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Abstract. A semi-invariant in surgery is an invariant of a quadratic Poincar6 complex which is defined 
in terms of a null-cobordism. We define five such gadgets: the semicharacteristic, the semitorsion, the 
cross semitorsion, the torsion semicharacteristic, and the cross torsion semicharacteristic. We describe 
applications to the evaluation of surgery obstructions, especially in the odd-dimensional case. 
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O. Introduction 

Many invariants of odd-dimensional manifolds can be defined in terms of invariants 
of bounding even-dimensional manifolds. The finking form is determined by the 
intersection form, the semicharacteristic is determined by the Euler characteristic, 
the p-invariant is determined by the multisignature, the t/-invariant is determined by 
the integral of the Hirzebruch L-genus, and the Rochlin invariant is determined by 
the signature, each with respect to the appropriate notion of bounding manifold. We 
call all such invariants semi-invariants. In this paper we deal with semi-invariants in 
surgery. 

The surgery obstruction theory of Wall [14] was expressed in Ranicki [10] in 
terms of chain complexes with duality. The quadratic L-groups L,(A) of a ring with 
involution A are the cobordism groups of n-dimensional quadratic Poincar~ com- 
plexes (C, 0) over A. Here, C is an n-dimensional A-module chain complex and ~ is 
a quadratic structure on C which determines a quadratic Poincar~ duality chain 
equivalence (1 + T)~bo: C"-* --, C. The 'instant surgery obstruction' of [10] assigns 
to an n-dimensional normal map ( f , b ) :M"~X an n-dimensional quadratic 
Poincar6 complex (C,~b) over ;~[gl(X)] representing the surgery obstruction 
a,(j~b)~Ln(7/[nl(X)]) of [14]. The surgery obstruction is evaluated using appro- 
priate invariants of the quadratic Poincar6 complex. 
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84 JAMES F, DAVIS AND ANDREW A. RANICKI 

Surgery semi-invariants are invariants of odd-dimensional quadratic Poincar6 
complexes which are defined (more or less explicitly) in terms of bounding even- 
dimensional quadratic Poincar~ pairs. Odd-dimensional surgery obstructions with 
finite fundamental group are largely determined by surgery semi-invariants. 

We discuss five semi-invariants in surgery: 

(i) semicharacteristic, 
(ii) semitorsion, 
(iii) cross semitorsion, 
(iv) torsion semicharacteristic, 
(v) cross torsion semicharacteristic. 

In (ii) and (iii) we mean Whitehead torsion, and in (iv) and (v) we mean localization 
torsion. (We are still working on the meaning of the torsion semitorsion.) 

Various special cases of the semi-invariants have appeared in the literature. The 
present paper consists of definitions, elementary properties and examples. We relate 
the semi-invariants to more traditional algebraic K-theory invariants involving the 
projective class and Whitehead torsion. The main innovation of direct com- 
putational significance is the algorithm of Section 5 for obtaining a situation in 
which the cross semi-invariants may be defined, generalizing a procedure of Pardon 
[8]. 

The semicharacteristic of a f.g. projective (2i+ 1)-dimensional quadratic Poincar~ 
complex (C, r over A with f.g. projective homology A-modules H,(C) is defined in 
Section 2 by 

z,/~(c, r = ~ = o  (-)~[H~(C)] ~ go(A). 
The semicharacteristic is the classic surgery semi-invariant. If A is semisimple, then 
every f.g. projective quadratic Poincar6 complex over A has f.g. projective ho- 
mology, L~+ I(A) = 0 and the semicharacteristic defines isomorphisms 

Z 1/2: L~i + 1(A) ~ coker (L~ § 2(A) ~/~2~ + 2~) 7 . , 2,/~o(A))). 

The semitorsion of a based f.g. free (2i+l)-dimensional quadratic Poincar6 
complex (C, r over A with based f.g. free homology A-modules H,(C) is defined in 
Section 2 by 

zl/:(C, 0) = Z~=o (--)rz(( 1 + T)r Hz~+,-,(C)* ~ H,(C)) 

+ ~(H,(C) - ,  C)e ~I(A), 

with H,(C) --* C any chain equivalence inducing the identity in homology. If A is a 
division ring, then every f.g. free quadratic Poincar6 complex over A has f.g. free 
homology, Lhzi+ t(A) = 0 and the semitorsion defines isomorphisms 

"rl/2: ts2i+l(A) ---+ coker (Lh2i+ z(A) ~ /~ 21+2177 " ' ~ 2 '  /~ 1 (A})) 

A (2i+ 1)-dimensional quadratic Poincar~ complex (C, r is cross if the Poincar6 
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duality chain map (1 + T)r C 2 i + 1 - * ~ C  is an isomorphism. The cross semi- 
torsion of a based f.g. free cross (2i + 1)-dimensional quadratic Poincar6 complex 
(C, r over A is defined in Section 3 by 

~ t / 2 ( c , o )  = X~=o ( - ) r z (0  + T)0o: C 2i+1 -r __, C , ) ~  K;I(A). 

Let S c A be a multiplicative subset in a ring with involution A, so that the 
localization S - a A  inverting S is defined. Let K~(A, S) denote the Grothendieck 
group of stable isomorphism classes of S-torsion A-modules of homological dimen- 
sion 1. 

The torsion semicharacteristic of an S aA-acyclic f.g. projective 2i-dimensional 
quadratic Poincar6 complex (C, r over A with S-torsion homology A-modules 
H,(C) of homological dimension 1 is defined in Section 6 by 

zs/2(C, ~) = X'r-~O (-)r[H,(C)] 6 Ka(A, S). 

Although, strictly speaking, the torsion semicharacteristic is an invariant of an even- 
dimensional complex (C, r it is essentially an odd-dimensional invariant, since C is 
the resolution of an odd-dimensional chain complex of S-torsion A-modules of 
homological dimension 1. 

The cross torsion semicharacteristic of a f.g. projective (2i + 1)-dimensional quad- 
ratic Poincar6 complex (C,r over A with the chain equivalence 
(1 + T)r 21+a -* ~ C an S 1 A-isomorphism is defined in Section 7 by 

Z l t / 2 ( C , i / / )  = f - r  X,=o(-) ' [coker((1 + T)t/Io:C 2i+1 --+ C r ) ] E K I ( A , S ) .  

Precursors of the surgery semi-invariants have been useful in the study of group 
actions on spheres (Madsen [5], Milgram'[6] and Da'ds [2]), knot cobordism 
groups (Ranicki [11]), and group actions on homology spheres (Davis and 
Weinberger [4]). We hope our general treatment of the semi-invariants and the 
examples we bring together will be useful. Future possible geometric applications 
inciude propagation of group actions and the study of converses to Smith theory. 

The cross invariants are one ingredient in a general program developed in Davis 
[3] for the evaluation of odd-dimensional surgery obstructions with finite fundam- 
ental group. 

1. Algebraic Surgery Semi-Invariants 

We shall assume that the reader is familiar with the basic definitions of the algebraic 
theory of surgery of [10, 11]. We start with a brief review of algebraic K-theory and 
the general theory (such as it is) of algebraic surgery semi-invariants. 

We shall only be concerned with the reduced algebraic K-groups of a ring A 

Rm(A) = coker(K,,(7/) --+ KIn(A)) (m = 0, 1). 

An A-module chain complex C is finite if it is a finite-dimensional complex of based 
f.g. free A-modules. We assume that the reader is familiar with the (reduced) 
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projective class of a finite-dimensional f.g. projective A-module chain complex C 

[ c ]  = ~,~o ( - y [ c ~ ]  e/~o(A). 
and with the (reduced) torsion of a chain equivalence f :  C -~ D of finite complexes 

~(f:  C ~ D)e/<I(A). 

Given a ring A with involution -: A -~ A define the dual of a f.g. projective (left) A- 
module P by 

P* -- HomA(P,A), A x P*-- .P*;  ( a , f ) - - + ( x ~ f ( x ) a ) .  

The dual of a morphism f e HomA(P, Q) of f.g. projective A-modules is defined by 

f * :  Q* ~ P*; g ~ (h ~ h(g(f(x)))). 

The duality involutions on the reduced algebraic K-groups/<,,(A) (m = 0, 1) by 

*:/<o(A) ~/<o(A); [P] ~ [n]* --- [p*], 

* :/'~I(A) ---)/<I(A); ~(f:P --+ Q) ~ z( f ) *  = r ( f * :  Q* ~ P*).  

The n-duality involution C ~ C ' - *  on chain complexes is such that 

[C"-*] = ( - ) ' [ C ] *  e/<o(A),  

~(f*:  D ' - *  ~ C"-*) = ( - ) " z ( f :  C ~ D)* e/<,(A). 

Given an n-dimensional quadratic Poincar6 complex (C,~h) define a K-theory 
invariant 

%(C, ~) = [C] e/<o(A) if C is f.g. projective, 

zl(C, ~) = 3((1 + T)~o: C ' - *  ~ C)e  f ; l (A)  if C is finite, 

Let X ~_ Km(A) (m = 0, 1) be a *-invariant subgroup. An n-dimensional quadratic 
Poincar6 complex (C, ~) is X-Poincar6 if 

for m = 0, C is f.g. projective with zo(C, ~) ~ X, 

for m = 1, C is finite with z 1 (C, ~) E X. 

LXn(A) is the cobordism group of n-dimensional quadratic X-Poincar6 complexes 
over A. 

Given an (n + 1)-dimensional quadratic Poincar6 pair (D, C; 6~, ~) define a K- 
theory invariant ~,n(D, C; 6~, ~) ~/<,n(A) such that 

~m(C, ~) = Z,n(D, C; 6~, t~) + (-)"Z,n(D, C; 6q/, ~)* e/<,,(A) (m = 0, 1) 

by 

~o(D, C; 6~, ~O) = [D] e s 

zl(D, C; 6~, ~) = z((1 + T)(f~ho, ~#o): (D/C) "+1 * --+ D) e KI(A)  

with m = 0 if C, D are f.g. projective and m = 1 if C, D are finite. 
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Let Y ~ X ~ gm(A ) (m = 0, 1) be *-invariant subgroups, so that the Tate 2 2- 
cohomology groups of X / Y  are defined by 

f ln(7/2;S/Y) = {g~ S / Y t g *  = ( - ) ' g } / { h  + ( - ) ' h *  jhe  X /Y} .  

An n-dimensional quadratic Poincar6 pair (D, C; 60, O) is (X, Y)-Poincarg if 

r , , (C ,O)eY ,  rm(D,C;50, O ) e X .  

The relative quadratic L-groups LX, r(A) are the cobordism group of n-dimensional 
quadratic (X, Y)-Poincar6 pairs over A, such that there is defined an exact sequence 

"'" ~ LV.(A) --' LX~(A) --' Lx'Y(A) ---) LY.-I(A) ~ " "  

The isomorphisms 

LX, r(A) ~/Q'(2~2; X/Y);  (D, C; 50, 0) ~ zm(D, C; 30, 0) 

establish an isomorphism between the relative L-theory sequence and the 
Rothenberg exact sequence 

�9 "" ~ LVn(A) ~ LX(A) ~/Q"(7/2; X /Y )  ~ LY._ I(A) ~ " "  

In particular, there are defined isomorphisms 

ker(L.Y(A) --, LX(A)) ~ coker (L.X+ I(A) ~ IQ "+ 1(2~z; X/Y)); 
(1.1) 

(c, 0) --, ~m(D, C; ~0, 0) 

sending the cobordism class of an X-null-cobordant n-dimensional quadratic Y- 
Poincar6 complex (C, 0) over A to the K-theory invarian{ of any (n + 1)-dimensional 
quadratic X-Poincar6 null-cobordism (D, C; (50, 0). 

A finite n-dimensional quadratic Poincar6 complex over A (C, 0) is simple if 

"el(C, 0) = 0f/~I(A).  

The quadratic L-group Lq(A) for q = p (resp. h, s) is the cobordism group of n- 
dimensional quadratic Poincar6 complexes (C, 0) over A which are f.g. projective 
(resp., finite, simple) 

L p (A) = L{o(A)(A), LS, (A) = L(~ } ~- !(I(A)(A), 

Lh.(A) = l(0} ~ go(A) _ ,  (A) = L~I(A)(A). 

The surgery semicharacteristic (Davis [2]) was interpreted in Milgram and 
Ranicki [7] from the point of view of the isomorphism (1.1). We repeat this 
interpretation here and in Section 2 below, along with the torsion analogue. 

D E F I N I T I O N  1.2. (i) Let X _~/(0(A) be a *-invariant subgroup. The universal 
semicharacteristic is the isomorphism 

(Uz)~/2" ker(LX(A) --, LP,(A)) --, coker(L,P+ ~(A) -~/~"+ ~(2~2; Ko(A)/X)), 

(C, 0) -~ (Uz)I/2(C, O) = %(D, C; 50, 0) 
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defined for any f.g. projective n-dimensional quadratic X-Poincar4 complex (C, ~) 
over A which admits a f.g. projective null-cobordism (D, C; &p, ~p). 
(ii) Let X c R I ( A  ) be a *-invariant subgroup. The universal semitorsion is the 
isomorphism 

(Uz)l/2 : ker(L~(A) ~ L~(A)) --* coker(L~+ I(A) ~ / ) "  + 1 ( 7 / 2  ;KI(A)/X)), 
(C, ~9) ~ (Uz)I/2(C , ~) = %(D, C; 6~, ~) 

defined for any finite n-dimensional quadratic X-Poincar4 complex (C, ~9) over A 
which admits a finite null-cobordism (D, C; 6~, ~). [] 

REMARK 1.3. Let P be a f.g. projective A-module such that 

[P] = [P*]  e/s 

representing an element [P] e/)2*(22;Ko(A)). Then 

[P] =0  �9 coker(L~i+z(A ) ~/)2i+2(2 " , >Ro(A)))  

= ker(L~i + I(A) -+ L~i + I(A)) 

if and only if P Q A ~ admits a nonsingular (-)~ + ~ quadratic form for some integer 

r>~0. [] 

2. The Semicharacteristic and the Semitorsion 

We now specialize the algebraic surgery semi-invariants of Section 1 to odd- 

dimensional quadratic Poinear6 complexes. 
Given an A-module chain complex C and integers i~<j, let C[i,j] be the 

subquotient complex of C with 

C[i, jJr = Cr if i ~< r ~<j, =0  otherwise. 

We shall only be concerned with positive complexes, so that Cr = 0 for r < 0. Let 
H,(C)  be the A-module chain complex defined by the homology A-modules and 0 

differentials 

0 
H,(C): .-- ---, H~+ 1(C) , H,(C) ~ - ~ Ho(C). 

If H,(C) is a projective A-module complex there is defined a chain equivalence 
i :H,(C)  ~ C inducing the identity in homology, which is unique up to chain 
homotopy. This follows from the splitting of the exact sequences 

0 -~ im(d: C,+ 1 -~ Cr) ~ ker(d: C, ~ Cr_l )  ~ Hr(C) ~ O. 

Choices of splitting maps i: H~(C)--* C r (r >~ 0) such that di = 0 define a chain 
equivalence i: H,(C)  ~ C inducing the identity in homology, and every such chain 
equivalence is of this type. If i,i': H r ( C ) ~  C, (r > 0) are two sets of splitting maps 
there exist A-module morphisms j: Hr(C ) --* Cr+ 1 (r > 0) such that i' - i = dj, defin- 
ing a chain homotopy j: i ~- i' : H, (C)  --+ C. 
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An A-module chain complex is H-projective (resp., H-finite) if both C and H,(C) 
are f.g. projective (resp. finite) complexes. 

The semicharacteristic of an H-projective (2i + 1)-dimensional quadratic Poincar~ 
complex (C, ~) over A is defined by 

Z1/2(C) = Z~ = 0( - )r[Hr(C)] 6/s �9 

(This is the standard definition of the surgery semicharacteristic, cf. Davis [21.) The 
following result verifies that this agrees with the universal semicharacteristic 
(u)o~/z(C, ~) of Definition 1.2 (i) 

P R O P O S I T I O N  2.1. (i) An H-projective (2i + 1)-dimensional quadratic Poincard 
complex (C, ~) bounds an H-projective (2i + 2)-dimensional quadratic Poincard pair 
(H,(C)[i + l, 2i + 1], C; 0, r 
(ii) The semicharacteristic and the projective class are related by 

[C] = ZI/2(C) - Zl/2(C)* ~ Ko(A). 

(iii) Let X c Ko(A) be a *-invariant subgroup./f(C,~) is an H-projective (2i+ 1)- 
dimensional quadratic X-Poincard complex over A then 

X 1 / 2 ( C )  = ( C ,  ~/)  

ecoker(LV~+ 2(A) -+ flzi+2(772;Ro(A)/X))=ker(LX,+ I(A) - ,  L~i+ I(A)). 

Proof (i) The composite of the chain equivalence C --, H,(C) and the projection 
H,(C)-+ H,(C)[i + 1,2i + 1] is a chain map C-+H,(C)[i + 1, 2i + 1] sending 
~/EQ2i+I(C ) t o  OeQ2i+I(H,(C ) [i q- 1,2i + 1]). 

(ii) By the universal coefficient theorem and Poincar~ duality we have that up to 
isomorphism 

Hr(C ) -= H2i+1-r(C) = H2i+l_r(C)*. 

By this and by the homology invariance of projective class 

[C] = [H,(C)]  = ~ , 2 i + 1  ~ r : o  ( - ) rEH~(C)]  

i r ~ 2 i + 1  r = Y~=o(-)  [H~(C)] + - , = , + l ( - )  [H2,+~_~(C)*] 

= • 1 / 2 ( C )  - -  )(.1/2(C)*@F~o(A). 
(iii) Immediate from (i) and Definition 1.2(i), since 

%(H,(C)[i + 1,2i + 1],C;O,~,) = -Zz/z(C)*eRo(A). [] 

EXAMPLE 2.2. If A is semisimple every f.g. projective (2i + 1)-dimensional quad- 
ratic Poincar~ complex over A is H-projective, L~i+I(A ) = 0 (by Ranicki [9]) and 
the semicharacteristic defines isomorphisms 

Z1/2: Lh2i+ 1(A) -+ c o k e r  (L~I+ 2(A) --~/~2i + 2 (;g 2; Ko(A)));  

(c, ~) -+ z~/a(c). [] 
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The semitorsion of an H-finite (2i + D-dimensional quadratic Poincar6 complex 
over A (C, ~,) is defined by 

~/~ (C, ~) 

: X~:o(-)~z((1 + T)~,o: H21+l_,(C)* ~H,(C))  

+ ~(H,(C) --* C)~/(I(A), 

with H , ( C ) ~  C any chain equivalence inducing the identity in homology. The 
following result verifies that this agrees with the universal semitorsion (UJ~/2(C, ~,) 
of Definition 1.2(ii). 

PROPOSITION 2.3. (i) An H-finite (2/+ 1)-dimensional quadratic Poincar~ com- 
plex (C, @) over A bounds an H-finite (2/+ 2)-dimensional quadratic Poincar~ pair 
(H,(C)[i + 1, 2i + 1], C;0,~/,). 

(ii) The semitorsion and the torsion are related by 

~(C, ~) = h/2(C, ~) - h/2(C, ~)*~ RI(A). 

(iii) Let X ~_ K1(A) be a *-invariant subgroup. I f  (C,O) is an H-finite (2i+ 1)- 
dimensional quadratic X-Poincard complex over A then 

h/2(C, ~) = (C, @)~ coker(L~i+z(A) ~/t2i+2t2~ 2,'KI(A)/X)) 

= ker(LXi+ i (A) ~ L~i+l (A)). 

Proof. (i) The null-cobordism (H,(C)[i + 1, 2i + 1], C;0,O) defined in 
Proposition 2.10)is H-finite. 

(ii) By the sum formula for torsion applied to the homotopy commutative square 
of chain equivalences of finite A-module chain complexes 

C2i+ 1 - ,  (1 + T)@o 
- -  ~ C 

, v  

H,(C)21+ 1_, ((I + T)$o) , ,H,(C) 

we have 

~(c, ~) - ~(H,(C) ~ C) + ~(H,(C) ~ C)* : ~(H,(C), q,) 

V2i+ 1{--)r%'((1 + T)~] o n2i+l-r(C)* -~ Hr(C)) 

= E~:o(- ) 'z ( (1  + T)~'o:H2i+l_r(C) * ~  Hr(C)) 

- XLo(-)'~((1 + T)~o: H2~+~-,(C)* ~ H~(C))*~gdA). 
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(iii) Apply Definition 1.2(ii) to the torsion of the H-finite null-cobordism 
(H,(C)[i + 1,2i + 1], C;0, O) of (C,t)) 

z t (H,(C)[ i  + 1,2i + 1], C;0,~p) 

= z l (H, (C)[ i  + 1,2i + 1],U,(C);0,~b) - r(C ~ H,(C))* 

= - %/2(C, ~)* e K1 (A). [ ]  

EXAMPLE 2.4. If A is a division ring every finite (2i + 1)-dimensional quadratic 
Poincar6 complex over A is H-finite, h L2i+I(A ) = 0 and the semitorsion defines 
isomorphisms 

gl/2: LS2i+ ,(A) ~ coker(Lh2i+ 2(A) --+/~2i+2(7/2;/~1(A))); 

(c, O) - '  ~ ,/~(c, 0). [] 

EXAMPLE 2.5. The 'Reidemeister torsion' invariant defined by Madsen [5], p. 205 

A,(C) = ~(C -~ H , ( C ) ) e R I ( A )  

for an H-finite (2i + 1)-dimensional quadratic Poincar~ complex over A (C, ~) such 
that 

z((1 + T)0o),: H2i+l-r(C)* ----> Hr(C)*  = Oeg~(A) (0 < r < 21 + 1), 

r(C r ~ H,.(C)) = Oe g~(A) (i -.< r < 2i + 1) 

agrees with the semitorsion up to sign 

q/~ (c, O) = - ~ ( c  --, H,(C)) = - a , ( C ) e  g l ( a ) .  

EXAMPLE 2.6. The 'first patching obstruction' of Milgram[6] is a semitorsion 
invariant. [] 

3. The Cross Semitorsion 

A f.g. projective (2i+ 1)-dimensional quadratic Poincar6 complex (C,~b) over A is 
cross if the Poincar6 duality chain equivalence 

(1 + T)~bo:C ai+l-* ~ C 

is an isomorphism. 

PROPOSITION 3.1. A cross (2i + D-dimensional quadratic Poincard complex 
bounds. 

Proof Define a null-cobordism ( C [ i + 1 , 2 i +  1],C;0,$), with C ~ C [ i + I ,  
2i + 1] the projection. [] 

Define the cross semitorsion of a finite cross (2i + 1)-dimensional quadratic 
Poincar~ complex (C, ~,) over A 

q /2 (c ,~ )  = Y ~ : o ( - ) r z ( 0  + T)g,o: C 2 ' + 1 - ' ~  COeRI(A) .  
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P R O P O S I T I O N  3.2.(i) The cross semitorsion is related to the torsion by 

~(c, ~) = ~+,/2(c, 0) - ~+,/2(c, r R,(A). 

(!i) Let X ~_/(I(A) be a *-invariant subgroup. I f  (C, e)  is a finite cross (2i + 1)- 
dimensional quadratic X-Poincard complex over A then 

r~/2(C, $) = (C, ~) ~ coker(L~i + 2(A) ~ /~2,+ 2(y_2;R,(A)/X)) 

= ker (L~i + I(A) -+ Lh,+ I(A)). 

Proof. (i)The finite null-cobordism (C[i + 1,2i + 1], C;0, $) has torsion 

T 1 (C[i + 1, 2i + 1], C; 0, r = - , t ie  (C, r ~ KI(A) ,  

so that 

z(C,$) = rl(C[i  + 1,2i + 1] ,C;0,r  - Zl(C[i + 1,2i + 1], C;0,r 

= rtl/2 (C, ~) - Z]/z(C, ~b)*e KI(A). 

(ii) Apply Definition 1.2(ii) to the null-cobordism of (i). [] 

EXAMPLE 3.3. Given a finite 2-group n and an element x~ Lhzi+l(Z[n]) Pardon 
[8, p. 143] described an algebraic procedure for representing x by a highly- 
connected finite (2i + l)-dimensional quadratic Poincar6 complex (C, r over ;z[n] 
such that Cr = 0 for r # i, i + 1 and Hi(C ) is an odd torsion f.g. 77 [hi-module. Let 
(C', 0 ')  be the cobordant  complex with 

C ; = 0  for r r i,i + l, 

d c, = (1 + T)~ko: C'i+, = C i'+1 ~ C t l  = Ci,  

(1 + T)~ b = dc: C ' i+a  = C , + , - - >  C', = C i. 

The induced (2i + 1)-dimensional quadratic Poincar6 complex o v e r  7/(2 ) [ ~ ]  

(c", ~") = z(~ [~] | ~E~(c', ~') 

is cross, and such that the invariants b~ of Pardon [8 ]  are determined by the cross 

semitorsion 

q/2 (c", r  g:,(z(~> [~]). 

See Section 5 below for an extension of this procedure to quadratic Poincar6 
complexes which are not highly-connected, and to other algebraic situations. Also, 
see Section 6 for the connection with the localization exact sequence. 

4. Semiiocal Rings 

The Jacobson radical of a ring A is 

rad(A) = (- ' /Ann(M) 
M 
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where the intersection is over all simple left A-modules M, and the annihilator 
is defined by 

Ann(M) = {re A [ rM = 0}. 

Rad(A) is a two-sided ideal of A, and if I is a two-sided ideal contained in rad(A) 
there is defined an isomorphism of rings 

A/rad(A) ~ (A/I)/rad(A/I). 

A matrix over A is invertible if and only if it is invertible over A/rad(A) (Bass 
[1], III, Section 2). 

A ring A is semilocal if A/rad(A) is semisimple, and local if A/rad(A) is a division 
ring. 

E X A M P L E  4.1. Given an integer n > 1 define the multiplicative subset 

s .  = { a ~ Z  I ( a , n ) =  1} ~ ~. 

The localization of 7/at  n 

7/(,) = (S, ) -  1 Z 

is semilocal for all n, and local if n is prime. Indeed, if n = (pl)eI(p2)e2 "'" ( p y r  is the 
prime factorization of n then 

rad(~ , ) )  = pl Z(,) c~ P2 7/~,) c~...  c~ Pr g(,), 

and 

~(,)/rad(Z(,)) = ~:p, x Dzp2 x ..- x U:v, 

by the Chinese Remainder  Theorem. []  

P R O P O S I T I O N  4.2. Let R be a commutative semitocal tin9 and B an R-algebra 
which is finitely generated as an R-module. Then B is semilocal. 

Proof Since R c center(B) and B is finitely generated over R, we have 
tad(R)  c tad(B) (see Bass [1], III, Section 2). Thus, B/rad(B) is a finite (R/rad(R))- 
algebra and, hence, is Artinian. Since in addit ion rad(B/rad(B)) = 0, B/rad(B) is semi- 
simple by Wedderburn  theory. [ ]  

Proposi t ion  4.2. shows that  for a finite group rc the rings Z(,)[rc](n > 1) are 
semilocal, which is of interest to computa t ions  of local surgery obstruct ion theory. 
Moreover ,  if rc is a p-group for some prime p then 7/(p)[rc] is actually a local ring 
(Bass [1], XI, 1.2). 

5. How to Make a Complex Cross 

Let A ~ B be a morphism of rings with involution. A f.g. projective (2i + 1)- 
dimensional  quadrat ic  Poincar6 complex (C,O) over A is B-cross if B | A(C,~p) is 
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cross. We shall later be particularly concerned with the example A = 7/Dz] 
B = ~(,)[n] for a finite group re. 

T H E O R E M  5.1. Suppose that A ~ B is a morphism of rings with involution, that B is 
semilocal, and that the composite A--, B ~ F = B/rad(B) is onto. 

Let (C~ ~) be a fg .  projective (2i + 1)-dimensional quadratic Poincard complex over 
A such that (C,t))= F | is a finite (2i + 1)-dimensional quadratic Poincard 
complex over F with (C, ~) =0~  Lhzi+ 1 (F). Then (C, ~) is homotopy equivalent to a B- 

cross complex. [] 

The proof of Theorem 5.1 is somewhat involved, and is deferred until after the 
statement of Example 5.3 below. Remark (b) of Pardon [8], p. 143 is the highly- 
connected finite case of 5.1 with A = Z[rc] for a finite 2-group n, B = 77(2~Dz], 

F =  ~:z" 

COROLLARY 5.2.(i) For a local ring B L~I+I(B)= 0 and the semitorsion defines 

isomorphisms 

rl/2: L~i + 1 (B) ~ coker (Lhzi+ 2(B) ~ /~2i  + 2(y2;/~I(B)))" 

h (ii) For a semilocal ring B the map L2i+I(B ) -~ Lhi+l(B/rad(B)) is injective. 

Proof By taking A = B(ii) follows from 5.1. Part (i) follows from (ii), 1.2 and the 

fact that for any division ring F/r = 0 and, thus, 

Lh2i+ I (F )  = L~,+ j(F) = 0 

by Ranieki [9]. [] 

EXAMPLE 5.3. Given a finite group n of order In[ define a *-invariant subgroup 

A = im(/( l (~[~]  ) ~/(1(7/~)[rc])) -~/(1 (Z(,)[rr 

where 2~t~) is short for the localization Zir~l ) of • at [TcJ. If Z[n]  is given the oriented 
involution g ~ g - l ( g e n )  then by Davis [3] the map L~(~ [n ] )~  LA(~(~)[rc]) is 

injective. Thus, if n = 4j + 3 and (f, b): M" ~ X is a degree one normal map to a 
finite orientable geometric Poincar6 complex X with n~ (X) = rc the surgery obstruc- 
tion a, ( f ,b )e  L,h(~[rc]) is determined by a semicharacteristic and a cross torsion 
invariant. Indeed, consider the exact sequence 

�9 - -  - - ,  _0" + ~(~2; R , ( ~ = ~ [ ~ ] ) / A )  -~ L.~(~=~[~]) --, L l ( ~ = & z ] )  - ,  " - .  

By 5.2(ii) the image of a , ( f b )  in Lh(7/(~)Dz]) is detected by the surgery semi- 
characteristic in ?7(~)[rc]/rad(7/(~)[re]), which can be easily computed as in Davis [2]. 
If this vanishes we may apply the algorithm of 5.1 (below) to the 'instant surgery 
obstruction' quadratic Poincar6 complex (C(f) , lp)  representing a , ( f b )  given by 
Ranicki[10], to obtain a homotopy equivalent complex (C',~p') such that 
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2~I,)| ) is cross. Then  o-,(f,b) is determined by the cobordism class of 
this complex in LA(2I~)[~]), which by Proposi t ion 3.2(ii) is determined by the 

cross semitorsion. See Davis  and Weinberger [-4] for geometric applications. [ ]  

Proof  of  5.1. Each C, is a f.g. free F-module  (by hypothesis). Define 

c r = d i m e C r  ( = 0  for r < 0 a n d  > 2 i +  1), 

and let 

/~r = im(d: C~+ i ~ C~). 

The proof  is in two steps. 

Step 1 Replace (C, 0) by a homotopy  equivalent complex for which 

(i) c r = c 2 1 + i  ~ ( 0 - - < r < 2 i + l ) ,  

(ii) there is a 9 ~ H o m v ( B i ,  Bi) such that  9 + ( - ) i + 1 9 " :  [3i--+Bi is an 

isomorphism. 

Proof  For  u, v >/0 let E = E(u, u + 1) v be the contractible finite A-module chain 
complex defined by 

d e =  l :Eu+ 1 = AV--, E, = A v, Er = 0  for r ~ u,u + 1. 

Assume inductively that  c~ = c21 + i _~(r --< p < i) for some p. If p < i - 1 replace C by 
the chain equivalent complex 

C' = C �9 E(p + 1, p + 2)c2,-, �9 E(2i - p - 1, 2i - p)~+ ~ 

for which 

' = ' ( r  ~< 1 i) .  Cr C 2 i + l - r  P q- < 

By Poincar~ duality z(C) = 0, so that  if p = i - 1 

= ~ 2 1 + l ( - - ~ r  c Y~=O(--)r(cr--Cr_l)=(--)i(ci--Ci_l), 0=;~(C)  r=o ~ , ~=  

and (i) holds. 
Since (C,O) 0e  h = Lz i+l (F)  the surgery semicharacteristic 

Z1/2(~) = 2~=0 ( - ) " [ H r ( C ) ]  ~ coker (%: L~i+2(F ) --+/~2i+2(7/2;/~0(F)) ) 
is zero. The projective class of the chain complex 

E:  Bi --+ Ci  -+ C i -  1 --+ " '" ---+ Co 

is equal to the projective class of its homology 

( - ) '+~[ /3 , ]  + Z ~ = o ( - ) ' [ C , ]  = Z ~ = o ( - ) ' [ H , ( C ) ] e K o ( F ) .  

Each C, is a f.g. free F-module  (by hypothesis), so that  [Cr] = 0e  Ko(F ) and 

[B,] = (_) i+  1Z,/2(~ ) = 0ecoker (%) .  
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By Remark 1.3, /~i@F* satisfies (ii) for some k >/0. We then replace C by 
C �9 E(i, i + 1) k. 

It may now be assumed that (C, ~) satisfies the conditions (i) and (ii) of Step 1. 
Before proceeding to Step 2 let us recall (from Ranicki [10,11]) the precise 
definition of the quadratic structure @eQ,(C). 

Given a finite-dimensional A-module chain complex C let the generator TE 772 act 
on HomA(C*, C) by the signed duality involution 

T: HomA(C v, Cq) --* HomA(C q, Cp); ~ ~ T$ = (-)vq~9* 

(~O~ Hom A (C p, Cq)). 

Let W be the standard free 77[772J-module resolution of 77 

W : " "  "-* 2[[772] 1 - T )771772]__1 + T '77[772] 

__.>2[[)72 } I + T  "'" ,2~[772]. 

An n-dimensional quadratic chain of C {~s} is a chain 

{~s}e (W ~) z[z:] HomA (C*, C)),, 

as defined by a collection of A-module morphisms 

{~s~HOmA(C"-r-s, Cr)lr~Z,s > 0}. 

The boundary of {~0~} is the (n - 1)-dimension~,l quadratic chain 

= 

defined by 

(d~l)s = d~s 21- ( - ) r ~ / s d *  -~ (--)n-s-l(~s+ 1 ~- ( __)s+l T~9,+ 1): 

C n - r - s  - 1 __. C , .  

There are defined quadratic chains, boundaries, cycles (d{~b, } = 0), and in particular 
the quadratic homology groups 

Q.(C) = H.(W | lE~2~ H~ C)). 

A chain equivalence of A-module chain complexes J] C ~ D induces isomorphisms 
in the Q-groups 

f/o: Q,(C) ~ Q,(D); {r ~ {fCsf*}.  

Returning to the (2i + 1)-dimensional quadratic Poincar6 complex (C, if) over A 
satisfying (i) and (ii) of Step 1, we now wish to obtain: 

Step 2 Find a quadratic cycle representative {r of t ~ E Q z I + I ( C  ) for which 
(1 + T)ffo: C 2i+1-* --+ C is a chain B-isomorphism. 
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Proof Every finite chain complex over a semisimple ring is chain isomorphic to a 
direct sum of a contractible complex and a complex with zero differentials. 
Explicitly, define F-module chain complexes C',D by 

de,, O: (~; H~(C) ~ - '  = H r_i(C), = C r _  1 

(00 do= 0 : f i~=Br |  

As F is a semisimple ring there exists a chain isomorphism 

f : C--, C' G fi 

inducing 

f ,  = 1: H,(C) -+ H, (0 '  |  = H, (C) .  

It follows from 

cr = c2,+l-~, C; ~ ~ ' ~ + * - '  (reZ), 

the condition (ii) above, and the fact that stable isomorphism implies isomorphism 
for modules over semisimple rings that 

By induction on r there exist F-module isomorphisms 

For r = i we choose h = g + (_ ) i+ lg , .  
Define a quadratic cycle {0s} ~ (W| zEz2? H~ D))2i+ 1 by 

0~ = ((_0)~h ~): 

D2i+i-'=B21+I-~| OB,_I (r>~i+l), 

0 

Os = 0:/52i+ ~ - , - ,  ~ / 5 ,  otherwise 

for which (1 + T ) 0 o : / s z i + l - , ~ / 5  is an isomorphism. 
The isomorphism 

Q~,+~(c | f i)(= Q~,+~(C')) Jr" Q~,+ ~(C) ~ - '  

sends ~e  Q2~+ l(C) to the element fo/o(~ ) with a representative quadratic cycle of the 
type {t}'~ | 0~} for some quadratic cycle 

{t}'~} e (W| et~l U~ C'))2~+,, 

with (1 + T)O~: C '2i+1 -* -+ C' a chain isomorphism. Thus for any quadratic cycle 
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{~}  representing ~c-Qzi+ l ( C )  there exists a quadratic chain 

{/Ss} E (W @ z[z2 3 HomF(C* , C))2i + 2 

such that the quadratic cycle 

= {f - l ( t~;  G O's)f*-1 } e ( W |  z[~l H~ C))2i+1 

T - "  C zi+l --* has (1 + )~bo: -*  C a chain isomorphism. As A ~ F is onto it is possible to 

lift {Ps} onto a chain 

{p~} s (W|  zEz9 HomA(C*, C))2~+ 2. 

The quadratic cycle 

{~b;'} = {0s} + d{p~}e(W | zEz21HomA(C*, C))z~+ 1 

represents ~'eQ2i+I(C) and has (1 + T)~b~: C zi+l * --, C a chain B-isomorphism, 

since a matrix over B is invertible if it is invertible over B/rad(B). [] 

6. Torsion Semi-Invariants 

We are interested in the surgery invariants arising from the localization exact 

sequences in K- and L-theory. In Section 6 we deal with the 'torsion characteristic' 

and the 'torsion semicharacteristic', leaving the 'cross torsion semicharacteristic' to 

Section 7. 
Let A be a ring with involution, and let S ~ A be a multiplicative subset which is 

invariant under the involution. The localization S-1A of A inverting S is then a ring 

with involution and the inclusion defines a morphism of rings with involution 

a 
j : A - ~  S-1A; a-~y .  

An A-module chain complex C is S-acyclic if S - I C  = S-~A |  is an acyclic 

S -  ~A-module chain complex. 
An (A, S)-module M is an S-torsion A-module which admits a f.g. projective A- 

module resolution 

O---, p I ~ P o  ~ M--->O. 

The S-dual of M is the (A, S)-module 

M ̂  = HomA(M , S-1A/A), 

A x M ̂  ---, M^; (a, f )  ~ (x ~ f(x) .  a), 

with the dual f.g. projective A-module resolution 

d* 
0 -+ (P0)* > (P1)*  ~ M^ ~ O. 
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The localization exact sequence of Bass [1] 

�9 .. ~ K I ( A ) ~ K I ( S  - 1 A ) ~ K t ( A ,  S) 

~ FS~o(A) -J~ ~,~o(S-1A) ---~ . . . 

involves the Grothendieck group KI(A, S) of stable isomorphism classes of (A, S)- 
modules, with 

9: KI (S-1A)  ~ KI(A, S); 

z(S-ad: S -1PI  --, S-1Po) --+ [coker(d: P1 --+ Po)], 

r K, (A ,S)  ~ / (o(A);  [ M ]  ~ [P0] - [P~].  

The duality involution on K,(A,  S) is defined by 

�9 :K~(A,S) ~ KI(A,S); [M]  ~ [M "3 

and is such that 

j* = *j, 9" = *(~, 0"* = --*a. 

An S-acyclic chain complex C is (H, S)-torsion if the homology A-modules H.(C)  
are (A,S)-torsion. In dealing with (H,S)-torsion complexes H,(C)[i,j] is to be 

interpreted as an S-acyclic f.g. projective complex D with a chain map D-~ C 

inducing isomorphisms 

H,(D) ~ Hr(C) if i ~< r ~< j, 

and such that HdD) = 0 for re  [i,j]. 
The torsion characteristic of a finite-dimensional S-acyclic A-module chain com- 

plex C is an invariant 

zs(c)e  KI(A , S) 

such that 

O) 7~s(C') = Zs(C) + ~(s(C")~KI(A,S) for a short exact sequence 

O ~ C  ~ C ' ~ C " ~ O ,  

(ii) if C is (H, S)-torsion 

zs(c) = ~ (--)~[H~(C)] ~ K~(A~ S). 
i 

The torsion characteristic is such that 

a(zs(C)) = [C] ~/s 

and 

zs(c" -*) = ( - ) "  - 1zS(C)* e KI(A , S). 

99 
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Localization exact sequences in L-theory have been developed by many authors, 
including Karoubi, Carlsson-Milgram, Pardon and Ranicki. We review this theory 
in the notation of Ranicki [11], Section 3. 

Given a *-invariant subgroup X ~_ K1(A, S) there is defined a localization exact 
sequence 

"'" ~ L~X(A) ~ L~. I(X)(S --XA) ~ LX(A,.S) ~ L,_*x I(A) ~ . . .  

with LX(A,S) the cobordism group of S-acyclic ( n -  1)-dimensional quadratic 
Poincar6 complexes (C, $) over A with 

zs(c) = ( - )"zS(C) * e X % K,  (A, S). 

Given .-invariant subgroups Y ~_ X ~_ KI(A, S) there is a Rothenberg type localiza- 
tion exact sequence 

�9 " ~ / ~ "  + 1(772; X/Y) ~ L~(A, S) ~ LX(A, S) 

By analogy with Definition 1.2: 

xs ,/4"(7/2; X/Y) - -*" . ,  

PROP OS ITI ON 6.1. For any (A,S) and *-invariant subgroups Y ~ X ~ KI(A,S ) 
there are defined isomorphisms 

ker(L~(A, S) ~ LX(A, S)) ~ coker(LX+ I(A, S) --*/t"+ 1(~2; X/Y)); 

(C, ~) ~ zS(D) 

with (C, ~) an S-acyclic (n - 1)-dimensional quadratic Poincar~ complex over A such 
that 

z s (c )eY  ~_ KI(A, S), 

and (D, C; 3~, ~) any S-acyclic n-dimensional quadratic Poincar~ null-cobordism of 
(C, ~) such that 

zS(D)EX ~ KI(A, S), 

in which case 

zs(c)=zS(D)+(-)"zS(D)*ey c X ~ Ka(A, S). [] 

Define the torsion L-groups Lq.(A, S) for q = p, h, s by 

LV,(A, S) = LX(A, S) where X = {0} _~ KI(A, S). 

L~(A, S) = LX(A, S) where X = ker(cr) _~ KI(A , S), 

LS,( A, S) x = L n (A, S) where X = {0} _~ KI(A, S). 

The pair (A,S) is odd if /4*(Z2;S-IA/A) = 0, or equivalently if 
/4"(7?2; A) -*/4"(2~2; S-~A) is an isomorphism. For odd (A, S) the symmetrization 
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maps 1 + T: Q . ( C ) - +  Q*(C) are isomorphisms for S-acyclic finite-dimensional A- 

module chain complex C, and there is no difference between quadrat ic  and 
symmetric structures on S-acyclic complexes. We refer to Ranicki [10, 11] for the 

symmetric version of the theory. 

E X A M P L E  6.2. Any pair ( A , S )  with �89 is odd, with 

JQ*(/72; A) = /~*(772; S- 1A) =/Q*(/']2; S 1A/A)=0. [] 

E X A M P L E  6.3. Give the Laurent  polynomial  extension ring ?7[t,t -1]  of 2[ the 
involut ion t =  t 1 and let P c 77[t, t - I ]  be the multiplicative subset of the poly- 

nomials p ( t ) e T / [ t , t  -1]  such that  p (1 )=  1, such as the Alexander polynomials of 
knots. A finite-dimensional 7/[t, t - 1 ] -modu le  chain complex C is P-acyclic if and 
only if 7 /Q  :[t.t ,]C is acyclic. The  pair (7 / [ t , t -1 ] ,P )  is odd, which may be verified as 

follows. Given an element 

x = a(t) a P - 1 7_ It, t - 1]/2[ It, t - 1 ] 
p(t) 

let q( t ) eZz[ t , t  1] be such that  

p( t ) - -  1 + (1 - t ) q ( t ) e ~ [ t , t  1]. 

Fo r  any r(mod 2) 

.r~ = y + ( _ ) r y  + (x - ( - ) r x ) z  + a ( t ) p ( t - 1 ) ~ n  17lit, t - I ]  

with y, z defined by 

y = a(t)(tq(t) - q(t -1)  + q(t)q(t-1)  

- tq( t )q( t -  1))/p(t) �9 P -  1 7/[t, t -  i] ,  

z = t l q ( t - 1 )  - q(t) + q(t 1)q(t) 

- t - l q ( t - 1 ) q ( t ) e  7~It, t -1 ]  ~ P-177[t ,  t - l ] .  

Thus if 

x -  ( - ) r x ~ 2 [ [ t , t - 1 ]  ~ P 12[It, t - i ] ,  

representing an element x e/~r(7/2; P - 1 7/It, t - ~ ]/7/It ,  t - 1 ] ), then 

x = y + ( - ) r y ~ P - 1 7 / [ t ,  t -1] /7 / [ t ,  t -1]  

and so 

x = 0 ~/lr(7/2; P-12[[ t ,  t -1] /7 / [ t ,  t -  1]). 

See Section 7.9 of Ranicki [1 1] for the identification 

L~+3(Z/[t, t 1] ,n)  = C, (n >~4) 
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of the torsion L-groups of (TZ [t, t 1], p) and the high-dimensional knot cobordism 
groups C,. Since K0(Y[t, t - i ] )  = 0 

Lh,(ZEt, t - l ] ,  P) = LP(7/[t, t - ' I ,  P). 

Given a knot k: S" c S n+ 2 with complement 

X = closure(S" + 2 _ neighbourhood of k(S")) 

there is defined a ;g-homology equivalence (n + 2)-dimensional normal map 

( f , b ) : (X , c~X)~(O "+3 x S1, S" x S 1) 

which is the identity 3X--, S" x S ~ on the boundary. The torsion characteristic of 
the knot cobordism class 

a , ( f ,  b) [k] h = r t -1] ,P)  = C, 

is the knot cobordism invariant defined by the Reidemeister torsion 

ZP(a,(f  , b)) = z(Ek])e/1"+ 3(Z2; Kl(7/Et, t-1], p)). 

Thd odd property of (2[t, t-~], P) gives a quick proof of Proposition 7.9.2 (ii) of 
[11] that for a P-acyclic 7/-module chain complex C the symmetrization chain maps 

1 + T: Q,(C) ~ Q*(C) 

are isomorphisms. In particular, this helps explain why only the symmetric structure 
of the Blanchfield form is relevant in the odd-dimensional knot  cobordism group 

Lh2i+ 2(7/[t,t-1],P) = C2i_ 1. [] 

A (2i + 1)-dimensional quadratic Poincar6 complex over A which is H-projective 
bounds (Proposition 2.10)). There is a corresponding result for (H,S)-torsion 2i- 
dimensional symmetric Poincar~ complexes, but not in general for (H, S)-torsion 
quadratic Poincar~ complexes. 

PROPOSITION 6.4. Given an (H, S)-torsion 2J-dimensional quadratic Poincard com- 
plex (C, t)) over A there is defined an (H, S)-torsion (2i + 1)-dimensional symmetric 
Poincar~ null-cobordism (H , (C)[O, i -1] ,C;0 , (1  + T)r of the symmetrization 
(C, (1 + T)r 

Proof. The composite C ~ H,(C) ~ H,(C)[0, i - 1] sends (1 + T)OcQ2i(C) to 
06 Q2i(H,(C)[O, i - 1]). [] 

REMARK 6.5. The ith quadratic linking Wu class ([11], Section 3.3) of an (H, S)- 
torsion 2i-dimensional quadratic Poincar6 complex over A(C, r 

v~(~): H~(C) ~ /4i(Z2; S-aA/A)  

= {x E S -1A/A[x  = ( -  )ix}/{y + ( -  )i;[y~ S -1A /A  } 

is the obstruction to defining an (H,S)-torsion (2i + 1)-dimensional quadratic 
Poincar~ null-cobordism (H,(C)[i, 2 i -  1], C;6r r of (C, g,). See Section 2 of 
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Mi lg ram and Ranicki  [7] for an example  realizing this obstruct ion,  with Kervai re  
invar iant  

(C,O) = 1~L3(77, 77 - {0})=  L2(77 ) = 2[ 2. [ ]  

Define the torsion semicharacteristic of an (H, S)-torsion 2i-dimensional  quadrat ic  
Poincar~ complex  (C, ~) over A by 

i - 1  

xS1/2(C) = Z (-)~[Hr(C)]ff KI(A, S). 
r = o  

P R O P O S I T I O N  6.6. (i) The torsion semicharacteristic and the torsion characteristic 
are related by 

zs(c) = zs/2(C) - zs/2(C) * ~ K~(A, S). 

(ii) If(A, S) is such that/ti(772; S -  1 A/ A ) = 0 then for any *-invariant subgroup X ~_ 
KI(A,S ) and any (H,S)-torsion 2J-dimensional quadratic Poincar~ complex over 
A {C, ~) such that zS(c)6 X 

(C, ~) = zs/2(C)~ ker(LXi+ 1(A, S) ~ LP/+ I(A, S)) 

= coker(L~/+ 2(A, S) -*/)2/+2(772; KI(A , S)/X)). 

Proof (i) By the universal  coefficient theorem and Poincar4 duali ty we have that  
up to i somorph i sm 

Hr(C) = Hzi- r (C)  = H21_ 1_~(C~', 

so that  by the homology  invariance of the tors ion characterist ic  

2 i - 1  

zS(C) = z~(H,(c)) = Y~ (-KH~(C)] 
r = 0  

i 1 2 i - 1  

= ~ (-)~EH~(C)] + ~ (-YEH2, ~-~(C) ~] 
v = 0  r=i 

= z~/~(c) - z~/~(c)* ~ K, (A,  S). 

(ii) Immed ia t e  f rom (i), Propos i t ion  6.1 and R e m a r k  6.5. [ ]  

E X A M P L E  6.7. Let ( f ,  b): m21---~ X 2i be a normal  m a p  of closed 2i-dimensional 

manifolds with finite fundamenta l  group n I(X) = n, such that  the kernels 

K.tM) = k e r ( f . :  H . ( M )  -~ H. (X) )  

are (77 [n], S)-modules,  with S =  2 7 -  {0} ~ Z[n] ,  and such that  for odd i the 
Kervai re  invar iant  is 0 

7z | ~E~r b) = 0sL2~(~) = ~2. 
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Theorem 1.11 of Milgram and Ranicki [7] identifies 

a , ( f  , b) = a ( z s / 2 ( f ) ) e  ker(Lhi(Y [hi) ~ LPi(7/ [7l])) 

= coker(LP/+ 1(7/[71.1) __~ /~21+ 1(772 ; RO(77 [g]))) ,  

with 

i -1  
Z~/2(f) = ~ (-) '[K~(M)] s K1(/7 [TC], S) 

r=0 

the torsion semicharacteristic of the S-acyclic 2i-dimensional quadratic kernel 
a , ( f  b) = (C(f!),t~) over Y[~]. [] 

The pair (A, S) is simple if every S-acyclic finite-dimensional A-module chain 
complex C is (H, S)-torsion, or equivalently if every f.g. S-torsion A-module is an 
(A, S)-module. ((A, S) is '0-dimensional' in the terminology of [11], p. 211). 

EXAMPLE 6.8. For any Dedekind ring A the pair (A, A - {0}) is simple. [] 

EXAMPLE 6.9. If re is a finite group and p is a prime not dividing the order J~[ then 
the pair (77[n], {p}) is simple by Rim [121. [] 

PROPOSITION 6.10. For odd simple (A,S) and any *-invariant subgroup X c_ 
KI(A, S) the torsion semicharacteristic defines an isomorphism 

zs/2: LXi+ I(A, S) ~ coker(L~i+ 2(A, S) --+ ffI2~+ 2(77t 2," KI(A, S)/X)); 

(c, 0) ~ z~/2(c). 

In particular, L~i+ I(A , S) = O. 
Proof Immediate from Proposition 6.4 and Remark 6.5. [] 

EXAMPLE 6.ll. Let A be any ring with involution which is of characteristic 0, so 
that 77 _c A. Let S c A be a multiplicative subset of odd integers, and let T ~ A be 
the multiplicative subset of the integers coprime to each s~S,  so that 2c Tand  

_0*(;g2; T-1A)  = O. 

The pair (A, S) is odd, since there is defined an isomorphism of 77[7/2J-modules 

S - 1A/A  --~ Q @ A / T -  1A 

inducing an isomorphism of the Tate Z2-cohomology groups 

/q*(7/2; S-1A/A)  --*/q*(7/2; Q @ A~ T-1A)  = O. [] 

EXAMPLE 6.12. Given a finite group ~ let Sl~ I = 77[z] be the multiplicative subset 

consisting of the integers coprime to [~], so that 
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If the order I~1 is even then the pair (2_[n],Sl~l) is both odd and simple, and 
Proposition 6.10 applies. [] 

7. The Cross Torsion Semicharacteristic 

In the first instance we define the cross semicharacteristic of a f.g. projective (2i+ l)- 
dimensional quadratic Poincar6 complex (C, ~b) over A 

i 

z~/2(c,~,) = ~ (-)r[c~]~Ro(A). 
r - - 0  

I f  (C, r  is H-pro ject ive and d = 0:Ci+ ~ ~ Ci then 

X~/2 (C, r = [C[0 ,  i ] ]  = [ H , ( C ) [ 0 ,  i ] ]  = Z,/2(C, ~p)e Ro(A). 
If (C, 0) is cross then 

[ c ]  = z~/2(c, 0) - z~/2(c, 0 )*6  go(A), 
and there is defined a null-cobordism (C[i + 1, 2i + 1], C; 0, 0) as in 3.1, with 
projective class 

[C[i + 1,2i + 1]] = -zl/2(C,O)*eRo(A). 
Let now (C, ~p) be a f.g. projective (2i + D-dimensional quadratic Poincar~ com- 

plex over A which is S-1A-cross, for some multiplicative subset S c A. (Perhaps 
(C, 0) was constructed by 5.1.) The cross torsion semicharacteristic of (C, 0) is 
defined by 

i 

zs)2(C,O) = ~ (-)r[coker((1 + T)r C z'+'-~-* C~)]eK,(A,S). 
r=O 

The image of Zst/2(C, 0) under a: KI(A, S) ~ F2o(A ) is such that 

(Z*l/~ (c,  0)) = z~/~ (c,  0) - z~/~ (c,  0)* - [ c  ] e/~o(A ). 

P R O P O S I T I O N  7.1. (i) Given an S-1A-cross f.g. projective (2i + 1)-dimensional 
quadratic Poincard complex (C, 0) over A there is defined a f.g. projective (2i + 2)- 
dimensional quadratic S lA-Poincar~ pair (C[i + 1, 2i + 1], C; 0, 0) such that the 
effect of surgery on (C, 0) by this pair is a cobordant S-acyclic ( i -  l)-connected 
(2i + 1)-dimensional quadratic Poincard complex (C', 0') over A with 

z~(c ') = z~)2(c, 0)6 I<1(,4, s). 

(ii) I f  X ~_ KI(A,S ) is a *-invariant subgroup and (C, ~p) is as in (i), with 
21+1  

~" (--)~[C~]~a(X) ~_ I(o(A), zst/2(C, t#)e X ~ K,(A, S) 
r = i + l  

then (Ci 0)~ ~x L2i+I(A) is the image of(C', O')e x L2i+ 2(A, S). 
(iii) I f  (C,O) is as in (i) with C a finite complex then 

~(Tt l /2  ( S  - 1  C , S  - 1  ~1)) = Zst/2(C, t#)e K ~(A,S). 
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Proof  '(i) Up to chain equivalence C' is given by 

(1+ T)~ot 

C '  : " " " - - - )"  0 ~ C i§ l )C i ~ C i+2 

(~ (t+T)~P~ / 

,Ci_ 1 G C ~ + 3 - - , . . .  

--~ C1 @ c 2 i +  1 (d(1 + T)Oo) >Co 

with H~(C') = 0(0 < r -.< i - 1) and such that Hi(C' ) is an (A, S)-module. The (A, S)- 
modules defined by 

M,=coker ( (1  + T)~Po:C 2~+~ ~ C r )  (O--<r<i) 

are such that there is defined an exact sequence 

0 --~ Hi(C' ) --~ M i a M i _  1 -+ 

�9 - �9 ---~ M I ~ M o  ---) O. 

The torsion characteristic of C' is thus 

zS(C,) s , : X ( H , ( C ) )  = ( - ) ' [ H , ( C ' ) ]  

i 

= ~ ( - ) " [ M , . ]  = zs}2c, O)eK,(A,S). 
r=O 

(ii) Immediate from (i). 
(iii) Immediate from the definition of the map ~:/(1(S -~ A ) ~  KI (A ,S )  in the K- 

theory localization sequence and the definitions of the semitorsion zl/2 and the 
cross torsion semicharacteristic zs}2 

i 
z]/2 S -1 (  C, 0) = ~ (-)rr(  S- ' (1 + T)0o: S - I C  2i+~ -~ ---, S-1C~)e ~21(S-1A), 

r=0 

i 
zs* / C 1/2t , 0 ) =  E ( -y[coker ( (1  + r)t~o:C 2i+l-r---~ C r ) ] s K I ( A , S ) .  [] 

r=0 

EXAMPLE 7.2 (Detection of L~+ ~(Y[~z])). Let rc be a finite group, and give Y[g] 
the oriented involution ~ = 0-1(ee~). As in 6.12 let S = S M c Z[n] be the multipli- 
cative subset of the integers coprime to Int, so that 
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(7/[rc], S) is simple by Rim [123. Define the , - invar iant  subgroup 

A = ker(8:/~1(77{=)[~]) -+ Kl(g[~t],  S)). 

By the resu[t of Swan [13] the map R0(g[n l )  -~ Ro(77~=)[rt]) is zero, so that  there is 

defined a short  exact sequence of :Y[Y2]-modules 

0 ~ R~(?_r --+ K~(7/[r~], S)) --+ R0(27 [=3) ---, O. 

We write this as 

O ~ G ~ H ~ K - ~ O .  

There  is defined a commuta t ive  diagram with exact rows and columns 

F s ~s 
A s , L2i+2(77(=)ETt]) , L2~+2(7/Err] ,S)-  Lh2/+x(g[~]) 

F p ev 
~L~i+2(7](x)[Tt])  , L~i+2(7][rc] ,S)-  , L ~ i + I ( Z [ 7 ~ ] )  

$ ~ z ~ ,~ 

In Davis [3] it is shown that  the composite 8P~ is 0, so that  if (C,O) is a f.g. 
projective (2i + 1)-dimensional S-acyclic quadrat ic  Poincar6 complex over ~[~]  

then its class in L~i+~(Z[rt]) is determined by the torsion characteristic 

21+ 1 

zS(C) = ~ (-)'[H~(C)]E/42'+2(g2; H), 
r=0  

with (C, t],) = O~L~i+l(Z[rc]) if and only if 

zs(C) = 0ecoker (zSFp:  L2hi+ 2(7/0~)[n3) --+/~2i+ 2(Z2; H)). 

This was motivated by the result of Pa rdon  [8] in the case of a finite 2-group n, 
2i + 1 - 3(mod 4) with C (i - 1)-connected and finite. 

The  question is then given an arbitrary (C,O)sL~i+ 1(7/[n]), what  is the obstruc- 

tion to finding a cobordan t  S-acyclic complex (C', ~')? Consider the localization 
exact sequence 

�9 "" -~ L~+ 1(7] [~], S) --* L~(7] [n]) ~ L,h(~(,)[~]) ~ . . .  
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in the above diagram. To detect an element (C, 4J)eL~i + 1(2[rc]) we first compute the 
semicharacteristic in L~i+l(Y(~)[~]/rad ). If this vanishes we apply the algorithm of 
5.1 to find a homotopy equivalent 2(~)[r~]-cross complex (C", ~"). Then 7.1 gives a 
cobordant S-acyclic complex (C', ~') whose class in L~+ 1(7/[rc]) is determined by 

;d(c') = z~2(c", g,")~ Kl(~[rq, S). [] 

EXAMPLE 7.3. (Detection of L~i+l(;~[~z])). Let ~, S be as in 7.2. In Davis [3] it is 
shown that if (C,O) is a finite (2i + 1)-dimensional S-acyclic quadratic Poincar~ 
complex over 7/[7r] then its class in L~/+I(Z[~]) is determined by its torsion 
characteristic 

2 i + 1  

ZS(C) = E (-)r[Hr(C)]el~2i+ 2(7/2; ker(rr: Kl(7/[rc], S) ~/(o(7/[)z]))) 
r - -O 

if 2i + i -= 3(rood 4) or if 2i + l - l(mod 4) and H.(C) is split-symplectic. In 
particular, if l~s(c) = 0e/t2i+2(2~2;ker(a)) then (C,~,) = 0EL~i+z(Z[rc]). (If 
2i + 1 -= 3(rood 4) the composite 

L~z~+ 2(Z[rc], S) ~ L~i+ 2(~ [Tt], S) --~ Lh2i+ 1(2 [7~3) 

is trivial.) 
Consider the localization exact sequence 

�9 " ~ L~+ I(Z [ ~ ] ,  S) ~ L ~ ( Z  [ ~ ] )  ~ L,h(; [ (~)[~])  ~ . . '  

Given an element (C, ~)~Lh2i+ I(Z[z]) the surgery semicharacteristic is the obstruc- 
tion as above to finding a homotopy equivalent 7/(,)[~]-cross (C",~b") and a 
cobordant S-acyclic (C', ~b'). The torsion characteristic can then be computed by 7.1 
(ii) and (iii). In the more difficult cases where the surgery obstruction is not 
determined by zs(u), one must examine invariants of the linking form 

2: Hi(C' ) x H,(C') ~ 7/(~)[rt]/#[~]. 

(See Davis [3] for details.) [] 

REMARK 7.4. The connection between Examples 5.3 and 7.3 is that the 
isomorphism 

~?-1: ker(a: KI(A, S) ~/(o(A)) -+ coker(jl: KI(A) + R.I(S aA)) 

sends the torsion characteristic zS(c)e ker(a) of a finite S-acyclic A-module chain 
complex C to the torsion r(S-*C)ecoker(jO. (See Davis and Weinberger [4].) [~ 
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