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Wall’'s surgery obstruction groups for GXZ
By Jurius L. SHANESON*

Introduction

An obstruction theory for the general surgery problem has recently been
defined by C.T. C. Wall in [31] and [32]. Let (X, 0X) be a manifold pair with
the dimension of X at least five. Let G = 7, X and let w: G — Z, be the first
Stiefel-Whitney class of X. Let v be a vector bundle over X of the same
fibre-homotopy type as the normal bundle of X. Let

@: (M, 0M) — (X, 0X)

be a map of degree one of manifold pairs whose restriction to the boundary
is a simple homotopy equivalence of boundaries. Let F' be a stable framing
of TM @ ¢*v, M the tangent bundle of M. Then Wall defines an invariant
6(M, ¢, F'), depending only on the cobordism class of this triple. This invari-
ant lies in an abelian group L:(G, w), or just L,(G, w), that depends func-
torially on (G, w); here n = dim X. It vanishes on a “surgery problem”
(M, p, F) if and only if (M, ¢, F') is cobordant to (N, v, E/) with + a simple
homotopy equivalence. If we omit the adjective “simple” in this description,
the appropriate obstruction lies in an abelian group L%(G, w) that also depends
functorially on (G, w). Surgery was previously studied in the simply-connected
case by Kervaire and Milnor [10], Novikov [20] and W. Browder. Interesting
results in the non-simply connected case were first obtained by W. Browder
in [1].

The first five sections of the present paper are devoted to proving a
“Kiunneth formula” for Wall’s surgery obstruction groups. Let Z denote the
integers. Let K"* be a closed smooth of piecewise linear (PL) manifold,
n = 7. Let G be the fundamental group of K, and let w: G — Z, be the first
Stiefel-Whitney class of K. Let w, be the composite of w with the natural
projection of G x Z onto G.

THEOREM 5.1. There is a split exact sequence

0 — Li(G, w) 2 LG % Z, w) 5 Li_ (G, w) — 0.

* Research partially sponsored by the Air Force Office of Scientific Research, Office of
Aerospace Research, United States Air Force, under AFOSR Contract no. F 44620-67-
C-0900.
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The map j, 1is induced by inclusion, and a splitting of a(K) corresponds
geometrically to taking cartesian products with a circle.

It is well known (see [10]) that

0 n=1 (mod 2)
L.(e) = {Z n=0 (mod 4)
Z, n=2 (mod 4) .

Hence Theorem 5.1 leads to the computation of the groups L,(G, 0) = L,(G)
for G a free abelian group. In view of Sullivan’s reformulation of the theory
of Browder and Novikov (see [23], [28], and [32]), knowledge of the groups
L., (G) can be used to attack the problem of classifying manifolds with funda-
mental group G. In this paper we concentrate, in §6 and §7, on smooth closed
five-manifolds with fundamental groups Z, Z@ Z, and Z& Z,. For example,
we obtain the following.

THEOREM. (See Corollary 6.8.) Let M be a smooth, closed, orientable five-
mantvfold with fundamental group Z. Then the number of closed smooth
mantfolds of the same homotopy type as M is finite and at most equals the
number of elements of H*M; Z,).

COROLLARY. If M has the homotopy type of S' x S*, then M is diffeo-
morphic to S x S*.

COROLLARY 6.9. (See also [25].) Any h-cobordism of S* x S° with itself
18 a product.

COROLLARY 6.10. (See also[25].) Let p: S*— S® be a smooth embedding.
Then @ is (ambient) isotopic to the standard inclusion if and only if S°—@S*
has the homotopy type of a circle.

Corollary 6.10 is similar to some results of Levine [15] for higher dimen-
sions.

Using more of the work of Sullivan, we obtatin a Hauptvermutung for
5-manifolds with fundamental group Z.

THEOREM 6.11. Let h: K — M be a topological homeomorphism of smooth,
closed, orientable 5-manifolds with fundamental group Z. Then h is homo-
topic to a diffeomorphism.

Other applications of Theorem 5.1 via Browder-Novikov theory include
for example the classification of PL manifolds of the same homotopy type as
the torus 7", n = 5. Some of the applications will be the subject of a future
paper with W-C. Hsiang. They have been announced in [7]. (See also [34].)
Other authors [1], [12], and [14] have used the applications of Theorem 5.1 to
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help study the annulus conjecture, the triangulations of topological mani-
folds and the Hauptvermutung.

We prove Theorem 5.1 by a primarily geometric analysis of the surgery
obstruction groups. We confine ourselves to the differentiable situation; as
usual everything can be translated to the PL category. The main idea is to
split a surgery problem with fundamental group Z x G into two surgery
problems with fundamental group G by means of the splitting theorem of
[5, 6] or the fibering theorem of [3, 4]. This idea was used by W. Browder in
[1]. We do thisin §2and §3, after a preliminary section outlining the elements
of Wall’s surgery obstruction theory that we need.

This approach quickly forces the introduction of the groups L:(G, w).
Suppose that h: M™ — K x S', m = 6, is a simple homotopy equivalence, and
assume for simplicity that K and M are closed. Let ze S!. Then the splitting
theorem of [5, 6] tells us that & is homotopic to k&, where k= (K x z) is a smooth
submanifold and where the restriction of % is a homotopy equivalence of this
submanifold with K x z. However, we have no hope to obtain a simple homo-
topy equivalence in this way, in general. In fact, if f: P— K is a homotopy
equivalence, f x idg is always simple [13].

In § 4 we compare the groups L:(G, w) and L*(G, w). Let Wh (G) be the
Whitehead group of G. Let * be the natural involution defined using w. (See
[18].) Let A,(G, w) be the quotient of the subgroup of all z in Wh (G) satis-
fying © = (—1)"c* by the subgroup of all elements of the form = + (—1)"c*.

PROPOSITION 4.1. There is a natural exact sequence
- — LG, w) — LG, w) — A,(G, w) — L;_(G, w) — -

Finally, in § 5, we interpret the work of §§ 2-4 to obtain information
about the surgery obstruction groups for Z x G. Although these obstruction

groups have purely algebraic definitions, a purely algebraic derivation of a
result like 5.1 seems to be quite difficult.

A word about style. In the derivation of Theorem 5.1, we pay more de-
tailed attention to the geometric aspects of the argument that to the alge-
braic ones. The reader who is familiar with [32, § 5 and § 6] will be able to
fill in the missing details easily. I hope that the reader who is unfamiliar with
[32] will still be able to follow the general line of argument.

A preliminary form of Theorem 5.1 was first announced in [24]. A result
along the lines of Theorem 5.1 has been found independently by C. T. C. Wall,
using a different line of argument.

Much of the material of this paper appeared first in my thesis. I wish
to thank my thesis adviser, Professor M. Rothenberg, for his help and
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encouragement. In particular, Proposition 4.1 is due to him. I also wish to
thank Professor R. Lashof for some stimulating conversations and Professor
W-C. Hsiang for his careful reading of an earlier version of this paper.

1. Wall’s surgery obstruction groups

Let C be the category whose objects are pairs (G, w), G a group and w a
homomorphism of G into Z,, and whose morphisms are group homomorphisms
such that the obvious diagram commutes. Every finite Poincaré complex X
(see [31] or [32]) determines functorially an object (7.X,wX) of C; let
w(X)(b) = +1 if b preserves orientation and —1 if b reverses orientation.
There is a sequence of functors L, satisfying L, = L, ., for all n, which plays
the role of the range of a surgery obstruction for n = 5; each L, is a functor
from C to the category of abelian groups. More precisely, let X" be a con-
nected, compact, smooth, and oriented manifold; and let v be its stable normal
bundle. (Actually one needs only a finite Poincaré complex with a suitable
vector bundle; see [32].) Here an oriented manifold is a manifold together
with an orientation element in H,(X, 0.X; Z*), the n relative homology groups
with twisted integer coefficients. Let B,(X, v) be the cobordism classes of
triples (M", @, F'), M a compact smooth oriented manifold; ¢: (M,0M)—(X,0X)
a map which pulls back the twisted integer coefficients, carries the orientation
class of M to that of X, and induces a simple homotopy equivalence of oM
with 0X (see [18] for a definition of simple homotopy equivalence); and F' a
stable framing of TM @ p*v. A cobordism (W,®,G) of (M,p, F') and (M,,p,, F,)
is a representative of an element of B,. (X x I;v x I) such that oW =
MUo,W U M, with MNo,W = oM and M, N o, W = oM, and with 0,W an
s-cobordism of M with 6M,; and such that ®(z) = (p(), 0) if x € M, O(x) =
(pu),1)ifxe M, G|M=F,G|M,=F,, and ®@0,W) <= 0X x I. Forn =5
there is a map

0: B(X,v) — L,(7.X, wX)

such that 6[ M, ¢, F'] = 0 if and only if this class contains (N, v, H) with 4 a
simple homotopy equivalence. (Note that if X is just a finite Poincaré complex
and v a vector bundle over X, the Thom class of » must be stably spherical if
B.(X,v) # ©.)

The groups L,(7, X, wX) are not too large in the sense that each of their
elements is the obstruction of some surgery problem with boundary. In fact,
we have the following result of Wall [31, p. 274] and [32].

THEOREM 1.1. Let X™ !, m greater than six, be a smooth mantifold. Let
v be the stable normal bundle of X. Let n be a given element of L, (7, X, wX).
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Let ¢, be a simple homotopy equivalence of M™"' and X which induces a
stmple homotopy equivalence of the (possibly empty) boundaries. Let F, be
a stable framing of tM @ pfv. Then there is a map of manifold triads,

p: (W, 0o_W,0.W)— (X x I, X x0UdX x I, X x 1),

and a stable framing F of tW @ o*(v x I) such that
(1) oW =M x 0U M x I and p(x,t) = (p.(x), t) for & in 0M or t = 0;
(2) @ tnduces a simple homotopy equivalence of 0. W with X x I,
(8) Fextends F, (tW@p*(v x I) | M = M@ pfv @D 6'); and
(4) 0[W1@1F] =7.
The next result is a consequence of [32, Ths. 3.1 and 3.2]. (See also
[31, Lem. 7.3].)

THEOREM 1.2. Let @p: (W™, 0W) — (X", 0X), n greater than six and X
connected, be a map of compact smooth manifolds which pulls back the
twisted integer coefficients and carries the orientation class of W onto an
orientation class of X. Let v be the stable normal bundle of X, and let F be
a stable framing of TW D p*v. Assume that 0X =0, X U --- U 0, X, where
each 0, X is connected and where 0(0;X) ts the union of the submanifolds
0, XN0o;X,1#J. Let oW =0, WU -+ U0, W be a similar decomposition of
oW into submanifolds, except that o, W, ---, 0, W need not be connected. Sup-
pose that p(0; W) s contained in 0;X and that ¢ induces simple homotopy
equivalences of 0(0; W) with 0(0;X). Let o, =@ |0, W:0;W —6,X. Let F; be
the restriction of F to 3;W. Let g; be the map of L, _(m,(0;X),w(8;X)) into
L, (7. X, wX) induced by inclusion. Then in L,_ (7. X, wX),

0= 91(0[81Wy Py F1]) + oo + gk(alakWy Py Fk]) .
The next two propositions also follow from [31] and [32].

ProprosITION 1.3. Let (M, @, F') represent an element of B,(X, v). Then
1f —M denotes the mamwifold M with the orientation class reversed,
0(—M,p, F) = —0(M, p, F).

Note that this proposition follows from Theorem 1.2 by considering M x I.

PropoSITION 1.4. Suppose that X" =Y x I and let (W, o, F') and
(W, o1, F) represent elements of B,(X,v). Assumethat OW =M U o,W U M,
where 0, W meets M in oM, meets M, vn 0M,, and is an s-cobordism of oM
with 0M,; assume also that (M), (0, W), and p(M,) are contained in Y x 0,
0Y X I, and Y x 1, respectively, and that ¢ induces simple homotopy equiva-
lences of M, 0, W, and M, with ¥ x 0,0Y x I, and Y x 1, respectively. Let
oW, =M, U o,W,U M, be a similar decomposition of oW,. Suppose that
@M, =1op,| M,, where i(y, t) = (y, 1 + t), and suppose that the restrictions
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of Fand F,to M, agree. Let W,= W U w, Wi, and define p,: W,— Y x [0, 2]
by setting p,(x) to be p(x) for x in W and iop,(x) for « in W,. Let F, =
FUyF,. Thenin L. (7t.X, wX),

OW,, ., Fo) = O(W, @, F) + 6(W,, @, F)) .

Also, suppose that f: X"— Y is a simple homotopy equivalence and

v = f*u. Let (M, p, F') represent an element of B,(X, v). Then
L.(f)0M, 9, F) = 0(M, fop, F) .

One can also define a surgery obstruction theory for the problem of modi-
fying a map to get a homotopy equivalence. The entire discussion above
carries over to this case, with “simple homotopy” replaced by just “homotopy”
and “s-cobordism” by “h-cobordism”. We denote the corresponding bordism
set by Bj(X, v) and the obstruction group by L:(x, X, wX), but we continue
to write 6 for the map which assigns to each cobordism class its surgery
obstruction. This theory is given by Wall for n = 2k in [31]; for n = 2k + 1
one can construct this theory along the lines of [32,§6]. By L.(G, w) or
L) (G, w) we always mean the obstruction groups for the surgery problem to
obtain a simple homotopy equivalence. “Theorem 1. ih”, ¢ = 1, 2, 3, 4 means
the analogue of Theorem 1.i for the theory involving just homotopy equiva-
lences.

We conclude this section with an indication of some of the main points in
the algebraic definition of the obstruction groups L,(G, w). Let A = Z(G) be
the integral group-ring of G. A is a ring with involution Ca,9) =
> w(g)a,g7'. A special (—1)*-hermitian form over A is a triple (H, ), 0,
where H is a stably free (right) A-module with a preferred class of s-bases,
and where \: H < H-— A and p: H— A/I, I = {x — (—1)*Z | « € A}, satisfy the
following.

(i) If xe H, y — Mx, y) is a A-homomorphism;

(ii) Ma, ) = (—D*(\(y, v));

(iil) Ma, ®) = @) + (—1)*p@) (mod I);

(iv) p@ + ) — p(@) — (y) = Me, y)  (mod I);

(v) p(ra) = ap(x)a (a¢in A,z in H); and

(vi) the adjoint A\: H— Hom, (H; A) is a simple isomorphism of stably
free s-based A-modules. (Note that by using the conjugation one can convert
the natural left module structure on Hom,(H ; A) to a right module structure.)
The group L..(G, w) is defined to be the reduced Grothendieck group of special
(—1)*-hermitian forms under direct sum. The zero element in L,,(G, w) is
represented by (H, )\, ), where H is free and has a preferred base
{en .-+ e, /i, - -+, f.} such that Me;, e)) = \M(fi, £3) = p(e) = p(f;) = 0,1 < 4,
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J =r,and \(e;, f;) = 0;;. Such a form is called a standard kernel and the above
base is called the standard base. The group L}(G, w) is defined similarly,
except that H is not given a preferred base and the adjoint map A\ is only
required to be an isomorphism of A-modules.

To define L,,.,(G, w), let (K., \,, £,) be a (—1)*-hermitian standard kernel
with base e, ---,er, fr, -+, f7 as in the definition of standard kernel above.
Let SUXA) denote the group of automorphisms of this standard kernel.
There is a natural inclusion of SU,(A) in SU,.,(A)(we drop the & for nota-
tional ease); let SU(A) denote the limit. Let RU(A) be the subgroup generated
by [SU(A); SU(A)] and the element ¢ which has a representative in SU,(A)
with matrix <(_‘1)),,' (1)) with respect to ¢!, 72, Then Ly,..(G,w)=SU(A)/RU(A).
RU(A) is also generated by ¢ and a subgroup TU(A) = lim,_., TU,(A), where
TU,(A) < SU,(A) consists of those automorphisms leaving the subspace gen-
erated by e, ---, e’ invariant. To define L%, (G, w), one forgets about the
preferred class of base and instead gets a group U,(A) of automorphisms
which are not necessarily simple with respect to the base {e!, - - -, ez, f7, - - -, f7}.
Then as above, L%, ,(G, w) is a suitable quotient of U(A) by a subgroup, which
we denote by RU"*(A), generated by ¢ and TU*(A).

2. A surgery invariant

Throughout this section let g be a differentiable fibration of the compact
connected smooth manifold X" over S'. Let L be the fiber g~'(z). Assume
that n = 6. If 0.X is non-empty, assume that n = 7 and that g | X is also a
differentiable fibration. Assume also that g induces an epimorphism of funda-
mental groups with kernel G and that, if 6.X is non-empty, the restrictions of
g to each component of 0.X also induce epimorphisms of fundamental groups.

Let v be a vector bundle over X with spherical Thom class (e.g., a normal
bundle). Let (M, ¢, F') represent an element of B,(X, v). After a homotopy
of ¢ as a map of the pair (M, 0M) to the pair (X, X), we can assume z, the
basepoint of S*, is a regular value of gop and of gogp | 0M. Let N = ¢'L.
Then we may also assume that ¢ | ON: 0N — 0L is a (not necessarily simple)
homotopy equivalence; this follows from [6, Th. 2.2], since ¢ |0M: oM — 60X
is a simple homotopy equivalence (see [5, Cor. 2] for a statement of the result
we are using here in the absolute case). Let 4+: N — L be the restriction of
@. Then F'| N is a stable framing of y*(v | L) @ tN. Define

a,M,p, F')=6(N,y, F|N)eL!:_(G,w|L).

ProrosITION 2.1. a,(M, ¢, F') is well-defined and depends only wpon the
cobordism class of (M, ¢, F'). If ¢ is a simple homotopy equivalence, then
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a(M, p, F) = 0.

ProOF. The orientation class of N is determined by that of M and the
standard orientation of S'. We must have that + carries this class onto an
orientation class of L. Let X, and M, be the manifolds obtained by splitting
X and M along L and N respectively. (See[2]). The map ¢ naturally induces
amap ¢,: M, — X,; it suffices to check that ¢, carries an orientation class to
an orientation class. For then the same is true of the restriction of ¢, to the
boundary of M,. But 0M, is the union of 6M,, with two copies of N, and 0.X,
has a similar decomposition and ¢, respects these decompositions; so it follows
«easily using the Mayer-Vietoris sequence that + has the desired property.

So let # be in X — L. By transversality and using the fact that X — L
is connected and the homotopy extension property, one can find a homotopy
@, of ¢ such that p, = pon N, all ¢t in [0,1], ;"L = N all ¢ in [0, 1], and
@ = D, a finite set of points of M — N which meet each component of
M — N. Let p, ---,p, be the points of D. Let U, be a neighborhood of p, in
M — N for each 7, such that U; meets U; only when 7 = j. Then

H.(M, M — D) = @&, H(U;, U; — p)) = H.(Mx, My — D) .

In the orientable case, we have the following commutative diagram (all co-
efficients 7).

(¢«
_—

H'n(M! aM) Hn(XY aX)

J

(o1«

HM,M—-D) ——— H/(X,X — )

H.M,, M, — D) """ g(x,, X, — )

k =

H(My,oMy) -2, H(X,,0X,)

‘The maps & and j are monic, and

M) =1[U] + --- + [U] = k[M,],
where [U;] is the image of the orientation class [M] in H,(M, M — p,) =
H,(U;, U; — p;). The bottom square commutes because ¢, and (p,), are
homotopic as maps of pairs. That ¢, carries the orientation class onto an
orientation class is now clear. In the non-orientable case, one has to write in
twisted integer coefficients in the above diagram and to check that + pulls

back the twisted coefficients. This is easy.
Continuing with (M, ¢, F') as above, suppose now that W' is a compact




304 JULIUS L. SHANESON

smooth manifold with 0 W = M U 6,W U M,, where there is a diffeomorphism f
of oM x I to 6,W such that M N o,W = oM = f(6M ~ 0) and M, (16, W =
oM, = f(oM > 1). For simplicity we identify 6, W with 6M < I. Let ® be a
map of W to X x I with the following properties:

(1) © M= p;

(2) ®O(M,)) is contained in X x 1;

(3) ®0,W) is contained in 6X x I; and

(4) if p: M, — X x 1 is the restriction of ®, then ¢, is transverse to
L x 1, the restriction of ¢, to 6M, is transverse to 6L < 1, and if N, =g, (L 1),
then the restriction of ¢, induces a homotopy equivalence of 6N, with 6L » 1.
Suppose also that we are given a stable framing G of ®*(v  I) @ W which
extends F, and let F, = G| M,. Let v,: N,— L x 1 be the restriction of p,.
Then we want to show that

O(N, v, F'{N) = 0(N,, r,, F,| N))

in L),_,(G,wL). This will show that «,(M, p, F') is independent of the choices
of the various homotopies in the definition (take W = M ~ I) and also that
it depends only upon the class of (M, ¢, F) in B,(X, v).

After a homotopy of ® relative M and M,, we can also assume that @
is transverse to L x I and that ® |6W is transverse to 6(L x I). Let
P =®"%L < I) and let @: P— L x I be the restriction of ®. G|P is a
stable framing of tP@ »*((v|L) x I). Let N,= 6P (6M x I); then
0P=NUN,UN,. LetL,---,L,bethe components of 4L, and let P, =
(@ | No)"'(L; x I). Let @;: P;— L; x I be the restriction of 7. Let 7, =
0(P;, ;, G| P;). Let h; be the inclusion induced map of L’ (z,L, wL,) into
L, (G,wL) = L}_(7(L x I), w(L x I)). Then by Theorem 1.2 h

0(Ns ";"yFiN) - 0(N1y ’\f'rl?FI‘Nl) + h’Lnt + e+ hl;ﬁl: =0.

The minus sign is due to the fact that the orientation of N, is usually taken
to be the negative of its orientation as a part of 6P, while that of N is taken
to be equal to its orientation as a part of P, or vice-versa. (One could cer-
tainly be more precise, if tedious, than we are here concerning the orienta-
tions.) Hence to prove the equation we want, it will suffice to show that
7 = --- =1, = 0. But this follows immediately from [6, Th. 2.2], applied
component by component to ® |6M x I:0M x I—o6X x I;i.e., since this map
is a simple homotopy equivalence, we can assume after a homotopy of ® that
#; is a homotopy equivalence. (See also [5, Cor. 2] for a statement of [6, Th.
2.2] in the absolute case.)

It remains to show that if ¢ is a simple homotopy equivalence, then
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a,(M, p, F) = 0. But it follows immediately from [6, Th. 2.2](see [5, Cor. 2])
that in the definition of a (M, ¢, F'), one may take + = ¢ | N: N— L to bea
(not necessarily simple) homotopy equivalence. This completes the proof
of Proposition 2.1.

Later we will use Proposition 2.1 to help define a split epimorphism of

L,(G % Z) onto L!_(G). For the moment however, we state only the follow-
ing consequence,

COROLLARY 2.2. Let X" be a compact connected smooth manifold. As-
sume that m s greater than five and greater than six if 0X is not empty.
Let v be a vector bundle over X. Let (M, p, F') represent an element of
B,(X,v). Let H be a framing of 7, the trivial line bundle over S'. Then
F < H s a stable framing of t(M < S*) @ (p X idg)*(v x S, and the fol-
lowing are equivalent.

(1) (M, @, F) is cobordant to (N, +, G) with « a homotopy equivalence;
and

(2) (M~ S',p «x8', F x H) is cobordant to (P, », K), with & a stmple
homotopy equivalence.

Proor. The statement about F x H follows from the fact that
M~ SHYP (p 2 SY (v x SY) = (tMB p*v) x ». That (1) implies (2) is
straightforward. (See [13]). Assume (2). Let g be the natural projection of
X « S* onto S'. Then by Proposition 2.1, a,(M x S, x S', F x H) = 0,
But by definition, this also equals (M, ¢, F').

3. Another surgery invariant

In this section we define a surgery invariant 8, on triples on which «,
vanishes. Most of the ideas have already appeared in the last section, but the
details are about twice as tedious.

If s« is an embedding of S x D"~*into the interior of N", let w(N, p)
denote the elementary cobordism obtained by surgery using y. For example,
we can take w(N, st) = N x I U D' x D", with (¢(x), 1) identified with =.
We usually identify N with o_w(N, /). Also, we view D* as contained in D**
by the standard embedding on the first k£ coordinates. The next lemma tells

us how to extend a cobordism of a submanifold in some cases. The proof is
trivial and so is omitted.

LEMMA 3.1. Let (M, p, F') represent an element of B,(X,v), X a compact
smooth connected manifold, and v a normal bundle of X. Let g be a differ-
entiable map of X onto S* with regular value z. If 0X is not empty, assume
that z 1s also a regular value of g|0X and in the image of g | 6X. Let L =
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9~'z, and assume that ¢ is transverse to L, and that ¢ | 0M is transverse to
o0L. Let N= @ 'L. Let p:S* x D' —Int N be an embedding. Let
p: w(N, pt) — L be an extension of (p | N)om,: N x I— L, and let G be a stable
framing of p*v @ t(w(N, p)) which extends (F'|N) x I. Then there is an
embedding [ of S? x D" into Int M extending pt and such that ‘N =
St x D*'; an extension ®: w(M, ft) — X of ¢ and p such that ®©OM > I) is
contained in 6X and such that ®,® | o, w(M,[),®|oM x I, and ®|0M x ol
are transverse to L, L,0L and 0L respectively; and a stable framing K of
O*v P r(w(M, 1)) extending F x I and G.

Remark. Suppose that ® is a map of (W"",6W) into (X", 0X). As-
sume that 6 W = M U 6,W U M,, with the usual properties. Identify o, W with
OM x I. Then there is a smooth function f from W to I, with non-degenerate
critical points, such that M = f'(0), M, = f'(1), and f(x,t) = t if ® is in oM
and tin I. We have a map (@, f): W — X x I. Let v be a vector bundle over
X. Then since v x I is the pullback of v under the natural projection of X x I
onto X, TW P ®*v = tW D (@, f)*(v x I). If ® induces a simple homotopy
equivalence of 6M with 0.X, then (®, ) induces a simple homotopy equivalence
of 0M x I with 6X x I. If ® or some restriction of @ is transverse to a sub-
manifold K of X, then (@, f) or the corresponding restriction of (@, f) is
transverse to K < I.

LEMMA 3.2. Let f be a map of (Z",0Z") into (X", 0X). Let g be a dif-
ferentiable fibration of the conmected manifold X over S', with connected
fibre L. Assume that g |0X is also a differentiable fibration. Suppose that
fand f|6Z are transverse to L and dL respectively, and let N = f~'L. Then
if f1Z— X and f| N: N — L are homotopy equivalences, so is f,: Zy— X,
the map determined by f.

(Recall, for example, that X, is the manifold obtained by splitting X
along L.)

The proof of Lemma 3.2 is fairly straightforward and is left to the reader.

Now we return to the situation of §2. Assume the hypotheses of the
first paragraph of that section. Again let v be a vector bundle over X,
and let (M, , F') represent an element of B,(X,v). Again we can assume
after a homotopy of @ as a map of the pair (M, 0M) to the pair (X, 0X) that
z, the basepoint of S', is a regular value of goo and of go@|dM. By [6, Th.
2.2] and the homotopy extension property, we can again assume after another
homotopy that if N = ¢~'L (recall L = g'z), then ¢ induces a homotopy
equivalence of 6N with 6L. It follows from Lemma 3.2 (applied component-
wise) that ¢ also induces a homotopy equivalence of (6M);y with (0.X);,.
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Now suppose that a, (M, p, F') = 0. Lety = ¢ | N: N— L. By definition
O(N, ¥, F'| N) = 0. Hence(N, 4, F| N) is cobordant to (N, ¥, G), with ¥ a
homotopy equivalence. Hence by Lemma 3.1, (M, ¢, F) is cobordant to
(M, 3, K) such that & is transverse to L and its restriction to 67 to oL, and
such that N = ()'L,»|N = ¥, and K|N = G. The map & induces @,: My —
X,. The restriction of &, induces a homotopy equivalence of (3M),5 with
(0X);.. We also have, for example, that 4(X,) is the union of (6X),, with two
disjoint copies of L which meet (0X),, in the two disjoint copies of L which
make up the boundary of (0.X),,. Since ¥ is a homotopy equivalence which
induces a homotopy equivalence of boundaries, it follows, e.g., by using the
Mayer-Vietoris sequence and several applications of the Van-Kampen theorem,
that . also induces a homotopy equivalence of boundaries. Let v, be the pull-
back of v under the quotient map of X, onto X. Then t(I5) P @}v, is the pull-
back of M @ @*v by the quotient map of My onto M; hence K pulls back to
a stable framing K, of 7(My) @ $}v, via the quotient map. So (M5, @, K;)
represents an element of B:(X,, v,). We define

Bg(My Py F) = 0(Mﬁy Pry KL) ’

an element of L}(G, wX,). (Since g is a fibration, the quotient map induces
an isomorphism of 7, X, with G.)

PROPOSITION 3.3. 3, is well-defined on triples (M, @, F) such that
a,(M, ¢, F) = 0 and depends only upon the cobordism class of such a triple.
If ¢ is a simple homotopy equivalence, B,(M, ¢, F) = 0.

ProOOF. Theproof that@, carriesan orientation class toan orientation class
is similar to the first part of the proof of Proposition 2.1 and so is omitted.

Let ®: W™ — X x I. Suppose that 6W = M U 6,W U M,, where 3, W is
diffeomorphic to 0M < I, meets M in 0M and M, in 6M,, and is a cobordism of
oM and oM,. Let (M, , F) be as in the definition of 8,. Assume that
®|M = (p,0) and that ®(5,W) is contained in 6X x I. (Hence @ induces a
simple homotopy equivalence of 9, W with 0.X x I.) Assume that ®(X x 0) =
M and @ (X x1)= M,. Let ¢;: M,— X x 1 be the restriction of ®. Assume
that @, and its restriction to 6, are transverse to L x1 and L x 1 respec-
tively. Let N, = ¢;'(L < 1). Assume that ¢, induces homotopy equivalences
of N, with L x 1 and of dN, with 6L x 1. Let G be a stable framing of
O*(v x I) @ W, with G| M = F. Then we want to show that

OMy, p., F;) = 0((M1)N19 (P, (G Ml)L) .

This will show that 3,(M, ¢, F) is independent of the initial homotopies in
the definition, of the choice of the cobordism in the definition, and of the
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cobordism class of (M, ¢, F').
Let P = ®'(L x I), and let W, be the manifold obtained by splitting W
along P. Let

O W, — (X XI) =X x1I

be the map induced by ®. Let G, be the stable framing of (W ,) @ @ (v, < I)
which is obtained from G by pulling back via the quotient map of W, onto
W. Now oW, = P"UP”" U (0W);,», where the quotient map carries P’ and
P” diffeomorphically onto P. Moreover, (0W),, = M, U (M) v U (0 W)z,
where P = PN o,W. Since ® induces a simple homotopy equivalence of o, W
with 6X x I, we can apply [6, Th. 2.2] and the homotopy extension property;
this enables us to assume, after a homotopy of ® relative M and M,, that the
restriction of ® is a homotopy equivalence of P with oL.
We also have, similarly,

X, xI=L'"XHUL"xHUuX, x0)U(X, x1)U@X;, x I).

®, carries (6,W)s to 0X,, x I, My to X, x 0, (M,)y, to X, < 1, and, after a
possible change of notation, P'to L’ x I and P” to L" x I. ®, induces
homotopy equivalences of all the corresponding intersections of these portions
of the boundaries. Hence we are in a position to apply Theorem 1.2h. We
want to show that this gives the desired result. By Lemma 3.2, the restric-
tion of @, induces a homotopy equivalence of (0, W)s with 6X;, x I. Hence ¢
vanishes on the triples obtained by restricting ®, to maps of the various com-
ponents of (0, W)z into the corresponding components of 6X,, x I. Letn =
O(P',®, | P',G,| P’) and let /¢ be defined similarly, but with P’ replaced by
P, Let

i L x I), w(L/ x I)) —> Li(m(X, x 1), w(X, x I))

be induced by inclusion. Let "’ be defined similarly, but with L’ replaced by
L”. Then in LXG, wX,) = Li7(X, x I), w(X, x I)), we have that

My, p., F) — 9((M1)N1y (@), (G| MI)L) + iy = "n=0.

The minus sign is due to the fact that the orientation of (M,),, is usually
taken to be the negative of its orientation as a part of 6 W,,, while the orienta-
tion of M, is taken to agree with its orientation as part of 6 W, or vice-versa.
However, in the definition of /¢ and » we take the orientations to agree with
those of the various manifolds considered as parts of boundaries. (We could
certainly be more precise in keeping track of the orientations.)

Hence it suffices to show that¢'np + "¢ =0. Letq: X, —»Xandp: W,— W
be the quotient maps. The following diagram commutes.
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., L’
N

(@I L"), o (g L] T.X,

I 7
SV
. L"”
Here we use ¢ and ¢”" to denote inclusion induced maps, again.” This diagram
commutes because ¢,: 7,X, — 7, X is a monomorphism and because
qoi”o(q| L") " o(q| L) = qoi .

Hence it suffices to show (see § 1) that, in Li(7 (L x I), w(L x I)),
O(P",q°(®.|P"),G,|P") + 6(P',qo(®,|P'),G,|P")=0.
However, this follows from the facts that (p|L")~'o (p| L) is a diffeomorphism
of these triples that reverses orientation and that ¢ is a cobordism (and hence
a diffeomorphism) invariant. This completes the proof that 3, is a well-defin-

ed cobordism invariant of triples (M, ¢, F') on which «, vanishes.

To complete the proof of Proposition 3.3, suppose that we are given
(M, p, F') such that ¢ is a simple homotopy equivalence of M with X. We can
assume that ¢ and ¢ | 0M are transverse to L and to 6L, as usual. By [6, Th.
2.2] and the homotopy extension theorem, we can assume that if N = 'L,
then ¢ restricts to homotopy equivalence of N with L and of 6N with 6L.
Then, by Lemma 3.2, ¢,: My — X, is a homotopy equivalence. Hence
BM,p,F)=0(M,,p,,F,)=0. This completes the proof of this proposition.

1. An exact sequence

Let G be a finitely presented group and let w: G — {+1, —1} be a homo-
morphism. Let A = Z(G) be the integral group ring of G. Then A has an
involution given by (3_ a,9)~ = 3_ w(g)a,g~*. Using this involution, we define
an operation * on matrices: ((a;;))* = ((@;;)). This operation induces an auto-
morphism (conjugation), also called *, of Wh(G) (see [18]). Let

A(G,w) = {0e Wh(G) |0 = (—1)"c*}/{r + (—~1)'c* | = € Wh(G)}.

PROPOSITION 4.1. There is a natural exact sequence
- — L}(G, w) — LG, w) — A.(G, w) — L _ (G, w) —> - -

This sequence is due to Rothenberg (unpublished), who derived it by
geometric methods. We will give algebraic definitions of the maps and will
indicate the main points of a proof of exactness that uses a combination of
algebra and geometry (mostly algebra). Naturality will be obvious. We
assume a familiarity with [31, § 3] and [32, §§ 5, 6]; most of the omitted details
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are quite straightforward, assuming this knowledge.
We assume for simplicity that w = 0 and we write the proposed sequence
as follows, with 2k — 2 = 5:

s Li(G) 2 L) —2 Au(G)

d
s L (@)~ L (G) — Au(6) - Ly ((6) —

The map « is induced by the “forgetful functor” which forgets the pre-
ferred class of basis. That is, if by w(H) we denote the underlying A-module
of an s-based A-module, then

alH, N, p] = [w(H), N, u] .

(As usual, [ ] denotes the equivalence class of whatever appears inside.)

To define b, suppose (H, \, ) represents an element of L% (G), with H
free. Choose a basis for H and let M be the matrix of N with respect to this
basis. Let b[H, \, ] = [M] € A, (G). Since M = +=M?*, the class of M in
Wh(G) is self-conjugate. If M’ is the matrix of \ with respect to a different
basis, then M’ = BMB* for some suitable matrix B, and so in A,(G), [M] =
[M’]. Also, the matrix < +(1) %) represents zero in Wh(G). It now follows
easily that b is really a well-defined homomorphism.

It is obvious that boa = 0. If b[H,\, ] = 0, we can suppose after sufficient
stabilization that if M is the matrix of \ with respect to some basis, then
there is an invertible matrix B of the same size as M, such that, in
Wh(G), [M] = [B] + [B*]. But then B determines a change of basis such that
if M’ is the matrix of A with respect to the new basis, M’ represents zero in
Wh(G). Hence, with respect to this new basis, A\n: H — Hom,(H ; A) is simple
and so [H, \, ¢] € Image a.

To define ¢, let 7 € Wh(G) be a self-conjugate element. Let M be a matrix,
of size r say, representing z. Then we want to define ¢[z] to be the class of
the following matrix in L, _,(G):

(M 0
0 (M *)”1)

This matrix (and all subsequent matrices in this section) is written with
respect to the standard base ef, ---, e, f7, -+, fr of the standard kernel of
dimension 2r. This really defines a simple automorphism of this kernel be-
cause [M]—[M*]=0 in Wh(G). If M represents zero in Wh(G), then the
above matrix represents an element of TU(A) € RU(A) (see [32]) and so it is
easy to see that we at least get a homomorphism

¢:{teWh(G) |7 =%} — L5 _(G) .
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To show that ¢ is well-defined, it suffices to show that if ¢ = & + &*, &(r) = 0.
But in this case we can take for M a matrix of the form

P 0
(o )
and so ¢(7) has the representative
P 0
0
o ur |
(P*! 0
0 +P!
Multiplying on both sides by
I 0 0 0
0 0 0 I
0 0 I 0
0 (1) 0 0
which represents an element of RU(A) (see [32]), we get
P 0 0 0
0 =P+ 0 0

0 0 (PH»* 0
0 0 0 +P*
which represents an element of TU(A) € RU(A).

The proof that Ker ¢ = Image b is the one place in the proof where we use
geometry. Hence we postpone it until the end.

The map d: Li,_,(G) — Lk_,(G) is defined to be the homomorphism induced
by the inclusion of SU(A) in U(A). It is clear that d-c¢ = 0; in fact doc(x),
v € A,,(G), has a representative in TU"(A). Suppose d(y) = 0. Then we can
find a representative matrix for y which is a product of (2 x 2r)-matrices of

the form
C*(A B )
o (a7,

A non-singular and representative of a self-conjugate element of Wh (G), and
the (27 x 2r)-stabilization of ¢ = <(_(1))k %), o, say. The matrix C above
represents an element in the image of ¢, since it differs from

(A 0
0 (A*)—l)
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by an element of T'U,.(A). Also, the element o, e SU,,(\) represents zero in
L3, (G); and so y € Image c.

To define e: L, _(G) — A,...(G), let ae U.(A) represent an element of

%-.(G). We want to define e[a] to be the torsion of @ with respect to any

base of the underlying A-module of the standard kernel of dimension 2r. It
is elementary to check that this at least gives a map of L/, (G) into Wh(G)
which is well-defined. That the image lies in the subgroup {c |z + t* = 0}
follows by considering a matrix for a with respect to the standard base of the
standard kernel, and so by composing with the quotient map, we get e.

It is obvious that eod = 0. Suppose e[a] = 0, « in U,(\). Then, after
some stabilization if necessary, we can find 8 e U,(A), with matrix

(A 0
0 <A*>--‘)

with respect to the standard basis, such that Ba has zero torsion. Hence
Bae SU,(A). But B represents zero in L!,_(G), and so [3a] = [a]. Hence
[a] € Image d.

To define the map f: A,,_(G) — Lj_(G), let = ¢ Wh(G) be such that ¢ =
—7*. Let M be a 2r by 2r matrix representing z, and let (K,, \,, p,) be the
standard kernel of dimension 2r. By applying M to the standard basis of K,
we get a new based module K’ with the same underlying A-module as K,.
Since 7 + t* = 0, Ax: K'— Hom, (K’, A) is still simple, and so (K’, \,, ,) is
a special (—1)*~'-hermitian form. We define f(z) = [K’, \,, /,]. It is easy to
see that this defines a homomorphism

Fi{te Wh(G) |7z + t* = 0} — L2 .(G) .

If 7 = & — &%, then we can choose for 7 a representative M of the form

M= (ﬁ <3*)—1) :

But then the isomorphism K, — K’ of s-based A-modules determined by M
preserves \, and /¢,, and so (K, \,, g,) is isomorphic to (K', \,, 1), i.e., f(z) =
0. Hence f induces a map f: A,,_(G) — L _,(G).

That foe = Ois clear. In fact, given @ € U,(A), @ provides an isomorphism
of the representative of foe[a] constructed in the definition above and a
standard kernel of the appropriate dimension. On the other hand, suppose
f(®) =0, x in A,,_,(G). Choose a representative matrix M, and let (K’, \,, )
be constructed from (K., \,, #,) as in the definition of f above. Then, after
stabilization of M if necessary (this corresponds to adding standard kernels),
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we may assume that there is an isomorphism «’: (K,, \,, U — (K’ ny ).
Since K, and K’ have the same underlying A-module, a’ clearly determines an
element e U,(\). It is clear that ¢[a] = .

It is obvious that a f = 0. If a[H, \, /] = 0, then we can suppose that
(w(H), N, u) = (w(K,), \,, /t.), at least after stabilization. This isomorphism
induces a A-module isomorphism of the based A-modules H and K,; let
7€ Wh(G) be its torsion. Using the fact that Ax and A\, are simple with
respect to the appropriate bases, an easy calculation shows that ¢ + 7* = 0.
Itis clear that if » = +[7] in A4,,_.(G), fl) = [H,\, ¢l (Actually one should
take [ —7], but since A,,_,(G) has exponent two, this makes no diﬁ'erence.)

Now we turn to the question of exactness of the sequence

Li(G) — AulG) —— Lty (@),
The algebra at this point seems to be more formidable than for the rest of
the sequence, and so we resort to geometry.! (The rest of the proof could also
be given using geometry.) First we interpretthe maps b and ¢ geometrically.
Let (H, N, p1), H free over A, represent an element of L%(G), and let X% be
a closed orientable manifold with 7, X = G. By the construction in [31, § 7] or
[32, § 5], we can find (W, ¢, F') representing an element Bl(X x D*v),v =
normal bundle of X >« D*, such that K(W,A) = H, K(W,A) = 0if i # k, and
such that \ and /2 are the intersection and self-intersection forms of W over A,
as defined in [31]. Inparticular, (see [32]), we can take 0 W = (X x DL)Ud. W,
with ¢(0. W) < X x D' and with ¢|X x D. = identity. (As usual 0D* =
D' U DL.) In this construction, W is obtained from (3_W) x I = (X x D') x I
by adding some handles of index %, and these handles determine a A-basis of
K(W,0_W,A\) = K,(W,\) = H. Let Mbe the matrix of \ with respect to this
base. Recallalsothat ¢, = |0, W : 3, W— X x D' is a homotopy equivalence.

LEMMA 4.2. ¢, has torsion +=[M]e Wh(G).

PrROOF. If X, is a space, let X, denote its universal covering space. Let
M(p) and M(p,) denote mapping cylinders of @ and ¢, respectively. In com-
puting 7(p,) we usually consider the chain complex C*(J/W\(;l), 6:\1/1/7 ), but it is
easy to see that it suffices to consider C*(ﬁ(;), 5:1-/{7 ); 7(®,) is the torsion of
this latter complex. (Here, of course, we chose suitable triangulations of the
spaces involved and assume the maps are cellular.)

Consider the exact sequence

~ N\ N N N ~
0——C (W, 6 W) — C(M(p),5. W) — C(M(p), W) — 0.

! R. Sharpe has found an algebraic proof based on Wall’s decomposition of elements
of RU(A).
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This is an exact sequence of based chain complexes. The homology sequence
of this short exact sequence is just the (two-term) sequence K :

~~ ~
—s0— H,. l(M(@), W) = K,(W,A)
5 ~ o~ ~ ~
— H(W,0,. W) =K(W,0.W,\) — 0—.

K. (W, A) = H already has a preferred basis and we give K,:(I’/f’, 5171’/ , A) the
basis determined by the “dual handles” to the handles attached to (0_W) x I
to construct W. Then it follows from [31, Th. 2.5], and the definition of z(¥(),
the torsion of 7, that z(J() = +[M].

We have the formula (see [18])

H(CUMP), W) — o(CLW, 8, W)) — =(C. (M), W)) = 2(50) .

The last two torsions on the left should be understood as defined using the
bases of the homology groups H( I;IV’, 84_1’47) and H, Hl(]l/l\«;), W7) just defined
(see [18]). It is not hard to check that these two torsions actually vanish.
Hence 7(p)) = £[M].

Now suppose (W', @', F') represents an element B (X < D? v), has the
property that W/ =0, W' U X x D-, 9’0, W')C X x D.,and ¢’ | X x DL =
identity. Suppose also that (W', @', F') = [H, N, u] = 6(W, o, F), (W, o, F)
as above. Then, using the standard computation for the torsion of a com-
posite of two maps, the duality formula for the torsions of an A-cobordism
(see [18]) and the last part of Th. 5.8 of [32], suitably modified for the theory
of surgery obstructions to obtain homotopy equivalences, one can prove the
following.

LEMMA 4.3. 37 € Wh(G) such that t(p) — ©(p)) = T + %, where @] =
@0 W:o, W —X x D..

Lemma 4.2 and Lemma 4.3 give a complete interpretation of the map
b: L;.(G) — Au(G).

Now we interpret the map c: A,,(G) — Li._(G) geometrically. Suppose
@: (N*',0N)— (Y,0Y) is a homotopy equivalence of connected (2k — 1)-
manifolds, such that ¢ |0N: 0N — Y is a simple homotopy equivalence. Let
F be such that (N, ¢, F') represents an element of Bj, ,(Y,»(Y)). Let t=1(p),
and assume ¢ = t*. (This actually follows; see [6, Prop. 1.26].)

LEMMA 4.4. O(N, @, F) has a representative in SU,(A), r sufficiently
large, with matriw of the form
A 0
(0 <A*>—l>
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with respect to the standard basis {e}, ---,el, fr, ~++, fI}, where[A] = =7 in
Wh(G).

Remarks. (1) When we pass to A4,,(G), the sign does not matter.
(2) Suppose Y = X x I, and suppose = = ¥, 7 € Wh(G).
Then there is an h-cobordism N of X x 0 and a map ¢: (N,d_N,0,N) —
(X xI,X x 0, X x 1), ahomotopy equivalence with ¢ |0_N = identity, such
that 7(p) = z. We actually have 7(p) = @,(—7(N, X)), and (N, X) is arbi-
trary by Theorem 11.1 of [18]. Let ¢, =@ |0, N:90,N— X x 1. Then using
the duality formula and the formula for the torsion of a composite (see [18]),

Tp) = 1(9) + Pu(t(N, 3. N)) = 7(9) + u(t(N, X)) =7 —7* = 0.

In particular, we can find F' such that (N, ¢, F') represents an element of
B (X X I, (X x I)). This remark, together with Lemma 4.4, gives a geo-
metric interpretation of c.

ProOF OF 4.4. As in Lemma 4.2, the proof involves chasing Wall’s defini-
tion of surgery obstructions and using the sum formula, [18, Th. 3.2]. So let
U < Int N be the union of disjointly embedded copies of S*—* x D* represent-
ing a set of generators of K, (N, A). The diagram (1) of [32, § 6] reduces to

the following diagram of based A-modules, where all coefficients are in A and
N, = ¢l(N — U):

(0] (0]
\ /
\ - T T
KU, oU) Kk 1(’\7)
- . \
7 \ /
. - . _
K, (N,, aU) /KI: A(0)
. - \\\ / \\\
-
(0] - (0]

Fic. 1

Let r be the number of embedded copies of S** x D*, and let @ e SU,(A) be
a representative of the element in L3, ,(G) determined as in [32, § 6] by this
diagram. Choose bases for K,(N,, 0U) and K,_(U) in the preferred class of
s-bases. This may require some stabilization (i.e., adding some trivially
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embedded S** x D*’s) for K,(N,, dU); the preferred base of K, ,(U) is the
obvious one. Let A, be the matrix of o with respect to these bases. Then,

with respect to the standard base {e!, ---, e7, f7, -+, f7} we can take
= ( 0 1) (The sign d d k.)
o = . es epen .
(AP 0 ign depends on
Since

i

is in RU,(A) (the sign again depends upon k), « is equivalent to

A0
( 0 (Af")—l) .

Hence it suffices to show that we can take 4 = A4,, i.e., that the torsion of
0: K,(M,U)— K, _(U)is +z.

To see that 7(0) = =7, recall that in Wall’s procedure of [32, § 6], one
first assumes that ¢~'(D) = U, D a disk in Int Y. After taking mapping
cylinders, we can assume that ¢: (N, U)—(Y, D) is an inclusion (D is no longer
a disk, but is still contractible). Choosing appropriate triangulations, the
preferred class of bases of KL(N U,AN)=H, (Y,NUD,A)is the one which
makes the torsion of C (Y N U D) vanish. The obv1ous base of H,(C, (D U ) =
K, (U, A) is the one making the torsion of C (D U) C.(D,U)Q, A vanish
when computed with respect to thls base. (Here 7 denotes the i inverse image

of Z C Y in the universal cover ¥ of Y under the projection map Y Y. )
We have the following exact sequence:

~ ~ ~ o~ ~ ~ ~ NS
0—C.D,U)=C(NUD,N)y—C(Y,N)— C (Y, NUD)—> 0.

The homology sequence of this exact sequence is just ¥ :

0 oo — 00— Ku(N, U, &)~ Ky (U, A) —— 0 — +-- .
So by [18, Th. 3.2],
c = o(C(Y, N)) = o(H) = +7(5) = +[A)].
This completes the proof of Lemma 4.4.

Now we are ready to complete the proof of Proposition 4.1. We state
what remains to be proved as a separate lemma.

LEMMA 4.5. The sequence L% (G) ————» A, (G) AN L;._(G) 1s exact.
Proor. Let x e L} (G). Then « = (W, @, F'), with (W, ¢, F') as in the
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paragraph preceding Lemma 4.2; this follows from Theorem 1.1h. By Lemma
4.2 and Lemma 4.3, b(x) is the class of the torsion of |6, W: 0. W —X x D’ =
X x I. By Lemma 4.5, ¢b(x) = 000, W, ¢ |0, W, F|3.W). But this last term
vanishes, because (W, ¢, F') is a cobordism of (3, W, ¢ |3, W, F |3, W) with
(0_W,p|0_W,F|0_W)and ¢ |0_W is a simple homotopy equivalence. Thus
cob=0.

Suppose

@:(N,0_N,0.N) — (X x I, X x 0, X x 1)

is a homotopy equivalence with torsion 7, where [r] in A4,,(G) is any given
element. We can assume $|6_N:6_N — X x 0 is the identity. Say ¢([z]) = 0.
Then 3(W’, ¢', F'), a cobordism of (N, 3, F), F some suitable framing, such
that if P =0, W',

@ |P:(P,0_P,0.P) — (X X Ix1,Xx0x1,Xx1x1)

is a simple homotopy equivalence. After making suitable identifications, it is
not hard to find (W, ¢, F), p: W — X x D*, such that ¢ |6_W:0_W — X x Dy
is the identity, such that (0, W) = X x D', = XxIand suchthat ¢ |0, W =&
and F'|0. W = F. By Lemma 4.2, b(ﬁ( W,p, F)) = [r] in A,(G). This concludes
the proof of Proposition 4.1.

One can give geometric interpretations for other maps in Rothenberg’s
exact sequence. For example, let ¢: (N,0N)— (Y, dY) be a homotopy equiv-
alence of smooth (2k — 2)-manifolds, with ¢ |0N: 9N — 3 Y a simple homotopy
equivalence. Let G = 7,Y. Let v = 7(p) € Wh(G) be the torsion of ®, with
T = —7*. (That this is always the case follows from [6, Prop. 1.26].) Let F'
be a stable framing of TN @ ¢*v(Y). Then

O(N, p, F') = e|[r] € L, (G) .

The only tricky point here is the obstruction to modifying ¢ is represented
by the zero module with an s-basis; to realize this basis one has to stabilize
by performing surgery on some trivially embedded (£ —1)-spheres. Combining
this with Lemma 4.4, we get the following result, which we state for later
use.

PROPOSITION 4.6. Let ¢: (N,dN)— (Y,0Y) be a homotopy equivalence
of smooth m-manifolds, such that ¢|0N:9ON —3Y is a simple homotopy
equivalence. Let © = t(p) € Wh(G) be the torsion of . Let F be a stable
framing of TN @ p*(»(Y)). Let v denote the map A, (G, w) — LG, w) of
Rothenberg’s exact sequence, with w = w(Y) and G = n,Y. Then

el = 6(N, @, F) .
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5. Computation of L,(Z x G), G finitely presented

Let X" =Y x I, Y a connected closed manifold, and let v be a vector
bundle over X. Then by B:(X, v) we denote those classes of B:(X, v) with
representatives (M, ¢, F') such that 6M has Y as a connected component and
@(y) = (y,0) for all y in Y. Let B*(X, v) € B! X, v) be similarly defined.

THEOREM 5.1. Letn = 7. Let K™ * be a closed, connected, smooth mani-
Sold with fundamental group G. Let w:G — Z, be the orientation map of K.
Let w, be the composite of w and the natural projection of G X Z onto G.
Let v be the stable normal bundle of K x I. Let l,: L:(G, w) — L(G X Z,w,)
be the map induced by inclusion. Then there is a split exact sequence.

0 — Li(G, w) — LG x Z, w) “E LG, w) — 0.

The map a(K) has a splitting j(K) such that the following diagram com-
mutes.

Bt (K x Iv) 255 ByR x Ix 8%, v x 8Y

lo J
G w L x Z,w)

Remarks. (1) The map xS* above is defined by [M, ¢, F] x S* =
[M xS, 9 xS8', F x H], where H is the standard framing of zS'. Note that
taking the product with S* always kills the torsion (see [13]).

(2) Given G and w: G — Z,, we can find K as in Theorem 5.1 with
(r.K, wK) = (G, w) if and only if G is finitely presented. This is well-known;
given G one chooses a presentation, takes a connected sum of trivial and non-
trivial (» — 3)-sphere bundles over S* to realize the free group on the genera-
tors of G with suitable values under w, and then attaches 2-handles along
embedded circles determined by the relations.

(3) Let e be the trivial group. Then it is well-known (see [10] or [31])
that

Z n=0 (mod 4)
L,e) =40 n=1 (mod 2)
Z, n=2 (mod 4) .
Also, Wh (Z%) = 0, by [27].

Hence, if Z* is the free abelian group on k& generators, Theorem 5.1
allows us to compute the groups L,(Z*) = L,(Z*, w), w trivial. For example
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Z n=0 mod 4
n=1 mod 4
L.(2) = Z, n=2 mod 4
Z, n= mod 4
ZD Z, n=0 mod 4
ZoZ n=1 mod 4
L(Z®Z) =

Z® Z, n=2 mod 4
Z, P Z, n =3 mod 4 .

PrOOF OF 5.1. The first step in the proof is to define the map a(K). By
Theorem 1.1 every element of L:(G x Z,w,) is of the form (W, p, F'), where
(W, ¢, F') represents an element of Bi(K x I x S*,v x S') and where oW is
the disjoint union of K x S* and 0. W, and o(z, y) = (x,0,y) for  in K and ¥
in S*. Let g be the natural projection of K x I x S* onto S!. Then we define

a(K)O(W, ¢, F)) = a,(W, 9, F) .

It actually follows from [32, Th. 5.8 and 6.5] that a(K) is well-defined. How-
ever, this will also follow once we show that a relation a(K) is additive, since
by Proposition 2.1 a, (W, ¢, F') = 0if 6(W, ¢, F') = 0.

To prove that a(K) is additive, let (W, o, F') be as in the last paragraph.
Then by [6, Th. 2.2] applied to the restriction of ¢ to 0, W, the homotopy
extension property, and the usual transversality theorems, we can assume
after a homotopy relative 0_W = K x S* of ¢ as a map of the pair (W, o, W)
to the pair (K x I x S*, K x 1 x S') that ¢ is transverse to K x I X z, that
@|0, W is transverse to K x 1 X z, and that if N = ¢o~(K X IX z), the restric-
tion of @ induces a homotopy equivalence of ON with K x oI x z. Let L =
K X z, z the basepoint of S!. Then from now on, we identify L x I and
K x I x z by the obvious map.

Let (W', ¢', F') also represent an element of Bj(K x I x S*v x S%.
Assume that 0_W’ = 0, W and that the composites of ¢ |0, W and ¢’ | 0_W'
with the natural projection of K x I x S*onto K x S*are equal. Also suppose
that F’'|o_W' = F|0,.W. We can take (W', ', F'), subject to these require-
ments, so that (W', ¢’, F') is any given element of L:(G x Z, w,), by Theo-
rem 1.1. As in the last paragraph, we can also assume that ¢’ is transverse
to L x I, that ¢’ | 0, W’ is transverse to L x 1, and that if N’ is the inverse
image of L x I under ¢’, then ¢’ restricts to a homotopy equivalence of oN’
with L x oI.

Let W be the union of W and W' with o, W and o_W"’ identified by the
identity map. Define ¢”": W"” — K x I x S*as follows; let h(x,t,y) = (x, t/2, y)
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and let k(x,t,y) = (v, 1/2(t + 1),y) if xisin K, t in I, and y in S*; then set
?"(u) = ho(w) if wis in W and set 9" (u) = ko'(u) if v isin W’. Let F” =

FU F’, a stable framing of (¢”)*(v x S*) @ tW". Then by Proposition 1.4,
OW"”, 9", F") = 0(W,p, F) + (W', ¢, F') .

Let h = @' |[0_W'. We can take ¢’ to be a composite of a map ¢|: W’ —
(0_W')xI and h x 1, where @{|0_W’' = id. Let v¥}: N’ — (6_N’) x I be the
restriction of @{. Let (W,, ,, F)) represent an element of B:(K x I x S,
v x 8') with ¢, |0_W,=1id and (W, ¢, F) = 6(W', @', F'). Let X =
(Kx[—-1,0] x SYUW U (@_-W'x I), with identifications along common
boundaries. Let W, =W, U W U (0_.W' x I) similarly. Let k(x, t) = (x, —t)
and let ¢,: W, — X, be ko, the identity, and ¢ on the respective summands.
Let F), be the union of appropriate framings. Then, as in 1.4, 6(W,, @y, Fy) =
0. We can assume, if necessary after prior modification, that 7,N — =, W is
identified by ¢ with the inclusion of G in G x Z. Then using [6, Th. 2.2] it
follows that a (W, @, F\) = ((k|3.N) x 1),0(N’, ¥, F'|N’), and so
a(K)(ﬁ( le Py Fl)) = ap( W,y ?’! F,)'

Hence to show that a(K) is additive, we must show that

a(W", ¢", F") = ay(W, 9, F) + ay(W', ', F') .
To see this, let N” be the inverse image of L x I under ¢”. Let «: N —
L xI,y":N"—L x I, and 4": N” — L x I be restrictions of ¢, ', and ¢’
respectively. Then N is the union of N and N’ with 6. N and 6_N’ identi-
fied by the identity, and " (xz) = hy(x) for # in N and equals k+v'(x) for x in
N'. Clearly F' | N” = (F'| N) U (F'| N’). Hence by Proposition 1.4
ON", 4", F" | N") = 0(N, , F| N) + 6(N', ', F" | N")

in L;_(G, w). But by definition of «,, this is just what we have to prove.
Hence a(K) is a well-defined homomorphism.

Every element of L’ (G, w) is of the form 6(N, v, F'), where (N, v, F)

represents an element of B:(K x I,v) with 0_N = K and +(x) = (z, 0) if = is
in K. We define i(K) by

W(K)(O(N, v, F)) = 6(IN, v, F] x SY).
(See Remark (1) above.) Using 1.4, it is easy to check that as a relation i(K)
is additive, and it is trivial that if (N, +, F') = 0, then 6 also vanishes on the
product of this triple with S*. Hence i(K) is a well-defined homomorphism.

It is trivial from the definitions that a(K)o+(K) = identity and that the
diagram in the statement of Theorem 5.1 commutes.

Remark. Given any tangential simple homotopy equivalence h: P**—K

14
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a procedure analogous to the above can be used to define a split epimorphism
a(K, h) of Li(G x Z,w,) onto L*_ (G, w) and a splitting 7(K, k) of this epi-
morphism. In particular a(K) = a(K, id) and #(K) = i(K, id). We do not know
in general whether or not a(K, k) and (K, k) are independent of #. However,
these maps are independent of the cobordism class of the tangential simple
homotopy equivalence k. (See also Remark 2, at the end of this section.)
The next step of the proof is to use the results of § 3 to define a map

B(K): ker a(K) — LYG, w) = L7 (K x I x I), w(K x I x I)).
Let
BE)NO(W, o, F)) = B(W, 9, F),

where (W, ¢, F') represents an element of B,(K x I x S*,v x S') such that
o_W=Kx8*, o(,y) = (x,0,y) for  in K and y in S*, and a,(W, ¢, F') = 0.
Again, it actually follows from [32, Thms. 5.8 and 6.5] that B(K) is well-
defined. However, this also follows once we prove that as a relation, B(K) is
additive, since by Proposition 3.2, 8, vanishes on (W, ¢, F') if 6 does.

The proof that B(K) is additive is similar to the proof that a(K) is addi-
tive, only slightly harder. Let (W, @, F) be as in the last paragraph. As in
the discussion of a(K), we can assume that ¢ and ¢ | 8, W are transverse to
L xTIand L x oI, respectively, and that the restriction of ¢ induces a homotopy
equivalence of d(p~'(L x I)) with L x 6I. Let (W', ¢, F') be such that
a,(W',o',F')=0,0_W'=0d6,.W x 2, p(x) and ¢'(x, 2) have the same first and
third components (their second components differ by unity) forall x ino, W, and
F(x) = F'(x, 2) for all z in 0, W. Once again, we can also assume that ¢’ and
@' | 0. W' are transverse to L x I and L x 1 respectively, and that the
restriction of ¢’ is a homotopy equivalence of d(p’~(L x I)) with L x oI. By
Theorem 1.1 we can insist, in addition to the above conditions, that (W, ¢, F)
and (W', @', F') be any two given elements of the kernel of a(K).
Let W” = Wu(o,.W x[1,2])U W', where 6, W is identified with o, W x1 by
the obvious map and o_W'’ with 0.W x 2 by the identity. Define
hix, t,y) = (x, (2 — 1)/8 + ¢/3,y) for ¢t =1,2,3 and for v in K and y in S*.
Now define ¢”: W” — K x I x S* by letting ¢”(y) = hp(y) if y is in W,
@"(u, t) = hy(pu,t — 1) if w is in 8, W and ¢ in [1, 2], and ¢"(y) = hy(p'(v)) if
y is in W'. Let F” = FU(F|o.W x [1,2])U F’, a stable framing of
P"*(v x S)YPctW”. Then

OW",¢", F") = 6(W,p, F) + 0(W', o', F) .

Similarly to the proof for «,, we want to show that

B(W", ", F") = By(W, p, F) + B(W', ¢', F) .
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Note that a,(W", ¢", F'"") = 0 because a(K) is a homomorphism.

If (W, @, F') is cobordant to (Y, n, G), there is a diffeomorphism of 0Y
with 0 W. For simplicity we consider 6W = Y. By Lemma 3.1 we can find
(Y,7,G) such that ¢ |0W:0W — K x 0I x S'and 7|0Y:0Y — K x oI x S*
are homotopic, F'|0W =G |dY,nand 7|dY are transverse to L x I and L x oI
respectively, and 7 restricts to homotopy equivalences of 6N with L x oI and
of Nwith L x I, N =»"(L x I). By definition,

Bg(Wy P, F) = 0(YA’y Ny Gl) .

Let (Y, 7/, G’) be cobordant to (W’, ¢’, F'') and have properties analogous to
those of (W, @, F')(i.e., add primes to the beginning of this paragraph). Now
let H:0.Y x [1,2] - K x I x S* be such that H(y, 1) and 7(y) have the same
first and third coordinates, H(y, 1) has zero as second coordinate, H(y, 2) and
7'(y, 2) have the same first and third coordinates, and H(y, 2) has second co-
ordinate one. (Recall that 0. W =d_W' x 2.) H is a simple homotopy equiv-
alence. Hence by [6, Th. 2.2](see [5, Cor. 2] also) we can suppose in addition
that H is transverse to L x I and that if M = H~*(L x I), H restricts toa
homotopy equivalence of M with L x I. By Lemma 3.2, it follows that H, is
also a homotopy equivalence.

Let Y” =Y U(0:Y x [1,2]) U Y’, with 0, Y identified with .Y x 1 in
the obvious way and 0_Y" identified with 0..Y x 2 by the identity. Define
7" Y" — K x Ix S*byletting 7”(y) = h(y) if yisin Y, 9”(y) = hH(y) if y is
ino,Y x[1,2],and 7"(y) = h'(y)if yisin Y'. LetG"=GU(G|0.Y xI)UG .
Let N” = 5”"~'(L x I). Then the restriction of 7” induces a homotopy equiv-
alence of N”” with L x I, and by definition

BAW", @, F") = 0(YL, 97, G) .

But we have that Y., = Y, U (0. Y x I), U Y}, with 0, Y, identified with
0_[(0.Y x I)y] = .Yy x 0 by the obvious map, and with o_Y/.(=(0_Y");_y)
identified to 0,[(0.Y x I),]similarly. Also, (K x I x S*),,, = K x I x I,and
son): Y, —-KxIxI. Ifxisin Kand sand ¢tin I, and if ¢ = 1,2, 3, let
ki, t,8) = (x, (1 — 1)/8 + t/3, s). Then 1//(y) = k.(y) if y is in Yy, 7 (y) =
k.H, (y)if yisin (0, Y x I)y, and 9/ (y) = k) (y) if y is in Y}.. Also, G} =
G,U(G|0,.Y x I), UG',. Hence by Proposition 1.4h

B(W",@", F") = 0(Yy, Nz, G) + 00+ Y X I)y, Hy, Ey) + 6(Y5, 75, GL)

where £ = G|6.Y x I. The middle term of the right side vanishes because
H, is a homotopy equivalence. This completes the proof that 8(K) is additive.
Hence B(K) is a well-defined homomorphism.

Now suppose that we are given an element ¢ of L:(G, w). Let (Q, v, E)
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represent an element of B:(K x I x I, v x I) with 6(Q, ¥, E) = . Then we
can suppose that 0Q = (K x 0 X ) U(K xIx dI)U0d,Q and +|(0Q — 0,Q) = id.
We can also suppose that if e: K x I x 0— K x I x1lise(x,t,0) = (x, ¢, 1).
Then e*(E|K x I x 1) = E|K x I x 0. Let P be obtained from @ by identi-

fying e(x, t, 0) with (z, ¢, 0), let : @ — K x I X S* be induced by +, and let
F be determined by E;i.e., set

(PL,¢L, F;) = (Qr"/’; E).

LEmMMA 5.2. Let 1l,: Li(G, w) — Li(G X Z,w,) be the map induced by
inclusion. Then 1, (&) = (P, ¢, F'), § and (P, ¢, F') as above.

The proof of this lemma is straightforward using the definitions in [32,
§5 and § 6] of (P, p, F). Also, there is a similar interpretation of the
inclusion induced map L%(G, w) — LG X Z, w,).

Let K, (G, w) be the kernel of a(K): L:(G X Z,w,)— L%:_ (G, w). Itisclear
from Lemma 5.2 and the definition of a(K) that a(K)-l, = 0. Hence we can
view [, as a map of L:i(G, w) into K, (G, w); L, is obviously a monomorphism.
To complete the proof we must show that [, is an epimorphism.

To see that [, is onto K, (G, w), let d be the composite

G, l
Ay w0) TE 136 w) 2 Koy w)
where 7(G, w) is the appropriate map in Rothenberg’s exact sequence (Propo-
sition 4.1). Using Lemma 5.2 the analogue of Lemma 5.2 for the groups L?,
and the naturality of Rothenberg’s exact sequence 4.1, it is easy to see that
we have the following commutative diagram.

An+1(G9 w) —_— An+1(G X Zy'wl)

¢ |
TG |
Ly(G, w) ¥
\\l*\ K.(G,w) ——— LG x Z, w,)
\\ B(K) l
LG, w) ——— LG X Z, w,)

AG,w) ——— A(G X Z,w)

Now let xe K,(G, w). Then by Proposition 4.1 the image of x in
A.(G X Z,w,) is zero. The lowest horizontal map in the diagram is a mono-
morphism. Hence by Proposition 4.1 again B(K) (x) is the image of some & in
L:(G, w). Hence B(K)(x —1,£) = 0. So we may as well assume to begin with
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that B(K)(x) = 0 as well as a(K)(x) = 0.
Now we state another elementary lemma.

LEMMA 5.3. Let (M,p, F') represent an element of B5(K x I x S't,v X S?')
with ¢ transverse to L and ¢ |oM todL. Let N = ¢~*L. If (P,+,G) 1is
obtained from (My, p,, F;) by an elementary cobordism, them (P, ,G) =
(M)y,, (@)1, (F)).), where (M,, p,, F) is the result of surgery (i.e., the top
end of an elementary cobordism of triples constructed) using an embedding
p:St*x D~*— M — N.

It follows from this lemma and from Lemma 3.1 that x = 6(M,p, F'); where
(M, p, F) represents an element of By(K x Ix S*, v x S'); where ¢ is transverse
toLand@|oM to 0L; and whereif o' L=N, p|0N:ON—OL,p| N: N—L, ¢,,:
(OM);y —0(K X I X 8%, and @,: M, — K x I x I are all homotopy equiva-
lences. It follows easily that ¢ itself is a homotopy equivalence. But then,
according to[6, Lem. 2.1], 7(p) € Wh (G X Z) is in the image of Wh(l): Wh(G)—
Wh(G X Z),1:G—G X Z the inclusion. (Infact, 7(p) is the image under Wh ()
of the difference 7(¢.) — 7(¢ | N). See[5, Th. 4] for a statement of the result
we are using in the absolute case.) On the other hand, 7(p) = (—1)"*'7(p)*
and by Proposition 4.6, if z is the element of A,,,(G x Z,w,) represented by
7(p), then ¥(2) = . So there is ¢ in A4,,,(G,w) whose image is z under the
map induced by /; and since the above diagram commutes, d(#) = x. Hence
= 0(p) =l oG, w)(p) = 1, (t) some teL;(G,w). This proves that
1.(Li(G, w)) = K,(G, w) and so completes the proof of Theorem 5.1.

COROLLARY 5.4. Let B,. (G, w) be the cokernel of the inclusion induced
map Lt (G, w)— L:, (G X Z, w)), and let C,, (G, w) be the cokernel of the in-
clusion tnduced map A, (G, w)— A, (G X Z, w,). Let L™ " be a closed smooth
manifold with (. L, wL) = (G, w) and let K™* be as in Theorem 5.1 (with
n=1T). Then there is a commutative diagram with exact rows and columns.

0 — L3u(G, w) — LG x Z, w) *L, LYG, w) —— 0
0 —— LA(Gy w) — LE(G X Z, w) — B,y i(G, w) —— 0
0 — A, ii(G, W) — A, i(G X Z, w) — Cpin(G, W) —— 0

v a(K
0— LG w) — LG X Z,w) L8 (G, w) — 0.
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Remarks. (1) Let C(G, id) be as in [3] or [24] and suppose it vanishes.
Then it follows from [5] that C,.,(G, w) = 0, and so from Corollary 5.4 we
recover the result announced in [24].

(2) In general the map «(K) depends on the choice of K. In fact, given
@G, this map really depends even on the way in which we identify 7, K with G.
One could conjecture that this is the worst that can happen; i.e., @(K) and
a(K') differ by an automorphism of L’_ (G, w) induced by an automorphism
of G with itself. We know of no way to prove this, however.

6. Five-manifolds with fundamental group Z

Let M be a closed, connected, smooth manifold. Then by a homotopy
smoothing of M we mean a simple homotopy equivalence h: K — M of closed
smooth manifolds. Two homotopy smoothings %2 and %’ are said to be con-
cordant if and only if there is a diffeomorphism f: K — K’ such that the fol-
lowing diagram commutes up to homotopy.

K
}\h
N
fl M
l /
W
K
This definition is due to Sullivan. We denote the concordance classes of
homotopy smoothings of M by AS(M). Our aim in this section is to determine
hS(M) for M a 5-manifold with fundamental group Z.
Let F', be the space of basepoint preserving homotopy equivalences of S*.
‘We can view F', as contained in F,,, by suspension. We can also consider the
proper homotopy equivalences of R* with itself as contained in F',; in parti-
cular O(k) € F,. If F is the direct limit of the F',, then the infinite orthogonal
group O is contained in F'. F'is an H-space under the Whitney sum construc-
tion, and this also induces an H-space structure on F/O. We have a fibration
F — F/O. In fact, there is an exact sequence

0 F F/O BO BF;

i.e., if X is a complex, the following sequence of abelian groups is exact.
[X, 0] — [X, F]— [X, F/O] — [X, BO] — [ X, BF] .

Here [ , ] means homotopy classes of maps. If X = S*, the first map is just
the J-homomorphism in dimension #; in fact 7, F = «,.,S*, k large. In parti-
cular, F/O is connected, 7,(F/0) = 0, n,F — 7,(F/O) = Z, is an isomorphism,
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Ty(F/0) = m(F/0) = 0, and 7(F/O) — 7, (BO) is a monomorphism (it sends a
generator to 24 times a generator).

A map of M into F/O can be viewed as an equivalence class of fibre-
homotopy trivializations of stable vector bundles over M; two such trivializa-
tions are equivalent if they differ stably a stable vector bundle equivalence of
the given vector bundles. This essentially amounts to viewing F/O as the
fibre BO—BF. The natural map [M, F/O] — [M, BO] can be interpreted as
assigning to each class trivializations the classifying map of the class of stable
vector bundles being trivialized.

Let h: K — M be a simple homotopy equivalence of closed smooth mani-
folds. They asin [28, § II], we can define 5(h) € [M, F/O], the “characteristic
F/O-bundle of »”. Namely, let & be large and choose an embedding of M
into K x R* which is homotopic to (g,0), g a homotopy inverse of h. Let v be
the normal bundle of this embedding, and let E(v) be its total space. Then
this embedding extends to a diffeomorphism ¢ of E(v) onto K x R* (see [28].
In the general non-simply connected case one must use engulfing or the dif-
ferentiable “weak h-cobordism theorem” infinitely iterated). Let 5(h) be the
homotopy class in [M, F'/O], i.e., the isotopy class of fibre homotopy trivializa-
tions of v, represented by the composite

Ew) — K x R* 0%,y e

It is not hard to see that n(k) depends only upon the concordance class of %,
and so we get a map
n: hS(M) — [M, F/O] .
Moreover, n(h) comes from [M, F'] if and only if v is trivial.
Our goal is to prove that if M is a closed, orientable five-manifold, with

fundamental group Z then 7 is a monomorphism carrying hS(M) bijectively
onto

S(M) = ker ([M, F/O] — [M, BO)) .

Note that [M, F/O]/S(M) is isomorphic to J(M), the fibre-homotopy equiv-
alence classes of vector bundles over M.

THEOREM 6.1. Let h: K — M be a homotopy equivalence of smooth orien-
table 5-manifolds with free abelian fundamental group. Then h is tangen-
tial; i.e., h*v(M) is equivalent to v(K), the stable normal bundle of K.

Proor. It suffices to show that & = tK @ h*(v(M)) is trivial. Stiefel-
Whitney classes are homotopy invariants of manifolds and W*(v(K)) = W*K)
by the Whitney product formula. Hence W*(&) = 0. Since HYM; Z) has no
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2-torsion by Poincaré duality, p,(v(M)) = —p,(M). By[6] or [21], the L-genus
L. (N*+') of smooth, closed, orientable (4k -+ 1)-manifolds is a homotopy in-
variant. Hence p,(K) = h*p,(M). Hence since H*K; Z) has no 2-torsion,
p.(3) = 0. (In general, if p is the total Pontrjagin class, (¢ P ) — p(p)p(T)
has order 2. See [16].)

Since ¢ is orientable and W*&) = 0, & can be framed over the 2-skeleton.
The obstruction to extending this framing over the 3-skeleton lies in
H¥M, 7,(SO)) = 0. The obstruction to extending to a framing over the 4-
skeleton vanishes because p,(§) = 0, by [9, Lem. 1.1]. Finally, a framing over
the 4-skeleton extends over M because H M; w(S0)) = 0.

THEOREM 6.2. Let M be a closed, connected, orientable smooth five-mani-
Sfold with 1 M = Z. Let n: hS(M) — [M, F/O] be as defined above. Then

Image 7 = S(M) = kernel ((M, F/O] — [M, BO]) .

Proor. That Imagen < S(M) follows from Theorem 6.1. On the other
hand, there is, for any smooth closed manifold M" of dimension at least five
an exact sequence of pointed sets

hS(M) —1 [M, F/O] —— Li(m,M, wM) .

This is due to Sullivan [28, § II]. (See also [32].) The map s is defined as fol-
lows. If 8e[M, F/O], choose a representative fibre-homotopy trivialization
H: E(v)— M x R*, k large and v a k-dimensional vector bundle over M. Let
v(B) =v(M) P &, where £ P v is trivial. Since H is a proper map, we can take
H to be transverse to M x 0 and such that K = H~(M x 0) is a closed sub-
manifold of E(v). Let ¢ be the composite

K—>Ew) 2% m,

p(v) the projection map of v. The map H pulls back a framing of M in M x R*
to a framing of K in E(v). Using this framing we can get a stable equiva-
lence of y(K) with v(E(v)) | K. But t(E(v)) is just p(v)*(z M @ v), and so we
get a stable equivalence of v(K) with ¢*(v(M) € &) and from this in turn we
can find a stable framing F of 7K @ ¢*v(8). We define

3(18) = 0(K’ P F) .

It is not hard to see that s is really well-defined. The proof that s—'(0) =
Image 7 is just a version of a standard argument about framed modifications
of submanifolds.

Thus to complete the proof of Theorem 6.2, it suffices to show that s
vanishes on S(M), M a closed, connected orientable five-manifold with 7, M =
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Z. But if Be S(M), v(B) = v(M). Hence we need only prove the following
lemma.

LEMMA 6.3. Let M be a smooth closed connected 5-manifold with funda-
mental group Z and stable normal bundle v. Let (N, ¢, F') represent an
element of By(M, v). Then (N, ¢, F') = 0.

Proor. Let CP? be complex projective space of two dimensions over
the complex numbers. Let u be the stable normal bundle of CP?, and
let G be a framing of z(CP?)@ u. Then F x G is a framing of
(N x CP) @ (p x id)*(v X u) = (tN @ ¢p*v) X (z(CP? & u), and

(N x CP*}p xid, F X G)

represents an element of By(M x CP? v x u). By [32, Th.9.9],0(N, o, F) =10
if and only if (N x CP% ¢ X id, FF X G) = 0.

If the universal covering space of M is of the homotopy type of a finite
complex, we can choose a fibration g of M x CP? over S* and then show that
a,(N x CP?* ¢ x id, F' X G) = 0; this would suffice. Since we are not assuming
this however, we have to work a little harder. Let g: M x CP*— S* be a
smooth map which induces an isomorphism of fundamental groups and which
has regular value z. Let L = g7*(2). By the arguments of [2, 3.1 and 3.2], we
can assume that L (and therefore also M x CP*— L) is connected and simply-
connected. Let @ be homotopic to ¢ and such that @ is transverse to L,
and let P = (@)'L. Then let +:P— L be the restriction of @. Then
0(P,+, F x G| P) = 0 is an element of Ly(e) = Z; in fact it is well-known that
(up to sign)

f# = 1/8 (index P — index L) .

However, v X u is the stable normal bundle of M x CP?, and so
(@)*(p(M x CP?) = p(N x CP?,

where p; now denotes the "™ rational Pontrjagin class. Letting ¢ denote the
appropriate inclusion maps,

P¥(p:L) = p¥i*p(M x CP?) = i*(P)*(p(M x CP?*) = i*(p(N x CP?) = py(P) .
Thus by the Hirzebruch formula, index P = index L and so 6§ = 0. It now
follows by Lemma 3.1 that (N x CP*¢ X id, F' X G) is cobordant to (N', o', F'),
where ¢’ is transverse to L and where if P’ is the inverse image of L under
@', @' restricts to a homotopy equivalence of P’ with L. Now 0(N;., ¢, H;)
is an element of L,(e) = 0. Hence, using Lemma 5.3 we can find finally

(Q, 9", E) cobordant to (N x CP?* ¢ x id, F' x G) such that ¢’ is transverse
to L and such that if R is the inverse image of L under ¢"”, ¢” | R: R — L and
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the map ¢7: @, — (M x CP?), are homotopy equivalences. But in this case @’
itself is easily seen to be a homotopy equivalence. Thus

O(N X CP*p xid, F x G) = 0(Q, 9", E) = 0.

Remark. By anargument similar to the argument in the last paragraph
of the preceding proof, one can show that if M is a closed smooth (4% + 1)-
manifold, £ = 2, with fundamental group Z and stable normal bundle », then
for every (N, @, F') representing an element of B,,,,(M, v), (N, ¢, F') = 0.

Next we try to show that »: hS(M)— S(M) is a monomorphism if M is a
smooth, closed, connected orientable five-manifold with fundamental group Z.

If M" is any smooth closed manifold, we say that two tangential simple
homotopy equivalences ~: K — M and &': K’ — M are tangentially cobordant
if there is a cobordism W of K with K’ and a map r: W — M such that » | K

and r | K’ are homotopic to 4 and %', respectively, and such that »*(c M) & 6
is equivalent to T W.

LEMMA 6.4. Let M" be a closed, connected smooth manifold, and let h
and h' be tangential homotopy smoothings of M. Then h and h' are tan-
gentially cobordant if and only if n(k) = n(h').

Remark. One can define tangential cobordism for any two homotopy
smoothings by replacing the stable tangent or normal bundle of M by a suit-
able vector bundle in the same fibre-homotopy class. The analogous result to
6.4 holds. However, we do not need this here.

The proof of Lemma 6.4, or even the more general version for arbitrary
homotopy smoothings, is straightforward. We remark only that if two maps
of M into F/O are represented by h,: E(v,)— M x R* and h,: E(v,) — M x R*,
k very large, then a homotopy between them is a proper map

H:Ew)xI— M x R*

such that H(x, 0) = h,(x), and such that there is a vector bundle equivalence
t: E(v,) — E(v,) with H(p(x), 1) = hy().

THEOREM 6.5. Let M be a smooth, closed, orientable five-manifold with
Sundamental group Z. Let h and h' be tangentially cobordant homotopy
smoothings. Then h and h' are concordant; i.e., there is a diffeomorphism
f: K— K' such that the following diagram commutes up to homotopy.

K

‘\h
f] \ﬂ[

L
b
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Proor. Let (W, r) be a tangential cobordism, and let f: W — [0, 1] be a
Morse function [17]. Let ¢ =(r, f). Choose a framing F'of W@ p*(v(M) x I)
and let 6 = (W, ¢, F). If 6 = 0, then we can modify ¢ by surgery to get a
homotopy equivalence, i.e., (W, @, F') is cobordant to (W', ', F') with ¢’ a
homotopy equivalence. In this case 6.5 follows from the s-cobordism theorem.

Suppose then that 6 = 0 in Ly(Z) = Z,. By Theorem 5.1, the inclusion
induced map Ly(e) — L¢(Z) is an isomorphism. On the other hand there is a
map ¢: S’ X S*— S° and a framing F, of 7(S*® x S°) @ ¢*¥(S° such that
6(S° x S* g, F) is the non-zero element of L,(e), (see [20]). It follows easily
that, by taking connected sum in the interior of W with this surgery problem,
we get a new problem with invariant zero. That is, if we take W =
W#(S*%x S, 0" =p#gW'->(MxI)#S*=MxI,and F" = F # F,,
then O(W"”, 9", F"") = 0. Now perform surgery to get a homotopy equivalence
and apply the s-cobordism theorem, as above.

Remark. In the last proof, one could also proceed by first observing that
the non-zero element of L,(Z) is represented by (H, \, ), where H is free
over Z[Z] on two generators e and f, Me, f) = 1, \(e, ¢) = M(f, f) = 0, and
pe)=pu(fy=1eZ,c A/I. (See §1.) If (W, », F) above is not zero, one can
suppose that ¢ is 3-connected and that (W, ¢, F') has associated (—1)-her-
mitian form (H, \, u), by [31]. Choose a regular framed immersion of S®in W
representing e. After adding a single self-intersection locally, one obtains a
new immersion of S*®in W which is regularly homotopic to an embedding of
S®in W. This of course destroys the framing, but since 7,(SO(3)) = 0, one
can find a new framing and perform surgery. Using the arguments of [10] or
of [31, Th. 3.3], it follows easily that the result is a homotopy equivalence.

THEOREM 6.6. Let M be a closed, conmected, orientable smooth five-

manifold with fundamental group Z. Then
N: hS(M) — [M, F/O]

s a monomorphism with image S(M) = ker ([M, F/O] — [M, BO]).

Proor. Immediate from 6.2, 6.4, and 6.5.

Next we give a way of estimating the size of [M, F/O]. Let¢c H¥F/0; Z,)
be the non-zero element. If ne[M, F/O], let v4(9) = *(c) e H¥(M; Z,). This
defines a homomorphism v,: [M, F/O] — HXM; Z,), since ¢ is primitive.

PROPOSITION 6.7. Let M be a smooth, closed, conmected five-manifold
with fundamental group Z*, the free abelian group on k generators. Then
Yu | S(M) is a monomorphism.

ProoF. Choose a handle decomposition of M with exactly k four-handles.
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This is possible by combining [31, Cor. 5.1.3] with some standard observations.
Let M(7) denote the union of the handles of dimension at most ¢. Suppose
b: M — F'/O represents an element of S(M) such that b*(¢) = 0 in H*(M; Z,).
Then (b| M(2))*c = 0 in H¥(M(2); Z,) and F/O is a K(Z,,2) as far as M(2), which
has the homotopy type of a two-complex, is concerned. Also, 7,(F/O) = 0. So
by the homotopy extension property and the covering homotopy property of
F — FJO, we can assume that b(M(3)) is a point. Let X = M(4)/M(3), and let
7: M(4) — X be the quotient map. Then X has the homotopy type of the
one-point union of k% 4-spheres, and it is straightforward to check that
7. H(M(4); Z) — H(X; Z) is an isomorphism.

Now b | M(4) has a factorization M(4) AN QELEN F/O. Let j: F/O— BO
be the natural map. Then (jcc¢),: H(X; Z) — H(BO; Z) is zero. Since the
Hurewicz map 7,(BO) — H,(BO) is a monomorphism (see [16] or apply [9, Lem.
1.1]) and since j,: 7(F/O) — n(BO) is a monomorphism, ¢,: 7,X — 7,(F/O)
vanishes. Hence c¢ is null-homotopic and therefore so is b|M(4). Since
7(F'/O)=0, Proposition 6.7 now follows.

Remark. v,(S(M)) is not always all of HXM; Z,). For example, if M =
St x CP* S(M) = 0.

COROLLARY 6.8. If M is a smooth, orientable, closed five-manifold with
Sundamental group Z, then the set hS(M) s finite and is bounded in size by
the number of elements of HX(M; Z,).

In particular 2S(S* x S*) = 0, and so every manifold of the same homotopy

type as S! x S*is diffeomorphic to S* x S*. In [25], we saw this implied the
next two results.

COROLLARY 6.9. Any h-cobordism of S* x S* with itself is a product.

COROLLARY 6.10. Let ¢: S®*— S*® be a smooth embedding. Then ¢ is
(ambient) isotopic to the standard inclusion S*C S® if and only if S® — »S?
has the homotopy type of a circle.

In a future paper, we intend to give more precise information on the
classification of 5-manifolds with fundamental group Z. We conclude this
section with the following result.

THEOREM 6.11. (Hauptvermutung for 5-manifolds with 7, = Z.) Let M
be a smooth closed orientable 5-manifold with 7.M = Z. Let h: K— M, K a
smooth manifold, be a topological homeomorphism. Then h is homotopic to
a diffeomorphism.

ProoF. By [28, Th. H](see also [23]), (k) is in the kernel of the natural
map [M, F/O] — [M, F/PL]. Since w,(PL/O) = 0 for ¢ < 5, it follows that
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n(h) = 0. Now apply Theorem 6.6.

Remarks. (1) Theorem 6.6 has a PL-analogue. It is proven using PL
non-simply-connected surgery instead of smooth surgery. From the PL
analogue of Theorem 6.6 it follows immediately that if »(2) = 0, & is homotopic
to a PL-equivalence.

(2) m,(PL/O)is also known as T';, the concordance classes of smoothings
of St. (See, for example, Lashof and Rothenberg, Microbundles and Smooth-
ing, Topology 3 (1965), 357-388.)

7. Five-manifolds with fundamental group Z@ Z or Z P Z,

In this section we briefly indicate what can be obtained from the methods
of §6 for manifolds with fundamental group Z@® Z or Z @ Z,. See [7] for
further results. If M",n =5, is a smooth, closed, connected n-manifold, then,
as suggested by 6.4, there is an action of L2, (7.M, wM) on hS(M) such that
n(x) = p(y) in [M, F/O] if and only if « and y are in the same orbit. (See, e.g.,
[32].) Suppose first that M is a closed, connected smooth five-manifold with
T M=Z® Z, If wM + 0, assume that w does not vanish on an element of
order two. Note that Wh (Z,) = 0. Hence by using Theorem 5.1, Proposition
4.1, and [33, Lem. 2], one can show that the inclusion induced map L) —

L{Z @ Z,, wM) is an isomorphism. Using this fact as in § 6 one can prove
the following.

THEOREM 7.1. Let M® be a closed connected smooth manijfold with
nM=Z& Z,. If M s non-orientable, assume that w(M) ts non-zero on an
element of order two. Then

n: hS(M) — [M, F/O]
18 @ monomorphism.
For fundamental group Z @ Z, we stay with the orientable case. Then
by using Theorem 5.1, a theorem of Rohlin, and the results (e.g., 6.1 and 6.7)
and methods of § 6, and the existence of an almost four-parallelizable mani-
fold of index 16, one can prove, for example, the following.

THEOREM 7.2. Let M = S* x S*' x S*. Then hS(M) s a set of four ele-
ments, and there exists a closed manifold of the same homotopy type as M,
but not diffeomorphic to M.
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