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T H E  RANK OF A FLAT MODULE1 

RICHARD T. SHANNON 

In  this paper i t  is shown that  flat modules are direct limits of free 
modules of finite rank. We say a flat module A has rank r if r is the 
least integer such that  A can be represented as a direct limit of free 
modules of rank r. The  flat modules of rank r are characterized. 

1. R is a ring with unit and module means unital right R-module. 
A directed system of R-modules (C, 8, D)  consists of a directed set D 
and a function which associates with each a E D  an R-module C, and, 
with each pair a ,  @ E Dfor which a $ P ,  a homomorphism 8:: C,--+CB 
such that,  for a<@<?in D, 8i8: =8,Y and, for each a E D ,  8: is the 
identity map on C,. If (C, 8, D) is a directed system of R-modules let 
K be the submodule of ZC, generated by {xu-8,8(x,) 1. The exact 
sequence O+K+2CU+A+O is called the exact sequence of the 
system. Clearly A is the direct limit of the system. 

DEFINITION1. A module K is said to be map-pure in C if K is a 
submodule of C and for each element k of K there is a map 8 from C 
to K with 8(k) =k. 

LEMMA1. If K is  map-pure in  C and k1, k2, . . ,k, i s  a$nite set of 
elements of K then there is a map from C to K which leaves k ~ ,k2, . . . , k, jixed. 

PROOF.Since K is map-pure in C, the lemma is true for n =  1. 
Proceeding by induction, let kl, k2, . . . , k, be a set of n elements in 
K. Let 8, be a map from C to K leaving k, fixed. Then kl-O,(kl), 
k2-On(k2), , k,-O,(k,) is a set of n-1 elements of K,  so by the 
induction assumption there is a map 8 from C to K which leaves them 
fixed. 

Now 1- (1 -8)(1-8,) = 1-1+8,+8-88,=8,+8-88, is a map 
from C to K and, since k, is in the kernel of 1-8, and, for i =  1, 2, 

. . ,n - 1, ki-8,(ki) is in the kernel of 1-8, i t  leaves k1, k2, ,k, 
fixed. 

PROPOSITION1. Let (C, 8, D) be a directed system of R-modules and 
let O+K+C+A-+O be its exact sequence. Then K is map-pure in C. 
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PROOF. I t  is sufficient to show that  each of the generators of K can 
be left fixed by a homomorphism from ZC,  to  K .  Let a, O E D  with 
a<p and let x,EC. Define+,: C,+K by +,(y) =y - O z ( y ) .  For y E D ,  
y # a ,  let 4,: C,+K be the zero map. This determines a map 4: Z C ,  
+K which leaves xu-Of(x,) fixed. 

If we restrict our attention to some family (2 of finitely generated 
modules and call a direct sum of modules from (2 a (2-free module, 
Proposition 1says that,  if A is a direct limit of (2-free modules, there 
is a n  exact sequence O+K+C--tA+O where C is (2-free and K is 
map-pure in C. In this context we have a converse. 

PROPOSITION2. Let (2 be a family of jinitely generated modules and 
let O--tK--tC+A+O be a n  exact sequence where C i s  &free and K i s  
map-pure in C. Then  A i s  a direct limit of copies of C. 

PROOF.Let the finitely generated submodules of K be indexed by 
a set D. For each a E D ,  let j,: C+C be such that  j ,  is the identity on 
K ,  and j,(C) =EQis a finitely generated submodule of K .  This is 
possible because K ,  is in a finitely generated direct summand of C. 
Define a partial ordering on D by a IP if and only if a = P  or Z Q C K a .  
This makes D a directed set since if a and /? are in Dl E,+& is 
finitely generated, say it is K,, and then a, /3 s y .  

For each a E D ,  let C, be a copy of C. If a S P ,  define e:C,--tCe by 

T o  see that  this forms a directed system, we note that if a<P<y and 
x E C ,  then j,jb(x) =js (x )  since j P ( x ) E & C K r  and so is left fixed by 
j,. Then 8zOl(x) =x - j s ( x )  -j,(x) +j,js(x) =x-j , (x)  =O,Y(x). 

For each a E D ,  let 8,: C,+A be the projection of C onto A. These 
maps commute with the directed system since 8&f(x)= (x - j s (x ) )  
mod K = x  (mod K )  =8,(x), for a!<@. T o  see whether A is the direct 
limit of this system we need only check two more things. First, that  
A is generated by the submodules 8,(C,) of A ,  which is trivial since 
each 8, is onto. Secondly, that if 8,(x) =0,  with x E C ,  for some a, 
then there is a p >a such that  O ~ ( X )=0.But the kernel of 8, is K so, 
if O,(x) =0,  x is in some finitely generated submodule K O of K. I f  
there is such a p with P>a, then O:(x) =x- jo(x)  = O .  Otherwise a is 
the final element in D so K =K ,  =Z,, and j ,  is projection of C onto 
its direct summand K .  In this case let { c<]be a sequence of copies 
C. Then A is the direct limit of the system 
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The following is due to  Villamayor [I]. 

PROPOSITION3. The  right R-module A i s  flat i f  and only if whenever 
O-+K+F+A+O i s  exact with F free then K i s  map-pure in F. 

COROLLARY1. Every flat module i s  a direct limit of free modules. 

PROOF.This follows from Proposition 2. 
Govorov [3] and Lazard [4] have also obtained this result. The  

following is a generalization of Theorem 2 in [4]. 

LEMMA2. Every module i s  a direct limit of finitely presented modules. 
Moreover, i f  A i s  a module and 6 i s  a family of finitely presented mod- 
olles then every m a p  from a finitely presented module to A factors through 
a module in 6 i f  and only i f  A i s  a direct limit of copies of modules in 6. 

PROOF.Let A be a right module and N a countable set. Let F be 
free on A XN. Map F to A by mapping each generator to its first 
component. Consider the set consisting of all pairs ( F I ,  K )  where I 
is a finite subset of A X N, FI is free on I and K is a finitely generated 
submodule of FI which maps to zero in A. Define a partial order by 
(FI,  K )  5 (FJ, L )  if and only if I C  J a n d  K C L .  This is clearly directed 
and A is the direct limit of the finitely presented modules FI/K,  
where the maps are all canonical. 

Suppose every map from a finitely presented module to A factors 
through a module in the family (P of finitely presented modules. Then 
for each (FI,  K )  we have a map FI/K+P, where P E P ,  and a map 
P+A such that (FI/K+P--+A)= (FI/K+A). Let O+H+G+P+O 
be a finite presentation of P. Let X I ,  . , x ,  be a basis for G and 
denote by pi the image of xi in P and by ad the image of p; in A. Let 
J be a subset of A XN,  disjoint from I ,  and consisting of, for each 
i= 1, . . . , n, an element with first component ai. 

The map from FJ onto P thus determined, together with the map 
(FI+P) = (FI-+FI/K+P), determines a map from FICB FJ onto P 
and the kernel L of this map is finitely generated since P is finitely 
presented. Also (FI$ Fj+P+A) = (FI$ Fj+A), so L maps to zero 
in A. Now P = ( F I $  Fj) /L and (FI,  K )  S (FTUJ,L )  so the system has 
a cofinal subset whose elements are isomorphic to elements of 6 and 
clearly A is the direct limit of this cofinal system. 

Conversely, suppose A is the direct limit of the directed system 
(P,0, D). Let O+H+ZP,+A-+O be the exact sequence of the system. 
Then, by  Proposition 1 ,  H is map-pure in P. For any (FI,  K )  let 
I =  { X I ,  . . . ,X ,  ] and let K be generated by xt,x;rij,j = 1 ,  . - - , m .  
Denote the image of xi  under FI/K+A by ai and let P i  map to ai 
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under 2P,+A. Then C:,, Pirij=kj is in H so there is a map 8: 2P, 
+H which leaves k ~ ,kz, . ,k ,  fixed. Map FI to ZP, by sending xi  
to pi-8Qi). We have 

n 

C (Pi - e(pi))rij = (1 - e)(kj) = 0, 
i-1 

so FI/K-+A factors through ZP,: 

(FI/K+A) = (FI/K+ZP, +A). 

The image of FI/K in ZP, is contained in a finite direct sum Pal 
+ . +P,,.Picky>al, .,a,. 
Then 

Therefore 

and FI/K+A factors through P,. 

COROLLARY2. Every flat module i s  a direct l imit  of free modules of 
finite rank.  

PROOF.If the flat module A is represented as a direct limit of a 
system of free modules, we can show as in the above proof that every 
map from a finitely presented module V to A can be factored through 
one of the free modules in the system. Since the image of V in this 
free module is finitely generated, the map also factors through a free 
submodule of finite rank. Now A is a direct limit of free modules of 
finite rank by Lemma 2. 

DEFINITION2. A flat module A has rank r if and only if it can be 
represented as a direct limit of free modules of rank less than or equal 
to r and r is the least integer which has this property. 

THEOREM2. A flat module A has rank less than or equal to r if and 
only if every finitely generated submodule of A i s  contained in a sub-
module of A which can be generated by r elements. 

PROOF.Suppose A is a flat module whose rank is less than or equal 
to r. Say A is the direct limit of the system (F,8, D )  where each Fa, 
aED, is free of rank less than or equal to r. Let B be a submodule of 
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A generated by bl, . . . ,b,. For each i,pick ai such that  biEO,,(F,,). 
Let a be larger than each a i ,  i= 1, . . . , n. Then B is contained in 
B,(F,), which can be generated by r elements. 

Conversely, let A be a flat module such that  every finitely gener- 
ated submodule is contained in a submodule of A which can be gen- 
erated by r elements. We show that  every map from a finitely pre- 
sented module to A factors through a free module of rank r and then 
the theorem follows from Lemma 2. 

Let V-+A be a map from the finitely presented module V into A. 
By Theorem 1of [4]  there exists a factorization V+F-+A of V+A 
through a finite free module F. Let B be the image of F i n  A. T h e  
module B is contained in a submodule B' of A generated by r elements 
bl, . . , b,. Let Ff -+B'  the map of the free module F' on XI, . . . , x, 
onto B', which maps x i  onto bi, i =  1, . . . , r. Since F'-+B1 is onto 
and F free, F-+B--tBf factors in F+F1+B'. Finally 

with F' free of rank r. This completes the proof. 
Clearly the rank of a finitely generated flat module A is p(A), the 

least number of elements required to generate A. If A is a finitely 
generated module over an integral domain R with quotient field Q, 
dimo(A 123RQ)$p(A), with equality only when A is free. Hence our 
definition of rank does not necessarily agree with the usual one when 
R is an integral domain. I t  is easy to see that  the two concepts do 
agree for flat modules of finite rank over principal ideal domains. 
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