

The Rank of a Flat Module

Richard T. Shannon

Proceedings of the American Mathematical Society, Vol. 24, No. 3. (Mar., 1970), pp. 452-456.

Stable URL:

http://links.jstor.org/sici?sici=0002-9939%28197003%2924%3A3%3C452%3ATROAFM%3E2.0.CO%3B2-G

Proceedings of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <u>http://www.jstor.org/journals/ams.html</u>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

THE RANK OF A FLAT MODULE¹

RICHARD T. SHANNON

In this paper it is shown that flat modules are direct limits of free modules of finite rank. We say a flat module A has rank r if r is the least integer such that A can be represented as a direct limit of free modules of rank r. The flat modules of rank r are characterized.

1. *R* is a ring with unit and module means unital right *R*-module. A directed system of *R*-modules (C, θ, D) consists of a directed set *D* and a function which associates with each $\alpha \in D$ an *R*-module C_{α} and, with each pair $\alpha, \beta \in D$ for which $\alpha \leq \beta$, a homomorphism $\theta_{\alpha}^{\beta}: C_{\alpha} \rightarrow C_{\beta}$ such that, for $\alpha < \beta < \gamma$ in $D, \theta_{\beta}^{\beta} \theta_{\alpha}^{\beta} = \theta_{\alpha}^{\gamma}$ and, for each $\alpha \in D, \theta_{\alpha}^{\alpha}$ is the identity map on C_{α} . If (C, θ, D) is a directed system of *R*-modules let *K* be the submodule of ΣC_{α} generated by $\{x_{\alpha} - \theta_{\alpha}^{\beta}(x_{\alpha})\}$. The exact sequence $0 \rightarrow K \rightarrow \Sigma C_{\alpha} \rightarrow A \rightarrow 0$ is called the exact sequence of the system. Clearly *A* is the direct limit of the system.

DEFINITION 1. A module K is said to be map-pure in C if K is a submodule of C and for each element k of K there is a map θ from C to K with $\theta(k) = k$.

LEMMA 1. If K is map-pure in C and k_1, k_2, \dots, k_n is a finite set of elements of K then there is a map from C to K which leaves k_1, k_2, \dots, k_n fixed.

PROOF. Since K is map-pure in C, the lemma is true for n=1. Proceeding by induction, let k_1, k_2, \dots, k_n be a set of *n* elements in K. Let θ_n be a map from C to K leaving k_n fixed. Then $k_1 - \theta_n(k_1)$, $k_2 - \theta_n(k_2), \dots, k_n - \theta_n(k_n)$ is a set of n-1 elements of K, so by the induction assumption there is a map θ from C to K which leaves them fixed.

Now $1-(1-\theta)(1-\theta_n)=1-1+\theta_n+\theta-\theta\theta_n=\theta_n+\theta-\theta\theta_n$ is a map from C to K and, since k_n is in the kernel of $1-\theta_n$ and, for $i=1, 2, \cdots, n-1, k_i-\theta_n(k_i)$ is in the kernel of $1-\theta$, it leaves k_1, k_2, \cdots, k_n fixed.

PROPOSITION 1. Let (C, θ, D) be a directed system of R-modules and let $0 \rightarrow K \rightarrow C \rightarrow A \rightarrow 0$ be its exact sequence. Then K is map-pure in C.

Received by the editor September 3, 1968 and, in revised form, January 29, 1969.

¹ The results of this paper are contained in the author's Ph.D. dissertation written at the University of Rochester under the direction of Professor Newcomb Greenleaf.

PROOF. It is sufficient to show that each of the generators of K can be left fixed by a homomorphism from ΣC_{γ} to K. Let $\alpha, \beta \in D$ with $\alpha < \beta$ and let $x_{\alpha} \in C$. Define $\phi_{\alpha}: C_{\alpha} \to K$ by $\phi_{\alpha}(y) = y - \theta_{\alpha}^{\beta}(y)$. For $\gamma \in D$, $\gamma \neq \alpha$, let $\phi_{\gamma}: C_{\gamma} \to K$ be the zero map. This determines a map $\phi: \Sigma C_{\gamma} \to K$ which leaves $x_{\alpha} - \theta_{\alpha}^{\beta}(x_{\alpha})$ fixed.

If we restrict our attention to some family \mathbb{C} of finitely generated modules and call a direct sum of modules from \mathbb{C} a \mathbb{C} -free module, Proposition 1 says that, if A is a direct limit of \mathbb{C} -free modules, there is an exact sequence $0 \rightarrow K \rightarrow C \rightarrow A \rightarrow 0$ where C is \mathbb{C} -free and K is map-pure in C. In this context we have a converse.

PROPOSITION 2. Let C be a family of finitely generated modules and let $0 \rightarrow K \rightarrow C \rightarrow A \rightarrow 0$ be an exact sequence where C is C-free and K is map-pure in C. Then A is a direct limit of copies of C.

PROOF. Let the finitely generated submodules of K be indexed by a set D. For each $\alpha \in D$, let $j_{\alpha}: C \to C$ be such that j_{α} is the identity on K_{α} and $j_{\alpha}(C) = \overline{K}_{\alpha}$ is a finitely generated submodule of K. This is possible because K_{α} is in a finitely generated direct summand of C. Define a partial ordering on D by $\alpha \leq \beta$ if and only if $\alpha = \beta$ or $\overline{K}_{\alpha} \subset K_{\beta}$. This makes D a directed set since if α and β are in D, $\overline{K}_{\alpha} + \overline{K}_{\beta}$ is finitely generated, say it is K_{γ} , and then $\alpha, \beta \leq \gamma$.

For each $\alpha \in D$, let C_{α} be a copy of C. If $\alpha \leq \beta$, define $\theta_{\alpha}^{\beta} : C_{\alpha} \rightarrow C_{\beta}$ by

$$\theta_{\alpha}^{\beta} = 1$$
 if $\alpha = \beta$,
= $1 - j_{\beta}$ if $\alpha < \beta$.

To see that this forms a directed system, we note that if $\alpha < \beta < \gamma$ and $x \in C_{\alpha}$ then $j_{\gamma}j_{\beta}(x) = j_{\beta}(x)$ since $j_{\beta}(x) \in \overline{K}_{\beta} \subset K_{\gamma}$ and so is left fixed by j_{γ} . Then $\theta_{\beta}^{\gamma}\theta_{\alpha}^{\beta}(x) = x - j_{\beta}(x) - j_{\gamma}(x) + j_{\gamma}j_{\beta}(x) = x - j_{\gamma}(x) = \theta_{\alpha}^{\gamma}(x)$.

For each $\alpha \in D$, let $\theta_{\alpha}: C_{\alpha} \to A$ be the projection of C onto A. These maps commute with the directed system since $\theta_{\beta}\theta_{\alpha}^{\beta}(x) = (x-j_{\beta}(x))$ mod $K = x \pmod{K} = \theta_{\alpha}(x)$, for $\alpha < \beta$. To see whether A is the direct limit of this system we need only check two more things. First, that A is generated by the submodules $\theta_{\alpha}(C_{\alpha})$ of A, which is trivial since each θ_{α} is onto. Secondly, that if $\theta_{\alpha}(x) = 0$, with $x \in C_{\alpha}$ for some α , then there is a $\beta > \alpha$ such that $\theta_{\alpha}^{\beta}(x) = 0$. But the kernel of θ_{α} is K so, if $\theta_{\alpha}(x) = 0$, x is in some finitely generated submodule K_{β} of K. If there is such a β with $\beta > \alpha$, then $\theta_{\alpha}^{\beta}(x) = x - j_{\beta}(x) = 0$. Otherwise α is the final element in D so $K = K_{\alpha} = \overline{K}_{\alpha}$, and j_{α} is projection of C onto its direct summand K. In this case let $\{C_i\}$ be a sequence of copies C. Then A is the direct limit of the system

$$C_1 \xrightarrow{1 - j_{\alpha}} C_2 \xrightarrow{1 - j_{\alpha}} C_3 \xrightarrow{1 - j_{\alpha}} \cdots$$

The following is due to Villamayor [1].

PROPOSITION 3. The right R-module A is flat if and only if whenever $0 \rightarrow K \rightarrow F \rightarrow A \rightarrow 0$ is exact with F free then K is map-pure in F.

COROLLARY 1. Every flat module is a direct limit of free modules.

PROOF. This follows from Proposition 2.

Govorov [3] and Lazard [4] have also obtained this result. The following is a generalization of Theorem 2 in [4].

LEMMA 2. Every module is a direct limit of finitely presented modules. Moreover, if A is a module and Θ is a family of finitely presented modules then every map from a finitely presented module to A factors through a module in Θ if and only if A is a direct limit of copies of modules in Θ .

PROOF. Let A be a right module and N a countable set. Let F be free on $A \times N$. Map F to A by mapping each generator to its first component. Consider the set consisting of all pairs (F_I, K) where I is a finite subset of $A \times N$, F_I is free on I and K is a finitely generated submodule of F_I which maps to zero in A. Define a partial order by $(F_I, K) \leq (F_J, L)$ if and only if $I \subset J$ and $K \subset L$. This is clearly directed and A is the direct limit of the finitely presented modules F_I/K , where the maps are all canonical.

Suppose every map from a finitely presented module to A factors through a module in the family \mathcal{O} of finitely presented modules. Then for each (F_I, K) we have a map $F_I/K \rightarrow P$, where $P \in \mathcal{O}$, and a map $P \rightarrow A$ such that $(F_I/K \rightarrow P \rightarrow A) = (F_I/K \rightarrow A)$. Let $0 \rightarrow H \rightarrow G \rightarrow P \rightarrow 0$ be a finite presentation of P. Let x_1, \dots, x_n be a basis for G and denote by p_i the image of x_i in P and by a_i the image of p_i in A. Let J be a subset of $A \times N$, disjoint from I, and consisting of, for each $i=1, \dots, n$, an element with first component a_i .

The map from F_J onto P thus determined, together with the map $(F_I \rightarrow P) = (F_I \rightarrow F_I/K \rightarrow P)$, determines a map from $F_I \oplus F_J$ onto P and the kernel L of this map is finitely generated since P is finitely presented. Also $(F_I \oplus F_J \rightarrow P \rightarrow A) = (F_I \oplus F_J \rightarrow A)$, so L maps to zero in A. Now $P = (F_I \oplus F_J)/L$ and $(F_I, K) \leq (F_I \cup J, L)$ so the system has a cofinal subset whose elements are isomorphic to elements of \mathcal{O} and clearly A is the direct limit of this cofinal system.

Conversely, suppose A is the direct limit of the directed system (P, θ, D) . Let $0 \rightarrow H \rightarrow \Sigma P_{\alpha} \rightarrow A \rightarrow 0$ be the exact sequence of the system. Then, by Proposition 1, H is map-pure in P. For any (F_I, K) let $I = \{x_1, \dots, x_n\}$ and let K be generated by $\sum_{i=1}^n x_i r_{ij}, j = 1, \dots, m$. Denote the image of x_i under $F_I/K \rightarrow A$ by a_i and let p_i map to a_i under $\Sigma P_{\alpha} \rightarrow A$. Then $\sum_{i=1}^{n} p_{i} r_{ij} = k_{j}$ is in H so there is a map $\theta: \Sigma P_{\alpha} \rightarrow H$ which leaves $k_{1}, k_{2}, \dots, k_{m}$ fixed. Map F_{I} to ΣP_{α} by sending x_{i} to $p_{i} - \theta(p_{i})$. We have

$$\sum_{i=1}^n (p_i - \theta(p_i))r_{ij} = (1-\theta)(k_j) = 0,$$

so $F_I/K \rightarrow A$ factors through ΣP_{α} :

$$(F_I/K \to A) = (F_I/K \to \Sigma P_a \to A).$$

The image of F_I/K in ΣP_{α} is contained in a finite direct sum P_{α_1} + \cdots + P_{α_r} . Pick $\gamma > \alpha_1, \cdots, \alpha_r$. Then

$$(P_{\alpha_1} + \cdots + P_{\alpha_r} \rightarrow A) = (P_{\alpha_1} + \cdots + P_{\alpha_r} \rightarrow P_{\gamma} \rightarrow A).$$

Therefore

$$(F_I/K \to A) = (F_I/K \to \Sigma P_{\alpha} \to A)$$
$$= (F_I/K \to P_{\alpha_1} + \dots + P_{\alpha_r} \to A)$$
$$= (F_I/K \to P_{\alpha_1} + \dots + P_{\alpha_r} \to P_{\gamma} \to A)$$

and $F_I/K \rightarrow A$ factors through P_{γ} .

COROLLARY 2. Every flat module is a direct limit of free modules of finite rank.

PROOF. If the flat module A is represented as a direct limit of a system of free modules, we can show as in the above proof that every map from a finitely presented module V to A can be factored through one of the free modules in the system. Since the image of V in this free module is finitely generated, the map also factors through a free submodule of finite rank. Now A is a direct limit of free modules of finite rank by Lemma 2.

DEFINITION 2. A flat module A has rank r if and only if it can be represented as a direct limit of free modules of rank less than or equal to r and r is the least integer which has this property.

THEOREM 2. A flat module A has rank less than or equal to r if and only if every finitely generated submodule of A is contained in a submodule of A which can be generated by r elements.

PROOF. Suppose A is a flat module whose rank is less than or equal to r. Say A is the direct limit of the system (F, θ, D) where each F_{α} , $\alpha \in D$, is free of rank less than or equal to r. Let B be a submodule of

1970]

A generated by b_1, \dots, b_n . For each *i*, pick α_i such that $b_i \in \theta_{\alpha_i}(F_{\alpha_i})$. Let α be larger than each α_i , $i = 1, \dots, n$. Then *B* is contained in $\theta_{\alpha}(F_{\alpha})$, which can be generated by *r* elements.

Conversely, let A be a flat module such that every finitely generated submodule is contained in a submodule of A which can be generated by r elements. We show that every map from a finitely presented module to A factors through a free module of rank r and then the theorem follows from Lemma 2.

Let $V \rightarrow A$ be a map from the finitely presented module V into A. By Theorem 1 of [4] there exists a factorization $V \rightarrow F \rightarrow A$ of $V \rightarrow A$ through a finite free module F. Let B be the image of F in A. The module B is contained in a submodule B' of A generated by r elements b_1, \dots, b_r . Let $F' \rightarrow B'$ the map of the free module F' on x_1, \dots, x_r onto B', which maps x_i onto b_i , $i = 1, \dots, r$. Since $F' \rightarrow B'$ is onto and F free, $F \rightarrow B \rightarrow B'$ factors in $F \rightarrow F' \rightarrow B'$. Finally

$$(V \to A) = (V \to F \to B \to B' \to A) = (V \to F \to F' \to B' \to A)$$

with F' free of rank r. This completes the proof.

Clearly the rank of a finitely generated flat module A is $\mu(A)$, the least number of elements required to generate A. If A is a finitely generated module over an integral domain R with quotient field Q, $\dim_Q(A \otimes_R Q) \leq \mu(A)$, with equality only when A is free. Hence our definition of rank does not necessarily agree with the usual one when R is an integral domain. It is easy to see that the two concepts do agree for flat modules of finite rank over principal ideal domains.

References

1. Stephen U. Chase, Direct products of modules, Trans. Amer. Math Soc. 97 (1960), 457-473. MR 22 #11017.

2. P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1959), 380-398. MR 21 #5648.

3. V. E. Govorov, On flat modules, Sibirsk. Mat. Ž. 6 (1965), 300-304. (Russian) MR 30 #4799.

4. Daniel Lazard, Sur les modules plats, C.R. Acad. Sci. Paris 258 (1964), 6313-6316. MR 29 #5883.

FORDHAM UNIVERSITY

http://www.jstor.org

LINKED CITATIONS - Page 1 of 1 -

You have printed the following article:

The Rank of a Flat Module Richard T. Shannon *Proceedings of the American Mathematical Society*, Vol. 24, No. 3. (Mar., 1970), pp. 452-456. Stable URL: http://links.jstor.org/sici?sici=0002-9939%28197003%2924%3A3%3C452%3ATROAFM%3E2.0.C0%3B2-G

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

¹Direct Products of Modules

Stephen U. Chase *Transactions of the American Mathematical Society*, Vol. 97, No. 3. (Dec., 1960), pp. 457-473. Stable URL: http://links.jstor.org/sici?sici=0002-9947%28196012%2997%3A3%3C457%3ADPOM%3E2.0.CO%3B2-J