same way by f 2 ,  and f 3 , .  
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After n steps we arrive at a continuous mapping fI of the whole strip r , , ,  
r , , ,  . . . , rnl and such that f l ( s , t )  lies above T ( s , t )  and the side s = 0, 
0 5 t d 1 / n  transforms to 2. In the same way we obtain mappings Ti of the 
remaining strips r , , , ~ ~ ~  . . . , rn,(i = 1,2,3, . . . , n )  such that T , ( s , r )  always 
lies above T ( s , t )  and T , ( O , t )  = A .  Since the common unit interval of the ith 
and the ( i  + 1)th strips are mapped in the same way by f, and <+ , (again by 
the lemma), we have obtained a continuous mapping f of the whole 
deformation rectangle 8 such that f ( s ,  t )  lies above T(s,  1 )  and f(0,O) = 2. 

55. Coverings and Subgroups of the Fundamental Group 

Let us select a point 0 of the base complex Q and a point 6 ,  lying above 0 
in the covering complex k as the initial points of the closed paths of R and 6, 
respectively. From the theorem of $42, the continuous projection mapping G 
indyces a mapping which sends each path class of the fundamental group 
of ft to a particular path class of the fundamental group 5 of R. This induced 
mapping is a homomorphic mapping of % onto a particular subgroup Q1,  of 
3. 

The second part of Theorem I1 of $54 states that two nonhomotopic paths 
of 5 will project to two nonhomotopic paths of 8. That is, the homomorophic 
mapping of $ onto @, is also an isomorphism. 

Consequentb, the fundamental group 5 of the covering complex is isomorphic 
to a particular subgroup of the fundamental group of the base complex. The 
subgroup 

One should note that the subgroup Q, is not determined by the covering 6 
alone but also depends, as we shall see, upon the choice of initial point 6,. 
Now let 

is obtained by projecting $ into the base complex. 

CF = 8 ,  + @ I  ( F12) + @ I  { F,,  } + + * 

be the decomposition of 8 into residue classes modulo Q 1 .  Here as in $42, 
{ F l i )  denotes the path class of the path F , , .  If H, is an arbitrary path in ,GI 
and fi, is the covering path starting at 6 , ,  then H I  is closed. It follows from 
this that when we lift the paths of a particular residue class @,{ F, , ]  from R to 
k all of the paths starting out from 0, lead to the same endeoint O,, which is 
the endpoint of the path k,, lying above F , ,  and starting at 0,. Consequently, 
each residue class Q1{FIi} determines a point 6, lying above 0. Different 
residue classes @,{ F , , ]  and .Ql( F l j )  determine different points Gi f Oj. 
Otherwise k l l k l ~ '  would be closed so that {F, iF' , ; l ]  would be an element of 
@,, whereas { F , , ]  and { FIL] belong to different residue classes. Since the 
endpoints of the paths kll, F,, ,  . . . , include all points of 6 lying above 0, a 
one-to-one correspondence has been produced between the right residue 
classes of @, in ;F and the points lying above 0. I t  follows that the number of 
sheets of the covering is equal to the index of 6, in 5. 

Each closed path fi, starting out from GI can be deformed to a path having 
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the form ~ , ; ' f i , F , ; ,  for example to the path Fly' . (Flj!Yjkl;'). F,,. Here fil 
is a closed path starting out from 6,. The path Fl;'fiIFlj projects to the path 
F , ; l H I F , , .  The latter is a path of the subgroup Q; = {Flj)-'Ql{Fl,), which is 
conjugate to 6,. Conversely, each path of Q; lifts to a closed path in b based 
at 6;. For each path having the particular form F ; ' H , F , ,  will be lifted 
into 6 to a path F,;I l? ,~, i  starting out from 6;; this path is closed because 
k,;' leads from Gi to 0,, H I  leads from 0, back to 0,, and klj leads from 0, 
again back to 0;. The same is true for an arbitrary path of Qi because one 
can deform it to a path having the form F,;'H,F,,  and then lift the deformed 
path into 6; this does not change the endpoint of the path. This means: If we 
make 6; instead of G I  the initial point of the closed paths of 6, then the 
fundamental group $ of k projects to the subgroup ( F , ; )  - I @ , {  F , ; )  conjugate 
to @,. Moreover, by choosing 6; appropriately, we obtain each subgroup 
conjugate to Q,. Thus the covering of R by 6 derermines an entire class of 
conjugate subgroups of 8. 

We now prove the converse, that each class of conjugate subgroups 
determines a covering. The problem of determining all coverings having a 
given number of sheets g is thereby reduced to the group theoretic question of 
constructing all classes of conjugate subgroups of index g of the fundamental 
group of the base complex. We shall carry through this construction in $58 
for finite complexes and a finite number of sheets. 

Existence Proof 

1. Construction of 6. Let 8 be an arbitrary subgroy  of %.* We wish to 
find a covering complex 6 whose fundamental group ;4: projects to 6 when 
the initial point above 0 is chosen appropriately. We shall assume that 0 
is a vertex of a simplicial decomposition of R; this can be accomplished if 
need be by subdividing R. We shall construct the covering complex 6 so that 
it has a simplicial decomposition such that when one maps R onto R each 
simplex of R will transform linearly to a simplex of R. We shalj call this 
decomposition the simplicia1 decomposition which is lifred from R to R. 

We construct 3% by presenting its schema ($1 1). The elements of the schema 
will be certain path classes which we now define. 

Let A be a vertex of Q. We divide all of the paths leading from 0 to A into 
classes, so-called @-classes. We consider two paths U and U' to be in the 
same @-class if and only if  the closed path lJU'-' belongs to the subgroup Q. 
Then to each vertex A of R there belong certain @-classes; we denots :I. 

- -  
A , , A , ,  . . . . 

In particular, the paths of the subgroup Q themselves form such an @-class, 
the unit $-class. It belongs to the point 0 and will be denoted by GI.  

For simplicity we shall now write $j instead of (9,. 
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Two @-classes 4 and Bk are said to be neighboring if their endpoints A and 
B are the vertices of a 1-simplex c of 37 and, also, the closed path U c V - l  
which one can form from a path U of and a path V of B k  belongs to @. 
Here i t  is obviously unimportant how one chooses the paths U and V from A, 
and Ek. 

If we are given the !@class A,, then there exists exactly one neighboring 
8-class,gk belonging to the vertex B .  The @-class Ek consists of all of the 
paths V for which UcV ~ I is a path of s j  for fixed U.  Its existence is insured 
by giving a representative path, for example V =  Uc. We now have the 
following lemma. 

LEMMA. I f  E' is a simplex of the base complex .Q and has vertices 
A ,  B.  . . . , C and one has chosen an @-class A,. of path connecring to A ,  there 
exists exact!)] one .fi-class Pk, . . . , C, for each of the remaining vertices 
B ,  . . . , C such that all of these $-classes are painvise neighboring. 

For Ek, . . . , < are uniquely determined by the requirement that they are 
neighboring to 4.. We shall show that the $-classes are pairwise neighboring 
using gk and < as an example. If U is a path belonging to A, (Fig. 107) and 
a ,  b,  c are the oriented simplexes CB,  A C ,  A B ,  then Ub and UC are 
representative classes from c, and H k .  The condition that B k  and c, be 
neighboring classes can be stated: Ub a ( U c ) -  ' must belong to 6. But this 
is true since this path is null homotopic and thus belongs to the unit path 
class of the fundamental group. 

I t  now follows that the @classes form the schema of a simplicial complex, 6, 
when we choose as characteristic subsets of the schema ($11) each system of 
pairwise neighboring @-classes whose paths lead to the vertices of a simplex 
of R. We can easily confirm that the conditions required for a schema, (Sch 1). 
(SchZ), and (Sch3) of 0 11,  are in fact fulfilled. 

We can also describe the simplicia1 complex 6 in slightly different words: 
Each vertex of Q, 
which in turn is in one-to-one correspondence with a particular vertex of Q, 
namely, the endpoint A of the paths of the @-class 4. A collection of vertices 
ii,&, . . . , el will form the vertices of a simplex if and only if the 

of 6 is in one-to-one correspondence with an @class 
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corresponding vertices A ,  B, . . . , C of Q are the vertices of a simplex and, 
moreover, the @-classes A', Bk, . . . , 

The complex 6 is a connected complex. To prove this it will suffice to show 
that each @-class 4 can be connected with the unit @-class 6 ,  by a sequence 
of @-classes in which each two successive classes are neighboring. In 
choose an edge path U from 0 to A .  Such a path exists because one can 
deform each path from 0 to A to an edge path ($31). The partial paths of U 
which lead from 0 to the vertices traversed by U, or rather the @-classes 
corresponding to them, form a se_quence having the desired properties. 

11. We shall now prove that R is a covering complex of R when we assign 
the vertex A' as base point to each vertex i, of 6 (which corresponds to the 
@-class A,) and map each simplex of d linearly onto that simplex of YB which 
is spanned by the base points of its vertices. The three conditions for a 
covering are satisfied. There exists a system of neighboring @-classes for each 
simplex of R and therefore there exists at least one simplex lying above that 
simplex. Consequently, (U11) holds. 

Let P be an arbitrary point of R and let 0' be the uniquely determined 
simplex having P as an inner point. The totality of simplexes which have (5' as 
a face form a neighborhood U ( P )  of P in R. We claim that U ( P )  is a 
distinguished neighborhood. A point P" lying above P is an inner point of a 
simplex &A lying above @, where &i is determined by a system of i + 1 
neighboring @-classes which lead to the vertices of 0'. If O'+k is a simplex 
incident with 0', then by the lemma there exists exactly one system of 
neighboring @-classes leading to the vertices of which contains the given 
system of neighboring @-classes as a subsystem. The simplexes having @. as a 
face are consequently in one-to-one correspondence with the simplexes 
having @i as a face. That is, the neighborhood U(p) of P" in d consisting of 
the totality of simplexes incident with &A maps topologically onto the 
neighborhood U(P"). Thus (U12) is satisfied. 

Let op be a point of d which lies above a point Q of U ( P ) .  Point Q belongs 
to a simplex O r k  of U ( P )  incident with (2' and thus (& belongs to a simplex @rk lying above O r k  and containing a point P",, lying above P. Thus Op 
belongs to the neighborhood U( jp) and (U13) is satisfied. 

111. The covering d belongs to the subgroup @ of the fundamental group 
5 of R. 

We choose the vertex 6,  lying above 0 as the initial point of the closed 
paths in 6, where 6,  belongs to the unit @-class a,. Let U be an edge path in 
R running from 0 to a vertex A and let U, be a subpath of U consisting of 
the first T edges of U. The @-classes of the paths U,, U , ,  . . . , U, = I/ then 
form a sequence of successively neighboring @-classes. The vertices of h 
which are determined by each two successive @-classes are then also 
neighboring and as a consequence the vertices of the sequence of vertices 
corresponding to the @-classes are connected by an edge path fi lying above 

- -  
are neighboring. 
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U .  The initial point of this path belongs to the @-class of U, and is then the 
vertex 6' .  

If U is in particular a closed edge path belonging to 8, that is, U lies in the 
unit @class ol, then the covering path fi starting at 6,  must return to 6' .  
But if U does not belong to $, that is, U lies in an @-class # GI, then the 
lifted edge path fi, leads from 6, to 6, # 6' and thus is not closed. Since 
each closed path starting out from 0 can be deformed to an edge path, we 
have shown that a closed path I/ starting out from 0 will be covered by a 
closed covering path fi having initial point 6' if and only if U belongs to 6. 
But this means that the fundamental group 3 of b projects to just the 
subgroup @ of 3 when one makes 6' the initial point of the closed paths in 6. 
Thus 6 is a covering complex belonging to @. 

Uniqueness of 6 
Let 8' be another covering complex* which determines the same class of 

conjugate subgroups of the fundamental group 8 of R as $; thisjs the class to 
which the subgroup @ belongs. There then exists a point 0; of R' lying above 
0 such that the fundamental group of 6' projects to the subgroup @ when 6; 
is chosen as the initial point of the closed paths. (It is possible that several 
points of @' Qing above 0 might have this property.) We now construct a 
mapping of R onto 6' by which 6 ,  transforms to 6;  and corresponding 
points lie above the same point Of R. 

If P" is an arbitrary point of R, then we draw a path I@ from 6' to P". The 
corresponding ground path is the path W starting from 0. Let I@' be the 
covering path above W starting from 6;.  Call its endpoint p'. I t  will be 
assigned as the image point of P. We must show that this Cssignment is 
independent of the choice of the connecting path I@. Let V be another 
connecting path of 6' with P". Then I@c-' is closed and W V - '  belongs to 6. 
But if this is the case, the covering path above W V - '  starting from 6;  is also 
closed, since the fundamental group of k' is to project Lo @ whe_n one selects 
6;  as the initial point of the closed paths of R'. Thus W' and V' lead to the 
same endpoint I". The assignment P"+P"' is a one-to-on: correspondence 
since one can transform from P"' uniquely back to P by the reverse 
construction. 

We need to prove continuity of the mappi_ng in only one direction, for 
example in the direction P"+ P"', because R and R' are alike in their 
properties. For a given neighborhood fi'(P"') we must find a neighborhood 
fi(p) whose image lies entirely in fi'(P"'). Let fii be a distinguished 
neighborhood of P' with fir. We can, for example, choose this to be the 

We shall not assume that there exists a simplicial decomposition of R' which projects to a 
simplicial decomposition of 9. In fact, we now proceed without using any simplicial 
decomposition. 



200 VI I I .  COVERING COMPLEXES 

intersection of an arbitrary distinguished neighborhood of P"' with fit. Let U ,  
be the distinguished neighborhood of P onto which fii is mapped 
topologically. In addition, let fi be a neighborhood of P" which is sufficiently 
small that it projects to a subset U of U , .  Furthermore, we require that each 
point of fi can be connected to by means of a path lying entirely-in fi. 
Since 6 is a complex, we can certainly find such a neighborhood U. For 
example, a suitable simplicia1 star with center p_oint p will satisfy all 
requirements. We claim that fi will be mapped into U' under the mapping of 
6 onto 6'. In fact, if W is a path from 6 ,  to P", choose fi extended by a path 
A @ from P" to 0 and lying in fi as the path from 6 ,  to a point 0 of fi. The 
base path We A W runs from 0 to P and then runs subsequently in 6,. The 
path lifted to &, that is @' A I@', runs from 6;  to and subsequently lies 
in fii and thus also in fit. The image point of Q, which is the endpoint of the 
path @' A W', therefore lies in fit. 

We summarize our results: 

THEOREM. The coverings of a complex are in one-t<-one correspondence with 
the classes of conjugate subgroups. More precisely: If R is a covering complex of 
a complex $t and one chooses as initial point of the closed paths of 6 a point 6 
lying over the initial point 0 of the closed paths of R, then the fundamental 
group of b will project to a subgroup @ of the fundamental group 8 of R in a 
way such that qQ is isomorphic with $. I f  one chooses a different point as initial 
point 6 lying above 0, then 8 wlllproject to a subgroup of 3 which is conjugate 
to @. 

Problems 

I .  What is the relationship between the Euler characteristic of a finite complex and that of a 
g-sheeted covering? 

2. If 5 is the free group on u generators and $ is a subgroup of index i, show that Q is the free 
group on i(u - 1) + 1 generators. [Note that 5 is the fundamental group of an edge complex 
having Euler characteristic N = u - I ($47).] 

3. Show that a simply connected complex has a exactly one covering complex, namely, the 
complex itself. 

56. Universal Coverings 

Among the covering complexes of a complex R one of particular 
importance is the covering which belongs to the subgroup @ = 1. It is called 
the universal covering complex of R. I t  is characterized by the fact that its 
fundamental group 3 = 8 consists of the unit element alone, so that it is 
simply connected. As a corollary to the theorem of $55 we have 

THEOREM I. Each connected complex R possess,es a unique simp@ connected 
covering complex, the universal covering complex R. 
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One can speak of the universal covering complex as being the strongest, for 

THEOREM 11. The universal covering complex k is characterized by the fact 
that it covers every covering complex 6 of Q. 

The proof rests on the following lemma. 

one has 

LEMMA. If Q is covered by 6 and 6 is covered by 5, then Q is also covered by 
6. 

Condition (Ull), that at least one point P" of 6 lies a b y e  each point P of Q, 
is obviously satisfied. To prove (U12) and (U13) for R we lift a simplicial 
decomposition of 9 to 6 and from there to 6 and we choose as the 
distinguished neighborhood of a point P the totality of simplexes 5on;aining 
this point. We select distinguished neighborhoods of the points P,, P, . . , , 
lying above P, in the same manner as we did in the existence proof of the 
covering (955). These simplicia1 stars all map topologically one onto the 
other, whereby (U12), (U13), and the lemma follow. 

Now let 4 be the universal covering complex of k and let 6 be a covering 
complex of Q. By the lemma, 6 covers Q and, since it  is simply connected, it 
is the universal covering complex of Q. Thus the universal covering complex 
of Q also covers 6. Conversely, if a covering complex o,f R covers each 
covering complex, then it also covers the universal complex R. Since the latter 
is simply connected, i t  has only itself as a covering complex (355,  Problem 3). 

We have already met several examples of universal covering complexes. 
The Euclidean plane covers the torus universally by means of the continuous 
mapping produced by identification ($8). The real number line is a universal 
covering complex of the circle. More generally, Euclidean n-space is a 
universal covering complex of the topological product of n circles. The 
n-sphere is the universal covering complex of projective n-space. 

Problems 

I .  Let Q1 be theedge complex of two triangles having a vertex in common. Find the universal 
covering complex R1 of Q1. 

2. On the boundary of the circular disk of unit radius identify each pair of points which lie at 
a distance 2 n / p  measured along the boundary (so that p points in all are to be identified with 
any given point). Show that the fundamental group of the resulting complex .@ is cyclic of order 
p and the universal covering complex R2 consists of p circular disks having a common boundary. 

57. Regular Coverings 

of 6 will project to a subgroup of 
3 which depends, in general, upon one's choice of the initial point of the 
closed paths of 6. That is, when one selects 6 ,  or G2 or . . . as the initial 

DEFINITION 1. The fundamental group 
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point lying above 0 one will accordingly obtain the subgroup or Q2 or 
. . . . All of these subgroups are conjugate in 3 and form a complete system 

of conjugate subgroups. But these subgroups are not necessarily different 
from one another. In the extreme case that all of these subgroups are the same, 
the subgroup to which the fundamental group 5 projects is a normal subgroup of 
5 and we say that the covering is regular. 

The following are examples of regular coverings: all coverings of the torus, because the 
fundamental group of the torus is Abelian; each universal covering, because it  belongs to the 
normal subgroup 6 = 1; each two-sheeted covering, because a subgroup of index 2 is always a 
normal subgroup. 

DEFINITION 2. A regular covering can also be characterized by the fact that 
the paths b ing  above a closed path in the base space are either all closed or all 
nonclosed. 

For if is the covering path starting out from 6, which lies above a 
closed path W ,  then J@, is closed or not closed according to whether W does 
or does not, respectively, belong to $,. If all of the conjugate subgroups 
coincide, and for example = 8, then the path W lies in all @,, in which case 
all paths are closed, or W lies in none of the groups @,, in which case all 
of the paths t, are not closed. If, on the other hand, the 6, are not all the 
same, for example # .Q2, then there exists a path which belongs to $jI but 
not to Q2. Then t, is closed but not g2. The fact that we have chosen the 
point 0 as the initial point of W is not an essential restriction, since we can 
always make an arbitrary closed path in 9 into a closed path starting out 
from 0 by means of an auxiliary path running back and forth from 0. 

The first of the triple coverings of the double torus [Fig. 103 (I)] is not 
regular. The path in the covering surface lying above the longitude circle b is 
either closed or not closed according to whether, when one lifts b to the 
covering surface, one starts the covering path on sheet 3 or on sheet 2, 
respectively . 

DEFINITION 3. We can characterize a regular covering in still a third way, 
making use of the concept of a covering transformation. A covering 
transformation of the covering complex 6 is a topological mapping of 6 onto 
itself such that each point remains above its base point and only points lying 
above one and the same base point are interchanged with one another. There 
exists at most one covering transformation which transforms 6, to another 
given point lying above 0, for example G2. To show this let P" be an arbitrary 
point of 6. Draw a path I?, from G I  to P". Let W be the corresponding 
ground path. Under the covering transformation el will transform to the 
path k2 lying above Wand starting out from G2. The image point of P" is the 
uniquely determined end point of kk2. All of the covering transformations of 
6 obviously form a group, the group D of covering transformations of the 
covering. This group may possibly consist only of the identity mapping; at 
most, its order is equal to the number of sheets of the covering, and this 
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occurs in the case when one can transform 6, to all of the points 6,, G3, . . . 
or, what is the same, if 6 acts transitively over the points lying above 0. 

The third characterization of a regular covering is: 6 is a regular covering of 
R if and only if the group of covering transformations acts transitively on the set 
of points lying above each point of R. 

If the covering is not regular then, as we know, there exists a path W of R 
which is covered at  the same time by both closed and nonclosed paths. In 
such a case it is obvious that no transitive group of covering transformations 
exists, since a closed path will again transform to a closed path under a 
covering transformation.We know from 355 that two covering complexes 6 
and 6‘ which determine the same class of conjugate subgroups (in our case 
the same normal subgroup 4) can be mapped one onto the other 
topologically so that corresponding points have the same base point in Q. I t  
follows that one can transform a point 6, lying above 0 to an arbitrary point 
6,’ of 6‘ only if the followingcondition is satisfied: on using 6;  as the initial 
point of the closed paths of Q’ and 6, as the initial point of the closed paths 
of 6, the fundamental groups 8’ of 6’ and 6 of 6 both project to the same 
subgroup of 8. If @ is a normal subgroup of 8, as in the present case, then 
this condition is always satisfied independently of the choice of point 6; ,  
above 0. If we let 6 and 6’ coincide, we obtain a covering transformation of 
6 such that 6 ,  transforms to an arbitrary point lying above 0. 

The two coverings of the double torus given in 053 serve to illustrate this. 
The first covering is nonregular, as we saw, and thus does not possess a 
transitive group of covering transformations. The only possible covering 
transformation is the identity covering transformation; this should be 
self-evident since sheet 2 is cut through on both handles while sheets 1 and 3 
are each cut on only one handle. In contrast, in the second covering we can 
cyclically permute the three sheets and the covering is regular. 

In a regular covering the group of covering transformations 59 is isomorphic to 
the factor group ;F/@. 

The residue classes of the decomposition relative to the subgroup @, = 6 

- -  
are in one-to-one correspondence with the-points 0, , O,, . . . lying above 0. 
On the other hand, to each poin! 0, there corresponds a covering 
transformation D,, which transforms 0, to 6,. We thus obtain a one-to-one 
correspondence between the residue classes @{ F, , }  and the covering 
transformations: 

@ {  F, ,  )-D,,. 

To show that this correspondence establishes an isomorphism between the 
factor group ;F/@ and the group of covering transformations, we shall 
determine the covering transformation corresponding to the product of two 
residue classes @{ F , , }  . @ {  F,,)  = @{ F , , } {  F,,} = @ {  F I k } .  One can arrive at  
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the point Gk by proceeding from GI  to 6; along a path Flj and then 
proceeding further to Gk along a path ek lying above FIJ (Fig. 108). Since 
and klj lie above the same ground path F l j ,  4 . k  is the image of FIJ under the 
covering transformation D l i .  Thus D,; transforms the point GJ to ek hence 
the covering transformation DljDl, (first D l j ,  then D,;!) transforms the point 
GI to G k .  Thus DljDl, = D l k .  This equation states that to the product 
@( F,; )  . @{ F l j )  there corresponds the product D,,Dlj  of the corresponding 
covering transformations. We should remember here that one obtains the 
product of two paths by first traversing the left path and then traversing the 
right one (942), but obtains the product of two transformations by first 
carrying out the right transformation and then the left ($6).  

If, in particular, Q = 1, so that 6 is the universal covering complex, then 
%/@ = 5 and the group of covering transformations is isomorphic to the 
fundamental group of the base complex. This proves that the fundamental 
group of a complex Q is the group of covering transformations of its universal 
covering complex. 

As an example, the fundamental group of the projective plane is of order 2, in agreement with 
the fact that the group of covering transformations of its universal covering surface, which is the 
2-sphere, contains two covering transformations: the identity transformation and the interchange 
of diametrically opposite points. 

The fundamental group of the torus has the relation A B A - ' B  - '  = I ;  it is the free Abelian 
group having two generators (547). The group of covering transformations is formed by 
translations of the Euclidean plane which transform a grid of rectangles into itself (58). 

The group 6 of covering transformations can also be regarded as a factor 
group in the case of a nonregular covering. If @, denotes, as previously, the 
subgroup of 8 to which the fundamental group of b projects, using initial 
point e,, and 8i is the normalizer of Qi in 3 (that is the totality of elements 
( W )  of 8 for which ( W } - ' @ ; (  W }  = Qi is a subgroup of g), then Q is 
isomorphic to 3 ;/@, . 

Problems 

1. Prove the above assertion. 
2. If an n-dimensional complex W has the n-sphere Gn as its universal covering complex, show 
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that the order of the fundamental group of SI" is either 1 or 2 in the case of even n. (The Euler 
characteristic of P is a divisor of the Euler characteristic of B". 

3. Prove that the fundamental group of the orientable surface of genus h = 4 is contained in 
the fundemental group of the orientable surface of genus h = 2 both as a normal subgroup, and 
also as one of three conjugate subgroups. (cf. the examples in 553 of coverings of the double 
torus). 

4. The nonoriented line elements of the projective plane form a 3-dimensional manifold, the 
so-called quaternion space. Its fundamental group is the quaternion group. Given the subgroups 
of the quaternion group (see, for example, Speiser [ I ,  p. 7671) determine all 2-, 4-, and 8-sheeted 
coverings of this manifold. Appropriately assign to them the space of oriented line elements of 
the projective plane and the spaces of nonoriented and oriented line elements, respectively, of the 
2-sphere. (See Problem 3, $14. and Comment 12.) 

58. The Monodrorny Group 

We shall now solve the problem of determining all possible finite sheeted 
coverings of a finite complex 9'. Assume that g is the number of sheets; we 
wish to find the number of coverings of Q which have g sheets. 

If W is a closed path in SB having initial point 0, then there exist I . .  g covering 
paths el, ~ 2 , .  . . , eg having distinct initial points O , , O , ,  . . . , fig, 
respectively. Their endpoints are also distinct. Let us call them O,, ,  
Gk2,  . . . , Gkg. We shall assign the permutation 

to the path W. I t  is evident that homotopic paths will be assigned the same 
permutation, and the product of the permutations assigned to two paths W ,  
and W ,  will be assigned to the product W ,  W,  of the paths. We thus have 
found a homomorphism which maps the fundamental group 8 onto a 
particular group 59Jl of permutations of g integers. We call 9-R the monodromy 
group of the covering complex. 

It is easy to find those elements of i4. which map to the unit element of 92; 
they are the path classes of closed paths W in 9 which lift to closed paths in 
6. This property is independent of which point G I .  G2, . . . , Gg is chosen as 
initial point. As before, let us denote the conjugate subgroup int? which t_he 
fundamental group of 6 projects, when one selects G I ,  O,,  . . . , Og, 
respectively, as the initial point, by ,Q2,  , . . , <Qg, respectively. The identity 
permutation will then be assigned to W if and only if W belongs to the 
intersection 5 of the subgroups @,,@,, . . . , 8,. This gives the following 
theorem: 

THEOREM. The monodromy group 9-R of a covering 6 is isomorphic with the 
factor group S/S of the fundamental group 3 of the base complex, relative to 
the intersection X of the conjugate subgroups 6, ,$,, . . . , 6, to which the 
covering 6 belongs. The order of iU2 is thus 2 g  (the number of sheets). The 
equality sign is valid on4 if . . . , .Qg coincide, that is, when b is a 
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regular covering. For a regular covering, the monodromy group is isomorphic 
with this group of covering transformations. 

In general, one speaks of a representation of a group 5 when a permutation 
of g integers is assigned to correspond with each of the elements of the group 
and the product of the assigned permutations corresponds to the product of 
two elements. Two representations of the same group are considered to be the 
same if one representation can be obtained from the other by rearranging the 
order of the integers 1,2, . . . , g. A covering complex Q will induce a 
representation of the fundamental group 8 of the base complex R. The fact 
that 6 is a connected complex is expressed by the fact that the representation 
is transitive: if i a n d j  are any integers appearing in the permutations, then 
there exists an element { W }  of which transforms i t o j .  We need only to 
select W as the ground path of a path @ of 6 which connects the points 6; 
and Gj with one another. 

We shall now show the converse: exactly one covering complex 6 belongs 
to each transitive representation Q of the fundamental group 8. Let 6, be the 
subgroup of those elements of 5 which fix the integer 1. Thus consists of 
those paths which are covered by closed paths starting from 6, in the desired 
covering complex 6. This means that 6 belongs to the group Q I .  Thus when 
there is any covering complex whatsoever which induces the given 
representation !# of 5, it must be the covering complex 6 belonging to the 
subgroup 8, of 8. A representation p’ of 8, induced by 6, will assign 
permutations leaving the integer 1 fixed to paths belonging to Ql  and only to 
these paths. This implies that p and !Q’ must coincide, as a consequence of 
the following group theoretic lemma: 

LEMMA. A transitive representation 9 of a group 5 is determined by the 
subgroup 

ProoJ The elements of one of the residue classes of the decomposition* 

of all elements which fix the integer 1. 

will all transform the integer 1 to the integer 1, while elements of a different 
residue class transform the integer 1 to a different integer. We may assume 
that 1 is transformed to i by the residue class @,{ Fl i} .  Only the integers I 
through g appear in the permutations of the representation and since the 
integer 1 can be transformed to any of the integers 1,2, . . . , g by use of 
appropriate elements of %-for p is to be transitive-then there must exist 
exactly g residue classes in the decomposition of 5 relative to Q, : 

Even though the lemma deals with abstract group theory and the elements of 8 do not have 
to be path classes, we shall, for the sake of consistency, retain the curly brackets in denoting the 
group elements. 
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If ( W }  is an arbitrary element of 3 and one wishes to know how the integer i 
will be permuted by { W ) ,  then one should take into consideration the fact 
that { F l l }  { W )  is a member of a well-determined residue class, let us say 
$I,{ F l k ) .  The class ( F l , } {  W }  transforms 1 to k and thus { W }  transforms i 
to k .  

The problem of determining all g-sheeted coverings of a finite complex Q has 
now been reduced to the problem of finding all representations of the 
fundamental group ;F of 8 by transitive permutation groups on g symbols. 32 To 
treat the latter problem we begin by determining the generators 

A I , A 2 , .  . . , A ,  

and relations 

R , ( A , )  = 1, R,(A,)  = I ,  . . . , R , ( A , )  = 1 

of the fundamental group 8, using the procedure of $46. A representation $ 
of ;F is obviously determined by the permutations assigned to the generators. 
We should, then, assign arbitrary permutations PI,  P , ,  . . . , P, of the integers 
1 through g to the generators A , , A , ,  . . . , A, and examine whether the 
following two conditions are satisfied: 

(MI)  The permutation R,(P,) corresponding to the left-hand side R,(A,) 
of a defining relation of '12: is the identity permutation. 

(M2) The group of permutations generated by the permutations 
P I ,  P , ,  . . . , P,, is transitive. 

Condition ( M I )  is equivalent to the statement that two products n , ( A , )  
and n ; ( A , )  which represent the same group element of 8 will correspond to 
the same permutation, so that a permutation is uniquely assigned to each 
element of 3. The requirement that the product of the associated 
permutations corresponds to the product of two group elements is then 
satisfied automatically. Since there are only finitely many possible ways to 
assign permutations of g integers to the finitely many generators 
A , , A , ,  . . . , A,, we can in principle find all of the representations of 8 by 
trial. When we have found a representation, we can find the subgroup of 
elements which leave the integer I fixed and we can construct the covering 
complex using the method of $55. 

Sitce each- covering transformation produces a specific permutation of the points 
0, , O , ,  , . . , OK lying above 0, we can also represent the group of covering transformations 6 of 
a regular covering complex by a regular group of permutations. on the integers 1.2, . . . . g. 
However, these permutations are the same as  the permutations of the monodromy group only 
when the group of covering transformation is Abelian. For it is known from group theory that 
there are two representations of the group s/@ by a regular group of permutations; these are the 

* A  group of permutations is said to be regular if the number of integers permuted is equal to 
the order of the group. 
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two representations which arise when one assigns the permutation 

to the element Q of g / $  in one case, and assigns the permutation 

in the other case. Here X , ,  X,, . . . , X g  are the elements of g/$. The first group of permutations 
is the monodromy group. The second is the group of covering transformations.* 

In-these permutations we need only to replace the elements of g/$ by the points 
6,  , O,, . . . , Og (which are in one-to-one correspondence with the residue classes of g/@) to 
obtain the monodromy group and _the Sroup of covering transformations, respectively, as 
permutation groups of the points 0, , 0,, . . . , Og. The permutations of these two groups 
coincide only if X , Q  = Q X ,  for each Q, that is, if g /$  is Abelian. 

As an application of the theory of coverings we will determine the 3- and 4-sheeted coverings 
of the exterior space of the trefoil knot..’ This knot is shown in projection in Fig. 109 as the 
darker line. From 052 the fundamental group has the single relation 

A ’ =  B’. 

Here A is homotopic to the core of the properly located solid torus; B is homotopic to the core of 
the complementary solid torus in the 3-sphere. 

To find the 3-sheeted coverings one must assign a permutation of three integers to the element 
B such that the third power of this permutation is the square of another permutation of three 
integers. It is obvious that there are only two ways to do this. One can assign either the identity 
permutation to a cyclic permutation to B .  The identity permutation is not allowable because the 
permutation group is required to be transitive; thus we assignt 

B+(I  23).  

Edifor’s nofe: The mapping which is defined here from the group of covering transformations 
to the group of permutations on the g symbols (X,, . . . , X g )  appears to be an 
antihomomorphism, hence not a representation. 

**This instructive example was communicated to us in an exchange of correspondence with 
Mr. H: Kneser. 

+See Speiser [I ,  1061, for the cyclic notation of permutations. 
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Two possibilities exist for A ,  either the identity permutation 

A = (1)(2)(3) (1) 

A = ( I  2)(3). (10 

or 

In case (I) the monodromy group is a cyclic group of order 3 and the covering is regular. In case 
(11) the monodromy group is the dihedral group of order 6 (or the double ratio group); since the 
order 6 is larger than the number of sheets 3, the covering is not regular. The cyclic permutation 
in case (I) corresponds to the “meridian circle” BA - I  in the covering space one first arrives back 
at the initial point only after traversing the knot three times. Case_ (11) is different; here 
BA ~ I = (1x2 3). The-covering path of the meridian circle, beginning at 0, is closed; the covering 
path beginning at 0, first closes after a twofold traversal of the knot. This completes the 
description of the 3-sheeted coverings. 

If one wishes to determine the 4-sheeted covering spaces, the cyclic permutation (1  2 3 4) and 
the permutation (1 2)(3)(4) are not allowable for E since B 3  will not be the square of a 
permutation in that case. The identity permutation fails because of the requirement that the 
monodromy group be transitive. There remain only two possibilities, 

B + ( 1  2 3)(4), 

B + ( I  2)(3 4). 

(1) 

( 1 0  

In case (I), B’ = (I)(2)(3)(4) and we must have A 2  = (1)(2)(3X4); thus for A we can allow only an 
interchange of two elements or a pair of interchanges of two elements. Taking into account the 
transitivity of the monodromy group, we have only two possibilities in case (I), 

There are then three 4-sheeted coverings of the trefoil knot. Only the last covering is regular, 
having a cyclic group of covering transformations. In the case ( I I )  the monodromy group is the 
symmetric group on four symbols (the octahedral group); in case (13 it is the alternating group 
(the tetrahedral group). In the three cases the sheet permutations 

( I  3 4)(2), (12) 

(1234) .  (11) 

correspond to the meridian circle BA - I .  

We call the g-fold covering of a knot locdly cyclic when a small loop around the knot must be 
traversed g times so that the covering path is closed. Accordingly, (I,) and (11) are locally cyclic. 
A covering is defined to be globally cyclic if it is a regular covering having a cyclic group of 
covering transformations. The covering corresponding to (II), but not that corresponding to (I,), 
is also globally cyclic. In $77 we shall learn another definition of a globally cyclic covering. It will 
turn out that a covering which is globally cyclic is also locally cyclic. When we speak simply of a 
cyclic covering we shall always mean a covering which is globally cyclic. 

The trefoil knot possesses a cyclic covering for an arbitrary number of sheets g; this covering is 
determined by the permutations 

The superscripts 2 and 3 denote here exponenets of the permutation. We shall see in 577 that an 
arbitrary knot has a unique cyclic covering with a given number of sheets. 
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Problems 

1. Determine the 5-sheeted coverings of the trefoil knot (there are two of them). 
2. Show that there are fifteen different 2-sheeted coverings of the double torus. 

We have previously used group theory to survey the coverings of a complex. In the other 
direction, it is possible to use the theory of covering complexes to examine group theoretic 
questions, with regard to finding the generators and relations of a subgroup @ when the 
generators and relations of the whole group 5 are given. If 5 has the generators A , ,  . . . , A,  and 
the relations R, (A , )  = 1, . . . , R,(A,) = 1, we construct, a surface complex R having a single 
vertex 0, u edges A , ,  . . . , A ,  which after orienting become the generators of the fundamental 
group of I, and having r surface elements which span the closed paths R, (A , ) ,  . . . , R,(A,).  
From $46, 5 is the fundamental group o[R. The subgroup 8 can now be regarded as the 
fnndamental group of a covering complex R belonging to 6. For simplicity y e  assume that the 
number of sheets g, which is equal to the index of 6 in 8, is finite. Then R will be a surface 
complex consisting of g vertices, ug edges, and rg surface elements. The generators and relations 
can now be found by the procedure of $46. 

One can make this method, which is due to Reidemeister [ I ,  71 independent of geometry and 
express it in a purely group theoretic form. 



CHAPTER NINE 3-DIMENSZONAL MANIFOLDS 

59. General Properties 

A 3-dimensional closed manifold, V13, is a 3-dimensional connected finite 
homogeneous complex.* The adjective “closed” implies both finiteness and 
empty boundary, as in the case of surfaces. Because we shall at  first deal only 
with closed manifolds we shall normally omit this adjective. Homogeneity 
implies that each point of W13 possesses a neighborhood which can be mapped 
topologically onto the interior of the unit 3-dimensional ball. From theorem 
I1 of $33, the homology groups at  a point of !Dt3 are the same as those of a 
2-sphere; the Betti numbers of the neighborhood complex are p o  = p 2  = I ,  

We shall interpret the homogeneity condition combinatorially, and for this 
purpose we shall look at a particular simplicial decomposition of W3. Exactly 
two 3-simplexes must be incident with each 2-simplex G2 of the 
decomposition, so that p 2  = 1 for the neighborhood complex of the midpoint 
of B2, as shown in Example 2 of $32. I t  follows that the 2- and 3-simplexes 
which lie around an edge E’ of %V3 must form one or more cycles, let us say I 
cycles, of alternately incident simplexes of dimensions 2 and 3. But then I = 1, 
because the neighborhood complex of the midpoint of G’ consists of I 
2-spheres which have only the boundary points of B’ in common. 
Consequently, the second Betti number of the neighborhood complex is equal 
to I ;  but this should be equal to 1. Finally, if one considers the simplicial star 
formed by the simplexes of i;m’ lying about one of its vertices Bo, then the 
outer boundary of this simplicial star is a 2-dimensional complex in which 
exactly two 2-simplexes are incident with each 1-simplex, while the simplexes 
which lie about a vertex form exactly one cycle (for after projection from E0 

p ’  = 0. 

* Ediror’s Nore: Modern usage does not require a “manifold” to be triangulable, however for 
n < 3 this is not a restriction. For n = 1 this is an elementary result; for n = 2 it was established 
by Rado [ I ]  in 1925; for n = 3 it  was established by Moise [ I ] .  For n > 4 the restriction is genuine 
(Kirby and Siebenmann [I]). The case n = 4 is open. 

21 1 
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the corresponding properties must hold for the 2- and 3-dimensional 
simplexes). I t  follows that this outer boundary consists of one or more closed 
surfaces. Since po = 1 for the outer boundary, it must consist of only one 
closed surface (4 18). Only the 2-sphere or projective plane are possibilities for 
this surface, because pl = 0. The latter possibility is eliminated because p2 = 1 
(§41), thus the neighborhood complex of CFo is the 2-sphere. 

Conversely, if the neighborhood complex of each vertex of a simplicial 
complex is a 2-sphere, then the complex is a 3-dimensional manifold. For it 
follows from our assumption that exactly two 3-simplexes are incident with 
each 2-simplex and that the simplexes lying about an edge form exactly one 
cycle, implying homogeneity. Our result is: 

THEOREM I. A 3-dimensional connected finite simplicial complex is a closed 
manifold if and on+ if the neighborhood complex of each vertex is a 2-sphere.* 

From this follows: 

THEOREM 11. Each 3-dimensional closed manifold is also a closed 
pseudomanifold. 

Only the connectability of each pair of 3-simplexes remains to be proven. 
The totality of 3-simplexes which can be connected to a given 3-simplex is a 
subcomplex. If it did not exhaust 5m3 then i t  would have only edges or 
vertices but no 2-simplexes in common with the subcomplex which remained. 
But in that case the neighborhood complex of such a vertex or of the 
midpoint of such an edge would certainly not be a 2-sphere; on the contrary, 
it would consist of two subcomplexes which had at most common vertices. 

As a consequence of Theorem I1 one can distinguish between orientable 
and non-orientable 3-dimensional manifolds. 

We will later prove a duality theorem for n-dimensional manifolds. This 
theorem states that relations q’ = q”-’  hold for the connectivity numbers of a 
closed n-dimensional manifold (469). We have, for the case n = 3, 

qo= q3 and q ’ =  q2 (1) 
and it follows from this that the Euler characteristic is 

THEOREM 111. The Euler characteristic of a closed 3-dimensional manifold is 

From 123, the Euler characteristic is also equal to the alternating sum of 

0. 

the Betti numbers, 

N = -po +pl  - p2 + p3, 

Editor’s Note: It is interesting that the authors anticipated here the concept of a 
“combinational manifold” (see Siebenmann [I]) .  
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Since P o =  1 for any connected complex and p 3  = 1 or 0, respectively 
according to whether 9 t 3  is or is not orientable ($24), we have 

p 2  for orientable manifolds, 

p 2  - 1 for nonorientahle manifolds 

We also know from $24 that there are torsion coefficients in dimension 2 
only in the nonorientability case and, in fact, exactly one torsion coefficient 
exists of value 2. The numerical invariants of a closed 3-dimensional manifold 
whose orientability character is known are then determined by the numerical 
invariants for dimension 1. The latter can be obtained from the fundamental 
group, from $48. It will turn out, in fact, that the fundamental group is the 
most important feature used for showing the distinctness of 3-dimensional 
manifolds. 

Since, by the last equation: p '  = p 2  + 1 for a nonorientable manifold, 
p l  > 0. This implies 

THEOREM IV. The homology group for the dimension 1 and hence also the 
fundamental group of a nonorientable 3-dimensional manifold are infinite 
groups. 

This theorem is true only for 3-dimensional manifolds. A counterex- 
ample for higher dimensions is the topological product of the projective plane 
and the ( n  - 2)-sphere (see Example 1 of $43). 

60. Representation by a Polyhedron 

Just as one can represent a surface by an appropriate polygon having 
pairwise associated sides, one can represent a 3-dimensional manifold V1' by 
a 3-dimensional full (solid) polyhedron having pairwise associated surface 
faces. In fact, Wi3 is constructed by selecting finitely many 3-simplexes and 
identifying certain of their faces ( 0  10). We can carry through the construction 
step by step by starting with one simplex and attaching a second simplex 
along a surface face, then attaching a third simplex, and so forth. We then get 
a simplicia1 complex which is homeomorphic to the closed 3-ball. The 
boundary of the closed 3-ball is simplicially decomposed and we match all of 
its 2-simplexes in pairs so that both triangles of a pair correspond to the same 
triangle in W3. That is, '$n3 is constructed from the closed 3-ball by defining 
pairs of equivalent 2-simplexes on the boundary of the ball and identifying 
the two 2-simplexes of each pair. 

We can free ourselves from the restriction that the associated faces are 
required to be triangles. For this purpose we shall define a 3-dimensional full 
(solid) polyhedron to be a closed 3-ball (or a topological image of a closed 
3-ball) whose boundary !R has been divided into polygons so that the 
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following conditions are satisfied: 

each polygon is at least a 2-gon; 
each point of 3 belongs to at least one polygon; 
two polygons are either disjoint or have certain common edges or vertices.* 

We call the vertices, edges, and polygons of the boundary 8 the vertices, 
edges, and faces (surface faces) of the full polyhedron. 

As an example, a solid dodecahedron is a full polyhedron with 20 vertices, 
30 edges, and 12 faces. As another example, a closed 3-ball whose boundary 
has been decomposed into two hemispheres by a great circle also becomes a 
full polyhedron when one subdivides the great circle by two or more vertices. 

We can obtain a simplicial complex by normally subdividing a full 
polyhedron. The normal subdivision is performed in the following manner. 
First we decompose each polyhedral edge into two subsimplexes by means of 
an inner point; more precisely, we topologically map a normally subdivided 
1-simplex, which is a simplicial star (3' onto the polyhedral edge. The 
boundary of a polyhedron face a2 will thereby become a simplicial complex 
homeomorphic to the circle. We now choose a simplicial star G.t2 whose outer 
boundary has been simplicially decomposed like the boundary of a2 and map 
this simplicial star topologically onto a' so that the simplicial decomposition 
of the outer boundary of Gt2 comes into cover with that of the boundary of 
a2. In this way a2 itself becomes a simplicial star. By proceeding in this way 
with all of the other faces of the polyhedron, we make the boundary of the 
full polyhedron a3 into a simplicial complex. We now choose a simplicial star 
Gt3 whose outer boundary has been decomposed like the boundary of the 
polyhedron and map it topologically onto a' so that the simplicial 
decomposition of the outer boundary of 0t3 comes into cover with the 
simplicial decomposition of the boundary of a3. The simplicial decomposition 
of the polyhedron which we have obtained in this way is called the (first) 
normal subdivision. 

In the full polyhedron we now let the faces be associated pairwise and, in 
fact, we require that the associations be topological mappings which 
transform vertices to vertices and edges to edges. This requires that associated 
faces must have the same number of vertices. We also require that the 
subsimplexes of the respective normal subdivisions each two associated faces 
be mapped linearly one onto the other by the topological mapping. Due to 
the association of faces certain polyhedral edges will become equivalent to 
one another and certain polyhedral vertices will become equivalent to one 
another. 

We shall require, once and for all, that the associations be such that no 
oriented edge ever becomes equivalent to itself with opposite orientation: 

*The boundary of the full polyhedron is a special surface, in the sense of 937, which covers the 
2-sphere. It is special because the polyhedral surface elements are now themselves polygons, so 
that self-intersections are excluded. 
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hence an edge will never have inner points which are equivalent to one 
another. This requirement is not essential, because an oriented edge which is 
equivalent to the same edge having opposite orientation can always be 
transformed to two edges which no longer have equivalent inner points, by 
means of a subdivision. On the other hand, both boundary points of an edge 
can be equivalent. 

We denote vertices which become equivalent under the association of faces, 
by 'a:, "a:, . . . ; after identification of equivalent points these vertices 
collapse to one and the same point, a:; the index v runs from 1 to a'. In like 
manner, a set of equivalent edges will be denoted by 'af.,"af., . . . ; let the 
number of equivalent edges be a'  so that v runs here from 1 to a'.* Two 
equivalent faces will be denoted by 'nt and "at ;  let there be a2 such pairs of 
equivalent faces. Finally, we shall call the full polyhedron 'a3. It is clear that a 
complex is formed from 'n3 by means of identification of equivalent points. 
But the normal subdivision of 'a3 will not yet transform to a simplicial 
complex under the identification, because certain nonequivalent subsimplexes 
of 'a3 have equivalent vertices, so that in making the identification one will 
have two different simplexes with the same vertices. Thus condition (k3) of 
$10 will be violated for the simplicially decomposed point sets arising from 
the identification. We can insure that a simplicia1 complex R3 will be formed 
by once again normally subdividing all simplexes of the normally divided full  
polyhedron before making the identification (see the problem in $13). 

Another result of this construction is that $I3 is uniquely determined 
topologically, that is, up to a homeomorphic mapping, by the schema of the 
polyhedron, that is, by a directory listing all vertices, edges, and faces 
together with their incidences and associations. One will easily recognize that 
the schema of the first and consequently the second normal subdivision will 
be determined with all of its associations from the schema of the polyhedron, 
and the schema of (tt" will thereby be determined. 

In general, of course, $Y3 will not be a manifold when one makes an 
arbitrary association of faces of a polyhedron. We now ask the question: 
What condition must the pairwise association satisfy in order that $I3 be a 
manifold 9Jl3? 

The homogeneity condition can be violated only at points 

which correspond to the vertices of the polyhedron. For if P is an inner point 
of 'n3, then there obviously exists a neighborhood of P which is 
homeomorphic to the interior of a solid ball. And if P' is an inner point of a 
face '(1; and P "  is the corresponding point on the associated face ''(1: then we 
may choose "half-ball" neighborhoods of P' and P "  which join together to 
form a ball neighborhood when the identification of 'a t  and " t i t  is made. 

Here we are dealing with the vertices, edges, and faces of the polyhedron itself and not with 
those of the normal subdivision. 
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Finally, if ’a:, “a:, . . . , ( r )a :  is a set of equivalent polyhedral edges and if 
P’, P“, . . . , P ( ‘ )  are equivalent inner points of these edges, then we may 
choose “spherical sector” neighborhoods of these points such that the 
neighborhoods join together to form a ball neighborhood when associated 
polyhedron faces are identified. 

If, on the other hand, P is one of the points a:, a:, . . . , a$, then it is 
possible for the neighborhood complex to be an arbitrary closed surface. 
Examples can be constructed easily. 

In order that R3 be homogeneous at these points, i.e. that i t  be a manifold, 
it is necessary that its Euler characteristic be zero ($59). This condition is also 
sufficient. We have the following theorem: 

THEOREM I. A complex, Q3 which is formed by identfiing the faces of a 
polyhedron will be a manifold i f  and only if its Euler characteristic N = 0. 

Since it is easy to compute N directly by counting, this theorem gives a 
useful criterion for determining the homogeneity of such a complex. 

Proof: The condition that R3 arises from a polyhedron by pairwise 
identification of faces implies that R3 can be inhomogeneous only at finitely 
many points a:,$, . . . , aBo and that the neighborhood complexes of these 
points are closed surfaces in any simplicial decomposition of R3. We choose 
the simplicial decomposition so that 

become vertices and that the simplicial stars 

about these vertices are disjoint. The outer boundary 8,  of Gt? is a closed 
surface of Euler characteristic N ,  and we must infer from N = 0 that 
N ,  = -2, so that the neighborhood complex is a 2-sphere. Let !@3 be the 
complex which is formed from Q3 when one removes all of the stars 
Gt;,Gt;, . . . , but leaves their outer boundaries in place. This is a 
3-dimensional complex having a boundary which is formed by the surfaces 
3,. The Euler characteristic of this complex is 

a0 

v =  I 
N + 2 ( N ,  + 1). 

For when one removes all of the simplexes of G‘t? (including those of its outer 
boundary) the Euler characteristic of R3 is increased by 1, because the Euler 
characteristic of a simplicial star is always - 1 ($23, Problem 1). If one then 
replaces the simplexes of a,, the characteristic is increased by N , .  We now 
form a doubling of R3. This is done by identifying corresponding 
boundary points in two copies of R3. Its Euler characteristic is then twice as 
large as that of B3 minus the sum of the characteristics of the boundary 
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surfaces and is thus equal to 

(10 uo a0 

v =  I u =  I v =  1 
2 N  + 2 C ( N ,  + I )  - C Nu= 2 N  + C ( N u  + 2). 

As one can easily check, 
manifold with Euler characteristic 0. Since we also assumed that N = 0, 

is homogeneous at all points and is therefore a 

(10 

C ( N , ,  + 2 )  = 0. 

But since N u  is the Euler characteristic of a surface, N u  1 -2  and it follows 
that N u  = -2, which was to be shown. 

v =  I 

The Euler characteristic of a complex Q3 is 

N = - E o + E I - -  a2  + E 3 ,  

where 5' denotes the number of i-simplexes of a simplicia1 decomposition of 
Q3 or, more generally, the number of i-blocks of a block system (023). If Q3 is 
given by means of a full polyhedron 'a3 having pairwise associated faces, then 
such a block system will be formed by the oriented vertices, edges, faces, and 
the oriented full polyhedron, where, of course, equivalent vertices, edges, and 
faces will be counted as nonequivalent blocks. We shall show this in the next 
section. We need now only to set the numbers of nonequivalent vertices, 
edges, and faces a', a ' ,  a' of 'a3 for the values of Eo, E l ,  E 2  and set E 3  = 1 to 
obtain the correct value of the Euler characteristic N .  

We now give some examples of polyhedra which will be used later. 
EXAMPLE 1 .  Lens spaces. If one measures the complexity of a polyhedron by the number of 

pairs of associated faces, then the lenses are the simplest polyhedra. A lens is a region of 3-space 
bounded by two spherical caps which meet in an equatorial circle (the sharp edge of the lens). 
Divide the equatorial circle into p equal circular arcs. Its two caps then become p-gons 'a2 and 
"a'. We can accomplish the association of 'a' and "a' in several ways. We can, for example, 
reflect the lower cap 'n2 in a plane passing through the equatorial circle to bring it into 
coincidence with the upper cap "a'. More generally, we can let the reflection follow a rigid 
rotation of one of the caps onto itself, let us say 'a', by the angle S n y / p  radians. We can describe 
this more briefly by saying that the association of 'a2 with "a2 occurs via a screw rotation through 
the angle Znq/p. The assignment of points to the upper lens surface is completely determined by 
the screw angle Z r q / p .  I t  is therefore no restriction to assume that the integers 9 and p are 
relatively prime. We can also assume that 0 S 9 S p / 2 .  since it is obviously unimportant for the 
resulting manifold whether the screw rotation is clockwise or counterclockwise. The p vertices 
and edges into which the equatorial circle decomposes become equivalent, so that 
a'= a '  = a'= a3 = 1 and thus N = 0. The complex which is formed by means of the 
identifications described above is then in fact homogeneous. This is easily checked directly. The 
complex is called the lens space ( p ,  7). In Fig. 1 10, p = 3, 7 = I .  In the case p = 2 the associatioa 
becomes an "interchange of diametrically opposite points" when one takes the solid ball as the 
lens and a great circle on its surface as the equatorial circle. The resulting lens space is the 
projective space Q', from $14. For p = 1 no polyhedron results, because the equatorial circle 
would be divided by only one vertex so that as a polyhedron edge it would exhibit an 
unallowable self-intersection. If one inserts an additional point of division, then a polyhedron 
will arise and i t  closes to form the ;-sphere G3, since the rotation is eliminated here ($14). 
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t 

FIG. 110 

It is indicative of the difficulty of the topology of three dimensions that the homeomorphism 
problem has not even been solved for these simple lens spaces. That is, it has not been 
determined in general when two lens spaces (p, q) and ( p ' ,  q') are homeomorphic.. Additional 
discussion is given in 562 and 577. 

EXAMPLE 2. The iopologicalproducr of ihree circles. Just as we can form the topological product 
of two circles, the torus, from a square whose opposite sides are identified by means of 
translations, we can form the topological product of three circles from a cube whose opposite 
sides are identified by means of translations. There exist three nonequivalent edges and three 
faces, while all vertices become equivalent to one another; therefore N = 0. 

61. Homology Groups 

In the previous section we derived the condition under which the complex 
arising from a polyhedron by identification of faces becomes a manifold. In 
the present discussion we do not assume that this condition is satisfied by the 
full polyhedron under consideration; that is, the complex !Q3 may be 
inhomogeneous at the polyhedral vertices. 

The full polyhedron 'a3, its faces 'a: and "n:, its edges 'a:, "a~,"'a~, . . . , 
and its vertices 'a:, "n:, '''a;, . . . are respectively 3-, 2-, I - ,  and 0-dimensional 
elements (closed n-balls). That is, they are orientable pseudomanifolds with 
boundary. It is therefore possible to coherently orient an arbitrary simplicial 
decomposition of these elements. Among the simplicial decompositions we 
shall consider only the twofold normal subdivision of 'a3. We orient the 
vertices with the + sign. We orient the edges and the faces so that associated 
edges and associated faces are given the same orientation, so that orientations 
are preserved under the identification mapping of equivalent elements. In our 
illustrations we do not show the simplicial decomposition; we denote the 
orientation of an edge by an arrowhead set upon it and denote the orientation 
of a face by a circular arrow set into it. If 'a:, "a:, . . . is a set of equivalent 

Editor's Nore: Two lens spaces ( p ,  q), (p ' ,  9') are homeomorphic if and only if p = p' and 
q' e ? q (mod p) or qq' = 2 I (mod p). See Brody [ I ]  for a self-contained proof. Earlier proofs 
are due to combined results of Reidemeister and Moise. The homotopy classification of lens 
spaces is also known (e.g., see Hilton and Wylie [ I ,  pp. 223-2251). 
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k-dimensional elements of the polyhedron, then we denote the k-chain 
formed from the oriented elements by the corresponding Roman letters 
a, , a, , . . . . The symbol a," will denote the k-chain in the simplicial 

complex Q3 which results from the chains 'a:, "a,", . . . when equivalent 
points are identified. We then have the following chains on Q3, having 
dimensions 0 through 3: 

I k i t  k 

up, a;, . . . , aao, 0 

a ; ,  a ; ,  . . . 9 adl, 

a;, a; ,  . . . 9 a$, 

a3.  

We claim that these chains form a system of blocks on Q3 (922). The chains 
are linearly independent because the simplexes are disjoint. The boundary of 
each a,k is composed of chains a:-'. To show that (B13) and (B14) are also 
satisfied let us consider a simplicial chain U k  on Q3 such that the boundary of 
U k  is a linear combination of the chains a:-' and can be the (k - ])-chain 0 
under certain conditions. We attempt to construct a homologous chain 
V k -  U k  which is composed entirely out of chains a:. It will be useful to 
consider a chain ' U k  on the polyhedron 'n3 as a "preimage" of U k ,  where ' U k  
arises from U h  by associating with each k-simplex of Uk one of the 
corresponding simplexes of 'a3 and providing the latter simplex with the same 
orientation and multiplicity as the former simplex. In the case k = 3, each of 
the coherently oriented 3-simplexes of 'a3 must appear with the same 
multiplicity in ' U k .  Otherwise 4haUk would not be a linear combination of 
the chains u,'. Thus ' U k  is a multiple of 'a3 and our goal has been achieved 
for the case k = 3. In the case k = 2 we consider chains ' U; which are formed 
from those simplexes of ' U 2  which do not lie on the boundary of 'a3. The 
boundary of 'U;  lies on the boundary of 'a3 and is itself, when considered as 
a closed 1-chain on a 2-sphere, the boundary of a chain 'U,' on the boundary 
of 'a3. Then ' U i  - 'U:  is a closed chain and is null homologous on 'n3. I t  is 
then also true on R3 that U; - U,?, so when we replace U; by U,' we go from 
the chain U 2  to a homologous chain V 2 .  A preimage ' V 2 ,  will contain no 
inner simplexes of 'a3 and we can standardize its selection so that, of the two 
possible preimages of a 2-simplex of V 2 ,  we choose that one which belongs to 
'nt (and not to "at). Then ' V 2  will be a linear combination of the chains 'at. 
For, since the boundary of V 2  is a linear combination of the a,!, each of the 
coherently oriented 2-simplexes of ' n t  must appear with the same multiplicity 
in ' V 2 .  Thus V 2  is a chain such as we are seeking. This push out procedure 
also leads to our goal in the case k = I .  We first push ' U '  onto the boundary 
of 'a3 and subsequently push it  in the same way onto the boundary of each 
individual 'a t .  The chain V '  which one obtains from U '  is itself a linear 
combination of the chains a,'. 

We can consequently compute the homology groups of Q3 from the block 
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system of the a,” using the procedure of $22. In particular, the simple 
computation of the Euler characteristic given in §60 is thereby justified. 

Obviously R3 is orientable if and only if A 3 a 3  = 0. That is, in the equation 

a’ 

u =  I 

we have ‘E” + “ E ,  = 0. This implies that ’a: and ”a: must be oppositely 
oriented on the boundary of the polyhedron, where orientation is assigned 
relative to a coherent orientation of the whole polyhedron. One say that for 
an observer standing outside the polyhedron the orientation arrows of any 
two associated faces must have opposite senses of traversal. Two oriented 
faces ’a: and ”a:, for which this is the case are said to form an association of 
type one and in the other case form an association of type two. The complex R3 
is then orientable if and only if all associations of faces are of type one. The 
lens spaces and the topological product of three circles are orientable. 

EXAMPLE I .  Lens spaces. The block incidence matrices of the lens space ( p ,  9) are 

These block incidence matrices already stand in normal form. We list the number of elements a k ,  

the ranks y k .  and the Betti numberspk calculated from the formulapk = a k  - y k  - y k - ’  ($21) 
together in a table: 

p k 1 0 0 I  y k l o  I O - 

There is a single torsion coefficient, a I-dimensional torsion coefficient having the value p .  The 
integer 9 does not appear at all in the homology groups. 

The significance of a I-dimensional torsion coefficient becomes clear from this example. The 
existence of such a torsion coefficient having the valuep imples that there exists a closed I-chain 
which bounds a 2-chain only when first traversedp times. The equatorial circle of the lens, which 
consists of p equivalent edges ’a1,  “ a ‘ ,  . . . , (P)a’ ,  bounds a surface element, the lens cap. In the 
case p = 2 the lens space is the projective space 9’ and there exist two equivalent edges which 
become homotopic, after identification, to a projective line. We already know that a projective 
line will bound a surface element when traversed twice; this is a projective plane which has been 
cut open by the line (0 17). The nomenclature “torsion coefficient” now becomes justified as well. 
The full polyhedron becomes closed to form a lens space after one has twisted it about the lens 
axis, that is, one associates the lower lens cap with the upper lens cap by means of a screw 
rotation. 

EXAMPLE 2. Octahedron space is obtained when one twists opposite lying triangles of a full 
octahedron by n/3 radians relative to one another, associates them in pairs with one another, 
and then identifies them. The edge network of the polyhedron is shown in Fig. 1 I I ,  which is in 
fact the stereographic projection of the octahedral surface into the plane, which we think of as 
being closed by a point at infinity to form the 2-sphere. The point at infinity is a vertex of the 
edge network. For ease of recognition, associated elements in the figure are designated with the 
same symbol and not with %,k as in the general theory. 
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By use of the procedure of $87, the incidence matrix E' can be brought to normal form: 

3 0 0 0  (& i 8 ;] 
The number of systems of equivalent vertices, edges, and faces, as well as the ranks of the 
incidence matrices and the Betti numbers pk,  are summarized in a table as in the previous 
example: 

k = I O  I 2 3 

Problem 

In octahedral space show that the four edges (I, b,  c ,  d are homologous to one another and 
each edge becomes null homologous only after it  has been traversed three times. 

62. The Fundamental Group 

Just as we determined the homology groups in the previous section, we 
shall now determine the fundamental group of the 3-dimensional manifold Q3 

from its polyhedron 'a3. We achieve this by means of the following theorem. 

THEOREM I .  The fundamental group of YS3 is (he same as the fundamental 
group of the surface complex Q2 which arises from the boundary of the 
polyhedron 'a3 by means of the idenrifcation of equivalent points. 
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Proof: We must demonstrate two facts. (I) Each closed path w whose initial 
point is a fixed point 0 of R2 is deformable to a path w ,  of Q2. (11) If a path 
w I  of Q2 is null homotopic in R3, then it is also null homotopic in R2. 

To prove (I) we examine the point set w’ of all points of the polyhedron ’a3 
which map to point of w .  If there exists an interior point P of ’a3 which does 
not belong to w‘,  then we deform w’ to lie upon the boundary of ’a3 by 
“projecting outward from P,” that is, we let the points of w’ run at constant 
speed to the boundary of ’a3 along straight line rays drawn from P. 
Corresponding to this projection there exists a deformation in R3 of w to a 
path w I  of R2. If w’ is to exhaust all of the interior points of ‘a3, one must first 
free such a point P. We can do this, for example, by means of a simplicia1 
approximation of w in Q3 (which, from $31 is, in fact, a deformation of w) .  

One can prove (11) in the same way. If 3 denotes a “singular deformation 
rectangle” which sweeps over w 1  during the deformation to the point 0 and if 
’3 denotes the set of all points of ’a3 which map to 3, then project ‘3 outward 
to lie upon the boundary of ’a3 from an interior point P of ’a3 such that P 
does not belong to ’3. This will correspond to a pushing out of 3 from 9’ 
into the subcomplex R2. If no such point P exists, then approximate 3 
simplicially, as was done previously. That is, the continuous mapping of the 
sufficiently finely divided simplicially decomposed deformation rectangle a 
onto ’u will be simplicially approximated in R3. 

The relations belonging to the fundamental group can be determined by 
the procedure of $46. This is particularly easy when all vertices of the 
polyhedron are equivalent. The vertices then correspond to one and the same 
point 0 in R3, which will be taken to be the initial point of the closed paths. 
Since the auxiliary paths do not appear, the oriented edges of the polyhedron 
or, rather, the closed paths in Q3 corresponding to these edges are the 
generators of the fundamental group. The group relations are obtained by 
running around the polyhedron faces. 

This simple case occurs for example with the lens spaces ( p ,  4 ) .  A single generator a exists (we 
now omit the indices of the previous section). We obtain the single relation ap = 1 by running 
around one of the two equivalent polygons. The fundamental group of the lens space ( p ,  4) is 
therefore the cyclic group of order p and is independent of q. 

Two cases are now conceivable. Either two lens spaces ( p ,  q )  and ( p ,  4’) are homeomorphic 
when q # q’ or else our previously known invariants, the homology groups and the fundamental 
group, are insufficient to prove that the two lens spaces are distinct. It turns out that both cases 
occur in actuality, depending upon the nature of the integers q and q’. With regard to the 
homeomorphism we can easily prove the following theorem: 

THEOREM 11. The lens spaces ( p ,  q )  and (p ,q ‘ )  are homeomorphic if q and q‘ satisfv the 
congruence 

qq’ E f 1 (modp). ( 1 )  

Since this congruence has exactly one solution satisfying the condition 0 5 q ’ 5 p / 2  for a given 
q,  q and q’ each determine the other uniquely. 

Proof. We decompose the lens I! having screw angle 2 n q / p  intop equal pie-shaped tetrahedra 
4,. X2, . . . , XP by means of p half-planes passing through the lens axis (Fig. 110 shows the case 
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p = 3). We construct a new lens Si' having screw angle 2nq'/p from these pieces. The tetrahedron 
8, has a triangle A, in common with the lower lens cap and has a triangle ai in common with the 
upper lens cap. The lens axis b is common to all &,. The lens edges lying opposite to b are all 
equivalent to one another and form one and the same edge a in the lens space. The triangles are 
equivalent in pairs to one another, a5 a consequence of the association of the lens caps. In 
particular, 4, is equivalent to & i + q ,  where i + q is to be reduced mod p if necessary. We now 
construct the new lens 8' from the p tetrahedra. To do this we first join tetrahedron to 
tetrahedron X I  by identifying the equivalent triangles A, + q  and 41. We then join 4 ,  + 2 q  to 
by identifying triangles and and so forth. We ultimately arrive at a lens 9' which 
differs from the original lens only in the fact that the edges a and b have interchanged their roles. 
If 2nq'/p is the screw angle of 8'. then in the cyclic sequence El, . . . , Z2, . . . in which 
the tetrahedra are arranged about the axis a of E', the tetrahedra El  and E2, of which the latter 
coincides with E2+xp, will differ by 9' places on one side and will differ by p - q' places on the 
other side. Consequently, the difference of indexes of &2+xp and 4, in the cyclic sequence will be 
equal to qq' or q ( p  - q'), respectively. But this difference is also equal to (2 + xp)  - I .  Thus. 

(2  + x p )  - 1 = qq' or (2  + xp)  - I = q ( p  - q'), 
which gives 

qq' = ? 1 (modp). 

Thus the lens spaces (7 .2 )  and (7 ,3 )  are homeomorphic for example because 2 . 3  = - I (mod 
7). But one cannot decide from Theorem I1 whether the lens spaces ( p ,  1) and ( p ,  2 )  are 
homeomorphic. We shall later ($77) introduce an invariant which is not associated to the 
fundamental group and which permits certain lens spaces to be distinguished. It can show, for 
example, that (5 .  1) and (5 ,2 )  are distinct spaces. On the other hand, Theorem II  does not 
distinguish between (7, I )  and (7 ,2) .  

I t  should be noted that every lens space can be decomposed into two full rings having a torus 
as their common boundary. Bore a full cylinder '8 out of the lens by boring along (and 
concentric with) the lens axis b. After identification of the lens caps, B will close to form a full 
ring. The same is true for the complementary space a which remains after boring out '8. To see 
this we need only to decompose the lens 8 into p tetrahedra as previously and to assemble the 
lens 2' from them. The complementary space \21 then becomes a cylinder in 9' which surrounds 
the axis a of U'. When equivalent points are identified, will close to form a full ring (cf. $63). 

As another example we shall investigate the spherical dodecahedron space (Kneser [8, p. 2561). 
This space arises from a dodecahedron when one twists opposite lying pentagons by n/5  radians 
relative to one another and then identifies them. The edge network of the dodecahedron, which 
completely determines the space, is drawn in Fig. 112. There exist a' = 5 nonequivalent vertices 
0, P, Q, R,  S .  There are ten nonequivalent edges, each formed by identifying three equivalent 
edges. The Euler characteristic is N = - 5 + 10 - 6 + 1 = 0; thus we are dealing with a manifold. 
We select 0 as the initial point of the closed paths and we select the paths a, h, f - I ,  f -Id as 
auxiliary paths leading to the vertices P, Q, R,  S, respectively. The generating path classes of the 
fundamental group will then be represented by the closed paths 

A = aa- ' ,  
C = hcf, D = f - ' d ( d - Y ) ,  

E = ( f - l d ) e ,  F =  f -y ,  
G = ( f - l d ) g a - ' ,  H =  hh-' ,  

J = a$ 

E = abh- ' ,  

K = h k ( d - 7 ) .  

The relations of type (I)  follow after one writes the right-hand sides of the above equations in 
capital letters instead of lower case letters. We then get A = D = F =  H = I and the remaining 
relations become trivial. 
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FIG. 112 

By running around the pentagons we get the following six relations of type (11): 

ABCDE = 1 
B K E F - I J  - I  = I 

A J D K - ~ H - ~ =  I 
C J - ~ G - ~ E H =  I 
BH - I F - I D G  = I 
A G - ' K - ' C F =  1 

Elimination of G and K gives 

or 

BCE= I, 

B J E J - ~ =  I ,  

B J - ~ C =  I .  

CJ - 'BE = I ,  

From the first and fourth of these relations we get 

E =  C - I E - ' ,  J =  CB.  

Using these to eliminate E and J from the second and third relations, we get 

and 

We determine the first homology group from these two relations by making relations (I) and 
(11) Abelian! As always, we use additive notation for Abelian groups, and we denote the elements 
of the homology group by means of symbols with bars. We get 

c=o, (I) 

- C - E = O ;  (TT)  
thus = C = 0. That is, the first homology group consists of the null element alone. Since the 
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dodecahedron space is orientable, we have the following values for the Betti numbers: 

1, p ’ = P 2 = o ’  p 3 =  1. 

There are no torsion coefficients. 
The numbers above are just the numerical invariants of the 3-sphere. Thus the homology 

groups are not in themselves sufficient to distinguish whether the 3-sphere does or does not 
coincide with the dodecahedron space. To decide this we examine whether the fundamental 
groups of these spaces differ. To do so we transform the somewhat untransparent relations (I) 
and (11) further. We set (11) into (I) at the position indicated by the dot in (I). In place of (I) we 
get the relation 

B C B C - 1 .  C B - I C - l B C - 1 B - l .  B-ZC-1 = 1, 

By introducing a new generator U into (I) and (11) where U is defined by C = U - ‘ E ,  we get 

8 2 . B - I U . B - 3 . B - I U =  1, 

/J - ‘ B .  B - 1 .  B -1u. B .  B - Iu. B - 1  = 1 

or 

or also 

B 5  = ( E U ) 2 =  Us. (111) 

We recognize from the relations (111) that the dodecahedron space is not homeomorphic to the 
3-sphere. That is because the fundamental group does not consist of the unit element alone. 
Instead, the relations (111) are satisfied by the icosahedral group, if one interprets B as a rotation 
of 2n/5 radians about a vertex of the icosahedron and interprets I! as a rotation of 2 n / 3  
radians, having the same sense of rotation, about the midpoint of a triangle adjoining that vertex. 
The icosahedral group is therefore either the group (111) itself or a factor group of (111). In either 
case the fundamental group does not consist of just the unit element alone. It is possible to show, 
by the way, that (111) is of order 120 and is the “binary icosahedral group.”* 

The spherical dodecahedron space is a manifold which has the same 
homology groups as a 3-sphere without, however, being homeomorphic to it. 
Such a manifold is called a Poincare space. Infinitely many Poincare spaces 
are known. But the spherical dodecahedron space is the only one known 
which has a finite fundamental group.33 

The homology groups are not sufficient to characterize the 3-sphere. 
Whether the 3-sphere is characterized by its fundamental group is the content 
of the “Poincare conjecture,” which remains unproven to this day. Since the 
fundamental group of the 3-sphere consists of the unit element alone, we can 
also state the problem as follows: Aside from the 3-sp!iere do there exist other 
3-dimensional closed manifolds such that each closed path can be contracted 
to a point (is null homotopic)?** 

Jahresber. Deutsch. Math.-Verein. 42 (1932), problem 84, p. 3. 
**Editor’s Note: As of January 1979, this famous problem is still open! However, new 

(unpublished) results of W. Thurston have established the following weak version: If a simply 
connected 3-manifold M is a cyclic branched covering space of S 3 ,  then M is in fact 
homeomorphic to S 3 .  



226 IX .  3-DIMENSIONAL MANIFOLDS 

Problems 

1. The hyperbolic dodecahedron space is formed by closing the full dodecahedron as follows. 
One twists opposite lying faces by 3 r /5  radians (not n/5 radians as in the case of spherical 
dodecahedron space) relative to one another and identifies them. Show that the hyperbolic 
dodecahedron space is a manifold and prove, by presenting its fundamental group, that it has 
three torsion coefficients of value 5 and has the Betti numberp’ =O. 

2. Prove that the relations of the fundamental group of the octahedron space (561) are 

abc = ad6 = acd = bdc = I .  

Prove that the tetrahedron group is a factor group of this group. (The relations are valid in the 
tetrahedral group when one interprets a, b, c ,  d as the four rotations by 2n/3 radians about the 
four vertices of the tetrahedron.) 

3. One can derive a new 3-dimensional manifold from two 3-dimensional manifolds W ,  and 
W, by the process of “connected sums.” One bores a small ball out of each manifold and glues 
together the two resulting “manifolds with boundary” along their bounding spherical surfaces. 
This can be done in two essentially different ways, either by preserving or by reversing 
orientation. Determine the fundamental group of the resulting closed manifold and the first 
homology group in each case, assuming that the fundamental groups of V?, and W, are known. 

4. Using the results of Problem 3 construct a 3-dimensional manifold having an arbitrarily 
given first homology group. 

63. The Heegaard Diagram 

We have previously presented general theorems dealing with 3-dimensional 
manifolds but we have only become acquainted with individual examples of 
manifolds. In contrast to the situation in 2 dimensions, the problem of 
cataloging all 3-dimensional manifolds is unsolved. We can look upon the 
Heegaard diagram, which we now explain, as a method of proceeding to its 
solution. 

A handle body of genus h arises from a 3-dimensional ball when one carries 
out identifications of type (I) ($61) pairwise on 2h distinct disks on the 
surface of the ball. We can perform the identification in ordinary 3-space by 
deforming the ball in a manner so that associated disks come into 
coincidence with one another. The body arising in this way can also be 
regarded as a full sphere having h full handles attached. Its surface is an 
oriented surface of genus h. The h circles which arise from the boundaries of 
the pairwise identified surface elements are called the meridian circles of the 
handle body. A handle body of genus 1 is an ordinary solid torus. We have 
the following theorem: 

THEOREM. One can obtain each orientable 3-dimensional manifold Yt3 by 
gluing together two handle bodies of the same genus along their surfaces, that is, 
by mapping their surfaces topologically one onto the other and identifying 
corresponding points. 

Proof. Consider the 3-dimensional manifold to be simplicially decomposed 
and bore out all of the (YO vertices of the decomposition by the procedure of 
boring out a small ball surrounding each vertex. Likewise, bore out the a’ 
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edges by boring out small full cylinders about them, where the cylinders 
connect the balls surrounding the endpoints of the edges. The subspace w: 
which remains after one has bored out the vertices and edges is composed of 
a3 simplexes which are truncated along their edges. This space is a handle 
body. For one can construct i t  by starting with a truncated simplex Ei, 
joining a neighboring simplex (E; along one face, then joining an additional 
simplex E: to either (Ei or Q; along a face and so forth. If this exhausts all of 
the simplexes, then a topological full sphere will result, in which certain 
disjoint surface elements of its surface still remain to be identified pairwise. I t  
is clear that the association of these surface elements must be of type ( I )  since 
in the other cases 9; would be nonorientable and consequently 9J3  would 
also be nonorientable. One can show in like manner that the bored-out part 
’@:, consisting of a’ full  spheres and a’  full cylinders is a handle body. 

From now on we can, then, represent each orientable 3-dimensional 
manifold by means of an orientable surface % I 2  of genus h ;  this is the surface 
common to @: and m: and we must mark on ‘m2 how the handle bodies are 
placed upon it. We do this by constructing the meridian circles of 9: and of 
E; on 91’. These form two systems Z, and Z2, each of h circles which are 
free of double points and which are disjoint within each system (but not 
necessarily between the two systems). The systems of meridian circles have 
the property that YJl’ becomes a 2-sphere having 2h holes when it  is cut apart 
along the h circles of ZI (or of Z2).* If one is given an arbitrary orientable 
surface of genus h,  containing two such systems of h circles ZI and Z2, then a 
3-dimensional manifold will always be determined. For one can cut apart 9 J 2  
along the circles of Z, to form a 2-sphere with h holes, close the holes with 
surface elements (caps), and f i l l  in the resulting 2-sphere to form a closed 
3-ball. Pairwise identification of the caps results in a handle body whose 
surface is ‘n12 and whose meridian circles are the circles of X I .  One constructs 
the handle body for the system 2’ in like manner. A closed surface W2 
together with the two systems X I  and Z2 is called a Heegaard diagram of the 
manifold 9J13. 

One can easily find the Heegaard diagrams on the torus. They consist of 
any two essential cuts (double-point-free closed edge sequences of a simplicial 
decomposition) which are not null homotopic. The lens spaces are among the 
manifolds which have their Heegaard diagrams on the torus. As we saw in 
$62, each lens space can be decomposed into two full rings when the lens axis 
is bored out. The topological product of a circle with the 2-sphere also has its 
Heegaard diagram lying on the torus, because this topological product arises 
by identifying corresponding surface points of two full rings which have been 
mapped topologically one onto the other; one can thereby say that i t  arises by 
means of a doubling of the full ring ($36). In this example the two meridian 

*The cutting apart makes sense when the circles of Z, and Z, are composed of edges of a 
simplicia] decomposition. We assume this to be the case. 
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circles of the Heegaard diagram coincide. One can prove that this exhausts all 
of the manifolds whose Heegaard diagrams lie on the torus.34 

Little is known about Heegaard diagrams of higher genus.* The spherical 
dodecahedron space has a Heegaard diagram of genus 2. H. Poincare first 
studied this space by means of its Heegaard diagram.33 

One can also define the Heegaard diagram for nonorientable manifolds. 
One needs only to introduce nonorientable handle bodies. These arise from a 
full sphere when one pairwise associates disjoint polygons on its surface, 
where at least one association is of type two. The surface which results is a 
nonorientable surface having an even characteristic N and is thus also of even 
genus k = 2k’ [from $38 the characteristic remains the same regardless of 
whether a type (I) or a type (11) association is made]. In the same way as for 
orientable manifolds, it can be proved that each closed nonorientable 
3-dimensional manifold can be decomposed into two nonorientable handle 
bodies. 

The construction of 3-dimensional manifolds has been reduced to a 
2-dimensional problem by means of the Heegaard diagram. This problem is 
the enumeration of all Heegaard diagrams. Even if the diagrams could all be 
enumerated, the homeomorphism problem in 3 dimensions would not be 
solved because a criterion is still lacking for deciding when two different 
Heegaard diagrams generate the same manifold. The enumeration has been 
carried out successfully in the simplest case, that of Heegaard diagrams of 
genus 1, but the problem of coincidence of manifolds, that is, the 
homemorphism problem for lens spaces, has not been solved even here.** 

Another way to attempt the enumeration of all 3-dimensional manifolds 
would be to construct all polyhedra having pairwise association of faces. This 
also is a 2-dimensional problem and it has met with as little success at 
solution as the problem of enumerating the Heegaard diagrams. 

It is known from the theory of functions of complex variables that one can 
obtain any closed orientable surface as a branched covering surface of the 
2-sphere, where the branching occurs at finitely many points. Corresponding 
to this result, it is possible to describe each closed orientable 3-dimensional 
manifold as a branched covering of the 3-s~here.~’ In this case the branching 
occurs along closed curves (knots) which lie in the 3-sphere. Here also the 
enumeration and distinguishing of individual covering spaces leads to 
unanswered questions. On occasion the same manifold can be derived as 
branched coverings of the 3-sphere with quite distinct knots as branch sets; as 
an example, three different branch sets are known for the spherical 
dodecahedron  pace.'^ 

Editor’s Nore: As of January 1979, the classification problem for 3-dimensional manifolds 
which admit Heegaard diagrams of genus g > I remains open. Surprisingly, related techniques of 
“handle decompositions” of manifolds in dimension > 4 have proved to be of fundamental 
importance (for example, see Smale [I]). 

**See the Editor’s notes in 061 and 063. 
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Problem 

Show that if a 3-dimensional manifold can be represented by a polyhedron having h pairs of 
associated faces, then the manifold has a Heegaard diagram of genus h. (To what extent the 
converse is valid is still unsettled.)* 

64. 3-Dimensional Manifolds with Boundary 

A 3-dimensional manifold with boundary is a finite, pure, connected 
complex St2 having a boundary and admitting a simplicial decomposition with 
the following properties: 

I .  The neighborhood complex of each interior point of it3 is a 2-sphere. 
2. The neighborhood complex of each boundary point relative to 9P3 is a 

disk. 

By examining the homology groups at the points of !Q3 i t  is easy to prove 
that each arbitrary simplicial decomposition of $Y3 will also possess these 
properties. 

The simplest examples of 3-dimensional manifolds with boundary are the 
closed 3-ball. the hollow 3-ball, and the solid torus (full ring). 

It is also possible to define a 3-dimensional manifold with boundary as a 
pure complex having a boundary whose double is a closed 3-dimensional 
manifold. 

The boundary .H2 of M3 consists of one or more closed surfaces. 
This is true because the neighborhood complex of a boundary point Q 

relative to Sf’ is a disk and hence the neighborhood complex of Q relative to 
is a circle. Thus if 9’ is decomposed into isolated subcomplexes 

Q y , Q f ,  . . . $12, then each of them will be a finite, connected, homogeneous 
2-dimensional complex, that is, a closed surface (539). 

We now ask the questions: Can an arbitrary closed surface occur as the 
boundary of a 3-dimensional manifold with boundary, and to what extent are 
the properties of S 1 I 3  determined by its boundary surfaces? 

If Q3 is orientable. then by coherently orienting all 3-simplexes we obtain a 
3-chain whose boundary is a closed 2-chain on Q2. Every 2-simplex of R2 
appears in this 2-chain. Thus there must exist nonvanishing closed 2-chains 
on the boundary surfaces a:, $ti, . . . , SZ:. This is possible only for oriented 
surfaces. We then have: 

THEOREM 1. The boundary of an orientable 3-dimensional manifold with 
boundary consists of orientable surfaces. 

The converse of this theorem is not valid: for example, a nonorientable 
manifold bounded by a 2-sphere is obtained by removing a 3-simplex from 
any orientable closed manifold. 

See the Editor’s note in $62. 



230 IX .  3-DIMENSIONAL MANIFOLDS 

COROLLARY. It is not possible to embed the projective plane Q2 in Euclidean 
3-space 8’ or in the 3-sphere G3 (which is the completion of 8’ by addition of 
an improper point). 

More precisely: q2 cannot be a subcomplex of a simplicia1 decomposition 
of the 3 - s ~ h e r e . ~ ~  This follows from the fact that 9’ is a pure complex having 
no boundary ($12). Considered as a subcomplex of G3, Q2 would be a closed 
2-chain mod 2 ($23). But the second connectivity number of G3 is q2 = 0;  
therefore each closed 2-chain mod 2 has a boundary ($24) and there would 
thus exist a 3-dimensional subcomplex Q3 having boundary Q2. The 
subcomplex Q3 would be a 3-dimensional manifold with boundary since any 
point, Q of R3 which did not lie on 9’ would have a 2-sphere as its 
neighborhood complex relative to e3. But if Q did lie on @, then its 
neighborhood complex relative to G3 would be decomposed by Q2 into two 
surfaces with boundary having a common boundary circle. These surfaces 
with boundary would both be disks since together they form a 2-sphere. Since 
Q3 would be orientable, because G3 is orientable, this would result in a 
contradiction to Theorem I .  

When one forms the double St: of Q3, the neighborhood complex of each 
boundary point also experiences a doubling. The double of a disk is a 
2-sphere; consequently, $7: is homogeneous and is therefore a closed 
3-dimensional manifold. Its Euler characteristic must vanish ($59). Thus if N 
denotes the Euler characteristic of Q3 and denotes the Euler characteristic 
of its boundary, St“, we have 

2N - N = O  ( 1 )  

and thus have 

THEOREM 11. The Euler characteristic of a 3-dimensional manifold uniquely 

There also follows from (1) 

THEOREM 111. The Euler characteristic of the boundary o j  a 3-dimensional 
manifold with boundary is always an even integer. Thus the projective plane, or 
more generally a nonorientable surface of odd genus, cannot be the boundary of 
a 3-dimensional manifold.* 

On the other hand, it is quite possible that two projective planes taken 
together form the boundary. One can see this from the example of the 
topological product of the line interval and the projective plane. 

If Q3 is orientable and if its bounding surfaces .Qi, k?;, . . . , !+t: are 

determines the Euler characteristic of its boundary, and conversely. 

Editor’s Note: We see here the beginnings of “cobordism theory,” which concerns itself, 
broadly speaking, with whether an n-manifold bounds a particular type of ( n  + I)-manifold. 
Theorem 111 establishes that the cobordism group of nonoriented, 2-dimensional (possibly 
disconnected) manifolds is nontrivial. 
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respectively of genus h , ,  h,, . . . , h,, then from 038 
r r 

V =  C (2h, - 2 )  = 2 2 h,- 2r 
i =  I i = I  

Furthermore, in 

N = -Po  + p‘ - p 2  + p 3  

the Betti number p o  = 1 and p3 = 0 since there exist no closed nonzero 
simplicial 3-chains in Q3. Substituting these values for 1 and N into (1) we get 

r 
= p 2 - ( r - 1 ) + x h i .  

I =  I 

But p 2  2 r - 1, because the boundary surfaces !@:, st:, . . . , G’- I represent 
r - 1 2-chains which are homologously independent after one has oriented 
them coherently, since when taken together they do not bound. Consequently, 

I =  I 

and we have 

THEOREM IV. The first Betti number of an orientable 3-dimensional manifold 
with boundary is equal to or greater than the total number of handles of the 
boundary surfaces. 

Equality will hold for example for the handle body of genus h. 
As a consequence of this theorem, an oriented 3-dimensional manifold with 

boundary for which each closed path is null homologous can only have 
2-spheres as boundary surfaces. In particular, this is true for each simply 
connected manifold of this type.37 

65. Construction of 3-Dimensional Manifolds out of Knots 

As an example of the many possible methods38 for constructing 
3-dimensional manifolds we shall discuss the procedure given by Dehn [ 11, of 
boring out and subsequently filling in a knot. It can be described, briefly, as 
follows: A knot is bored out of the 3-sphere, which is Euclidean 3-space !R3 
completed by adding a point at infinity. The resulting manifold with 
boundary, the exterior space of the knot, is formed into a new closed 
manifold. This is done by attaching a full ring to it, the closure ring, by 
identifying the boundary surfaces of the exterior space and the ring in a 
topological mapping. 

We first explain the concepts “knot” and “boring out.” We assume that the 
3-sphere G3 has been simplicially decomposed in some manner and we also 
denote the decomposition by G3. A knot f is a I-dimensional subcomplex of 
this simplicial decomposition, such that each vertex of the subcomplex is 
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FIG. 113 

incident with exactly two edges. A knot is then a topological circle, that is, the 
topological image of a circle. But not every topological circle in G3 is a knot. 
As an example, a topological circle having infinitely many loops which 
successively diminish in size and accumulate at a point, that is, an “infinitely 
knotted circle” as appears in Fig. 113, is not a knot, because it  can not be 
constructed from edges of a simplicial decomposition of G3.  

A knot is also defined on occasion as a closed double-point-free sequence 
of edges in g3, consisting of finitely many straight line segments. Such a 
sequence of edges is a knot in the sense of our definition, since we can easily 
make the straight line segments edges of a simplicial decomposition. 

Two knots are said to be equivalent if there exists an orientation preserving 
homeomorphism of B3 onto itself which transforms one knot to the other.39 

In  order to explain the term “boring out” we shall make an additional 
assumption about the simplicial decomposition of G3. We shall assume that 
whenever all vertices of an i-simplex lie on f ,  then the i-simplex itself belongs 
to f ;  that is, we assume that no triangle will have all of its vertices lying on  f ,  
so that some triangle edge will not be a chord of f .  This property can always 
be achieved by means of a normal subdivision. 

If, then P I ,  P , ,  . . . , P, are the vertices of f listed in a cyclic ordering and 
Gtl , Gt,, . . . , Bt, are the simplicial stars of the normal subdivision, 63 of G3, 
then the following holds from our recently stated assumption concerning G3: 
only successive stars Bt, and Bt,+ I (where p + 1 is to be reduced mod r if 
necessary) have points in common and these common points will always form 
exactly one surface element, @,* p +  I .* In addition, the surface elements Q ,  ,+ , 
have no points in common with one another. That is, as point sets they are 
disjoint. This implies that the subcomplex composed of the simplicial stars 
Gt,, Gt2, . . . , Gt, is a full ring a0 having f as its core. For we can consider 
that 8, is constructed by starting with the star Gi,, attaching the following 

When one considers the simplicial decomposition of G3 to be a cellular division (868), the 
3-stars Ot, and the surface elements Ep, p + ,  are the cells dual to the vertices and edges 
respectively of t. 
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star along a surface element and successively adding stars in this manner so 
that a 3-ball results at each step until finally, as the last step, disjoint surface 
elements on the boundary of a 3-ball are identified. The process of boring out 
the knot f consists of removing the interior points of the full ring 9,. The 
residual space 91 is a 3-dimensional manifold with boundary whose boundary 
is a torus ?. We will determine the homology group Qa for dimension 1 of 
the “exterior space” 91. We select a meridian circle m, on the torus E, for 
example a boundary path of the surface element Qro,  and we select a 
longitude circle b, which is a path in 23, homologous to the oriented core f .  
The circle b, is then determined only up to a multiple of m,. We now apply 
Theorem I 1  of $52 to the two subcomplexes 8, and B of @. The first 
homology group of 3, has generators m,, and b, and the one relation mo - O.* 
If we also consider the homology group t@,lL to be presented in terms of its 
generators and relations, then we may assume that m, and b, appear among 
its generators. The relations of the homology group 8, of G3 are obtained by 
adding the relations of %,, that is, m, - 0, to the set of relations of 6,.  The 
latter relations are not yet known to us (here we disregard the commutation 
relations since they appear implicitly when additive notation is used for the 
homologies). The group 6, consists of the null element alone. If we then set 
m,-0 in the homology group @%, all elements become 0. This is possible 
only if is a cyclic group generated by m,. The cyclic group is a free 
cyclic group.** For from Theorem IV of $64 the first Betti number of Y l  is 
equal to or greater than the total number of handles of the boundary surfaces 
and is therefore at least 1 ;  thus the group @, is an infinite group. In 
particular, b,- xm, in 91, where x is a uniquely determined integer. I f  x # 0, 
we replace 6, by the longitude circle b,* - b, - xm,, which is then null 
homologous in 91. 

We obtain a closed manifold !Ut3 from 91 by mapping the ring boundary 
surface X’ of a full ring 9’ topologically onto the torus boundary surface % of 
91 and identifying corresponding points.+ The image rn on ‘X of a meridian 
circle m‘ of %’ is a path on 3, and is thus homologous to a linear combination 
of m, and b,* : 

m - am, + pb,* (on T). ( 1 )  

The integers a and B are relatively prime to one another, by the way, since m 
is free of double points. The first homology group 6,) of 5YJ13 is obtained from 
#!& using Theorem IV of $64 by setting the meridian circle m of the closure 

*The generators of the homology group are the homology classes determined by m, and bo. 
Thus, rigorously, we must substitute the homology class of m, for m, and replace the symbol -L 

by the equality sign relating group elements. 
** A simpler proof of this fact is found in $77. 
+The claim that a complex always results is equivalent to claiming that the simplicial 

decomposition of 5 after being mapped topologically, onto E‘ can be extended to give a 
simplicial decomposition of 8’. We shall not give the proof of this fact here. We shall assume 
instead that the topological mapping of 5 onto S’ has this property. 
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ring homologous to 0: 

am, + pb,* -0 (in !D13). 
Thus 

am, - 0 

is obtained as the defining relation of Qgl since b,*-O in ,zI. Thus .$jW is a 
cyclic group of order a .  

In the special case that a = 0 in (1) we obtain a Poincare space or the 
3-sphere; there are infinitely many ways to effect the closure, depending upon 
the choice of p. 

We shall illustrate this procedure for the case of the trefoil knot! From $52, the relations of the 
fundamental group of 'u are 

A2 = B 3 .  ( 2 )  

Choose a point of B as the initial point of the closed paths. We can choose a path 

mo= BA- I  

(Fig. 109) as a meridian circle and can choose a path 

b,= A 2  

as a longitude circle for, in the notation of $52, A* is the middle circle of the annulus 2). To find 
the null homologous longitude circle 6: in the exterior space we form the expression 

b,* = A 2 ( B A - ' ) - "  - A 2+ XB - X  

where the integer x is not yet determined. We must then set x = 0 because of (2): 

6: - A -4B - ( A  2B 3)2- 0 (in a). (3) 

To obtain a Poincare space we choose a path 

m =  mo(b;)8= B A - ' [ A 2 ( B A - 1 ) 6 ] P  (4) 

as the meridian circle of the closure ring. The path m is null homotopic in the closure ring and 
therefore also in IDz3 so that, besides (2). the relation 

also holds in %R3. I t  follows from Theorem 1 of $52 that these two relations are the only relations 
of the fundamental group of IDz3. One obtains the simplest closing of 'u when p = 0. One then 
gets m = m, and the 3-sphere with which we started results. For the case p = - I we get for the 
relations (2 )  and (5): 

Introducing a new generator C in place of A by means of the equation A = CB we get 

( C B ) 2 =  B 3  = Cs. 

Apart from notation, these are the relations of the spherical dodecahedron space. To prove 
that not only the fundamental groups coincide but also the spaces themselves, requires methods 
beyond the scope of this book." 

Poincare spaces arise in a like manner for other values of /3 and, in fact, these spaces are 
pairwise nonhomeomorphic since their fundamental groups can be proven to be distinct. 
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Because of their clear geometric significance, homogeneous complexes play a distinctive role 
among the complexes. We have given the name “manifolds” to the homogeneous complexes in 2 
and 3 dimensions and we have attempted to gain a complete view of their properties. Our 
attempt was successful in 2 dimensions. In 3 dimensions we did not get further than a 
presentation of more or less systematically arranged examples. The complete classification of 
n-dimensional manifolds is a hopeless task at the present time.* Consequently, we let the 
homeomorphism problem recede into the background and we shift our emphasis to presenting 
general theorems which will all be based upon the possibility of providing manifolds with dual 
cellular divisions. Among the theorems which we treat here are the Poincare duality theorem and 
the theory of intersection and linking numbers. 

I t  is of lesser significance that we shall find it  convenient to define manifolds of more than 3 
dimensions in a more general way than by their homogeneity. We begin by introducing an 
auxiliary concept, the star complex, which prepares the way for such a definition and for the 
introduction of dual cellular divisions. 

66. Star Complexes 

Stated briefly, a star complex is a finite simplicia1 complex whose simplexes 
of dimensions 0 through n are partitioned into stars in such a way that the 
outer boundary of an i-star consists entirely of ( i  - I)-stars. The precise 
definition IS given by using mathematical induction over the dimension of the 
star complex as follows: 

A 0-star complex $3: consists of finitely many points 
0 0  a , ,  ti2, . . . , 

which are called the null stars of Al:. One obtains a I-star complex !+I:, by 
adding finitely many I-stars 

Ediror’s note: I t  is now known from a result of Markov [ I ]  that no algorithm exists for solving 
the homeomorphism problem in dimensions > 4. 
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FIG. 114 

to the collection of stars, where the outer boundary of each a: consists of 
certain 0-stars of at. If is an ( n  - 1)-star complex having the stars 

k k  k a,, a2,  . . . , aak 

of dimension k (k = 0,  . . . , n - I) ,  then an n-star complex, Q: is obtained by 
adding finitely many n-stars a;, a;, . , . , a:" to the collection of stars, where 
the outer boundary of each a: consists of certain ( n  - I)-stars of .It':-'. 

The simplicial complex which is formed by the collection of all of the stars 
of Q: is called the normal subdivision of Qz and we will denote it by hi':. A 
portion of a 2-star complex is illustrated in Fig. 114; the 2-stars consist of the 
polygons whose boundaries appear in darker outline. 

EXAMPLE. We can obtain a star complex from any finite complex Q" by 
first decomposing i t  simplicially in an arbitrary way and then normally 
subdividing the resulting simplicial complex. The k-stars are the normally 
subdivided k-simplexes of R". 

In SU:, if an ( n  - I)-star a:-' lies on the outer boundary of a k-star at ,  then 
and a t  are said to be directly incident. If there exists a sequence of stars 

of increasing dimension a', a'+', . . . , a k - l  ,a  between two stars a' and ak 
( i  < k) such that each star is directly incident with the following star, then (1' 
and ak are said to be incident via intermediate stars or just incident. 

I t  follows from the definition of a star complex that one can arbitrarily 
prescribe the number of stars of dimensions 0 through n a', a ' ,  . . . , a" as well 
as the direct incidences, subject only to the requirement that each k-star (k > 0) 
be incident with at least one (k - I)-star. If P," is the center point* of the star 
a t ,  then one can construct the star complex rectilinearly in a Euclidean space 
of dimension a' + a' + . . . + a" as follows. One selects a' + a' + + a" 
linearly independent points 

ak- I , 

* 

Pp, P;,  . . . , P,",, . . . , P;, P;, * . . , P:n 

in this space and projects from the points P,', Pi, . . . , Pd, to those points 

*Here and in the treatment to follow, the upper index on a vertex refers to the dimension of 
the star having the vertex as center point. 
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Pp? P f .  . . . , P$ which are to comprise the outer boundaries of the stars 
ai,a,. . . . , ti!, and so forth. 

We do not require that each k-star be incident with a (k + I)-star. I f  this 
turns out to be the case. however, then the star complex is said to be pure. 
The star complex St," is obviously pure i f  and only i f  its normal subdivision it: 
is a pure simplicia1 complex. On the other hand, a k-star (ik of jt: will be a 
pure k-dimensional subcomplex of ii: in every case. That is, each i-simplex 
( i  < k )  of ak is always a face of at least one k-simplex. 

We now express the properties of an n-star complex and of its normal 
subdivision in terms of the incidences between its stars. For this purpose we 
use 

THEOREM I .  I f  (I(', ( I I ,  . . . , ak is a sequence of stars such that each star is 
direct!v incident with the star following i t ,  then their center points Po ,  PI .  
. . . , P k  form the vertices of a k-simplex belonging to nk and each k-simplex of 

the star ok can be derivedfrom such a sequence. 

Proof. The theorem is trivially valid for k = 0. Assume that the theorem 
has already been proved for the dimension k - I .  Then it is also true for the 
dimension k .  For if (1'. t i 1 ,  . . . , IS a sequence of directly incident stars, 

are the vertices of a simplex then their center points Po,  P I ,  . . . , 
belonging to by assumption. Because and a' are directly incident, 
the simplex ( P o ,  P I ,  . . . , P k - l )  will lie on the outer boundary of t i h ,  so that 
the vertices Po,  PI.  . . . , P k - l ,  P k  span a simplex belonging to ak. 

I f ,  conversely, CFk is an arbitrary k-simplex of n k ,  then P k  is one of its 
vertices and the face opposite to P k ,  @"I, lies on the outer boundary of t i k  

and belongs to a star there which is incident with t i h .  By our initial induction 
assumption, the vertices of CF"' are the center points of a sequence of 
successively incident stars (lo, (i', . . . , &I. The sequence no, a', . . . , (1 , 

t i k ,  where the center points of the stars are the vertices of Q k ,  then has the 
same property. 

I 

(,k - I ' 

ph - I 

k -  I 

As a generalization of Theorem I we have 

THEOREM 11. I f  d, ti', . . . , (1' ( i  < k < . * * < I) is a sequence of stars of 
increasing dimension such that any two successive stars are incident (but not 
necessarik directIL1 incident), then their center points P i ,  P k ,  . . . , P i  are the 
vertices of a simplex of (1: and one obtains all simplexes of 

ProoJ By inserting additional stars one can complete the sequence 
a', n k ,  . . . , 11' to form a sequence of stars (lo, t i ' ,  . . . , & I ,  n' in which any two 
successive stars are directly incident. From Theorem I the center points of 
these stars make up the vertices of a simplex belonging to a' and the center 
points of the stars given originally therefore span a face of this simplex. 

Conversely, let Ei be an arbitrary simplex of k. Let us consider the 
subcomplexes .UU:, SlA,  . . . , Si: which are formed, respectively, by all the 

in this n q , .  



238 X n-DIMENSIONAL MANIFOLDS 

0-stars, all of the 0-stars and I-stars, and so forth until finally, all of the stars 
of e. Let !Q! be the first of these subcomplexes in which 0.' appears. A vertex 
of 0;' will then be the center point of an h-star ah, while the opposite face of 
0;J will belong to the outer boundary of ah ,  The simplex @J is a face of a 
simplex Eh of ah (or else Oh = 0.j) whose vertices are the center points of 
successive incident stars. This follows from Theorem I .  The vertices of 0.' are 
therefore the center points of incident stars (either directly or via intermediate 
stars). 

If one knows, then, how many stars of each dimension appear in Q: and 
which stars are directly incident with one another, the intermediate stars can 
be found, and by using Theorem I1 the simplexes of 6: can be constructed. 
From Theorem I one can determine which simplexes of form a star of 9:. 
If i t  is possible to establish a one-to-one correspondence between the stars of 
two star complexes S i ' i  and 'Q: in such a way that stars which are directly 
incident in Q: correspond to stars which are directly incident in '9: and vice 
versa, then a one-to-one correspondence will have been established at the 
same time between the normal subdivisions 6,: and '6':. We say that two such 
star complexes Yt: and '9; are isomorphic. 

From Theorem I1 there also follows 

THEOREM 111.  If 

P ' , P ~ ,  . . . ,  P I  ( i < k <  * . *  < I )  

are the vertices of a simplex of 6': and 

P / , P " ,  . . . , P '  ( I < m <  . . .  < z )  

P i ,  P k ,  . . . , P',  P",  . . . , PZ 

are the vertices of a second simplex of k:, then 

are also the vertices of a simplex of $1:. 

For the stars (i', tik, . . . , a', am, . . . , (1' are successively incident with one 
another, even if not directly incident. 

We now turn our attention to the pure star complexes $a:. For such a 
complex there holds an important theorem which states the existence of a 
dual star complex. It is this property which motivates our study of the star 
complexes. 

THEOREM IV. For each pure star complex $?: there exists a dual star complex 
9: which is determined up to an isomorphism. 

The dual complex is characterized b v  the following properties: In one-to-one 
correspondence with each k-star ak of 9: there exists a "dual" ( n  - k)-star 
6" ~ of it: and incident stars correspond to incident stars. 

Proof. In  the star complex !Qg which is to be constructed the number of 
stars of each dimension is already given, as well as the direct incidences of the 
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FIG. 115 

stars. The single requirement to be fulfilled, that each k-star be incident with 
at least one ( k  - I)-star, is satisfied since each ( n  - k)-star of lit: is incident 
with at least one ( n  - k + I)-star, because $?: is a pure complex. 

In Fig. 115 the 2-stars of the original star complex (the same as in Fig. 114) 
are shown with their boundaries in darker outline. The 2-stars of the dual 
complex are the polygons whose boundaries are shown in broken lines. 

When one forms the star complex dual to At.;. one again obtains St:. The 
relation between hi: and St: is therefore reciprocal. 

Since a one-to-one correspondence exists between the stars CI; of $1: and 
the dual stars b f - h  of HI:, there also exists a one-to-one correspondence 
between the center points P,,! and Q : - k ,  that is, between the vertices of the 
normal subdivisions ijl and G:. If PIPk . . . P' ( i  < k . . . < I )  is now a 
simplex of it:, then by Theorem I1 the corresponding stars 0'. d, . . . , (1' are 
successively incident. The same is also true for the dual stars V - ' .  
[,n - k , . . . .  [,If - / . Consequently, from Theorem I 1  their center points likewise 
form the vertices of a simplex of G:. That is, in the mapping P,,! t) Q,"-k  the 
simplexes of (1:; and it; transform to one another. W e  can therefore regard the 
dual star complexes Si: and as being different stellar divisions of one and the 
same simpliciul conip1e.r Sin = it: = it:. We shall take this viewpoint from now 
on. 

We now adopt the convention that the vertices of any simplex of I(t" are 
always to be listed in order of increasing upper index. From Theorem I 1  all of 
these upper indices are different. That is. the vertices are center points of stars 
of different dimensions. Each simplex of it'' accordingly has a definite first 
vertex and a definite last vertex. Since from Theorem 1 a k-simplex of it'' 
which belongs to the A-star [ik of it: will be given by a sequence of X. + I 
successively incident stars 11'. 0'. . . . , nk  and a simplex of the dual star 
will be correspondingly given by a seqnence ( i k ,  d+',  . . . , [in, the location of 
a star with respect to its dual star can be specified by the following theorem: 

THEOREM V .  The stur (I' consisrs of all of the k-simplexes which have its 
center point P h  as their last verte.r-; its dual stmr b n P k  consists of all of the 
( n  - k)-sitnple.re.s Kihich have P h  as their first vertex. 



Two dual stars will therefore have only the center point in common, while 
two nondual stars f lk  and 6"-k will be disjoint, that is, will have no point in 
common. 

More generally we have 

THEOREM VI. The intersection of two stars ak having center point Pk and 
6"-' having center point P' consists of all of the ( k  - i)-simplexes of i?" which 
have P' as first vertex and Pk as last vertex. 

The stars will have a nonempty intersection, then, only i f  i 5 k and the 
center point of b'-' belongs to ak. 

Proof. ( a )  If (P ip '+ '  . - . P k - ' P k )  is a ( k  - +simplex, then it will belong 
to an n-simplex ( P o .  . . P' . . . Pk . P"). According to Theorem V. 
( P o  . . P k )  belongs to ak and (P '  . . . P") belongs to 6"-' and thus the 
common face . . pk-Ipk ) belongs to the intersection of ak and 6"- ' .  

( p )  We must also show that each simplex of the intersection of ak and 
6"- '  is a face of a ( k  - ;)-simplex (P '  . . * Pk).  I f  0: = (P'  . . * P") is such a 
common simplex [not necessarily (s - r)-dimensional] of ak and b"-', then 
there exists an (s - r)-dimensional simplex CY-' which has P' as its first 
vertex and Ps as its last vertex, for 0. is even a face of an n-dimensional 
simplex. Furthermore, there exists a simplex Q k - "  which has Ps as first vertex 
and Pk as last vertex (for P" belongs to a k )  and a simplex W' having P' as 
first vertex and P' as last vertex (for P' belongs to bn-'). From Theorem 

f-; 

FIG. 116 



67. CELL COMPLEXES 241 

111, * the three simplexes @ ' - I ,  CFS-' and 6k-s are faces of a (k - i)-simplex 
having P' as first vertex and Pk as last vertex. 

We shall illustrate these concepts for a simplicial complex R;, the octahedron. When its eight 
triangles are normally subdivided a star complex Rz arises, composed of eight 2-stars having 
center points f ; ,  P;, . . . , fez. The midpoints of the edges of the octahedron are the center 
points P,' , P i ,  . . . , P ,'2 of the twelve I-stars of the complex, while the vertices of the octahedron 
are the six 0-stars. The dual star of the 0-star P p is made up of the eight triangles which have Pp 
as first vertex. Its outer boundary is made up of four I-stars, that is, a quadrilateral belonging to 
the dual star complex yti, the cube shown dotted in Fig. 116. The figure shows the octahedral 
division and the dual cubic division in stereographic projection. 

67. Cell Complexes 

A k-star is called a k-cell i f  its outer boundary has the same homology 
groups as the ( k  - I)-sphere and, for k > I ,  satisfies the additional 
requirement that i t  be a closed pseudomanifold. A 0-cell is an individual 
point. A I-cell consists of two intervals incident at a point. In the case of 
dimension 2 the outer boundary is a circle and the 2-cell is a disk. In the case 
of dimension 3 the outer boundary is a 2-sphere and the 3-cell is a 3-ball (see 
Problem I of $39). For dimension 4 and higher dimensions not all cells can 
be catalogued. There exist cells which cannot be mapped topologically onto a 
closed n-ball. An example of this is a 4-dimensional simplicial star whose 
outer boundary is a 3-dimensional Poincare space. 

A star complex is called a cell complex if all of its stars are cells. 
Since each normally subdivided k-simplex is a k-cell, one can make each 

finite simplicial complex into a cell complex by normally subdividing it. 
Consequently one can regard the cells as being a generalization of the 
simplexes. They play the same role in a cell complex as the simplexes in a 
simplicial complex. The reason why we cannot restrict ourselves to the use of 
simplexes in our investigations will first be shown in the next section, in our 
investigations of manifolds. 

For k > 1 the outer boundary of a k-cell nk is a (k - 1)-dimensional 
orientable pseudomanifold. For as in the case of a (k - I)-sphere, its 
( k  - I)th homology group is the free cyclic group and according to $24 this is 
equivalent to orientability. From $24, then, uk is itself an oriented 
pseudomanifold with boundary. Consequently, one can orient its k-simplexes 
coherently (in two opposite ways). By doing this we make uk into an oriented 
k-cell, which we denote by u h .  In  the case k = 1 it is also possible to 
coherently orient the two I-simplexes composing the 1-cell. We orient 0-ce1,Is 
as we do 0-simplexes ($9). From now on we shall consider an oriented k-cell 
(k 2 0) to be a set of oriented simplexes, which we can regard as a particular 

Editor's note: The German original refers here to Theorem IV; however, it seems clear to us 
that Theorem 111 was intended. 
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k-chain such that each simplex appears with- multiplicity 1. The boundary 
chain of an oriented cell a k  consists of the coherently oriented outer 
boundary of ak ($24). This consequently provides an orientation of the 
(k - 1)-cells which compose the outer boundary of a k-cell in a cell complex; 
we call this orientation the orientation induced by the oriented k-cell. 

From now on we shall consider the cells of the cell complex G?' to have a 
fixed orientation; for each k-cell we arbitrarily choose one of the two possible 
orientations. Denote the cells oriented in this manner by a," (k = 0, 1, . . . , n, 
K = 1,2, . . . , ak) .  The oriented cells of dimension k are linearly independent 
of one another, since no two k-cells have a common k-simplex. 

We define a k-cell chain of a cell complex to be a formal sum 

k q,a,k + q2a,k + . . . + q a k a a k ,  

where the cells a," are regarded as simplicial chains of the normal subdivision 
& of 9". A cell chain is then a particular simplicial chain, one such that the 
simplexes can be formed into cells according to (1). If such a grouping of 
simplexes into cells is possible, then it can be done in only one way; because 
of the linear independence of the k-cells, the coefficients q l ,  q2 ,  . . . , q u h  are 
determined uniquely by the chain. 

A cell chain is said to be closed or null homologous when the simplicial 
chain is, respectively, closed or null homologous. The boundary of a cell 
chain is again a cell chain. For the boundary of an individual cell a k + l  is a 
cell chain: 

a h  

%aa;+l = 2 &a: (A = 1,2, . . . , a k + ' ) .  (2) 
K =  I 

Here ~,kh = 1 if the orientation of a," is that induced by a:+' and E,"X = - 1 if 
its orientation is opposite to the induced orientation; = 0 when a," is not 
incident with a:+' .  

For each closed simplicial k-chain on a cell complex Q" there exists a 
homologous cell chain. More generally, we shall prove 

THEOREM I. If U k  is a simplicial chain on a cell complex YP", and if %a U k  is 
a (k - I)-dimensional cell chain, * which can also be the chain 0, then there 
exists a cell chain homologous to Uk. 

Prooj First let k = 0. Let E o  be a 0-simplex on Uo. Then E o  is either itself 
a 0-cell or is the center point of an I-cell upon whose outer boundary a 0-cell 
lies which is obviously homologous to Eo.  Each 0-simplex is thus homologous 
to a 0-cell and therefore each 0-chain is homologous to a 0-cell chain. 

If k > 0, then we examine the subchain V k  of all k-simplexes of CJk which 
are incident with the center point P" of an n-cell 0". Since consists 

For k = 0 of course we omit the requirement that the boundary be a cell chain. 
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entirely of (k - I)-cells, no boundary simplex of U k ,  and therefore also of V k ,  
can be incident with P". Thus Ckd V k  lies on the outer boundary of a". 

(a) k = n. In this case V" is an n-chain on the cell a" and its boundary lies 
on the outer boundary of a". Thus from $24 V" is a multiple of a". The chain 
U " is composed entirely of n-cells. 

(b) 0 < k < n. In this case 9l i3 V k  is a closed (k - I)-chain of the outer 
boundary of a" and it is therefore null homologous on the outer boundary of 
a", because the outer boundary has the same homology groups as an 
(n - I)-sphere. (This is also true for k = I ,  because the sum of the coefficients 
of the 0-chain CR i3 V k  vanishes, as always, for the boundary of a I-chain.) 
Thus on the outer boundary of a" there exists a chain ' V k  having boundary 
031a V k .  V k  - ' V k  is then a closed chain on a" and is therefore null 
homologous when regarded as a chain on that n-star (119). If one then 
replaces the subchain V k  in U k  by ' V k ,  one obtains a chain homologous to 
U k  which no longer contains any interior simplex of a". One proceeds in this 
manner with all n-cells and thereby obtains a chain U f -  U k  which lies on 
the subcomplex en-' of R" formed by the cells of dimensions 0 through 
n - 1. I f  k = n - I ,  then Uf is already a cell chain, from (a). Otherwise, one 
again applies the procedure (b) to W - '  and replaces Uf by a homologous 
chain U! which lies on the complex $F2 of all 0-, I-, . . . , (n - 2)-cells of $Y. 
This push-out procedure is repeated until one finally arrives at a chain 
U,"-k - U k  which lies on the subcomplex Qk of all cells up to dimension k, 
and to which one can, finally, apply (a). 

We have thereby achieved the following important result: 

THEOREM 11. The oriented cells of a cell complex form a system of blocks. 

For the conditions (BII) through (B14) of $22 are satisfied by the cells. One 
can then use the cell chains to calculate the homology groups. The matrices 

resulting from the boundary relations (2) are to be used as incidence 
matrices here. The cell complex is completely determined (up to iso- 
morphism) from these incidence matrices, since a star complex is determined 
by giving its stars and their direct incidences. 

Just as we can form simplicial chains from oriented simplexes and form 
simplicial chains mod 2 from nonoriented simplexes, we can form cells mod 2 
from nonoriented cells and cell chains mod 2 from cell chains. A k-cell mod 2 
(which we also call a nonoriented k-cell) is the simplicial k-chain mod 2 
which is formed from all of the nonoriented k-simplexes of the cell. A k-cell 
chain mod 2 is a linear combination of k-cells mod 2 whose coefficients are 
residue classes mod 2, that is, 0 or i. The theorems concerning cell chains can 
be carried over to cell chains mod 2 as in the case of simplicial chains. One 
has only to replace the coefficients in the domain of integers by their residue 
classes mod 2 in all relations. The cells mod 2 form a block system mod 2. 
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68. Manifolds 

In dimensions 2 and 3 we have defined a manifold to be a homogeneous 
complex, that is, a complex such that each point possesses a neighborhood 
homeomorphic to the interior of a 2- or 3-dimensional ball, respectively. In  
spaces of higher dimension this definition is unsuitable in the present state of 
development of topology. This is due to the fact that the definition cannot be 
interpreted combinatorially. We do not have any procedure for deciding 
whether a simplicial complex of more than 3 dimensions is or is not 
homogeneous when it  is given by its schema. Specifically, we do not know 
whether we may conclude from the homogeneity of an n-dimensional 
complex R” that the (n - 1)-dimensional neighborhood complex of a vertex of 
a simplicial decomposition is homeomorphic to the (n - I)-sphere. But even if 
this were the case, we would still have to decide whether a given 
(n - 1)-dimensional simplicial complex is an (n - I)-sphere. This “sphere 
problem” has not yet been solved for more than 2 dimensions. I t  is, however, 
possible to prove a large number of theorems which relate to the homology 
properties (but not homotopy properties) of homogeneous complexes without 
fully exploiting the homogeneity of the complex. These theorems are still 
valid for an arbitrary complex if i t  only behaves like a homogeneous complex 
with respect to the homology properties in neighborhoods of each of its 
points. It is sufficient to require that the homology groups at each point be 
the same as those of the (n - 1)-sphere. 

Correspondingly, we give this definition: a (closed) n-dimensional manifold 
2Rn (n > 0) is a connected, finite n-dimensional complex which at  every point 
has the same homology groups as the (n - l)-~phere.~’ 

The 0th and (n - 1)th homology groups at a point are then free cyclic 
groups. All others consist of the null element alone, except for the case n = I ;  
in this exceptional case the 0th homology group is the free group having two 
generators. 

As in the case of surfaces we can also define infinite manifolds and 
manifolds with boundary?’ besides the closed manifolds, which are the only 
ones to be considered here. The closed manifolds are finite manifolds without 
boundary. 

THEOREM I. AN connected finite homogeneous complexes are manifolds. 

This follows from Theorem 11 of $33. 
In particular, the 2- and 3-dimensional manifolds of Chapters V1 and IX 

are also manifolds in the sense of the definition given above. The same is true 
for the n-sphere Gn and the projective n-space V for n > 0. There exists only 
one I-dimensional manifold. I t  is homeomorphic to the circle. For the 
number of free generators of the 0th homology group at a vertex of a 
1-dimensional simplicial complex is equal to the number of 1-simplexes 
leaving the vertex; since the 0th homology group is to be the free group 
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having two generators, exactly two I-simplexes must be incident with each 
vertex. From now on we shall not consider the trivial case n = 1 in our 
investigations. 

If a complex h i "  is given together with a simplicial decomposition, then one 
can always decide whether i t  is a manifold. The ith homology group is the 
same at all inner points of a k-simplex. Thus one needs only to examine the 
homology groups at  the midpoints of all of the k-simplexes, that is, at the 
vertices of the normal subdivision of hi". 

We shall now show that: 

1. Every manifold YJJJi" is a pure complex. That is, in an arbitrary simplicial 
decomposition each k-simplex (k < n) is incident with at least one n-simplex. 

Otherwise, at an inner point of the k-simplex the (n - 1)th homology group 
would not be the free cyclic group but would consist only of the null element. 

11. Each (n - 1)-simplex is incident with exactly two n-simplexes. 
For if an (n - I)-simplex were incident with u # 2 n-simplexes, then the 

(n - 1)th homology group at an inner point of the (n - 1)-simplex would be 
the free Abelian group of u - 1 # 1 generators ($32, Example 2). 

This imples that the neighborhood complex PI"-' of a vertex P, that is, the 
outer boundary of the simplicial star having P as center point, is a pure 
(n - I)-dimensional complex such that each ( n  - 2)-simplex is incident with 
exactly two (n - 1)-simplexes. Furthermore, since PI"-' has the same 
homology groups as the (n - I)-sphere, the (n - 1)th connectivity number of 
g i n - '  is q " - '  = 1.  The neighborhood complex Pl"-' is therefore an  
(n - 1)-dimensional pseudomanifold (cf. $24). 

There also follows from this: 

I l l .  In a manifold !IT?'' one can connect any two n-simplexes with one 
another by a sequence of successively incident sequences of dimension n and 
dimension n - 1.  

To show this we first assume the statement to be false. We can then 
decompose YJt" into two subcomplexes which have as their intersection a 
complex Atk of dimension at most n - 2. In one subcomplex we place all 
n-simplexes which can be connected with a particular n-simplex in the 
abovementioned way. I n  the other subcomplex we have the remaining 
n-simplexes. On the neighborhood complex 91"-' of a vertex of Qk, the two 
subcomplexes then appear as (n - 1)-dimensional subcomplexes whose 
intersection is either empty or is (n - 3)-dimensional at most. But we cannot, 
then, connect each two (n - 1)-simplexes on a"-' sequentially, which 
contradicts the fact that %"-' is a pseudomanifold! 

Since the properties I through 111 shown here coincide with the properties 
(PM 1) through (PM3) defining a pseudomanifold, we have 
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FIG. 117 

THEOREM 11. Every manifold is a pseudomanifold. 

The theorems proved earlier with regard to pseudomanifolds are, therefore, 
also valid for manifolds. In particular, we can classify manifolds as being 
either orientable or nonorientable. 

To obtain additional properties of manifolds we prove the following 
lemma: 

LEMMA. Given a complex gk+' ( k  P 0)  which consists of two simplicia1 stars 
@ t f + '  and @ti+' having a common outer boundary 'Uk, and such that the 
homology groups of Bk+' are those of the ( k  + 1)-sphere, then the homology 
groups of 'Uk are those of the k-sphere. 

Figure 117 illustrates the case k = 1. 

Prooj Let U' be a closed i-chain on a', 0 i i i k.* For the case i = 0 we 
also assume that U' has a sum of coefficients of value 0. In  the figure, U' 
consists of two points having multiplicities + 1 and - 1. Then U ' - 0  in 
Gtt+' and also in Gti", from $19. There thus exist chains U ; + '  and U i + '  in 
G t f+ '  and Gti" such that 

aauu;+' = ul, (1) 

q,aU;+I = ui. 
The chain 

uf+' - G+'  
is then closed. 

+All chains in this proof are assumed to be nonsingular, that is, simplicial. We can omit the 
trivial case k = 0 in the proof. 
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Now assume 

I .  i < k .  The chain (3) is null homologous on gk+' since its dimension 
i + 1 is larger than 0 and smaller than k + 1 and %'+I has the same 
homology groups as the ( k  + I)-sphere. Accordingly, let 

(4) tflavI+2= u;+l - ,y;+l. 

We decompose V'+' into the sum 

VI+2 = v;+*+ v;+2, 
where V ; + 2  consists of all of the simplexes of V ' + 2  which are incident with 
the center point of Ztf+ ' .  Then from (5) and (4) 

( 6 )  "ilav;+'=(.liav'+'-"Rav;+'= u;+l-  u;+ I - q a v;+2. 

The left side of (6) belongs to Z't"' and so does the chain U ; + '  on the right 
side. Thus the chain U ; + '  + Ctla V i + 2  = U ' + '  must also belong to Ztf+' .  On 
the other hand, i t  belongs to Zt i+ ' ,  as indicated by the index 2, and  must lie 
on !lh. I t  follows from (6) that U { + '  - U'+ ' -O .  Chains U : + '  and U ' + '  
therefore have the same boundary U ' .  We have thereby constructed a chain 
U"'  lying on !)[' which has the given chain U' as its boundary and  we have 
shown that the homology groups of the dimensions 1 through k - 1 of Y l k  
consist only of the null element, while the 0th homology group is the free 
cyclic group. 

i = h- .  Since the ( k  + I)th homology group of Y j k + '  is the free cyclic 
group, there exists a chain B"' such that each closed ( k  + I)-chain is a 
multiple of B ' + ' .  In  particular, this is true for the chain (3): 

11. 

, ; + I  - U;+l= Y?IBk+l. 

The chain B h + '  can be decomposed uniquely into two chains B ; + '  and B,"+' 
which belong to Zt:+' and Etk,.', respectively. I t  then follows that 
U f + '  = n i B f + ' ,  so that U k  = ( . f ldU:+'  = tn!.Fi (1Bf+' .  The chain U h  is thus 
the In-fold multiple of the closed chain !.flaBf+', that is, the kth homology 
group of 91' is the free cyclic group. 

An important theorem now follows: 

TiieoKtM I I I .  11 P is u ver1e.Y of a sinipliciullv decomposed manyold !??', then 
the outer boundar\- Y L " -  ' of the sitnpliciul star Gt" about P is an ( n  - 1)- 
dimensional muni/old ( n  2 2). 

Prooj: I .  Y l " - '  is connected, finite and ( n  - I)-dimensional. This is 
because !)I" ' is an  ( t i  - I)-dimensional pseudomanifold. 

11. To show that PI"- ' has the same homology groups as the ( n  - 2)- 
sphere at each point A let us ignore all simplexes of %rt" which do not belong 
to Ztn and let us also assume that A is a vertex of the simplicia1 
decomposition of Zt". This is in reality no restriction, since we can subdivide 
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FIG. 118 

so that A becomes a vertex and we can complete this subdivision of 
a"-' to a subdivision of Gt" by projecting out from P .  Let G t n - '  denote the 
simplicial star on R " - '  having A as center point and let be its outer 
boundary (Fig. 118). An n-simplex which contains the interval ( P A )  will then 

a n -  I 

have vertices: P ,  A ,  A,,  A I ,  . . . , A,-2 ,  where 

( A d  I . . . A f l - 2 )  

is a (n - 2)-simplex of 
the n-simplex into two n-simplexes 

Using the midpoint Q of 

( P Q A d l . .  . An-2 )  and ( A Q A J 1 .  

PA) ,  we decompose 

. A n - 2 ) 7  

and we do the same with all of the other n-simplexes of Gt" incident with 
(PA) .  By means of this subdivision of Gt", Q becomes a vertex, and the outer 
boundary '8 of the simplicial star having Q as center point is composed of 
two parts: the totality of (n - I)-simplexes ( P A J ,  * * * Anm2)  and the totality 
of (n - I)-simplexes (AAJ I . . A,-2), where all of the vertices of (n - 2)- 
simplexes of 91"-2 are substituted into these expressions. That is, the 
neighborhood complex of Q consists of two simplicial stars having a common 
outer boundary Now from the definition of a manifold, the homology 
groups of the neighborhood complex 8"-' of Q are the same as those of the 
(n - 1)-sphere. From the lemma, then, the homology groups of an-', that is, 
the homology groups of the outer boundary of a"-' at the point A ,  are the 
same as those of the (n - 2)-sphere. 

We have already seen that each connected, finite homogeneous complex is 
a manifold. We now show as a converse 

THEOREM IV. Each closed manifold is homogeneous for the dimensions 
n = I ,  2 ,3  and onk for these dimensions. 
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The only I -dimensional manifold, the circle, is obviously homogeneous. 
If P is a point of a 2-dimensional manifold, we simplicially decompose the 

manifold with P as a vertex. From Theorem 111, the neighborhood complex 
of P is a I-dimensional manifold, and so is homeomorphic to a circle. Thus 
the simplicial star having center point P is homeomorphic to a disk. For 2 
dimensions, then, a closed manifold is a finite, connected homogeneous 
complex. That is, it is the same as a closed surface ($39). We have already 
given a complete classification of the closed surfaces in Chapter VI. 

In a 3-dimensional manifold 9X3 the neighborhood complex of a point is a 
2-dimensional manifold which has the same homology groups as the 2-sphere. 
From the fundamental theorem of surface topology, the 2-sphere is the only 
closed surface possessing this property. The simplicial star about a point of 
YJJ3 is thus homeomorphic to the 3-ball. That is, 9J13 is homogeneous and is 
therefore a complex, as we considered i t  in Chapter IX. 

This method of proof fails in more than 3 dimensions, because there exist 
3-dimensional manifolds, the Poincare spaces, which have the same homology 
groups as the 3-sphere but do  not coincide with it. In fact, 4-dimensional 
nonhomogeneous manifolds do exist. An example is a complex W4 consisting 
of two simplicial stars Gt: and Sti which have the spherical dodecahedral 
space as a common outer boundary. All points, except for the center points 
PI of Gt: and P, of 3;. have the 3-sphere as a neighborhood complex. But 
the homology groups are the same as those of the 3-sphere, even at  P, and P , .  
For the neighborhood complex of P ,  and of P ,  is the spherical dodecahedral 
space, whose homology groups are the same as those of the 3-sphere ($62). 
Consequently, !it4 is a manifold. I t  is not, however, homogeneous. The points 
PI and P, have no neighborhoods homeomorphic to the interior of the 3-ball, 
since the fundamental group at PI and at P, is the binary icosahedral group 
(from $62) and not the unit element alone. 

After having discussed the scope of our concept of a manifold, we now go 
to the most important property of manifolds, which is the existence of dual 
cellular divisions. By means of simplicial decomposition and an appropriate 
joining of its simplexes into stars we can make a given manifold SIXn into a 
star complex. For example, we get such a stellar division by normally 
subdividing an arbitrary simplicial decomposition of YJn ($66). I t  is then true 
that each division of a manifold into stars is also a division into cells. 

ProoJ First of all, all n-stars are cells. For the outer boundary of an n-star 
is a pseudomanifold (from earlier in this section), and has the same homology 
groups as the (n - I)-sphere since the homology groups at  its center point are 
those of the (n - 1)-sphere. By the same reasoning, the (n - I)-stars of an 
(n - I)-dimensional manifold are cells. In particular, the (n - I)-stars which 
form the outer boundary of an n-cell of Yt" are cells, for by Theorem 111 this 
outer boundary is an (n - I)-dimensional manifold. Since each (n - I)-star is 
incident with at least one n-star, for a manifold is a pure complex, all 
(n - I)-stars are cells. One proceeds further by induction until one has 
reached the 0-stars, whereby the theorem has been proved. 
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Along with each stellar division, its dual stellar division is also a cellular 

In the sections to follow we will denote 

a given cellular division of 9Jln by 9Jl:, 
the dual cellular division by mi, and 
the common normal subdivision by at"; 

we denote the oriented cells of SB: by a,", the dual cells of 9Jl; by b,"-k, the 
common center point of u," and b l P k  by P," ( k  = 0 ,  I , .  . . , n , ~  = 

division. Thus each manifold admits dual cellular divisions. 

1,2, .  . . , a k ) .  

69. The Poincare Duality Theorem 

We are given a manifold 9Jln together with dual cellular divisions 'Xn; and 
92;. Assume that they are orientable and have been given fixed orientations. 
That is, the n-simplexes of the normal subdivision & have been coherently 
oriented with one of the two possible opposite orientations. If a," and b,"-k 
are oriented dual cells we define the intersection number S(a,", b,"-k) by 
means of the following rule. 

RULE. Select a k-simplex from the normal subdivision of a,", 

E k  = [ ( P O P ' . .  . p k )  

whose orientation is given by that of u,". Likewise, select an (n - k)-simplex 

pn 1 E"-k = q(pkpk+' . . . 
from the normal subdivision of bKnPk.  Then from Theorem 111, Section 66, 

p n  ) En = { (pop '  . . . pk . . . 
is an n-simplex whose sign { is determined by the orientation of ilk. The 
intersection number S(u,", 6,"- k ,  is defined42 as the product 

S(a,", b,"-k) = [qc. ( 1 )  

It will always have value ? 1.  In Fig. 119, n = 2, k = 1, [ = 1, q = 5 = - 1. In 
this definition it is unimportant whether one arranges the vertices of E k  and 
En-k according to increasing upper index, so long as P k  stands in last place 
in E k  and in first place in E n - k  and the ordering of the vertices in E n  is the 
same as in E k  and E n - k .  For if one were to interchange two vertices (# P k )  
in E k ,  both and ( would change sign while q would remain unchanged. 

The definition is independent of the particular choice of simplexes E k  and 
E n - k  from the normal subdivisions of the cells a," and b,"-k, respectively. For 
if one replaces E k  by a simplex ' E k  which has all vertices in common with E k  
except for one vertex, let us say P o  which is replaced by ' P o ,  then 
' E k  = -(('POP' . . . P k ) .  For E k  and ' E k  induce opposite orientations in the 
common ( k  - 1)-dimensional face, because of the assumed coherent 
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FIG. 119 

orientation within u:. In place of E n  there appears 

' E n  = - { ( !pop1  . . . PA . . . P" ), 

whose sign is also given correctly, because E" and ' E "  induce opposite 
orientations in the common ( n  - I)-simplex. Consequently, we get the 
intersection number 

(-Z)11( - S )  = h S 7  

as before. By repeating this procedure of replacing a simplex by a 
neighboring simplex, one can eventually get to any desired simplex of u,", for 
the outer boundary of u," is a pseudomanifold. The intersection number is 
preserved at each step of the procedure. One can apply the same 
considerations to the cell 6,"- k .  

On the other hand, i t  is obvious that the intersection number reverses sign 
when one reverses the orientation of either a:, b,"-k, or Y1". 

In the case k = 0, uf consists of a single vertex P o  which is also the center 
point of the dual cell b,". In this case, 

E o  = ( ( P o )  and E" = q ( P o P '  . . P " ) .  

If we assume, in addition, that u," is oriented with the sign + I ,  then 6 = 1 and 

S(a,", b,") = v{ = + 1 or - I ,  respectively, 

according to whether the orientation of b," does or does not agree with that of 
92". Here we can also regard the intersection number as a "covering number" 
of the point P o  by the cell b,". 

When one interchanges the two dual cells, the intersection number may 
change sign under certain circumstances. We have 

S(a ," ,b: -k)  = ( -  "'"( b,"-k 7 0:). (2) 
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FIG. 120 

From our previous rule, S(b,"-&, u,") is the product of the signs appearing on 
the right-hand sides of the last three equations: 

S(bKn-&,  u,") = [q{( - l )k(n-k)= (- I ) k ' n - k ) S ( ~ , " ,  b,"-&). 

Now along with u," and b."-k we shall look at two dual cells u , " ~ '  and 
rk+' incident . with them. We orient the latter cells so that we have (Fig. 
120) 

= . , " - I  + . . . , (3) 

(4) 6Jab1n-k+ I = bKn-k + . . . . 
Let P k  and P k - l  be the center points of u," and a : - ' ,  let 

E k  = [ ( p o p ' .  . p k  1 
be an oriented simplex of u,", and let 

P "  1 En-&+' = q ( p k - ' p k .  . . 
be an oriented simplex of b:-&+'. Then 

Ek-1 = [ ( - l ) k ( P O P '  . . .  P k - ' )  

is a simplex of . , " - I  and 

E n - k =  . , , (pkpk+' .  . . p " )  

is a simplex of b,"-k. I f  the orientation of 9Jln is again given by 

En = c ( p o p ' .  . . P n  ), 
then by our rule 

S(u,", b,,!-&) = [q{ 

and 

S(U," - ' ,  b:-&+') = (-  l)k-$q{, 

so that 

S(a,k, b,"-k)  = (- I ) k S ( ~ , k - ' ,  b,"-k+' ) .  ( 5 )  
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More generally, if we assume that the orientations of the cells a:- '  and 
b:- / '+ '  are not fixed by Eqs. (3) and (4), but are prescribed arbitrarily, then 
instead of Eqs. (3) and (4) there appear the equations 

(6 )  

(7) 

(8) 

qau," = ( a ) e ' ; - l u l k - I  + . . . = palk-l + . . . 

~ f l a b ~ ~ - ~ + I  = ( b )  n - k b t i n - h  + . . . = ab,"-' + . . . . 
&ti1 

We then have 

s(a:, b : - k )  = pa( - ] ) k s ( a : - ' ,  b,'-"I). 

For upon reversing the orientation of a,"-' or b, ' -k+'  the sign on the 
right-hand side of (5) reverses. 

Let us now assume that the cells a," ( k  = 0, I ,  . . . , n ,  K = I ,  2, . . . , u k )  are 
oriented arbitrarily, but that the cells b,"-k of the dual cellular division are 
oriented so that the intersection numbers are 

S(u,,!, b,"-' ) =  1 .  

I t  then follows from (8) that pa( - = 1 or 

p = ( -  I)". (9)  

Now p is nothing other than the coefficient (')&;-I in the incidence matrix 
E,k-l of the cellular division 9J: and u is the coefficient (b)~i -k  in the 
incidence matrix E ; - k  of the cellular division !IT?;. Equation (9) then states 
that the matrix Et I is equal to the transpose* of the incidence matrix E"bk 
multiplied by ( -  that is, 

or that the following boundary relations hold (we can now again omit the 
superscripted indexes (') and (') of E L - ' ) ,  that is. 

lr k 

( 1 1 )  $8 d b l f l - k +  I - - 2 ( -  k-lbtifl-k.  
El ,  

K =  I 

The result is 

THEOREM I .  Given dual cellular divisions 92: and m;, if one orients the cells 
of 92; in a way such that the intersection number of each cell of 5!R: with the' 
corresponding dual cell of '3n; in this order is equal to I ,  then the incidence 
matrix E,k- I of YJ?: is equal to the transpose of the incidence matrix EZ- of 59?; 
multiplied by ( -  I ) k ,  

* A  matrix is transposed by interchanging rows and columns or, what is the same thing, 
mirroring them about the main diagonal. We denote the transpose of a matrix by a bar over the 
matrix, slanting in the direction of the main diagonal. 
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We arrive at the Poincare duality theorem- by calculating the homology 
groups of IDZ" in two different ways, once from the cellular division Vli and 
once from the cellular division mi,, and then using the matrix equation (10). 
For the kth Betti number we then get 

( k  = 0 , 1 , .  . . , n ) .  k k k - I =  k k k - I  
p k = a a  - Y a  -?a - Y b  - Y b  

Here a," denotes the number of k-cells of Vl: ,y ,k  the rank of E t ,  and 
y," = y," = 0 (522). The numbers indicated with the index b have a 
corresponding significance. Since there is exactly one dual ( n  - k)-cell 
corresponding to each k-cell, a," = a:-k. From (lo), y,"-' = y : - & .  Thus 

The torsion coefficients for the dimension k are, on the one hand, the 
invariant factors of Ek, which are not :qua1 to 1; on the other hand, they are 
the invariant factors of Ek = (- I ) " p k E i - k - '  and therefore coincide with the 
torsion coefficients for the dimension n - k - 1. We thus have 

THEOREM I1 (POINCARE DUALITY THEOREM). The kth Betti number of an 
orientable closed manifold is the same as the ( n  - k)th Betti number 
( k  = 0, I ,  . . . , n ) ;  the k-dimensional torsion coefficients are the same as the 
( n  - k - 1)-dimensional torsion coefficients ( k  = 0, I ,  . . . , n - 1). 

It follows, in particular, that there are no ( n  - 1)-dimensional torsion 
coefficients for an orientable closed manifold, a fact already known to us. For 
there are no 0-dimensional torsion coefficients (9 18). 

This duality theorem depends upon the orientability of the manifold in an 
essential way. The matrix equation (10) cannot be obtained for any 
orientation of the n-cells, in the case of a nonorientable manifold, because E: 
has rank a: - 1 and E:- '  has rank a: = a: (524). 

It is also possible to find a duality theorem for nonorientable manifolds. 
This theorem can be derived in a simpler manner, because we need not 
consider the cell orientations. In this case Eq. (10) does not hold between the 
incidence matrices E t - I  and E : - k .  Instead we have the congruence 

Ek,-I = EZ-' (mod2). 

The elements of E t - '  and Ei-k differ at most in sign. In other words, the 
incidence matrices mod2, it-' and ePk, transform to one another upon 
changing rows and columns and therefore have the same rank a,"-' = b *  

The kth connectivity number is given by 

4 k  = - 6," - a,"-' = - - a;-' 

q n - k ,  - n - k  - San-k- I - a ; - k  = - 'a 

as a result of formula (8) of $23. We therefore have 
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THEOREM 111 (DUALITY THEOREM mod2). The kth connectiviy number of 
an orientable or nonorientable closed manifold is equal to the ( n  - k)th 
connectivity number. 

From Eq. (12) of $23 there follows 
THEOREM IV. The Eukr characteristic of a manifold of odd dimension is 

N = 0. 

70. Intersection Numbers of Cell Chains 

The topological content of the duality theorems just derived formally from 
the incidence matrices becomes apparent only when one goes from Betti 
numbers to Betti bases and proves that the k-dimensional Betti basis stands 
in a duality relation with the ( n  - k)-dimensional Betti basis. To demonstrate 
this we must define the intersection number of two dual cell chains and use it 
to construct dual Betti bases ($71). Let 

k A = ( ,a :  + (,a; + . . . + takaax 
and 

B " - k  = qlb; -k  + q 2 b l P k  + * * + qa)7,xbzk-k 

be two chains on dual cellular divisions. Since a:-& = a," and is equal, for 
example, to a k ,  the indices run from 1 to the common value a k  in both 
chains. The two chains have at most finitely many points in common, for a 
cell a," is disjoint with every cell bhnPk except for the dual cell b:-k, which has 
a common center point with a,". The intersection number of two dual cells 
was defined at the beginning of the last section. For two nondual cells of the 
dual divisions we define their intersection number to be 0. The intersection 
number of the chains A k  and B f l P k  is then the sum of the intersection 
numbers of the individual cells. More precisely, 

The above equation describes the intersection number of two chains as a 
bilinear form on the two vectors representing the chains. 

The given fixed orientation of YJ?" determines a particular orientation for 
all of the n-cells of YJJ1:. Call the sum of all of the n-cells oriented in this way 
M:. Setting k = 0 and B " - k  = M{ into formula (l), it follows from $69 that 
the intersection number of a chain A' with the oriented chain M: of the manifold 
is equal to the sum of the coefficients of A'. 

We obviously have the rules of computation 

and, using formula (2) of $69, 



I t  is also possible to extend formula (5) of $69, 

from the case of two dual cells to the case of arbitrary chains of dimensions k 
and n - k .  Remembering that all boundary cells of blfl-"' are disjoint with 
a,", with the exception of b:-&, we can replace b,"-& on the left-hand side of 
this formula by PR db:-&+' and, correspondingly, substitute CR aa," for a," - I 

on the right-hand side. We get 

b(a,". 9 db:-&+') = ( -  l)'S(?Rda,", b,'-&+'). (4) 

This formula has been proved under the assumption that the cell a : - ' ,  the 
dual to bLfl-&+' , is incident to a,". The formula is also valid when this is not 
the case, as both sides then vanish. For the left-hand side is nonzero only i f  
the cell b K Y k ,  the dual to a,", appears in the boundary of b:-&+' ; that is, i f  
b : - k + l  and bK"-& are incident and consequently the dual cells a:- '  and a," 
are incident. In  like manner, the right-hand side is nonzero only if the cell 
a : - ' ,  the dual to b,"-&+' , appears in the boundary of a,". Formula (4) is 
therefore valid for two arbitrary cells a," and b,"-&+' . Consequently, from (2). 
the formula 

X(A ', 6R I )  = (- l ) k S ( q  dA ', B f l P k + ' )  ( 5 )  

is valid for two arbitrary cell chains A k  and B " - & + '  on the dual cellular 
divisions s9JI: and Ylt:. 

We shall make immediate application of this important formula. If A k  is 
closed, that is, A d A k  = 0, then the right-hand side of (5) is equal to zero. But 

side. We therefore have 

B " - k + I IS ' an arbitrary null homologous ( n  - k)-chain on the left-hand 

THEOREM I. A null homologous cell chain B " - k  of dimension n - k has the 
intersection number zero with respect to each closed k-chain A k  of the dual 
cellular division. 

The theorem is also valid when B"-&=O (that is, when B"-& is only 
division-null homologous). In that case 

c B " - ~  -0 ( c  =+ 0)  

S ( A  k , ~ B " - k  ) = c S ( A k ,  B " - &  1. 

and also 

From Theorem I the left-hand side of the above equation is equal to 0, and 
thus so is the right-hand side. That implies S ( A k ,  B f l - & )  = 0, since c # 0, and 
leads to the following theorem: 
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FIG. 121 

THEOREM I I .  If A k = ' A k  und B n - k = ' B n p k  are closed chains on dual 
cellular divisions. then 

s ( A ~ , B " - ~  ) = x ( ' A ~ , ~ B " - ~  ). 
That is, the intersection number, of two closed chains remains unchanged when 
one replaces each chain b v  a division-null homologous chain of the same cellular 
division. 

of the torus into four squares. These 
are the squares in darker outline in Fig. 121. The opposite sides of the large square are to be 
identified. The dual cellular division 97; also consists of 4 squares. These are shown dotted in the 
figures. The common normal subdivision 'm2 consists of 4 X 8 triangles, which we assume to be 
coherently oriented as indicated by the circular arrow in one of the triangles of the figure. We 
wish to find the intersection number of the cell chain A '  and B '  which are closed I-chains 
belonging to the dual cellular divisions. These chains (indicated by double lines in the figure) 
each consists of two I-cells. Since we have chosen n = 2 and k = I ,  n - k = I .  The intersection 
number will be determined from our rule ($69). On A '  we select the I-simplex* -(P O f  I )  and on 
B I we select the I-simplex +(P  ' P  2). We form from them the 2-simplex (P Of' ' P  *); in the 
coherent orientation we are using, this has a positive sign + I .  The inttrsection number is 
therefore 

As an example we shall consider a cellular division 

S ( A ' , B ' ) = ( - I ) ( + I ) ( + I ) =  -1 .  

1.1 defining intersection numbers, i t  is essential to assume that the manifold 
is orientable. If we wish to extend our theory to nonorientable manifolds, 
then we must restrict our considerations to chains mod 2. For two cell chains 
mod2, ' l I k  and Y Y k  lying on dual cellular divisions, their intersection number 
mod2 is a residue class of the integers mod2. I t  is defined as 

5(ylk, w - ~ )  = O or i , respectively, 

according to whether the number of points common to 'Uk and B n - k  is even 
or odd respectively. Formulas ( I )  through (5) are also valid for chains mod 2 , 
when one replaces the integers appearing in them by their residue classes 
mod2. One can then, of course, omit the sign factor appearing in the 
formulas. 

* In the figure, the points are indicated only by their indices. 
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71. Dual Bases 

We are given two arrays of “variables” or “indeterminate quantities” 

~17x27 * * * 7 x m  and ~ 1 3  ~ 2 ,  * 9 ~ m  

which are transformed by two integer-valued unimodular linear transforma- 
tions 

to new arrays of variables (indicated by bars). The two transformations and 
also the arrays of variables are said to be contrugredient if the transformation 
matrices a and A are related so that the one is the transpose of the inverse of 
the other: 

A = & - I .  

The element A,,  is the cofactor of a,, divided by the determinant JaI = 2 I .  
The relation of contragredience is obviously a reciprocal one. 

Since A - ’  = A ,  the solution of the equations (A) is 

Thus 

Two contragredient transformations will then leave the “unit bilinear form” 
invariant. We could have also defined contragredience by means of this 
property. 

We shall speak of cogredient transformations of the two arrays of variables, 
on the other hand, when they both transform in the same way. 

We have already encountered examples of cogredient and contragredient 
transformations in 82 1. 

Once again let V?’’ be an orientable manifold having dual cellular divisions 
92; and 92;. Let the dual cells u,“ and b,“-, be oriented so that 
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S(a,", b,"-k) = + 1 .  By carrying out the unimodular transformation (a)  on the 
cells 

a, ,a,, . . . , a,"* k k  

one thereby goes to a new basis 

8:,u,k, . . . , u:k 

of the lattice of all k-cell chains of gjr:. The coefficients 
appearing in a chain 

. . . , & k  

A = <,a: + [,a," + . - * + t , k a , k  k 

will transform according to the contragredient transformation (A). For we 
have 

The dual cells 

b r - k ,  b ; - k ,  . . . , b t k - k  

are now to be transformed contragrediently to the a,,!, that is, according to 
the equations (A). The coefficients qK in the chain 

K =  1 K =  I 

will then also be transformed contragrediently to the b,"-k and, thereby, 
contragrediently to the 5,. The bilinear form CtKvK will thus remain invariant: 

a 

The left-hand side of the above equation is equal to the intersection number 
S ( A k ,  B n - ' ) .  This shows that when one uses new bases ii,,! and 6-,"-k, the 
intersection number of two arbitrary chains C&ii,,! and CijK6,,"-k is still given 
by the unit  bilinear form. 

Two cell bases 5," and b,"-h which have [his property are said to be dual to 
each other. I t  follows that for each arbitrary cellular basis Z f , E , k ,  . . . , ii:k 

there exists one and only one dual basis 6 , r p h ,  6 i P k ,  , . . , b:k-k and each pair 
of dual cellular bases can be obtained from one particular pair by means of 
contragredient unimodular transformations. 

Another way of characterizing the dual bases is to require that the matrix of 
intersection numbers for the dual bases is [he unif matrix having a k  rows: 

- 
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We shall now examine how the boundary relations ( 1  1) of $69: 
a k - l  

%aa," = C &;-b;-I, 
1 =  I 

ak 

cfl a b l n - k +  I - - (-  I ) k  E:-lb,"-k 
K =  I 

are changed by a contragredient transformation of dual bases. When we 
transform the array of cells u," by an integer-valued unimodular trans- 
formation, the &:- ' in Eq. (1) will transform cogrediently to the a," for a fixed 
index 1 ;  on the other hand, the E L - '  in Eq. ( 2 )  will transform contragrediently 
to the b,"-k. Since the u," and the b,"-k are to be transformed by 
contragredient transformations, however, the coefficients EL- I in ( 2 )  will 
transform cogrediently to the a:, that is, just as in Eq. ( I ) .  When we replace 
the dual bases a,"-' and b:-k+ '  by new dual bases, using two contragredient 
transformations, the E;-  I will likewise transform (for fixed index K )  

cogrediently to the bln-k+l in . both equations (and hence contragrediently to 
the 0,'- I ) .  After the two transformations, the coefficients i:- will still be 
identical in the two transformed boundary relations 

1=  I 

From $22, one can simultaneously bring the cell incidence matrices 

E O , E I , .  . . , Efl- 1 

of the cellular division $332; to normal form, by means of integer-valued 
unimodular transformations of the 0- through n-dimensional a-bases. We 
shall choose our notation so that the matrices [.C,k-'] already appear in normal 
form. 

The basis chains ii," then decompose into three classes: 

IA * k ( A =  1 ,2 , .  . . , y k  = yn-k-1). 

'A: ( p  = 1,2,. . . , p k  = p n - k ) ,  (3) 

3 k  A,  ( v  = 1,2 , .  . . , y k - l  = yn-k). 

In $ 2 2  these three classes were denoted by x:, E:, c,k. The cell chains 'A: 
are division-null homologous. The 'A: form a Betti basis. The 3A,k are 
nonclosed chains. The boundary relations (7) now become 

Gjla'A,k = 0, aa2A,k = 0, Gjla3A,k = c,k-IiA Y .  (4) 
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FIG. 122 

The chains of the basis dual to (3) will be denoted, in order, by 

3 n k  B , -  ( A =  1.2 , . . .  , y n - h -  I = , ,k)) ,  

2B:-h ( p , =  I .  2 ,  . . . , p n P k  = p k ) ) ,  ( 5 )  
I n h  
B,  ( v  = l , 2 , .  . . , Y " - ~  = y" - ' ) .  

Because the coefficients .E appearing in (7) and (2) have been proved to be 
the same, the boundary relations (3) can now be written 

(;fl i) 3B,fl - k + I = ( -  1 ) k  k -  I I g n - k  

[$ i)2Bgn-k+1 - - 0. 
c,, Y '  

( 6 )  

= 0. (,fl i) 1B;Y" - k + I 

I t  follows from this, when one uses the 6-basis, that the incidence matrices 
likewise appear simultaneously in normal form. The cell chains 3B,"-k are 
nonclosed chains, the 2B:-k form a Betti basis, and  the 'Bljt-k are 
division-null homologous. 

Since the matrix of intersection numbers of the dual bases (Fig. 122) is a 
unit matrix, the middle submatrix of intersection numbers 

5(2Ai ,2B,"-k  ) = 6, ( p , o  = I ,  2, . . . , p k )  (7) 

is also a unit matrix. 
I f  we define two dual Betti bases 'A: and 2B;-k as Betti bases on dual 

cellular divisions such that their intersection matrix (7) is the unit matrix, then 
we have demonstrated the existence of dual Betti bases. 

From here it is only one step to our result: 

THEOREM I. For each given k-dimensional Betti basis there exists a dual 
( n  - k)-dimensional Betti basis, uniquely determined up to division-null 
homologous chains. 



262 X .  n-DIME.IrSIO.VAL M.4.Irlt~OLD.S 

For one can obtain the most general Betti basis from the particular Betti 
basis 2A,k by means of a n  integer-valued unimodular transformation and  by 
addition of division-null homologous chains. But the transformation of the 
particular Betti basis 2B:-k is determined uniquely by the transformation of 
its dual basis 2A,k, namely, as the contragredient transformation, when one 
requires that the intersection matrix be again the unit matrix (7) after the 
transformation. Since the intersection numbers do not change upon addition 
of division-null homologous chains, one  can add  division-null homologous 
chains to the new k-dimensional Betti basis as well as to the new 
(n - k)-dimensional Betti basis. 

The existence of dual Betti bases discloses the underlying reason for the 
Poincare duality relation p k  = p n - k  between the Betti numbers. In a similar 
way, we can provide a topological foundation for the relation between the 
k-dimensional and  ( n  - k)-dimensional torsion coefficients, as stated in the 
duality theorem of $69. 

The first p k  chains among the chains 'A: of (3), that is, the chains 

I k l  k A , ,  A ,  . . . , 'Apkc, 

form a torsion basis for the dimension k ($20) and  the chains 

I B ; - k - I  3 2  I B n - k - 1  , . . . , IB;Lk-l 

form a torsion basis for the dimension n - k - I .  The matrix of intersection 
numbers 

('A,k,3B7n-k ) = SOT ( U , T  = 1,2, . . . , p k )  

is a unit matrix, when regarded as a submatrix of the matrix of Fig. 122. 
Using the abbreviated notation 

IA,k = ~ , k ,  ( -  l)k+l l ~ n - k - l  n - k - l  3BTn - k = BTn - k , 
T = B, 

we have 

THEOREM 11. There exists a torsion basis for the dimension k 

A f , A , " ,  . . . , Apkk 

and a torsion basis for the dimension n - k 

B ; - k -  I ' B2 n - h  - I , . . . , B;L"-' 

having the following propery. If 

B ; - k ,  B; -k ,  . . . , B;Lk 

are urbitrary chains for which the relations 

t f i a ~ ; - k =  CI k Bl n - k - l  6 f i a B ; - k  = c2 k B n - k - 1  2 , = c;kB,"Lk--' 

hold (the c," are the k-dimensional torsion coefficients), then the mutrix of 



12. CELLULAR APPROXIMATIONS 263 

intersection numbers 

S(A:,  B,"-k ) = So, 

is the unit matrix having p k  rows.43 

We have proved the theorem only for the case that the ( n  - k)-chain B,"-k 
spanning C ; B ~ " - ~  I is the particular chain 3B,"-k. I t  is valid, however, for any 
chain B,"-A spanning C;B,"-~- ' .  For by Theorem I of $70 we have 

S(A,k,  B,"-k - 3B,"-k ) = 0, 

since A,k is division-null homologous and B,"-k - 3B,"-k is a closed chain. 
Thus S(A,k ,  l?,"-k) = 5(A,k,3B,"-k). 

We can also carry out the developments of this section for chains mod2 
and we obtain, corresponding to Theorem I :  

THEOREM 111. For each connectivity basis 

a;, a;, . . . , Vl$ 

of the dimension k there exists a dual connectivity basis of the dimension n - k 

such that the matrix of intersection numbers mod 2 is the unit matrix having q k  
rows. 

Examples to illustrate this section are to be found in $75. 

72. Cellular Approximations 

Until now, we have defined intersection numbers only for cell chains in 
dual cellular divisions and have investigated the intersection numbers only for 
this case. We intend next to make our results independent of any particular 
cellular division and to define intersection numbers for arbitrary singular 
chains. This is done by approximating the singular chains. The approximation 
is not a simplicia1 approximation, as previously, but proceeds using cellular 
divisions. We shall now explain this process of cellular approximation. The 
investigations to follow will be valid in an arbitrary cell complex Q". We shall 
not assume that .yt" is a manifold. 

The underlying fundamental theorem is the following approximation 
theorem, which describes the extension of the simplicial approximation 
theorem of Chapter IV to cell complexes. 

THEOREM 1. If A k  is a singular chain on a cell complex R" and if the 
boundary * A - I of A is a cell chain on 9P" (in particular it can be the 
( k  - 1)-chain 0), then there exists a cell chain xk homologous to A '. 

For the case k = 0 this requirement is of course eliminated. 



Proof. Since the boundary of A k  is a cell chain for k > 0, and is therefore 
also a simplicial chain, by the approximation theorem of $28 there exists a 
homologous simplicial chain ' A k  (which is thus a chain on the normal 
subdivision S?' of the cell complex $1"). By $67 there exists a cell chain 
homologous to this simplicial chain. The theorem remains valid when k = 0; 
the proof is simpler in this case, since one does not have to pay attention to 
the boundary. 

COROLLARY. If ( A  k >  is the smallest cell subcomplex containing A k, then one 
may assume that ( A  '> also contains zk and that A - zk on ( A  >. 

The smallest cell subcomplex ( A  k, is defined as the intersection of all cell 
subcomplexes to which A k  belongs. I t  is empty i f  and only if A k  is the 
k-chain O.* The corollary follows immediately from Theorem I .  One removes 
all cells from $1" which do not belong to ( A  k, and then regards A as being a 
chain of ,the cellular complex ( A  k, and, finally, applies Theorem I to ( A  k, 
instead of to I?". 

We will now make a cellular approximation of an arbitrary "singular 
complex" Om in en. By a singular complex we mean a set of finitely many 
singular nondegenerate simplexes for which, along with each singular simplex, 
each of its nondegenerate faces is also included in this set. We make the 
cellular approximation of 0" as follows: First, we arbitrarily orient all 
singular simplexes of 0". Let these singular simplexes be called 

xp,x;, . . . , xp", . . . , x;t, x;, . . . , xp. 
To each X," we assign a k-cell chain, Ap X," as its approximation and we also 
assign a singular ( k  + 1)-chain Verb X,", which is called the connection chain 
(German: Verbindungskette) of X," with its approximation. To each singular 
chain 

U k  = c u,x," 
there will then correspond a particular approximation 

AP uk = XU, APX," 

and a singular connection chain 

Verb U k  = x u, Verb X,". 

We select the chains Ap X," and Verb Xt so that the following conditions 

(a) Ap U k  and Verb U k  lie on the smallest cellular subcomplex containing 

In this case, ( A  k ,  is not a subcomplex in the sense of $12 because there we excluded the 

will be satisfied for each chain U k  ( k  = 0, 1, . . . , m):  

U k .  

empty subcomplex. 
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(b) 93 a Ap U k  = Ap U k .  
(c) 93 Verb U k  = U k  - Ap U k  - Verb ?h auk.* 
If a cell chain has been assigned to each singular simplex in this way, then 

we say that the singular complex 6"' in .yt" has been given a cellular 
approximation. 

I t  is clear that if one requires conditions (a), (b), and (c) to hold on all 
singular simplexes U k  = X k ,  then this is sufficient to provide a cellular 
approximation. For these conditions will then be satisfied automatically on 
all arbitrary chains U k .  

We now claim 

THEOREM 11. A n y  singular complex B" can be given a cellular approximation. 

We will also show that: Given a cellular approximation of a singular 
subcomplex,** c, of 6" the approximation can be extended to give an 
approximation of 6"'. 

Proot We select a simplex X h  of smallest possible dimension from the set 
of all simplexes of Bm which do not belong to c .  This will either be a 
0-simplex or else, in the case k > 0, all nondegenerate faces of Xk  will belong 
to c. We will construct the approximation and the connection chains of Xk. 

First let k > 0. Then the approximations and the connection chains for the 
nondegenerate faces of X k ,  which in fact belong to c, are already known. In 
particular, 

Xk - Verb4haXk ( 1 )  

is a well-determined singular chain. Its boundary is 

$13 axk - 4R a Verb $A axk. 
If we temporarily set 413 dXk equal to i l k -  ' we can apply formula (c) for the 
dimension k - I to the second term of the above expression. The boundary of 
the singular chain is then 

kh a X k  - (?A axk - Ap 68 axk - Verb Btl  a 6h axk) = Ap %3Xk. (2) 

But as an approximation, this chain is a cell chain (Fig. 123). If we then 
temporarily denote the chain (1) by A k ,  we can apply Theorem I and obtain a 
cell chain xk  - A  which, like A ', has ( 2 )  as its boundary. We now define 
Ap X k  to be the cell chain xk.  Using 4 axk = 3 a A  we get 

6ilaApXk =Ap9ilaXk. (3)  

Furthermore, if ( X k )  is the smallest cellular complex of R" which contains 

In the case k = 0, condition (b) is eliminated and one is to set in (c) Verb GJla U k  = 0. The 

**This is a singular complex whose simplexes are, at the same time, simplexes of 0". 
structure of formula ( c )  is exactly the same as the connection formulas of $29. 
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FIG. 123 

X k ,  then AaXk will also belong to ( X k )  and, because of (a), so will 
Verb 4 aX k ,  and hence also the chain (1). From the corollary to Theorem I its 
approximation xk = ApXk will also belong to ( X k ) .  According to Theorem 
I we also have A 5 xk on X k .  That is, there exists - a singular connection 
chain V k + I  on ( X k )  which has the boundary A k  - A k .  Setting 

V k + '  = Verb X k  
we get 

9,dVerbXk = $ki3Vk++' = A k  - xk = ( X k  - VerbCkaXk) - ApXk.  

This completes the construction of the chains Ap X k  and Verb X k  and proves 
that the requirements (a), (b), and (c) are satisfied for U k  = X k .  Since we 
have assumed that (a), (b), and (c) hold for all simplexes of c, these conditions 
hold for each singular chain which can be formed from the simplexes of c 
together with the additional simplex X k .  In this way one simplex after the 
other can be added on until one has finally approximated the whole of 0". 

We must still treat the simple case that our selected simplex is 
0-dimensional. The smallest cellular subcomplex ( X o )  is then the cell of 
smallest dimension on which X o  lies. From the corollary to Theorem I there 
exists a cellular approximation ApX'-Xo on ( X o )  and hence a singular 
connection chain Verb X o  having the boundary X o  - Ap X o .  This completes 
our proof. 

Let us once again assume that A k  is an arbitrary singular k-chain. Its 
k-simplexes, taken together with all of their nondegenerate faces of 
dimensions k - 1 through 0, form a singular complex \lIk. We shall make a 
cellular approximation of A by approximating 

If 
A f l , A ; z ,  . . . , A,k, (4) 

are singular chains having arbitrary dimensions, then their simplexes and the 
nondegenerate faces of their simplexes likewise form a singular complex 6. 
We say that the chains (4) are upproximafed simuffuneously when Q is 
approximated. Each linear relation which holds between the chains (4) and 
the boundaries of these chains will also hold for their approximations. That is, 
if 

+ ( A F I , A [ z , .  . . , A,k,,CRi3Afl, CRaAiZ, . . . , AdA,?) = 0 
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is a linear relation with integer coefficients, then 

+(Ap A:!, Ap Ail ,  . . . , Ap A:, 9 a Ap A,kl, PR a Ap A;2, . . . , bRa Ap A,?) = 0 

also holds. For Ap(A + B )  = Ap A + Ap B and AP %A = Ap. I f  one does 
not approximate the chains (4) simultaneously, but instead approximates each 
one individually, then the relations of course will not be preserved. For 
example, if A:( and A t 2  have the same boundary, this will not necessarily be 
true for the chains Ap A and Ap A;2 if they are approximated individually. 

I f  

is a subsystem of (4) and if (5) has already been approximated simul- 
taneously, then one can extend this approximation to a simultaneous 
approximation of the whole system (4) because the singular complex 
belonging to the chains ( 5 )  is a subcomplex of CS. 

Our considerations can be carried over in the same sense to chains mod2. 

73. Intersection Numbers of Singular Chains 

We now study an orientable manifold YJ2" which has been given an 
orientation determined by an orienting chain 0" ($36). The n-simplexes of a 
simplicia1 decomposition of !JR" can then be oriented in one and only one way 
such that the resulting n-chain is - 0". I t  is our present goal to define the 
intersection number S(Ak,  B n W k )  of two arbitrary singular chains A k  and 

(R) The boundary A k - '  of A k  is disjoint with B n - &  and the boundary 
~ n - k -  I of B " - k  is disjoint with A (considered as point sets). 

This restriction was satisfied automatically in our previous investigation of 
cell chains A k  and B'Ipk on dual cellular divisions because two cells of 
dimension k and n - k ,  respectively, on dual divisions are either disjoint or 
have just a center point in common. We need the restriction (R) for singular 
chains. This is because the definition makes use of cellular approximation 
and one can arbitrarily approximate two singular I-chains A '  and B '  which 
violate the restriction (R), for example as shown in Fig. 124, by either two 
intersecting chains or two disjoint chains, regardless of how fine the cellular 
division of the embedding manifold may be. 

Along with the previously given singular chains A and B n P k  which satisfy 
the condition (R), we now consider two additional singular chains ' A k  and 
T B n - k  , which also satisfy (R) (Fig. 125). We denote the boundaries of these 
chains by 

. We must of course impose the following restriction: B n - k  

( la )  

( 'b)  

" f l a A k = A k - I ,  6 f l a ' A k = ' A k - '  

9flaBfl-k = B I I - k - l  ? f l , a t ~ n - k  = r ~ n - k - 1  
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FIG. 124 

A-p-f 

FIG. 125 

Furthermore, we require the existence of singular "connection chains" - . L  - . ' A  I -.I- L - . " - L A 1  . . . . - . - . . . 
which are to satisty the tollowing connection "", " " ' # )  v"  ")  V "  n T l  

formulas:* 

1. P a )  
C R a U k  = A k - 1  - ' A k - 1  

q a u h + 1 =  ~k - ' ~ k  - Uk 

(2b) 

be disjoint but Finally, we require not only that the chains A k  and B n -  k - '  

also that each of the chains 

1. 4 ~ a v n - k  = g n - k - l  - t g n - k - l  

v n - k - l  = g n - k  - ~ g n - k  - V n - k  

A ~ . ' A ~ .  uk+I , - -  1 -  .- 

be disjoint with each of the chains 
g n - k - l  r g n - k - l  v n - k  

and likewise that the chains 
g n - k  t g n - k  n - k + l  , v  

be disjoint with each of the chains 

(4a) 
~ k - l  ' ~ k - 1  Uk 

9 .  

If such connection chains exist, then we may say that the two pairs of 
chains A k ,  B n - k  and ' A  ', ' B n - k  are connected to one another. For example, if 
we carry out a sufficiently small deformation on the manifold 9Rn which 
transforms the chains A ', B " - k  to the chains ' A  k ,  ' B n P k  , then these pairs are 
connected. For during the deformation A ' , A  ' - I ,  B n - k  , and B n P k - I  sweep 
out certain connecting chains U k + ' ,  U k ,  Vn-k+l, V n - k  for which the 
formulas (2a) and (2b) hold (cf. 931). If the deformation is small enough, the 
chains (3a) will be disjoint with the chains (4b) and the chains (3b) will be 
disjoint with the chains (4a). 

In Fig. 125, A k- I consists of two points having opposite orientations (signs). The same is true 
for t ~ k - 1  B n - k - l  and I B n - k - 1  
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Also, when we approximate the chains A k  and B"-k  in sufficiently fine 
dual cellular divisions 9-U: and 9J1:. we shall obtain a pair of chains connected 
with these chains. In particular, let ( A k )  and ( A k - ' )  be the smallest cellular 
complexes of 9-R: to which A h  and A"' belong and, in the same way, let 
( B n P k )  and ( B n - k - '  ;, be the smallest cellular subcomplexes of 9.U; upon 
which B n - k  and B" ~ k - '  lie. If the cells of 9.V: and 91; are then so small that 
( A k )  is disjoint with ( B n - k - l )  and ( B n - k )  is disjoint with ( A " ' ) ,  
considered as point sets, the cellular approximations of A ',A ' - I ,  B n - k ,  
~ n - k -  I , and the singular connection chains belonging to them will likewise 
lie on these smallest subcomplexes and will satisfy the disjointness conditions 
which we require for connected pairs of chains. We see in the following 
manner that the cellular divisions YJ?: and '3.11; can always chosen to be 
sufficiently fine. Consider %I?'' to lie in a Euclidean space, in which the 
distance between two points of %I?'' is the usual Euclidean distance. The 
points of A h  and the points of B n - k - l  form two closed sets of the Euclidean 
space and these sets have a positive distance 6' between them. In like manner, 
let 6 "  > 0 be the distance between A"' and B n - k .  If 6 is the smaller of the 
two distances 6' and 6". then we need only to make the cells of 9J?z and 92; 
smaller in diameter than 6/2 to insure that ( A k )  is disjoint with ( B n - k - ' )  
and ( A ' - ' )  is disjoint with ( B " - k ) .  The existence of cellular divisions 
having cells this small follows because 9J" can be given an arbitrarily fine 
simplicial decomposition and each (normally subdivided) simplicial decompo- 
sition is a cellular division. 

We can now define the intersection number of two singular chains A k  and 

Replace A and B " -  by two cell chains ' A  and B '- [ving on dual cellular 
divisions '9W: and '!W: so that ' A  '. ' B " - form a pair of chains connected with 
A k , B n - k ;  we define the intersection number of A k  and B n P k  to be the 
infersection number 

which satisfy the restriction (R) as follows: ~ n - k  

s ( ' A  k , r B n - k  ) 

which was defined in $70. 

74. lnvariance of Intersection Numbers 

We must now demonstrate that our definition of the intersection number is 
independent of the particular choice of cellular divisions ' Y J a  and 'YJt,, and is 
independent of the pairs of cell chains connected with A k ,  B n - k  on these 
cellular divisions. Until we have proven this, the symbol S ( A  ', B " - k  ) wili 
only make sense for two cell chains on dual division.* 

'For simplicity we shall temporarily omit the dimensionality index n of (2Jt. In Theorems I 
through 111 we assume that W is embedded in a Euclidean space. When we say that a cell is < 6, 
we shall mean that its diameter in this Euclidean space is < 6. 
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THEOREM I .  If A k , B n P k  and r A k , ' B n - k  are connected pairs of singular 
chains and Ak,'Xk are simultaneous approximations of A in a cellular 
division Wa, while En- ', ' En- are simultaneous approximations of B" P k  and 
JBn-k  on the dual cellular division !Jib, then 

and ' A  

q,p, B n - k  ) = q p ,  f g n - k  ) 

whenever the cells of ma and !IVh are smaller than an appropriate(v chosen 6. 

Prooj We choose 6 to be so small that not only the chains (3a), (4b) and 
(3b), (4a) of the preceding section are disjoint, but also the smallest cellular 
subcomplexes on which these chains lie are disjoint. Here, subcomplexes on 
9Ja are to be taken for the chains (3a) and (4a) and subcomplexes on y j th  are 
to be taken for the chains (3b) and (4b). We can extend the given 
simultaneous approximation of the chains A ', ' A  in the cellular division V l ,  
to a simultaneous approximation of all of the chains (3a) and (4a). Likewise, 
we can extend the simultaneous approximations of the chains B n P k  and 
' B n P k  in the cellular division 'JJl, to a simultaneous approximation of all of 
the chains (3b) and (4b). If we denote the approximations by means of bars 
written above the corresponding symbols, then formulas (ia), (ib), @a), (Zb) 
which are obtained from (la), ( I  b), (2a). (2b) by putting bars above the chains 
are valid according to $72. The chains (?a) corresponding to the chains (3a) 
are disjoint with the chains (jb) and the chains (?b) are disjoint with (4a). 

From now on we will need to deal only with chains having bars written 
above them. Of these, (?a) and (Sa) are cell chains on Yi, and (?b), (4b) are 
cell chains on the dual division 2Rb. The chains with bars written above them 
are located arbitrarily closely to the unbarred chains and we can illustrate 
them, as before, by Fig. 125. 

The considerations which follow are purely combinatorial in nature since 
the chains in question lie on dual cellular divisions. The proof that the two 
intersection numbers S ( i k ,  E n - ' )  and S('zk, ' B n - k  ) are the same will be 
carried out in two steps. By using formula ( 5 )  of $70 we get 

- 

q A k ,  p f l  a i 7 ' n - k +  1 )  = ( - I ) k X ( ( . $  a , p ,  j 7 n - k  + 1 )  = 0, 

since X k - 1  (= ~ f l a x k )  and V n - k + l  are disjoint. On the other hand, upon 
substituting the value of 93i3 p-"' given in formula ( jb)  we get 

- - 
1 

( 1 )  

X ( x k ,  cfl a p - k + I )  = S ( x k ,  g n - k  - ! B n - k  - V n - k  ) = s ( x k ,  B n - k  - 1Bn-k 

since 7" and yn--k are disjoint. Thus 

q A k ,  j j n - k  ) = qp, , B n - k  ). 

S(6N a p + 1, ' E n  - k  ) = ( - I ) k  + Is( v k  + 1 ,  $R a tgn-x ) = 0 

In like manner, 

since Oh + I and ' B n -  k - I are disjoint. On the other hand, upon substituting 
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the value of CR d uk+l given in formula (Za) one gets 

) 

(2) 

q q a ~ k + l , ~ ~ n - k  ) = q x k  - I A k  - o k , r g n - k  ) = s ( 7 k  - i A k , r p - k  

since uk and 'g"-  are disjoint. Thus 

q A k , q j - k  ) = y ' p , q p - k  1. 

q'p, p - k  ) = y'p, r g n - k  )?  

Our desired result, 

follows from (1) and (2 ) .  

means of the following theorem: 

divisions 'XIZ, and 92, of 9Jl and let these cells have intersection number 

The transition from one cellular division to another is accomplished by 

THEOREM Ilk. Let a k  and b n P k  be oriented dual cells on dual cellular 

q = S ( a k , b n P k )  = L I. 

When one approximutes a k  and b"-& in two new dual cellular divisions @, and 
\@,, whose cells are smaller than an appropriately chosen 6, the approximations 
iik and 6'-' have the same intersection number* 

q = q a k , 6 " - " *  

Here a k  is a coherently oriented simplicia1 star of the normal subdivision 9-h 
of and thus represents a singular k-chain with respect to 'm, and can be 
given a cellular approximation in the sense of 972. Thus i ik is a cell chain on 
@, . Likewise, 6"- is a cell chain on the dual division D,,. 

The proof of Theorem IIk  is achieved by induction over all values of k .  We 
first prove Theorem 11'. Here we are dealing with dual cells a' and b". We 
coherently orient both of the cellular divisions 9Jt, and %,, so that the 
resulting chains M: and become homologous to an orienting chain 0": 

- 
M l -  Mf .- 0". (3 1 

Now 

Mf = Ebb" + 'b". (4) 

Here E* = 2 1 is the sign with which b" appears in M f  and '6"  is the sum of 
those n-cells of M: which differ from 6". We can extend the given 
approximation of 6" in Eb to a simultaneous approximation of 6" and '6".  In 
the approximation let 'b" transform to '6". The approximation of 
M: = ebb" + 'b"  is then the chain ebbn + '6" and since, on being 

*Note that the symbol 5 appears here in two different contexts: once as the intersection 
number with respect to the dual divisions 'fDa and m,, and the other time as the intersection 
number with respect to vo and E,,. 
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approximated, a closed chain transforms to a homologous chain and 
furthermore Hl is the only cell chain on w6 homologous to M z ,  

Ma" = E 6 6 "  +'6". ( 4 )  
We now select the cells of 1357, and E6 to be so small that not only u0 and 'b" 
but also even the smallest subcomplexes of BU and w b  to which u0 and 'b" ,  
respectively, belong are disjoint. The same will then be true for the chains i jo  

and ' K n  since these chains belong, as approximations, to these smallest 
subcomplexes. If E, = 2 1 denotes the sum of coefficients of uo, then i t  is also 
the sum of coefficients of a0 for, as an approximation, H o  is homologous to uo. 
We then have 

S(ao,b")  = e6S(uo,q,bn) = E6S(uo,q,bn + ' 6 " )  

= &bS(ao, M l  ) = &b&u ($70). 

Similarly, 

S( P, 6")  = E6S( 2, &p), 
and furthermore, since Go and '6" are disjoint, 

s(ao, p )  = &6s(a0, &b6" + ' p )  = &6s(a0, H[ ) = &b&uO. 

From (5) and ( 5 )  we get 

S(uo, b " )  = S(iio,b"), 

( 5 )  

which proves Theorem 11'. 
We now assume that Theorem I l k - '  has already been proved. Let u k - l  be 

a cell on mu which is incident with u k .  The cell b n - k + l  dual to u k - l  is then 
incident with b " - k .  Choose the orientations of u k - l  and b"-k+'  so that u k - '  
appears with multiplicity + 1 in the boundary of u k  and b n P k  appears with 
multiplicity + 1 in the boundary of b n P k + l  (Fig. 126): 

% a u k  = u k - l  + j u k - l  
3 

%abn-k+l = b n - k  + 1 b n - k  

FIG. 126 
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The approximation of b " - k  as bn-k can be extended to a simultaneous 
approximation of b n P k .  ' h " - k  , and b n - k + '  . Let the approximations of these 
chains be called bnPh,  , and bn-k+l . We now choose the cellular 
divisions %, and m, to be sufficiently fine so that the chains ' a k - '  and 

, on the one hand, and ' b n - k  and a k ,  on the other hand, are disjoint 
and are also disjoint even after the approximation. Thus we have 

' a k - '  is disjoint with b"-h+l ,  and 
'bn-k  is disjoint with i ih.  

b n - k +  I 

( a )  
( p )  

In addition, from Theorem I I k - l  we can also require 

( y )  s ( a h  - l , b " - h + ' )  = ~ ( ~ h - ' , & f l - h + ' ) ,  

Now by (5) of $69, 

= ( -  1 ) q a h - ' , 6 " - " ' )  ( a ) .  (6) 
By ( y ) ,  the right-hand side of (6) is equal to the right-hand side of (6)  and 

thus the left-hand side of (6) is equal to the left-hand side of (6), which was to 
be proven. 

Theorem I l k  can easily be extended to cell chains: 

THEOREM 111. If 

A k  = XCa,"  and B " - k  = 2 %b,Y - 

are cell chains on dual cellular divisions YJ, and 
orientable manifold 912. and xk  and En 
dual cellular divisions @, and mb, then 

respective!)), of the 
are their approximations in two other 

q ~ k ,  ~ n - k  ) = q x k ,  g n - k  ) 

whenever the cells of a, and Eh are smaller than an appropriate[v chosen S. 

the cells a," of A k  by 5; and b,"-k of B " - k  by b:-k one will have 
Proof. Choose @a and a b  sufficiently fine so that when one approximates 

s(ii,", V - k )  = q a ; ,  byn-k). 
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This is possible when p = v by virtue of Theorem I lk .  When p # v the cells 0: 

and bun-k are disjoint and, for a sufficiently fine division, their approx- 
imations are disjoint. One then has 

and 

S ( P ,  g n - k  ) = s( c [,ii,“, c q , b ; ” - k )  = c t,,q”s(ii;, b ; ” - k ) ,  

Since the right-hand sides are the same, we get 

5 ( A  k ,  B ” - k  ) = qAk, Pk 1. 
The invariance of the intersection numbers now comes about as follows: 
Corresponding to the given singular chains A k  and B ” - k  choose the pair of 
chains ‘ A  ‘, ’ B n P k  on the dual cellular divisions ‘ma and '!!Jib, where the pair 
is connected with A ‘, B n P k  . Likewise, on the dual cellular divisions ”‘ill?u and 
“‘ill?, choose the pair of chains ’ r A k , ” B n - k  connected with A ‘, B n P k .  The 
chains A k ,  ’ A  k ,  “ A  will then transform to chains Ak, ‘Ak, ”Ak by means of a 
simultaneous approximation in a third cellular division Bu. Likewise, the 

, and “ B n - k  will transform by a simultaneous chains B n - k ,  ‘ B n P k  
approximation in the dual cellular division @, to the chains En-k ,  ‘ B n - k ,  
and “p-k. From Theorem 1, when EU and Eb are sufficiently fine 

- 

1 7  

1; 

). (7) 

qAk, p - k  ) = q f x k ,  ! E n - k  

and 
s(Ak, E n - k  ) = q”zk, ~ ~ ~ - k  

thus 
c q ! x k , ‘ B n - k  ) =  q i r A k , n g n - k  

Furthermore, from Theorem I11 

q i x k ,  l j j n - k  ) = S ( ~ A  k ,  1 ~ n - k  1 
since ’ A  and ’ B n - k  are cell chains on dual cellular divisions, and likewise 

- 
1. s(,,Ak, 1tBn-k ) = S ( ” A  k ,  u B n - k  

Setting this into (7) we get 

S( ’ A  k , ’ B n - k  ) = S ( ” A  ’, “ B n - k  ). 

ppq 1-1 
I 1 I ~ ~ - ~ - ~ l  
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Let us review the steps leading to the proof, with the aid of the 
accompanying schematic. The singular chains A ', B n P k  were replaced in two 
different dual cellular divisions by the pairs of chains connected with them: 

, respectively. In these cellular divisions the 
intersection numbers were determined combinatorially by the method of $70. 
The equality of the intersection numbers found in this way was demonstrated 
by making a cellular approximation of all six chains in a third cellular 
division (indicated by bars in the lower row). The equality was shown, for the 
directions of the vertical arrows, with the aid of Theorem 111; the equality 
was shown, for the directions of the horizontal arrows, with the aid of 
Theorem I of this section.44 

I t  is now easy to extend the theorems proven for cell chains in $70 to the 
case of singular chains. In this regard, we shall make the implicit assumption 
that whenever two singular chains A k  and B " - k  appear in a symbol 
S ( A  ', B " - k  ), they satisfy the condition (R) of $73. 

I f  two singular chains A k  and B " - k  are disjoint then their intersection 
number is equal to zero because we can approximate them sufficiently finely 
so that their approximations are also disjoint. 

~ ~ k , t ~ f r - k  and I I A ~ , I I B ~ - ~  

The intersection numbers satisfy the distributive law: 

S ( A  ', B ; - h  + B ; - k )  = S ( A  k, B r P k )  + S ( A k ,  B ; - k ) .  (8) 

For when one approximates A h  in a cellular division 9Jlu and approximates 
B ; - k  and B ; - k  simultaneously in the dual cellular division YRb, the equation 

holds for the approximation. When one appropriates with sufficiently fine 
cellular divisions Y X U  and W,,  the intersection numbers of the chains will be 
the same as those of their approximations. Formula (8) then follows from (8). 

Just as in the case of (8) we can carry over the formulas 

~ ( ~ k , ~ n - k  ) = ( -  ~ ) ~ ( ~ - Q s ( ~ n - k , ~ k )  (9) 

S ( A ~ , ( : A ~ B " - ~  = ( -  ~ ) ~ s ( c i l t j ~ k ,  ~ n - ~ + l  1 ('0) 

and 

to the case where A k  and B n - k + '  are any two singular chains whose 
boundaries do  not intersect. 

As earlier, it follows here that the intersection number of a closed k-chain 
and a division-null homologous ( n  - k)-chain is zero, and the intersection 
number of two closed chains does not change when one replaces either chain 
by a division-homologous chain. As a consequence of this fact, we can speak 
about the intersection number of two homology classes (with division) of 
respective dimension k and n - k when they are given in a definite order. As 
a result, the assumption which we made implicitly in Theorems I and I1 of 
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$71 that the chains of dual Betti bases or dual torsion bases must lie on dual 
cellular divisions is no longer necessary. We can choose arbitrary singular 
chains. 

If two orientable pseudomanifolds Rk and Q n - k  which have been oriented 
in a particular manner are mapped by continuous transformations f and g, 
respectively, into an orientable manifold 9J?"' then the orienting chains B k  of 
Qk and B n P k  of Q n - k  will transform to two singular closed chainsf(Bk) and 
g (BnVk)  ($27) which have a well-defined intersection number. If we choose 
other orienting chains 'Bk - Bk on Rk and 'Bn-k - B n P k  on F"'k in ' place 
of Bk  and Bn-k,  then we clearly have 

on \2Jl" 
g ( B n P k  )-g('B"-& ) 

and therefore 

S( f ( B k  ), g(BnPk  )) = 's( f ( ' B k  ), g('B"-k )). 

Singular images of the oriented pseudomanifolds @ and P'- therefore have a 
well-defined intersection number, which depends on& upon the orientation of $1' 
and SYk and upon the continuous mappings. The intersection number mod2 
exists even when dBk, Rn-k ,  or %V" are nonorientable. 

While dual cellular divisions are convenient for the purpose of presenting 
the general theory, it is now always practical to determine the intersection 
number in individual cases by a cellular approximation in dual cellular 
divisions. Before we turn to particular examples, we shall prove a lemma 
which will be of use in determining intersection numbers. 

LEMMA. Let Vl" be an orientable manifold having a coherently oriented 
simplicia1 decomposition and let E" be an oriented n-simplex of the 
decomposition. Let X and X "- be two oriented geometric simplexes embedded 
in E n  which have no points in common except for a common midpoint Pk.  If 
((POP, . * P k )  is an oriented simplex of the normal subdivision of X k  and 
17 (Pk P k  + , 1 - * P,,) is an oriented simplex of the normal subdivision of x n -  and, 
furthermore, one has chosen the sign l so that the n-simplex 
{ (POP,  . . Pk . ' ' Pn) has the same orientation as E", then 

S ( X k ,  X " - k  ) = 5175. 

14 
FIG. 127 
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Figure 127 shows the case n - k = 2, k = 1. The simplex E 3  is to be 
thought of as a large simplex containing X '  and X 2 ,  and has not been drawn 
in the figure. 

Prooj In the proof we shall make use of the fact that the intersection 
numbers of two connected pairs of singular chains are the same. When we 
hold X k  fixed and deform X n P k  to a new simplex ' X n - k  in a way that the 
boundary of X " - &  never intersects X k  and the boundary of X k  never 
intersects X n - k ,  then 

qxk, X " - k  ) = S ( X k ,  ! X " - k  1 
since X k ,  X " - k  and X k , ' X " - k  form two connected pairs (cf. 331, Theorem 
I I). 

We first examine the case k = 0. Without loss of generality we can assume 
that X o  is oriented with the sign E = + 1 and X "  has the same orientation as 
E n .  That is, q and { are the same. We must then show that S ( X o ,  X " )  = 1. To 
do this we transform A'" to the simplex E" and transform X o  to the midpoint 
of E" in three steps. The first step consists of deforming X "  to a configuration 
X ;  similar to E" in such a way that X o  becomes a center of similitude. 
Clearly, one can always manage to carry out this deformation so that the 
point X o ,  which is held fixed, will never intersect the boundary of X " .  Thus 

S ( X 0 , X " )  = S ( X 0 , X x ; ) .  

After this we project A'; from the center of similitude X o  to the simplex En.  
Here X o  will never intersect the boundary of X ; ,  so that 

S ( X o , X ; )  = 5 ( X o , E " ) .  

Finally, we transform X o  to the midpoint X p  of E" and we orient i t  with the 
same sign, E = I ,  as X o .  We then have 

S ( X o ,  E " )  = S(Xp, E " ) .  

Putting these results together, 

S ( X o , X " )  = S(Xp, E " ) .  

The simplicia1 decomposition of W" can be considered to be a cellular 
division in which E" is an n-cell and X p  is the 0-cell dual to E". We then have 

X(Xp, E " )  = 1. 

Let us assume that the lemma has been proved for two simplexes of 
dimension k - 1 and n - k + I ,  respectively. We shall now prove i t  for two 
simplexes X k  and X " - & .  The orientation of X k  is given by the subsimplex 
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and the orientation of X"-k is given by the subsimplex 

q(Pkpk+l ' * * Pn)*. (Xn-k ) 

We can assume that Pk - I is the midpoint of a ( k  - 1)-dimensional face 
X k - I  of Xk  (and not, for example, the midpoint of a face of lower 
dimension). There then exists a simplex Xn-k+l  which has X"-k as a face 
and P k - ,  as midpoint. The simplexes Xk  and X"-k have the interval Pk- I Pk 
as their intersection.* Let Xk- '  be oriented so that it appears with the sign 
+ 1 in the boundary of Xk. Its orientation is then given by the subsimplex 

( - l)k[(P()PI * * pk- 1). (X"-') 

In the same way, let X n - k + l  be oriented so that X " - k  appears in the 
boundary of Xn-k+ l  with the sign + 1. Its orientation is then determined by 
the subsimplex 

q(pk-Ipk * ' * Pn)- 
( X " - k + l )  

By our induction assumption, 

) = ( -  l)k5rlS. s ( x  k -  I ,  xn- k +  1 

On the other hand, from (10) we have 

s(Xk,X"-k ) = S(Xk, % a X " - k + ' )  = (-  I)kA(ciLaX~,X"-k+' 1 
= ( -  l)kqXk-' , ,y"-k+l).  

Therefore, as was to be proved, 

S(Xk,X"-k ) = {q l .  

To determine the intersection number of two singular chains A and B " - k  
we can, first of all, omit all simplexes which are disjoint with the set theoretic 
intersection D of the sets of points belonging respectively to A and B n P k .  
For we can decompose the intersection number in accordance with the 
formula (8), and disjoint chains have intersection number 0. We wish to give 
special mention to the case where the intersection consists of finitely many 
points and has the following property: at each of these points of intersection 
there will always be exactly two simplexes which pass through the point in the 
manner described in the lemma. In this case we shall say that the two singular 
chains pass smoothly through one another at the common points. The 
intersection number S ( A  ', B n - k )  is then the sum of the intersection numbers 

*If X n - k c '  protrudes out from E n  we can, in advance, proportionally diminish the simplexes 
X' and X"-' by a similarity transformation, with Pk the center of similitude. This can be 
accomplished so that neither the intersection number 5 ( X k ,  X " - k  ) nor the coefficients I, q , 3  
change. 
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for the individual points of intersection, which in turn are determined by 
means of the lemma. 

The methods and theorems of this section can be extended immediately to 
chains mod 2. 

75. Examples 

EXAMPLE 1. Let us look at the orientable surfaces. As a particular example 
we select the double torus, a surface of genus 2, because of the simplicity of 
the expressions involved. We assume that the double torus has been cut open 
to give its fundamental polygon. We know already that the closed chains 
a,  b, c,  d form a Betti basis ($41) and we wish to find a basis dual to this basis. 
The intersections can be followed more easily in Fig. 128 when we replace the 
chains a, 6 ,  c, d by homologous chains a‘, b‘, c’, d’ which run in the interior of 
the octagon. I t  is clear that upon making an appropriate simplicia1 
decomposition the chains will pass smoothly through one another. We 
determine the intersection numbers by using such a decomposition. When the 
orientation of the surface is given by the boundary circle aba - ‘b - ‘cdc - ‘d - ’ 
we get 

S ( d ,  b’) = 1 and S(b’, a’) = - 1 

in agreement with formula (9) of $74. We have S(a‘, c’) = 0 since a’ and c’ are 
disjoint. Similarly, S(a’ ,  a’) = 0. For since a’- a ,  S(a’, a’) = S(a’, a )  and the 
latter intersection number is zero because a’ and a are disjoint. The matrix of 
intersection numbers* is then 

C 

d 

where missing entries represent elements which are equal to zero. 

FIG. 128 

*The element of the ith row and kth column is the intersection number of the ith chain with 
the kth chain, in that order. 



280 X n-DIMENSIOZ4L IIAhlFOLDS 

By reversing orientations and rearranging the column entries we obtain the 
unit matrix: 

I 

I 

The chains 6, - a ,  d, - c form the basis dual to a, b, c, d.  
The basis a, b, c ,  d possesses the property that its chains can be arranged in 

pairs so that chains of the same pair have intersection number 2 1 while 
chains belonging to different pairs have intersection number 0. This is not an 
exclusive property of surfaces. I t  occurs for all dimensions of the form 
2(2m + 1). m = 0, 1 , 2 . .  . . To show this we examine the chains of the 
“middle” dimension k in a manifold \ J J I Z k .  From formula (9) of $74, 

so that S ( A  ‘, Bk)  = 2 F(Bk, A k ,  with the + sign used when k is even and 
the - sign when k is odd. The matrix of intersection numbers 

S(B,k,B,k) 
of a Betti basis 

Bf ,  B t ,  . . . , Bp”” 

is therefore skew symmetric when k is odd and is symmetric when k is even. 
In either case, its determinant is -+ 1. For one can transform to dual bases 
($7 1) by appropriate independent integer-valued unimodular transformations 
of the rows and columns. For these bases the matrix of intersection numbers 
is the unit matrix. For the case of odd k ,  which is the case of interest to us, 
there is a theorem of algebra which states that by means of cogredient, 
integer-valued unimodular transformations of the rows and columns one can 
bring a unimodular, skew symmetric matrix having integer-valued elements to 
the “box form” ( I )  in which principal minors of the form 

0 1  
- I  0 

lie in sequence along the main diagonal, and all other elements are zero (see 
Hensel and Landsberg [ I ,  p. 636 et seq.]). The new Betti basis obtained in this 
manner can be considered to be the 2(2m + I)-dimensional analog of the 
conjugate essential cuts on the closed orientable surfaces.45 

It follows, further, that the middle Betti number (of dimension k = 2m + 1) 
of a 2(2m + 1)-dimensional orientable manifold is even. In addition, the 
Euler characteristic N of such a manifold is even since, by the Poincare 
duality theorem, 

2 k  

v=o 
N = - 2 (- l)”p’= -2po + 2p’ - . . -+ 2pk-’  - + P  . 
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C 

FIG. 129 

EXAMPLE 2. In considering intersection numbers on nonorientable surfaces 
we must restrict ourselves to intersection numbers mod2. Let us look at the 
nonorientable surface of genus 3. The nonoriented edges n, 6. c of the 
fundamental polygon form a connectivity basis of the dimension 1 ($41). In 
Fig. 129 the edge II has been altered in two different ways to give a 
homologous chain mod2, ti’ and a“ ,  respectively. Since (I’ and n” pass 
smoothly through one another, their intersection number mod 2 is 

S(n, n) = qd, a”) = 1 , 

while the intersection numbers of a’ with the edges b and c are each 0. The 
matrix of intersection numbers of mod 2 is 

c I  1 

The connectivity basis is dual to itself. 

EXAMPLE 3. Continuation of orientation along a path. Given a cellular 
division W: of an n-dimensional manifold 912“ we call the vertices of 9J: 
0-cells and the edges of YJ;: I-cells. Let MI be a closed edge path on YJl:. Each 
vertex of M’ is in one-to-one correspondence with an n-cell and each edge of HI 
is in one-to-one correspondence with an (n - I)-cell of the dual cellular 
division !Ill;. These n-cells and (n - I)-cells alternate with one another in a 
sequence determined by the path. They are now to be oriented. The n-cell 
corresponding to the initial point 0 is given an arbitrary orientation. The next 
n-cell is oriented so that opposite orientations are induced in the common 
(n - l)-cell, and further cells are oriented in this manner. In this way we can 
extend an orientation beginning a t  the initial cell along the whole path. AfteG 
proceeding along the path, starting with the chosen initial orientation, one 
will return to the initial n-cell with either the orientation chosen initially or 
with the opposite orientation. According to which case occurs one says that 
the orientation is preserved or reversed, respectively, along the path. This 
definition only makes sense when one is given a particular cellular division 
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and an edge path lying in it. The intersection numbers provide the means for 
us to make the definition independent of the choice of cellular division. 

The manifold !UI" will be orientable in the sense of $24 if and only if the 
orientation is preserved along each and every closed edge path of Ern:. 
Consequently i we shall restrict ourselves to the nontrivial case of 
nonorientable manifolds in our discussion. In such manifolds there exists 
exactly one (n - 1)-dimensional torsion coefficient having the value 2 ($24). 
There thus exists exactly one homology class for the dimension n - 1 of order 
2 and the (singular) chains in this class are characterized by the property that 
they themselves are not null homologous, but become so when doubled. We 
obtain an (n - 1)-chain U"-'  having this property, as follows. We give the 
n-cells of an arbitrary but fixed orientation and form the boundary of the 
n-chain U" which consists of the totality of n-cells oriented in this manner. 
An (n - 1)-cell will then either not appear at all or will appear doubled in 
%aU" according to whether the two n-cells contiguous with it induce 
opposite or the same orientation, respectively, in this (n - 1)-cell. Thus %3 U" 
is the double of a chain U " - ' .  We then have 2U"-'-O,  U"-',LO (cf. $24; 
the difference between the present and earlier cases is that we are now using 
cells instead of simplexes). 

We now see easily that orientation is preserved along the edge path w if 
and only if w intersects the chain U"-'  in an even number of points. For 

contains exactly those (n - 1)-cells of !UIi for which both contiguous 
n-cells induce the same orientation. We can then say: Orientation is preserved 
along w if and on4 if the intersection number mod 2 of w with U " -  ' is equal to 
6.. This definition can be extended to arbitrary continuous paths which are 
not necessarily edge paths. The definition is independent of any simplicia1 
decomposition of !UI" since, as we have already shown, U"--'  is determined by 
9JI" in a topologically invariant manner, up to the addition of null 
homologous chains. 

It also follows that homologous paths behave in the same way, with respect 
to preservation of orientation, since the intersection number does not change 
when a chain is replaced by another chain homologous to it. 

In addition, homotopic paths behave in the same way with respect to 
preservation of orientation, so that the elements of the fundamental group 8 
of W" can be decomposed into two classes according to how their paths 
behave with respect to preservation of orientation.** The path classes which 
preserve orientation form a subgroup 6 of index 2 in 3. For the product of 
two paths having reversal of orientation is a path on which orientation is 
preserved. Accordingly, the two-sheeted covering @I" belonging to the 

More exactly, we should speak of the intersection number of the chains mod 2 corresponding 

** In the discussion to follow we shall always mean paths w which depart from a fixed point 0 

un- I 

t o w  and V-'. 

of W" and paths G which depart from a fixed point 6 of !k, where 6 lies above 0. 
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subgroup 6 (P55) is related in a topologically invariant way to the manifold 
inn. 

The covering ’ilkn is orientable. For one can lift the dual cellular divisions 
%Rz and to ‘9%”. If the orientation were to reverse along a closed edge path 
i7 of &;, then orientation would also reverse along the corresponding base 
path w in The path w could not then belong to @ and G would not be 
closed, which is contrary to our assumption. 

@ln is the only orientable two-sheeted covering of %!“. For if ’9kn were 
another orientable two-sheeted covering, then a closed edge path ’6 of ’%” 
would project to a closed path of ‘a7’ along which orientation is preserved and 
which would then belong to 4. The subgroup ’4 belonging to ”9%” would thus 
be a subgroup of 4 and since this subgroup is, like 8, of index 2 in 3. i t  
would coincide with 

76. Orientability and Two-Sidedness 

We have recognized that orientability is a property of a surface considered 
as a 2-dimensional manifold, without reference to any embedding in 3-space. 
In contrast to its property of being either orientable or nonorientable. the 
property of a surface being one-sided or two-sided depends upon the 
embedding of the surface in a 3-dimensional manifold. To intuitively 
understand the two-sided placement of a surface in a 3-dimensional manifold 
m3, let us imagine that a small arrow has been stuck “perpendicular” to the 
surface and let us carry the arrow along a closed path on the suface until i t  
returns to its point of departure. If the arrow never reverses direction after a 
traversal, then the surface lies two-sided in W3,  otherwise one-sided. At times, 
orientable surfaces are confused with two-sided surfaces. But the concepts of 
orientability and two-sidedness are not identical, because the following four 
mutually exclusive cases all occur. 

There exist 

1. 

2. 

3. orientable one-sided surfaces, and 
4. nonorientable two-sided surfaces. 

An example illustrating the last two cases is given by the topological product of the projective 
plane with a circle. One can construct this product by identifying diametrically opposite points of 
the meridian circles on the boundary of a solid torus. Here a circular disk spanning a meridian 
circle closes to form the projective plane, a nonorientable surface which evidently lies two-sided 
in the 3-dimensional manifold. In Fig. 130 the intersection of the solid torus with a meridian 
plane has been drawn and the spanned circular disk is shown shaded. 

In regard to the third case. the equatorial plane intersects the solid torus in an annulus, which 
closes to a torus when diametrically opposite points of the meridian circles are identified. This is 

orientable two-sided surfaces, for example the 2-sphere and the torus, 

nonorientable one-sided surfaces, for example the projective plane, in 
in Euclidean 3-space (closed to form the 3-sphere), 

projective 3-space, 
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FIG. 130 FIG. 131 

FIG. 132 

an orientable surface which clearly lies one-sided in the manifold. Figure 131 shows the 
intersection with the equatorial plane. 

The concepts introduced in this chapter give us the tools to define these 
intuitive ideas mathematically in a precise manner and extend them to spaces 
of arbitrary dimension. 

Let FJ3t" be an n-dimensional manifold in which an (n - 1)-dimensional 
manifold has been topologically embedded, that is, W - '  is a subset of W. 
We impose the additional requirement on the embedding that there exist a 
simplicia1 decomposition of %TIn for which YY"" is a subcomplex. We shall 
first define one-sidedness and two-sidedness of W- ' by choosing a particular 
decomposition which satisfies the above requirement. We regard the 
simplexes of the normal subdivision as cells of a cellular division Vl;. This 
provides a cellular division !IJl:-', of W"-' at the same time. Denote the 
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(n  - I)-cells of i!Jl:-' by a,"-'. Referring to Fig. 132 let: 

P ,  be the midpoint of a,"- I ,  

b,,! be the 1-cell dual to a,"-' in Y W ,  
be the ( n  - 2)-cell of 'B:-' which is a common face of a,"-' and 

a,"-', 
QKA be the midpoint of a s p 2 ,  
b:! be the cell dual to 
c,!! be the cell dual to in \an"-' which has initial point P, and end 

point PA. 

In the oriented cells b,,! we have the mathematical realization of the arrow 
stuck through the surface. We call these the transversal I-cells of TJY-'. Two 
transversal I-cells b,,! and bl are said to be neighboring if the dual ( n  - I)-cells 
a," - ' and a," - ' have a common face a,"< ,. Since incidence is preserved upon 
going over to dual cells, b,' and 6: appear in the boundary of b;,,: 

in YI", 

(8 ab:A = E,b,! -t EXbl + . * . 

If the coefficients E, and E,, are equal in magnitude and opposite in sign to one 
another, then we say that b,' and bi point in the same direction. 

The exact definition of one- and two-sidedness is now: 

5Rn-' lies two-sided in Ylt" if the transversal I-cells can be oriented so that 
each two neighboring I-cells point in the same direction. If this is not possible, 
then W - '  lies one-sided in 5 2 5 " .  

I t  will turn out that the dependence of this definition upon the particular 
choice of cellular division is only an apparent one. 

We can regard c,,!! as the intersection of Y?"" with b:!. For b:,, can have 
points in common with only those cells of '352:-' which contain the midpoint 
QK, of b;,, (from Theorem VI, 066), that is, with the cells aG-2,a,"-' ,a,"-' .  
The intersection of b:! with a,"-' consists of the connecting interval, that is, 
the I-simplex PKQKh.  Let us call the I-cells c,!! the edges of tm"-'. If b,' and bl 
point in the same direction, we define the substitute arc F,,!,, belonging to the 
edge c,!,, as the arc on the boundary circle of b;,, which leads from the 
endpoint of b,,! to the endpoint of bl without meeting tm"-'. Now let C be a 
closed edge path on Yt"-', that is, a path which is composed only of edges 
c:,,. We shall assume that it passes through the points 

P I ,  P , ,  . . . , P,, P,+ 1 = PI .  

We orient the transversal I-cells bf ,  b:,  . . . b,!, b,'+, so that each two, 
consecutive cells point in the same direction. This can be done in only one 
way, given an arbitrary initial orientation of b : .  It is possible here that one 
and the same transversal cell may appear several times and can appear with 
opposite orientations. Depending upon whether b,!+ I = + bf  or b,!+ I = - bf  , 
we say that the arrow direction is preserved or reverses, respectively. Obviously, 
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when YP"' ' is two-sided the arrow direction is preserved along each edge path C,  
while for a one-sided embedding of W"" there exists at least one edge path 
having reversal of the arrow direction. When one replaces each edge c:,, of C by 
its corresponding substitute arc T:,,, in the case of preservation of arrow 
direction there will exist a closed path c which does not meet W"". On the 
other hand, when the arrow direction does reverse along C, the path will lead 
from the endpoint of bf to the initial point of bf and upon joining on the cell 
b,' the path must become a closed path having PI as initial point. The path 
C is clearly deformable to its substitute path. One needs only to transform 
continuously each edge c:,,, along half of the cell b:,, to the arc Ti,,. Here the 
initial and endpoints of c:,, will move along 6,' and bi to the endpoints of 61 
and b i ,  respectively. If C is a path which preserves arrow direction, then c 
and therefore the homotopic path C will have the residue class 6 as 
intersection number mod 2 with W"-'. This is so because 2 Y - l  and c are 
disjoint, considered as point sets. On the other hand, in the case of arrow 
direction reversal, the intersection number mod2 is i since c will pass 
smoothly through (W-' at the point PI and only at this point. Furthermore, 
since for each closed path of tmn- '  there exists a homologous edge path, 
because the totality of edges c:,, form the edge complex of the cellular division 
dual to !lJl:- I ,  we have 

is two-sided, then the intersection number mod2 for 
each and every path C on Imn-' is S(W"", C )  = 6; if W n - '  is one-sided, then 
there exists a path such that S(W"", C )  = i .  Here 9Y-I and C are to be 
regarded as chains mod 2.  

In this theorem we have characterized one-sidedness and two-sidedness in a 
way which no longer requires reference to a simplicia1 decomposition. The 
intersection numbers are independent of any such decomposition. 

We shall give one more characterization of one- and two-sidedness. Since C 
is an edge path of the cellular division dual to %Jl:-', we can continue the 
orientation of the ( n  - 1)-dimensional "surface cells" a,"-' along C by first 
orienting a;- '  and then orienting in succession each cell of the sequence 

THEOREM I. If 

so that each two successive cells induce opposite orientations in their 
common ( n  - 2)-cell. According to whether a,!'LI1 = a"-'  I or a,!';,' = - a : - '  
we say that C is a path which preserves "surface orientation" or reverses 
"surface orientation," respectively. In a like manner we can continue the 
orientation of the "spatial cells" along the substitute path c. For c consists of 
1-cells of the cellular division dual to (Yt: and it makes sense to say that c is a 
path which either preserves or reverses spatial orientation. Let a," denote the 
n-cell which is incident with a,"-' and in which the endpoint of 6,' lies. (We 
are again assuming that each two successive I-cells in the sequence 
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b: ,  b i ,  . . . , b,', bj+ I point in the same direction.) Let a," be oriented so that 
a,"-' appears on its boundary with sign + I :  

qda," = a,"-' + - . - . (1 )  

If we then move along the path F,' from the midpoint of a," to the midpoint of 
a: (A = K + 1) and continue the orientation of a: along FKA, we shall arrive 
with the orientation +a,". (We can see this easily, since all n-cells through 
which we pass have the face When we carry forward the spatial 
orientafion along c, we shall go from + a ;  to +a:+ I .  

We now distinguish between several cases. 

Case 1. The arrow direction is preserved along C .  

(a) Surface orientation is preserved along C. Then a,"'l' = a:-' and thus, 
from (I ) ,  a,"+ I = a;.  That is, spatial orientation is also preserved along c. 

(b) Surface orientation reverses along C. Then a:;l' = - a"-'  I and hence 
a:+ I = - a;. That is, spatial orientation reverses along c. 

Case 11. The arrow direction reverses along C .  

(a) Surface orientation is preserved along C. Then a,",l' = a"- '  I . Now 
a:+' and a; lie on different sides of a ; - ' .  From ( I ) ,  they induce the same 
orientations in a:- ' .  That is, spatial orientation reverses along c. 

(b) Surface orientation reverses along C. Then a,"Ll' = -a"- '  , , Cells a,"+ I 

and a;  induce opposite orientations in a;- ' .  Thus spatial orientation is 
preserved along c. 

When we also take into account the facts that the continuation of 
orientation along an arbitrary continuous path can be described in a 
topologically invariant manner ($75) and that homotopic paths, for example 
C and c, will always both reverse or both preserve orientation 
simultaneously, we get 

THEOREM 11. If Ytnp1 lies two-sided in W" (case I ) ,  then surface orientation 
and spatial orientation along a path C of \n?"" will either both reverse or will 
both be preserved simultaneously. I f  !Yl"-' lies one-sided in (D" (case 11) then 
there will exist at least one path along which surface orientation alone or spatial 
orientation alone reverses. 

If 9JI" is orientable then spatial orientation is preserved along each path. 

THEOREM 111. In an orientable manifold Vl", orientability of the embedded 
manifold 91"- I is equivalent to two-sidedness and nonorientabilip is equivalent 
to one-sidedness. 

In particular, in Euclidean 3-space each orientable surface lies two-sided and 
each nonorientable surface lies one-sided. 

There thus follows 
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77. Linking Numbers 

Linking numbers are defined for two disjoint null homologous singular 
chains or, more generally, for two disjoint division-null homologous singular 
chains 

and B"-  A k -  I 

in an orientable n-dimensional manifold '2n". Let us first consider the case 
where A k - l  is null homologous and B"-k  is division-null homologous (and 
thus possibly also null homologous). Then by definition A k - l  is the boundary 
of a singular chain A k ,  and we define the linking number 

v ( A ~ - ~ ,  B " - ~  ) 

to be the intersection number 

S ( A  ', B"-k ). 

The linking number exists, since the closed chain B " - k  is disjoint with the 
boundary of A k ,  by our assumption. In other words, the linking number 
V(A k - l ,  B " - k )  is the intersection number of a k-chain spanning A k - l  with 

. I t  is unimportant whether one chooses A k  or a different chain ' A k  
spanning A ' - I .  For since B n - k  is division-null homologous and A - ' A  ' is 
closed, 

B n - k  

S ( A  - ' A  k ,  B n P k  ) = 0, 

that is, 

S(A k ,  B"-k  ) = S('A ', B n - k  ). 

As an example, we choose !Bl" to be Euclidean 3-space closed by a point at 
infinity to form the 3-sphere; we choose A k - '  and B"-k  to be a meridian 
circle and the core of a solid torus, that is, two interlinked circles. We can 
then take A to be a circular disk spanned in the meridian circle. The core of 
the solid torus passes smoothly through this disk. The linking number of the 
meridian circle and the core is therefore k 1. 

If A k - '  is only division-null homologous as well, then there will exist an 
integer a # 0 such that d k - l  -0 ( a  does not have to be the smallest integer 
for which the homology d k - l  -0 holds). If A is a chain spanning CUA ' - I ,  

that is, 

%i3Ak = d ' - I ,  

then we define the linking number4' by the equation 

I r ( A k - 1 ,  B " - k  ) = ( I / a ) S ( A  k ,  B"-k  ). 

In general, Ir is a fraction. If, instead of A k ,  we use another chain ' A  having 
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boundary 'd ' - I ,  then we will get 

( I / ' a ) S ( ' A  k ,  B " - k  ) 

as the intersection number. But a ' A  - 'd is a closed chain, and has 
intersection number 0 with each division-null homologous chain. Thus we 
have 

ab('A ', B n - k  ) = ' a S ( A  ', B n p k  )?  

( l / ' a ) S ( ' A k ,  B " - k  ) = ( I / a ) S ( A  ', B n - k  1. 

or 

The definition is therefore independent of the choice of A '. 
As an alternative to letting B " - k  intersect with a chain A k  spanning 

k - l  , we can let A k - l  intersect with a chain B n - k + l  spanning p B f l P k ,  and 
we shall get the same linking number, except possibly for its sign. For 

'Y(A k - l ,  B " - k  ) = ( l / a ) S ( A  ', B n - k  ) = [ I / ( a B ) ] S ( A  ', p B n - k  ) 

= ( -  I ) k [  I / ( a f i ) ] S ( d k - l ,  B n P k + l )  [from (lo), §74] 

= ( -  I)k(l//?)S(A k - l ,  B n - k + l  ) 
Corresponding to the formulas (8) and (9) of 574, we have the formulas 

?(A ' - 1 ,  B"-k I + B ; - k )  = v(A k - 1 ,  + Y ( A  ' - I ,  B ; - k )  

and 

? i ( B " - k , A  k -  1 )  
( k  - I ) ( n  - k )  + 1 

) = ( - I )  k -  1, B n - k  

for the linking numbers. 

"complementary space" of B"-  
' A  ' - I .  For if U k  is disjoint with B f l P k  and if 

The linking number is not changed when we replace the chain A k - l  in the 
relative to 59.Tlfl by a homologous chain 

q a , y k = ~ k - I  - 1 ~ k - I  

then we have 
?i(A k - l  - ' A  k - l  B " - k  ) = s( U k ,  B n L k  ) = 0. 

In a similar manner we can replace B f l P k  by a homologous chain in the 
complementary space of A ' - I .  

On the other hand, ? i - ( A k - l , B " - k )  changes by an integer when one 
replaces A k - l  by any chain ' A  k - l  which is disjoint from B f l p k  and 
homologous to A k - l  in 93". For since A k - l  - ' A  k - l  is a n  arbitrary null ' 
homologous chain in this case, then, as we saw originally, its linking number 
with B n P k  is an integer. Consequently, we can assign a linking number, 
determined up to an integer, to two homology classes H k - '  and H " - k  which, 
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when considered as elements of the homology groups, are of finite order. This 
linking number is the linking number of any two nonintersecting 
representatives of the respective classes. In the particular case of a 
(2m + I)-dimensional manifold there will exist a self-linking number 
corresponding to each m-dimensional homology class of finite order. This is 
the linking number of two disjoint homologous m-chains. The self-linking 
numbers are topological invariants of the manifold. In particular cases they 
may be used to show the distinctness of manifolds. We will demonstrate this, 
using the lens spaces as an example. 

In order to find the self-linking number of the lens axis b in the lens space (p, q), we deform 
the axis by transforming the initial axis point P on the lower lens cap to a point P’ on the 
equatorial circle of the lens. The equivalent endpoint Q will then automatically be moved on the 
upper lens cap to a particular point Q’ of the equatorial circle. The other points of b will be 
deformed through the interior of the lens to the connecting arc b’ = P’Q’ on the equatorial 
circle. This arc will subtend a fraction q / p  of the periphery of the equatorial circle. The arcs b 
and b‘ are two homologous closed I-chains. To find their linking number we choose the p-fold 
multiple of b’, which is a curve running q times around the equatorial circle, and span a 2-chain 
in it, for example the circular disk K 2  which bisects the lens into two symmetrical halves, taken 
with multiplicity q. Since b and K 2  pass smoothly through one another, their intersection number 
is ? I .  Thus S(b, qK2) = ? q and the self-linking number which we are looking for is 

Y(b, b’) = ? q / p .  

We can find the self-linking numbers of the other homology classes by choosing the u-fold 
multiple of the axis b (v = 0, 1, . . . , p  - I). For the closed I-chain b forms a homology basis of 
dimension I. We have 

Y( vb, ub’) = ? v2q/p ,  

where the upper or lower sign will respectively hold depending upon the orientation of the lens 
space. 

In order for two lens spaces (p, q) and (p’ ,  q’) to be homeomorphic it is first of all necessary 
that their fundamental groups be the same. That is, we requirep = p’ .  In addition, the self-linking 
number q ’ / p  of ( p ,  q’) must also appear as a self-linking number of (p, 9). Therefore q ‘ / p  must 
be congruent mod 1 to one of the numbers ? u2q /p .  Thus there must exist an integer u having 
the property that 

q’ = ? u2q (mod p). 

If we choose ( p ,  4) = ( 5 ,  1) as an example, then this congruence will only be satisfied for 
q’ = 2 I .  Thus q’ = 2 is not a solution. Hence the lens spaces (5 ,  1) and ( 5 , 2 )  are not the same 
(Alexander 121, [lo]). 

The set ofpossible self-linking numbers of the I-chains of a 3-dimensional manifold is, then, a 
topological invariant. On occasion it can be used to prove the distinctness of manifoldr even when our 
strongest previous decision criterion, the fundamental group, fails. 

For the lens spaces (7, I )  and (7,2), however, not even the linking numbers will solve the 
homeomorphism problem, since the set of possible self-linking numbers is the same for both 
spaces, as is easily computed. 

In the lens space (3, 1) the possible self-linking numbers are 

0, f ,  :=; (mod I )  

for one orientation and 

0, - f  
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for the other orientation of the space. Since the two sets of numbers are different it follows that it 
is impossible to map the lens space (3, 1) onto itself topologically with reversal of orientation. In 
such a case one also says that the lens space (3, 1) is an asymmetric space. This property appears 
for the first time in the 3-dimensional manifolds!* 

Problems 

I. One obtains two manifolds from two lens spaces (3, 1) by the process of connected sum 
formation (cf. Problem 3, 962). Show that these manifolds are not homeomorphic, even though 
they have the same fundamental group. (Find a homology basis for each composite manifold and 
determine the set of possible self-linking numbers.) 

2. Show that in an orientable manifold W n  there exists a k-dimensional torsion basis 
A / , A ; ,  . . . , A:h and an ( n  - k - I)-dimensional torsion basis B f - k - l , B ; - k - l , .  . . , B;k-k-l 
such that the linking number V(A: ,B ,” -k - l )=O for p #  v and = 1/cP for p =  v. Here c,, 
denotes the torsion coefficient belonging to A,k (cf. 971). 

3. If a 3-dimensional orientable manifold 2J13 has a single torsion coefficient, of dimension I ,  
then there exists at least one I-chain having a self-linking number different than I .  

4. If an orientable 3-dimensional manifold has a prime integer of the form 4 K  + 3 as its only 
I-dimensional torsion coefficient, then it is an asymmetric space. 

We have already introduced the exterior space of a knot several times into 
our investigations. On one occasion the torus knots were used to give an 
illustration of the fundamental group (552). On another occasion an arbitrary 
knot was used for the construction of 3-dimensional manifolds ($65) and in 
$58 we used the trefoil knot to demonstrate covering complexes. This last 
application is closely related to the linking numbers. 

Let us embed a knot k provided with a particular orientation into the 
simplicially decomposed 3-sphere G3. Let it  be composed of edges of the 
simplicia1 decomposition. In addition, let us assume that the knot never 
passes through all three vertices of a 2-simplex and never contains a I-simplex 
as a chord. If we regard the normally subdivided simplexes of G3 as cells of a 
cellular division Gi ,  then the boring out of the knot, defined in 165, consists 
of removing all those 3-cells of the dual cellular division (5; whose midpoints 
are vertices of k .  The 2-cells dual to the edges of k are meridian cross sections 
of the bored-out solid torus B and their boundary circles are meridian circles 
of 23. After being oriented appropriately they are all homologous to one 
another on the torus ‘3 which is the boundary surface of B. An arbitrarily 
chosen I-cell chain u lying on G i  of the exterior space 8 will be null 
homologous in G3 and will therefore be the boundary of a cell chain U 2 .  
When one removes all cells from U 2  which are dual to edges of k ,  that is, all 
meridian cross sections of the solid torus 8, then a chain ’ U 2  will result 
whose boundary will be formed by u and certain meridian circles of 23. Thus, 
since all meridian circles are homologous on Q to a fixed meridian circle m,, 

u s a m , ,  (on a). 
Here a gives the linking number of u with k .  For when G3 is suitably 
oriented, mo will have the linking number 1 with k .  Thus 

V ( k ,  u )  = Y ( k ,  amo) = a. 
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If two cell chains u and t' now have the same linking number a with k, then 
they will both be homologous to amo and will therefore be homologous to one 
another on 2. Furthermore, since each arbitrary singular closed k-chain on '21 
is homologous to a cell chain, we have the following theorem: 

THEOREM. Two singular I-chains, u and u in the exterior space \11 of a knot k 
will be homologous on B if and only i f  they have the same linking number with 
k. 

As a consequence we have another proof that the homology group of '21 is 
the free cyclic group ($65). 

In the fundamental group 5 of the exterior space 2, the so-called knof 
group, those paths whose linking number with the knot k is divisible by a 
particular integer g form a subgroup-@. 

We wish to examine the covering 2 of 2 which belongs to the subgroup 8. 
A particular linking number will belong to each element of 3, namely, the 

linking number of any representative path with the knot k .  By assigning to 
each element of ;F its linking number reduced mod g ,  we produce a 
homomorphic mapping of 8 onto the cyclic group of order g .  The subgroup 
@ will be mapped to the unit element. @ is then a normal subgroup and %/.@ 
is cyclic of order g. Consequently, the covering \ii is regular and the group of 
covering transformations is cyclic. That is, (ii is a cyclic covering in the sense of 
$58.  The covering fi is thereby characterized by the fact that a closed path of 
the base complex 91 will be closed after being lifted into the covering complex 
if and only if its linking number with k is congruent to 0 (mod g) .  

The covering given here is, by the way, the only g-sheeted cyclic covering. 
For if 4 is a normal subgroup of the knot group 3 belonging to a given cyclic 
covering, then s/Q is cyclic of order g .  In the homomorphism 3 + 3/@ each 
commutator F,F,F,-'F;' will map to the unit element of %/@. That is, each 
commutator belonging to FF: will belong to $3 and thus $3 will contain the 
commutator group .yt' of 3. Consequently, 6 will consist of certain residue 
classes of the decomposition of 5 with respect to @. These residue classes, 
regarded as elements of the factor group 8 / R ,  form a subgroup of index g in 
%/Q. But 8/fi is now the Abelianized knot group, that is, the free cyclic 
group. This group has only one subgroup of index g .  Thus the uniqueness of 
6 has been proven and, at the same time, a purely group theoretical proof of 
the existence of the cyclic covering has been given. 

It can be proved that an orientable surface, free of singularities, can be 
spanned in each knot so that the knot is the boundary of the surface. One can 
then obtain the g-sheeted cyclic covering by cutting apart the exterior space '21 
along this surface to form a "sheet" and then sewing g such sheets cyclically 
to one another. The resulting covering obviously admits a cyclic group of 
covering transformations of order g .  

Cyclic coverings play a role in knot theory. Whereas the Abelianized knot 
group is always the free cyclic group, the finite sheeted cyclic coverings will in 
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general possess 1 -dimensional torsion coefficients. A necessary condition for 
two knots to be equivalent is that the torsion coefficients of their g-sheeted 
cyclic coverings be the same.* 

Instead of defining the cyclic coverings for the exterior space 3, that is, for 
the 3-sphere from which the knot has been bored, we could just  as well have 
defined the cyclic coverings for the complementary space of the knot, which 
is the 3-sphere from which just the points of the knot have been removed. For 
the theorem of this section is also valid when we replace 91 by G3 - k .  For if 
u and c are two singular 1-chains in E 3  - k we can bore out k with a solid 
torus which is sufficiently slender that u and v lie entirely in the exterior 
space 3. If u and u now have the same linking number ?r(k, u )  = ‘V(k, v) with 
the knot, then u -  1; in the exterior space 3 and thus also in the 
complementary space G3 - k .  Let us note that 91 is a finite complex, while 
E3 - k is an  infinite complex. 

‘See Alexander [I61 and Reidemeister 161, where one will also find further references to the 
literature. 
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78. The Degree of a Mapping 

The methods developed previously have extensive applications in the 
theory of continuous mappings of complexes and manifolds. We discuss two 
of these applications in this chapter: the degree of a mapping and the fixed 
point formula. 

In 331 we divided the continuous mappings from a complex R into another 
complex K into mapping classes, that is, classes of mappings homotopically 
deformable one to another. An important problem of topology is to find all 
possible mapping classes belonging to two given complexes R and K. This 
general problem has been solved only for particular complexes, for example, 
the case where K is the n-sphere and R is an arbitrary n-dimensional complex 
(cf. Hopf [IS]). But we have already found necessary conditions for two 
mappings cp and I/ to belong to the same class: the homomorphic mappings 
from the homology groups of R to the homology groups of K which are 
induced by cp must be the same as those induced by I/; likewise, the 
homomorphic mapping (which is unique except for inner automorphisms) 
from the fundamental group of Q to that of K which is induced by cp must be 
the same as that induced by \cI. 

In the case that R and K are both closed orientable pseudomanifolds of 
dimension n and have been oriented, the nth homology group of each 
complex is a free cyclic group. The n-chain B" which is generated by 
coherently orienting the simplexes of an arbitrary simplicial decomposition of 
R will form a homology basis in $2. Likewise, the n-chain B" arising from a 
coherent orientation of the simplexes of a simplicial decomposition of K will 
form a homology basis in K. The homomorphic mapping of the nth homology 
group, induced by the continuous mapping cp of R into K, is then specified by 
a single number y; the image of the chain B" is homologous to yB". We call y 
the degree of the mapping q2?9 The degree of a mapping is, then, an invariant of 
the mapping class. When we deform cp to a simplicia1 mapping 4, having 
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previously subdivided Q sufficiently finely, the simplexes of R will 
transform under 1c, to simplexes of K (in some cases these may be degenerate) 
and the image of the chain B" will not only be homologous to yB" but will in 
fact be equal to the chain yB". Let us assume that a simplexes of 33' map with 
preservation of orientation and p simplexes of Q map with reversal of 
orientation to a particular simplex X" belonging to the simplicial 
decomposition of K. In this case, we have y = a - 0. Intuitively, the degree 
of the mapping indicates how many times K is covered positively by the 
image of 9. 

EXAMPLES. The mapping of the boundary of an n-simplex onto itself in 
which two vertices are interchanged while all other vertices remain fixed 
($3 l), has degree y = - 1.  

We can find a mapping having an arbitrary degree as follows: On a 
2-sphere G2 let A be the geographical longitude and let 6 be the latitude. The 
formulas 

produce a continuous mapping of G2 into another 2-sphere 'G2 having the 
geographic coordinates A', 6'. The degree of the mapping is y when G2 and 
'G2 are suitably oriented. For if y # 0, then a simplicial decomposition of G2 
produced by the equator and 3y equidistant meridian circles will be 
transformed by the mapping to a simplicial decomposition of 'G2 produced 
by the equator and three equidistant meridian circles. Each triangle of 'G2 
will then be covered in the same sense by IyJ triangles of G2. If, however, 
y = 0, then all of E2 will be mapped to a single meridian circle of 'G2. In that 
case the degree of the mapping will be 0, as a consequence of the following 
theorem: 

THEOREM. In  a conlinuous mapping cp, if there is a point P of K which is not 
covered by the image of Q, or if cp can be deformed to a mapping 1c, which has 
this propercy, then the degree of cp is 0. 

ProoJ Make P a vertex of a simplicial decomposition of K which is 
sufficiently fine so that the simplicial star 6t"  about P is disjoint from #($I). 
The singular chain 1c,(B") will then lie on the complex K, which is the 
complex which remains when one removes the n-simplexes of Gt" from K. By 
the approximation theorem (§28), there exists a homologous simplicial chain 
on which is equal to zero because i t  does not contain the simplexes of Gt". 
Thus +( B") - 0 on K, that is, 1c, has degree 0. 

If we let R and K coincide we find: A deformation* of a complex to itself has 
degree + 1. This is because the identip map has degree + 1. 

Let cp be a continuous mapping of R into K and let cp, be a continuous 

A ' =  yA, 6 ' =  9 

*Editor's note: The authors evidently intend "deformation" to mean any map which is 
deformable to the identity map. 
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mapping of K into K,. Then rp,cp is a continuous mapping of R into K, .  If y 
and y1 are the degrees of the mappings cp and cp, , then the degree of the mapping 
cpIq is yIy. For if the chain BY on K, is defined in the same way as B" on Q, 
then 

cp(B")-yB" (on K), (1) 

The homology ( I )  is preserved under the mapping cp, ($27, Theorem I). Thus 

'PI(cp(B" )) - YcpI(B") - YYIBY (on K I h  

which was to be proved. 

In particular, if cp is a topological mapping of R onto K and 'p, is the 
reciprocal mapping, then qI'p is the identity mapping, so that y y ,  = 1 and 
thus y = yI  = 2 1. A topological mapping of R onto K has the degree 5 1. We 
already recognized this in $36. Based on this fact, we divided the topological 
mappings of R onto K into mappings which preserve orientation and 
mappings which do not preserve orientation, that is mappings having degree 
+ 1 or - I ,  respectively. 

If K is a manifold, we can also regard the degree of a mapping as the 
intersection number of a point P of K (where P is oriented with the + sign), 
with the image chain cp( B ") - y B". For S (P, cp(B ")) = S (P, yB") = yS (P, B") 
= y ($70). This definition can also be used in the case that R is an orientable 
pseudomanifold with boundary and K is an orientable closed manifold, for 
example, when one deals with the mapping of a disk into the 2-sphere; the 
degree of the mapping is then of course defined only with respect to a par- 
ticular point of K which must not belong to the image of the boundary of R. 

Problem 

Let an n-dimensional orientable pseudomanifold with boundary I be mapped continuously 
into an n-dimensional orientable manifold K. 

(a) If two points P and Q on K are connected by a path which does not intersect the image of 
the boundary of 8, show that the degree of the mapping is the same at P and at Q. 

(b) If one deforms the mapping, and if the point P of K remains disjoint with the image of 
the boundary of W during the whole course of the deformation, show that the degree of the 
mapping at P remains unchanged during the deformation. 

79. A Trace Formula 

We now turn our attention to theorems concerning the existence of fixed 
points of continuous mappings, and with this goal in mind we derive the 
fundamental "trace formula" of H. Hopf. 

Let R" be a finite n-dimensional complex which has been given a particular 
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simplicial decomposition. Let a k  be the number of k-simplexes and let 

VI", v;, . . . , v$ 
be a basis of the lattice X k  of all k-chains. If we assign a chain 

o k  

A =  I 
'v," = C T , " ~ v ~  ( K  = 1 , 2 , .  . . , a k )  ( I k )  

to each chain V,", this linear transformation will provide a homomorphic 
mapping Tk of the lattice X k  into itself. Suppose that this has been done for 
all dimensions k = 0,1, . . . , n .  The mappings Tk do not have to be 
completely independent of one another; rather, we require that they be 
bounduryfuifhful. That is, if a chain 

transforms to a chain 

as a consequence of 

ak 

I(= I 
' U k  = c U K ' V , k  

the equations ( I k ) ,  then 6il a U k  should transform to 
W d ' U k  as a consequence of the equations ( l ' - ' ) .  In the sections to follow, 
the boundary faithful mappings Tk will be given by a simplicial self-mapping 
of the complex Q"; here, however, we shall only make use of the assumed 
boundary faithfulness. 

The requirement of boundary faithfulness implies that a closed chain 
transforms to a closed chain, a null homologous chain to a null homologous 
chain, and a division-null homologous chain to a division-null homologous 
chain. As an illustration of this, if U k - ' x O  so that, for example, 
%auk = c U k - ' ,  then we have CRd'Uk = c'U"' as a consequence of the 
boundary faithfulness, that is, I l l k - '  1s ' also division-null homologous. Thus, 
to a class of k-chains which are division-homologous to one another there 
corresponds a particular image class of division-homologous chains. It follows 
from this that the Betti groups of dimensions 0, I , .  . . , n are mapped 
homomorphically into themselves by the boundary faithful mappings Tk.  

I f  B: ( p  = 1,2, . . . , p k )  is a Betti basis in dimension k, then the homo- 
morphic mapping Bk of the kth Betti group is given by the division 
homologies 

P I  

'Bp" x 2 PpkdB; ( p  = 1,2,. . . , p k ) .  ( Z k  ) 
a =  I 

The formula which we wish to derive will give a relationship between the 
traces of the transformations Tk and Bk. By the truce of a linear 
transformation we mean the sum of the coefficients of the entries on the 
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principal diagonal of the transformation matrix. Thus the trace (German: 
Spur) of Tk is the number 

.k 

S p T k =  7:K 
I ( =  I 

and the trace of Bk is 
P k  

SpBk = j?,",. 
p= I 

The trace is an invariant of the mapping anL does not depend upon the 
choices of the basic elements V," and Bp", respectively (see, for example, 
Speiser [ 1, p. 1481). 

The formula which we wish to find follows immediately, after we have 
exhibited the simultaneous normal form Kk (k = 0, 1, . . . , n - 1) of the 
incidence matrices ($21). Three types of chains A k ,  B k ,  and C k  appear in the 
entries of these matrices. The A are division-null homologous. The B k  form 
a Betti basis; we assume that the B k  appearing in formula ( z k )  are identical 
with these chains. The C k  are chains which are not closed. We have 

.hac,k = c p y  ( p = 1 , 2 , .  . . , y k - l ) .  (3) 

The chains A k ,  B k ,  and C k  taken together form a basis for the lattice of all 
k-chains X k ,  and they should be used as basis chains V k  in the linear 
transformations ( I k ) .  If we do this, the square matrix [.,",I = Tk of coefficients 
in the equations ( I k )  will decompose into nine rectangular blocks: 

We now make use of the boundary faithfulness of the mapping (Tk). From 
the fact that the chains A k  and B k  are closed it follows, first, that ' A k  and 
' B k  are also closed. Thus none of the chains Ck can appear in the expressions 
for ' A k  and ' B k ,  and the coefficients in the rectangular blocks (13) and (23) 
must vanish. Thus the coefficients Bi0 appearing in the submatrix above are 
the same as the coefficients j?p"o appearing in the division homology (2k),  
which were already given the same notation. It follows, second, that the 
chains A are division-null homologous and, therefore, so are the images 
' A  '. This can occur only if all of the coefficients (12) vanish. Third, Eq. (3) 
must transform to an equation which is still valid when one replaces the 
chains by their images: 
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The linear mapping Tk of the k-chains results in a particular expression giving 
‘C,,! in terms of the A ‘, B k ,  and Ck.  In like manner, the linear mapping Tk-’  
of the (k - I)-chains results in a particular expression giving ’A,,!-’ in terms 
of the chains A k -  I .  Upon introducing these expressions into the last equation 
and taking into account the fact that the chains A and B k  do not contribute 
to the boundary because they are closed, we get 

. ,k - l  

cka C y k ~ k = C k - I  k - 1  k I 
pv Y p Cap” A” - 

v =  I 

Using (3), 

thus 
k - l  k - l  

$Cyk - ‘ = cp apv 

and in particular, for p = v, 

y;; = a,,!p-‘ ( p =  1 , 2 , . .  J - 1 ) .  

The traces of the submatrices I’k = [y,k,] and Ak-l = [a,k,-’] are, therefore, the 
same: 

Sp rk = SPAk-’. (4) 

Making use of this equation, we form 
n 

C ( - SP Tk = C ( - Sp Ak + C ( - I ) k  Sp Bk + ( - I ) k  s p  rk 
k = O  

= C ( - I ) ~ S P B ~ + S P P + ( - ~ ) ” S P A ~ .  
Since no division-null homologous n-chains exist, SPA” = 0, and we have 
Sp = 0 because all 0-chains are closed. Thus we have established the truce 
formula of H .  Hopf: 

n n 

C ( - I ) k S p T k =  2 (- l )kSpBk .  (HI 
A = O  k = O  

When one chooses T’ to be the identity mapping, then the matrix Tk is the 
unit matrix having a k  rows and B’ is the unit matrix havingpk rows; thus 

S p T k = a k  and S p B k = p k  

and the trace formula reduces to the Euler formula (023) 

c (- l ) V =  2 ( -  q k p k ,  

of which it  is a generalization. 
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80. A Fixed Point Formula 

We shall now consider an arbitrary continuous mapping go of a finite 
complex R" into itself. Let us construct two simplicial decompositions of !fP, 
one coarse and the other fine. Let the fine decomposition be derived from the 
coarse decomposition by means of an m-fold normal subdivision and let i t  be 
sufficiently fine so that the image of each simplicial star lies entirely in the 
interior of a simplicial star of the coarse decomposition. This is possible as a 
consequence of the theorem of uniform continuity. 

From the deformation theorem, it is possible to deform go to a simplicial 
mapping g,. The mapping g,  transforms each oriented k-simplex e," of the 
fine decomposition to an oriented simplex E,"; 

e," -+ E,". ( 1 )  

The simplex E," is either a k-simplex of the coarse decomposition or is a 
degenerate simplex equivalent to the k-chain 0, in the case where e," is 
transformed by the simplicial mapping to a simplex of dimension lower than 
k .  Since the m-fold normal subdivision E," of E," is a k-chain on the fine 
decomposition, then the simplicial mapping g,  assigns a particular k-chain E )  
of the fine decomposition to each k-simplex e," ; 

e," + E,! . (2) 

The chain Cvu,b," will then correspond to an arbitrary chain C v u v e ) .  This 
gives a homomorphic mapping Tk of the lattice Zk of all k-chains of the fine 
decomposition into itself. This homomorphic mapping is boundary faithful 
since %de,k transforms to the m-fold normally subdivided boundary of E,", 
that is, to ?flak,". For the boundary of the normal subdivision of a simplex is 
equal to the normal subdivision of the boundary of the simplex ($30). We can 
then apply the Hopf trace formula (H) of $79 to this homomorphic mapping. 

We now make the additional assumption that the mapping go has no fixed 
point. When we consider Q" to be embedded in a Euclidean space, the 
distance of a point P from its image point go(P) is a continuous function of 
P .  The greatest lower bound 6 of these distances will in fact belong to these 
distances, from Theorem 111 of $7, and since no point remains fixed in place 
under the mapping, 6 is a positive number. IF we have already chosen the 
coarse decomposition to be sufficiently fine so that the diameter of each 
simplex is smaller than 6/2, then each point P and its image point go(P)  will 
belong to different simplexes. The same statement holds with respect to the 
approximating simplicial mapping g, because no point will leave a simplex to 
which it originally belonged during the course of the approximation ($31). 
The image chain E," of e," will not, then, contain e:'. Thus 

SpTk = 0 ( k  = 0,1,. . . , n ) .  

For the case of a mapping (2) with no fixed point, the trace formula (H) 
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reduces to 

301 

C ( -  I ) &  SpBk= 0. 

Here we are making a statement about the mapping of the Betti groups 
induced by (2). This mapping is, however, the same as the mapping induced 
by ( I ) .  For the image of a closed chain under (2) is a subdivision of the image 
under ( I )  and the images are therefore homologous. The homomorphic 
mapping induced by ( I )  is the same as that induced by go since the two 
mappings are deformable one to the other (Theorem 111, $31). 

We have won the following result, where approximations no longer appear: 

THEOREM. If a continuous mapping of a finite complex Q" into itself is fixed 
point-free, then the alternating sum of rhe traces of the homomorphic mappings 
of the Betti groups is equal to 0: 

n 

C ( - I )kSpBk=O (F) 
k = O  

(f ixed poinl formula).5o 

81. Applications 

In the following examples, three observations are of importance in applying 
formula (F): 

Let the complex it" be connected. Then a Betti basis in dimension 0 will be 
formed by a point with + orientation ($18). Under a continuous mapping i t  
will transform to a point with + orientation. Thus the trace of the mapping 
of the 0th Betti group is 1. In other words: 

(I)  

In the case p k  = 0 the Betti basis consists of 0 k-chains. We have 

(11) 
(111) 

Sp Bo = 1 follows from p o  = 1. 

Sp Bk = 0 follows from p k  = 0. 
I f  R" is an orientable n-dimensional manifold, then the Betti number 

p "  = 1 and a Betti basis will be formed by the n-chain M" which consists of 
the coherently oriented manifold. I f  the image of M "  is homologous to y M " ,  
then Sp 6" = y ,  whereby y is the degree of the mapping. 

EXAMPLE 1. The closed n-ball. From $ 19, 

po= 1, p '  = p 2  = . . . = p "  = 0, 

and, therefore, from observations (I) and (11), 
n 

C ( - l ) k S p B k = l - O + O - - - * * = l # O .  
k = O  

A continuous mapping of the closed n-ball into itself will always possess at least 
one fixed point. 



302 X I  CONTINUOUS MAPPINGS 

EXAMPLE 2. The n-sphere. From $19, 

1, p 2 =  . . . = p n - l  =o,  p " =  1. 

If the mapping is to have no fixed points, then according to the fixed point 
formula (F), 

( -  I ) k  Sp Bk = 1 + ( -  1 ) " ~  = 0. 

Thus the degree of a fixed-point-free self-mapping of the n-sphere is 
y = (- I ) n + l .  This result can also be seen in a simple way. If P' is the image 
of a point P under a fixed point-free mapping go of the unit n-sphere into 
itself, let P' move along the great circle determined by P and P' to the point 
diametrically opposite P. This is a homotopic deformation of the mapping go 
to the mapping g ,  which interchanges diametrically opposite points. The 
mappings go and g ,  have the same degree ($78). But the degree of the 
mapping g, is ( -  l)n+' since it is possible to regard the interchange of 
diametrically opposite points as a product of n + 1 mirror reflections each of 
which has degree - I .  One can easily check this result for dimensions 
n = 1,2,3. 

EXAMPLE 3. Fixed-point- free deformations. If the continuous mapping of a 
complex into itself is a deformation, then the homomorphic mapping of the 
Betti groups is the identity mapping ($31, Theorem IV) and therefore 

s p  Bk = p k .  

Consequently, from formula (12) of $23, 
n n n 

2 (- l )kSPBk= C ( - l ) k p k =  2 ( - l ) k a k =  - N .  
k = O  k = O  k = Q  

Thus, according to the fixed point formula, the vanishing of the Euler 
characteristic is a necessary condition for the existence of fixed-point-free 
deformations .5' 

In the particular case that the complex P is an n-dimensional manifold 
%J?"' this condition is always satisfied for odd n ($69, Theorem IV). For even 
n,  on the other hand, it restricts the classes of manifolds which can admit 
fixed-point-free deformations. As an example, for closed surfaces ( n  = 2) we 
have 

N = 2(h - 1) or N = k - 2, respectively, 

where h and k are the numbers of handles or cross-caps, respectively, of the 
closed surface. The Euler characteristic will vanish only in the cases h = 1 
and k = 2, that is, for the torus and for the nonorientable ring surface (Klein's 
bottle). Only these two closed surfaces can possibly allow deformations 
having no fixed points. Such deformations are easily found. 

EXAMPLE 4. The closed n-ball with holes. Given a particular simplicia1 
decomposition of the closed n-ball B", let us remove the interior points of 1 
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n-simplexes E;,  E;, . . . , E; which are mutually disjoint from one another 
and are all disjoint with the boundary of B". Let (P" be the complex which 
remains. Then po = 1 for this complex. For k > 0, a closed k-chain U k  of the 
simplicial decomposition will be null homologous in B" after again filling in 
the bored-out simplexes (519). Thus U k  is the boundary of a simplicial chain 

uk = gauk+l. 

When k < n - 1, the bored-out n-simplexes will not appear in I lk+ ' ;  thus 
Uk+ I already lies in $? and U k  is already null homologous in W. 
Consequently, ?6" has the Betti numbers 

Uk+l. 

( 1 )  

(2) = 1, = p 2  = . . . = f " - 2  = 0. 

If k = n - I ,  on the other hand, then because of (1) the given chain U"-I 
will be the boundary of a simplicia1 chain 

U" = a , E ;  + . . . + a,E," + ' U "  ('U" on (P"). 

thus 

un-I = %wn = a16flaE; + . . . + %aE; +%awn 
or 

u n -  I - a l % d E ; +  . . .  +a,CfldE: ( o n w ) .  

That is, each (n - I)-chain of $? is homologous to a linear combination of 
the I boundary chains 

?kaE;,  . . . , CilaE,". (3) 

These boundary chains are homologously independent. For if a homology 
were to hold among them, 

p,('FldE;+ . . .  +p,%aE,"-O,  

then there would exist an n-chain on B", W" # 0, having the boundary 

4 a wn = p1 a E ;  + . . . + p, ~il aE;. 

After filling in the I cavities we would then have W" - P I E ;  - * * - DIE; 
as a closed n-chain on 8". But the only such chain is the chain 0. Since W" 
does not contain any simplex E," i t  follows that PI = * * = Dl = 0. Thus the I 
chains (3) form a Betti basis for the dimension n - I in $?, a n d p " - l  = 1. 

Let us assume that the external boundary of @' is transformed to itself or, 
more generally, is transformed to a homologous ( n  - 1)-chain; for example, i t  
may shrink to a point. If, in addition, a of the I boundary spheres (3) 
transform individually to themselves or to homologous chains, while 
b = I - a undergo a permutation, then there will appear a ones and b zeros in 
the principal diagonal of the transformation matrix B"-'. Thus 

Sp B"-I = a 
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and because of (2) 

Sp 6 0  = 1, Sp Bl = . . = Sp B“-’ = 0. 

Consequently, the fixed point formula (F) provides the following necessary 
condition for the mapping to have no fixed points: 

I - O +  - . -  + ( - ~ > “ - I a = o  or u = ( - I ) ” .  

Since a is an integer, there can exist no fixed-point-free mapping of & when 
n is odd. For even n,  a fixed-point-free mapping can exist only when a = 1. 
An annulus, for example, will admit a fixed-point-free rotation about its 
center point. A spherical shell, on the other hand, will admit no 
fixed-point-free mapping into itself such that its two boundary spheres 
transform to homologous surfaces. 

Problems 

1. If, in a single-valued continuous mapping of the n-sphere into itself, at least one point of the 
n-sphere does not lie in the set of image points, then the mapping has a fixed point. 

2. Show that a continuous mapping of projective n-space W into itself will always possess a 
fixed point when n is even. If n is odd, the degree of the mapping must be I if a fixed-point-free 
mapping is to exist. 

3. Show that a continuous mapping of the 2-sphere into itself will either possess a fixed point 
or a “diametrically opposite point,” or both. 

4. Prove that no continuous vector field can exist on the 2-sphere. 



CHAITER TWELVE A UXILIA R Y THEOREMS FROM THE 
THEORY OF GROUPS 

82. Generators and Relations 

Topology is intimately associated with the theory of groups. In this chapter 
we shall present brief derivations and summarize those group theoretic 
theorems which were used in the course of our topological investigations. In 
contrast to the groups normally encountered in algebra or geometry, the 
groups which play a role in topology are usually given in terms of generators 
and relations. We shall therefore devote our initial discussion to this manner 
of determining a group. 

Let ;5. be a finite or an infinite group* and let 

A I , A , ,  . . . , A ,  ( 1 )  

be a collection of (not necessarily distinct) elements of 5. We call these 
elements generators of 8 if each element of ;F can be written as a product of 
elements A I ,  A, ,  . . . , A,, and their reciprocals 

A ; I ,  A ; I ,  . . . , A, I .  (2) 

Such a product is called a “word.” As an example, A , A ; ’  or AT4A6A: is a 
word. On purely formal grounds, we also introduce the empty word, in which 
no generators appear. Each word will then represent a group element, but 
different words can represent the same group element. In particular, the 
empty word is the unit element of the group, which we also denote by 1. As 
an abbreviation, we shall also denote a word by W ( A , )  and we shall set 

WI(’,) Wz(Ai) 

(read: is identical to) if both words coincide element-for-element. On the 

*Elementary examples and definitions can be found, for example, in van der Waerden [3, 
Chapter Ill ,  or in Reidemeister [7]. 
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other hand, if W,(A,)  and W,(A,) represent the same group element, without 
necessarily coinciding element-for-element, then we say that they are equal: 

WdAJ = WAA,). 

The word which arises when we reverse the order of all elements of a word 
W(A,) and simultaneously reverse the sign of all of the exponents appearing 
in W(A, )  is called the reciprocal word W - ' ( A , ) .  Clearly, it will represent the 
group element which is reciprocal to the group element represented by W(A,).  

If two words W,(A,)  and W,(A,) are equal, then we say that the equation 

WdAJ = W,(A,) 

is a relation of the group 8 which holds among the generators A , , A 2 ,  
..., A,. We usually write the equation so that the unit element of the group 
stands on the right-hand side: 

The question of finding all relations is, accordingly, equivalent to the question 
of finding all representations of the unit element of the group. The trivial 
relations 

W , ( A ; ) W ; ~ ( A ; )  = 1. 

A , A ; ' =  1 and A;'A,= 1 (3) 
always appear among the relations of the group. 

If R(AJ = 1 is a relation of 8 and W(A,) is any word of 8, then we can 
obtain a new word from W(A, )  by "application of the relation" R ( A , )  = I to 
W(A,).  Application of the relation R ( A , )  = 1 consists of either striking out 
R+'  when it appears in W ,  that is, by transforming W = W , R  "W, to the 
new word W ,  W,, or by inserting R 'I  into W. The words obtained in these 
ways represent the same group element as the original word because R ' = 1. 

Now let 

R , ( A , )  = I ,  R2(A,)  = 1, . . . &(A, )  = 1 (4) 

r P 0, be finitely many relations of 5. If it is possible to transform a word 
W(A,) to the empty word by means of a finite number of applications of the 
relations (4) and the trivial relations (3), then 

is a relation of 8 and is said to be a consequence of the relations (4). If each 
and every relation of is a consequence of (4), then (4) is said to be a system 
of defining relations fo the group 8. The system is characterized by the fact that 
one can transform an arbitrary representation of the group's unit element to 
the empty word by application of the relations (4) and the trivial relations (3). 
One can also transform any word to any other word equal to it by applying 
these relations. 

We shall not require that the relations of a system of defining relations be 
independent. That is, we allow a relation to be a consequence of the other 
relations. 

W ( A , ) =  1 
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A system of defining relations (4) taken together with the generators ( I )  
defines the group 3 completely. For all other relations are determined by (4) 
and, as a result, so are all representations of the group’s unit element. But this 
establishes whether two given words will represent the same group element. 
However, the question of deciding whether two words are equal by means of 
a computational procedure is, in general, an unsolved problem of group 
theory (the word problem).* 

The restriction which we have made here, to finitely many generators and 
defining relations, is not justified by group theoretic considerations. There are 
in fact groups which can only be represented by infinitely many generators; 
for example, the rational numbers with the exception of zero form such a 
group, when algebraic multiplication is taken as the group multiplication, 
because there are infinitely many prime numbers. In the theory of finite 
complexes, which stands at the center of our investigations, we need only to 
deal with groups having finitely many generators and defining relations. We 
restrict our treatment to such groups for the sake of simplicity. 

EXAMPLE I .  The integers, with algebraic addition as group multiplication, form an infinite 
group. We can choose the integer + I as the generator A .  The unit element of the group is the 
integer 0. The element A ’ is the integer + k. A word AelAe* . . . , where each epsilon is equal to 
? I ,  can be transformed to A ’ only with the help of the trivial relations. The word is equal to the 
unit element of the group only if k = 0. Each relation of the group is therefore a consequence of 
the trivial relations, and a system of defining relations is the empty system. Such a group, which 
has a single generator and no defining relations, is called a free cyclic group. 

EXAMPLE 2. The residue classes of the integers mod g, with “elementwise” addition as group 
multiplication, form a group of order g. A generating element is the residue class A containing 
the integer 1. A system of defining relations is given by the single relation Ag = 1. In this relation 
I denotes the unit element of the group, which is the residue class containing the integer 0. Such 
a group is called a cyclic group of order g. 

When we are given a group in terms of a system of generators and defining 
relations, we can derive other generators and defining relations by means of 
the following procedures: 

1. Inclusion or removal of a consequence relation. If 

R l ( A , )  = 1, R,(A;)  = 1, . . . , R r ( A , )  = 1 ( 5 )  
is a system of defining relations of ;F and R, ,  , ( A i )  = 1 is a consequence of 
(9, then 

R , ( A , )  = 1,  ‘ , ( A , )  = 1,  . . . , ‘ , ( ‘ I )  = 1 9  Rr+I (Ai )  = 1 ( 6 )  

is also a system of defining relations. The converse holds also because the 
totality of consequence relations of the two systems (5) and (6)  is the same. 

2. Introduction or elimination of a generator. If 

A , , A , ,  . . 7 A, (7) 

Editor’s note: There is no universal algorithmic procedure for solving the word problem in an 
arbitrary group defined by generators and relations (Rabin [ I ] ) .  
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are the generators of and (5) are its defining relations, then one can 
introduce an arbitrary product W(A,)  = A , + ,  as a new generator. Given the 
generators 

the relations 
A l , A , ,  * .  . *  A , + ! ,  (8) 

R , ( A , )  = I ,  R,(A,) = 1, . . . , R,(A, )  = I ,  A,LI, W(A;)  = 1 

(9) 
form a system of defining relations. For if 

R ( A , , A , ,  * * 9 A , + , )  = I 

R ( A , , A , ,  . . . , W ( A ; ) )  = 1 

is an arbitrary relation in 3, then one obtains the relation 

(10) 

by application of the relation A , ,  I = W(A,) ,  where the new element A , ,  I no 
longer appears in (10). The relation (10) is a consequence of (5) because (5) is 
a system of defining relations of 3. The left side of (10) can also be 
transformed to the empty word by application of the relations (5) and the 
trivial relations. 

Conversely, if we first assume that (9) is a system of defining relations 
among the generators (8), it follows that (7) are also generators of the group 
and (5) is a system of defining relations among them. For each product of the 
generators (8) can be expressed in terms of the generators (7) because 
A,+ = W(A,).  By a previous assumption, a relation R ( A  I , A , ,  . . . , A , )  = 1 is 
a consequence of the relations (9). There thus exists a finite sequence of 
words 

R ( A , , A , ,  a ,  A,)  

R ’ ( A , , A , ,  * * 7 A,,A,+I) 

R ” ( A , , A , ,  . . . ,A , ,A,+ , )  

such that each word comes from the preceding word by application of 
relation (9) or a trivial relation A:A,-& = 1 ( E  = 2 I ;  i = 1,2, . . . , a + 1) and 
the last word of the sequence is the empty word. By substituting the word 
W(A,)  for A , + ,  everywhere, we form the sequence of words 

R ( A , , A , ,  * * * ,A , )  

R ’ ( A , , A , , .  . . 9 A, ,  W ( A ; ) )  

R“(AIYA2, . . . 9 A, ,  W ( A ; ) )  

If we can show that each of these words can be transformed to the following 
word just by application of the relations (5) and the trivial relations 
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A;Ai-' = 1 ( i  = 1, . . . , a) ,  then we are finished. If the word 

R ' k + l ) ( A , , A 2 ,  * 3 A,,A,+I) 

follows from 

by application of one of the first r relations (9) or one of the trivial relations 
A;A;' = 1 ( i  = 1,2, . . . , a), then the word 

will also follow from 

R ' k ) ( A 1 ' A p  , . . , A , ,  W(A, ) ) ,  

R f k + l ) ( A l , A 2 , .  . . , A , + ! )  

R ( k ) ( A I t A 2 , .  . . , A , + J  

in a like manner, by application of the same relations. But if 

follows from 

by application of the relation Aa-2,W(Al) = 1 or a trivial relation 
A;+ lAa-;l = I ,  then 

R ' k + 1 ) ( A , , A 2 , .  . . , A , , W ( A , ) )  

R ' k ' ( A I r A 2 , .  . . ,A , ,W(A, ) )  

follows from 

by application of the relation W E ( A I )  W - ' (Al )  = I ,  and is reduced using only 
trivial relations. 

I t  is possible to prove that one can obtain any presentation of a group 8 in 
terms of generators and defining relations, starting from any other such 
presentation, by means of a finite number of applications of the elementary 
operations which were just described. The proof is carried out by showing 
that, starting with two presentations of the group 8, one may obtain a third 
presentation in which the generators of both the first and the second 
presentation appear, and that the third presentation may be obtained from 
either of the original presentations by introducing relations which are 
consequences of the given relations. 

83. Homomorphic Mappings and Factor Groups 

If, to each element F of a group s, an element F of a second group 8 has 
been assigned as the image element of a mapping and if, furthermore, each 
image F, of the product of two elements FIF2 = F3 is equal to the product 
FlF2 of their images, then we say that a homomorphic mapping of 5 into 8 has 
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been given. If each element of 5 is the image of an element of 3, then we 
speak of a homomorphic mapping of 8 onto 5. If the mapping of onto 8 is a 
one-to-one correspondence, then 8 and 8 are said to be I-isomorphic, or just 
isomorphic. 

The following fundamental theorem holds with regard to homomorphic 
mappings of two groups. The theorem relates each homomorphic mapping of 
5 onto 5 to a factor group of 3. 

HOMOMORPHISM THEOREM. If a group 5 is mapped homomorphically onto a 
group g, then 5 is isomorphic with the factor group %/in, where in is the normal 
subgroup of 5 whose elements are mapped to the unit element of 8. Conversely, 
8 maps homomorphically onto each factor group %/in (where in is a normal 
subgroup of 5). 

The proof can be found, e.g., in van der Waerden [3] p. 35. 
If 5 is presented in terms of generators and defining relations (082, (1) and 

(4)], it is valid to present a factor group 5 = %/% in terms of generators and 
relations. We shall assume that there exist finitely many elements S,(A,), 
S2(A,), . . . , S,(A,) of in such that in is the smallest normal subgroup which 
contains these elements. (This assumption will always be satisfied if Y l  
possesses finitely many generators Sl(A,),S2(Aj), . . . , &(Ai)).  Each element 
of in will then be a product of finitely many elements of the form 

F(A,)S,'(A,)F - \ ( A ; )  ( E  = 2 1). 

Each such product will be an element of in because in is a normal subgroup; 
on the other hand, these products already form a normal subgroup thus they 
form the whole of '3 since in is to be the smallest normal subgroup containing 
each element &(Ai). 

Let us denote the residue class in %/in in which an element of 5 lies by a 
bar written above the element. Then 

- -  - 
A l , A 2 , .  . - , A ,  (2) 

will obviously form a system of generators of 5, and the relations 

R,(&)  = i, . . . , R,(&) = i 

s,(A,) = i ,  . . . , s,(&) = i 
(3) 

will hold. Here, the residue class 1, in which the unit element of 8 lies, is the 
normal subgroup in. 

We claim that (3) is a system of defining relations of 5, so that each 
relation R(4) = i of 3 is a consequence of (3). The equation R ( 4 )  = i 
denotes that R(A, )  belongs to in. Now each element of in is equal to a 
product of elements of the form (1). We can thus transform R(A, )  to a 
product of elements of the form (l), with the help of the relations R,(A, )  
= 1 , .  . . , R,(A,) = 1 and trivial relations. Likewise, by application of the 
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relations R , ( q )  = 1, . . . , R,(T) = and trivial relations, we can transform 
R ( 4 )  to a product of transforms of S,"(T), . . . , s2'($) and then 
transform - this product, by again applying relations S,(A,) = 1, . . . , Ss(X,) 
= 1 and trivial relations, to the empty product. 

We thus obtain the defining relations of the factor group by including 
certain additional relations with those of the group. Our result is stated in the 
following theorem: 

THEOREM I. I f  the group 5 has the generators 

A , , A , ,  A, 
and the relations 

R , ( A , )  = 1, R , ( A , )  = 1, . . . R,(A,) = 1, 

and if (n is the smallest normal subgroup which contains the particular elements 

S,(A,h S,(A,), . . * Ss(A,), 

then the factor group %/Yl = 5 has the generators 
- -  - 
A , , A , ,  . 1 a , A ,  

and the defining relations 

R,(&) = i, R,(A,) = i, . . . , R,(Z,) = i, 

&(A,) = i, s,(&) = i, . . . , ~ ~ ( 4 )  = i; 
where 4 denotes the residue class in which A, lies. 

In deriving Theorem I we started with a particular normal subgroup, 9 and 
we tried to find the relations of ;F/%. But one can also start with the relations 
of F4: and include arbitrary additional relations. In this way we can always 
obtain a factor group %/(n which is the smallest normal subgroup containing 
the left-hand sides of the additional relations. 

We shall apply the homomorphism theorem to give a result which is of use 
in 420 Let three groups 

37 Q !R (4) 

be given such that 6 and (n are normal subgroups of 5 and let % be 
contained in 6. The subgroup % determines a homomorphic mapping of ?j 
onto the factor group ;F/9 = 5. Under this mapping the groups (4) 
transform, respectively, to the groups 

3 = S/R, 35 = s/(n, iR = (n/% = i 
Since 8 is a normal subgroup of 8, then @ is a normal - -  subgroup of 5 and 

there will exist a homomorphic mapping of 5 onto %/a. The result of 
carrying out the two - -  homomorphic mappings in succession is a homomorphic 
mapping of 3 onto %/'B such that the elements which transform to the unit 
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- -  
element of 8/5D are just the elements of 59. Consequently, 8/5D and 
5/?6 = (8/8)/(X1/8) are isomorphic. 

84. Abelianization of Groups 

case. Let 8 be a group having the generators 
We shall apply Theorem I of the previous section to an important special 

A l , A 2 , .  . . ,  A, ( 1 )  

(3 R , ( A , )  = 1, R2(A,)  = I ,  . . . , R,(A, )  = 1 (2) 

and the defining relations 

and let 8 be the smallest normal subgroup which contains all of the 
commutators 

A,A,A,-'A,' ( i , k  = 1,2, . . . , a ) .  

From Theorem I the factor group 8 /8  = 5 has the generators 
- -  - 
A l , A 2 , .  A, (7) 

and the defining relations 

R,(A,) = i, &(A,) = i, . . . , &(A,) = i, 
- - -  - 
A , A , A , - ~ A ; ~ = ~  ( i , k , =  1 , 2 , .  . . , a ) .  (3) 

Here 
decomposition of 8. For (3) we can also write 

denotes the residue class of the element A, of 8 with respect to the 

A,A, = A,A,.. 
The generating elements of 5 commute with one another. Consequently, all 
elements of 5 commute with one another; 5 is therefore Abelian and is called 
the Abelianized group 5; it is obtained from 8 by adding on the commutation 
relations (3). 

We must now show that 5 is determined by 5 and does not depend upon 
the particular choice of generators and defining relations of 5. We 
accomplish this by providing a second definition of 5 which clearly 
demonstrates its independence of the particular presentation of 8. . The 
Abelianized group 8 is the factor group of 8 with respect to the commutator 
group Q. By the commutator group of a group 8 we mean the normal subgroup 
which is generated by all of the commutators Fp FaFp: IFo- I ,  where Fp and Fa 
are arbitrary elements of 8. We must show that 92 = Q. From Theorem I of 
$83, % is the smallest normal subgroup which contains the commutators 
A,A,A['A;', that is, particular commutators of 5. Thus ZIZ is contained in 3. 
But Q is also contained in 8, for an arbitrary FLFaFp-'F,-I is transformed by 
the mapping %-+% to the unit element 1 since 5 is Abelian. Thus 8 contains 



all commutators of 8 and consequently contains ft as a subgroup. Thus 
91 = R. 

85. Free and Direct Products 

A group 3 is said to be the free product of the groups . . , , F 4 ; h ,  
expressed as a formula 

% = % I  3 2  (1 )  * ' *  
% h ?  

if each element of 3 other than the unit element can be represented uniquely 
as a product 

e., Fkn ' ' . FZr. (2) 

Here F,,,F,,, . . . are elements other than the unit element from the 
respective groups % , , ; F k .  . . . and each two consecutive elements belong to 
different groups, that is, i # k and so forth. The structure of the free product 
3 is determined by the structure of the groups ;FI ,  CF2, . . . , s h .  Two elements 
given in the form (2) 

f$,,Fk,,, . . . Firs. and F,..,.. F,,,,.. . . 1 F,..s,, 

are multiplied by writing them alongside of one another. The element arising 
in this way 

F,.L,Fkeu9 * * * FZrs,F, .,,,, ,Fk..,,. . - . Fz..s.. (3) 

is already in the form (2) if z' # i". But if F,,{. and FjPtL.. belong to the same 
group, then Fz.r.F,..i.l.. is a certain element Fz. of the group 3z.. If F,. # I ,  then 
the product has the normal form (2). If F,. = 1, we can simply strike out F,. 
and once again apply this procedure. By proceeding in this manner we 
eventually either obtain a unique normal form (2) or the unit element, for the 
product. 

We shall not prove the theorem here that a free product of h arbitrary 
groups gI ,  ;F2. . . . , %,, exists. The existence proof can be found in Klein [ I ]  
p. 361. 

If we are given the groups %l,;Fz,  . . . , % h  in terms of their generators and 
defining relations, then we can derive the generators and defining relations of 
the free product from those of the individual groups. We shall demonstrate 
this for the case of two groups, ;FI and ;F2. having the generators and defining 
relations 

A l , A 2 , .  . . , A ,  
R , ( A , )  = I ,  R 2 ( A j )  = 1, . . . , R,(A, )  = 1 
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The elements 

A , , A 2 ,  * .  . 7 A,,Bl,B2, * 3 Bb 

obviously generate the free product 0 s2 and the relations 

R , ( A , )  = 1, . . . , R,(A,) = 1, 

s , ( B k )  = 1, . . . 9 s s ( B k ) =  (3) 
are satisfied in the free product. These relations are defining relations of the 
free product, that is, each relation which is valid in the free product is a 
consequence of these relations. For given any product formed from the A’s 
and B’s which is equal to the unit element of 8, one may decompose this 
product into maximally long subproducts each consisting of A’s and B’s 
alone in such a way that subproducts containing A’s and B’s alternate in the 
entire product. From (2), each of these subproducts must individually be 
equal to 1. They may therefore be transformed to the empty word by 
application of the relations (8). Each subproduct can in fact be transformed 
by using only the first r relations or only the last s relations, together with the 
trivial relations. The entire product can be transformed to the empty word in 
this way. 

The proof is clearly also true for an arbitrary number of groups. As a 
result, we have 

THEOREM I. One obtains a system of generators and defining relations of the 
free product of a collection of group as the union of the generators and the union 
of the relations of the free factors, respectively. 

As an example let us consider the free product of h free cyclic groups 
. . . , Sh. Each group Si has one generator Ai and no relations. The 

free product 8 then has h generators and no relations. We call 8 the free 
group having h generators A I ,  A,, . . . , Ah. 

I t  also follows that one can present an arbitrary number of generators and 
an arbitrary number of defining relations of arbitrary form, and there will 
always exist a group 8 which is generated by these generators and has these 
relations as its defining relations. To construct 8 we first construct the free 
group having the given generators. From Theorem I of $83, by including the 
relations we will obtain a factor group having the desired properties. 

Problem 

Prove that the free product of two finite groups has finite order if one factor consists of the 

A group 5. is said to be the direct product of the groups 3,, S2,, . . . , s h ,  

unit element alone. 

expressed as a formula 

8=81 x82x “ ’  x 8 h ,  (4) 
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if each element of 8 can be represented uniquely as a product 

F/i F 2 K  ' ' . FhS ( 5 )  
and each element of 3" commutes with each element of 5, if Y # p, The 
structure of the direct product group is uniquely determined by the structures 
of the group factors: the equation 

Fll,F2K, . * . Fh". F11.'F2Krr * . . Fhrp. = (FlL~Fl ,~~)(F2, .F2Ktf )  * * . (FhS,FhS,,) (6) 

reduces multiplication in the direct product to multiplications in the group 
factors. 

The existence of the direct product of arbitrarily given factors is proved by 
construction. One introduces the symbolic product, that is, the sequence of 
letters (5 ) ,  as elements and one defines the multiplication of elements by the 
equation (6). 

If the groups s,, 3,, . . . , % h  are presented in terms of their generators and 
defining relations, then the generators and defining relations of the direct 
product can also be presented. We shall again consider the case of two groups 
having the generators and defining relations (3,) and (3,). The generators. 

A , , A , ,  . . . 7 A , , B , , B z , .  . . 9 B, 

obviously generate the direct product 3, X 3, = 8 and the relations 

R , ( A , )  = 1, . . . , R , ( A , )  = I ,  

S , ( B , )  = 1, . . . , ss(Bk) = 1, 

together with the commutativity relations of the generators 

A,BkA; 'B; '=  1 ( i =  1,2,. . . , a , k =  1,2,. . . , b ) ,  

are clearly relations in 3. They form a system of defining relations. For with 
the help of the commutativity relations any product of the A's and B's can be 
brought to the form 

n A,' Bk 
i k 

and if  this product is equal to I ,  then individually niA i  = 1 and n k B k  = I 
must hold. By definition, each element of the direct product must be uniquely 
representable in the form (5) and the unit element, in particular, can only be 
represented in the form 1 0 1. In  this case, the subproducts n , A ,  and nkBk 

transform individually to the empty word by use of the relations of the groups 
3, and %2 and the trivial relations. 

We then have 

THEOREM 11. One obtains a system of generators and defining relations of the 
direct product 3 = 3,  x %2 x . . * x % h  by writing the generators and defining 
relations of the individual groups %,,s2, . . . , % h  together, and including the 
commutation relations of all pairs of groups s,, s k  ( i  # k ) .  
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Problem 

of its factors. 
Show that the order of the direct product of finite groups is equal to the product of the orders 

As an example, let us look at the direct product of h free cyclic groups 
3,, 7j2, . . . , 3, which are generated by A ,  , A , ,  . . . , A, ,  respectively. These 
A’s are the generators of the direct product. The defining relations are just the 
commutation relations 

A , A , A , - ~ A ; ~ =  1 ( i , k , =  1,2, .  . .,/I). 
Since the individual factors are Abelian groups in this case, their direct 
product is also Abelian. This direct product is called the free Abelian group 
having h generators. Since each element of 3,  can be uniquely represented in 
the form A;, it follows that each element of the free Abelian group having h 
generators can be uniquely represented in the form 

and the product of two elements 

is the element 

F = A ; i A ; i  . . .  A?, 

APiA,”;. . . A$ and ApYAA,”; . . . Ah“;‘ 

Ap;+aYAai+a; .  2 . . A h 4 + 4 .  

If we associate an integer valued vector ( a l , a 2 ,  . . . , ah) with each element 
F, we will have produced an isomorphism between the group 3 and the group 
of all integer-valued h-dimensional vectors (with vector addition taken as the 
group multiplication). Each element of Es; can therefore be represented by an 
h-dimensional integer-valued vector, that is, by a point in Euclidean h-space 
with has integer coordinates. These points form an h-dimensional point 
lattice. Thus at times we will use the term “h-dimensional lattice” instead of 
“free Abelian group with h generators.” Instead of representing the element F 
by a vector, we can just as well represent F by the translation which this 
vector specifies for, as is well known, the group is isomorphic with the group 
of covering translations of the h-dimensional point lattice. We define the 
0-dimensional lattice to be the group which consists only of the unit element. 

We make one last observation! In the direct product group Es; = 8, x 
32 X . . . X S,, each of the groups . . . , 3, is a normal subgroup. 
When Es; is decomposed with respect to 3,, a residue class in the 
decomposition will consist of the set of all elements which one obtains by 
holding the elements F,, . . . . , Fhs fixed in (5) and letting F , ,  run through all 
elements of 3,. The factor group 7j/S, is therefore isomorphic with the group 
52 * .  ‘ 3,. 

86. Abelian Croups 

We have previously used the algebraic multiplication sign to indicate the 
process of group multiplication. When we deal with Abelian groups it is 
preferable to replace the multiplication sign with the addition sign and, 
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correspondingly, to denote the unit element of the group by 0 instead of 1. In 
place of the product of two elements we then say the sum of two elements, in 
place of the reciprocal element the negative element, in place of the direct 
product the direct sum, and in place of the unit element the zero element. 
This renaming is done in order to make clear the close relationship of the 
theory of Abelian groups to the theory of integer-valued linear equations. 
Whenever we use additive notation and multiply group elements by using the 
+ sign, it will be self-evident that the group multiplication is Abelian. We 
shall not expressly write out the commutation relations. In additive notation, 
the relation which defines a cyclic group of order p is no longer written 
AP = 1 but, instead, as p A  = 0. (One must be careful, in analogy with an 
algebraic congruence relation, not to conclude from this equation that A = 0. 
Group elements, not numbers, stand on the right-hand and left-hand sides of 
the equality sign.) 

Let us first look at a free Abelian group 3,  having the generators 

A, ,A2, .  * - 9 A, .  

a , A ,  + "*A2 + . * * + amAm. 

( 1 )  

(2) 

From $85,  each element of 3, can be represented uniquely in the form 

A set of elements having the property that each element of 5, can be 
represented uniquely as a linear combination of these elements is called a 
basis of 8,. The elements (1) thus form a basis of 3,. If 

A; ,A; ,  . . . , A: 

is another basis of 3m, then, first of all, m = n. If i t  were the case that m < n ,  
for example, we could express the elements of the new basis in terms of the 
elements of the old basis: 

m 

A: = 2 a,,A, (v = 1,2,. . . , n).  (4) 
p =  I 

Since rn < n,  there would then exist a relation with rational coefficients 
between the rows of the matrix [a,], a relation with integer coefficients not 
all of which vanish. I t  would follow from this that such a relation holds 
between the A ; .  This would contradict the basis property of the A:. 
Consequently the matrix [a,,] is square. This proves at the same time that the 
integer rn (the dimension of the lattice) is a characteristic property of the 
lattice: 

THEOREM 1. Two lattices are isomorphic if and on& if they have the same 

Going in the opposite direction, the A, can be expressed uniquely in terms 

dimension. 

of the A;: 
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Setting ( 5 )  into (4), 

Because the A: form a basis, we have 

= 1 for v = h  
= O  for v # h  

m 

p =  1 
c q 4 L A =  4, (7) 

or, in matrix notation, 

[ %] [ P i k ]  = [ ' i k ] .  

This implies, for the determinants of the matrices, 

Iaikl I b i k l  = 

and because the matrix elements are integers, 

laik[ = ? 1, 

and (7) states that [ bik] is the reciprocal matrix of [aik]. Thus the 
transformation from one basis to another is unimodular and integer valued. 

THEOREM 11. A subgroup, @ of an m-dimensional lattice, g,, is a lattice of 
dimension at most m. 

Proof. If A , , A , ,  . . . , A, are the generators of sm, then let s,-I be the 
sublattice generated by A , , A , ,  . . . , A m - l  and let 8 be the subgroup of all 
elements of @ which belong to 5,-1. We will assume that the theorem has 
been proved for Then 6 is a lattice of dimension at most m - 1. Let 
B,,B,,  . . . , Bk-,  be as basis of 8 ( k  5 m). Among all of the elements 

G = g l A l +  * * .  + g , A ,  

of @ we are attempting to find an element 

Bk = g : A  I + . . . + g ; + A m  

such that the last coefficient possesses the smallest possible positive value. 
(We can exclude the case when gm is always equal to zero, since then @ = @ 
and nothing more remainds to be proved.) The coefficient G,,, is obviously a 
multiple of g; and, therefore, 

G - (grn/gZ)HBk 

is an element of 8 and is thus a linear combination of B l , B Z ,  . . . , B k - l .  
Then E l ,  B,, . . . , Bk form a system of generators of @. Each element can be 
uniquely represented in terms of E l ,  B,, . . . , Bk. Otherwise, there would exist 
a relation 

xIB1  + x,B, + * * . + xkBk = 0 

having coefficients which do not all vanish. In that case, we could express the 
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B’s in terms of the A’s and obtain a relation between the A’s in which 
xkg: # 0 would appear as the coefficient of A, .  But no such relation holds 
between the A’s.  Thus kY is a k-dimensional lattice (k S m) having the basis 
B , ,  B,, . . . , B,. Since the theorem is trivially true for for a 0-dimensional 
lattice, i t  is valid in general. 

Because of Theorem 11, we sometimes refer to a subgroup of a lattice as a 
sublattice. 

Let 5 now be an arbitrary Abelian group having the generators 
- L  - 
A I , A , , .  . . ,  A, 

and let 8, be an m-dimensional lattice having the basis 

A , , A , , .  . A,.  

If we assign the element 

alA1 + a2x2 + * - * + a,Am 
of 3 to each element 

a , A ,  + a,A, + * . . + amAm 

of %,, then we obtain a homomorphic mapping of 8,  onto 8. The elements 
of 3, which map to the zero element of 3 form a subgroup Yl of g,, that is a 
sublattice, and the elements of 3 are in one-to-one correspondence with the 
residue classes in the decomposition of 3, modulo Yl. The group 5 is then 
the factor group %,/%. 

Let us now select any system of generators of 92: 

N , , N , , .  . . 7 N, .  

This is possible because 8 is a lattice of dimension no larger than m. We do 
not require, here, that these elements form a basis of 8. If 

m 

p =  I 
N ,  = aYCAP ( v =  1,2, .  . * , n ) ,  

then the N u ,  and therefore also 92 and 
determined by the matrix of coefficients 

= %, will be completely 

However, the converse is obviously not valid, since the group can be 
described in arbitrarily many ways by means of a matrix [a,]. For example, 
we can obtain a new matrix by replacing the generators A , , A , ,  . . . , A ,  and 
N , ,  N , ,  . . . , N ,  of the lattices 3, and (n by new generators A’,,A;, . . . , A& 
and N,’ ,  N ; ,  . . . , N,’ which are coupled to the former generators by 
unimodular integer-valued linear transformations. We shall now attempt to 
bring the matrix [a,,] to a normal form by means of such transformations. We 
do this step-by-step, by performing the following special unimodular 
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transformations (elementary rearrangements) a finite number of times: 

(a) 

In the matrix [a,,] this corresponds to addition of the ath column to the 7th 

Replacement of A, by A, - A, (a # 7). 

column. For 

N , = C a  ”P A P = 1 . .  +a,A,+ +a,A,+ * . .  

- _ . . .  + avo(Ao - A,) + - * + (a, + avo)A, + * * * . 
(b) Replacement of A ,  by -A, .  

This produces a change of sign of all elements in the 7th column of [a,]. 
Corresponding replacements can be made in the generators N ,  , 

(a’) Replacement of N ,  by N ,  + N , .  

This effects an addition of the hth row to the Kth row. 

(b) Replacement of N ,  by - N , .  

This produces a change of sign of all elements of the hth row. 
Out of these four operations, namely, row addition, column addition, 

change of sign of a row, and change of sign of a column, further operations 
can be derived, by appropriately combining them, for example, interchange 
of two rows or two columns. We shall prove in $87 that a coefficient matrix 
of rank y can be reduced by means of such transformations to the following 
diagonal form: 

N , ,  , . , , N,,: 

- m u  

Each of the c’s will be contained, as a factor in its predecessor. The first p 
diagonal elements cl,  . . . , cp will differ from 1 and the last y - p diagonal 
elements will be equal to 1. We call the c’s the invarianf factors of the matrix 

If A ; , A ; ,  . . . , Ah are the resulting new basis elements of 3,, then the 
[a,,]. 

elements 

c,A;,c,A;,  . . . , cuA; 

and all linear combinations formed from them are just the elements of 8. 
Two elements of 3,, 

p l A ;  + p2A; + * * * + pmAh 
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and 

q l A ;  + q2A; + . . * + qmA;, 

will belong to the same residue class of Yl in 5, if and only if 

( P I  - 41)’; + ( ~ 2  - 42)’; + a * . + ( P m  - qm)‘; 

p I  = q1 (mod c l ) ,  p2  = q2(mod c2), . . . , P y  = 4 y  (mode,). 

( , A ;  +<*A; + * * . + $A; + q y + l A i + ,  + . * - + qmA; (9) 

(0 5 (, < c,; q, arbitrary) (10) 

belongs to Y I ,  that is, 

Thus each of the elements 

will be a representative of exactly one of the residue classes. Expressed in 
another way: the elements of the factor group 5 = s,/% (which we again 
denote by an overbar) can be written uniquely in the form 

if we require the normalization conditions (10). 
Since the elements of the factor group 5 have the orders c I  ,c2,  . . . , c y ,  

and 00, respectively, 5 is the direct sum of the cyclic subgroups generated 
by &,A;, . . . , and A;. 

Summarizing our results, we have 

THEOREM 111. Each Abelian group 8 having a finite number of generators is 
the direct sum of p finite cyclic groups having orders c I  ,c2,  . . . , cp and p free 
cyclic groups. One can assume here that each c divides the preceeding c. The 
integers c I  , c2,  . . , , cp which are different from 1 are the invariant factors of the 
matrix of coefficients [a,,] which determines 5. The integer p is the difference of 
the number of columns m and the rank y of [a,,]. The integers c I ,  c2,  . . . , cp 
and p = m - y are determined uniquely by the Abelian group, and are called the 
torsion coefficients and Betti number, respectively, of the group. 

This nomenclature is justified by the geometric meaning of these quantities 
when 3 is the homology group of a complex ($ 18 and $61). 

We must still prove uniqueness. The subgroup . cp which 
is generated by A ; , A ; ,  . . - . , A; will obviously consist of the set of all 
elements of finite order of 8 and is therefore independent of the choice of 
generators. - From $85 % / U  is isomorphic with the subgroup generated by 
A;+ I ,  . . . , x; and is thus ap-dimensional lattice. Consequently, the integery 
is an invariant of and we need now to consider only the finite subgroup U. 
When we multiply all elements of the cyclic group of order cp generated by 7; 
by a positive integer x, these x-multiples form a cyclic group of order 

of order clc2 * - -  - 

- -  
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c,,/(c,,,x).* In a corresponding manner, when we multiply all elements of ii 
by x, we obtain a subgroup of of order 

CI c2 cP M ( x ) = -  - . . .  - 
(CI 3 x) (c2 1 x) ( c p  9 x) 

M ( x )  will be equal to I only if every factor is equal to 1, that is, if x is a 
multiple of c I .  This characterizes c ,  in an invariant manner. After we have 
characterized c,, ( p < p )  in an invariant manner, let us consider the integers x 
for which 

CI c2 
M ( x ) = -  - * * *  - 

( C P 4  (CI 9 x )  (c2 9 x )  

This equation will hold if and only if the factors 

C,,+ I CP 

( C , , + I J )  ' * * * ' ( C p 4  

are all equal to 1, that is, if x is a multiple of c,,+~. We have then 
characterized c,,+ I in an invariant manner. 

We can use the invariants of an Abelian group to show the distinctness of 
non-Abelian groups. We can Abelianize any such group 3 in a unique way to 
product an Abelian group $. If we define the torsion coefficients and Betti 
number of the non-Abelian group 3 to be the torsion coefficients and Betti 
number of 3, then it follows that a necessary condition for two groups sl and 
%2 to be the same is that their torsion coefficients and Betti numbers be the 
same. If the group 8 is given in terms of its generators 

A , , A , ,  . . . , A ,  (12) 

R, (A , )  = 1, R,(A,) = 1, . . . , & ( A , )  = I ,  ('3) 

and defining relations 

then we can find its torsion coefficients and Betti numbers as follows: The 
defining relations of % are the relations (1 3) together with the commutation 
relations 

A,A, = A,A, ( i , k  = 1,2, . . . , m). (14) 

Instead of regarding 5 as a factor group of 6 with respect to the commutator 
group, we can also adopt the viewpoint that 5 arises from the m-dimensional 
lattice s,, where 5, is defined by the relations (14), when the additional 
relations (13) are included as well. The matrix describing the emplacement of 
Yt in 3, is simply the matrix of coefficients of the relations (13) when these 
relations are written in additive notation. The torsion coefficients and Betti 
number are determined from this matrix, in the manner just described. 

and b. 
We shall use here the notation ( a ,  b )  to indicate the greatest common divisor of the integers a 
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We shall demonstrate the procedure for the case of a group 8 having three generators and the 
four defining relations 

A 2 = 8 3 = C 4 = , 4 B C =  1. 

This is the group of the octahedron. The element A is a rotation about the center of an edge, B is 
a rotation about the midpoint of a neighboring triangle, and C is a rotation about a vertex which 
leaves the diagonal through the vertex fixed.. The relations of the Abelianized group 5 are, 

2 2  = 3 8  = 4c = z+ 8+  = 0. 

The matrix of coefficients of this group is then 

[ i  i ;] 
[w i 81 

and has the normal form 

2 0 0  

One torsion coefficient exists, having the value 2. The Betti number is 0. 

If a group 3 possesses a Betti number other than zero, the Abelianized 
group 3, and thus 3 itself, is infinite. On the other hand, if the Betti number 
is equal to zero, then we cannot decide by this criterion whether the group is 
infinite. As an example, the free product of two groups of order 2 and the 
direct product of these groups (the 4-group) both have two torsion coef- 
ficients of value 2 and Betti number 0. The free product is infinite, but the 
4-group is finite.52 

Problem: 

Determine the torsion coefficients of the symmetric group of permutations of n digits. 

87. The Normal Form of Integer Matrices 

In $86 we made use of the theorem that each matrix E having integer 
elements can be brought to diagonal form by means of elementary 
transformations, that is, by addition or subtraction of a row (column) from 
another, by change of sign of all elements of a row (column), and by 
interchange of two rows (columns). We now carry out the proof. 

Let the given matrix be 

E = [ E , , ]  ( t =  1,2,. . . , n , ~ =  1 , 2 , .  . . , m ) .  

The integer E,,  appears as the element in the tth row and Kth column. Let y be 
the rank of E. 

If y = 0, then the matrix is already in normal form. If y > 0, choose a 
nonzero element and bring it to the position ( 1 , ~ )  = ( I ,  I) .  We shall again 

The proof has been given by von Dyck [I] .  
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denote the element in this position by el  I .  If all elements of the first row and 
first column are not divisible by e l l ,  then let elkt for example, be an element 
of the first row which leaves a remainder < e l l  when divided by e l l .  By 
repeatedly adding or subtracting the first column from the kth column we can 
eventually obtain the integer E;, at the position (1 ,k) .  We can bring e;, to the 
position (1,l)  be interchanging the first and kth columns. We proceed in the 
same manner if, in the first column, an element appears which is not divisible 
by e l  I .  We repeat the procedure until all elements of the first row and column 
are divisible by the element in the position ( I ,  I), and we again denote this 
element by e l , .  This case must occur ultimately, since the absolute value of I 

decreases with each step. By repeatedly adding the first column (row) to the 
remaining columns (rows),sufficiently often, we shall obtain the result that all 
elements of the first row (column) except e l l  are equal to 0. In the resulting 
matrix, if there is an element Elk ( i  # I,k # 1) which is not divisible by e l l ,  we 
bring it to the first row by addition of rows and begin again with the 
procedure just applied. We continue in this way until all elements become 
divisible by the element in the position (1 , l )  and, except for ell, only zeros 
appear in the first row and first column. 

We can carry out arbitrary elementary transformations of the submatrix El 
which arises from E by striking out the first row and column by means of 
elementary transformations of E; these will not change the first row and 
column of E because of the zeros which stand there. By means of such 
transformations we can bring an element e22 to the position (2,2) such that E~~ 
is contained as a factor of all remaining elements of El, while all elements of 
the second row and second column are 0 except for E ~ ~ .  During the 
elementary transformations of El, the property that all elements of El are 
divisible by I is preserved. Thus E~~ is divisible by el I .  By continuing the 
procedure, we eventually arrive at  a matrix in which all elements are equal to 
0, except for certain elements standing in the main diagonal. The number of 
nonzero elements must be y since the rank of E does not change during 
elementary transformations. Each of the diagonal elements e I I , ~ 2 2 ,  . . . , eYy is 
a divisor of the element following it. These diagonal elements, which are 
called the invariant factors of the matrix E, differ from those mentioned in $86 
only in their order, and this can be arbitrarily rearranged by means of row 

We have already proved in $86 that the normal form is unique, that is, 
independent of the details of the normalization procedure, and we have seen 
that the invariant factors are numbers characteristic of the Abelian group 
represented by means of the matrix. We can also see this independence 
directly as follows: If D, denotes the greatest common divisor of all i-rowed 
subdeterminants of E, then 0, will not be changed by the transformations, 
according to familiar rules of determinant theory (Bocher [I]). When the 
normal form of the matrix is considered, D, is the product of the first i 

and column interchanges. Here, e l l  = cy,  . . . 9 Eyy = CI. 
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diagonal elements: E~~ . . E , ~ ;  thus 

5, = D , / O , -  I 

is already determined by E. 
In practical cases it is not always advisable to employ the procedure just 

given. A different sequence of transformations may sometimes lead more 
quickly to the result. We shall demonstrate the procedure by applying it to an 
example encountered in 024, an incidence matrix for pseudomanifolds; this is 
a matrix E of n rows and m columns having the following properties:. 

(a) Exactly two elements differ from 0 in each row. Their absolute value 
is 1. 

(b) If we arbitrarily divide the columns into two classes, then there will 
exist at least one row whose ones stand in columns belonging to different 
classes. 

The normalization is carried out in four steps: 

Step 1 

By interchanges of rows and columns E is transformed to the matrix 

* 
. . .  21 + 1  0 

* 21  . . .  

* * * 

* * * 

. . .  

. . I  

-m- 
I 

where the stars denote elements which are 0’s or 1’s and do not need to be 
specified in more detail. To get the form (I) and E we first bring the two ones 
of the first row to the first and second places by column interchanges. 
Because of ( b )  there exists a row, for example, the ith, having a I in the first 
or second column and having the other 1 in the kth column, k > 2. We then 
interchange the third column with the kth column and the ith row with the 
second row. The resulting matrix will have the same first two rows as (I). The 
rows are disposed of, in this way, row by row. 

step 2 

exactly one + 1 and one - 1 stand in each of the first m - 1 rows. 
By changes of sign in the columns, we can arrive at a configuration where 
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- 
0 
0 

0 

* 

step 3 

takes the configuration 
Addition of columns 2 through m to the first column. The matrix then 

0 
0 

1 

* - 

. . .  

. . .  

. . .  

The first column contains only 0's or 2's (which can appear only in the last 
n - m + 1 entries). When appropriate sign changes are made in the rows, the 
1's appearing there will all have positive sign. 

step 4 

By appropriate additions or subtractions of the first, second, . . . , (m - 1) 
th row, respectively, to the remaining rows, we arrive at a configuration where 
only a single 1 stands in the second, third, . . . , mth column. The matrix will 
then have the form 

0 1 0 0 
0 0 1 0 . .  0 

0 0 0 * * *  1 

. . .  

The last n - m + 1 rows will contain only Us, except in the first column. 
Consequently, the first column has not been altered. If no 2's now stand in 
the first column, that is, only 0's appear, the normal form will then result: 

0 1 0 0 
0 0 1 - . .  0 

0 0 0 1 

0 0 0 * * -  0 

. . .  

. . .  
(I") 
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- - 
2 0 0 . . .  0 

0 1 0 * * .  0 

0 0 0 * * *  1 

0 0 0 * * *  0 

. . . . . .  

. . .  

- 

If no more than one 2 appears in the first column then, by means of 
addition or subtraction of rows, we can produce just a single 2, which we can 
bring to the upper left-hand corner, by interchanging rows: 



COMMENTS 

1. (01) Knots in R4. If we allow a knot to intersect itself, then it is possible to deform it in 
3-dimensional ( x ,  y ,  2)-Euclidean space to a circle. However, we can also achieve the same 
result without self-intersections if we regard the space ( x ,  y, z) as a subspace of a 
Cdimensional Euclidean space ( x ,  y , z ,  1). For example, let us specify the two small pieces u 
and b of the knot which cross through one another as follows: Let u be the interval 
- I 5 x 5 + 1, y = z = 0; let b be the semicircle y2 + z2 = I ,  x 0 0, z 2 0. Our task, then, is 
to deform b to the semicircle b' given by y2 + z2  = I ,  x = 0, z 5 0, without a self-crossing of 
the knot occurring, in the space ( x ,  y ,  z, 1). We accomplish this by means of a rigid Euclidean 
rotation of the semicircle b about the y-axis in the subspace ( x  = 0, y ,  z ,  I ) ,  until it arrives at 
the position of 6'. 

2. (02) The representation of the double torus is given a particularly clear description in Hilbert 
and Cohn-Vossen [I], p. 265. The same book gives pictures illustrating the intuitive content 
of the material. 

3. (g2) Immersion of nonorientable surfaces. All possible ways of mapping the projective plane 
into Euclidean space W 3  so that its curves of self-intersection are free of double points have 
been ascertained by Boy [I]. Also see the end of the first volume of Schilling [I]: Topological 
realization of the projective plane by a singularity-free surface in space. 

The projective plane can be embedded into the Euclidean space W4 without 
self-intersections by first projecting it to the boundary of a Mobius band which lies in a 
Euclidean 3-subspace W 3  from a point not in this subspace, and then sewing the projection 
cone to the Mobius band. 

In Appendix 1 of Hilbert and Cohn-Vossen [I] it is shown that the projective plane can 
even be embedded in W4 as an algebraic surface. In this book one can also find interesting 
observations concerning the closing of the Mobius band in W 3  and the configurations of 
cross-caps. 

4. (02) Infinite surfaces have been treated systematically by B. von Kerekjarto 16, Section 5: 
open surfaces]. 

5. (04) Closure of 3-space by groups. It seems obvious to ask the following question: Can one 
close Euclidean 3-space by means of groups other than the conformal and projective groups, 
and still satisfy the criterion that the group transformations be one-to-one correspondences? 
Seifert [ I ,  p. 301, gves examples of other closings satisfying this criterion. The conformal and 
projective groups are, however, distinctive because they alone satisfy the Lie-Helmholtz 
conditions of motion (Weyl [ 1, p. 30)) in the resulting closed space. 

The closing of complex Euclidean space by groups of rational transformations is described 
in Behnke and Thullen [I] p. 3. 

328 
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6. (54) Position spaces in mechanics. The position space of a mechanical system has special 
significance not so much because its topology affects its dynamics as for the fact, pointed out 
by Jacobi [ I ,  p. 441, that it can be provided with a metric such that the orbit curves are 
geodesics with respect to this metric. The total energy is constant with time and the potential 
energy can be specified as a function of position (see, for example, Whittaker [ I ,  51041). 

As an example, let us consider the case of a plane double pendulum hanging in a 
gravitational field. If the total energy is sufficiently large so that each position can be 
achieved, then the position space is a torus. Since each closed curve on the torus can be 
deformed to a geodesic curve of the given metric (under certain conditions, which are 
fulfilled in this special case) (see, for example, Bieberbach [3, p. 1951) and since there exist 
infinitely many nonhomotopic closed curves on the torus, it follows that there are infinitely 
many distinct periodic motions of the plane double pendulum. 

7. (54) Mechanical phase spaces are discussed in Birkhoff [4]. 
8. (55) Topological spaces. The concept of a neighborhood space, as it appears in the text, and 

which is determined through axioms A and B alone, has been constructed in such a way that 
the fundamental topological concepts, such as open subsets, closed subsets, continuous 
mappings, topological mappings, and identification, can be defined in terms of this concept. 
For our purposes, the neighborhood space is only an intermediate concept, leading us to the 
concept of a complex. I t  is too general a concept to allow one to derive essential geometric 
theorems from it per se. For this reason, set theoretic topology requires a more restrictive 
definition for a neighborhood space or a topological space. For example, the axioms (A) and 
(B) of Tietze-Vietoris [ I ,  p. 1561, are the same as our axioms A and B; but further axioms are 
added: (B)b The intersection of two neighborhoods of a point is again a neighborhood of a 
point; (9 If the set U is a neighborhood of a point P then so is the set of all “interior” points 
of U, that is, all points X for which U is a neighborhood of A’; (D) If P # Q, then there exist 
neighborhoods of P and Q, respectively, which have no common point. The Tietze 
neighborhood space is therefore far more specialized than ours, and is equivalent to the 
“Hausdorff topological space” which more commonly appears in the literature. The axioms 
defining the latter space (Hausdorff [ I ,  pp. 213 and 2601) are: (A) Axiom A of the text; (B) 
Given two neighborhoods of a point P, there exists a neighborhood of P which is a subset of 
both of these neighborhoods; (C) If the point Q lies in a neighborhood U(P) of a point P, 
then it has a neighborhood U(Q) which is a subset of U(P) (the neighborhoods are therefore 
open sets); (D) is the same as axiom (6) given above. These neighborhood axioms are 
satisfied, for example, by open ball neighborhoods and open cube neighborhoods in a 
Euclidean space. Since axiom (B) of Tietze is not assumed, the neighborhoods of Hausdorff 
have a more restricted meaning than those of Tietze. For example, when Euclidean space is 
made into a topological space by choosing ball neighborhoods it must, at first, be 
distinguished from that in which the neighborhoods are open cubes. Later on, two systems of 
neighborhoods are declared to be equivalent if each neighborhood of the first system 
contains a neighborhood of the second system and each neighborhood of the second system 
contains one of the first system. 

9. (55) Homogeneity of numerical spaces. The points of the space of numerical n-tuples are not 
defined here to be mathematical objects which can be placed in one-to-one correspondence 
with n-tuples of real numbers; rather, we adopt the viewpoint that a point is identical with a 
numerical n-tuple. Regardless of this, we have introduced a “parallel” coordinate system in 
g9, in which the n-tuple xI , x 2 .  , x, is assigned parallel coordinates yI , y 2 ,  . . . , y,;  we 
must, therefore, distinguish the defining numerical n-tuple from the n-tuple of parallel 
coordinates, even through it is possible in a particular case that x, = y , ,  x2 = y 2 ,  . . . , x, 

The space of numerical n-tuples is not “homogeneous” (Weyl [3, p. A71) in the logical 
sense that two of its points are fundamentally indistinguishable from one another according 
to the axioms defining the space. This is not the case in a numerically defined space, because 
different numbers are distinct objects. On the other hand, the space of numerical n-tuples is 

‘Yn .  
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homogeneous in the topological sense of 412, which is the only interpretation having 
mathematical significance. 

10. (912) Purely combinatorial topology. Kneser [4] and Tietze-Vietoris [I] have reviewed the 
state of development of the purely combinatorial methods. A complete, purely combinatorial 
presentation of surface topology has been given by Reidemeister. A summary of 
combinatorial surface topology has been given by Levi [I] and Chuard [I]. Reidemeister [6] 
has treated knot theory combinatorially. The encyclopedia article (Dehn-Heegaard [ I  is 
likewise presented combinatorially; however, the difficulties presented by a rigorous 
treatment, using purely combinatorial methods, were not fully brought out in this article. 
These difficulties, which are of a fundamental nature, and which are presently 
insurmountable in more than 3 dimensions, are discussed in Bilz [I], Kneser (41, Furch [2, 3, 
51, and Weyl [2]. Attempts to remove these difficulties by appropriately defining 
combinatorial equivalence have been made by Newman [I], [4], Alexander [ 171, and Tucker 
[3], among others. See also the work of de Rham [I], which relates to Weyl[2]; also Mayer [I] 
and BergmaM [2]. 

I I. (914) Strictly speaking, we have only proved in this text that the n-sphere is generated when 
we identify the boundaries of two n-balls by mapping the boundaries congruently one onto 
the other. We can see that the same is true for an arbitrary topological mapping A of the 
boundaries 8, and 8, of the two n-balls, as follows: Let A’ be a congruence mapping of the 
boundary of 8, onto the boundary of a third ball 8;. The boundaries of d, and V2 will then 
be mapped topologically onto one another by A ‘ A - I .  This topological relation can be 
extended to give a topological mapping of the ball 8, onto the ball S,, for example, by 
mapping corresponding radii of 8, and 8; linearly one onto the other. From 98, we obtain a 
homeomorphic neighborhood space when we glue not 8, and 8, but, instead, 8, and 8; to 
one another. This gives rise to the n-sphere, since the boundaries of d, and W, are related 
congruently to one another. 

12. ($14) Spaces of line elements. The problem gives two examples of spaces whose “points” are 
line elements of a closed surface. The question of finding all spaces consisting of oriented or 
nonoriented line elements of closed surfaces has been examined by three authors: Nielsen [6], 
who gives the fundamental groups of all spaces consisting of oriented line elements: 
Hotelling [ I ,  21; and Threlfall [2]. One should also compare van der Waerden [5], problem 
124 (nonoriented line elements of the projective plane), with Problem 4, 930 of this book. 

13. (920) On occasion, the entire homology group is referred to as the Betti group, and the group 
which we call the Betti group in this text is called the reduced Betti group; see, e.g., 
Pontrjagin [3]. 

14. (921) By introducing the incidence matrices, Poincare (especially in [4]) took the decisive 
step in the arithmetization of topology. 

15. (923) Chains mod m. Viewed algebraically, a chain is nothing other than a linear form whose 
indeterminates are the oriented simplexes. The coefficients of this form belong to a particular 
domain of coefficients. If this is the domain of integers, then we get the ordinary chains, as 
considered in 615-922. If we choose the residue classes mod2 as coefficients, then the chains 
mod 2 result. In general, one can use as coefficients the residue classes modulo an arbitrary 
integer m # I .  We then get homology groups and Betti numbers modm whose topological 
invariance can be proved just as for the ordinary chains. The Betti numbers modm are 
determined by the ordinary Betti numbers (which one also calls Betti numbers mod0) and 
the torsion coefficients. In the reverse direction, the torsion coefficients can be calculated 
from the Betti numbers mod m (m = 0,2,3, . . . ). Accordingly, the Betti numbers mod m 
offer no particular advantage over the ordinary homology groups in the study of homology 
questions. On the other hand, they have been useful in other investigations (duality and 
mapping theorems) (see, for example, Hopf [ 13, 181; Pontjagin [3]). Homology groups mod 2 
were introduced by Tietze [I] and developed further by Veblen [4]. Homology groups mod m 
were first investigated by Alexander [ 151. 

16. (825) In more general neighborhood spaces, one defines the homology groups in an 
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appropriate manner so that as many theorems as possible from the theory of complexes 
remain valid. The following simple example may illustrate this. 

Let us consider the point set in the Euclidean plane which is given, in a Cartesian 
coordinate system, by the equations 

y = s i n ( l / x )  for x + O ,  

- 1 S y S ~ l  for x=O,  

and add to this set the point at infinity which closes the Euclidean plane to form the 2-sphere 
G’. We obtain a closed subset IIR of 6’ on which each closed singular I-chain is -0, as one 
easily sees. On the other hand, 2Jl decomposes (3’ into exactly two domains. According to 
Alexander’s duality theorem (see Comment 47), the number of domains is one larger than the 
first Betti number of the embedded complex. Thus, if we use our definition of the singular 
homology groups but consider arbitrary closed sets instead of complexes, the Alexander 
duality theorem will no longer be valid. To learn how to extend the definition of the 
homology groups to” spaces which are arbitrary closed subsets of Euclidean spaces see 
Alexandroff (7, lo], Cech (21, Lefschetz (121, and Vietoris [2, 41. 

17. ($30) Proof of invariance of the homology groups. The idea of simplicially approximating 
singular chains to prove the topological invariance of the simplicial homology groups goes 
back to J. W. Alexander. In his first proof [I], he established the equality of the homology 
groups calculated from two different simplicial decompositions of a complex. This was 
accomplished without defining topologically invariant singular homology groups. Instead, the 
proof used the simpler concept of a singular chain (the continuous image of a simplicial 
chain); the additivity of the singular chains was not needed for an invariant definition of the 
homology groups. 

A second proof by Alexander [I51 did not use singular chains at  all. Instead, he 
approximated the subdivision of each of the simplicial decompositions of the complex in the 
other decomposition. 

In the text we proved the invariance of the connectivity numbers by expressing them in 
terms of the Betti numbers and torsion coefficients. We can see the invariance directly by 
introducing singular chains mod2, that is, by using residue classes mod2 in place of the 
integer chain coefficients. The proof of the approximation theorem, and consequently that of 
the connection groups for the new domain of coefficients, subsequently follows as in the text. 

18. ($31) Complex projective spaces. Points of a complex projective space are (n + I)-tuples of 
ratio numbers, which independently of one another range through all of the complex 
numbers, minus the (n + 1)-tuple consisting only of zeros. Neighborhoods are defined in a 
similar manner as for the case of a real projective space ($14); cf. van der Waerden [I]. 

Using the same methods as for the real projective spaces, one can prove that complex 
projective space is a 2n-dimensional manifold, and that its homology groups of even 
dimension 0,2,4, . . . , 2n are free cyclic groups, while those of odd dimension consist of the 
zero element alone. The homology bases are formed from the complex projective subspaces. 

19. @. 123) Invariance “in the large.” In the special case of a closed pseudomanifold, the 
invariance of dimension follows from the results of Chapter IV, because the dimension n of a 
closed pseudomanifold can be characterized invariantly as the smallest integer such that the 
(n + I)th connectivity number and all subsequent connectivity numbers are equal to 0. 

20. ($32) Homology groups at a point. Instead of defining the homology groups at a point by 
using a particular simplicial decomposition and subsequently proving topological invariance, 
as we have done, we can also define these groups in a way which is topologically invariant 
from the start, as was done with the singular homology groups ($27). To do this, following 
van Kampen [3], we adopt the definition that two singular k-chains U“ and V k  of a complex 
9 are “equal at the point P” if U” - V k  is disjoint from P. A chain U” is said to be “closed 
at P” or a cycle at  P if l a U k  does not pass through P, and one writes Uk- Vk at P if 
U’ - V’ is homologous to a chain disjoint with P. In other words, in all of the chains we 
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neglect the simplexes which are disjoint with P, that is, the simplexes belonging to R - P. We 
thus deal with “chains mod@ - P).” The k-cycles at P can be divided into homology 
classes. These classes form an Abelian group, which is topologically invariant because of the 
way it is defined, and when k > 1 this group is the same as the (k - I)th homology group of 
the neighborhood complex at P. This can be proved by using a simplicia1 approximation. 

Chains and homology groups mod 2. where C is an arbitrary closed subset of SY, have been 
used extensively by Lefschetz [12], for example to assimilate the theory of manifolds with 
boundary into the theory of closed manifolds; cf. Comment 41. 

21. (034) By the “theorem of the invariance of dimension” one usually means the theorem of 
Problem 2, 132. The invariance of dimension was first proved by Brouwer [6]. Other proofs 
can be found in Alexandroff [12], Lefschetz [12], and Sperner [I]. 

22. (838) In the purely combinatorial treatment of surface topology, in which the original objects 
are a finite or countable Dumber of points, intervals, or surface elements, and only the 
question of elementary relatedness, not homeomorphism, makes sense, the theorem of the 
text is the principal theorem of surface topology. This theorem was first proved 
combinatorially by Dehn and Heegaard [l ,  p. 190). The normal form used by these authors 
was not the fundamental polygon but consisted, instead, of three surface elements. Levi [I] 
and Reidemeister (71 have applied the fundamental polygon to the combinatorial proof of the 
fundamental theorem. For other normal forms see Threlfall [I]. See Chuard [I] for another 
combinatorial proof. 

23. (041) The fact that the homeomorphism problem for surfaces has been solved does not mean 
that all important problems of surface topology have been solved. Three-dimensional 
topology still gives rise to difficult questions of surface topology. An example is the 
construction and classification of all possible Heegaard diagrams (cf. Comment 34). 

While the homeomorphism problem can be solved by making use of the homology 
properties of closed curves on surfaces, the other questions mentioned above are related to 
homotopy and isotopy properties. The question of when two surface curves are freely 
homotopic (549) is a purely group theoretic question: one must find all classes of conjugate 
elements of the fundamental group of the surface. This problem has been solved completely 
by Dehn [2, 31. It encompasses the question of the existence of invertible curves. These are 
curves which can be deformed homotopically, on the surface, to their reciprocals. That is, 
they are curves whose direction of traversal can be reversed by means of a homotopic 
deformation. See Baer [ 1,2] regarding the isotopy of surface curves. 

Another theorem which should be mentioned here is the following, proved by Nielsen [6]: 
Each automorphism of the fundamental group of an orientable surface can be induced by a 
topological mapping of the surface onto itself. 

See Nielsen (241, Brouwer [ I ,  5,14,15], Kneser (7,9], and Hopf 1141 for mapping and fixed 
point theorems of surfaces. 

Reidemeister [7] has presented a comprehensive description of purely combinatorial 
surface topology. 

24. (042) The definition of equality for paths is consequently different from the definition of 
equality for oriented singular I-simplexes; we have required of the latter that their preimages 
can be mapped linearly, one to the other. If we were also to require this linear 
transformability for paths, then the associative law ab(c) = a(bc) for the formation of 
product paths would not necessarily remain valid. 

25. (042) The concept of the fundamental group is due to Poincark [2,7]. The presentation of the 
generators and relations by means of auxiliary paths (046) has been taken from Tietze [I]. 

26. (543) THEOREM. The Euclidean plane is the on4 2-dimensional simp4 connected infinite 
homogeneous complex. 

To prove this theorem, we construct a mapping of a given complex SY of this type, onto the 
Euclidean plane. We start with a given simplicial decomposition of R. Each essential cut R 
will cut a uniquely determined surface element from R. This is because Q is null homotopic 
and is thus - 0 mod 2 and, consequently, is the boundary of a 2-dimensional subcomplex 4. 
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This subcomplex is a surface with boundary and is, in fact, a surface element. From 540, it 
will be sufficient to show that on 0 an arbitrary I-chain mod2 U, will be null homologous 
mod2. Certainly U -0 mod2 on 9. Thus there will exist a finite subcomplex U having U as 
its boundary. U cannot contain any triangle lying outside of 0 because U would then have to 
contain all triangles outside of 0; for %RaU lies on 0. But U contains only finitely many 
triangles. Thus U is already - 0 mod 2 on 0. The subcomplex 4 is unique, for if a second 
surface 0’ could be spanned in P, then 0 and 0’ would together form a closed chain mod 2; 
but, aside from the chain 0, there exists no closed chain mod 2 on sf because if one triangle 
belonged to it then all others would have to belong to it. 

If El is now an arbitrary surface element of Q consisting of triangles and having the 
boundary 9, , then it  is possible to extend 0, in a unique way by adding on those triangles 
which have an edge or a vertex in common with triangles of 0,. We complete the resulting 
complex 5 (which may conceivably show “holes”) in a unique way by adding on all surface 
elements which have as their boundary essential cuts lying on the subcomplex. 

We claim that the complex z which arises thereby is a surface element. For it follows from 
the construction of z that the connectability condition (PM3) of $24 is satisfied. Let us then 
consider an essential cut Q2 consisting of edges of the boundary of z. This cut will also lie on 
the boundary of &, since we have added no new boundary edges in extending ‘E to E. Thus, 
by our construction, the surface element 0, spanned in R, belongs to E. On the other hand, 
because of (PM3) z consists of all triangles which can be connected with a triangle of E and 
thus, in particular, with a triangle of 0,. But these are just the triangles of 0,. for the 
boundary of 0, also belongs to the boundary of z. This implies that also belongs to 0,. 
Thus z = 0, is a surface element. 

The totality of triangles of 0, which do not belong to 0, form a punctured surface 
element, that is, an annulus 81 having 9, as its inner boundary circle and R, as its outer 
boundary circle. Let us now map 0, topologically onto the unit circle of the Euclidean plane 
8, onto the annulus in the Euclidean plane having inner radius I and outer radius 2, so that 
the mappings are the same on the circle 9, common to 4, and 8,. Let us next map & 
topologically onto the annulus having inner radius 2 and outer radius 3, and so forth. By this 
procedure, we get a topological mapping of 9 onto the whole of the Euclidean plane. 

27. (544) This implies that two closed paths w ,  and w2 departing from 0 which are continuously 
deformable one to the other are also combinatorially deformable one to the other. We first 
transform w I  to w I  . w;l . w2 and then to w, by means of combinatorial deformations. This 
is always possible because wlw;’  is continuously null homotopic and therefore, from (11). is 
combinatorially null homotopic. 

28. (549) Among the closed surfaces, one should try to determine those on which invertible 
curves (cf. Comment 23) are to be found. 

In projective 3-space, aside from the null homotopic curves, which are always invertible, 
the projective lines are invertible and, consequently, so are all curves. In contrast, only the 
null homotopic curves are invertible in the lens space (3, I). 

29. (549) One can also achieve the transformation from a closed path w ,  to a homologous path 
by means of a deformation procedure, that of “deformation with tearing.” By this we mean 
the following: We deform w ,  to a path W ,  having a double point (that is, a point of 
self-intersection) P, and we assume that P is the initial point of W,. The path W ,  is the 
product of two closed paths w; and w ;  , which can now be freely deformed independently of 
one another until they are finally again joined to give a single path w,. We can apply the 
same procedure to w2 that we applied to w ,  , and so forth. After r steps we shall amve at a 
path w, which is obviously homologous to the initial path w I  . One can easily demonstrate 
that each path homologous to w ,  can in fact be obtained in this way. The three classes 
mentioned in 549, namely, path classes, classes of conjugate elements, and homology classes, 
consequently correspond, respectively, to the three deformation procedures: bound 
deformations, free deformations, and deformations with tearing. 

30. ($52) The determination of the homology groups of a composite complex has been carried 
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out by Vietoris [6]; also see Mayer [I]. For the fundamental group of a composite complex 
see Seifert [I]. 

31. ($52) More generally, the group having the one relation A m  = B” will be isomorphic with 
the group A ”’ = B”’ only if the pairs of integers m, n and m’, n’ are the same, apart from the 
order of the integers. To prove this, form the factor group of the group A = B“ with respect 
to the center generated by A ”. The factor group has the relations 6“ = B“ = 1 and each of 
its elements of finite order can be transformed to a power of or B. The integers m and n 
are thereby characterized as invariants of the group (cf. Schrier [I]). A necessary condition 
for the equivalence ($65) of two torus knots m, n and m’, n’ is, then, the equality of the pairs 
of integers. In the case m = m’ and n = n’, the knots are not necessarily equivalent, however, 
since one must distinguish between a knot and its mirror image. There exist, for example, 
“right-handed” and “left-handed” trefoil knots (see Dehn [4]; Goeritz [2]; Seifert [S]). 

32. ($58) See Reidemeister [4]. 
33. ($62) See Poincare [7] regarding the discovery of the Poincare spaces. The example of the 

spherical dodecahedron space is given there on p. 106 (see also Weber and Seifert [I]). The 
first procedure for constructing infinitely many different Poincare spaces was given by M. 
Dehn (cf. $65). The theory of fibered spaces provides another procedure (cf. Comment 38 
and Seifert [3, p. 2071). It turns out that each Poincare space can be fibered in only one way, 
if it can be fibered at all. (The 3-sphere, which can be fibered in infinitely many ways, is not 
considered to be among the Poincari spaces.) The fibered space is uniquely determined by 
the multiplicities a ,  ,a2,  . . . , a, of its exceptional fibers, and conversely. The multiplicities 
must satisfy the requirement that they are pairwise relatively prime. 

Among the fibered Poincare spaces, only the spherical dodecahedral space has a finite 
fundamental group. The fact that the manifold of $65 constructed from the trefoil knot by 
Dehn’s procedure is homeomorphic with the spherical dodecahedron space follows from the 
fact that it can be fibered (cf. Threlfall and Seifert [ I ,  11, p. 5681). Using the same procedure, 
it has been proven that the spherical dodecahedral space is not only a 5-fold cyclic covering 
space of the trefoil knot, but is also a 2-fold cyclic covering space of the torus knot 3.5 and 
3-fold cyclic covering space of the torus knot 5,2 (Seifert [3, p. 2221). 

34. ($63) See Seifert [I] and Goeritz [I]. For Heegaard diagrams of higher genus see Goeritz [4], 
Kreines [I], Reidemeister [8,9], and Singer [I]. 

35. (963) See Alexander [3,8]. 
36. ($64) The proof in the text, given for the case of the projective plane, is clearly valid for any 

arbitrary nonorientable surface. It follows from the Alexander duality theorem (see 
Comment 47) that such a surface cannot be embedded in Euclidean 3-space as a subcomplex 
of a simplicia1 decomposition or, in fact, topologically in any way. 

37. ($64) This result has been obtained in another way by Kneser [5].  
38. ($65) The space form problem. and the theory of fibered spaces give two additional 

procedures for the construction of closed 3-dimensional manifolds. By a space form we mean 
an n-dimensional manifold which has the following two properties: first, it has been provided 
with either a spherical, Euclidean, or hyperbolic metric, that is, each point has a 
neighborhood which can be mapped congruently onto a ball of one of the three metric 
ground forms-n-dimensional spherical, Euclidean, or hyperbolic space (condition of 
metrical homogeneity); second, we postulate the “infiniteness” of the space form, that is, at 
each point it is possible to construct, in any direction, a geodesic ray which has no boundary 
(and in some cases may even return to the point). The second condition will exclude the case, 
for example, that each open subset of a space form is again a space form. The three ground 
forms then occupy a special place among the space forms, because they are the only ones 
which are simply connected. (If we also include, in addition to these three forms, the elliptic 
space which arises from the spherical metric space after identification of diametrically 

Translator’s note: See Wolf [I] for a modem discussion of the space form problem. An older 
treatment is to be found in Klein [3]. 
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opposite points, then these four space forms are the only ones which satisfy the 
Lie-Helmholtz conditions of motion.) It can be shown in 2 dimensions that each closed 
surface occurs as a region of discontinuity of a fixed point-free group of motions of one of 
the three metric ground forms: 2-sphere, Euclidean plane, and pseudosphere, that is, the 
hyperbolic plane (see Koebe [I] for example). The corresponding statement does not hold in 
3 dimensions, as is demonstrated by the example of the topological product of the circle and 
the 2-sphere. But the regions of discontinuity in 3 dimensions do, at least, provide a wealth of 
illustrative material, from which we have taken all of the examples of Chapter IX. The 
groups of motions of the 3-sphere and Euclidean 3-space having a finite region of 
discontinuity can be completely classified. See Hopf [2], Threlfall and Seifert [I], and 
Hantsche and Wendt [ I ,  Euclidean Space Forms]. Little is known about the regions of 
discontinuity of hyperbolic 3-space (see Lobell [4]; Weber and Seifert [I]). 

The regions of discontinuity of groups of spherical motions, as well as the spaces of line 
elements of closed surfaces, provide motivation for the study of fibered spaces, since each is 
associated with a particular fibering. The fibers of the regions of discontinuity are the orbital 
curves of continuous groups of motions of the unit 3-sphere (also called the hypersphere). In 
the spaces of line elements, the fibers will be formed by line elements passing through a given 
point. 

A fibered 3-space is, then, a 3-dimensional manifold whose points are distributed on a 
doubly infinite family of curves, the so-called fibers. Exactly one fiber passes through each 
point and each fiber H has a “fiber neighborhood, ” which is a subset of fibers containing H, 
such that it can be mapped fiber-faithfully onto a “fibered solid torus’’ and H transforms to 
the middle fiber of the solid torus. A fibered solid torus is a right circular cylinder of 
Euclidean 3-space which is fibered by means of lines parallel to its axis and whose floor and 
roof surfaces can be brought into coincidence by a rational screw rotation. We can now 
replace the unsolved homeomorphism problem of finding a complete system of invariants of 
3-dimensional point manifolds with respect to topological mappings with the soluble problem 
of finding a complete system of invariants of fibered spaces with respect to fiber-faithful 
mappings (Seifert [3]). The fiber invariants so obtained, from which the fundamental group 
can be calculated, are not, of course, properties of a given manifold but, rather, of its 
fibering. Thus the question will sometimes remain open whether two differently fibered 
spaces, considered as point manifolds, cannot be mapped topologically one onto the other. 
There exist manifolds, moreover, which cannot be fibered in any way, since fiberability is 
related to a specific required property of the fundamental group. As examples, all closed 
hyperbolic space forms, as well as almost all topological sums (cf. $62), cannot be fibered. 
Nevertheless, fiber invariants are useful in the topology of manifolds because, in many cases, 
they allow one to decide whether manifolds are homeomorphic. Examples of this are the 
regions of discontinuity of groups of motions of the 3-sphere having fixed points and also the 
Poincare spaces mentioned in Comment 33. 

39. ($65) Equivalence of knots. We might attempt to consider two knots as equivalent if one 
knot can be deformed to the other by an isotopic deformation of the mapping of its 
preimage, as in $31. But we could then transform each knot to a circle. We would only have 
to pull the knot tight in a way so that the knotted portion pulls together to a point. 

Another concept of the equivalence of two knots lying close to intuition, would be that two 
knots are equivalent if they can be transformed one to the other by means of an isotopic 
deformation ($31) of the whole space. We shall not prove that this concept is the same as that 
given in the text. Each isotopic deformation of 3-space obviously does, in fact, result in an 
orientation preserving homeomorphism of the space onto itself. But we leave open the 
converse question, whether each such topological mapping can be brought about by means 
of an isotopic deformation. 

If one defines a knot as a rectilinear polygon, then one can work with combinatorial 
deformations which correspond to particular isotopic deformations of the mapping of the 
preimage and for which the pulling together of the knotted portion to a point is excluded. In 
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this viewpoint, due to Reidemeister [6], one can regard equivalent knots as a class of spatial 
polygons which are combinatorially deformable one to the other. 

40. ($68) This is a topologically invariant definition, since we have proved in $32 that the 
homology groups at a point are topological invariants. 

The idea of basing the definition of manifolds on the homology properties at a point, 
instead of the homogeneity, was conceived independently by several authors: Alexander, L. 
Pontjagin (unpublished), Vietoris [2], and Weyl [2]. The first complete treatment is due to 
van Kampen [3]. Pontjagin calls these manifolds h-manifolds. 

41. ($68) Manifolds with boundary. An n-dimensional manifold with boundary can be regarded 
as a pure complex with boundary whose doubling is a closed manifold, according to van 
Kampen [3, p. 371. The star complex dual to a cellular division of the manifold with 
boundary is not necessarily again a cell complex. For this reason, the formal proof of the 
Poincare duality theorem (869) fails for manifolds with boundary, and the theorem loses 
validity. On the other hand, one again gets a cell complex if one removes from the dual star 
complex every star whose cdnter point lies on the boundary. Thus if one wishes to extend the 
duality theorem to manifolds with boundary, this can be done, according to Lefschetz [ 12, p. 
1541, by replacing the chains with their residue classes modulo the boundary 'B (cf. Comment 
20). In that case, we get the following result: the (ordinary) Betti number p k  is equal to the 
( n  - k)th Betti number mod 23; similarly, the (ordinary) k-dimensional torsion coefficients 
are equal to the ( n  - k - I)-dimensional torsion coefficients mod 23. 

In contrast, the theory of intersection numbers can be extended to manifolds with 
boundary without essential modifications. Aside from condition (R) of 573, the singular 
chains must satisfy the additional requirement that the intersection of the point sets which 
they cover must be disjoint with the boundary (cf. van Kampen [3]). 

42. ($69) To a certain extent, the definition of the intersection number is somewhat arbitrary, 
and has not been standardized throughout the literature. Instead of setting S(ak ,  b n - & )  
= hl, one can also define the intersection number to be ,$$w(k, n),  where w(k, n )  denotes a 
function of k and n which takes the values ? I. Thus, for example, van Kampen [3] uses 

A similar arbitrariness also occurs in the definitions of the boundary and the linking 
w = (- I)k. 

number. 
43. ($71) The proof given here of Theorems I and 11 is due to Veblen [3]. 
44. ($74) We have made the transition from one cellular division to another using a method due 

to Lefschetz [6,7,12]. To show topological invariance, we applied mathematical induction to 
the intersection number S ( A  k, B " - k  ) to trace it back to an intersection number S(Ao,  B") 
whose invariance was easy to prove. Using the same method, Lefschetz proved that two 
closed singular chains A and BJ have an ( r  + s - n)-dimensional intersection chain C'+s-n,  
when r + s 2 n, whose homology class is determined uniquely by the homology classes of A' 
and B". One calls the homology class of C'+s-" the "product" of the homology classes of A' 
and B'. The homology classes, then, cannot only be added but also can be multiplied. They 
form a ring. The ring has been of significance in the theory of continuous mappings (Hopf 
[12,14]). Hopf refers to this ring, together with the fundamental group, as the algebraic 
framework of the manifold, whose connectivity relations they describe without, admittedly, 
exhausting them. 

45. ($75) Two essential cuts on an orientable closed surface are said to be conjugate if they pass 
smoothly through one another at exactly one point. As an example, in Fig. 128 a, b and c, d 
are pairs of conjugate essential cuts. 

46. ($75) The intersection numbers play a role in the applications of topology to algebraic 
geometry. As an example, let us consider an algebraic curve C,,, of order m in the complex 
projective plane, where the curve is specified by setting a ternary form of degree m equal to 
zero. It can be proved that the points of C, form a subcomplex which, after simplicia1 
decomposition and coherent orienting of its 2-simplexes, can be regarded as a singular 
2-chain in a 4dimensional manifold, the complex projective plane. It is possible to find an 
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appropriate projective line C ,  (which is a 2-sphere embedded in the complex projective 
plane) so that it has exactly m points of intersection with C,. It is possible to show that the 
topological intersection number S(C,,,, C,) of the two 2-chains C, and C, is also equal to m. 
This implies that the intersection number of C, with an arbitrary projective line C; is also 
equal to m because C, - C; (Comment 18). even though the actual number of points of 
intersection of C,,, and C; could on occasion be smaller than m (for example, when C ;  is 
tangent with C,,,). If we now define the intersection number of two arbitrary algebraic curves 
to be the topological intersection number of the singular chains which correspond to these 
curves, Bezout's theorem follows easily: The intersection number of a curve C,,, of order m 
with a curve C,, of order n is equal to mn. Proof: Since the projective line represents a 
2-dimensional homology basis, then C, - pC, . The null homologous chain C, - pC, then 
has 0 as its intersection number with a projective line C; . Therefore S(C,,,, C;) = p S ( C , ,  C;). 
But, as determined above, S(C,, C;) = m and S(C,, C;)  = I ;  thus m = p. That is, a curve of 
order m is homologous to a projective line taken m-fold. Accordingly, we have 
S(C,, C,) = S(mC,, nC;) = m n S ( C , ,  C;)  = mn, which was to be proved. 

This example illustrates only one of the ways in which topology can be applied to algebraic 
geometry. An extensive description of these topological methods can be found in van der 
Waerden 11,4] and Lefschetz [2,4, 12); also see F. Seven. 

17. (577) Linking numbers were introduced by Brouwer 191. 
One of the most beautiful and fruitful theorems of topology, the Alexander duality 

theorem (Alexander [5]), is closely related to the theory of linking numbers. Let a finite 
r-dimensional complex Qv lie embedded in Euclidean n-space W" ( n  > I); by this we mean 
that a' is a subset of W". Let us denote the complement of the set ST in W" by W" - F; this 
complement is an open set in a Euclidean space and it is also a complex; in fact, it is an 
infinite complex (114). The same is true for the point set 6" - ST which arises when one 
closes W" with a single point at infinity to produce the n-sphere 6". The Alexander duality 
theorem states a relation between the Betti groups of ,W and those of 6" - P: If p k  is the 
kth Betti number of 9' and pk  is the kth Betti number of 6" - P, then 

P k  = p n - k - '  ( k f 0 , k f f I -  I )  

p O = p " - ' +  1, p n - 1  = P O -  1. 

and in the two exceptional cases 

The deeper reason underlying the existence of such a relation involving the Betti numbers 
becomes evident only after one has chosen Betti bases for P and 6" - ST. It is possible to 
choose a k-dimensional Betti basis of Q" 

El", . . . , E,". 

and an (n - k - I)-dimensional Betti basis of 6" - ST 

(for k # 0 and k # n - I )  so that the matrix of linking numbers becomes 

I for i=j 
for i + j .  

?r (E ,k ,T - ' - '  ) = ay = ( 
For the case k = 0, the Betti basis consists of points whose number is equal to the number of 
isolated connected subcomplexes contained in the complex; in this case, instead of using the 
Betti basis, one uses a complete system of homologously independent 0-chains having 0 as its 
sum of coefficients (518), and this system contains one fewer point. A corresponding remark 
holds with regard to the basis E," in the case k = n - I .  

The same theorem is also valid mod2. One merely replaces the Betti bases and Betti 
numbers by connectivity bases and connectivity numbers (Alexander 151; Pontjagin 131). The 
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theorem has also been extended from the case of the n-sphere to that of arbitrary manifolds 
(van Kampen 131; Pontjagin 131). 

Some consequences of the Alexander duality theorem: 
1. The number of domains into which the n-sphere G" is decomposed by an embedded 

complex Q' is determined by the complex alone, and is independent of the manner of its 
embedding. It is equal to the (n - 1)th Betti number plus 1, and is also equal to the (n - I)th 
connectivity number plus I ,  of ST. It follows from this that an (n - I)-dimensional 
nonorientable pseudomanifold cannot be embedded in G" (Brouwer [lo]). For in this case 
p " - '  = 0 and the connectivity number q"-' = 1, so that the number of domains into which 
6" is decomposed would be 1 in one computation and 2 in the other. We have already 
proved this theorem for surfaces in G', admittedly not for the case of an arbitrary topological 
embedding, but for a simplicia1 embedding of the surfaces ($64 and Comment 36). An 
orientable (n - 1)-dimensional manifold R"-' embedded in 6" will, on the other hand, 
decompose 6" into exactly two domains, because p " - l  = 1. The domain containing the 
"point at  infinity" of G" is called the outside of R"-'; the other domain is called the inside 
of W- ' .  The Jordan curve theorem is a special case, and states that the Euclidean plane is 
decomposed into two path connected open subsets by the topological image of a circle. 

2. The theorem of invariance of domain: If one topologically maps a domain 0 of 
Euclidean n-space R" (that is, an open subset of R") onto a subset @' of another Euclidean 
n-space '%", then 0' is also a domain (Brouwer [12]). Let us first prove the following lemma: 
Let 6" be the n-sphere which arises from R" when 8" is closed with a point P at infinity. Let 
0" be a topological n-simplex lying in 8" and having the (n - I)-sphere G"-'  as its 
boundary. If 3 and I are, respectively, the inside and outside domains into which G" is 
decomposed by Gn-I [from (1) above], then 4" consists of just the point set 3 +G"- ' .  
Proof: The intersection number mod2 of P with 4" is 0, since P is disjoint with 0". The 
intersection number mod 2 of 0" with each arbitrary point of I then vanishes. For one can 
connect any two points of P with a path which does not intersect en-'. If there were to exist 
a point in 3 which was disjoint with O", then, for the same reason, the intersection number 
mod2 of each point of 3 would have to vanish. But in that case, each arbitrary 0-chain 
mod2 Uo lying in B" - en-' which was null homologous in en would have vanishing 
linking number, that is, V(G"-', Uo) = 5(0", Uo), in contradiction to the Alexander duality 
theorem. Thus all points of 3 belong to 0". A point of 9I cannot, then, belong to 0". since 
one can connect any two inner points of a simplex with an interval which does not intersect 
the boundary of the simplex. 

It follows, as a special case of the lemma, that the midpoint of 4" is an interior point of 4" 
with respect to 8". The theorem of invariance of domain follows immediately when one 
constructs a small geometric simplex having the midpoint X about an arbitrary point X of 0. 
The image of the n-simplex is then a topological simplex belonging to @' and X' is an interior 
point. 

48. (077) The asymmetry of the lens space (3, I) was noticed by Kneser 18). Further details on 
demonstrating the distinctness of manifolds with the help of linking numbers are to be found 
in Alexander [lo], de Rham [I], Reidemeister [9), and Seifert [4]. 

49. (578) The concept of the degree of a mapping was introduced by Brouwer 18). 
The problem of constructing a continuous mapping of sp" to K" having a given degree does 

not always have a solution. For example, if 9" is an orientable surface of genusp > 0 and K" 
is an orientable surface of genus q, the degree of the mapping y is subject to the restrictions 
I y l (q  - I )  5 p - I. In particular, y can take only the values y = 0, + 1, - I when a surface of 
genus p > 1 is mapped to itself (Kneser [9]). 

It seems obvious to ask the question: Can a mapping of degree y always be deformed in a 
way so that a (small) domain of K" can be covered exactly IyI times? This question has been 
answered in a positive sense by Hopf [8, Part 111 and by Kneser [9]. The theory of the degree 
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of a mapping is only one of the algebraic group theoretic methods which are useful in dealing 
with continuous mappings. This algebra of mappings is described in Hopf [12,14,18]. 
Additional references to the literature are also to be found there. 

50. (880) The fixed point formula. The text derivation of the fixed point formula follows from 
the work of Hopf [9]. This formula is a special case of the general Lefschetz-Hopf fixed point 
formula: Given an arbitrary continuous mapping f of a pure complex W into itself, then 
C( - Sp Bk is equal to the negative of the algebraic sum of the indexes of all fixed points. 
The index of an isolated fixed point P is defined as follows, when P is an inner point of an 
n-simplex. Construct a small (n  - I)-sphere (3"'' about P. From each point Q of this sphere 
draw the vector BQ to the image point f(Q). The ray through P drawn parallel to B, cuts 
G"-' at a point c p ( Q ) .  The mapping 'p is a continuous mapping of Gn-' into itself. The index 
of the fixed point is defined to be the degree of this mapping. 

The concept of the index of a fixed point is due essentially to Poincare [ I ,  Parts 3 and 41. 
Hopf ( 7 , l  I ]  proved the general fixed point formula by means of a reduction to the special 
case whose derivation appears in the text. The original proof by Lefschetz (6, 71 made use of 
the "topological product method, " which we shall briefly sketch here. 

One can describe a continuous mapping f of a complex SE" into a complex Km by forming 
the topological product space P X K" and assigning the point P X f ( P )  in this space to the 
point P of P. The points assigned in this manner form a subset of the topological product 
which is homeomorphic to P. We shall call this subset the characteristic subcomplex of the 
mapping f in the topological product space. If we are now given, besides f, an additional 
continuous mapping g of 9'" into K", then we define a coincidence point of the mappings f 
and g to be a point P such that f ( P )  = g ( P ) .  The coincidence points correspond to the 
common points of the characteristic subcomplexes off and g. In particular, if 9'" and Km are 
manifolds having the same dimension, then the characteristic subcomplexes off and g have 
an intersection number which is defined to be the algebraic number of coincidence points. 
Lefschetz has given a formula which allows one to compute this number, when one knows 
the homeomorphic mappings, of the homology groups induced by f and g. The general fixed 
point formula then results when one examines the special case that SE" and K" are the same 
and g is the identity mapping. Lefschetz' proof will consequently hold only for manifolds 
(with or without boundary); on the other hand, it also includes the case of multivalued 
mappings. The topological product method has proved useful in other mapping problems 
(see, for example, Hopf [ 12, 141). 

The fixed point formula is closely related to the theory of continuous vectorfields. A "small 
transformation" f, which is a self-mapping which displaces points only slightly, will 
determine a vector field. The vectors of the field run from the original points to their 
respective images. The field is continuous except at the singular positions, which correspond 
to the fixed points off and which we assume to be finite in number. We define the index of a 
singular position of the vector field to be the index at the fixed point in question, of the small 
transformation. Since, for a small transformation, we have Sp B' = p i  and the alternating 
sum of the Betti numbers is equal to the negative of the Euler characteristic, there then 
follows Hopf's theorem 151: The sum of the indexes of the singular positions of a vector field is 
equal to the negative of the Euler characteristic of the manifold. 

On occasion, the fixed point formula can be used to ascertain the existence of a fixed point 
($81). One must distinguish this question from another question, which is worth con- 
sideration: What is the smallest number offixedpoints o f a  mapping class? That is, what is the 
smallest number of fixed points which can be obtained by means of a deformation of a given 
mapping? J. Nielsen has succeeded in evaluating this minimal number by dividing the fixed 
points into fixedpoint classes. Two fixed points are assigned to the same fixed point class if it 
is possible to connect them with a path w such that w together with its image path form a null 
homotopic closed path. An equivalent definition is obtained if one lifts the mapping of the 
base complex into the universal covering complex, which in general can be done in several 
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ways. The fixed points of such a covering mapping will, after projection into the base 
complex, then belong to the same class. See Nielsen 141, [6] and Hopf 161, where one can find 
references to, in part, earlier work by Alexander, Brouwer, Birkhoff, Feigl, and others. 

51. ($81) The theorem that a (2k + I)-dimensional manifold admits fixed point-free deforma- 
tions is valid in general (see Hopf 151). 

52. ($86) In $58 we have already encountered in regard to the covering complexes, an example 
where topological considerations yield group theoretic results which are not obtained easily 
(if at all) by arithmetic procedures. Among the other examples of this type is the question of 
determining the structure of a group from its generators and relations and, in particular, of 
solving the isomorphism problem: Are two groups, which are presented in terms of their 
generators and relations, isomorphic? 

A particularly fine example is to be found in Artin's theory of braids [2]. He shows that the 
symmetric permutatiom group on n symbols is given by two generators a and u and by the 
relations a" = (ao)"-' ,  u2 = I, and these commutation relations: u commutes with a'ua-' 
(2 5 i 5 n/2 ) .  Another example is given in Threlfall and Seifert [ I ,  p. 5771. 

A procedure which allows insight into the properties of the group (theoretically in all cases, 
and practically in many cases) is the construction of a group diagram. This is a topological 
edge or surface complex, which can be obtained from the group generators and relations 
(Dehn [3]; Threlfall [I]). As an example, when one cuts a manifold in some manner to form a 
polyhedron (as in $60) and constructs the universal covering complex, the polyhedron will 
then lift to a cellular division. The edge complex of the dual cellular division is a Dehn group 
diagram of the fundamental group. Thus, for example, by cutting apart the spherical 
dodecahedron space, we find that the group having the relations A S  = B z  = C3 = ABC is the 
binary icosahedral group of order 120. We can get an idea of the difficulty of the 
isomorphism problem when we select two ways of cutting apart the manifold from among 
the unforseeably many possibilities, and attempt to convert the systems of generators and 
relations, to be obtained as in $62, to one another. 
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TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES* 

The subject of this paper is related to the homeomorphism problem for 
3-dimensional closed manifolds. The fundamental theorem for 2-manifolds 
tells us how many topologically distinct 2-manifolds there are. The methods 
for its proof cannot yet be applied to 3 or more dimensions. There are two 
ways to approach the 3-dimensional problem. The first one is to examine 
fundamental regions (Diskontinuitatsbereiche) of groups acting on a 
3-dimensional metric space (Bewegungsgruppen). In the 2-dimensional case, 
every closed surface is a fundamental region of a fixed-point-free action; 
however, there are 3-manifolds for which this is not true. The fundamental 
regions of 3-dimensional spherical actions are endowed with a certain 
fibration: the fibers are trace curves (Bahnkurven) of a continuous action on 
the hypersphere; examples will be given in 43 and can also be found in DB 
11.' This leads us to the second way: instead of investigating a complete 
system of topological invariants of 3-dimensional manifolds, we search for a 
system of invariants for fiber preserving maps of fibered 3-manifolds. This task 
is completely solved in this paper. These invariants refer of course to the 
fibering of the manifold, not to the manifold itself, so that so far the question 
remains whether two spaces with different fibrations can be homeomorphic. 
Furthermore there are 3-manifolds that do not admit a fibration (4 15). Even 
so, in many cases the fiber invariants can be used to decide whether 
3-manifolds are homeomorphic. Examples for this are given in 412-4 14 and 
in DB 11. 

A knowledge of the topology of surfaces, the fundamental group, and the 

+Reprinted from H.  Seifert, Acta Murhematicu (i0 (1933), 147-288 (translated by Wolfgang 
Heil). 

' Cf. W. Threlfall and H .  Seifert, Topologische Untersuchungen der Diskontinuitatsbereiche 
endlicher Bewegungsgruppen des dreidimensionalen spharischen Raumes. Math. Ann. 107. This 
will be referred to as DB 11; the first part in M a d  Ann. 104 will be cited as DB 1. 
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homology group is assumed. The spaces of line elements' (Linienelemente) 
provide introductory examples. Other examples are given in this paper. 

1. Fibered Spaces 

We define a manifold3 to be a set of points such that for each point there is 
a system of subsets, called neighborhoods, which satisfy the axioms (1H4) 
below. 

(1) Hausdorff axioms: 

(a) Each point P has at least one neighborhood U ( P ) ;  each 
neighborhood of P contains P. 

(b) If U ( P )  and V ( P )  are neighborhoods of P, then there exists a 
neighborhood W ( P )  c U ( P )  n V ( P ) .  

(c) If Q lies in U ( P ) ,  then there exists a neighborhood U ( Q )  of Q 
which is contained in U ( P ) .  

(d) For two distinct points there exist disjoint neighborhoods. 

A system of neighborhoods satisfying these axioms is called a topological 
space. Two equivalent systems of the same point set determine the same 
topological space. Here systems are equivalent if each neighborhood U ( P )  of 
one system contains a neighborhood U ' ( P )  of the other system, and vice 
versa. A subset of a topological space is open if it contains for each of its 
points a neighborhood of this point. The system of all open subsets of a 
topological space is a system of neighborhoods, which is equivalent to all 
other systems of neighborhoods of this space. From now on we always choose 
this system of neighborhoods. 

(2) Each point of M has a neighborhood homeomorphic to an open 3-ball 
in 3-dimensional Euclidean space. 

(3) If an arbitrary neighborhood is assigned to each point, then countably 
many of these cover the manifold. If already finitely many suffice to cover 
the manifold, it is called dosed, otherwise open! 

(4) The manifold is connected, i.e., any two points can be connected by an 
arc, or equivalently, the manifold is not the union of two disjoint open sets. 

* W. Threlfall, Raume aus Linienelementen. Juhresber. Deufsch. Math.- Verein. 42 (l932), 
88-1 10. 

'Cf. H. Kneser, Topologie der Mannigfaltigkeiten. Juhresber. Deursch. Mufh.-Verein. 34'(1926), 
I .  

41nstead of (3) we could require the second Hausdorff countability axiom in addition to ( I )  
and (2): There exists an equivalent system of neighborhoods that consists of countably many 
distinct point sets. The following axiom would do just as well: The manifold can be covered with 
countably many subsets, each of which is homeomorphic to an open 3-dimensional Euclidean 
ball. 
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In  combinatorial topology manifolds are required to admit a triangulation. 
This requirement is redundant for our purpose, since fibered spaces can be 
triangulated, as will be shown in $4. One could say a manifold is fibered if  i t  
is decomposed into curves, called fibers, such that each point lies on exactly 
one fiber and a neighborhood of each point can be mapped homeomorphi- 
cally onto a neighborhood of a point in a Euclidean space in such a way that 
fibers are mapped to line segments of a bundle of parallel lines. This 
requirement is a local one. But even if we postulated this for all points of the 
manifold, we would still find this definition of a fibered manifold to be too 
general. 

In the present paper we consider only those fibered manifolds which satisfy 
in addition to the four manifold axioms the three following axioms which 
relate to properties of the fibering in the large. (We call these manifolds 
fibered spaces.) 

(5) The manifold can be decomposed into fibers, where each fiber is a 
simple closed curve. 

(6)  Each point lies on exactly one fiber. 
(7) For each fiber H there exists a fiber neighborhood, that is, a subset 

consisting of fibers and containing H ,  which can be mapped under a fiber 
preserving map onto afibered solid torus, where H is mapped onto the “middle 
fiber.” 

A fibered solid torus is obtained from a fibered cylinder D 2  X I where the 
fibers are the lines x X I ,  x E D 2 ,  by rotating D 2  X 1 (but keeping D 2  X 0 
fixed) through an angle of 

and then identifying D 2  x 0 and D 2  x 1 (i.e., x X 0 is identified with p(x )  X I ,  
where p is the rotation). Here v, p are coprime integers. Without loss of 
generality we can assume that 

p > O  and O < v < + p .  

For if v is replaced by v + k p  or by - v, then the new solid torus can be 
mapped onto the old one by a fiber preserving map. 

A map is fiber preserving if it (1) is a homeomorphism and (2) maps fibers 
to fibers. Two solid tori which are homeomorphic under a fiber preserving 
map will not be distinguished. 

When identifying the cylinder D 2  X I with the solid torus the lines (fibers) 
of D 2  x I are decomposed into classes such that each class contains exactly p 
lines, which match together to give one fiber of the solid torus, except that the 
class containing the axis of D 2  x I consists of the axis alone, which also 
makes up a fiber. If p = 1, we call the solid torus an ordinary solid torus. 

The fiber neighborhoods are (in contrast to point neighborhoods) closed 
sets: each fiber neighborhood contains its boundary torus. 

2 4 v h l J . )  
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A meridian M of a solid torus V is a simple closed oriented curve on the 
boundary torus T which is not contractible on T but contractible in V .  A 
homeomorphism of V onto itself maps a meridian to a meridian. If we forget 
about orientation, we can map a meridian onto any other meridian under a 
continuous deformation of T. In Fig. I, e.g., the oriented boundary curve of 
the bottom surface D 2  X 0 is a meridian. A longitude B of the solid torus is a 
simple closed curve on T which intersects M in exactly one point. 

B is determined (modulo deformations of T )  up to its orientation and 
multiples of M .  Any pair of meridian and longitude can be mapped onto 
another such pair by a topological map of the solid torus onto itself; however, 
even though any meridian can be mapped onto any other by a deformation of 
T,  this is not necessarily true for longitudes. The topological map of the solid 
torus, which sends a longitude to another which is not homologous (on T ) ,  
cannot be obtained by a deformation of the identity. 

We now orient a fiber H of a solid torus. Thus, if we have chosen a fiber 
H ,  a meridian M ,  and a longitude B on the boundary T of a given fibered 
solid torus V ,  we can just as well choose instead of H ,  M ,  B any other system 
H ’ ,  M‘, B’ which is related to the first system as follows: 

H - € , H I ,  (1) 

M - E ~ M ‘ ,  (2) 

B - e3B’ + xM’. (3) 

Here e, = 2 1; x is an integer. Instead of the equal sign we have chosen the 
homology sign, which denotes homology on T .  For homology is all that 
matters to us and we allow, for example, that H ’  be a fiber disjoint to H and 
M ’  be a meridian obtained from M by a deformation of T. 

Throughout, we write relations of the homology group additively and 
relations of the fundamental group multiplicatively.5 

The numbers p and u not only determine the fibered solid torus V ,  but 

5Cf. B. L. Van der Waerden, “Moderne Algebra 1.” p. 19. Berlin, 1930. 
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conversely V determines p and v uniquely, i.e., two fibered solid tori can be 
mapped onto each other by a fiber preserving map iff they have the same 
defining numbers p,u. For, choosing the longitude B suitably (shortest path 
on a D 2  X I from a point x E d D 2  X 0 to its equivalent point on a D 2  x I ,  the 
dotted line in Fig. 1) and orienting M and H suitably, we have on T the 
homology 

H - u M + p B ,  ( H )  

which means precisely that p and u are the defining numbers of the fibered 
solid torus. If we were to choose instead of H , M , B  an arbitrary system 
H ’ ,  M ‘ ,  B’  of the fibered solid torus, then we would get 

HI-  nM’ + m B ’  (H’) 
since M’ and B ’  are a fundamental system‘ of curves on T which is a basis 
for the homology. Here m and n are coprime integers since the fiber is a 
simple closed curve, and m # 0 since i t  is not homologous to the meridian. 
On the other hand, we can express the homology (H) in terms of H’, M ’ ,  B’  
via the formulas ( I ) ,  (2) (3): 

E , H ‘ - ( E ~ u  + x p ) M ’ +  E ~ / . L B ‘ .  

Therefore 

E , [ ( E ~  + x p ) M ’  + E ~ ~ B ’ ]  -nM’  + m B ’ .  

Comparing the coefficients, we see that p and v are determined by m and n .  
To see this, note that I pl = Iml, also p > 0, so p = Iml; also u is equal to I n [ ,  
reduced modulo m to a number in the interval [ -  i m , i  m] .  Thus the 
numbers p and u are characteristic for the given fibered solid torus. 

Meridian and longitude are already defined on a nonfibered solid torus. 
We need to define still another curve, the crossing curve Q (Querkreis), 
presuming the fibering. I t  is a simple closed curve on T that intersects each 
fiber of T in exactly one point. I t  is therefore (except for its orientation and 
multiples of the fiber) determined by the fibering of T, i.e., if Q and Q’ are 
two crossing curves, we have the formula 

Q - E ~ Q ’  + yH’ (4) 

in addition to the transformation formulas (l)-(3). The fiber H and crossing 
curve Q are a fundamental system of curves on T similar to meridian and 
longitude, i.e., any other closed curve on T is homologous to a linear 
combination of H and Q. 

The boundary of an arbitrary fibered solid torus is a fibered torus. 
Therefore the boundaries of any two fibered solid tori can be mapped onto 
each other under a fiber preserving homeomorphism. The fibered solid torus 

6Meridian and longitude are also called a canonical system of curves or a pair of conjugate 
Ruckkehrschnitte. 
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is determined by the fibering of its boundary torus only if on this torus a 
closed curve M is distinguished as meridian. Of course, M must satisfy the 
conditions to be a simple closed curve not homologous to zero (on T )  and not 
homologous to a fiber. If on a fibered torus the fiber H is oriented and a 
crossing curve Q is chosen, M can be expressed [with coprime integers a 
(# 0) and p ]  as follows: 

We claim that the fibered solid torus is uniquely determined by the fibering 
of its boundary and by M ,  hence by a, /I. We show this by computing the 
characteristic numbers p, v. If 

is a longitude on the fibered torus, we can assume (choosing orientation of B 
suitably) that 

M - aQ + P H .  

B - p Q  + UH 

since both of Q,  H and M ,  B are a fundamental system of curves on the torus. 
Then 

p is determined by a and p up to multiples of a by (5).  As before from (H’), 
the last equation gives us now the characteristic numbers p and v uniquely: 
p = IaI, v = the absolute value of the number p, reduced moda to [ - a, a].  
In particular if the meridian is a crossing curve we have an ordinary fibered 
solid torus. 

The simplest example of a fibered space is S ’  X S2. I t  is obtained from 
S 2  x I by identifying the points x X 0 and x X 1. Figure 2 shows a cross 
section through the center point of S2 X 1 C R ’. The fibers correspond to the 
radii of the hollow ball. We have a fibered space, since each fiber has a fiber 
neighborhood which can be mapped onto a fibered solid torus with the 
numbers p = I ,  v = 0. 

H - a B - p M  

2. Orbit Surface 

The most important concept in the study of fibered spaces is that of the 
orbit surface (Zerlegungsflache). Every fibered space F has an orbit surface f. 
Now j is not a subset of the space F and can in general not be embedded in 
F,’ but is defined as follows: there is a one-to-one correspondence between 
the fibers of F and the points of j.E Since each point of F lies on exactly one 

7 0 ~ r  definition of Zerlegungsflache is not related to G. D. Birkhoff‘s surface of section, 
Dynamical systems with two degrees of freedom [Tram. Amer. Mafh. SOC. 18 (1917), 268; cf. also 
L. Bieberbach, “Differentialgleichungen, ” p. 136. Berlin, 19231. 

*The orbit surface thus indicates how the manifold is “decomposed” into fibers [cf. H. Tietze 
and L. Vietoris, Encykl. Math. Wiss. (111) AB 13 (1930), 1781. 
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fiber, it follows that each point of F has exactly one image on f. The 
neighborhoods o f f  are defined as images of the neighborhoods in F (i.e., of 
the open subsets of F ) .  The following can be proved: 

( 1 )  f is a Hausdorff space. 
(2) Each point of f  has a neighborhood homeomorphic to an open 2-cell. 

(For the proof use the fact that each fiber neighborhood can be mapped 
topologically onto a solid torus.) 

(3) Any covering off by neighborhoods has a countable subcovering. f is 
an open or closed manifold if F is open or closed, respectively. 

(4) f is connected. 

(lk(4) imply that f is triangulable, by a theorem of T. Rado.9 Therefore we 
can apply all the theorems of the theory of 2-manifolds. If F is closed, then f 
is an orientable surface of genus p (number of handles) or a nonorientable 
surface of genus k (number of cross-caps). In the example S '  x S2, the orbit 
surface is a 2-sphere which can be embedded into S '  X S 2  so that each fiber 
meets it  in exactly one point. 

Any closed or open, orientable or nonorientable surface f is the orbit 
surface of some fibered space, for example of the product f X S '  (the fibers 
are x x S ' ,  x ~ f ) .  Here the orbit surface can again be embedded into the 
fibered space, as above. In  $3 we shall give an example where this is no longer 
possible. 

We use throughout the following notation. Passing from the fibered space 
F to the orbit surface j we pass from capital letters to small letters. Thus to 
the fiber H of the space F corresponds the point h of the orbit surfacef. 

If Q H  is a fiber neighborhood of the fiber H ,  we call its image oh an orbit 
neighborhood (Zerlegungsumgebung) of the image point h of H .  The orbit 
neighborhood is obtained from the meridian disk of the fiber neighborhood, 

9T. Rad6. Uber den Begriff der hemannschen Flache, Acia Univ. Szeged. 2 (1925), 101. 
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i.e., from the bottom disk of the cylinder of Fig. I ,  by identifying points 
which belong to the same fiber. Therefore, the orbit neighborhood is a circle 
sector of an angle 2n/p whose boundary radii have been identified, or in 
other words: it is the orbit surface of a cyclic rotation group of order p of the 
disk about its center point. Hence the orbit neighborhood can be mapped 
homeomorphically onto a disk with boundary; hence it is a 2-cell. The orbit 
neighborhoods are just like the fiber neighborhoods closed point sets. They 
satisfy the neighborhood axioms only after removing their boundary curves. 

The orbit neighborhoods satisfy the following: 

LEMMA 1. If w, is an orbit neighborhood of the point h and if e is a 2-ceIl 
contained in w,, such that h is not on the boundary of e, then e is also an orbit 
neighborhood (a) of h,  if h is an interior point of e,  (b) of each interior poinr of e.  
if h does not belong to e.  The fiber neighborhoods E (resp. 52,) which map onto e 
(resp. oh) are in case (a) homeomorphic under a fiber preserving map; in case (b) 
E is an ordinary fibered solid torus. 

ProoJ (a) The fibers that map to the points of e constitute a fibered 
subset E of a, which contains the fiber H in its interior. If  we think of 52, as 
a fibered cylinder with boundary disks identified under a rotation, we obtain 
the orbit neighborhood w,, (Fig. 3) from the meridian disk G i  of a, (Fig. 4) if 
we identify those points of G i  which are equivalent under the cyclic rotation 
group of order p acting on Gi. 

The points of G i  which map to points of e constitute a 2-cell e' (shaded in 
Fig. 4) which contains the center point of G i  in its interior and which is 
mapped to itself under the cyclic rotation group. The subspace E of 52, 
consists of the lines parallel to the axis of the cylinder QH which pass through 
the points of e'. We shall show that we can map e' onto G i  under an 

FIG. 3 
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orientation preserving homeomorphism ii keeping h" fixed and such that any p 
points which are equivalent under the cyclic rotation group are again mapped 
onto p such points. Taking the corresponding map on the lines of E and Q H ,  

we obtain a topological map of E onto Q H  which maps fibers to fibers and 
keeps the middle fiber H fixed, as claimed in the lemma. 

The map a" is obtained as follows: Let a be an orientation preserving map 
that maps e onto and keeps h fixed, let re be a simple arc from h to the 
boundary of e ,  and let r,  be the image of re which is a simple arc from h to 
the boundary of w,,. Now I? (resp. Gi) is decomposed by the p @re-)images of 
re (resp. r,) into p consecutive sectors 

(resp. 

which are cyclically interchanged by the rotation group. The map a 
determines a map of the sector e" onto the sector G' and hence a map a" of .? 
onto Gi, as required. 

In this case, to the 2-cell in wh there correspond in G i  now p disjoint 
2-cells e"',;', . . . , P P  which are interchanged under the cyclic rotation group. 
The fiber set E corresponding to e is in the cylinder Q H  made up of p 
congruently fibered cylinders which lie over Z' to Zp. Now E is obtained from 
these pieces by pasting them together (one after the other) and finally 
identifying top and bottom disks under the identity map. Therefore E is an 
ordinary fibered solid torus, in which we can take each inner fiber as the 
middle fiber. 

e"' ,C2, .  . . , e " ~  . . . , G P )  

(b) 

From Lemma 1 we obtain 

LEMMA 2. If Qk and $2; are two fiber neighborhoods of the fiber H, they are 
homeomorphic under a fiber preserving map which keeps H fixed. 



368 TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES 

ProoJ On the orbit surface there exists a 2-cell e containing h and lying in 
the interior of the intersection of the orbit neighborhoods ui and 0:. By 
Lemma 1, e is the image of a fiber neighborhood E of the fiber H ,  and E can 
be mapped under a fiber preserving map (keeping H fixed) to each of Qk and 
Qi, respectively. 

This lemma implies that for a given fiber H the numbers p,v are the same 
for all fiber neighborhoods of H ;  hence they are an invariant of H .  If p > I ,  
we call H an exceptional fiber of order p of the space; if p = I ,  an ordinary 
fiber. If a fiber in the neighborhood of an exceptional fiber H of order p 
approaches H ,  its limit runs p times around H .  In a fibered solid torus all the 
fibers are ordinary fibers, except possibly for the middle fiber. In a fiber 
neighborhood of an exceptional fiber H of order p we have that p H is 
homologous to an ordinary fiber. The points of the orbit surface that are 
images of exceptional fibers are exceptional points; as points of the orbit 
surface, they cannot be distinguished from ordinary points. 

THEOREM 1. A closed fibered space contains at most finitely many exceptional 
fibers. 

For otherwise there would exist a point of the space such that any 
neighborhood of it meets infinitely many exceptional fibers. The fiber 
through this point would not have a fiber neighborhood. 

3. Fiberings of S 3  

Before studying fiberings in general, we construct examples of fiberings of 
S 3  with exceptional fibers. We think of S 3  as lying in R4, where it is a 
hypersurface with the equation 

x ; + x ; + x : + x ; =  1, 

where x, , x2, x3 ,  x4 are Cartesian coordinates. The fibers are the trace curves 
of certain groups of rigid motions in a single variable (eingliedrigen) of the 
hypersphere into itself. As hypersphere curves of R4 they are given by the 
equations 

xi = x, cos mt + x2  sin mt, 
x i  = - x ,  sinmt + x2cosmt,  

x; = 

x; = 

x3 cos nt + x4 sin nt, 

- x3 sin nt + x4 cos nt. 

Here m and n are coprime positive integers; t is a continuous parameter. 
The trace curves are closed curves which are traversed once if t runs from 0 
to 277. 

We visualize the sphere by projecting it stereographically from the north 
pole (O,O,O,  1) into the equator plane x4 = 0. The equator plane is a 
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FIG. 5 

3-dimensional Euclidean space with the Cartesian coordinates x, y ,  z which 
we close to the conformal space by adjoining one single point of infinity, the 
image of the north pole." Each point (x,,x2,x3,x4) distinct from the north 
pole has a unique image with coordinates x, y ,  z; the x-, y-, and z-axes are 
identified with the x,-, x2-, and x,-axes of R4. The Euclidean space has now 
in addition to the Euclidean metric (from R 4, a spherical metric which comes 
from the stereographic projection of the hypersphere. The projection 
transforms the rigid motions of the hypersphere into conformal (or 
spherical-rigid) motions which permute diametrical balls of the unit sphere 
x2 + y 2  + z 2  = 1. In particular, the above described continuous group is 
mapped into a group which sends the z-axis and the unit circle x2 + y 2  = 1, 
z = 0, to itself. 

Then the 60' tori, which have the z-axis as axis of rotation and which 
intersect each of the spheres through the unit circle orthogonally, are all 
mapped into themselves. Figure 5 shows a section of the torus with the 
x,z-plane. Each of the tori bounds a solid torus which contains the unit circle 
in its interior and is fibered by the trace curves of the group of motions. For a 
half-plane bounded by the z-axis is under a motion of the group rotated 
about the z-axis. The circular section of the half-plane with a solid torus 
(shaded in the figure) is spherical-rigidly rotated about its spherical center M 
about the angle 2nn/m during the time that the half-plane is rotated once 
about the z-axis. The characteristic numbers p and v of the fibered solid torus 
are therefore p = rn and v = absolute value of n, reduced modm to 
[ -  +m,+rn]. 

The part of the hypersphere lying outside the torus considered is also a 
solid torus fibered by trace curves which has the z-axis as middle fiber. For 
under the rigid motion xi = x3, x i  = x4, x i  = xI, xk = x2, that is, under the 

'OCf. DB I1 87, 81, and 92. 
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corresponding spherical motion of the conformal space, the unit circle and 
z-axis are interchanged. The characteristic numbers of this solid torus are 
p = n and v = m (reduced modn to the interval [ - 4 n, 4 n]). The unit circle is 
therefore an exceptional fiber of multiplicity m, and the z-axis an exceptional 
fiber of multiplicity n. Each other trace curve is an ordinary fiber since it is 
contained in a fibered solid torus neighborhood of the unit circle. Each 
ordinary fiber wraps m times about the z-axis and n times about the unit 
circle; hence it is knotted, namely, a torus knot” if m and n are different 
from 1. 

The orbit surface of a hypersphere fibration is always the 2-sphere. For 
each closed curve in S 3  can be deformed into a point; therefore the same 
holds for the orbit surface. Since S 3  is closed, so is the orbit surface (§2); 
hence it can only be the 2-sphere. Here is a direct verification in the case that 
m = n = 1, in which case there are no exceptional fibers. In this case the trace 
curves are circles, which include the z-axis and the unit circle. Each circle 
intersects the interior of the unit circle exactly once, except for the unit circle. 
If a point in the interior of the unit disk approaches the boundary, then the 
trace curve through this point approaches the unit circle. Thus one has to 
close the interior of the unit circle with one single point, the image point of 
the unit circle, to obtain the orbit surface. This completion gives us the 
2-sphere. 

The orbit surface cannot be embedded into the hypersphere so that each 
fiber intersects it in its image point, because a 2-sphere in S 3  intersects any 
closed curve in an even number of points.” 

In P I 1  we shall show that the fiberings described above are the only 
possible fiberings of the hypersphere; i.e., any fibering of S 3  can be mapped 
to one of these under a fiber preserving map. 

4. Triangulations of Fibered Spaces 

The fibered spaces are defined as topological spaces via point sets, but it is 
well known that there are also other, purely combinatorial, definitions of 
manifolds which use different things for their construction, namely, cells of 
dimensions 0 to 3. A combinatorial manifold determines a topological 
manifold if we fill in the cells (which can be chosen to be simplexes) with 
points. In 2 dimensions, any topological space satisfying the corresponding 
axioms (1x4) of 0 1  can be triangulated (see Footnote 9), and therefore one 
can base theorems about 2-manifolds on the topological or the combinatorial 
definition, whichever is more convenient. In three and more dimensions, 

“K. Reidemeister, Knoten und Gruppen. Abh. Marh. Sem Lmiv. Hamburg 5 (1927), 19. 
‘*Since each point of the hyperspere is mapped to a point of the orbit surface, we have a map 

of S3 onto Sz. It is the same map which H. Hopf investigates in “Uber die Abbildungen der 
3-dimensionalen Sphare auf die Kugelflache” [ Marh. Ann. 104 (I93 I), 637-6651. 
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however, i t  is not yet proved that a manifold satisfying axioms (IH4) of $ 1  
can be triangulated.* Therefore i t  is important to know that fibered spaces 
can be triangulated, so that we can use both the methods of point set and 
combinatorial topology. We now present a lemma which is useful but not 
necessary for the proof of the triangulation of fibered spaces. 

LEMMA 3 .  If  w is a (closed) 2-cell on the orbit surface f which contains no 
exceptional points, then w is an orbit neighborhood of each of its interior points. 
If w contains exactly one exceptional point in its interior, then w is an orbit 
neighborhood of this exceptional point. 

Prooj Let h be the exceptional point, or if w has no exceptional points, let 
h be an arbitrary interior point of w. Take a triangulation of w which is so 
small that each 2-simplex is covered by an orbit neighborhood. Furthermore 
we require that h lie in the interior of a 2-simplex. Such a triangulation exists, 
for mapping w onto a disk of R 2 ,  we find a positive radius E such that a disk 
of radius E about an arbitrary point p of w is covered by an orbit 
neighborhood (which is not necessarily the orbit neighborhood of p ) .  I f  the 
&-disk is not contained in the disk, we consider only the part belonging to w. 
If there did not exist such an E ,  there would exist a sequence of disks whose 
radii and center points converge to 0 and a pointp,. respectively, and each of 
which could not be covered with an orbit neighborhood. Then we could take 
a disk of radius p > 0 about p, which is covered by the orbit neighborhood of 
po. This disk contains almost all disks of the sequence, almost all of which 
can therefore be covered by one orbit neighborhood. This contradiction 
assures the existence of an E as above. We now triangulate o so small that 
each 2-simplex can be covered by a disk of radius E .  Then we apply Lemma 1 
to the &-disks and find that all 2-simplexes are orbit neighborhoods. The 
corresponding fiber neighborhoods are ordinary fibered solid tori, except 
possibly for the orbit neighborhood AH of the fiber H which is mapped into 
the 2-simplex 6, containing h. Now, as is well known, there is a sequence of 
2-cells wI = a,, w 2 .  . . . , w, = w, which all are 2-simplexes of the triangulation 
of w and such that each is obtained from its predecessor by adjoining an 
adjacent 2-simplex along one or two edges, a fact which, by the way, may not 
be true in 3 dimensions. The corresponding fiber sets 52,  = AH, Q2, . . . , Qo 
= 52 are fiber neighborhoods of H .  For as wi is obtained from w , _  , by pasting 
on a 2-simplex 6 along a single I-cell s (which may consist of one or two 
edges of S ) ,  we obtain 52; from Q j -  I by pasting an ordinary fibered solid torus 
A fiber preservingly to 5 2 , - ,  along a fibered annulus S .  It is easy to see that 
this gives us again a fibered solid torus. 

THEOREM 2. Every fibered space can be triangulated. 

Proof. We take a triangulation of the orbit surface such that the 
exceptional points are contained in the interior of the 2-simplexes and such 

Translafor’s nofe: This paper was printed December 14, 1932. 
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that no 2-simplex contains more than one exceptional point. By Lemma 3 
each 2-simplex is an orbit neighborhood. The fibered space is therefore 
decomposed into a finite or countable number of fibered solid tori. Two 
adjacent such solid tori have a fibered annulus in common, which is mapped 
onto a I-simplex of the orbit surface and which can be mapped onto a 
rectangle of R * after removing a spanning arc. We can therefore speak about 
straight lines in such an annulus. These are lines which map to straight lines 
of the rectangle. Now we triangulate each of the fibered solid tori so that the 
triangulation of the three annuli which make up the boundary of the solid 
torus is “linear.” On each of these annuli there are now two triangulations 
which come from the triangulations of the two adjacent solid tori and which 
can be replaced by a common subdivision since they are linear. This gives us 
a decomposition of the fibered space into cells. From this we can deduce a 
simplicia1 triangulation by barycentric subdivision. 

5. Drilling and Filling (Surgery) 

An essential aid for the classification of fibered spaces will be the method 
of drilling out exceptional fibers and replacing the drill hole by ordinary 
fibered solid tori. To drill out a fiber H from a fibered space F means to 
remove from F the interior points of a fiber neighborhood 52, of H. This 
results in a fibered space F with boundary. The boundary is a fibered torus. 
The orbit surface f of F is obtained from the orbit surface f of F by removing 
the interior points of the orbit neighborhood wh into which the fiber 
neighborhood 3, is mapped. 

We first show that the space F is independent of the choice of the fiber 
neighborhood of the fiber H and second that F is independent of the choice 
of H if H is an ordinary fiber. Then we get back fibered spaces F by closing 
an arbitrary fibered space F with boundary with suitable fibered torus seals 
(Verschluss ring). 

LEMMA 4. If 3 and 52’ are two fiber neighborhoods of a fiber H in a fibered 
space F, there exists a fiber preserving deformation of F which sends 52 to 52‘ and 
leaves H fixed. 

Proof: Between 3 and 3‘ we put a fiber neighborhood 52,  of H which lies in 
the interior of 52 and 52’ and show that there exists a fiber preserving 
deformation of F that keeps H fixed and sends 52 to 3,. Then there is also a 
deformation which sends 3’ to 52 since 52‘ is not distinguished from 3, The 
required deformation is the first deformation followed by the inverse of the 
second. The existence of such a fiber neighborhood 52, follows from Lemma I 
since for any two orbit neighborhoods w and w’ of h there exists an orbit 
neighborhood 0, of h which lies in the interior of w and w‘. 

We now take another orbit neighborhood wu of h which contains w in its 
interior. This is possible; one can choose for wu a 2-cell which contains w in 
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FIG. 6 

its interior and contains no exceptional points except h. This 2-cell exists 
since the orbit neighborhoods are closed and exceptional points have no 
accumulation points, and it is an orbit neighborhood by Lemma 3. 

To  get a model, we map a, onto a disk of R ’, with the image of h as center 
point, and such that o and o, are mapped to concentric circles (Fig. 6).  Now 
we perform on the disk a deformation which sends o1 to w (for example, by 
radially blowing up ol). This deformation of the orbit neighborhood of h 
corresponds to a fiber preserving deformation of the fiber neighborhood Qa of 
H which keeps H and the boundary of il, pointwise fixed. We obtain this 
deformation or‘ 9, by cutting il into a Euclidean cylinder and transferring the 
deformation of oa to all meridian disks which are p-fold branched covering 
surfaces of a,. 

Lemma 4 implies that the fibered space F, which is obtained from F by 
drilling out a fiber H ,  is independent of the choice of the (infinitely many) 
fiber neighborhoods of H .  

LEMMA 5.  The fibered space with boundarv F, which is obtained from F by 
drilling out an ordinary fiber H ,  is independent of the choice of the ordinary fiber 
H .  

ProoJ If H and H ’  are two ordinary fibers of F,  h and h’ their image 
points on the orbit surfacef, there exists a 2-cell o which contains h and h’ in 
its interior and contains no points which are images of exceptional fibers. 
Then there exists a deformation of w which sends h to h’ and keeps the 
boundary of w fixed. By Lemma 3, o is an orbit neighborhood of each of its 
interior points and hence the image of an ordinary fibered solid torus 9. The 
deformation of w corresponds to a fiber preserving deformation of il which 
sends H to H ’  and leaves the boundary torus of f2 pointwise fixed. 

The same arguments apply to the drilled-out space F and show that the 
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space obtained from F by drilling out an arbitrary number of ordinary fibers 
is independent from the choice of the ordinary fibers which are drilled out. 
The only requirement is that the drilled-out fiber neighborhoods be mutually 
disjoint. 

From the fibered space with boundary F that is obtained from F by drilling 
out a fiber we can construct new (closed) fibered spaces by closing the 
boundary torus B of F with a fibered solid torus, the torus seal V .  This is 
achieved by a fiber preserving pasting of the boundary torus II of V to the 
torus n. Given the torus seal V ,  this closing can be made in infinitely many 
essentially different ways. But the closing is completely determined if one 
knows the image k of a meridian curve M of V on the torus n. Obviously, M 
can neither be null homologous nor homologous to a fiber on n since 
otherwise this would be true for M on II; furthermore, M is without singular 
points. These are all requirements for M. For we have 

LEMMA 6.  I f  on the boundary torus n of a jibered space with boundary F we 
have a simple closed curve which is neither homologous to 0 nor to a 
fiber, then there exists exactly one jibered solid torus V whose boundary torus II 
can be mapped under a fiber preserving map onto n such that is homotopic to 
0 in V .  The thus resulting (c1osed)fibered space F ,  is uniquelv determined by F 
and the homology class of M on n. 

Proof. (a) First we show that there exists one and only one fibered solid 
torus V that satisfies the requirements of the theorem. If Q is a crossing 
curve, 

on 

an oriented fiber on n, we have 
- 
M - a . e + P H  ( a  =O,(a,  p )  = 1). 

In $1  it was shown that there exists exactly one fibered solid torus V with 
meridian M, fiber H ,  and suitable chosen crossing curve Q such that on the 
boundary II of V we have 

M - a Q  + P H .  

We can map II onto n under a fiber preserving map such that Q goes to 
and H to H. For we can cut II, n along Q and H ,  and fl, respectively, into 
two rectangles which are hatched by the fibers and we can map these 
rectangles onto each other under a fiber preserving map. Then M is mapped 
to M ,  and thus M becomes a meridian of V.  

and the homology class of M (on n). All possible fiber preserving maps of n 
onto II under which k becomes homotopic to 0 in V are obtained from a 
single such map followed by a fiber preserving map A ,  from II onto II which 
maps the meridian M, or more precisely its homology class, to itself or its 
negative. We shall have proved the independence of the resulting fibering F ,  
from the choice of the above maps once we have shown that we can extend 
A ,  to a fiber preserving map A ,  of V onto V whose restriction to II is A , .  

(b) We now show that the fibered space F ,  is uniquely determined by 
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We first check how the homology classes of IT are transformed under A,. Let 
H ,  Q, and M be fiber, crossing curve, and meridian curve on II, respectively, 
with an arbitrary but fixed orientation, and let 

M - a Q  + P H .  

Because of the transformations (4) in f I we can choose Q a priori such that 
a > 0 and 0 < /3 < a ;  of course, since M is a simple closed curve, a and /? 
are coprime. Let H ’ ,  Q’.  M ’  be the images of these curves under A, .  Since 
A ,  is fiber preserving, we have from f 1 

H ’ - E , H ,  Q’-E,Q + A H  k l ) .  (1) 

The meridian curve M is mapped under A ,  into 

M ‘ -  aQ’ + p H ‘ -  E - ~ Q  + (el  p + a h ) H .  

Now we must have that M ’  - e,M, hence 

E ~ ~ Q  + ( E ~  f i  + a h ) H  - E ~ ( C X Q  + P H ) .  

Comparing coefficients, we get E~ = e3 and 

ah + E ,  p = E 2 P .  (2) 

If a > 2, this implies A = 0 and for (1) there are only the two possibilities 

(1) H ‘ - H ,  Q’-Q 
( 2 )  H ‘ - - H ,  Q’- -Q.  

a > 2  ( 
For a = 2 we must have h = + 1, - 1, or 0, since 0 < p < a. Thus there are 4 
possibilities 

( I )  H ‘ - H ,  Q ‘ - Q  

( 2 )  H ‘ - - H ,  Q ’ - - Q  
( 3 )  H ‘ - - H ,  Q ’ - Q + H  

(4) H I - H ,  Q ’ - - Q - H  

a = 2  1 
For a = 1 we again get h = 0 and we obtain the four possibilities 

a = l  { H ’ h - - t H ,  Q ’ - + Q  

with all four combinations of the signs. 
The map A ,  which we have to construct will be the composition of two 

fiber preserving maps A ,  = J, . BV.l3 B ,  is an arbitrary fiber preserving map 
which transforms the homology classes on n in the same way as A,, does. J ,  
maps each class to itself. We cut V into a right circular cylinder. In case that 
H ’ -  - H ,  Q‘  - - Q we let B ,  be a rotation of n about a line orthogonal to 
the cylinder axis. Then B ,  is fiber preserving and sends each homology class 
on I1 to its negative. In the case a = 1 we obtain the desired map B ,  by the 

I3Jv . B, is the map obtained by first applying E p ,  then J , .  
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M 
FIG. I 

rotation as in the previous case or by a reflection on a plane which is 
orthogonal to or passes through the cylinder axis. In the case a = 2, the fiber 
is made up of two lines lying diametrical to the middle fiber. Since 
M - 2Q + H ,  the crossing curve appears as in Fig. 7. A transformation (3) is 
obtained by reflecting the cylinder at the plane orthogonal to the cylinder 
axis and going through its center point; a transformation (4) is obtained by 
reflecting at a plane which goes through the axis. 

It remains to be shown that for an arbitrary fiber preserving map J ,  of II 
onto itself which maps each homology class of II to itself, there exists a fiber 
preserving map J ,  of V onto itself whose restriction to II is J , .  We show first 
that J ,  can be deformed to the identity by a fiber preserving deformation. 
We can show this, e.g., by first taking a rigid translation of the fiber into itself 
such that the image Q’ of Q is mapped onto Q. Such a deformation is 
possible since by hypothesis Q’ is homologous to Q on the boundary torus. 
This is followed by a fiber preserving deformation which interchanges the 
fibers and such that the composition keeps Q pointwise fixed. The map J ,  so 
deformed appears in the fibered rectangle, which is obtained from II by 
cutting along a fiber H and Q, as a fiber preserving map C which leaves the 
two parallel edges Q pointwise fixed and which translates the inner points 
only along their fibers. To transform this map of the rectangle into the 
identity by a fiber preserving map, we proceed as in the proof of the Tietze 
deformation theorem by Alexander. We complete the rectangle to a strip by 
the region which is shaded in Fig. 8 and define a map C’ of this strip which 
coincides with C in the rectangle and is the identity in the shaded region. Let 
T(t)  be a stretching of the band upward which leaves the lower boundary Q 
of the band fixed: the ordinate 5 of a point of the band should go over to tt. 
Then T ( t ) - ’ C ’ T ( t )  = C’( t )  is a topological map of the strip, which maps the 
rectangle fiber preservingly into itself for t > 1. For t = 1 this map coincides 
with C in the rectangle. As t -+ 00, C‘( t )  continuously approaches the identity. 
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FIG. 8 

Thus C and therefore J n  is deformed into the identity by a fiber preserving 
deformation. 

We now describe this deformation by a parameter T which decreases from 
1 to + . Let the map corresponding to T be Jn(7). To extend J, to the desired 
map J , ,  we cut V to a cylinder (of radius 1) and introduce cylindrical 
coordinates z, v, p. Then p = const gives a concentric torus of radius p. We 
map each of the tori onto itself under a fiber preserving map. The boundary 
torus is mapped under J n  = Jn( I ) .  If the map Jn(7)  in the coordinates z ,  ‘p is 
given by 

(Jn(7))  
z’ = Z’(Z,9),7) 

v’ = v’( z, ‘p, 7) 

the map J ,  for 1 > p > + is defined by 

cp’ = v’(z,v, P )  2 

z’ = z’( z ,  q, P )  

P’ = P 1 
whereas for f 2 p > 0 it is the identity. This construction of the map A ,  
completes the proof of Lemma 6 .  

Instead of constructing A ,  as above, we could have described this map 
directly in terms of cylindrical coordinates. For if 

( J n )  I I = F(z,rp) 

9, = 9,(z,v) 

[ = z’(z,(p, l ) ]  

[ = ‘p’(z,’p, I ) ]  

describes the map J , ,  of the torus lI in terms of cylindrical coordinates, then 
the desired map A ,  is given in the range 1 2 p > 4 by 

v’ = 2(p - + ) F  - 2(P - I)cp 

2’ = 2(p - + ) 2  - 2(p - 1)z 

P‘ = P 

( A “ )  
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and for $ 2 p 2 0 it is the identity. However, since it is not quite easy to 
demonstrate that this map A ,  is a homeomorphism, we have chosen the 
method above. 

6. Classes of Fibered Spaces 

If w is a path on the orbit surfacef from a point h ,  to a point h, ,  we can in 
the fibered space deform the fiber HI into the fiber H ,  over fibers so that the 
image on f runs along w .  The path w does not determine the mapping of HI 
to H ,  pointwise, but during the deformation the fiber can be translated in 
itself. But the map of HI to H ,  is determined up to orientation preserving 
autohomeomorphisms of h,. Therefore, if H I  is oriented, then the orientation 
is translated uniquely to H ,  along the path w.  We shall take up this point 
more closely at the end of this section. 

If w’ is another path of h ,  to h, ,  the translation of a fixed orientation of h ,  
along w‘ can lead to a different result as translation along w.  However, the 
end orientations agree if w can be deformed to w’ on the orbit surface. In 
particular, if w is a closed curve onf,  it is possible that running along w the 
orientation of the fiber is preserved or changed. Depending on whether we 
have the first or second case, we associate the value + 1 or - 1 to the curve w .  
Since this value is invariant under deformations of the curve, to each element 
of the fundamental group there corresponds a unique value. To the product 
a * b of two elements of the fundamental group corresponds the product of 
the two corresponding values; the inverse of a has the same value as a. This 
implies that the value of a curve is determined already by its homology class. 
For each null homologous curve has value + 1 since it represents an element 
of the commutator subgroup of the fundamental group, and is therefore a 
product of commutators, and each commutator aba-lb-’ has value + 1. 
Therefore the values of all curves are known if the values of a fundamental 
system of curves of the fundamental group, or even the homology group, are 
known. 

We say that two fibered spaces F and F’ belong to the same class if their 
orbit surfaces f and f’ can be mapped onto each other under a 
homeomorphism such that each curve is mapped to one with the same value. 
The class of a fibered space is therefore determined by its “valuated orbit 
surface.” Two fibered spaces belong certainly to different classes if their orbit 
surfaces are not homeomorphic. However, spaces belonging to different 
classes may have the same orbit surface. We shall give a complete 
enumeration of the classes in $7 and $8. For example, for the projective plane 
there are two classes, depending on whether the orientation of the fiber is 
preserved or reversed along the projective line. For a simply connected 
surface there is only one class since each closed curve on it is null 
homologous, hence has value + 1. 
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I f  we drill out a fiber of the space and replace the drill hole by a new torus 
seal as in 95 , the class of the fibered space is not changed. For the class is 
already determined if we know the value of one curve in each homology class. 
The representatives of the homology classes can then be chosen so that they 
are not affected by the drilling and filling, i.e., this process of changing the 
space does not affect the valuation of the curves, as it does not affect the 
orbit surf ace. 

If we drill out all the exceptional fibers from a fibered space F and fill in 
the drill holes with ordinary torus seals, we obtain from F by this process (but 
not in a unique way) another space F, which has no exceptional fibers and 
belongs to the same class as F. Conversely, we can get back F from F,. 
Therefore we first would like to characterize all spaces without exceptional 
fibers belonging to the same class. To this end, we cut the orbit surfacef of a 
space F, into the fundamental polygon u, where we have to require that f be 
closed, hence F be a closed space. We adopt this restriction from now on. We 
change the fundamental polygon to a polygon 5 by cutting off the vertices, 
which means that we change the surfacef to a punctured surfacef by cutting 
out a 2-cell which contains the vertex h of u.  Figure 9 shows the punctured 
fundamental polygon of the orientable surface of genus p = 2. We can think 
off  as the orbit surface of a space F, which is obtained from F, by drilling 
out a fiber H .  Then Fo is uniquely determined by Fo since F, does not depend 
on the choice of the drilled out ordinary fiber, by Lemma 5 ($5 ) .  Now we 
triangulate f using the edges of the polygon ij (dotted lines of Fig. 9). The 
fibers of F, which map to points of a 2-simplex of the triangulation constitute 
an ordinary fibered solid torus, by Lemma 3 ($4). As in the proof of Lemma 3 
we can build up the polygon 5 step by step from 2-simplexes so that after 
each step we obtain a 2-cell. This construction corresponds to a construction 
of F, from ordinary fibered solid tori, which gives us an ordinary fibered solid 
torus v. The edges of 5 correspond in v to fibered annuli. If two edges a’ and 
u” in t. are identified with an arc a off, we have to identify the corresponding 

FIG. 9 
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annuli A’ and A ” in v with a fibered annulus A of Fo under a fiber preserving 
map. If we identify in this way all the corresponding annuli of v, we get Fo. 
If we know how two edges a’ and a“ of C5 are identified (under an orientation 
preserving or orientation reversing map) and whether the fiber orientation is 
preserved or reversed along a closed curve off which intersects the edges of E 
only in one point of the edge a,  then the identification of the annuli A’ and 
A ”  is uniquely determined up to an orientation preserving and fiber 
preserving map of one of the annuli onto itself, say A’ .  This map of A’ can be 
induced by a fiber preserving map of the solid torus v which keeps all the 
other annuli (which correspond in pairs) fixed. The map of A’ to A’ has 
therefore no effect on the closing of to F,. All fibered spaces with 
boundary obtained in this way can be mapped onto Eo under a fiber 
preserving map. 

This shows that all closed fibered spaces F, without exceptional fibers 
which belong to the same class give the same fibered space (with boundary) 
Fo after drilling out an arbitrary fiber. If we drill out r + 1 fibers instead of 
just one, we again obtain the same fibered space (bounded by r + 1 tori), 
namely, the sapce obtained from F, by drilling out r fibers. As the proof of 
Lemma 5 (55) shows, it does not matter which fibers of Fo are drilled out. We 
sum up: 

THEOREM 3. Each class of closed fibered spaces determines (and is 
determined by) a unique fibered space with boundary, the classifving space F,. 
The classibing space is the on4  fibered space with boundary and without 
exceptional fibers which has as orbit surface the punctured valuated orbit surface 
which characterizes the class. From F, we obtain all spaces of the class by 
drilling out a finite number r of fibers and closing the r + 1 boundary tori with 
arbitrary torus seals. The enumeration of all classes will be given in Theorem 
7, 58. 

So far, we started with a given fibered space F and defined its class, i.e., its 
valuated orbit surface. Now we start with an arbitrary valuated closed surface 
and show that it is the valuated orbit surface of a class. We cut the given 
surface f into the fundamental polygon u as above and puncture it by cutting 
off the vertices of c to get 3. The ordinary fibered solid torus v which has 5 
as meridian disk can be made into a fibered space (with boundary) Fo by 
identifying under a fiber preserving map any two annuli A‘  and A ”  on the 
boundary on v which map to corresponding edges a‘ and a” of C5 such that a 
fiber of A’ is identified with a fiber of A” if the point of a‘ is identified with 
the corresponding point of a”. Then there exist essentially two distinct maps 
of A’ to A ” .  For if we orient the the fibers of v simultaneously so that any 
two oriented fibers on v are homologous, we can map A’  to A “ under a map 
which preserves and under a map which reverses the fiber orientation. In the 
first case the orientation of the fiber is preserved along a curve which goes 
from a point of A’ through the interior of v to the equivalent point of A ” ;  in 
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the second case it is reversed. If we identify in this way any two annuli of V 
which correspond to two equivalent edges of E under one of the two maps, we 
get a space with a boundary no which consists of fibers. These boundary 
fibers correspond to the boundary curve 5 .  Therefore II, is a torus or a Klein 
bottle. To show that TI, is a torus, we observe that if we run along the 
boundary curve off ,  we cross each edge of the polygon u exactly twice. In 
both cases the fiber orientation is either preserved or reversed so that if we 
run once along the boundary curve the fiber orientation is preserved; but this 
is the case only for the torus. The space obtained from under the 
identifications is therefore a fibered space (with boundary) without ex- 
ceptional fibers. Its orbit surface is the punctured surface f ,  whose valuation 
was obtained from an arbitrary valuation of the edges of a fundamental 
polygon (namely the fundamental polygon dual to u). This proves 

THEOREM 4. For an arbitrary valuated closed surface there is a corresponding 
class of fibered spaces. A valuation of the surface is obtained by an arbitrary 
valuation of a canonical system of fundamental curves, i.e.,  the edges of a 
Poincare fundamental polygon of the surface. 

We proved the last remark by constructing for any arbitrarily given 
valuation of the fundamental curves a space Fo whose orbit surface is the 
given punctured surface; the valuation of the orbit surface determined by Fo 
agrees for the fundamental curves with the arbitrarily given valuation. One 
could easily have shown directly that an arbitrary valuation of the 
fundamental curves, i.e., of the generators of the fundamental group, leads to 
a well-defined valuation of the whole group since each generator appears 
exactly twice in the single relation of the fundamental group, and therefore an 
arbitrary valuation of the generators gives a well-defined valuation of the 
single defining relation and hence of each relation between elements of the 
fundamemtal group. 

Theorems 3 and 4 give us the tools to determine complete invariants of 
fibered spaces under fiber preserving maps. We now describe in detail the 
translation of the fiber orientation along a path which was used in the 
definition of class. If  w is a path on the orbit surface from a point h ,  to a 
point h, and if s is a continuous parameter from 0 to 1 on w, we have for each 
value s of the parameter a point h ( s )  off and hence a fiber H ( s ) .  Orient each 
fiber H ( s )  arbitrarily. If the same fiber H belongs to different values s, which 
happens if w has multiple points, we give H the same number of mutually 
independent orientations. A fiber neighborhood of H ( s )  or, more precisely, 
the corresponding orbit neighborhood on f cuts out from w a neighborhood 
of the point h(s) .  If for each value of s all the fibers corresponding to the path 
near h(s)  are homologous in the fiber neighborhood of H(s) ,  where a p-fold 
exceptional fiber counts p times, we say that the fibers are oriented simul- 
taneously along w. It is clear that there exists such a simultaneous orientation 
of the fibers along w if w is covered by one orbit neighborhood w ;  because 
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then we need only orient all the fibers which map to points of w so that they 
are homologous in Q . I 4  In the general case we decompose w into finitely 
many pieces so that each piece lies in the interior of an orbit neighborhood. 
The fibers of the individual pieces can be oriented simultaneously so that 
each fiber at the intersection of two pieces gets the same orientation from the 
two pieces. Then all the fibers are oriented simultaneously along w. The fibers 
can be oriented simultaneously along w apparently only in two opposite 
ways; the orientation along w is determined by the orientation of a single 
fiber, e.g., the initial fiber. Under a simultaneous orientation of the fibers of 
w, the orientation of the first fiber is translated along w to the last fiber. 

If w and w’ are homotopic curves of the orbit surface which both go from 
h ,  to h, ,  and if the fiber HI is oriented, then the translation of the orientation 
along w and w’ to H ,  gives the same result; i.e., the fiber orientation is 
preserved under translation along the closed path ww’-I. For ww’-’ bounds a 
singular 2-cell on f, i.e., the continuous image of a 2-cell e. We triangulate e 
so small that the image of each 2-simplex is contained in an orbit 
neighborhood on f. Since the path ww’- I  can be built up from boundary 
paths of 2-simplexes by canceling out edges which are traveled in opposite 
directions, and since the fiber orientation is preserved along a closed path 
which lies in an orbit neighborhood, the fiber orientation is preserved along 
ww‘ - I .  

We now want to solve the problem whether and in how many different 
ways the orbit surface Jb can be embedded in the classifying space Fa so that 
each fiber intersects it exactly in its image point. To this end, we cut fo into a 
fundamental polygon U which, in contrast to the fundamental polygon G 
above, contains the hole of fo in its interior, i.e., ii is a punctured 2-cell. This 
corresponds to a cutting of Fa into a fibered hollow torus 0. The “inner” 
boundary surface no of 0 is mapped onto the boundary of the hole of ii, 
whereas the “outer” boundary Z is decomposed into an even number 2j  of 
pairwise equivalent fibered annuli which map onto edges of the polygon ii. 
Suppose we have succeeded in embedding fo into F,,; then yo appears in 
necessarily as an annulus which meets Z in a crossing curve Q and no in a 
crossing curve Qo. If Q ; ,  . . . , Qy,Q,”, . . . , Qy are the 2j oriented edges 
which make up Q and which correspond to the 2 j  lateral surfaces of Z, then if 
two such lateral surfaces (annuli) A,! and A: are identified, the two edges Q; 
and QY which they contain have to be identified under an orientation 
preserving or reversing map. (Conversely,) a crossing curve Q with this 
property can always be found on Z by choosing the crossing lines 
Q; ,Q; ,  . . . , Qi arbitrarily, but such that their end points go to the same 

I41n this case we say that the fibers of 51 are oriented simultaneously. More generally we talk 
about a simultaneous Orientation of all fibers of a fibered space if in each fiber neighborhood any 
two fibers are homologous, where a p-fold execptional fiber counts p times. Not every fibered 
space admits a simultaneous orientation of fibers but only the spaces of the classes 00 and Nn I 
of p. 391. 
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point under the identification of the lateral surfaces. Then fo can be 
embedded into Po; for example, we can cut 0 into a hollow cylinder 
(annulus X I) and draw from the points of Q radii which lie orthogonal to the 
cylinder axis. These radii in 0 make up the required orbit surface. 

Suppose now we havef, embedded into F, in a different way, with crossing 
curves Q* and Q: instead of Q and Q,. The lines Q,’ and QI’* of Q (resp. Q*), 
which lie in the same lateral side Al’ of Z, have (after choosing an orientation 
of Z) a certain intersection number” y:; here we assume that Q,’ and Q,’* 
have no common endpoints, which can be achieved by a small deformation 
of the embedded orbit surfaces. Since under the identification of the 
corresponding lateral sides Al’ and A: the lines Q,’ and Q;* are identified with 
the lines Q,” and Ql”* (resp. with - Q,” and Q”*), the intersection number is 
y,” = - yi or = + y,!, depending on whether A/  and A: form an association of 
type one or two.I6 y = ‘y,! + y:, i.e., the intersection number of Q and Q* 
is 0 if all the lateral sides of C are identified in the first way, i.e., if F, is 
orientable. Otherwise we can choose Q* such that y is a given even number. 
Therefore, if F, is orientable, Q can be deformed into Q* and hence Q, into 
Q:, i.e., on the boundary surface II, of F, there exists a crossing curve Qo 
which is determined up to orientation and deformations, such that Q, is the 
intersection of II, and the orbit surface Jb is embedded in F,. I f  Po is 
nonorientable, there are besides Q, infinitely many crossing curves Q: which 
can be the intersection of f, and no. They all differ from Q, by an even 
multiple of the fiber. If we cut the fibered torus x I, 0 along the embedded 
orbit surface j,, we obtain a drilled-out fibered prism in which bottom and 
top surface are equivalent and the lateral surfaces are pairwise equivalent. We 
shall use this representation of the classifying space in $10 to determine the 
fundamental group. 

7. The Orientable Fibered Spaces 

Our task to determine all fibered spaces and to characterize them by 
invariants splits into two parts: first, to determine all the classes; second to 
list all spaces of a given class. We first solve this problem for orientable 
spaces. 

First suppose the orbit surface is orientable of genusp. Since the space is 
orientable, the fiber orientation is preserved along any curve of the surface. 
For if w is a closed curve of value - I  on the orbit surface (which misses 
exceptional points), there is a fiber preserving deformation of the space which 
traces the fiber H along the curve w.  This is so because w can be covered with 
finitely many orbit neighborhoods without exceptional points (Heine-Borel). 

l5O. Veblen, “Analysis Situs,” 2nd ed., Amer. Math. SOC. Colloq. Publ. No. 5, Part 2. Amer. 

I6H. Tietze, Topologische Invarianten, Monufsh. Mufh. Phys. 19 (1907). [See Seifert and 
Math. SOC., New York, 1931. 

Threlfall, this Lehrbuch p. 220.1 
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Inside each orbit neighborhood one can apply the fiber preserving 
deformation of the proof of Lemma 5 and thus deform the fiber step by step 
along w into its initial position. In particular we can choose the deformation 
such that an orbit neighborhood w of the point h comes back to itself, since 
along w the orientation of the surface is not changed because it is orientable. 
The corresponding fibered solid torus Sl is then mapped onto itself under an 
orientation reversing map. But, by a well-known theorem, the orientation of 
an orientable space is not reversed under a deformation. Therefore, all curves 
have value + 1, and there is for each orientable orbit surface a single class of 
orientable fibered spaces. Now the fibered topological product of a punctured 
surface of genus p and S ' is an orientable fibered space whose orbit surface is 
the punctured surface of genus p and all of whose curves are of value + I .  
Since this space has no exceptional fibers, it is the classifying space Fo. 

Even if the orbit surface is nonorientable, there is on4 one corresponding class 
of orientable spaces. As in the above case we first observe that the fiber 
orientation is preserved along an orientation preserving curve of the orbit 
surface. But if w is an orientation reversing curve of the orbit surface, then 
the space is orientable only if the fiber orientation is reversed along w. 
Therefore the valuation is determined by the surface. The classifying space is 
in this case not the topological product of the punctured surface of genus k 
and S ' ,  but has to be constructed by the method of 16. Figure 10 shows it for 
k = 3. In the prism we have to identify bottom and top disks under a 
translation. The two lateral surfaces in which we have drawn the fiber H are 
to be identified so that the edge a ,  of one surface is identified with the edge 
of the other surface. Similarly we have to identify the other four unshaded 
lateral sides of the prism. The six shaded sides become the boundary torus of 
the classifying space and the bottom surface becomes the orbit surface. 

This finishes off the determination of the class and we now proceed to 
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determine the invariants of an orientable fiber space F. We orient the space 
and the invariants depend on the orientation. We shall obtain the invariants 
by drilling out the exceptional fibers of F and replacing them by ordinary 
solid tori whose meridians are uniquely determined by the fibered space F up 
to orientation. In this way we get from the oriented space F a  unique oriented 
space F,, without exceptional fibers. Let C ,  be an exceptional fiber of F and 
9, a fiber neighborhood of C , .  The solid torus 9, gets a certain orientation 
from F, which induces on the boundary torus II, of &, a certain orientation 0. 
On II, we choose an oriented crossing curve Q and an oriented fiber H .  
These two curves determine an orientation 0' on II, . For, cutting II, along Q 
and H into a rectangle, a certain orientation of it is determined by the 
sequence Q H Q - I H - ' .  By reversing the orientation of one of the curves Q 
and H ,  we reverse the orientation 0'. But 0' is not changed by reversing the 
orientation of both curves simultaneously. We now orient Q and H so that 0' 
agrees with 0. This can be expressed by saying that using the orientation o the 
curves Q and H shall have intersection number + 1. Another pair of curves 
Q, and H I  which determines the same orientation 0' = o on II, is related to Q 
and H (on II,) as follows: 

H - & H I ,  Q - E Q ,  + y H ,  ( E  = k 1, y arbitrary integer). ( I )  

For if Q , ,  H ,  determine the same orientation as Q, H ,  the determinant of the 
transformation must have value + 1. This implies that in the transformation 
formulas (1) and (4) of $ 1 ,  E ,  = E~ (= E ) .  The meridian curve MI of the solid 
torus 9, can now be expressed in terms of Q and H as 

MI -aQ + ~ H - E E ~ Q ,  + ( C X ~  + @ ) H I  = a , Q , +  PIHI .  (2) 

a ,  > 1 and O < P ,  < a , ,  (3) 

We can choose Q, and H I  such that 

which determines E and.v. If instead of MI we choose the meridian curve with 
opposite orientation, we only have to reverse both the orientations of Q, and 
H I  to obtain the same homology MI - a lQl  + PIHI. Hence the numbers 
a , ,  PI are determined uniquely by the nonoriented meridian of 9, and the 
crossing curve Q, is determined up to its orientation. We now drill out a, and 
replace the drill hole with a new torus seal V ,  which has Q, as meridian 
curve. Then V ,  is an ordinary fibered solid torus since the meridian is a 
crossing curve. Thus we have derived an orientable fibered space F ,  from F 
which is uniquely determined by F, the orientation of F, and the drilled-out 
exceptional fiber. For F,  is independent of which fiber neighborhood &, of C ,  
is drilled out because by Lemma 4 (95) we can deform an arbitrary fiber 
neighborhood of the fiber C ,  onto another under a fiber preserving 
deformation of F. 

We now apply this construction to F , ,  i.e., we drill out an exceptional fiber 
C, and obtain the pair a 2 ,  P2 as additional invariants of the oriented space F.  
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Continuing in this way, we finally obtain an oriented space F, without 
exceptional fibers which is determined by F and its orientation. F, is 
independent of the order in which we have drilled out the exceptional fibers 
of F because we can drill them all out at  the same time by choosing the fiber 
neighborhoods sufficiently small. 

From F, we drill out an arbitrary fiber neighborhood Vo and obtain the 
class space F, of F.  I t  inherits the orientation from F. Since Fo is orientable 
there is a distinguished crossing curve Q, on the boundary torus II, of F, 
which is determined up to orientation and deformations as the boundary of 
the orbit surfacef, embedded in F, (see $6). We orient Q, and a fiber H ,  of 
II, so that they give on no the same orientation as that induced by V,. The 
meridian curve M ,  of V,, which is a crossing curve, is in the system Q,, H ,  of 
the form 

M , -  Q, + bH0. (4) 

The integer b is determined by the oriented space F,, hence by F and its 
orientation. 

This gives us a complete system of invariants of F, by the following: 

THEOREM 5. A n  orientable fibered space F together with its orientation is 
determined by a one-to-one correspondence by a system of invariants 

( 0 , o ; p  I b ; a , ,  P1;a2, p2; * - .  ;a,, P,) 

(Qn; k I b ;  a,, P I ;  a2,  P2; . . . ; ar, P,).  
or 

Here 0 means that F is orientable; o (resp. n) means that the orbit surface is 
orientable (resp. nonorientable). p and k are the genus [number of handles (resp. 
cross-caps)] of the orientable (resp. nonorientable) orbit surface. The three 
symbols to the left of the bar determine therefore the class of F. The number b 
determines uniquely the construction of the space without exceptional fibers F, 
from the class space F,. The numbers a;, pi determine uniquely (one-to-one) the 
exceptional fibers in F. 

The theorem tells us when two orientable fibered spaces with given 
orientations are homeomorphic under an orientation and fiber preserving 
map. Theorem 6 shows how the invariants change if the orientation is 
reversed. 

We have seen how to find the system of invariants for a given oriented 
space F. To show that this system is complete, we construct conversely to a 
given system of invariants a unique oriented space F. The numbersp (resp. k )  
determine the class (see p. 384) and hence by Theorem 3 (16) the class space 
F,. We can orient F, arbitrarily since there exists a fiber preserving and 
orientation reversing map of F, onto itself (reflection of the solid torus v of 
16 on a meridian disk). This determines the crossing curve Q ,  of the 
boundary torus II, of F, and a fiber H ,  up to simultaneous reversion of their 
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orientation. b determines M ,  - Qo + bH, up to orientation and therefore the 
closing of F, to F, uniquely. From F, we have to drill out r arbitrary fibers; 
the resulting space which is bounded by r tori is independent of the choice of 
the drilled-out fibers by Lemma 5. On each of the boundary tori there is a 
distinguished (up to orientation) crossing curve Qi,  namely, the meridian of 
the drilled-out solid torus, and the orientation of F, therefore determines a 
pair of curves Q,,Hl up to simultaneous reversion of orientation. This 
determines uniquely the meridian M, - a,Q, + p l H ,  of the new torus seal (up 
to orientation) and therefore uniquely the closing of F, to F. 

We now describe for an orientable fibered space F a useful “diagram” V ,  
which together with Fo determines the space. Choose in F disjoint fiber 
neighborhoods 52, of the exceptional fibers. Then the ordinary torus seals V, 
which replace the drill holes in F, are disjoint. We can choose the fiber 
neighborhood Yo, which we removed from F, to obtain the class space F,. in 
such a way that it contains all torus seals V, in its interior by Lemma 3. The 
fibered space with boundary Po that is obtained from Vo after removing the 
V, ,  and which is the topological product of S 1  and a disk punctured r times, 
is the diagram of the fibered space F if the distinguished crossing curve Q, of 
F, is drawn on the boundary torus no of F,, and the meridian curves M ,  of 
the drill holes 52, are drawn on the remaining r boundary tori II,. Obviously 
Q, determines how one has to glue on the class space F, [which is determined 
by p (resp. k ) ]  to the boundary torus II,. By Lemma 6 ,  MI determines the 
filling in of the drill hole 52,. Furthermore, if we orient v,, we get an 
orientation of F. 

To obtain the invariants b ;  a I ,  PI;  . . . ; a,, p, of F from the diagram V,,  
we orient the fibers of Po simultaneously, i.e., so that they are homologous in 
v,. Then the orientation of the fibers H,, H I ,  . . . , H ,  on the boundary tori 
&,II,, . . . , II, is determined. Hewe the crossing curves Q , ,  . . . , Q, on the 
boundary tori are determined together with their orientation by requiring that 
the orientation on II, which is induced by Q, and H ,  shall be opposite to the 
orientation induced by v,, and by requiring that the numbers a,, p, in 

- 

- 

MI - a; Qt + PI HI (on n;) ( 5 )  

satisfy a, > 1, 0 < p, < al. The Q, are meridians of the torus seals V, .  Closing 
vo with the V l ,  we obtain an ordinary solid torus Vo with the meridian 

Mo - Qo + bHo (on no) ( 6 )  

and it is easily proved that 

M , -  Q I  + Q2 + * * . + Q, (in Po) 
and hence 

- Qo + Q ,  + Q2 + . . + Q, - bH, (in vo). (7) 

Figure I 1  shows vo with r = 3, b = 4. 
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FIG. 11 

We now want to find out how the invariants are changed if the orientation 
of F is reversed. In the diagram Po only the orientation is reversed, but not 
the curves Mi and Qo. I t  is useful to reverse the orientations of the fibers of 
vo simultaneously; let H i , H ; ,  . . . , H,! be the fibers H o , H , ,  . . . , H,, but 
with opposite orientation: 

H,’- - H, (on Hi, i = 0,1, . . . , r ) .  ( 8 )  

We have to replace the Q I ,  Q2, . . . ,,Qr by the crossing curves Q;, 
Q;, . . . , Qr’. Then 

(2,’- Qi +y,H,  (on IIi, i = 1,2, . . . , r ) .  (9) 

The sign of Q, is + 1 since the determinant of the transformation of the pair 
(8) and (9) has value - 1, so that the orientation on vo is reversed and hence 
the orientation of Hi. For the same reason 

Qi - QO (on no). (‘0) 

Then we have for the meridian Mi 

Mi - aiQi + P,Hi - alQI’ + ( a s ;  - Pi)H,’ = a,’Q,’ + P,’H,’. 

The requirement a,! > 1 and 0 < P,’ < u,’ gives us a,! = a, and PI’ = ai - P,, i.e., 
y, = 1. b’ is [as b from (7)] now determined by 

- Q; + Q;  + . . . + Q,’- b’H6. ( 1 1 )  

Using (7)<10), we get b’ = - r - b. 

THEOREM 6. The oriented fibered space F with invarianls 

( 0 , o ; p  1 b ; a , ,  P I ; .  . . ;ar ,  P , )  
[ resp . 

(0, n; k I b ; a l ,  P I ;  * . P r ) I  
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has after reversing its orientation the invariants 

( O , o ; p l - r - b ; a , , ( ~ ~ - P ~ ;  . . .  ; L Y , , L Y , - & )  

(0, n; k 1 - r - b;  L Y , , ( Y ,  - PI; . . . ;a,,a, - p,)]. 
[ resp . 

If we had normed the numbers pi to the interval 

- ;ai < pi < $ai 
instead o f  norming to 0 < pi < LY, by (3), the invariants b, p,, . . . , p, would 
only change their signs if the orientation of F were reversed, in the case that 
no exceptional fibers of order 2 were present, i.e., all a, > 2. But if 
a ,  = 2, . . . , as = 2, only the last r - s invariants p would change their signs if 
the orientation were reversed, but b would have to be replaced by - s  - b, so 
that choosing the new normalization would not lead to an essential 
simplification for the purpose of reorientation. 

8. The Nonorientable Fibered Spaces 

As in the orientable case we first determine the classes. First assume the 
orbit surface f is orientable. Then the genus of f is > 0, since otherwise F is 
orientable (see $6 and $7). We show: For each orientable orbit surface of genus 
p > 0 there is exactly one class of nonorientable spaces. The claim is true for 
p = 1. For if a and b are two conjugate simple closed curves on a torus, then 
a,  say, has value - 1. We can assume that then b has value - I ;  otherwise we 
replace b by ab. Now suppose the claim is true for genus p - 1 ( 2  1). We 
prove it f o rp  by showing that on a surface of  genusp > 1 there is a handle on 
which all curves have value + 1. Cutting off this handle we get a punctured 
surface of genus p - 1 having some curves of value - I which is unique by 
the induction hypothesis. To show the existence of such a handle choose a 
system of curves which cuts the surface into a fundamental polygon with 
boundary a,b,a;'b;' . . . apbpap-'bp-l. I f  there is a pair a,,b, of value + I ,  we 
are done. Otherwise a , ,  say, has value - 1. Assume b, has value + 1 
(otherwise replace 6 ,  by alb l ) .  There is a curve aJ or bJ ( j  > 1) of value - I ;  
thus one of the curves ala, or albJ-' has value + 1 and spans together with 6 ,  
a handle with each curve of value + 1. 

Since the class is unique we can choose (on a surface of genus p > I )  a 
canonical system all whose curves have value - 1. 

I f  the orbit surfacef is nonorientable of genus k we represent it as a sphere 
with k cross-caps xI  , . . . , xk (see Fig. 12). Then a, is a curve which intersects 
the cross-cap in one point; i.e., a, is orientation reversing. Then 
H , ( f )  = { a l ,  . . . , ak:2a, + . - + 2a, - O } .  The valuation of f is therefore 
determined by the valuation of a,,a,, . . . , a,. If all the a, have value - 1, F is 
orientable. Thus at least one a, has value + 1. 
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FIG. 12 

\ / 

FIG. 13 

This leads to the following cases: 

Case (a) a, has value + I for each i. Then F N N  f X S 1  and &NN 

(punctured fl X S I .  

Case (b) k, of the a, have value + 1, k, = k - k, have value - I (k ,  > 0, 
k, > 0). Suppose f #  P 2  (k  = 1) and j# Klein bottle (k = 2). We claim that 
we can always assume that k ,  = 1 or = 2. This is clear for k = 3. Suppose 
k > 3 and k ,  # 1, k, # 2. There exist at least three a,, say u2,u3,u4 of value 
+ 1 and one, say u, ,  of value - 1. Let 1 be a curve which separates the 
cross-caps xI,x2,x3,x4 from the others. I separates f into cp and 4, where cp is 
a sphere with the cross-caps x , ,  . . . , x4 and one boundary 1. On cp there are 
two disjoint simple closed curves a’, 5 a ,  + a, + u3 and a; - a ,  
+ u3 f u4 of value - 1. There is a simple closed orientation reversing curve c, 
disjoint to a; U a;, (see Fig. 13), such that the surface ?p, obtained from cp by 
cutting along a; and a; ,  is nonorientable. We can represent ?p as a sphere with 
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two cross caps and three boundary curves I ,  a;',a;'. cp is obtained from (p by 
identifying diametrical points of a;, and a;'. Gluing back I/ and I ,  we have a 
new representation off as sphere with k cross-caps. Since a; and a; now have 
value - 1, the number of negative cross-caps has increased at least by 1. 
Continuing, we get k ,  = I or k ,  = 2 .  

We now show that the latter two valuations are distinct. Let d be a curve 
on f such that 

d - 2 y,a, 7L 0 and 2d - 2y1a1- 0. (1) 
(For example, d can be chosen to be a simple closed curve that intersects each 
cross-cap exactly once. In this case, cuttingf along d we obtain an orientable 
surface with one or two holes, depending on whether k is odd or even. d is 
called an orientation producing simple closed curve.) Since 2 d - 0  is a 
consequence of 2a,  + + 2ak -0, CZy,a, differs from C 2 a ,  only by a 
factor and all the y, are equal and odd since otherwise d - 0 .  Hence d has 
value (- 1)"~.  Thus the valuations off with even k ,  are different from those 
with odd k,;  in particular the valuations k ,  = 1 and k ,  = 2 yield different 
valuations off.  The investigation of all classes of fibered spaces is complete. 

THEOREM 7. For each orientable orbit surface f of genus p there is exactly one 
class of orientable fibered spaces, and if p > 0, exactly one class of non- 
orientable fibered spaces. For each nonorientable orbit surface f of genus k there 
is exactly one class of orientable fibered spaces, and if k > 2, exactly three 
classes of nonorientable fibered spaces; for k = 1 there is one class, for k = 2 
there are two classes. 

The following table lists the different classes. 0, N refer to orientability and 
nonorientability of F, and 0, n to the orbit surfacef, whose genus must be 
given in order for the class to be determined. Recall that a closed curve w off  
is given the value + 1 if the fiber orientation is preserved along w;  otherwise 
w gets the value - 1 ,  and note that the class and therefore the classifying 
space Fo is uniquely determined by the valuation of all the curves o f f .  

00 

On 
No 
Nn I 
Nn I1 

Nn 111 

All curves have value + I ; Fo E (punctured f) X S I ;  

All one-sided curves have value - 1 ; 
There are curves of value - 1 ; 
All curves have value + I ; Fo E (punctured f) X S I ;  

There are one-sided curves of value - I and of value + 1; each 
orientation producing simple closed curve has value - 1 ;  
There are one-sided curves of value - 1 and of value + 1 ; each 
orientation producing simple closed curve has value + 1. 

For p = 0 there is only the class 00, for k = 1 only On and Nn I ,  for k = 2 
only On, Nn I ,  Nn 11. Fo can now be constructed as in $6. 

We now characterize the nonorientable fibered spaces F by invariants. Let 
C ,  be an exceptional fiber in F, a, a fiber neighborhood of C , ,  n, the 
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boundary of Q ,  , MI a meridian on II, , Q an arbitrary crossing curve on II, , 
and H a fiber; then 

MI - aQ + P H  (on n1). ( 2 )  

H - t l H I ,  Q - E ~ Q ~  + y H , .  (3) 

Using formulas (1) and (4) of $ 1, 

we can choose a new crossing curve Q ,  and fiber H I  such that 

For the first requirement determines E ~ .  Choosing y suitably we reduce PI to 
[ - t a , , t a , ]  and finally we choose 6 , .  There is no orientation on II, 
determined by F since F is nonorientable; hence e l  and E~ can be chosen 
independently (cf. $7 in the orientable case). a , ,  PI are uniquely determined 
by Q ,  and hence by C,. The same holds, if a ,  > 2, for Q ,  and HI, up to 
simultaneously changing their orientation, which is permitted since the 
orientation of MI is not given by 52,. But for a ,  = 2 there is besides Q , , H ,  
another system 

Q ; - Q , + H , ,  H ; - - H I  ( 5 )  

MI - 2 Q ;  + H i .  ( 6 )  

in which MI also appears in normal form (4): 

If a ,  > 2, we drill out Q ,  and replace it by an ordinary torus seal V ,  having 
Q, as meridian and do the same for all exceptional fibers of multiplicity > 2.  
This determines uniquely a nonorientable fibered space F,, which has only 
s Z 0 exceptional fibers of multiplicity 2. To investigate F, further, we need 

LEMMA 7. A nonorientable fibered space F with boundary which is obtained 
from a (closed) jbered space by drilling out finiteh many exceptional fibers 
admits a fiber preserving autohomeomorphism keeping the boundary tori 
pointwise fixed except for one, fi. On n a given crossing curve Q is mapped to a 
crossing curve of the form 

Q ' -  + ( Q  + 2 z H )  or Q'- - ( Q  + 2 z H ) ,  (7) 
where z is an arbitrary integer and H is an oriented fiber on n. Furthermore, 
one can choose the homeomorphism orientation preserving or reversing on II." 

Prooj (a) Let z = 0. To find an orientation reversing homeomorphism we 
glue on an ordinary fibered solid torus V having Q as meridian and get a 
space F +  V .  The required map will be the end result of a fiber preserving 
deformation of F + V .  Choose on P + I/ a simple closed curve W from an 
interior point P of V and disjoint to the exceptional fibers which is 

"The theorem does not claim that we can choose the sign in (7) arbitrarily. 
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orientation reversing. Deform F + V (fiber preservingly) so that P runs along 
W and at the end V is mapped to itself (see $7). Then V and hence TI is 
mapped to itself under an orientation reversing homeomorphism which maps 
Q to Q’- + Q or Q’- - Q, depending on whether the fiber orientation is 
changed along the curve W.  Finally, remove V to get the desired map of F. 

(b) By (a) there is a fiber preserving map of F mapping Q + r H  to 
+ ( Q  + z H )  and orientation reversing on n. Here Q is mapped to 
Q’- ? ( Q  + 2zH). To get such an orientation preserving map, follow this 
map by a homeomorphism of F sending Q’ to 2 Q’ and reversing orientation 
on n. 

We use the lemma to show that F, is uniquely determined by the class and 
s, if s > 0. Drill out the s exceptional fibers. The resulting F, is determined by 
the class of F, (= class of F )  and by s, because F, = Fo (for s = 1) or F, = Fo 
(drilled out (s - 1) times) (see $6).  From we obtain F, by closing with s 
solid tori of multiplicity p = 2. This closing is independent of how the torus 
seal D is sewn (fiber preservingly) onto the boundary II of c. For if Q is a 
crossing curve, H a fiber of n, and M a meridian of D, then 

M - 2 Q  + y H  (on w). 
We show that the result is independent of y .  Since M is a simple closed curve, 
y is odd. If y = 1 (mod 4), there is a fiber preserving map of F, keeping all 
boundary components fixed except for and such that is mapped 
orientation preservingly and Q is mapped to 

Q ’ -  2 { Q + 2 [ ( 1  -y ) /4 ]H} ;  

hence M is mapped to 
M’-2Q’+yH’- ?(2Q + H )  

(Lemma 7). If y = - 1 (mod 4) we choose a fiber preserving map of F, which 
is orientation reversing on and which sends Q to 

Q’- ? { Q  + 2 [ ( 1 + ~ 4 1 ~ ) ~  

hence M to 

M ’ -  + ( 2 Q +  H ) .  

Thus instead of 

M - 2 Q + y H  

we can choose M I -  %(2Q + H )  as meridian of the torus seal. Therefore F, 
depends only on F, and on s. 

If s = 0, we obtain F, from Fo by closing with an ordinary solid torus 
having a crossing curve Q on II, as meridian. On IIo there are exactly two 
essentially distinct crossing curves. For by Lemma 7, Q can be mapped to 
0’- +(Q + 2rH) by a fiber preserving map of Fo. 
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Therefore, if Q, is a crossing curve of II,, for example Q, = fo fl no, where 
fo is the orbit surface embedded in F,, we have only the two cases: Q - Q, or 
Q - Q, + H .  If jo can be embedded into F, so that f, n II, = Qo, then fo 
cannot be embedded into F, so that f, n II, = Q, + H ,  and vice versa (see 
$6). Therefore the two cross curves Q, and Q, + H are essentially different, 
i.e., there is no fiber preserving map of F, to itself which sends Q, to 
2 (Q, + H ) .  Therefore the fibered spaces F, and FA obtained from Po by 
taking Q, and Q, + H ,  respectively, as meridian Q of the torus seal are 
different. For a fiber preserving map Fo+ FA could be so deformed that the 
torus seals and hence the meridians of F, and FA correspond; hence there 
would be a fiber preserving map of F, sending Q, to 2 (Q, + H ) .  The two 
distinct spaces F, and Fh are therefore determined by F, and by the number 
b=Oor = 1. 

Now suppose we know F, (s 2 0). Then F is uniquely determined by 

ai, Pi (ai  > 2, 0 < Pi <fa,), i = s + 1, . . . , r .  

For, drilling out r - s arbitrary fibers from F,, there is a unique (unoriented) 
crossing curve Qi on each boundary torus IIi, namely, the meridian of the 
drilled-out solid torus. Choosing an oriented fiber Hi on ni, the meridian Mi 
of the new torus seal is determined by 

MI - aiQj + &Hi,  

by Eq. (4). But, since the orientation of Qj and Hi is arbitrary, we obtain 
besides M i  another possible meridian 

Mi'- ajQi - P I H i .  

By Lemma 7 there is a fiber preserving map of the bounded space which 
keeps IIj pointwise fixed ( j  # i )  and maps n, under an orientation reversing 
map to itself such that Qi+ 2 Qi.  Then Mi + ?Mi'-  ?(ajQi  - PiHi ) .  Hence 
it does not matter which of Mi or Mi' is chosen as meridian of the torus seal. 
Thus F is uniquely determined by its class and the numbers ai, Pi,  s, and 6 .  
Analogously to Theorem 5 we formulate the result in: 

THEOREM 8 .  A nonorientable fibered space F is unique& determined by a 
system of invariants 

(No;P 1 b ; a l ,  P I ;  . . . ;as, Ps;as+l, P,+I ;  . . P,) 
or 

(Nn I ; k  1 b ; a l ,  P I ;  . . . ;as, Ps;as+l, . . . ;a,, P,) 
or 

(Nn 1I;k 1 b ; a l ,  P I ;  . . ;a3 ,  P , ; ~ , + I ?  & + I ;  . - 1 ;a,, P r )  

(Nn 1II;k I b ; a , ,  P I ;  . . . ;a,, P , ; a s + l y  &+I;  . . . ;a,, P,). 
or 
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Here N means that F is nonorientable; o (resp. n) means that the orbit surface 
is orientable (resp. nonorientable). The numbers a,, PI determine the exceptional 
fibers. u, = 2. PI = I for i < s and u, > 2, 0 < PI < a, for i > s .  b is of any 
significance only i f  s = 0. In this case b = 0 or = 1 and determines the closing of 
the classibing space F, to F,. I f  s > 0, then F is  already uniquely determined 
without specifying b ,  and b is omitted. 

EXAMPLE. Let F be a nonorientable fibered space with one exceptional 
fiber of multiplicity 3. with Fo determined by Nn I ;  k .  Here F o x  (punctured 
nonorientable surface of genus k )  X S I .  We obtain the two different fibered 
spaces: 

(Nn 1 ; k  I0;3,  1) and (Nn 1 ; k  1 1;3, I ) .  

But adding an exceptional fiber of multiplicity 2, both spaces go over into the 
same space 

(Nn I ; k  I - ;2,1;3,1).  

9. Covering Spaces 

Let F be a (unbranched) covering of F (i.e., there is a covering niap p 
of F onto F such that for each point P of F and each PI of p - ' ( P )  there exist 
neighborhoods U (  P ) ,  U (  P,) such that p I U(  P I ) :  U (  PI) + U ( P )  is a homeo- 
morphism). 

Let F be a fibered space, H a fiber. Let fi be a component of p - ' ( H ) .  
Then fix S I or R I .  Let S be the collection of all the curves fi, for all fibers 
H of F. When is S a fibering of F? 

Let Qc be a fiber neighborhood of a fiber C of F and let 6~ be a 
compo_nent of p - ' ( Q C ) .  Then 66 consists of curves of S and contains the 
fiber C [which is a component of p - I ( C ) ]  in its interior. 6, is determined by 
Qc and an integer u (including co) which denotes the multiplicity of the 
covering 6, -+ Qc. Thus c -+ C is a u-fold covering. 

If u < 00, then all the curves of fie are closed; if u = 00, they are all 
open. Thus each curve of S has a nejghborhood which consists entirely of 
closed or of open curves of S .  Hence F is the ucion of two disjoint open sets, 
the sets of closed and open curves of S .  Since F is connected one of these is 
the empty set. Hence, S cannot contain closed and open curv_es at the same 
time. I f  (a l l )  the curves of S are closed, then S is afibering of F, since a finite 
covering of a fiber neighborhood, Qc is again a fibered solid torus. 

From now on we assume that S is a fibering of F. Since the covering 
fi?+Q, is completely determined by the integer u, we can compute t_he 
invariants ji,; of fie from the invariants p,v of fiC and from u. Cutting Qc 
into a fibered cylinder, we have to identify the top and bottom disks under a 

1. 

2. 

3. 

4. 
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rotation through 

(p ,u)  = gcd of p and u. Therefore, by definition of the characteristic numbers 
(0  I), 

Thus in the cylinder de there are fi  = p / (  p,u) parallel lines, which form one 
ordinary fiber of 6,. Thus each ordinary fiber of !& is covered by ( p , u )  
ordinary fibers of d,, but the middle fiber C is covered only by one fiber c 
of &. Therefore p :  F+ F induces a continuous map ji of the orbit surface f 
onto f. If c and c" are the points corresponding to, the fibers C and c, 
respectively, then if ( p, a) > 1, the covering of f by f is branched over c of 
branch index (p,u).  The index of the branching always divides the 
multiplicity of the exceptional fiber C .  Hence only exceptional points can 
occur as branch points. 

Since F < p by ( l ) ,  the covering c of C is always an ordinary fiber if C 
is ordinary. But if C is an exceptional fiber ( p  > I), then may or may not 
be exceptional. For example, identify two congruently fibered solid tori with 
an a-fold exceptional fiber along their boundary so that congruent points are 
identified. The result is a fibered space F with invariants ( 0 , o ;  0 I - 1 ;  
a ,  p ;a ,a  - p )  which is homeomorphic to S 2  x S ' .  Taking the a-fold 
covering of each of the solid tori and identifying equivalent points, we get an 
a-fold covering F +  F without exceptional fibers. For the invariants in (1) are 
p = a ,  u = a ;  hence /i = I for both (exceptional) fibers. 

which cover two ordinary fibers H and H ' ,  
p and p' times, respectively, then p = p' .  For, join fi and fi' in F by a path 
whose projection in F does not meet exceptional fibers. Since in a 
(sufficiently small) neighborhood of an ordinary fiber the multiplicity of the 
covering is not changed, it remains constant along the entire path. 

6 .  The universal covering space k of F is a fibered space if and only if for 
a fiber H of F a component fi of p - ' ( H )  is closed (by 3). Then H is covered 
p times by fi, p < 00. Since f i - 0  in fi (simply connected), H P - 0  in F.  
Therefore, is a fibered space if and on& if a finite multiple of the fiber of F is 
homotopic to 0 in F. Clearly, if this holds for a single fiber H ,  i t  holds for all 
fibers of F. 

Let F be a nonorientable fibered space and k the 2-fold orientable 
covering of F. Since any fiber H of F is orientation preserving, H lifts to two 
closed curves fi and fit .  Hence fi is closed and 2 is a fibered space, and 
u = 1. Therefore p I 6 ~ : 6 , j  + Q H  is a fiber preserving homeo- 
morphism. Let T : F +  F be the fiber preserving involution (without fixed 

5. 

If fi and fi' are two fibers of 

7. 
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points) which is the nontrivial covering transformation. T reverses the 
orientation of k and induces a fixed point-free involution of J? 

For example, let F be the space 

(No;p I b;a1, P I ; .  * .  ;ar ,  P,). (2) 
F has 2r exceptional fibers; if H is an exceptional fiber with invariants a l ,  P I ,  
then H is covered by two exceptional fibers fi and fit with invariants a l ,  PI 
and a I , a I  - PI.  respectively (by Theorem 6). For the fiber preserving 
involution of F maps fi to fi' and reverses the orientation of F. Since 
furthermore f is an (unbranched) 2-fold covering of j ,  f is orientable of genus 
2p - I ; hence F is the space 

(0 ,0 ;2p -  I I &a1, P I ; .  . . :a r7  Pr;aI,aI - P I ; .  * * ;a,,a, - a). (3) 

Since F admits an orientation reversing fiber preserving homeomorphism, the 
invariants are the same if the orientation of F is reversed. By Theorem 6, 
has the invariants - 

( 0 , 0 ; 2 p  - 1 1 - 2 r  - b ; a , ,  PI; . . . ;ar ,  p,;a,,a, - p1; . . . ;a,,a, - P,). 
(4) 

For (3) and (4) to be equal we must have that 6 =  -2r  - i, hence 6= - r ,  
independent of b. Similarly for the other cases. Result: 

Let F be the orientable 2-sheeted covering of F.  

F(No;  p 1 b ; a l ,  P I ;  . . . ; a r ,  P,) 
F(00 ;2p  - 1 I - r i a l ,  P I ;  . . . ; a r ,  pr:aI 'aI  - P I ;  . . . ;a,,a,,a, - P,)? 

F(Nn 1;k 1 b ; ( ~ l ,  PI ;  . . . ;a,, P,) 
F ( o o ; ~  - I I - r i a l ,  

F (Nn 1I;k  1 b ; u , ,  /1 , ;  . . . ;a,, 0,) 

i 
i 
I 

. . . : a r ,  P,;aI,aI - P I ;  . . . ;a,,a, - P,), 

F(0n;2k - 2  I - r : a I .  p l ; .  . . ;a, ,  Pr;a,, p,;a,,a, - P I ;  f . . ;a,,a, - P,), 

F(Nn 111; k 1 b ; a I ,  PI ;  . . . ;a,, 0,) 
\F(0n;2k  - 2 I - r ; a I ,  bI:  . . . ; a r ,  P~;(Y~.LY~ - P I : .  . . ;a,,a, - P,).  

In  the two latter cases the orbit surface f is nonorientable since there are 
one-sided curves on f along which the fiber orientation is reversed, i.e., which 
are orientation preserving in F. 

8. Let F be a fibered space with orbit surface f. Let f be an (unbranched) 
covering of f, p" a point over a point p of j ,  and P a point of F which maps to 
p.  Let F = ( ( P ,  p3) .  A neighborhood of a point ( P o ,  Po) consists of all points 
( P ,  j )  where P lies in a neighborhood of Po (in F )  andp" in a neighborhood of 
F0. Defining g ( P ,  p) = P,  we see that g: F - +  F is a covering of F. The 
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multiplicity of this covering is the multiplicity of the coveringf"-f. If a point 
P of F runs along a fiber H ,  then ( P ,  p") for fixed runs along a curve 5 
which lies one-to-one over H .  Hence k is a fibered space by 3 above and a 
fiber neighborhood 6, of k is mapped onto 3, under a fiber preserving 
homeomorphism. 

For example, let F be the orientable space (On; 1 I b ; a I ,  PI;  . . . ;ar,&) 
with orbit surface the projective plane. Let f be the 2-sphere. Then F is 
orientable, hence of class (00; 0). Orienting k so-that g:k+ F is orientation 
preserving, the fiber neighborhoods 0" and 3i' map to the same 3, 
preserving orientations, and therefore to the exceptional fiber with invariants 
a, /? correspond in k two exceptional fibers both with invariants a, P.  
Drilling out the exceptional fibers of F and filling in ordinary solid tori and 
doing the same thing in k, we obtain F, and F, without excytional fibers and 
k, is a 2-fold covering of F,. We find that b = 2b; hence F is 

(00;O I2b ;a , ,  P I ;  * * ;ar ,  P,; a,,  PI;  * * ; a r ,  P,). 

10. Fundamental Groups of Fibered Spaces 

We cut the classifying space F, of a fibered space F into a fibered prism 
with a drill hole, as in $6 but so that the drill hole touches the prism along an 
edge H .  Similarly we drill out the r ordinary tori V, ,  . . . , V, (which have to 
be replaced by exceptional tori) so that they touch H .  Then the r + I 
boundary tori II,, II,, . . . , II, intersect the bottom surface in the cross 
curves Q,, Q , ,  . . . , Q,. (See Fig. 14 forp = 2 and r = 2). 

We obtain the fundamental group of this space F, = F, - int(V, U . . U 
V,) by running around the 2-cells. Then for an orientable orbit surface of 
genus p > 0 we have'* 

nl(Eo) = { A I , B I I . .  . , Ap,BP,Qo ,Ql , .  . . , Q r , H  : 

('1 A , H A , - ' = H S , B , H B , - ' = H ' . ' ( i = I  , . . . ,  ~ ; E , , E , ! =  ? I ) ,  

I l l  P P P  
QoQl . . . Q, = A B A -IB,- I * * * A B A -IBp-', 

Q ~ H Q ~ - '  = H ( j  = 0, I ,  . . . , r ) } .  

Here ej (e,!) = k 1 or - 1 depending on whether the fiber orientation is pre- 
served or reversed along A, (B,).  

For p = 0 we get the relations 

Q O Q I  * 1 * Qr = 1, 

Q ~ H Q ~ - '  = H ( j  = 0, I ,  . . . , r ) .  (2) 

"Cf. H. Seifert, Konstruction dreidimensionaler geschl. Raume, Ber. S&s. Akad. Wiss. 83 
(1931). 33. The auxiliary paths and therefore the relations of the first type are redundant, since Fo 
contains only one vertex. 
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4 
FIG. 14 

For a nonorientable orbit surface of genus k we get 

al(Fo) = ( A l , .  . . , A , , Q , , Q , , .  . . , Q k , H :  

(3) 
A , H A , - I =  H ” i =  1,2, .  . . , k ; ~ , =  kl ) ,  

QoQ, . . . Q, = A : .  . . A:, 

Q,HQ,-’ = H ,  ( j  = 0,1, . . . , r ) } .  
- 

r,(F) is obtained from r,(F,) by adding r + 1 relations which correspond to 
the r + I torus seals of the boundary tori II,, II,, . . . , IIr. They are 

Q , H ~  = Q ~ I H P I  = . . . = Q ~ H P ,  = 1. 

For example, QPIHB1 = I means that the meridian M I  - a ,Q ,  + P , H ,  of the 
torus seal belonging to II, is null homotopic in the torus seal. For example, 
the fundamental group of the space (00; 0 I b; a , ,  P I ,  . . . , CU,, p,) has the 
relations 

(4) 

Q o Q l *  * Qr = 1, Q , H b  = Q ~ I H P I  = + . . - - Q?HP,= 

Q,HQ,-’ = H ( j  = 0, I ,  . . . , r ) .  ( 5 )  

Adding the relations Q, = Q ,  = . . . = Q, = H = 1 we obtain from a , ( F )  
the fundamental group al(f) of the orbit surface f. Geometrically this can be 
seen as follows: The mapping of F +  f induces a homornorphi~m’~ of rI(F) 
onto r,(f) and therefore a , ( f )  is a quotient group of rI(F). Similarly H , ( f )  is 
a quotient group of HI(&‘) ,  and this is also true for open fibered spaces. (we 
shall use this fact in 0 14.) 

Among the closed 3-dimensional manifolds the ones which occur as 
fundamental regions (Diskontinuitatsbereiche) of 3-dimensional spherical 
groups of motions, and thus have finite fundamental groups, have been 
thoroughly investigated. Therefore we are interested in the question whether 

I 9  A homomorphism is sometimes called a “one- or multiple-to-one isomorphism”. 
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the fibered spaces give us new manifolds of finite fundamental group, or if 
they are already included among the fundamental regions. In DB I1 (see 
footnote 1) we shall show that the fibered spaces with finite fundamental 
group coincide with the fundamental regions of fixedpoint-free spherical 
groups of motions. A necessary condition for the finiteness of the 
fundamental group of F is that the fundamental group of the orbit spacef be 
finite since the latter is a quotient of the former. Hence f is a 2-sphere or 
projective plane. 

I f f  is a 2-sphere, then ( 5 )  are the relations of the fundamental group of F. 
Adding H = I ,  we obtain the factor group 

For r > 3 this is a polygon net group. Taking an r-gon with angles 
n / a l ,  . . . , ./a, on the 2-sphere, the Euclidean plane, or the hyperbolic 
plane, depending on whether 

1 C - > , = , o r  < r - 2 ,  
; = I  ai 

(7) 

and reflecting it successively on its sides, we obtain a polygon net which 
covers the sphere, or the Euclidean or hyperbolic plane, with alternating 
congruent and mirror imaged (black and white) r-gons. It admits a group of 
orientation preserving covering translations which has as fundamental region 
a double polygon, i.e., a white and adjacent black r-gon. This group is the 
above factor group (6).20 Since for r > 3 this polygon cannot lie on the 
2-sphere so as to cover it, it follows that (6 )  and hence ( 5 )  is infinite. For r = 3 
the group (6)  is finite only if it is a Platonian group, i.e., if a I ,  a2 ,  aj is one of 
the triples (2,2,n),(2,3,3),(2,3,4),(2,3,5) (n 2 2). It can be shown (DB 11, $7) 
that for these triples the group ( 5 )  is finite. If r < 2, then ( 5 )  is cyclic (finite or 
infinite). 

I f f  is the projective plane, then F is the space 

(On; 1 I b; a ]  9 PI ;  * * ; a,, P,)  (8) 
since a nonorientable (closed) 3-manifold has infinite fundamental group. 
This follows also since the first Betti number of the fundamental groups of 
fibered spaces is > O.*' The space (8) has a 2-fold orientable covering ($9), 
namely, 

(00;O 12b;aI,  Pl ;a l ,  P I ;  . . ;ar ,  Pr;ar ,  P,).  
This space has infinite fundamental group unless r = 1. Therefore follows 

THEOREM 9. A fibered space F with finite fundamental group has the 
projective plane or the 2-sphere as orbit surface. I n  the first case F has at most 

20Cf. W. Threlfall, Gruppenbilder Abh. Such. Akad. Wiss. 41 No. 6 (1932). 
21 Poincare has introduced P I  = pI + 1 as Betti number. We follow H. Weyl. 
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one exceptional fiber, in the latter case F has at most three exceptional fibers. I f  
F has three exceptional fibers, they have to be of multiplicity (2,2, n), (2,3,3), 
(2,3,4), or (2,3,5). 

When are two fibered spaces homeomorphic but not homeomorphic under 
a fiber preserving map? 

THEOREM 10. Suppose F and F‘ have the 2-sphere as orbit surface and have 
at least three exceptional fibers of multiplicities a I ,  . . . , a, and a ; ,  . . . , a;,, 
respectively. If F is homeomorphic to F‘ (not necessarily under a fiber preserving 
map) then the tuples a I ,  . . . , a, and a ; ,  . . . , a;. must be equal (up to order). 

Prooj For r = 3, the center of (5) is the subgroup { H )  generated by H .  
For if the center were bigger than { H ) ,  then (6 )  would have a nontrivial 
center. This is not the case if (6 )  is a group of the Euclidean or hyperbolic 
plane. If (6)  is a Platonian group it  has a nontrivial center only if it is a 
dihedral group whose order is a multiple of 4. It can be shown that in this 
case the center of ( 5 )  is not bigger than { H }  (DB 11, $6). Hence ( 6 )  is the 
quotient of ( 5 )  by its center. If F x  F’,  then .rr,(F) = r , ( F ’ )  and 
. rr , (F)/{  H } N .rr,(F’)/{ H ’ ) .  But two polygon net groups (6)  are isomorphic if 
and only if the polygons have the same number of vertices and the same 
angles, which proves the theorem. To see this, we can assume that none of the 
polygon net groups is a Platonian group, for such a group has necessarily the 
vertex number 3 and the triples of Theorem 9. The elements el, . . . , e, of 
(6 )  are rotations about the r vertices of a polygon II through 
2 r / a I , .  . . , 2n/a,. Since an element of finite order of (6) is (as a 
transformation of a metric plane) necessarily a rotation about a fixed point, 
i.e., about a vertex of the polygon net, it follows that each nontrivial element 
of finite order of (6)  is conjugate to a rotation about a vertex of II, i.e., to a 
power Q,K (y, = I , .  . . , a, - I ) .  But two such powers @ and Qi’/ are never 
conjugates (as can be seen from the geometry). Therefore the numbers 
a, ,  . . . , a, determine uniquely the number of conjugate classes of elements of 
finite order and conversely one can easily verify that the numbers a , ,  . . . , a, 
are determined by the number of conjugate classes of elements of given finite 
order. 

11. Fiberings of the 3-Sphere (Complete List) 

In $3 we described fiberings of S 3  with two exceptional fibers of orders 
m, n where ( m ,  n)  = 1. We now show that these are the only fiberings of S3. 
More generally, we look at all simply connected (closed) fibered spaces. 

Let F be a fibered space with r , ( F )  = 1. Then fx S 2  and F is 

A necessary condition for n , ( F )  to be finite is that r < 3 (by Theorem 9). For 
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r = 3 the quotient group (6)  of n,(F),  where F is as in Theorem 9, is a 
Platonian group, and hence not trivial. Therefore if n,(F)  = 1, then r 6 2. 

For r = 0 ,  ~ , ( F ) = { Q o , H : Q o H b = l = Q o ) = { H : H b = l ) .  Hence b =  
2 1. Therefore (00; 1 1 1) or (00; 0 I - 1) are the only simply connected 
fibered spaces without exceptional fibers. They differ only in their orientation 
(by Theorem 6 )  and are the fibering of S’ by circles since this is free from 
exceptional fibers. 

For r = 1, ba, + PI = 2 1 is necessary and sufficient for n , ( F )  = 1. Now a I  
( 2  2) is arbitrary. For b and PI there are then two solutions, b = 0, PI = 1 
and b = - 1, PI = a1 - 1. The two spaces (0o;O 1 0; a , ,  1) and (0o;O I - 1; 
a I  , a I  - 1) differ only in their orientation (Theorem 6), and therefore there is 
a unique simply connected fibered space (up to orientation) having a single 
exceptional fiber of order a, .  This space is therefore the trace curve fibering 
of S 3  with the values m = 1, n = a I  . 

For r = 2, n l ( F )  is cyclic of order Jba,a ,  + p,a2 + PzaIl. The equation 

ba,az + pIa2 + &aI = 5 1 

has a solution only if (aI,a2) = 1. But for any given coprime a I , a z  (> 2) 
there are exactly two solutions for b, PI,  p2, for which 0 < PI < a1 and 
0 < p2 < az .  The corresponding spaces differ only in their orientation. This 
will be proved in $12 for an arbitrary r .  Therefore there is only one fibering 
(up to orientation) for any two given coprime exceptional fibers. which 
therefore has to agree with that of $3. This proves 

THEOREM 1 1. A closed simply connected fibered space is S ’. Any fibering of 
S’ is uniquely determimed by two positive coprime integers m and n .  For 
m = n = 1 there are no exceptional fibers; if only one of m (or n )  is 1 there is 
one exceptionalfiber of order n (or m).  If m and n are different from 1, they are 
the orders of the two exceptionul fibers. AN fiberings of S 3  agree with those of 
§ 3 .  

The ordinary fibers for m # 1, n # 1 are torus knots which wind m times 
around the z-axis and n times around the unit circle in the conformal space. 
For m = 2, n = 3 they are trefoil knots. 

12. The Fibered Poincare Spaces 

We now determine which fibered spaces are Poincare spaces, that is, which 
have trivial first homology group” and which are not homeomorphic to S 3 .  
By $10 if H , ( F )  = 1, then H, ( f )=  I ;  hence f- S 2  and F is (00; 0 1 b; 
a , ,  P I ; .  . . ;a,, P,). H , ( F )  is the Abelianized a , ( F )  and has the r + 2 
generators 

Qo, Q,, . * 9 Q,, H 

=Cf. DB I, p. 51. 
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and in addition to being commutative has the relations 

QOQI  * * Qr = 1. Q ~ H ~  = Q ~ I H P I  = . . . = Q ~ . H P ,  = 

In additive notation, 

Qo + b H  = 0 
UlQl + P , H  = 0 

arQr +PrH = 0 
= o  

( 1 )  

QO + Q I  + . . * + Qr 

We obtain equivalent relations and generators for HI( F )  by transforming 
the generators and relations by unimodular substitutions. In this way we can 
transform the coefficient matrix into a normal form which has all entires 0 
except possibly in the main diagonal, where the entries are the invariant 
factors of the original matrix. If H , ( F )  = 1, then in the normal form all the 
elements in the main diagonal are 1 (otherwise we would have a nontrivial 
relation kiQ, = 1). That is, the Betti number = 0 and there are no  torsion 
coefficients. Since the given matrix is square the two conditions are 
equivalent to 

A =  = 21. 

Computing A we get the equation 

A = b ~ I ~ ~ ~ ~ r + ~ I ~ 2 ~ ~ ~ ~ r + ~ I ~ 2 ~ 3 ~ ~ ~ ~ , +  . . .  + f f I ( Y 2 . .  . ar - IPr  

= & ( E =  21). (3) 

If we reverse the orientation of F,  i.e., if we consider (0 ,o;  0 I - r - 6 ;  aI, 
aI  - PI;  . . . ; ar,ar - Pr), we would get a determinant A' = -A .  Therefore we 
can assume that E = 2 1. This determines the orientation of F. To solve (3) 
with E = + 1, we let a l ,  . , . , a, be given (ai > 2) and try to solve for 6 ,  
P I , .  . . , O r .  For r = 0 and r = 1 we get b = 1 and ba, + P,  = 1, which was 
discussed in 9 11. Thus assume r > 2. There exists no  solution of (3) if two of 
the a, have a common divisor. Hence assume the a, are pairwise coprime. 
Then 

gcd(a, . . * (Y,,(Y~ * * * (Y , , (Y~(Y~ .  . . ar, . . . ,aIa2 * * * ( Y ~ - ~ ) =  1. 

Hence there exists a solution 6 ,  P I ,  . . . , Pr and (&,ai )  = 1;  otherwise the 
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left-hand side of (3) would have a common factor # 1. But pi need not satisfy 

0 < p; < ai. 

But this condition can be satisfied by replacing pi by p, + xi", and at the 
same time b by b - x i ,  which also satisfies (3). This normalized solution is 
unique for if b', p i ,  . . . , pi is any other normalized solution of (3), then 

( b  - b')a, * * * (Y, + ( P I  - p;)~rz . * . ar + * * ' = 0. 

This implies p, - p,' = 0 (mod a;), hence pi = p,'. 
This solution of (3) completes the proof of Theorem I 1. Hence for r = 2 the 

fibered spaces with trivial first homology group are homeomorphic to S'. For 
r > 2 they are Poiricare spaces since by Theorem 1 1  a fibration of S 3  has at 
most two exceptional fibers. Thus follows 

THEOREM 12. A fibered Poincari. space (# S 3 )  has at least three exceptional 
fibers; their multiplicities a , ,  . . . , ar are pairwise coprime. Conversely, for any 
r 2 3 pairwise coprime integers 2 2, there exists a unique fibered Poincare space 
having r exceptional fibers with the given multiplicities. Two fibered Poincare 
spaces are homeomorphic if and only if they are homeomorphic under a fiber 
preserving map; i.e., a Poincari. space admits at most one fibering. The only 
fibered Poincari. space with finite fundamental group is the dodecahedral space.23 

It remains to prove the two latter claims. If two fibered Poincare spaces are 
homeomorphic, they must have the same multiplicities for the exceptional 
fibers, by Theorem 10. But these determine already the fibering of a Poincare 
space. 

By Theorem 9, a fibered Poincare space with finite fundamental group can 
have only three exceptional fibers with the multiplicities 2 ,3 ,5  because this is 
the only triple in Theorem 9 with pairwise coprime integers. This space has by 
(3) the invariants 

(0o;Ol - l ; 5 , 1 ; 2 , 1 ; 3 , 1 )  

and its fundamental group has relations 

QoH-'  = Q f H  = Q,'H = Q,'H = QoQ,QzQ3 = 1. 

(These relations imply that H commutes with the Q;). Eliminating H ,  we 
obtain the presentation of the binary icosahedral groupz4 of order 120: 

In DB 11, 07, it is shown that this is the dodecahedral space by exhibiting a 
fibering of the dodecahedral space. 

"Cf. DB I,  512. 
24Cf. Aufgabe 84 in Jahresber. Deutsch Math.-Verein. 41 (1936), 6. 
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13. Constructing Poincare Spaces from Torus Knots 

M. Dehn25 described a method for constructing Poincare spaces as follows: 
Let A be the complement of a regular neighborhood of a knot C in S 3 ,  and 
let II = 3 A .  Then H , ( M )  is the free cyclic group generated by a meridian M 
on n. If B is a simple closed curve on II intersecting M in one point, B - x M  
(in A )  and we can assume that x = 0 by replacing (if necessary) B by 
B - x M .  Then B is uniquely determined by requiring that M f l  B be a point 
and B -0 in A (up to orientation and deformation on II). Closing A with a 
torus seal V’ having as meridian 

M ’ - M + q B  (onII ;q#O) ,  ( 1 )  

we get a closed space R with HI( R )  = 0. 
Now suppose C is a torus knot. Such knots are ordinary fibers of the 

fiberings of S 3 ,  given in $3, which are characterized by two coprime integers 
m and n ( 2 2). Drill out an ordinary fiber C. Then a fiber H of II can be 
deformed in A into n times the z-axis, and since the z-axis is -mM in A 
(with suitable orientation of M ) ,  we have that H - m n M  (in A ) .  Hence 
h - m n M - O i n A , i . e . , H = B .  By(I) ,  M ’ - M M q B - ( 1 - q m n ) M + q H  
on 11. Since M is a crossing curve on II, the torus seal has an exceptional 
fiber of multiplicity lqmn - 11, for since m and n > 1 (otherwise C would be 
unknotted and we would not get a Poincare space), lqmn - I1 > max(m,n) 
> 1. Thus R is the unique Poincart space (by Theorem 12) with three 
exceptional fibers of multiplicities m ,  n ,  lqmn - 11. Furthermore, since 
)q ,mn - I \  # )q2mn - 11, if q1 # q2,  two Poincark spaces obtained from the 
same torus knot with different q’s are not homeomorphic by Theorem 12. 
Finally, two Poincare spaces obtained from different torus knots are never 
homeomorphic. For if a Poincare space with exceptional fibers a I  < a2 < a3 
is obtained from a torus knot, then it can only be the knot m = a l ,  n = a2,  
since Iqmn - 11 > max(m,n). This implies by the way that two torus knots 
m < n and m‘ < n’ are topologically equivalent only if m = m’, n = n‘, since 
only in this case are the Poincare spaces which can be constructed from them 
the same. 

THEOREM 13. A Poincare space can be constructed from a torus knot if and 
on4 if it can be fibered and the fibering has exactly three exceptional fibers of 
multiplicites a1 < a2 < a3 ,  where a,  , a2,  a3 are pairwise coprime integers ( > 1) 
and a3 = 1qa1a2 - 1 I (q  an arbitrary integer). Such a PoincarC space can on& be 
constructed from a unique torus knot in a unique way. 

For example, the Dehn trefoil space constructed from a trefoil knot m = 2, 

z5M. Dehn, Uber die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), 
137-168. 
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n = 3,  q = 1 is homeomorphic with the unique fibered Poincare space with 
three exceptional fibers of multiplicities 2,3,5. Its fiber invariants are listed in 
0 12. 

14. Translation Groups of Fibered Spaces 

A translation group (31 of a fibered space F is a finite group of 
homeomorphisms F +  F such that each map of W maps each fiber H onto 
itself and preserves orientation of H .  For an arbitrary fiber H of F let 
@ = (cp I H,cp E a}. We claim that Q is a finite cyclic group of rotations of a 
circle. For if P is a point of H and P',  P " ,  . . . , P ( i )  = P are its equivalent 
points such that P' is next to P with respect to the given orientation of H ,  the 
points P, P', P " ,  . . . and the arcs between them are cyclically permuted 
under a map of 65. In particular, if P is a fixed point, then the arc PP' is 
mapped onto itself keeping P,  P' fixed, and since the map has finite order i t  
must be the identity. There is a map in Q which sends P to P ( k )  ( k  arbitrary). 
Therefore 8 consists of the powers of the map which sends P to P' .  

Claim. Every translation group @ is cyclic. It suffices to show that a map S 
of (3 which leaves an ordinary fiber H fixed is the identity, for then 8 is 
isomorphic to Q, which we know to by cyclic. The maximum of the 
translations of the points of a fiber H' under S converges to 0 as H '  
converges to H. But this maximal translation cannot be arbitrarily small since 
S is of finite order. Therefore S is the identity on a fiber neighborhood of H .  
The set of all ordinary fibers which are fixed under S is therefore open. The 
set of all ordinary fibers which are not pointwise fixed is also open, hence 
empty since F is connected. But then clearly all the exceptional fibers are also 
left pointwise fixed under S .  

The following theorem deals with the existence of translation groups: 

THEOREM 14. A closed fibered space of class (00; p )  or (Nn I ;  k )  admits a 
translation group of arbitrary order g. 

Proof. We first show that a fibered solid torus with invariants p , v  admits 
such a group. Cut the solid torus into a Euclidean cylinder of height 1, and let 
z be the height of a point P ;  then there is a continuous transformation group 
of the solid torus such that each point runs along its fiber and the 
z-coordinate changes continuously, z' = z + t .  Here z' is the coordinate of the 
image point and t the continuous parameter of the group. z has to be 
considered mod 1. If t increases continuously from 0, then t = 1 is the first 
value for which the middle fiber is mapped to itself, t = p is the first value for 
which the map is the identity. The cyclic translation group g consists of the 
transformations belonging to t = 0, p / g ,  . . . , p ( g  - l)/g. 

Let F be a fibered space with simultaneously oriented fibers; triangulate f 
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so that each exceptional point lies in the interior of a 2-simplex and each 
2-simplex contains at most one exceptional point and so that any two 
2-simplexes with exceptional points do not intersect. This corresponds to a 
decomposition of F into solid tori. We define a cyclic translation group of 
order g in each of the solid tori with exceptional fibers and on the remaining 
fibers of F which map to vertices o f f .  As generator Z of @ we take the 
translation which rotates the ordinary fibers by as little as possible in positive 
direction. Let K be a fibered annulus that maps to an edge of the 
triangulation off.  If K lies on an exceptional torus, then (35 is already defined 
on K.  If K lies on an ordinary torus, then (3 is already defined on the 
boundary curves a and b of K .  I t  is clear that @ can be defined on all of K ( Z  
is a rotation of K about 2n/g), since a - b in F, since the fibers are oriented 
simultaneously. Now (3 is defined on the boundary II of each ordinary 
fibered solid torus V .  

We think of V as being embedded in Euclidean space, symmetric with 
respect to an axis of rotation and such that each fiber of V is mapped to itself 
under a rotation about this axis. We choose a fiber preserving auto- 
homeomorphism A of the boundary torus II of V such that AZA -‘:II + II is 
a rigid rotation about the axis of rotation through an angle of 2n/g. This is 
always possible since the translation Z restricted to each of the three fibered 
annuli which form n (and which map to the three edges of a 2-simplex of the 
triangulation of the orbit surface) is conjugate to a rigid rotation of a 
Euclidean annulus through an angle of 2n/g. We can choose A such that 
each class of curves on n is mapped to itself. As shown in $5 we can extend 
A to a fiber preserving autohomeomorphism of V.  Therefore V can be 
mapped homeomorphically to a rotation symmetric solid torus V’ in 
Euclidean space (which has the property that a rotation about the axis of 
rotation rotates each fiber in itself) such that Z I II is then conjugate to a 
rigid rotation of the boundary torus rI’ of V’ through an angle of 277/g. This 
rotation II’ can be extended to a rigid rotation of V’ through the same angle. 
This defines a translation Z of order g on the sapce F, and proves Theorem 
14. 

We now show that the orbit space of F under @ is a fibered space F‘.  First, 
let @ act on a solid torus V .  If is an ordinary fibered solid torus, then 
clearly the orbit space of V is again an ordinary solid torus. Suppose V is a 
torus with invariants p,u. Suppose U is a nontrivial subgroup of (35 keeping 
the exceptional fiber pointwise fixed. U is cyclic or order u.  We claim that 
there exists a meridian disk of V which is mapped to itself under U. Cut V 
into a Euclidean cylinder of height 1 and let Eo be the meridian disk of height 
+ .  Let E , ,  E, ,  . . . , E,-  I be the images of Eo under U. We can assume that 
no E, intersects the top and bottom disk of the cylinder by choosing V 
sufficiently small. Each fiber of the cylinder intersects Eo,EI ,  . . . , Eup1 in u 
(not necessarily distinct) points. Choosing the highest such point on each 
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fiber we obtain a meridian disk E of V which is mapped to itself under U.26 
Therefore we can cut V along E into a cylinder on which U acts as a group 
of rigid rotations about the axis and translations of the fibers in themselves. 
The orbit space is a cylinder sector of an angle 2 n / u ,  where the two vertical 
faces have to be identified such that we get a fibered cylinder. In this 
cylinder, top and bottom disks are identified under a rotation of 2 a v / p ’ ,  
where p‘ = p / u ,  hence ( p’, v) = 1. Therefore the orbit space of U is a fibered 
solid torus V’ with a (p/u)-fold exceptional fiber. 

The translation group @ of V maps to a translation group (33‘ of V’ ,  where 
a‘ has order u = g / u  and does not contain a translation # 1 which keeps the 
exceptional fiber of V’ pointwise fixed. The cylinder corresponding to V’ is 
then divided by the t‘ - 1 images of the bottom disk into u equivalent parts. 
In each part, bottom and top disks correspond under a rotation of 2mv“ /p “ ,  
( p ” , v ” )  = 1. The orbit space D of a’ (on V’), which is also the orbit space of 

(on V ) ,  is a fibered solid torus which is covered by V’ (unbranched) u 
times. Since the fibers of D correspond one-to-one to those of V’, the orbit 
surface of V’ covers (unbranched) that of D. From $9 we have ( p ” , u )  = 1 
and hence by (1) in $9 p‘ = p” ,  i.e., D has a $-fold exceptional fiber. Now 
(g, p) = (uu,up’) = u(u, p’) = u and u = g / u  = g/(g, p). The numbers U , U  

are therefore determined by the order g of @ and the multiplicity p of the 
exceptional fiber of V.  

Result. The orbit space D of a translation group (33 of order g on a fibered 
solid torus V with a p- fold exceptional fiber is a fi’bered torus with exceptional 
fiber of multiplicity p / (  p, g). For ( p ,  g) > 1, the covering V+ D is branched, 
where the exceptional fiber of V is a branch curve of order ( p, g). This implies 
that the orbit space of F under (3 is a fibered space F’, and F+ F’ is a 
branched covering. 

We now compute the invariants of F’. Let F be the space (00; p I b ;  
a , ,  0,; . . . ;arr 0,). Drilling out the exceptional fibers and an ordinary fiber 
we get F x f  X S I ,  where f is an ( r  + I )  times punctured surface of genus p .  
On the boundary tori no, II, , . . . , n, we have the crossing curves 
Qo,Q,, . . . , Q,. The Qi and Hi ( H o , H , ,  . . . , H,  simultaneously oriented) 
determine on 

Qo+ Q, + * * + Q,-0 (in F ) .  

orientations opposite to that induced by F, and 

26To see that U maps E to itself, suppose there is a map B in U which sends a point P of E to a 
point P’ not on E. Then the line segment parallel to the axis of the cylinder V intersects E in a 
point Q‘  # P’. The line segment P’Q’ is mapped under B - ’  to a line segment PQ,  where Q lies 
on one of the disks E,. But P is the highest of the n intersections of the line segment through P 
and the disks E l ,  . . . , E,- I and therefore P Q  contains a point R of the top disk of V, whose 
image under B is a point R’ on the line segment P ’ Q ’ .  Now if P approaches continuously the 
axis of the cylinder, P ’ ,  Q‘ ,  R’  move continuously, and since at last P’ and Q’  coincide, R‘  must 
at  some time coincide with P’ or Q’,  i.e., there is a map B - I  of U that maps a point of a certain 
E, into a point of the top disk. This contradicts the choice of the disks E,. 
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We get F by taking Qo + bH,,cu,Q, + P,H,, . . . , arer + PrHr as meridians 
of the torus seals V,. The orbit space F’ of I F is the product of an ( r  + 1) 
times punctured surface of genus p and S1.  The orientation (and fiber 
orientation) of F carries over to F’. Let Q,, Q l ,  . . . , Qr and H,,H,, . . . , Hr 
be the images of Q,, Q, ,  . . . , Q,, H,, H I ,  . . . , Hr in F’. Then Po, Q,,  . . . , Qr 

are crossing curves on the boundary tori HA, n’, , . . . , II; of p, whereas HI 
covers a fiber HI’ of g times: kl = gH,‘. We have 

Q o + Q l + . . .  + Q r - o  (inF‘) 

and the orientation determined by Q, and H,’ on II; is opposite to that 
induced by F’. The orbit space F‘ is determined by the meridians 
MI’- iulQi + P,Hi and Mi - Qo + 6H;  of the torus seals V,’. MI 2: 0 in V, ,  
hence M, rr/ 0 in V,’ . Therefore 

MI - alel  + PIHI (on W 
implies 

4 - “,Q1 + PIHI  - %Q1 + Pi@,’ (on n:) 
-0 (in Vl‘). 

Therefore 

= iujQi + j j H ; - O  

and since iu, and Pi are coprime, M,‘ is a meridian on V;. 
Similarly MA- Qo + bgH6- Qo + dHi is a meridian on Vi .  But d,iuj, Pi 

are not yet the sought after fiber invariants of F’ since PI need not satisfy 
0 < 6; < iu,. But taking instead of Ql, . . . , Qr the crossing curves 
Q; - G I  + x , H ; ,  . . . , Q; - Qr + xrH;, and instead of Qo the crossing curve 
Qi- Qo - (x, + . . . + xr)H;, we have the correct homology 

Q; + Q; + . + Qr’-0 (in F’)  
and the orientation induced by Q; and H; on II; is the same as that from Qj 
and H;. Now in the new basis curves the meridians MI’ are as follows: 

M ~ - Q ; + ( ~ + X , +  * * *  + x , ) H ; = Q ; + b ’ H i .  

Choosing xl such that 0 Q PI’ < q’ and omitting those q’, PI’ for which a,’ = 1 
(P,’ = 0), we obtain the fiber invariants of F‘. 

If F is (Nn I ;  k I 6; a I ,  PI; . . . ;a r ,  Pr) we get a similar result. 

EXAMPLE. The trefoil space of Dehn (00; 0 1 - 1; 2 , l ;  3 , l ;  5 , l )  with 
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translation group of order g = 5. Now 

(a1, g )  = 1, (a29  g )  = 1, (a3, g )  = 5, 

hence xI  = 2, x2 = 1, x3 = 1. Therefore the orbit space F' is the space 

(00;0 1 b ' ;a ; ,  P; ;a ; ,  P ; ) = ( 0 0 ; 0  I - 1;2,1;3,2). 

n, (F ' )  is of order A = b'a;aY; + /?,'a; + a; /?; = 1. Hence F ' x  S 3  and the 
fibers are trefoil knots. In particular, the 5-fold exceptional fiber of F is 
mapped to an ordinary fiber of F', a trefoil knot. Therefore, F is a 5-sheeted 
branched covering of S 3  with a trefoil as branch curve. 

This result can be generalized. Let F be a Poincare space (00; 
0 1 b; a I ,  PI;  . . . ; a,, P,). Necessary and sufficient for F to be a Poincare 
space is that the determinant 

0 O PI b /  1 0 . . .  
0 a 1  * * *  

Now F'=j  x S ' ,  where j is a ( r  + 1) times punctured 2-sphere. The 
generators of H , ( F ' )  are Qo,QI,  . . . , Q, and an arbitrary fiber H '  and we 
have the single relation Q, + Q, + * * + Qr - 0. Closing F' to F' we get the 
additional relations 

Q o + J H ' = & l Q , + / ? l H ' =  * - a  = & , . Q , + b , H ' - O .  

Here 

J = bg, Lui = ai / (a i ,  g ) ,  

The relation matrix of H , ( F ' )  is therefore 

1 0 . * -  

0 & I  * * *  

0 0 . * *  

1 1 . * *  
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and its determinant A' is 

0 . . .  I '  0 

1 . . .  1 1  1 

F' is a Poincare space or S 3  only if A' = 2 1. Since a ,  , a 2 ,  . . . , a, are 
relatively coprime we have 

( a , .  g)(a*t 8) * * * ( a r ,  g) = ( ( ~ 1 ' 2  * * . a r '  8) 

and A' = ? 1 if and only if g divides aIa2  - * * a,. The multiplicities of the 
excpetional fibers of F' are the . . . , &, different from 1. By Theorem 
12, the &, characterize F'. Hence follows 

THEOREM 15. The orbit space F' of a translation group of a fibered space F 
with invariants 

(00; p I b ; a , ,  b,; . . . ;a r ,  0,) 
or 

(Nn 1 ; k  I b ; a l ,  P I ; .  . . ;ar ,  P r )  

is a fibered space of the same class, whose invariants are determined by those of 
F and the order g or Q. I f  F is the Poincark space with r exceptional fibers of 
multiplicites aI , a 2 ,  . . . , a,, then F' is a Poincare space or S 3  if and only if 
g I a ,  . . . a,. In this case F' is the Poincare space whose exceptional fibers have 
as multiplicities the following of the numbers which are # 1: 

f f I  a2 a r  _ _ _ ~  
( a , ,  g) ' (a27 g) ' . . . ' ( a r )  g) ' 

The covering of F' by F is branched over the exceptional fibers of F fer which 
( a I ,  g) > 1 of branching index ( a I ,  g) .  

Specializing, we get 
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THEOREM 16. The orbit space F' of a Poincari space F with r exceptional 
fibers of orders a ,  , a 2 ,  . . . , a, under a translation group of order g 
= aIa2  . . . a, is a Poincare space or S 3  with exceptional fibers of orders 
a,+, . f f ,+2, .  . . > f f , .  

THEOREM 17. Let a , , a2,  . . . , a, be r > 3 painvise coprime integers > 2, and 
let k ,  . k,, . . . , kr-2  be r - 2 torus knots in S 3  (which are ordinary fibers of a 
fibering of S3) of type m,n,  where m and n are any two of the numbers 
a , ,  . . . , a,. Delete these two numbers from the sequence a , ,  . . . , a, and take a 
one-to-one correspondence between the remaining a; and the knots k i .  Construct 
the branched covering of S3 having the knots k , ,  . . . , kr-2  as branch curves and 
having the following property E :  A curve @ of the covering space which lies over 
a closed curve w of S 3  - ( k ,  U . . . U k r - 2 )  is closed if and onb if the linking 
number x , ( w , k j )  is divisible by the number aj which corresponds to the knot k; 
( i  = 1, . . . , r - 2). This covering is (a Ia2  - ' a,/mn)-sheeted and is a Poincare 
space which is the same regardless of how one picks out the numbers m,  n from 
f f l , f f 2 , .  . . , a,. 

Proof. Assume m = a,- ,, n = a,, and a; corresponds to ki ( i  = 1, . . . , 
r - 2). Letting a translation group of order g =  a, * * .  act on the 
Poincare space F with r exceptional fibers of multiplicities a , ,  . . . , a,, we 
obtain as orbit space F' a fibered space with two exceptional fibers a,- , and 
a, by the previous theorem. Since a Poincare space has at  least three 
exceptional fibers (Theorem 12), F ' x  S 3  with a fibering having torus knots 
of type m = a,- I .  n = a, as ordinary fibers (33). By Theorem 15, F is a 
branched covering of F';  the branch curves are the exceptional fibers of 
orders a I  , . . . , which map to ordinary fibers in F',  hence to r - 2 torus 
knots k , ,  . . . , k r - 2  or type m,n. The branching index is (a; ,  g) = a;, i.e., a 
curve in F winding once around the ith branch curve maps to a curve in F' 
winding a, times around k,. The covering F-+ F' is regular and the covering 
transformation group is cyclic of order g = a ,  1 * . a,-2. Therefore (by the 
lemma in the Appendix) a curve @ of F lying over a curve w of F' 
- ( k  I u . * . u k ,  - 2) is closed if and only if for each I the linking number of 
w and k, is divisible by a,, and this property E characterizes F uniquely as 
covering of F ' .  Thus the covering of S 3  determined by property E is the 
Poincare space with r exceptional fibers o f  multiplicities a , ,  . . . , a,. By 
Theorem 12, F is uniquely determined by the numbers a , ,  . . . , a,. Therefore 
F is independent of the choice of the numbers m,n  out of a , ,  . . . , a,. 

Theorem 17 is interesting because i t  deals with the homeomorphism type of 
certain covering spaces, which can be characterized independently of any 
fibration. This is so since the requirement that the knots k , ,  . . . , k r P 2  be 
ordinary fibers of the fibering of S 3  can be replaced by the following: 
k , ,  . . . , k , - ,  are pairwise disjoint simple closed curves on a torus which 
separates S3 into two solid tori, and these curves are not null homotopic in 
either solid torus. Then i t  can be shown that there is a fibering of S 3  that 
contains these r - 2 curves as ordinary fibers. 
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The special case of Theorem 17 for r = 3 deserves special attention. 
The g-fold cyclic covering of a knot k in S’ i s  the branched covering with 

the following property: A Curve 6 of the covering space which lies over a 
curve w of S3\k is closed if and only if the linking number of w and k is a 
multiple of g.27 The special case can now be formulated as follows: 

ADDENDUM TO THEOREM 17. Let a l , ( ~ 2 , ( ~ 3  be three painvise coprime 
numbers > 2. Then the “’-fold cyclic covering of the torus knot of y p e  m = a I ,  

n = a2 is a Poincare space. The same space is obtained if a,,a2,a3 are 
arbitrarily interchanged. 

For this Poincare space is the fibered Poincare space with three exceptional 
fibers of multiplicities aI,a2,a3. Thus the Dehn trefoil space, which was 
obtained by drilling out and sewing back a trefoil of S3, can be obtained as 
5-fold cyclic branched covering of a trefoil or as 3-fold cyclic covering of the 
torus knot m = 2, n = 5 or as 2-fold cyclic covering of the torus knot m = 3, 
n = 5. 

Finally, each fibered Poincare space (00; 0 I b; a I ,  PI;  . . . ; ar, Pr) can be 
obtained as aIa2. . * ar-fold branched covering of S’. For, letting a 
translation group of order g = aIa2  . . . a, act on F, we get a fibered space 
without exceptional fibers which is S 3  by Theorems 16 and 12. This fibering 
of S 3  is by unknotted curves any two of which are simply linked. The branch 
curves in S 3  are the images of the r exceptional fibers, i.e., r unknotted and 
pairwise linked curves in S’ ,  of index aI,a2, . . . , ar, respectively. 

15. Spaces Which Cannot Be Fibered 

Let F be a fibered space (open or closed). Let H be an ordinary fiber, 0 a 
point of H and W a closed curve starting and ending at 0. Translating the 
fiber H along W ,  H comes back as H ‘  = H ’  I .  Thus as elements of the 
fundamental group, W ~ ‘HW = H ‘ I .  Therefore i f  a manifold M can be 
fibered, then n , (M)  must contain an element H such that for each element W 
of r , ( M ) ,  W ~ ‘HW = where E (  W )  = 2 1. This condition turns out to 
be nontrivial since we shall show that an ordinary fiber H represents the 
trivial element of the fundamental group only if the fibered space is S 3  or a 
lens space with a fibration that can be explicitly described.2* In particular, if 
the fundamental group is infinite, then H is not trivial. 

2 7 A n ~ t h e r  characterization of the cyclic covering is as follows: Cut S3 along a spanning 
surface of k to get a “sheet” and glue g of those sheets together cyclically. H. Kneser 
communicated to me that there are in general besides this cyclic covering other g-fold coverings 
of a knot which also have the property that for a small loop linking the knot once the g-fold 
multiple is the first to l i f t  to a closed curve in the covering space. The cyclic coverings play some 
r6le in knot theory. See K. Reidemeister, Abh. Math. Sem. Univ. Hamburg 5 (1927), 7 ,  
“Knotentheorie.” Berlin (1932). 

**About lens spaces. see. DB 11, $ 1 .  
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First we prove a preliminary theorem. 

THEOREM 18. An open simp4 connected space cannot be fibered. 

Proof. Suppose F is an open simply connected fibered space with orbit 
surface f. Then f~ open disk. We distinguish two cases: 

(a) Suppose F is without exceptional fibers. Since rl(F) = 1, H bounds a 
singular disk E in F. The image on f is a singular disk e which can be covered 
by an orbit neighborhood o since f is open and simply connected. E lies in a 
neighborhood 52 corresponding to 9, i.e., H = O  in the solid torus Q, a 
contradiction. 

(b) F has at least one exceptional fiber C of order a. Drilling out C we 
obtain a space F with orbit surface f, a punctured open disk. HI( F )  is free of 
rank 1, generated by a meridian M of the drilled-out solid torus which maps a 
times onto the boundary curve 1 of f, a 2 2. The map F+f induces a 
h o m ~ m o r p h i s m ~ ~  of H , ( F ) +  H , ( j )  (onto). Since H , ( j )  is infinite cyclic, M 
has to map onto a generator ? 1 of H l ( f i ,  but M + al, a > 1, a contradiction. 

Theorem 18 implies that R 3  can not be fibered. If we project as in 53 a 
fibering of S 3  stereographically in Euclidean space, the latter will be filled 
with curves which resemble closely a fibration. Only one curve, the z-axis is 
not closed. 

Using Theorem 18 we can prove 

THEOREM 19. If in a fibered space F a fiber H or a finite multiple of H is 
homotopic to 0, then F is closed and r , ( F )  is finite. 

Proof. The universal covering of F is a fibered space [by 69, (6)] which is 
closed by Theorem 18 (therefore yz S 3 )  and therefore the covering p +  F is 
finite sheeted. 

THEOREM 20. If F is a (closed or open) fibered space in which an ordinary 
fiber is homotopic to 0, then F is a Lens space. Any Lens space admits such a 
fibering. 

Proof: By Theorem 19, r , ( F )  is finite. We apply Theorem 9. I f f -  S 2  and 
F has three exceptional fibers, then 

QOQIQ2Q3 = 1, Q,HQ,-' = H ( j  = 0, l m ) } .  

a I , a 2 , a 3  is one of the Platonian triples. Eliminating Q, and adding the 
relation H 2  = I ,  we obtain a quotient group with defining relations 

Q,HQi-I  = H ( i =  1,2,3) .  ( 2 )  Qyp, = Q 1 2 3  Q Q H a 4  = H 2  = 1, 

29See Footnote 19. 



I S .  SPACES WHICH CANNOT BE N B E R E D  415 

Here 6 , ,  6,, 6,, 6, = 0 or = 1 depending on whether P I ,  p2, p3, b are even or 
odd, respectively. Taking new generators, we can always assume that 
6 ,  = 6, = 6, = 1, 6, = 0. For in the Platonian triples a I , a 2 , a 3  one exponent, 
say a, = 2. Then p2 = 1 (0 < p, < a,); hence 6, = 1. But if a ,  is odd, PI may 
be even and 6, = 0. In this case take as new generator Q ;  defined by 
Q, = QiH. The relation Qplk'~ = 1 becomes Q;a1H81+ul = 1 and a, + 6, = a, 
is odd, hence H ' I + ~ I  = k. Thus assume 6, = 6, = 6, = 1. Now if 6, = 1, we 
define Q; by Q, = Q i h .  Then = 0 and since a, = 2 the other relations are 
not changed. Therefore 

Q'Q'Q'  1 2 3  = 1, H 2  = 1. (3) Q ; ~ I  = Q;.z = Q;"3 = H ,  

The groups defined by these relations are (for the Platonian triples) the binary 
platonian groups. In Marh. Ann.  104, 26, it is shown that fi has order 2. 
Therefore H does not have order 1 in n,( F )  and H + 0 in F. 

Now suppose f~ P 2 ,  hence r = 1 or 0. For r = 1, .rr,(F) has relations 

A H A  - ' H  = 1, QoQ, = A , ,  Q,HQ,-' = H ( j  = 0,l)  

Q o H b  = 1 = QPIHPl. 

Eliminating Qo and adding the relation H 2  = I ,  we obtain a quotient group 
with relations 

(4) 

k2Q; I H 6 1  c Q P I H ~  = 1, H Z =  I ,  

j i j - 1  = fi, Q,HQ;I = H .  

Eliminating Q, we obtain the Abelian group 

H 2 =  1, 2 2 a l H s 3  = 1. 

6, ,a,, 6, are 0 or 1. In this Abelian group fi does not have order 1, regardless 
whether 6, = 0 or = 1; hence H $ 0  in F. If r = 0, we have a ,  = 1 and obtain 
the same result. 

The remaining case is that f = S 2  and F has at  most two exceptional fibers. 
We decompose f into two disks each having at most one exceptional point. 
This corresponds to a decomposition of F into two solid tori V ,  , V , .  Hence F 
is a lens space or S 2  x S I .  In S 2  x S 1  the fiber is not = O  (Theorem 19). For 
each lens space there are infinitely many distinct fiberings in which each 
ordinary H 2: 0. For a lens space is determined by a simple closed curve on 
a V ,  = n, which is identified with a meridian M ,  of V, .  Thus if M I ,  B ,  are 
meridian and longitude on n, , the lens space is determined by the homology 

M * - f B ,  + q M ,  (on = I ) ?  ( 5 )  

hence by p , q .  Here p # 0; otherwise M 2 - * M I  and F x  S 2  X S ' .  Fiber V ,  
such that 

H - p B ,  + xM, (6)  
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where x # q,  (x, p )  = 1. By Lemma 6 the fibering of the resulting lens space 
is uniquely determined by the fibering of V,. Now H = O  since 
H - M ,  - q M ,  + x M , ;  but M I  and M ,  are = O  in the lens space. This 
completes the proof of Theorem 20. 

By Theorems 1 1  and 18, S 3  is the only simply connected 3-manifold that 
admits a fibration. If, however, the fundamental group is not trivial, we can 
now state a fibration condition: 

THEOREM 2 1. If a (open or closed) nonsimply connected manifold M can be 
fibered, then n , ( M )  has an element H # 1 such that W - ' H  W = He( w), 
E (  W )  = ? 1 [for each W E 7rl(M)]. 

For either a fiber H II 1 in n , ( M ) ,  then M is a lens space and r , ( M )  is 
cyclic, or H # I in 7r,(M) and the result follows from the first paragraph of 
this section. 

Using this theorem we can exhibit infinitely many (open or closed) 
manifolds that cannot be fibered, namely, the connected sum of two 
manifolds. The connected sum of two manifolds R, and R, is obtained by 
removing from each a 3-ball and gluing together the two resulting boundary 
2-spheres, which can be done in two different ways. If A and B are the 
fundamental groups of R, and R,, then the fundamental group of the 
connected sum is the free product A * B of A and B.30 The free product A * B 
is defined as follows3': An element is an arbitrary product of finitely many 
elements of A and B which are called terms. Each such element which is not 
the identity element can be reduced to a normal form, in which terms of A 
and B different from the identity alternate. Two elememts of the free product 
are equal if and only if their normal forms agree term by term. For example, 

AilBjIAi2Bj2 * * * A i  B,, = Af I  B.'Al! J I  2 B.' J i  . * * A,:BJ: 
if and only if 

. . .  , B .  = B.' 
Jr Jr' Ail = A,!], BjI = B;], 

Two elements are multiplied by composing the terms of the two products. 

LEMMA 8. If A and B are nontrivial groups, then the free product A * B has 
an element H as in Theorem 21 if and only if both A and B have order 2.  

Proof: It follows from the normal form of the elements of A * B that 
H @ A and H E B ,  since, e.g., composing an element of A with an element 
# 1 of B cannot give an element of A .  But since H 4 A ,  H does not commute 
with any nontrivial element of A ,  since aHa-' does not have the same normal 
form as H .  Therefore, for a # 1 E A ,  aHa-' = H - ' .  For a'# 1 E A ,  

We now use 

proof of this claim is on p. 36 of the paper cited in Footnote 18. 
3'See C. Schreider, Die Untergruppen der freien Gruppen. Abh. Math. Sem. Univ. Hamburg 5 

(1927), 161. 
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FIG. 15 

a'Ha'-' = H - I ,  hence a'-'aHa-'a' = H ,  hence a-'a' = 1, Therefore each 
element a' # 1 of A is = a -  I ;  in particular, a -  I = a, i.e., A = Z,(a). The same 
holds for B .  

Theorem 21 now implies 

THEOREM 22. The connected sum of two nonsimply connected 3-manifolds can 
be fibered only if both manifolds have a fundamental group of order 2. 

In the exceptional case the connected sum can be fibered, for example the 
sum of two projective spaces. P 3  # P 3  is obtained by identifying diametrical 
points on the boundary spheres K ,  and K2 of Sz x I (see Fig. 15) since the 
dotted 2-sphere separates this manifold into two punctured projective spaces. 
The fibers are the radii of S z  X I; any two diametrical radii form one fiber. 
The invariants of the fibering are (On; 1 I 0); b = 0 since P 3  # P 3  admits a 
fiber preserving orientation reversing homeomorphism (reflection on the 
dotted S2) .  Therefore by Theorem 6,  (On; 1 I b) = (On; 1 1 - b), hence 

The simplest example of a space that cannot be fibered is ( S 2  x S ' )  

(1) F cannot be fibered. 
(2) F can be fibered in only one way (Poincare spaces). 
(3) F has infinitely many fiberings (S') .  In this example all fibrations 

have the same orbit surface, namely S2.  

We conclude with an example of a space having two fiberings with 
different orbit surfaces. I t  is the quaternion space, with fundamental group 
the quaternion group. It is obtained from a cube by identifying any two 
opposite faces under a rotation of a/2. Since the quaternion group, which is 
generated by 2 1 ,  * i, ' j ,  * k ,  has an element, namely, - 1, that commutes 
with all others, and also another element, e.g., i, that commutes with 2 1, and 

b = - b .  

#(Sz  x S ' ) .  We have encountered three possible cases: 
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FIG. 16 FIG. 17 

2 i and whose conjugate with + j ,  ? k is - i ,  one could conjecture that the 
space can be fibered in two different ways. This is indeed the case. We 
deform the cube to a cylinder where bottom and top disks are identified 
under a (say right-handed) rotation of m / 2 ,  and the lateral surface of the 
cylinder is divided by four vertical lines into four faces, where each two 
opposite faces are identified under a right-handed rotation of m/2 (see Fig. 
16). Under the identification the lateral faces are deformed so that a vertical 
line becomes a quarter circle of the bottom (resp. top) disk. 

If we deform the bottom disk of the cylinder under a continuous left 
rotation of total angle m/2  into the top disk, then each point of the bottom 
disk describes a screw line, in particular the center point of the bottom disk. 
These screw lines form the first fibering of the quaternion space. There are 
three 2-fold exceptional fibers: the axis and the diagonals of the pairwise 
corresponding faces. 

The second fibering is obtained from the first by reflection on a plane 
through the axis, i.e., consists of right hand screw lines (see Fig. 17). There are 
no exceptional fibers. 

The two orbit surfaces are distinct, since in the first fibering the fibers can 
be simultaneously oriented, in the second this is not possible. By Theorem 9 
the orbit surface of the first fibering is S2,  that of the second is P 2 .  In the first 
case we can take as orbit surface a semidisk of the bottom disk, where the 
radii and quarter circles on the boundary have to be identified. In the second 
case it is the whole bottom disk with diametrical points on the boundary 
identified. 

Appendix. Branched Coverings 
1. Definition of Branched Covering 

height), and p (radius) be polar coordinates, 
For a Euclidean 3-ball E of radius 1 let q (geographical length), 6 (angular 

0 < ~ p < 2 ~ ,  - ~ / 2 < 6 <  +m/2. 0 < p <  1. 
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Denote polar coordinates for a Euclidean ball 
branched covering of E if the map of i to E is given by 

by tildes. i is called a p-fold 

p = i .  a = $ ,  ' p = p @  (mod27r) ( p >  1). 

In both E and i, the diameter from south pole to north pole is called the 
branch curve. I f  K and l? are homeomorphic images of E and k, then l? is 
mapped to K via 2 and E.  Then l? is also called a p-fold branched covering 
of K ,  and the curves in K ,  l? which correspond to the branch curves of E ,  k, 
respectively, under the homeomorphisms are called the branch curves of K ,  
l?, respectively. If k maps homeomorphically to K ,  we say that l? is an 
unbranched covering of K .  

Let k , ,  . . . , k, be a finite number of simple closed curves, called knots, in 
a 3-manifold M with the following properties: For each point P of the knot k, 
there is a neighborhood U ( P )  in M ,  disjoint to k, for j # i ,  which can be 
mapped homeomorphically to the interior of a Euclidean 3-ball so that the 
image of k, n U ( P )  is a diameter. U ( P )  is called a normal neighborhood of P 
and kj  n U ( P )  the diameter of U(P). If P does not lie on a knot, we call 
normal any neighborhood which is homeomorphic to the interior of a 3-ball 
and which is disjoint from all the knots. An admissible path in M is the image 
under a continuous map of an oriented line segment such that i t  is disjoint 
from the knots except possibly for _the endpoint. 

Let fi be a 3-manifold and % : M +  M be a continuous map. We say that 
the point P" of fi lies over the point P of M and that P is the projection of P' 
i f  P[(F)= P. An admissible path in M is a path whose image under % is 
admissible in M .  Now fi is called a branched covering of M with branch 
curves k , ,  . . . , k, if the following holds (see also $9) :  

1. 
11. 

Over each point P of M lies at least one point P' of fi. 
If FI,F2, . . . are all the points which lie over P, there is a normal 

neighborhood U ( P )  in M and there are normal neighborhoods U ( P , )  
U(P, ) ,  . . . in fi which together consist of all points lying over points of 
U ( P )  and which have the following properties: (a) If P is a point on a knot 
k,, then U(F, )  is a branched or unbranched covering of U ( P )  withhj n U ( P )  
as branch curve; (b) If P does not lie on a knot, then 3 I U(Fi): U ( P i ) +  U ( P )  
is a homeomorphism. 

Let N be the open submanifold of M obtained from M by removing all 
points on the knots; let I? be the submanifold % - ' ( N )  of A?. Then we have 
the following theorems, which we state without proof: 

(1) I? is an unbranched covering of N ( $ 9 ) .  
(2) If P = P ( t ) ,  0 < t < I ,  is an admissible path in M from a point P(0 )  to 

a point P( I), and i f  p(0) is a point over P(O), then there exists a unique lift P( t )  
in fi which starts at p(0) and such that F(t )  lies over P ( t ) .  

(3) If G is a closed curve of I? which lies over a contractible curve in N ,  then 
G is contractible in I?. 
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(4) If exactly n points lie over some point of N ,  then exact4 n points lie over 
each point of N (n-fold covering). 

2. Tbe Subgroup @ of the Fundamental Group 

Let 3,g be the fundamental group of N, i?, respectively. Choosing the base 
point 6 for 6 over the base point 0 for 8, a homotopy class of (based) loops 
of i? is mapped to such a class of N. This induces an isomorphism of & onto 
a subgroup 6 of 8. We call 8 the subgroup of 5 corresponding to the given 
covering. Note however that 8 depends on the choice of the base point 0 
over 0; we choose once and for all a fixed 6 over 0. (If we would choose 
another base point over 0, we would get a subgroup conjugate to Q in 3.) 
based loop in N belongs to 8 if and only if its lift from 0 is closed in N. 
Decomposing 5 into its cosets of 8, 

S = @ + @ F 2 + @ F 3 +  . . . ,  
we get a one-to-one correspondence between these cosets and the points over 
0 as follows: Choose a path w from the coset QF, and lift it from 6 to 3. The 
endpoint of 3 corresponds to the coset QF,,. This correspondence is 
apparently independent of the choice of the path w from @ F , .  In particular, if 
the covering of N by 5 is finite sheeted, then the number of sheets equals the 
index of 8 in 8. 

3. Unique Determination of 

For the following it is convenient to consider only a particular system of 
neighborhoods of the covering space. As neighborhoods of a point P of the 
covering space we consider only those 3-balls which lie concentrically in a 
normal 3-ball and which cover (branched or unbranched) a normal 
neighborhood of the image point P. This system of neighborhoods (for all 
points P of fi) is equivalent to the system of all open seis of fi. 

If k, and M2 are two branched covers of M which induce the same subgroup 
@ of 3, then they are homeomorphic so that corresponding points have the same 
image in M .  In order to define the homeomorphism f:&,+ 
M,, join a point P", E fil to 6, by an admissible path C, and lift the image 
path a of GI to a path 6, in f i 2  from Let f(i,) be the endpoint of this lift. 
f(pJ) is uniquely determined by PI and does not depend on the path 6, .  For 
if PI does not lie over a point on a branch curve, and if d, is another path 
joining PI to 6, ,  then the path i,&-' is a closed curve in 6, and therefore its 
image in M is contained in the subgroup 8 of 8;  since f i 2  corresponds to the 
same subgroup 6 it follows that the lift Z,b;-' is a closed curve in fi2 and 
therefore the endpoint of b; is the same as that of i,. If i, lies over a point on 
a branch curve, we deform the path i ,d;' inside an arbitrarily small ball 
neighborhood cI of PI into an admissible path as follows: Choose a point 2, 
on a", close to PI such that the subpath 2,P", of a", lies in c,; similarly, choose 
a point i1 on b, shortly before i, and join 2, and g, by a path 5 inside cl 

by @ 
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which misses the branch curve. The corresponding detachment is done in the 
ground space M. The ball neighborhood fi, is mapped to a normal 
neighborhood, the points i,,B”, into two points a , b  close to P ,  and the 
detached ground path belongs to $j since i t  is the image of an admissible 
closed curve in A?,. Since we can choose fi, arbitrarily small, we can detach 
the path a b - ‘  into a curve of 8 in an arbitrarily small normal neighborhood 
of P. Now supposing that li, and b; lead from 6, to different endpoints j2 
and 02, we could find disjoint ball neighborhoods c2 and ?, of P“, and &. 
The corresponding normal image neighborhoods U and V of P in M have a 
neighborhood W in common, inside which we detach the path ab-‘.  Lifting 
the path a (from 0 to A )  to A?,, we obtain a path from 6* to a point i2. 
Running from A along o to B ,  the lift in fi2 leads to a point B”, which lies in 
fi,. On the other hand, running from 0 to B along b, the lift in A?, is a path 
from 6, to a point in p2. But since the detached path ab- ‘  belongs to $5, the 
latter point has to be g,. Therefore fi, and F2 cannot be disjoint and 

This shows that the map f:i, + A?, is well defined and one-to-one. To 
show that f is a homeomorphism, we have to find for any given neighborhood 
cl of P“, a neighborhood 6, of p2 =f(F,) such that f(fi2) c fi,. If U ,  is the 
normal neighborhood of P in M which is (branched or unbranched) covered 
by fi, and if a is a path from 0 to P which lifts in 6, to a path from GI to 
P I ,  then each path from 0 to a point P’ of U , ,  which agrees with a up to a 
point A shortly before P and from there remains inside U, lifts in 6, from 6l 
to a point in fi, . Now let 6, be a ball neighborhood which is mapped into a 
normal subneighborhood U ,  of U,.. In A?,, a lifts to a path from 6, to F,, 
and we can get to any point Fi of fi, along a path which agrees with i, up to 
a point shortly before P“, and which from there on remains in fi,. In the 
ground space M ,  this path maps to the type of paths from 0 to a point P ’ ,  
discussed above. This lifts in A?, to a path from 6 ,  to a point in fi,. Hence 
f: A?, + fi, is continuous and, since the same arguments apply to the inverse 
map, f is a homeomorphism. 

This shows that the covering A?+ M is uniquely determined by the 
subgroup 9. In the same way one can show that to a given subgroup $j of 
finite index there exists a corresponding covering 6. 

Q 2 =  F, .  

4. Regular Coverings’ 

LEMMA ABOUT BRANCHED COVERINGS OF s3 WITH ABELIAN GROUP OF 

COVERING TRANSLATIONS. Let 6 + M = S 3  be a regular finite sheeted 
covering branched over the knots k ,  , . . . , k,. with group of covering translations 

* Translators note: In this section regular coverings and covering translations are discussed and 
i t  is shown that for a regular covering corresponding to the normal subgroup 6 of ;4 the group of 
covering transformations is isomorphic to ;4/$. A more detailed exposition can be found in 
Chapter VIII. 557 of “Seifert and Threlfall: A Textbook of Topology.” 
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Abelian and of order g = a ,  . ;a,. Assume: For a small loop C, that links k; 
exactly once, the lifts of CF in M are closed curves.32 Then it follows that a path 
6 of 6 that covers a path w which misses the knots is closed if and only if for 
each i the linking number x of w with k; is divisible by a;. Since this determines 
the subgroup @ of 8 corresponding to h? there is by $3 only one covering h? with 
the above property. 

Prooj Every loop of 8 lies in a certain coset of @ in 8. A null homologous 
loop w of 3 belongs always to 6, since w is a product of commutators which 
all lie in 6 since FF;/Q is Abelian. Hence two homologous loops of 5 lie in the 
same coset. But the homology group of N is the free Abelian group generated 
by C,, . . . , C,. Thus each loop w of N is homologous to a linear 
combination C;= ,x iC, ,  where x i  denotes the uniquely determined linking 
number of w with k, (with a suitable orientation of k;). In particular w - 0 in 
N if and only if all its linking numbers vanish. Therefore loops of 5 with the 
same linking numbers xi lie in the same coset 6 of 5. The loop C, need not 
be based at  0 and may thus not belong to 8, but joining 0 to a point of C, by 
an admissible path u, we get a path c,  = u,C,u;I that belongs to 8, is 
homologous to Cj in N ,  and whose q t h  power belongs to @. But C? has 
linking number a, with k; and linking number 0 with the other knots. 
Therefore those loops of CS: whose linking number x is divisible by a, (for 
each i )  belong to 8. Two loops w and w' with all x linking numbers 
congruent, i.e., 

xi =xi (mod a;) ( i  = 1, . . . , x), 

belong to the same coset of 6 in 5. Since there are only a ,  . . . a, incongruent 
systems of linking numbers, and just as many cosets, all loops of 5 whose 
linking numbers with the knots k , ,  . . . , k, are piece by piece congruent make 
up a coset of Q in 3. In particular @ itself consists of all loops whose linking 
numbers x , ,  . . . , x, are divisible by a ,  (resp. a*, . . . , a,). The theorem 
therefore is true for all loops based at 0. But then the theorem holds also for 
the other loops, since each loop w in N can be deformed without crossing the 
knots into a loop based at 0, and this neither changes its linking number with 
ki nor its property of being covered by a loop of the covering space. 

321t suffices to require that at least one lift of Ci* is a closed curve; since the covering is 
regular, it  then follows that all other lifts are closed curves. 
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proof, 530 
consequences of, 1 15 

circular arrow, 42, 137 
through surface, 283 

Flachen), 6, (’) 

Approximation, simplicial, Chap. V 

Arrow (Pfeil), orienting interval, 42 

Assembly of surface (Einwickeln der 

Association (Zuordnung), types one and two 
of faces of polygon, 8 
of faces of polyhedron, 214 

Asymmetry of orientable manifolds, 291, 

Automorphism, of fundamental group under 

of first homology group of torus, 101 
Problem I 

under change of initial point, 160 
of surfaces, (’7 

group, 171 

(48). 

deformation, 182 

Auxiliary paths (Hilfswege), of edge path 

Axioms A and B for neighborhood space, 22 

423 
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Axis, of prism, 103 
Axis-parallel interval, of prism, 103 

B 

Ball (Kugel), closed, n-dimensional (= n- 

Ball neighborhood (Umgebungskugel), 23 
Band, twisted, 3, 7 
Barycentric coordinates, 37 
Base path (= ground path), 191 
Base point (= ground point), 189 
Basis 

dimensional element), 52 

of lattice Zk of all k-chains, 61, 73 
dual cellular bases, 259 
of lattice, 317 

on surface, 151 
dual Betti bases, 261 

Betti basis, k-dimensional, 73, 80 

Betti group, k-dimensional, 72, ( I 3 )  

Betti number 

SP", 66 
pk  of dimension k of simplicial complex 

of dimension n, 68 
calculated from incidence matrices, 80 
calculated from block incidence matrices, 

nth, of pseudomanifold, 94 
topological invariance, 115 
of surface, 149 
p 2  of topological product of two 2-spheres, 

p' of orientable three-dimensional mani- 

mod in, (I5) 
of abstract group, 321 
of octahedron group, 323 

82 

163 

fold-with-boundary, 231 

Bezout's theorem, (") 
Bicontinuous mapping (umkehrbar stetige 

Abbildung), I 
Bijective, see One-to-one correspondence, 1 
Binary icosahedral group, 225, ( 5 2 )  

Block chains, 522 

Block incidence matrices, 82 
mod 2, 89 

of surfaces, 150 
of lens spaces, 220 

Blocks, of simpliclal decomposition, 81; see 

Block system, 83 
surface, 150 
3-dimensional manifold, 219 
cell complex, 243 

also block system 

Boring out of knot, 231 
Boundary (Rand) 

of convex region, 39, 53 
of simplex, 40, 42 
of pure complex, 49 
of closed n-ball, 52 
topological invariance of, 535 
of oriented simplex (symbol l a ) ,  61 
of chain, 5 16, (42) 

of 0-chain, 62 
of chain mod 2, 85 
of singular simplex, 98 
of singular chain, 100 
of degenerate simplex, 99 
of normal subdivision of singular simplex, 

of manifold with boundary, 229 

mod 2, 85 

109 

Boundary chain, 61 

Boundary divisor (= division-nullhomolo- 

Boundary-faithful mapping, 297 
Boundary path (Randweg) 

of 2-simplex, 163 
of surface element, 168 

Boundary point of subset, 24 
topological invariance of, 28 

Boundary relations (Berandungsrelationen), 

Boundary side, of surface with boundary, 

Bounded subset (beschrankte Punktmenge), 

Bounding, 24 
of point set of Euclidean space, 30 

Box form of skew symmetric matrix, 280 

gous chain), 72 

74, 75 

146 

of Euclidean space, 30 

C 

Cell (Zelle), k-dimensional, 241 
oriented, 242 
mod 2 or nonoriented, 243 

Cell chain (Zellenkette), 242 
mod 2, 243 

Cell complex (Zellenkomplex), 567 
Cellular approximation (ZellmaDige Approx- 

imation), 572 
for cell chains mod 2, 267 

Cellular division (Zellteilung) of manifold, 

Cellular subcomplex (Zellenteilkomplex), 264 
Center point (Mittelpunkt) of simplicial star, 

249 

55 
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Chain (Kette), simplicial, $ 15 
k-dimensional (= k-chain), 60 
closed (= cycle), 62 
mod 2 (chain without orientation), 923 
mod m, (I5) 
cell chain, 242 

Chain, singular, $26 
mod 2, (I7) 

Characteristic, Euler 
of simplicial complex, 90 
of n-sphere and of 'p", 90, problem 2 
as alternating sum of Betti numbers, 90 
topological invariance, 115 
of polyhedral surface, 138 
of torus and surface of cube, 138 
of closed surfaces, 143 
of surfaces with boundary, 146 
of edge complex, 175 
of g-sheeted covering, 200 
of closed 3-dimensional manifold, 212 
of simplicial star, 216 
of 3-dimensional manifold with boundary, 

of n-dimensional manifold, 255 

fundamental group of, 174 
universal covering of, 201 

of triangle, 42 
of polygon, 137 

self-mapping of, 29 
identification of all boundary points of, 36 
doubling of, 133 

mod 2, 86 
at point, (2") 

Closed hull (abgeschlossene Hulle), 25 
of point sets of Euclidean space, 32 

Closed manifold, 21 1, 244 
Closed path, 155 
Closed subset, of neighborhood space, 24 
Closed surface, $2, 937 
Coefficient matrix, of Abelian group, 319 
Cogredient transformations, 258 

Coherently oriented n-simplexes, of pseudo- 

Combinatorial deformation, 163, (27), ('4 
Combinatorially homotopic edge paths, 164 
Commutator, 312 

230 

Circle (Kreislinie) 

Circular arrow, orienting 

Circular disk (Kreisscheibe) 

Closed chain (= cycle), 62 

rows of variables, 258 

manifold, 91 

group, 312 

Complementary set, ZJ2 - W (Komplemen- 

Complementary space of knot (Komple- 

Complex (Komplex), $ 10 

tarmenge), 24, 289 

mentarraum eines Knotens). 293 

simplicial, 43 
simplicial, embedded rectilinearly in Eu- 

clidean space (geometric complex), 47 
connected, 48 
pure, with boundary, 49 
open subset of Euclidean space is infinite, 

doubling of, 132 
homogeneous, 49, 235 
homogeneous, 2-dimensional, I45 
homogeneous, 3-dimensional, 2 1 1 
simply connected, 162 
singular, 264 

59 

Complex projective plane, (") 
Complex projective space, ( I 8 )  

Composite complex (zusammengesetzter 
Komplex) 

fundamental group of, $52 
homology groups, ('9 

Condition (R) for singular chains, 267 
Conditions of motion, ('), (38) 

Conjugate elements of fundamental group, 

Conjugate essential cuts, 280, C5) 
Connected complex (zusammenhangender 

Connectedness condition, for system of 

Connected pairs (verbundene Paare) of sin- 

Connected sum formation of 3-dimensional 

Connection chain (Verbindungskette) 

182 

Komplex), 48 

polygons, 135 

gular chains, 269 

manifolds, 226, 291 

with normal subdivision, 108 
with approximation, 113 
for cellular approximation, 264 

for prism, 105 
for singular prism, 107 
with normal subdivision, 109 
with approximation, 113 
for deformations, 118 

Connection formulas 

Connectivity basis (Zusammenhangsbasis), 
87 

of surfaces, 152 
dual, 263 

Connectivity condition for pseudomanifold, 
90 
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Connectivity group (Zusammenhangsgruppe) 

Connectivity number (Zusammenhangszahl) 
$ k ,  86 (I7) 

q k  
k-dimensional, 86 
of projective plane, 89 
nth of pseudomanifold, 91 
topological invariance of, 1 I5 
of surface, 152 
geometric significance of, 152 

Consequence, 306 
Continuation of orientation along path, 281 
Continuity (stetigkeit) 

nature of, 20 
classical definition, 25 
uniform, 31, 32 

Continuous mapping (stetige Abbildung), 
I28 

function, 25 
deformation of path, 163, (*') 

Contragredient transformation, 258 
Convex hull, 40 
Convex region (konvexer Bereich), 39 

boundary of, 39 
inner point (mittlerer Punkt) of, 39 
is closed n-ball, 52 
as simplicia1 star, 55 
topological product of two, 57 

barycentric, 37 
parallel, 37, 0 

Coordinates 

Core (Seele), of solid torus, 186 
Covering (Uberlagerung) 

of annulus, 189 
of torus, 189, 201, 202 
of double torus, 190, 203 
and subgroup of fundamental group, $55 
universal, 200 
regular, 201 
two-sheeted, 202 
finite-sheeted, 205 
of exterior space of trefoil knot, 208 
branched, of 3-sphere, 228 
of exterior space of knot, 292 

Covering complex 
unbranched, 953 
equality of, 190 

Covering number, of point by cell, 251 
Covering path, 191 
Covering transformation of covering com- 

plex (Deckbewegung eines Uberlager- 
ungskomplexes), 202 

Cross-cap (Kreuzhaube), 12, 143 

Cross-cap normal form of nonorientable sur- 

Cross-cap normalization, 143 
Cross-cap number k (- genus of nonorient- 

Cube, and topological project of three cir- 

Cube surface (Wurfelflache), 135 

faces, 143 

able surface), 145 

cles, 2 I8 

Euler characteristic, 139 
as dual star complex of octahedron, 241 

Cycle (Zykel) (= closed chain), 62 
Cyclic covering of knot 

global (im Grokn), 209, 292 
in the small (im Kleinen), 209 

Cyclic group, 307 

D 

Decomposition (Zerlegung), simplicial 
of complex, 43 
of prism, 104 

Defining relations 
of fundamental group, 173 
of subgroup, 210 

of factor group, 310 

continuous, 163 
combinatorial, 163 
constrained, 180 
free, 180 
with tearing, ('7 
summary of types, (24 

of group, 306 

Deformation, homotopic, of path, 155 

Deformation complex sf" x t, 116 
Deformation of complex into itself, I17 

degree of mapping of, 295 
without fixed point, 301, (51) 

on surfaces, 302 
Deformation of a mapping, 93 1 

homotopic, 116 
isotopic, 116 
to simplicia1 mapping, I 18 
and singular chains, 1 18 
and homology groups, 120 
and fundamental group, 182 

Deformation parameter, I16 
Deformation rectangle 

of path, 155 
singular, 222 

Deformation theorem, 118 
Degenerate mapping of simplex, G" onto 

simplex, 'G', 40 
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Degenerate singular simplex, 96 
written as tormal sum, 98 
boundary of, 99 

Degree of mapping (Abbildungsgrad), $78, 

('4 
of deformation, 295 

homologous, 67 
linear, 68, 86 

Dependence (Abhangigkeit) 

Diagonal form of matrix, 320 
Diameter of point set in Euclidean space, 32 
Diametrically opposite points on 2-sphere. 

37 
Dimension 

of simplex, 37 
of convex region, 39 
of simplicial complex, 44, 49 
topological invariance of, 433, ( 2 ' )  

of lattice, 317 
of closed pseudomanifold, ('4 

Dimension index, always superscripted, 43, 

Dimension theory, 2 I 
Direct product, 8 ,  x 8, 

49 

of groups, 314 
is called direct sum for Abelian groups, 

317 
Directly incident stars, 236 
Disjoint (punktfremd), 23 
Distance 

between two points of Euclidean space, 23 
between two point sets, 32 

Distinguished neighborhood (ausgezeichnete 
Umgebung), I89 

Dodecahedron space 
spherical, 223, 225, 226, 228, 249 
hyperbolic, 227 

Domain (Gebiet), invariance of (47) 

Double pendulum, 17 
Double torus (= pretzel surface), 6. 180, 205 

threefold coverings, 190, 202 
twofold coverings, 2 10. 
dual Betti bases on, 279 
conjugate essential cuts on, 280 
assemblage of, (2) 

of pure complex with boundary, 132 
of surface with r holes, 149, Problem 

Dual bases, 971 
Betti, 262 

Dual cellular bases, 259 
Dual cellular divisions of manifold, 249 

Doubling (Verdoppelung) 

Duality theorem 
Poincare, 969 
mod 2, 255 
Veblen's extension, 26 I 
Alexander, (47) 

Dual stars, 238 

E 

Edge (Kante) 
of simplex, 38 
of polyhedron, 135 
of solid polyhedron, 214 
of manifold, 285 

Edge complex, 90, 168 
fundamental group, 174 

Edge path (Kantenweg) 
in simplicial complex, 155 
in surface complex, 168 

Edge path class, [w], 164 
Element, n-dimensional, 52, see also simplex, 

Elementary combinatorial deformation, 164 
Elementary divisors, rational, of matrix hav- 

Elementary rearrangements of matrix, 76, 

Elementary-relatedness (Elementarvenvand- 

Elementary transformation 
of basis of k-chains, 76 
of systems of polygons, 138 

n-dimensional; n-ball, closed 

ing integer elements, 78, 320 

320 

schaft) of polyhedral surfaces, 135, 144 

Embedding (Einbettung) of nonorientable 

Embedding (Einlagerung) (=  imbedding) 
of figure into 3-dimensional space, 2 
one-sided and two-sided, 9, $76 
impossibility of, nonorientable surface into 

!R3, 230, (36) 

of %Itn-' into %JY"' 283 
simplicia1 and topological, (36) 

unit element of a group, 305 
set (= set without elements), 24 

surfaces, (7 

Empty word (leeres Wort), representing the 

Endpoint, of path, 154 
Equivalence 

of topological simplexes, 42 
of singular simplexes, 96 
of paths, 154, (*') 
of covering complexes, 190 
of words consisting of group elements, 

305, 306 
Equivalent knots, 232, ('4 
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Equivalent points of neighborhood space 

Essential cut (Ruckkehrschnitt) 
(identification), 33 

on surface (= regressive cut), 152, C') 
orienting, 153 
single-walled and double-walled, 153 
higher-dimensional analog, 280 

of torus knot, 185 
of knot, 233 

point sets in, 30 
orientation of, 103 
prisms in, 103 
homology groups at point of, 128 
knots in Euclidean 4-space, ( I )  

homogeneity of, 0 
Euclidean plane W2, (Zahlenebene) 

homeomorphic to punctured 2-sphere, 29 
homeomorphic to interior of disk, 29 
is a complex, 44 
is simply connected, 162, (*6) 

Exterior space (AuOenraum) 

Euclidean n-space. W". 22 

Euclidean space form, (3s) 
Euler characteristic, see Characteristic, Euler 
Eulerian polyhedral surface, 139 
Euler's polyhedron formula, 90 

generalized, 299 

F 

Face (Seite) 
of simplex, 38 
of singular simplex, 96 
face surface of solid polyhedron, 214 

Factor group, 310 
Factors, invariant, of matrix having integer 

Fiber, (38) 

Fibered space (gefaserter Raum), (38) 

Figure, geometric, I ,  19 
Final vertex of interval, 42 
Finite complex, 48 

Finite-sheeted covering, 205 
Fixed point classes, ('9 
Fixed point formula, $80 

general, (9 
Fixed-point-free mapping 

of n-sphere into itself, 302 
deformations, 302, ('I) 

Floor face (Grundseite), of prism, 103 
Fly, on Mobius band, 9 
Folded interval, as singular I-simplex, 97 

elements, 78, 320 

topological invariance of, 48 

4-dimensional space, 186, ( I ) ,  (3) 

Free Abelian group with h generators, 316 
Free cyclic group (= free group with one 

Free deformation, of path, 180, ('9 
Freely homotopic paths, 180, 182 
Free product, & 0 S2, of groups, 313 
Full polyhedron (Vollpolyeder) (= solid 

polyihedron), 213 
Full sphere, see also Simplex, n-dimensional 

of Euclidean space (Vollkugel) (= solid 

identification of all boundary points of, 58 
as solid polyhedron, 213 
as manifold with boundary, 229 
fixed points of mapping of, into itself, 301 
bored-out, 302 

Full torus (Vollring) (= topological product 

generator), 307 

sphere), 52 

of the disk and circle), 58 
fundamental group of, 174 
and lens spaces, 223 
as manifold with boundary, 229 
bored-out, 291 
fibered, 

Function, continuous, 25 
Fundamental group, 5 ,  Chapter VII, (") 

homomorphic mapping of, 161 
of topological product, 161 
of n-simplex, 162 
of Euclidean n-space, 162 
of circle, 174 
of annulus, 174 
of solid torus, 174 
of closed surfaces, 176 
and homology group, $48 
and deformation of mappings, 550 
at a point, $51 
of composite complex, $52 
of exterior space of torus knot, 185 
of homogeneous 4dimensional complex, 

of projective plane, 204 
as group of covering transformations, 204 
of nonorientable 3-dimensional manifold, 

of 3-dimensional manifold, $62, 290 
Fundamental polygon 

of torus, 3 (Fig. 5) 
of surface, 5 
of double torus, 6 (Fig. 10) 
of 2-sphere, 7 (Fig. 11) 
of projective plane, 11 (Fig. 18) 

I87 

213 



I N D E X  429 

of Klein’s bottle, 12 (Fig. 19) 
(0)- (h). (k) ,  143 

G 

Generator (Erzeugende) 
of fundamental group, $46 
of group, $82 

Genus (Geschlecht), of a closed surface, 145 
Geometric complex (Geradliniges Komplex), 

46 
Geometric simplex (Geradliniges Simplex), 

of Euclidean space, 37 
German script (Frakturschrift) for nonori- 

entable figures, 41, 84 
Ground form, metric, (38) 

Ground path (Grundweg), I9 1 
Ground point (Grundpunkt), 189 
Group (Gruppe), Chap. XII, see also Betti 

group; Fundamental group as group of 
covering transformations: Homology 
group; Isomorphic groups; Knot group; 
Lattice; Monodromy Group; Torsion 
group; Word problem 

cyclic, 307 
free cyclic, 307 
factor, 310 
commutator, 312 
free, 313 
Abelian, $86 
free Abelian, 316 

Group axioms, 159 
Group diagram (Gruppenbild), (52 )  

Group of covering transformations (Deck- 

Group unit element, 305 
bewegungsgruppe), 202 

H 

Handle (Henkel), 6, 142 
Handle body, of genus h (Henkelkorper vom 

Geschlecht h), 226 
nonorientable, 228 

Handle form, of orientable surfaces, 143 
Handle number, h = genus of orientable sur- 

&classes, of connecting paths, 196 
Heegaard diagram, 963. (34) 

Hollow ball (Hohlkugel), 229 

Homeomorphic (homoomorph), 28, 1 
Homeomorphism problem, as principal 

face, 145 

fixed point theorem for, 302 

problem of topology, $ I 
for lens spaces, 217, 222, 228 

Homogeneity 
of Euclidean spaces, fi 
metric, (38) 

Homogeneous complex, 49 
2-dimensiona, 145 
3-dimensional, 2 1 1 
n-dimensional, 235 

Homologous chains, 5 17 
mod 2, 86 

Homologous paths, $3, 177 
Homologously independent k-chains, 67 

Homology, division (symbol w),  71 
Homology (symbol -), 63 
Homology basis 

mod 2, 87 

of complex, k-dimensional, 66, 67, 80 
for surface, 151 

Homology classes, 15, 64, 100, (’4 
Homology group, 6’. $ 18, 5 ,  15 

k = 0, 67 
k > n,  68 
of particular complexes 

annulus, 68 
infinite complexes, 68 
projective plane, 69 
torus, 69 
simplicia1 star, 70 
n-simplex, 71 
n-sphere, 71 
pseudomanifolds, 9 1 
Mobius band, 93 
closed surfaces, $41 
composite complexes, 185 
3-dimensional manifolds, 218, 226 Prob- 

lem 4 
calculation from incidence matrices, $21 
singular, $27 
homomorphic mapping of, 101 
topological invariance, 928, 1 I5 
and fundamental group, 177 
in general neighborhood spaces, (I6) 
additional proofs of invariance, (”) 
modulo a subset, (’9 

Homology groups at a point, $32, 128 Prob- 
lem 1 

topological invariance, 126, (’4 
Homomorphism theorem of group theory, 

Homotopic curves (and paths) on surfaces, 

Homotopic deformation 

310 

03 

of mapping, 116 
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of complex into itself, I17 
of path, 155 

Homotopic paths, 155, (24 
Hull 

closed, 25 
of point sets of Euclidean space, 32 
convex, 40 

Hyperbolic dodecahedron space, 227 
Hyperbolic space forms, ("') 
Hypersphere and unit 3-sphere, (38) 

I 

lcosahedral group, binary, 225, ( 5 2 )  

Identical words, 305 
Identification, of points of rieighborhood 

space, 58 
used to construct complex, 45 
in covering complexes, 189 

Image point (Bildpunkt), 25 
Image set (Bildmenge), 25 
Improper line (uneigentliche Gerade), 10 
Incidence matrix 

simplicial, Ek, $21 
normal form Hk, 77 
block, 81 
mod 2, Ek, 87 
of pseudomanifold, 92 
cell, 243 

singular simplexes, 96 
stars of star complex, 236 

Independent (unabhangig) 
homologously independent k-chains, 67 
linearly independent k-chains, 68 
group relations, 306 

Index, of fixed point, ('4 
India-rubber topology (Kautschuktopologie), 

Induced orientation 

Incident simplexes, 44 

5 

of face simplex, 59 
of cell, 242 

topological invariance, 48 
open subset of Euclidean space, 59 
homology groups, 68 
Euclidean plane, (26) 

Infinite point set, of Euclidean space, 30 
Infinite surface, 14, (4) 

Initial point, of path, 154 
Initial vertex, of segment, 42 
Inner point (mittlerer Punkt) 

Infinite complex, 48 

of convex region, 39 

of topological simplex, 42 
of pseudomanifold with boundary, 93 

Inner simplex, of pseudomanifold with 

Interior point (innerer Punkt), of subset, 24 

Intersection number (Schnittzahl), B 

boundary, 93 

topological invariance, 28 

of dual cells, 250 
of cell chains of dual cellular divisions, 

mod 2, 257, 279 
of singular chains, $73 
topological invariance, $74 
arbitrariness in definition of, C2) 

255 

Intersection (Durchschnitt), of two sets, 23 
Into (mapping), 25 
Invariance, topological, 27, 95, 115, 125 

of neighborhoods, 28 
of accumulation points, 28 
of open subsets, 28 
of finite complexes, 48 
of connected complexes, 49 
of dimension, 49, (21), 933 
of orientability, 94, $36 
of homology group, 60, I 15, (I7) 

of Betti numbers and torsion coefficients, 

of Euler characteristic, I15 
in the small (im Kleinen), 123 
in the large (im GroOen), ('4 
of purity, 129 
of boundary, 131 
of pseudomanifolds, 132 
of domain, C7) 
of intersection numbers, 974 

I I5 

Invariant factors, of matrix with integer ele- 

Invertible curve (amphidrome Kurve), (23), 

Isolated subcomplex, 48 
Isomorphic groups, 3 10 
Isomorphic star complexes, 238 
Isotopic, curves on surfaces, 53 
Isotopic deformations of 3-space, 156 
Isotopic deformation of a mapping, I16 

ments, 77, 320 

(28) 

J 

Jordan curve theorem, (47) 

K 

Knot group, 292 
of torus knot, 186 
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Knots (Knoten) 
torus knots, 185 
definition, 23 1 
equivalence of, 232, ('4 
boring-out of knot, 232 
exterior space of a knot, 233 
linking numbers, 292 
complemen tary space, 293 

L 

Latin script (Antiqua), to denote oriented 
structures, 41 

Lattice (Gitter) (= free Abelian group), 316 
Ek of all chains of simplicia1 complex, 62 
ak of all closed k-chains, 62 
'JZk of all nullhomologous k-chains, 64 
5Dk of all division nullhomologous k- 

chains, 72. 
listing of lattices %*, mk etc., 73 

Lens space (Linsenraum) 
definition, 217 
homeomorphism problem for, 218, 222 
block incidence matrices, 220 
decomposition into two solid tori, 223 
self-linking numbers, 290 
asymmetric, 29 I ,  (48) 

Lifting, into covering complex, 189 
Like-oriented simplexes, of Euclidean space, 

Like-oriented simplicia1 decompositions of 

Limit point (Grenzpunkt) of sequence, 25 
Linear mapping (= affine mapping) 

103 

pseudomanifold, 132 

of simplex, 40, 42 
of prism, 103 

Linear dependence 
of k-chains, 68 
for k = n, equivalent to homologous de- 

pendence, 68 
of k-chains mod 2, 87 

Line elements, space of, 205, (I2) 
Linking number (Verschlingungszahl), 288, 

Longitude circle, of torus, 3 
(42), (47), C8> 

M 

Manifold (Mannigfaltigkeit) 
intuitive description of, 16 
2-dimensional (= closed surface), 135 
3-dimensional, Chap. IX 

closed, 21 1 

homology groups, 96 I ,  226 
fundamental group, 962 
construction from Heegaard diagrams 

with boundary, $64, ('9 
construction from knots, $65 
construction by sum formation, 226, 291 
symmetric, 291 

definition, 244 
and homogeneous complexes, 248 
with boundary, (4') 

Mapping (Abbildung), 96 
by reciprocal radii, 16 
one-to-one (eineindeutig), 25 
into and onto set, 25 
reciprocal, T - ' ,  25 
continuity of reciprocal mapping, 36 

Mapping, continuous, 25, Chap. XI 
behavior of homology groups under, 101 
simplicia1 approximation of, 93 1 
of n-sphere, 120 
behavior of fundamental group under, 101 

Mapping class, 116 
invariants of, 120, 182, 294 

Mapping, homomorphic 
of homology groups, 101 
of fundamental group, 161 
of groups, 983 

Mapping, linear 
of n-simplex, 40, 42 
of prism, 103 

and branched coverings, 228 

n-dimensional, Chap. X, $68, (9 

Mapping, product, UT (first T, then U!), 25, 

Mapping, simplicial, 1 17 
Mapping, topological, 1, 27 

tion, 132, 285 

36 

with and without preservation of orienta- 

degree of, 296 
Matrix algebra, 75 
Matrix element rearrangements, 76, 320 
Maximum value theorem, 3 1 
Meridian circle, of torus, 3 
Metric, (38) 

Midpoint (Mittelpunkt) 
of n-simplex, 40, 42 
of prism, 103 

reverses orientation, 132 
degree of mapping, 295 

closed (= projective plane), 9 
as pseudomanifold with boundary, 93, 94 

Mirror reflection of n-sphere, 121 

Mobius band, 7 
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Mod m, chains, (I5) 
Mod 2 (indicates nonorientability) 

chain, 523 
singular chain, (I7) 

intersection numbers, 257, 281 
Modulo a subset, chains, (’”), (4’) 

Monodromy group, $58 
Multiplicity 

of simplex in chain, 60 
of covering (= number of sheets), 193 

N 

N (Euler characteristic), 90 
n-ball, closed (= n-dimensional element), 52, 

see ulso Full sphere; Simplex, n-dimen- 
sional 

Negative group element, same as reciprocal 
element in Abelian groups, 317 

Neighborhood (Umgebung) U(P/!lP),  22 
in Euclidean spaces, 22 
c-neighborhood, 23 
on curves, surfaces, 24 
invariance under topological mapping, 28 
disjoint neighborhoods in Euclidean n- 

in pencil of lines, 36 
of point of simplex, 38 
in complex, 44 (k4) 
simplicial, 123 
distinguished, 189 

Neighborhood axioms 
A and B, 22 
Hausdorff, (’) 

space, 30 

Neighborhood complex, 123 
Neighborhood space (Umgebungsraum), 20, 

Neighboring $-classes, 197 
of transversal I-cells, 285 

Network, of polyhedral surface, 139 
Nonbounding condition (Unbegrenzheits- 

Nonbranching condition 

55 

bedingung) for covering complex, I89 

for pseudomanifold, 90 
for covering cotnplex, 189 

Nonfiberable spaces, (38) 

Nonorientable surface (nichtorientierbare 
Flache), 9, 139 

torus (Klein’s bottle), 13 
pseudomanifold, 9 I 
3-dimensional manifold, 2 13 
embedding of nonorientable surfaces, (’) 

Normal form 
of incidence matrices, Hk, 77 
of matrices with integer elements, 77, 587 
of polyhedral surfaces, 139 
symmetric, 144 
of surfaces with boundary, 147 

Normalization procedure for incidence ma- 
trices, 78 

mod 2, a7 
Normalizer, of subgroup of fundamental 

Normal subdivision (Normalunterteilung) 
group (Zwischengruppe), 204 

of simplicial complex, 5 13 
orientation of, of oriented n-simplex, 103 
of singular chain, 108 
of solid polyhedron, 214 
of star complex, 236 

Normal subgroup (Normalteiler), 3 10 
n-simplex (n-dimensional simplex), 59, see 

ulso Simplex, n-dimensional 
n-sphere, 52, see also Sphere 
Null element (denotes unit element of Abe- 

Nullhomologous chains, 63 
lian group), 3 17 

mod 2, 86 
paths, 178 

Nullhomotopic path, 158 
Number of sheets, g, of covering complex, 

Numerical line (Zahlengerade) (= %I), is 

Numerical space, 0 

193, 196 

simply connected, 162 

0 

Octahedral decomposition of n-sphere, 54, 

Octahedron, as star complex, 241 
Octahedron group, 323 
Octahedron space, 220; 

One-sided surface, 9, 283 

83 

fundamental group, 226 

one-sided tube, 13 
manifold, 576 

One-to-one correspondence (umkehrbar 
eindeutige Abbildung), 20 

One-to-one mapping (eineindeutige Abbil- 
dung), 25 

Onto (mapping), 25 
Open subset, of neighborhood space, 24 

topological invariance, 28 
of Euclidean space is infinite complex, 59 

Oppositely oriented singular simplexes, 96 
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Poincare duality theorem, 069 
Poincare space 

definition, 225 
examples, 234, (33) 

Polygon, 134 
Polygonally decomposed surface (= poly- 

hedral surface), 135 
Polygon system, 135 
Polyhedral surfaces, 135 

Eulerian, 139 
elementarily related, 144 

Polyhedron (Polyeder). 3-dimensional, 2 I3 
Polyhedron, vertices, faces, surface elements 

(Polyederecken, -seiten, -flachenstucke), 
135 

Polyhedron formula, Euler's, 90 

Position space (Lagerraum), 18, (6)  

Preimage (Urbild) 

for closed surfaces, 143 

of a topological simplex, 42 
of singular simplex, 96 
of path, 154 

Preservation of orientation in topological 

Pretzel surface (Brezelflache) (= double to- 

Principal Theorem of surface topology, $39, 

Prism, in Euclidean space, $29 
Product UT of two mappings, 25 

continuity of this product, 36 
Product 

topological, 56 
of two paths, 155 
of paths and sums of chains, 177 
free and direct, of groups, $85 
of group elements (called sum for Abelian 

of homology classes, (") 

mapping, 132 

rus), 6 

(22)  

groups), 317 

Project (durchdrucken) from covering com- 

Projection 
plex into base complex, 189 

stereographic, 29 
central, 29 
parallel, 33 
to point set, 39 

Projection cone, 39 
Projective n-dimensional space !@", 55 

decomposition of projective 3-space into 
two solid tori by hyperboloid of one 
sheet, 59 

block system and homology groups, 83 
Euler characterisitc, 90 Problem 2 

Orientability 
of surface, 9, 139 
of pseudomanifold, 91 
topological invariance, $36 
of surface with boundary, 146 
orientation-generating essential cut, 153 
of manifold, 212, 220, 246 
and two-sidedness, 283 
orientable two-sheeted covering, 283 

of polygon, 6, 137 
of simplex, 41 
of &simplex, 42 
induced, 61, 137, 242 
of singular simplex, 96 
of Euclidean n-space, R", 103 
hke orientation of n-simplexes in R", 103 
like orientation of n-chains on pseudoman- 

mappings with preservation or reversal of 

of cell, 241 
continuation of orientation along path, 

28 1 

Orientation 

ifold, 132 

orientation, 132, 296 

Orienting n-chain, on pseudomanifold, 132 
Outer boundary, of simplicia1 star, 55 

P 

!@", projective n-space, 55 
Parallel coordinates, 37, (4 
Pass through smoothly (glatt durchsetzen), 

Path (Weg), 154 
(referring to singular chains), 278 

null homotopic, 158 
edge, 163 
continuous, 163 
null homologous, 178 
assignment of paths into classes, 182, ('9 
equality of paths, ('3 

Path classes, ( w ) .  159 
Path group (=  fundamental group), 159 
Peano curve, 96, 130 
Periodic motion, 17 
Permutation, of the vertices of n-simplex, 41 
Permutation group 

transitive, 206 
regular, 207 

Phase space, 19 
Plus sign, denotes multiplication of elements 

Poincare conjecture, 163, 225 
of Abelian group, 317 
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homology groups and orientability, 12 I 
as lens space, 2 17 
fixed points of mapping of, into itself, 304 
complex, (Is) 
invertible curves, (z8) 

Projective plane 
as closed Mobius band, 10 
as pencil of lines, 10, 36 
fundamental polygon of, 11 
generated by identifying diametrically op- 

homology classes of I-chains of simplicial 

homology groups and torsion coefficients, 

closed chains mod 2 on, 86 
connectivity numbers, 89 
fundamental group, 204 
line elements of, 205 
not embeddable in Euclidean 3-space, 230, 

embedded one-sided in projective 3-space, 

topological product of, with circle, 283 
embedded as algebraic surface in %4, (3) 

complex, (") 
Projective 3-space, 16 

as phase space, 18, 59 
Properties at  point, Chap. V 
Pseudomanifold 

definition, $24 
dimension, 90, ('4 
orientable, 90 
with boundary, 93 
doubling, 133 
topological invariance, 836 

is homeomorphic to Euclidean plane, 29 
is infinite complex, 48 
punctured n-sphere, 54 

topological invariance, 129 
star complex, 237 

posite points of 2-sphere, 36 

decomposition of, 65 

69 

(7 

283 

Punctured 2-sphere, 1 

Pure complex (reiner Komplex), 49 

Q 
Quaternion space, 205 
Quotient group (= factor group), 310 

R 

413 (symbol for boundary), 61 
Rational numbers, group of, 307 
Rearrangements, elementary, of matrix, 320 

Reciprocal mapping T - ' ,  25, 36 
radii, 16 
path, 155 
group element in Abelian group is called 

Rectilinear simplex (= geometric simplex), 

Reduced Betti group, ( I3 )  

Regions of discontinuity as space forms, (38) 

Regular permutation group, 207 
covering, 201 

Relations, defining 
of fundamental group, $46 
of subgroup, 2 10 
of group, $82 
trivial, 306 
of factor group, 310 

transitive, 206 

negative of element, 317 

37 

Representation, of group, 206 

Residue classes (Restklassen) 6 and i of inte- 

Reversal of orientation produced by topolog- 

Ring of homology classes, (") 
Ring surface (Ringflache) (= torus), 3, see 

Roof face, of prism, 103 

gers mod 2, 85 

ical mapping, 132 

also Torus 

S 

'3"' n-dimensional sphere, 53 
Schema 

of simplicia1 complex, 45, 196 
of polygon system, 137 
of solid polyhedron, 2 I5 

Screw sense, of oriented tetrahedron, 42 
Segment complex (= edge complex), envel- 

oped by surface, 146, Problem 2 
Segment (Strecke) (= I-simplex), 38 

nonhomeomorphism to circular disk, I 
Self-linking number (Eigenverschlingungs- 

Sequence (Folge), of points of neighborhood 
zahl), 290 

space, 25 
Set-theoretic union (Vereinigungsmenge), 

Q.+Q,23 
Simplex, n-dimensional (= n-simplex), $9, 

see also Full sphere 
rectilinear, of Euclidean space, 37 
vertices, edges, faces, 37, 38 
convexity, 39 
generated by projection, 39 
boundary, inner point, midpoint, 40 
topological, 42 
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homology groups, 71 
incidence matrices of 2-simplex, 74 
singular, 525 
degenerate (ausgeartetes) 96 
fundamental group, 162 

produced by identifications, 45 
embedded geometrically in Euclidean 

determined by means of incidence matri- 

Simplicial mapping (simpliciale Abbildung), 

approximation, see approximation, simpli- 

decomposition of complex, 43 
homology groups, 100 
decomposition of prism, 104 
neighborhood, 123 

Simplicial star (Simplexsterm), 55 
homology groups, 70 
as pseudomanifold with boundary, 94. 
singular, 110 
Euler characteristic, 2 16 

covering complex, 200 
space forms (= ground forms), (38) 

Simplicial complex, $ 10 

space, 47 

ces, 74 

I17 

cia1 

Simply connected complex, 162 

Simultaneous approximation of chains, 266 
Single-walled essential cut (einufriger Ruck- 

Skeleton complex (Gerustkomplex), 2-di- 

Singular (singular), in general refers to con- 

kehrschnitt), 153 

mensional, 167 

tinuous image of simplex, of chain etc. 
annulus, 15 
chain, $26 
singular homology groups, 827 
simplicia1 star, I10 
surface element, 158 
deformation rectangle, 222 
complex, 264 
chain mod 2, (I7) 

Singular simplex, $25 
identity of two, 96 = 

degenerate, 96 
Solid, see Full 
Space, closing by means of groups, ( 5 )  

Space (Raum) 
projective, 16, 18, 56, 59, (I8), (28) 

spherical, 16, 53 
of all projective lines, 18 
position, 18 
phase, 19 
neighborhood, 20, g5 

topological, 20, (8) 

Euclidean, 22 
4-dimensional, 186, (I), (3) 

of line elements, 205 
fibered, (38) 

metric, (38) 

Space form problem, (38) 

Spanning, by surface element (einspannen 

Spatial cells, 286 
Sphere (Sphare) 

eines Flachenstuckes), 168 

2-dimensional (Kugelflache), 7 
with h handles attached, 7 
tetrahedral decomposition, 53 
octahedral decomposition, 54, 80 
Euler characteristic, 143, 146 Problem 1 
simply connected, 162 
space of line elements of, 58, 205 
degree of mapping, 295 
fixed points of continuous mappings, 

as metric space, (9 

tetrahedral and octahedral decomposi- 

obtained from solid sphere, 58 Problem 

homology groups, 71 
Euler characteristic, 90 Problem 2 
mapping into itself, 12 I 
fundamental group, 162 
as universal covering complex, 204 
degree of mapping of, into itself, 302 
fixed point theorem for, 304 

decomposed into two solid tori, 59 
simply connected, 162 

304 

n-dimensional, 53 

tions, 54 

1 

3-dimensional 

4-dimensional, bored-out, 186 
Sphere problem, 244 
Spherical dodecahedron space, 223, 225, 226, 

Spherical space form, (38) 

Star (Stern), see Simplicial star; Dual stars 
Star complex, $66 

Stellar division, of manifold, 249 
Stepwise identification, 35 
Stereographic projection, 28 

in n dimensions, 29, 54 
Straight line segment, connecting two points 

Subcomplex (Teilkomplex) 

228, 249 

pure, 237 

of topological simplex, 42 

of complex, 48, 264 
pure (= chain mod 2), 84 
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Subdivision (Unterteilung) 
of polygon system, 138 
of surface complex, 170 

Sublattice (Teilgitter), 319 
Substitute arc, 285 
Sum 

of two chains, 60 
of two chains mod 2, 85 
of two singular chains, 98 
of two 3-dimensional manifolds, 226, 291 
of elements of Abelian group, 317 
direct, 317 

Surface (Flache) 
closed, 52, 537 
composed of polygons, 5 ,  135 
infinite, 14, (4) 

polygonally decomposed ( = polyhedral 

as homogeneous complex, 145 
genus, 145 
with boundary, $40 
homology groups, $41 
fundamental group, 176 
dual bases on, 280 
conjugate essential cuts on, 280 
orientable, embedded two-sided in tIl3, 287 
fixed-point-free deformation of, 302 

determination of fundamental group of 3- 
dimensional manifold from, of its 
polyhedron, 22 1 

Surface element (Elementarflachenstuck) 
(= topological image of disk = 2-dimen- 
sional element), 52 

surface), 135 

Surface complex, 168 

of polydedral surface, 135 
singular (= contimuous image of disk), 

I58 
Surface orientation, 286 
Surface topology, Chap. V1, (‘9 

principal theorem, 145 
problems of, (23) 

Symmetric normal form of closed surfaces, 

Symmetric 3-dimensional manifolds, 29 1 
144 

T 

Tearing (Zerreissung), deformation with, (’4 
Tetrahedral decomposition of n-sphere, 54 
Tetrahedron (Tetraeder) (= 3-simplex), 38 

orientation, 41 
vertex permutation, 41 

3-dimensional manifold, Chap. IX, see also 
Manifold 

Topological embedding (topologische Ein- 

Topological invariance, see Invariance, topo- 

Topological mapping (topologische Abbil- 

Topological products, 56 
fundamental group of, 161 
of two 2-spheres, 163 
of n circles, 201 
of 3 circles, 2 I8 
of circle and 2-sphere, 227 
method of, (5”) 

lagerung), of surface, (9 

logical 

dung), 27, 1 

Topological simplex, 42 
Topological space, (’) 
Topology (Topologie), combinatorial, (‘9 
Torsion basis, k-dimensional, 72, 80 

Torsion coefficients 
in dual cellular divisions, 262 

c,” , k-dimensional, of simplicia1 complex, 

@dimensional, 68 
of dimension k > n,  68 
n-dimensional, 68 
of projective plane, 69 
calculated from incidence matrices, 83 
of pseudomanifold, 92 
topological invariance, 1 15 
of surfaces, 149 
geometric meaning for lens spaces, 220 
of knot coverings, 293 
of abstract group, 321 
of octahedron group, 323 
mod m, (Is) 

66 

Torsion group, k-dimensional, 72 
Torus, 3 

cut apart to form square, 4 
with a hole (= handle), 6 
with h - 1 handles attached, 7 
nonorientable, 13, 136, 145 Problem 2 
as position space of the double pendulum, 

17 
as region of discontinuity of group of 

translations, 33 
line elements on, 58 
homology groups, 69 
block incidence matrices, 83 
continuous mapping of, into itself, 101 
Euler characteristic, 138 
fundamental group, 174 
4-sheeted coverings, 190 
universal covering, 201 
Heegaard diagram on, 227 
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with dual cellular divisions, 257 
fixed-point-free deformations of, 302 

Torus knots, 185 
distinctness of, (31)  

Trace Sp (Spur), of matrix, 298 
Trace formula, 579, 299 
Transformation 

contragredient, 258 
cogredient, 258 

Transformation determinant, of linear trans- 

Transformation of group elements, 160 
Transformations, unimodular, integer val- 

Transitive representation of group, 206 
Translation group, in Euclidean plane, 33 
Transpose, of matrix, 253 
Transversal I-cells, 285 
Traversal, sense of 

for triangle, 42 
for polygon, 137, 6 

as torus knot, 185 = 
coverings of exterior space of, 208, 234 
right and left handed, ('I) 

Triangle (Dreieck), (= 2-simplex), 38 
creased (= singular 2-simplex), 97 
folded into bag shape, 99 

formation, 41, 103 

ued, 70, 3 18 

Trefoil knot (Kleeblattschlinge), 2 

Triangulable ( = simplicially decomposable), 

Trivial relations, 173, 306 
Tube (Schlauch) 

knotted, 5 
one-sided, 13 

5 

Two-sheeted coverings (zweiblattrige Uber- 
lagerungen), 202 

orientable, 283 
Two-sided (zweiseitig), 9, $76 
Two-walled essential cut, 153 

U 

Unboundedness requirement, for space 

Unbranched covering complex, $53 
Uniform continuity (gleichmaDige Stetigkeit), 

theorem of, 30, 31 
Universal covering, $56 
Unit bilinear form, 258 
Unit element, of group, 305 

forms, ('9 

called zero element for Abelian groups, 
317 

Unit n-ball, 52 
Unit n-sphere, 53 
Upper index, indicates dimension, 43, 49 

V 

Veblen's extension of Poincare duality theo- 

Vector, integer valued, 61 

Vector field, continuous, ('4 

Vertex (Ecke) 

rem, 261 

mod 2, 85 

on 2-sphere, 304 

of simplex, 37 
of polygon, 134 
of polyhedral surface, 135 
of solid polyhedron, 214 

W 

Waist section (Taillenschnitt), of double to- 
rus, 180 

Wall face (Wandseite) of prism, 103 
Word (Wort) 

composed of group elements, 305 
empty, 305 

Word problem of group theory, 307 
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