
SPINES AND SPINELESSNESS 

BY 

JULIUS L, SHANESON 

A fundamental question in topology is the following: when can the embedding 

problem for manifolds be reduced to a problem in homotopy theory? This problem is 

especially interesting in codimension two, because of the possibility of non-locally 

flat points and the connection with knot theory. The new methods of [2] and [3] 

permit a systematic study of this problem. 

An important case of this problem (the "semi-local" case) is a question of the 

existence and classification of spines. Let W m be a compact piecewise linear 

(P.L.) manifold with boundary. A SPINE of W is a P.L. embedding ~ : M n ÷ W m, M 

a closed P.L. manifold, so that ~ is a homotopy equivalence. For example, W could 

be the total space of a bundle over M. Questions about the existence and classifi- 

cation of spines in codimension two will be the topic of this paper I . The results 

described here are part of some joint work with S. E. Cappell. 

If W m, m = n + 2, has any chance to have a codimension two spine, it must have 

the homotopy type of a closed P. L. n-manifold. 

THEOREM 1, Let h : M n ÷ ~+2, n ~ 3, be a homotopy equivalence, M and W 

compact, orientable P.L. manifolds, M closed. If n is even, assume that W is 

simply-connected. Then h is homotopic to a P.L. embedding. 

In general, a P.L. embedding ~ : M ÷ W, homotopic to h, will not be locally 

flat. For example, let X(W) E H2(W) be the restriction of the Poincar6 dual of 

h,[M], [M] an orientation class of M, and let ~ be the SO(2)-bundle with Euler 

class h*X(W). Let 

L ( h )  = L ( M ) L ( ~ )  - h * L ( W ) ,  

tin codimension > 3, all P.L. embeddings are locally flat and one has an existence 
theorem of Browder-Haefliger-Casson-Sullivan. For codimension i, one has the 
theorem of Hollingsworth and Galewski [5]. 
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L(M) = L(tangent bundle of M) = Total Hirzebruch L-genus of M, for example. Thus 

L(h) = 1 + L1(h ) + gz(h ) + .... 

where Li(h ) E H~I(M;Q). Let 

D : H j(M;Q) ÷ Hn_ j(M;Q) 

be Poincar~ duality. 

THEOREM 2, The homology classes DL.{h) must be represented by cycles of the 

subcomplex (in some triangulation) of non-locally flat points of ~, ~ any P.L. 

embedding homotopic to h. 

Under suitable (mild) restrictions on the cohomology of M, there exists an 

embedding with non-locally flat points of lowest dimension consistent with this 

requirement. 

Sometimes one can change the manifold M so as to reduce the set of non- 

locally flat points. One needs at least a homotopy equivalence f : M' ÷ M so that 

L(h°f) becomes as trivial as possible, and this is all one needs in many cases. In 

general, one needs f with a certain normal invariant determined by h : M ÷ W. 

The existence of homotopy equivalences with given normal invariants can be attacked 

using surgery theory [I] [8]. For example, if W n+2 is simple connected and has 

the homotopy type of an n-manifold, then it has a locally flat spine, n odd, and a 

spine that has at most one non-locally flat point, n even I . (If n # 4, one need 

only suppose W a finite PoincarG complex of dimension n, since any such is homo- 

topy equivalent to a manifold [i].) 

On the other hand, there are many examples where any spine must be very far 

from locally flat. For example, there exists W n+2, with a torus T n = S1x...xS l 

as spine, so that any spine ~ : z n ÷ W n+2 will have non-locally flat points of 

dimension (n-2). 

These results are all proven in [3] by combining the theory of homology equiva- 

lent manifolds [2] with some pure P.L. topology and some homotopy theory (similar to 

that used by Sullivan in his "characteristic variety theorem"). Here we will dis- 

cuss in more detail the following result, which is in strong contrast with Theorem i. 

THEOREM 3, Let ?~ be a closed connected P.L. manifold. Suppose ~IM is a 

.finite group that has a central subgroup with a non-trivial abelian quotient (e.g., 

~IM non-trivial abelian). Assume n ~ 4 is even. Then there exist infinitely 

many manifolds W, simply homotopy equivalent to M, with X(W) = O, that have no 

spines whatsoeverJ 

IA result of Kato-Matsumoto. The most conceptually direct proof of this result is 
to apply the codimension 2 splitting principle of [2, §8]. 
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Thus, in even dimensions, one finds totally spineless manifolds of the right 

homotopy type as soon as the fundamental group becomes non-trivial. One can conjec- 

ture that this result holds for every finite fundamental group. An elaboration of 

the proof to be outlined below will also give some examples of total spinelessness 

for infinite fundamental groups. Of course, if W n+z has not even the homotopy 

type of a P.L. n-manifold, it will fail to have a spine; examples of this type are 

quite easy to construct. Also, it is not hard to construct examples with X(W) ~ 0. 

To construct the examples of Theorem 3, we first define an invariant. Let W n+2 

be a compact oriented P.L. manifold, and 

h : Mn+w n+2 

a ( s i m p l e )  h o m o t o p y  e q u i v a l e n c e ,  M i s  c l o s e d  o r i e n t e d  P . L .  m a n i f o l d .  We s u p p o s e  

t h a t  X(W) = O. ( A c t u a l l y ,  f o r  t h e  n e x t  p a r t  o f  t h e  d i s c u s s i o n ,  M n e e d  o n l y  be  an  

oriented finite Poincar6 complex.) Then there exists a map 

f : (W,$W) ÷ (MxD2,MxS ~) , 

which has the following properties (compare [3, 1.6]). 

(i) f has degree one and induces an isomorphism on homology groups with local 

coefficients in ZgiW; and 

(ii) foh is homotopic to the inclusion M c M x D 2. 

(It follows that if h is a simple homotopy equivalence, then f is a simple homo- 

logy equivalence over Z~IW. ) Furthermore, if zIW, or even just its abelianization, 

is finite, then f is unique up to homotopy. 

Let ½D 2 C D z be the disk of radius ½. We may assume that f is transverse 

r e g u l a r  

normal 

Let V 

so that 

to M, and that flf-1(Mx½D 2) is a bundle map. Let b : VW ÷ ~' VW = 

bundle of W, be a stable bundle map covering the homology equivalence f. 

be the closure of W - f-i(Mx½D2), and write M x S ~ x [0,I] = M x (D2-½D2)~ 

M x S I = M x S I x O. Then we have a normal map (fIV,blV), 

f]V : (V,~_W = ~W,~+V) -~ M x S I x ([0,i],0,I) , 

which induces a simple homology equivalence over ZZlM on 

Let ~ be the diagram 

z[h(M×s~)] il 
+ id 

Z[~I(M×Sl)] + 

where the unlabelled maps are induced by the projection on 

homology surgery obstruction 

~W. 

Z[~I(M×Sl)] 
+ 

Z~IM , (ZG=integral group ring of G.) 

M. Then by [2, §3], the 
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~(f[V,blV ) E rn+2(~) s - 
= rn+2(¢) , 

or ~(flV,blV) ~ r h l~) 
n+2 

if h was not a simple homotopy equivalence, is defined. 

Let ~IW = 7. Then h, : ~IM ÷ ~ induces a map $+ ~, ~ the diagram 

z[~ × z] ÷ z[~ × z] 
+ + 

z[~ × z] + z[~] , 

and s o  also a map 

h, : rn+ 2(~) ÷ Fn+ 2(~) . 

DEFINITION,  ~(W) = h . ( ~ ( f I V , b l V ) )  e Fn+2(¢~ ) .  

( I f  W has only  the  homotopy type  of  a P.L. man i fo ld ,  

If both are defined, then ~h(w) is clearly the image of 

PROPOSITION, The invariant a(W) (resp ah(w)) 

upon the choice of a simple homotopy equivalence 

dimensional manifold or Poincar~ complex. 

we get ~h(w) E Fhn+2(~)" 

~(w) .) 

depends only upon W and not 

(homotopy equivalence) to an n- 

This is not hard to check. This invariant can be thought of as an obstruction 

to the existence of a locally flat spine. 

NOTE, If the assumption X(W) = 0 is dropped, one obtains an invariant in a 

F-group of a diagram 

z[~s(~)] ÷ z[~s(~)]" 

¢~,X (w) : + + 
z[~is<~) ] ÷ z~Iw, 

an SO(2)-bundle over W with Euler class X(W). 

DIGRESSION, Suppose W n+2 has the simple homotopy type of the finite 

Poincar6 complex X n. Let ~ be as above. Let f : X + W n+2 be a simple homotopy 

equivalence. Then ~ = f*(WWe~ ) is a reduction of the Spivak normal fiber space of 

X to a linear bundle. By transversality (see [i] [8]), this determines a surgery 

obstruction o(W) E L~(z) (or L~(~) if one drops the adjective "simple"), the 

Wall group of z. This vanishes if and only if X is simple homotopy equivalent to 

a manifold in a way that induces the same reduction of ~ to a linear bundle. By 

inducing over the circle bundle S($) (e.g., take xS I if X(W) = 0), we obtain 
T 

p~(o(W)) E Ln+I(~I(S(~)). There is also a natural homeomorphism [2, §3] 

: Fn+2(~]I,X(W ) ) -> Ln+I(~I(S(~)) • 
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PROPOSITION, pE(s(w)) = as(w). 

COROLLARY , I f  X(W) = 0 and as(W) = O, then f o r  n h 5, W n+2 has the 

homotopy type of a closed P.L. n-manifold. 

! ~ L s (~xZ) is a The corollary follows from the proposition as p~ : L (7) ÷ n+l 

monomorphism if $ is trivial [7]. One can make a more careful analysis of when 

W n+z has the (simple) homotopy type of a manifold, using surgery and the theory of 

homology equivalences of [2], and give many examples which are not of the homotopy 

type of any manifold. 

To construct our examples for Theorem 3, we use the next result: 

THEOREM 4, Let M n, n h 5, be a closed orientable P.L. manifold, with 

= ~IM finite. Let y E rn+z(~), with 9y = O. Then there exists a compact 

orientable P.L. manifold ~+z, simple homotopy equivalent to M, with X(W) = O, 

and ~(W) = y. 

h 
Similarly, one can realize elements i f l  Fn+2(~) by (n+2)-manifolds homotopy 

equivalent to W. The idea of the proof is as follows: From [2, §3], we have the 

exact sequence 

L s (~×Z] [~xZ] Z~) n+2 ÷ Fn+2[Z ÷ 

Therefore y = i,y I . Let 

be the natural map. Since 

may suppose that J*YI 

i. 
÷ F2+n(@w) ÷ LSn+1(wxZ) . 

j, : Fn+z(Z[~xZ ] ÷ Z~) ÷ L:+2(~) 

L~+2(~xZ ) ÷ L~+2(~ ) i s  surjective, by functoriality, we 

= 0. Hence YI = ~IY2 , 

[ Z[~×Z] ÷ Z~ ] 
: r s + + ÷ rn+2(Z[w×Z ] + Z~) n+3 

ZZ + Z~ 

again by [3, §3]. 

By the realization theorem [2, 3.4], Yl can be realized as the homology sur- 

gery obstruction of a normal cobordism of the identity of M × D 2 to a simple Z~- 

homology equivalence 

h : (W,~W) ÷ (MxD2,M×S I) , 

that induces isomorphisms of fundamental groups. In particular, W is simple homo- 

topy equivalent to M (but ~W is not necessarily homotopy equivalent to M x Sl). 

Using various naturality, additivity, and cobordism invariance properties of homo- 

logy surgery obstructions, one can show that s(W) = Y. 
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PROPOSITION 5, Let ~ : ~ ÷ W n+2 be a P.L. embedding of M as a spine. 

Let W' be a regular neighborhood of ~(M). Then a(W') = a(W). 

This can be proven using the definition, additivity properties of homology 

surgery obstructions, and Poincar~ duality. 

Next, recall from [3] the classifying space BSRN 2 for oriented codimension 

two regular neighborhoods, and, more especially, the fiber G2/RN 2 of the natural 

map 

× 
BSRN 2 ÷ BSO 2 

for the associated SO(2)-bundle. A mapping M + G2/RN ~ gives an embedding M C W n+2 

as a spine, so that W is actually a regular neighborhood of M in itself, with 

X(W) = O. Hence a(W) E Fn+2(#~iM ) and ~h(w) are defined, ~IM finite. Given a 
g 

map M ÷ K(~,I), g,~(W) c Fn+2(~ ) . In this way we obtain a homomorphism (~n = 

oriented hordism). 

o = ~n : an  (G2/RN2 x K ( ~ , I ) )  ÷ F e n + 2 ( ~ ) '  e = s , h  

5urther, if w is trivial, ~ is just the splitting invariant defined in [3, §2]. 

Therefore, if Fn+2(~ ) is the quotient of Fn+2(#~) by the image of Fn+2 (~0) 
u n d e r  t h e  n a t u r a l  map i n d u c e d  by t h e  i n c l u s i o n  o f  t h e  t r i v i a l  g roup  i n  7 ,  t h e n  

i n d u c e s  

~e 
: Qn (Gz/RN z x ( K ( z , 1 ) , p t ) )  ÷ F n + z ( ¢ ~ ) ,  e = s , h  . 

PROPOSITION 6, If ~ is finite, then ~n(Gz/RN 2 x (K(Z,1),pt)) 

sion group. 

is a tor- 

PROOF, Apply the Kunneth formula for homology and the spectral sequence re- 

lating homology and oriented cobordism. 

PROPOSITION 7, Let ~ be a finite group. Let n be even. Suppose ~ has 

a eentral subgroup with abelian quotient. Then there is an element X 6 F~+2(t~) , 

with 9X = O, whose image in ~n+2Ct~) has infinite order. 

This will imply Theorem 3. For, by Theorem 4, we can construct Wk, homotopy 

equivalent to a given M, with X(Wk) = 0 and ~(W) = ky. By Proposition 6 and 

Proposition 5, if W k had a spine, then the image of kY would have to have finite 

order modulo rhn+2(~0 )" But by [2, Appendix I], Fn+zh (~0) and FSn+2(~2 ) are iso- 

morphic modulo 2-groups. 

To prove Proposition 7, recall the exact sequence 
6 

Ln+2(Z[~×Z]) ÷ Fn+z(Z[~×Z ] + Z~) + Fn+z(~) . 
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Let j, : Fn+z(Z[~xZ ] ÷ Z~) ÷ Ln+2(~ ) be the natural map. We will construct an 

element 

p • rn+2(Z[~×z ] ÷ Z~) 

with the following properties: 

Ci) p is of infinite order; 

(ii) j,p = 0; and 

(iii) ~,p = O, where ~, is induced by the map ~ : ~ ÷ ~0 

x Z ÷ Z. 

The image of p in Fn+2(¢~ ) will be the desired element. 

Fn+z(#0 ) c Fn+2(~ ) (inclusion via the natural map). 

We have the diagram 

i nduced  by 

For suppose  6(kp) • 

0 0 0 0 

+ + + + 
¢ 

Ln+2(Z) ÷ Fn+2(Z[Z]+Z ) ÷ r n + z ( ¢  O) ÷ Ln+I(Z) 

++g. ++ ++B, +¢ 

Ln+2(~xZ ) ÷ rn+z(z[g×z]÷zg ) + Fn+z(¢g)  ÷ Ln+l(Zx~ ) 

The rows are exact, by [2, §3], the maps from top to bottom, which can be thought of 

as inclusions, are induced by the natural induction Z c ~ x Z, and the maps the 

other way by projection z x Z ÷ Z. So we must have that 

k p = T + p ,  

T e Fn+z(Z[Z ] ÷ Z) ,  and p i n  t h e  image o f  Ln+2(~xZ ) ,  a ssuming  6(kp) e Fn+l($o ) . 

NOW, 

0 = g , ( k p )  = Z + g~.~ , by ( i i ) .  

So • is in the image of ¢, and hence 6(kp) = O. Therefore kp is the image of 

an element in Ln+2(Zx~ ) whose image Ln+2(~ ) is trivial, by (ii). By [7], this 

element is in the image of the map 

L h (~) + L s (~xZ) 
n+l n+2 

given by taking products with S I. But L~+I(~) is a torsion group, n even (see 

[9], for example), contradicting (i). 

To construct p, we have two cases: 

CASE i, n ~ 2 (rood 4). If g E ~ and t is a generator of Z (multiplica- 

tively), set 
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A 
g 

= [ N(t+t-l-2) 1 I 

1 g+g- l -2  , 

a matrix over Z[zxZ], N to be specified later. A is easily seen te represent an 
g 

element 

pg e rn+2(Z[~×Z ] ÷ Z~) 

that satisfies (ii) and (iii). We want to show it has infinite order. 

Suppose first that ~ has a surjective homomorphism m : ~ ÷ Z to a cyclic 
P 

group; this will be the case if ~ has non-trivial abelian quotient. The induced 

homomorphism on F-groups carries pg to p~(g), so it will suffice in this case to 
th 

take w = Zp and g a generator. Let ~ be a primitive p root, and consider 

the homomorphism 

Z[Zp x Z] ÷ Q(~) c C = complex numbers 

that carries g and t to ~. Thus a Hermitian form over Z[Zp x Z] gives a 

Hermitian form over the complex numbers, which will be non-degenerate for a form 

representing an element of Fn+z(Z[ZXZp] ÷ Z[Zp]). Using the fact that our homomor- 

phism factors through the semi-simple ring Q[ZpXZp] which still has an augmenta- 

tion map to Q (unlike Q(~)), one can show that a form representing zero in 

Fn+2(Z[ZpXZ ] ÷ Z[Zp]) becomes a hyperbolic form over the complex numbers. Hence 

from the signature map for Hermitian forms over C, we obtain a homomorphism 

rn+2(z [z  p x z] + Z[Zp]) ÷ z . 

I f  (~ + ~-1 -2)N > 1, t h i s  i n v a r i a n t  w i l l  have va lue  (-2) on the  element  pg, which 

will therefore have infinite order. 

In the case when ~ only has a central subgroup ~', with non-trivial abelian 

quotient, one argues using the transfer homomorphism 

rn+2(z[zxg]  + z [~] )  ÷ r n + z ( z [ z x ~ ' ]  ÷ z [ ~ ' ] )  

to reduce to the preceding case. 

CASE 2 ,  n z 0 ( 4 ) .  

sider a cyclic group Z . 
P 

g a g e n e r a t e r  of  ~ = Zp. 

We argue similarly. Again it turns out to suffice to con- 

If p ~ 2, we use the form 

I (g-g-1)N 1 1 

- I  t - t  -1 , 

Pass ing  to  Q(~) c C, we ob t a in  a skew Hermi t ian  form, 
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which, after multiplying by 

I f  N is chosen so that 

For p = 2, we u s e  

~, becomes the Hermitian form 

(-2Nsin@ i ] 

-i -2sin@ 

(4Nsin2@ - i) > 0, this form will have non-zero index. 

N(g+g 1)(t-l-t) 1 ] 

-i t-t -I , 

and map g E Z2, the non-zero element, to (-i) and t to cos2~/3 + i sin2~/3. 

This mapping factors through Q[Z2 x z3 ] = Q[Zs] , and we again see that the result 

will have non-trivial index for N large enough. 
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