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OBSTRUCTIONS TO THE IMBEDDING OF A COMPLEX
IN A EUCLIDEAN SPACE.

I. THE FIRST OBSTRUCTION

By ArNoLD SHAPIRO
(Received January 8, 1955)
(Revised June 20, 1956 and November 20, 1956)

1. Introduction

The purpose of this paper is to develop a theory for the obstructions to find-
ing an imbedding of a complex in euclidean space, following the standard pro-
cedures of the obstruction theory for the homotopy problem.

In 1932, van Kampen (see [1]) stated the results for the imbedding of an
n-complex in euclidean 2n-spgce which, considering the fact that neither
cohomology or local coefficients had yet been invented, are essentially the same
as those contained in Part I of this paper. Unfortunately, his proof had a lacuna
which he himself noted. Whitney, in 1944 (see [2]), while stating results only for
manifolds, supplied the geometrical procedure which is needed to prove a more
precisely stated version of van Kampen’s theorem. Paragraphs 5 and 6 will be
devoted to an exposition of Whitney’s procedure in a form suitable for its applica-
tion to the case of the second obstruction also.

Part I treats the first obstruction and serves as an introduction and model
for the higher obstructions. The main results characterize the first obstruction
to the imbedding of an n-complex, K, in euclidean 2n-space in terms of the
cohomology of the symmetric product of K minus the diagonal, and show that
the vanishing of the first obstruction is necessary and sufficient for the existence
of an imbedding of an n-complex in E?* for n = 3.

Part II discusses the higher obstructions and treats the second obstruction in
detail. Its main result is the proof that for n = 5 a necessary and sufficient
condition for the existence of an imbedding of an n-complex in E?*! jis the
vanishing of the first and second obstructions.

It should be noted that while the restrictions on dimension for the validity
of the imbedding theorems quoted above may not be necessary, removing them
is probably not easy since the Poincaré conjecture that a compact simply con-
nected 3-manifold is a three sphere follows from the above imbedding theorems
forn = 2.

Part IIT contains computations for applying the imbedding theorems, examples,
and some general discussion of related problems.

2. The deleted product

The deleted product X* of a topological space X is the subset of the cartesian
product of X with itself consisting of pairs of distinct points. The mapping
256



IMBEDDING OF A COMPLEX 257

T(x, y) = (y, x) of X* into itself is then fixed point free. 7' will be called the
antipodal map and the decomposition space under T' will be denoted by X*.
If K is a simplicial complex then K* will denote the subcomplex of the cell com-
plex, K X K, consisting of products of pairs of simplices having no vertex in
common. The antipodal map T: K* — K* is then a cell map and the induced
map T* on cochains has the property

T#f(zrp X 1) = (=DPf(* X o")

where ¢ X 7 has an orientation induced from the orientations of ¢ and 7. The
cohomology of the decomposition complex K* can, for our purposes, be most
conveniently described in terms of equivariant cohomology on K*. That is,
we will consider the group CP(K*, I) of integral p-cochains on K* to be the sub-
group of C?(K*, I) consisting of those cochains, f, with the property T*f = f.
We will also need the cohomology of K* with coefficients in a certain system of
local coefficients that we will denote by Ir and call “twisted integer” coefficients.
The group of cochains C?(K*, Ir) will be the subgroup of C*(K*, I) of those
cochains, f, satisfying T*f = —f. In both cases the following coboundary formula
is well known:

8f(a” X %) = f(30® X ") + (= 1)’f(e" X a77).

ReMARk. In the symmetric product of K, K* is the complement of a ‘“nice”
neighborhood of the diagonal. It should be noted that the homotopy type of
K* is not an invariant of the homotopy type of K. As a result, the homology
groups of K* (or of K*) may serve to distinguish some spaces with the same
homotopy type. This is the case, for example, with the point, the line segment,
and the space that looks like a Y.

LemMa 2.1. Let | K | denote the underlying space of the complex K, then | K* | is
a deformation retract of | K |* and | K* | is a deformation retract of | K |*.

Proov. If the vertices of K are indexed then each point p of K has barycentric
coordinates x;(p) where z;(p) is a number between 0 and 1 and > zi(p) = L.
The indices, 7, for which z;(p) 0 are the indices of the vertices spanning the
open simplex containing p. For a pair of distinct points, p, ¢, of K let B(p, @)
be the projection of p on the face of the simplex containing p spanned by those
vertices, v; , for which z;(p) > x.(g). By projection we mean that the non-zero
coordinates of B(p, ¢) have the same ratios as the corresponding coordinates of p.

The required retraction h: | K |* X I — | K |* can then be written

h(p, g, ) = (1 — )p + 1B(p, 9), (1 — t)g + t8(q, P)).

Since h commutes with 7', both parts of the lemma follow.

As a corollary we have

ProposITiON 2.2. The homology and cohomology groups of K* are topological
tnvariants of | K |.
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3. The first obstruction to an imbedding

An imbedding of the complex K in euclidean r-space, E’, is a one-to-one,
continuous map of K in E’. Although in order to produce an imbedding we will
have to use very smooth maps, for the purpose of defining the first obstruction
it will be sufficient to require of a map only that it be proper in the following
sense:

DeriniTION 3.1. A continuous map, f, of K into E" will be called proper if
f(a®™") and f(+"7) are disjoint whenever ¢ and + have no vertex in common.

This definition is designed to insure the existence of the intersection number
of the singular simplices formed by the images of disjoint cells of K of comple-
mentary dimensions. We shall denote the intersection number of f(¢”) and
f(=%) in E" by f(¢”) A f(+%). Note that this presupposes a choice of orientation
in E£” which we make once and for all. The following well known properties of
the intersection number will be needed:

f(@®) A f(7%) = (=D"f(z*) A f(o")
f30") A f(r°) = (=1)*f(e") A f(a7%).

For each proper map, f, of K into E" we define a cochain, m; of K* with in-
tegral coefficients as follows:

my(a® X 1) = (=1)(") A f(+9) +qg=r).
Lemma 3.2. T*m] = (—1)'m} .
Proor. Let p + ¢ = r, and m; = m’

T*m'(a" X 7%) = (=1)"'m’(r* X o”)
= (D" A f(o”)
= (1) A f()
= (—=1)'m' (" X ).
Thus mj is a cochain of K* with integer coefficients if 7 is even, and with twisted
integer coefficients if r is odd.
Lemma 3.3. ém; = 0.
Proor. Let p + ¢ = r 4+ 1, m" = m} then
am’(a® X 1) = m'(@e® X %) + (—1)"m(¢® X 379
= m'(9c" X 1) + (=1)*"7f(e") A f(67")
= (=1)%(3s") A f(=*) + (=1)""f(3s") A f(+)
= 0. .
Lemma 3.4. Suppose that K, is a subcomplex of K, , f» a proper map of K, in

E’, and fy is the restriction of f; to K . Let j be the inclusion of KT in K3 . Then
T T
mg, = J"My, .
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The proof is a straightforward verification.

LeEMMA 3.5. The cohomology class of m; in H'(K*) is independent of f.

Proor. Let f and ¢ be two proper maps of K in E". The invariance of the inter-
section numbers under small deformation implies that any map, f’, sufficiently
close to f will have the property m; = mj . Thus it is possible to find two maps,
f and ¢, such that:

(a) f" and ¢’ are barycentric maps defined on the same subdivision, K’ of K.

(b) mj = mj and my = m, .

(¢) The images of the vertices of K’ under both f and ¢’ are in general position

together.
Then f” and ¢’ together will define a barycentric mapping of a standard sub-
division of K’ X I, f/ mapping the vertices of K’ X 0, and ¢’ mapping those
K’ X 1. This map, #/, of K’ X I will be proper since the vertices go into general
position. Applying Lemma 3.4 to the inclusions of K X 0 and K X 1 inK X I,
we have

my = jimp, and mj = jimi

where jo and 7, are the corresponding inclusions of the K*s. But jo and ji are
obviously homotopic, hence my is cohomologous to my .

DEeFINITION 3.6. The cohomology class of m; (which by Lemma 5 is independent
of ) will be called the first obstruction to the imbedding of K in E’, and it will
be denoted by m". If r is even, m’ e H'(K*, I) and if r is odd, m’ eH’(K* Ir)
where I denotes ordinary integer coefficients and Ir denotes twisted integer
coefficients.

4, Characterizing the first obstruction

In this section we use a fixed ordering of the vertices of K. The cup product
in C(K) defined using this ordering induces a cup product on C(K) ® C(K) by
means of the formula

(i ® 11) < (U2 ® v3) = (—1)"P (w1 © ) ® (11— v2)
with
e C"(K), v; e C*(K).
This cup product induces the following pairings for the cohomology of K*
H?(R*, I) and HYK*I) to H"™(K*I)
H?(R* I) and HYK* Ir) to H"™(K* Ir)
H?(R* I;) and HYK* Ir) to H*™(K* I).

We shall compute m"(K) by using particular maps of K in E’. For this purpose
we need the following.

DermiTion 4.1. A G-curve in E” is a curve any » 4+ 1 of whose points span
an r-simplex.



260 ARNOLD SHAPIRO

Lemma 4.2. If 0" and 7 are euclidean simplices with distinct vertices on a
G-curve in " and p + q = r then o® meets % if and only if all the vertices of o®
alternate with all the vertices of v° along the curve.

The proof is left to the reader.

There is a G-curve in each E"; for example, the curve parameterized by
€ - .

In the rest of this section, f will be a barycentric map of K in E” which maps
the vertices of K in order along a G-curve.

ReMark. If K is connected and not an interval or a single point, then K* is
connected and the map K* — K* is a two sheeted covering.

TurorREM 4.3. If K s connected and is neither an interval nor a point nor emply,
then m'(K) s the non-trivial cohomology class with twisted integer coefficients that
annihilates the image of Hy(K*) in H\(K*).

Proor.

lifao<bo<(11

mi((@o, a1) X bo) = {0 otherwise

~1ifbo<a()<(11

m} (@ X (bo, b)) = {0 otherwise.

Consider the mapping f X f of K* into the (z, ) plane. An oriented 1-cell, v,
of K* will be mapped into an oriented vertical or horizontal segment. m(y) = 0
if f X f(v) does not meet the line x = y; mj(y) = 1if f X f(y) crosses the line
x = y from the region y > x;and mj(y) = —1if f X f(y) crosses the line z = y
from the region x > y. Hence m; is zero on all 1-cycles of K*. However on the
cycle of K* represented by a path from a X b to b X a, my is clearly plus one
or minus one. Hence m'(K) is non-trivial and our theorem is proved.

THEOREM 4.4. m"(K) = (m'(K))" (the exponent meaning product in the sense
of the appropriate pairings described at the beginning of the section).

Proor. First note that both m"(K) and (m'(K)) lie in H"(K*, I) for even r and
both lie in H'(K*, I) for odd r.

Let m" be the component of my in C'(K) ® C°(K) and m” the component
in C°(K) ® C*(K). Then my = m + m™ and m™ = —T*m™. It is easy to see
by direct computation that m*_ m' = m*" _ m”™ = 0. Namely

m' ~ m"((ao, a1, @) X bo) = m"((ao , as) X bo) -m"((a1, az) X bo)

but the right side is zero unless b, lies between ao and a, and also between a; and
a, which is impossible since the a’s are in order.

It follows then that (m})” = m*C m™ < m® -+ +m™ _m®C - - - each term
having r factors. When we evaluate (m;)” on (ao, ---, ap) X (bo, ---, by),
we get zero unless the a’s and b’s interlace, furthermore the first term is zero
unless the sequence of a’s and b’s starts with an a while the second term is non-

zero only if the sequence starts with b. Thus we see that up to a possible difference
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in sign (m})" agrees with m; . However since the second term is (— 1)’ T* of the
first term, the possible difference in sign can depend only on r and not on the
simplex in question. But m"(K) is a class of order 2 so the sign of the representa-
tive cochain makes no difference. Hence the theorem is proved.

5. Deformation cells

In this section and the following one we set up the geometrical apparatus for
altering a mapping in order to remove some self-intersections. We lean heavily
on the work of Whitney ([2] and [3]).

NotaTion. If 4 is a differentiable manifold and B a subset of 4, we will denote
by T(A | B) the vector bundle over B of tangent vectors to 4 at points of B. In
particular, for z ¢ A, T(A4 | z) will denote the tangent space to A at z, while the
tangent bundle to 4, T(A4 | 4), will be abbreviated to T'(4). If B is a submanifold
of A then T(B) is a sub-bundle of T(4 | B) so that the quotient bundle
T(A | B)/T(B) is defined. It is the bundle whose fibre at x € B is the vector space
T(A | z)/T(B | z), and it will be denoted by N (4, B). If 4 is a Riemannian
manifold, N(4, B) is naturally isomorphic to the sub-bundle of T'(4 | B) which
we will call N(4 | B) and which consists of those tangent vectors to 4 at points
of B which are orthogonal to B.

When A is a Riemannian manifold and B is a submanifold of A with the prop-
erty that its closure, B, is a compact subset of a differentiable submanifold of 4
of the same dimension as B, then we can define, in the standard way, for suffi-
ciently small ¢, the tubular neighborhood, W (B, ¢), of B in 4 as follows.

For a tangent vector X to 4, let exp(X) be the point of A (if it exists) at a
distance equal to the length of X along a geodesic in the direction of X. Since B
is compact, exp(X) is defined for each X ¢ N(4 | B) of length less than some
positive number. It is well known that this mapping has non-zero Jacobian in
some neighborhood of the zero cross-section of N(A | B). The implicit function
theorem, together with the compactness of B, then asserts that for a suitably
small ¢, the exponential map when restricted to vectors of N(4 | B) of length
less than e is a homeomorphism. We will denote its image by W (B, &) (or W(B)
when the ¢ is fixed during the argument) and we denote by h. (or &) the inverse
of the exponential map so that h:W(B) — N(4 | B) is a differentiable homeo-
morphism. If « is the natural projection of N(4 | B) on B, then it is easy to see
that wh:W(B) — B is a fibre map and that each fibre is a cell.

We note that if B is a C*-submanifold of A4 then h is a regular C* homeo-
morphism.

Throughout the remainder of this section and the next, B will denote an
n-dimensional, C*, Riemannian manifold; A and B will be C”-submanifolds of
R of dimensions p and q respectively; and r will denote the integer p + ¢ — n.

In the applications later, R will be an open subset of euclidean n-space, 4
and B will be images under a map, f, of a p-simplex and a g-simplex of K re-
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spectively. We define two r + 1-cells, P and Q, in the unit ball, D, of euclidean
7 + 2-space using the euclidean distance, d, in D as follows.

r = :.L'€D|d(l‘, (%7(),00)) = 1}
Q= lreD|dx (—%0,0, ---,0)) = 1}.

P n @ is then an r-sphere in the interior of D.

DEFINITION 5.1. A deformation cell T, for the pair (4, B) of submanifolds of
R is the image of a map y:D — R which satisfies

(1) v is a regular C* homeomorphism of ) into R (hence ' = v(D) is a C~
submanifold)

(2) v(P)=AnT, @) =Bnl, (PnQ =AnB

B)TA[AnT)AnT(T|ANnT) =T(AnT)

T(B|BnT)nT(I'|BnT)=T(BnT)
T(A|AnB)nT(B|An B) =T(AnB).

Remark. Condition (2) requires that 4 n B shall be an r-sphere, while the
last statement of condition (3) requires that A intersect B transversally. In par-
ticular for a point « of 4 n B, T(4 | x) + T(B | z) must equal T(R | ) if a de-
formation cell is to exist.

Lemma 5.2. If A n B is an r-sphere with p, ¢ = 2r + 3 such that T(A|AnB)
nT(B|AnB) = T(A n B) and if there is a continuous map, «, of D in R which
satisfies

(1) a maps I’ n Q homeomorphically on A n B

2) a(P) C A, a(Q) < B.

Then there exists a deformation cell for (A, B).

Proor. Let v; be a regular C* homeomorphism of P n Q on A n B. The exist-
ence of the map « with the properties listed together with the inequalities re-
lating p, ¢, and r enable us to use Whitney’s Theorem 5 of [3] to extend ; to a
map, v», of P u @ into A u B whose restrictions to P and Q are, 1 — 1, regular
C” homeomorphisms into A and B respectively. By using the same theorem
again, and the existence of the map, , we may find an extension, v; , of v, which
is a C* map of D into R. Using the hypothesis that T(A|AnB)nT(B|AnB)
= T(A n B) and the regularity of v, on P and Q it is easy to check that v; is
regular at points of P n Q. Hence there is a neighborhood U of A n B such that
vsis 1 — 1 and regular on v;3'(U). Let U, be a neighborhood of A n B whose
closure lies in U. Then dy; induces an isomorphism of N (D | P n~3'(UY)) into
N(R, A n U,). We want to extend this map to an isomorphism 6 of N(D | P)
into N(R, A) such that the following diagram is commutative

NOD | P)— N, 4)

|
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where the vertical arrows are the projections of the respective bundles. The
obstruction to the existence of such a map 6 lies in 7,(S"*"") which is zero
under our assumptions on dimensions. Hence such a 6 exists, and by paragraph
6.7 of [4] it may be chosen to be a C* map. By using the exponential maps in D
and in R we may construct a 1 — 1, regular C* homeomorphism v, of a neighbor-
hood of P into R such that v4 | A = v3| 4 and dys = dy; at points of P n U;.
Similarly we may construct vs to be a 1 — 1 regular C* homeomorphism of a
neighborhood of @ into R withys | B = vs | B and dys = dys at pointsof @ n U .
Choose a covering of P u Q by three open setsy3'(U), ¥, and Z such that P C ¥
U3 (U), Q € Z uvs'(U), such that Y, Z and v3'(U,) are disjoint and such that
~4 is defined in Y, s is defined in Z. Let \ be a C” real valued function on D
which is 1 in 45 (U) — (Y u Z) and 0 outside v3'(U). Forz, y e R0 < a £ 1,
let o(z, y, a) be the point (if it exists) of R on the shortest geodesic from x to y
such that d(z, ¢(z, y, a))/d(x, y) = a, where d is the Riemannian distance. Then
we may define v, from a neighborhood of P u @ into R by

¢('Y4(x)7 ’)’3(3?), )\(CE)) T ¢ Z
o(vs(x), vs(x), N(z)) veY.

It is straightforward to check that s is regular and 1 — 1 in a closed neighbor-
hood of P u Q, that v¢ is an extension of v;, and that dys induces isomorphisms
on N(D | P) and N(D | Q) into N(R, A) and N(R, B) respectively. Finally we
may use Theorem 5 of [3] again to extend vs to a 1 — 1 regular homeomorphism,
v7, of D in R. One may then check that I' = y7(D) is the required deformation
cell for (4, B).

ve(x) =

6. The bundle of a deformation cell

In this paragraph we will use the same notations as in paragraph 5. In par-
ticular A and B will be submanifolds of the n-dimensional Riemannian manifold
R, with dim(4) = p, dim(B) = gandr = p + ¢ — n.

The following trivial lemma will clarify the next definition.

LeMMA 6.1. If T' is a deformation cell for (A, B) then for each x ¢ A n B

T(A | z)/TA |z)n T(T |z) ~ T(R|z)/T(B|z) + T(T|x).
Proor.
T(A | 2)/T(A|x)nT(T |2) = T(A|2)/T(A |z)n (T(T|z) + T(B|x))
~ T(A|2) 4+ T(T |2) + T(B|)/T(T |2) + T(B| )
~ T(R|x)/T(T |z) + T(B|z).

DErFINITION 6.2. When T is a deformation cell for (4, B) the vector bundle
V(A, B; T) is defined to be the bundle over the r + 1-sphere, ' n (A u B) ob-
tained by taking the union of the bundles N(4, T nA4)and T(R|T n B)/
T(I'|T n B) + T(B|T n B) and identifying corresponding fibres over points
of A n B by the second isomorphism theorem as in Lemma 6.1.
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DEFINITION 6.3. A normalizing map for a vector bundle is a map of the bundle
into a vector space, L, which induces a linear isomorphism of each fibre onto L.

It is well known and easy to see that there exists a normalizing map for a vector
bundle if and only if it is a product bundle, and that every bundle over a cell
is a product bundle.

DeriNtTiON 6.4. If T is a deformation cell for (4, B) and g:N(R, T) > L is
a normalizing map for the normal bundle of T, then g will be called separating
if L can be written as a direct sum L = L; + L, in such a way that g induces
normalizing maps of N(4, T' n A) into L, and of N(B, T' n B) into L, .

Lemma 6.5. When p, g =2 2r + 3, V(A, B; T) is a product bundle if and only
if there exists a separating normalizing map for N(R, T).

Proor. If g: N(R, T) — L, + L, is a separating normalizing map, then g
induces a map, g.:T(R | ) — L1 + L, for each ¢ T, which has for its kernel
T(T | 2). For z € A, g.(T(A | z)) = Ly . Let j be the projection of L; + L, on
L, . Then for z ¢ B, jg. has T(B | 2) in its kernel since g, maps T(B | ) on L, .
Hence jg induces a normalizing map for each of the bundles N (A4, A nT)and
T(R|B n T)/T(B|B n T) + T(I'| BnT) and thus also for the bundle
V(A, B; T). Since V(A, B; T') has a normalizing map it is a product bundle.

Suppose now that V = V(4, B; I) is a product bundle and that g:V — L;is
a normalizing map for it. We may consider g as a map from TA|TnA)u
T(R)| T n B) into L;. We will produce a separating normalizing map § for
N(R, T) in four steps.

(1) Extend g to a map g1 of T(R| T n (A u B)) into L, .

(2) Extend g; to a map ¢, of T(R | T') into L; of maximal rank with T(T) in
the kernel.

(3) Find a normalizing map g; of the kernel of g, modulo 7(T) into L, .

(4) The required separating normalizing map for N(R, T) = TR |T)/T(T)
isgs+gs .

(1) Extending g to ¢, is equivalent to finding complementary spaces for T'(4 | x)
in T(R | x) when 2 ¢ T n A which agree with the given ones, i.e. the kernels of
gz, for z ¢ A n B. But since the space of complementary spaces is contractible
when n > p + 1, this can always be done.

(2) T(R | T)/T(T) has fibres of dimension n — r — 2 while L, has dimension
p — r — 1. The space of homomorphisms of maximal rank of an n — r — 2-
dimensional space into one of dimension p — r — 1 has the same homotopy
type as the Stiefel manifold, V, , 1,2, of p — r — 1-framesin n — r — 2-
space. Since (A n T') u (B n I') has the homotopy type of an r + 1-sphere, the
obstruction to extending g, to a map g» lies in m,41(Vp_y_y n_r_s). By hypothesis
2r 4+ 2 < ¢, which we can rewrite as

r+1<qg—r—1
r+1<n-—-—p-—1
r+1<m—r—2)—(p-—-r-—1

or

or
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from which it follows ([4] p. 132) that m13(Vp—r_1,.—r—2) = 0. Hence there exists
the extension g, that we are looking for.

(3) The kernel of g, modulo T'(T) is a vector bundle over the cell, T, and hence
it is a product bundle. Let g; be a normalizing map for it into L, .

(4) The check that g» + g5:N(R, T) — L, + L. is a separating normalizing
map for N(R, T) is straightforward and completes the proof.

Recall from paragraph 5 that for a submanifold A of R, & is a C* homeo-
morphism of a neighborhood of 4 with a neighborhood of the zero cross section
in N(R | A). Let 7 be the projection of N(R | A) onto 4.

DeriniTION 6.6. If g: N(R | A) — L is a normalizing map, F is an open subset
of A, and U a neighborhood of the origin in L, then a map 6:F X U — R will
be called a coordinatizing map for F with respect to g if

(1) 6 is a regular C* homeomorphism

(2) whé(a X v) = a aeF,veU

8) ght(a X v) =v aeF,vel.

LeEMMA 6.7. If F is an open subset of the submanifold A of R whose closure, F,
is a compact subset of A and if g is a C” normalizing map for N(R | A) in L, then
there exists a coordinatizing map for F with respect to g.

Proor. If we choose ¢ small enough so that W(G, ¢) is defined for some open
neighborhood G of F and consider in N(R | G) the set of vectors of length less
than &, then g maps this set onto a neighborhood of the origin in L. Since F is
compact there is a neighborhood U of the origin in L such that for each a ¢ F,
g maps the e-ball of the fibre at a onto a set containing U. Let 8(a X v) for a ¢ F,
v € U be the unique point in exp(r'a) n exp(¢_'»). Then properties (2) and (3)
of the definitions of a coordinatizing map are automatically fulfilled. The fact
that 6 is a C* mapping follows from the existence theorem for differential equa-
tions used in the definition of exp. That 6 is 1 — 1 is clear from the properties
(2) and (3).

ConsTrucTION 6.8. Given a coordinatizing map 6:F X U — L of F with
respect to a normalizing map g:N(R | A) — L, and a C”-isotopy, ¢, of A which
is the identity outside F' we construct a C™-isotopy ® = ®(¢, g) of R on itself
with the following properties:

(1) ® is an extension of ¢, i.e.®(x, ) = o(x, t) forz e A

(2) ® is the identity outside a neighborhood of F in R

3) gh®(x, t) = gh(x) for x e W(A) and all ¢.

To define ®(p, g), let A be a C” real valued function on L such that

0=xp) =1 velL
Ap) =0 velU
Aw) =1 v in some neighborhood of 0.
Let
‘ z zee(F X U)
P(x, 1) =
0(e(a, A(v)1), v) x = 6(a, v).
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The check that ® has properties (1) and (2) is routine; property (3) follows
from the condition (3) in the definition of the coordinatizing map 6.

LemmMa 6.9. If T is a deformation cell for (A, B) and g is a separating normalizing
map for N(R, T) into L = Ly + L. ; then there is an & small enough so that

ghe(A n W(T, ¢)) n gh.(B n W(T, ¢))

contains only the zero element of L.

Proor. Since g is separating, g(T(4 | T)) € L1, and g(T(B | T')) € L, . Sup-
pose that there were points a; € 4, b; ¢ B arbitrarily close to I' such that gh.(a;) =
ghe(by). If a; is not in T, gh, maps the geodesic from a; to T into a straight line
through the origin in a direction near L, while gh. maps the geodesic from b, to T
into a straight line whose direction is near L, . If infinitely many a; ¢ T, these
directions would have a limit direction lying both in L; and L, which is im-
possible. Hence there is an ¢ sufficiently small so that a e A n W(T, ¢), b e Bn
W(T, &) and gh(a) = gh.(b) imply a € T, b ¢ T and gh.(a) = 0.

Let ¢:D X I — D be a C” isotopy such that ¢, is the identity on a neighbor-
hood of the boundary of D and such that ¢(P X 1) n Q = 0.

Lemma 6.10. If T is a deformation cell for (A, B) which has a separating nor-
malizing map g for N(R, T) then® = ®(ywvy ™, g) is an isotopy of R which deforms
A away from B if ® is defined using a coordinatizing map 0 for a sufficiently small
netghborhood of T.

Proor. & only moves points of W(T, &) so that we need only show that
®(4 X 1)nBn W(T, &) = 0. Using property (3) of ® in Construction 6.8 we have

gh®(A X 1) = gh(A4) (for points in W(T, ¢)).

But if ¢ were chosen small enough, according to Lemma 6.9, gh(4) n gh(B) = 0,
and hence a point of (4 X 1) n B must lie in®(4 n T' X 1) n B. But since ®
is an extension of vy, (A nT X 1) n B = Wy (4 n T X )n B =
(P X 1) nB.Since ¢ (P X 1) n Q = 9, it follows that (P X 1) n B = @ and
the lemma is proved.

7. The imbedding theorem

With the geometric machinery of paragraphs 5 and 6 at our disposal we are
prepared to prove the imbedding theorem. For this purpose we consider the
class, @, of “general” maps of K into E” defined as follows.

DErFINITION 7.1. A general map f: K — E" is one which satisfies

(1) for each ¢ € K, f | o is a regular C* homeomorphism.

(2) for each pair of open simplices ¢” and 7? of K with p + ¢ < n, f(¢”) meets
f(=%) transversally. For p + ¢ < n this means that f(¢”) n f(+%) is empty, while
for p + ¢ = n, f(¢”) n f(+%) consists of a finite number of points at each of which
the tangent spaces to f(¢”) and f(=?) span the tangent space to E".

(3) If ¢” and 7* are open simplices with p + ¢ = n then no point of f(¢?) n f(+%)
lies in the image of any other open simplex. If the dimension of K is less than n,
then all barycentric maps in general position are in the class, G, of general maps.
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TharoreM 7.1. If dim(K) < n — 3 then a necessary and sufficient condition that
there exist a general map f of K in E™ such that for all pairs of distinct open sim-
plices, o”, 7* of K, with p + q = n, f(a®) n f(+%) = B is that m"(K) = 0. As a
special case we have the imbedding theorem.

THEOREM 7.2. For n = 3 a necessary and sufficient condilion that there exist an
imbedding of the n-dimensional complex K in E*" is that m*"(K) = 0.

First we give an outline of the proof of Theorem 7.1, and then we prove the
lemmas that fill in the details. The necessity that m"(K) be zero has already
been shown.

(1) We start with a barycentric map f, of K in " in general position.

(2) We show that for any cochain, 2z, which represents m"(K) there is a general
map fysuch that m";, = z(Lemma7.3).If m"(K) = 0,we choose f, so that m";, = 0.

(3) It may happen after the use of Lemma 7.3 on our original barycentric map
f1 to produce f», for a pair of open simplices ¢” and 7 whose closures have a
single vertex in common, that the algebraic intersection number of fy(¢?) and
fa(7?), which we denote again by fa(c”) A fa(77), is not zero. If this happens, we
introduce new intersections between f2(¢”) and fa(7?) so that we obtain a general
map f3 with the property that for any pair of distinct open simplices ¢” and 7°
with p 4+ ¢ = n we have f3(c”) A fi(?) = 0 (Lemma 7.4).

(4) Since the intersection number f;(¢”) A f3(r*) = 0, and since f; is general
f3(¢”) n f3(7?) consists of a finite number of pairs of points (a;, b;) at which the
intersection numbers are +1 and —1 respectively. We use Lemma 5.2 to provide
us with deformation cells T'; which meet f;(K) only in fi(¢) u f5(7); here we use
the hypothesis, dim(K) = n — 3. We prove (Lemma 7.5), that there exist separat-
ing normalizing maps for these deformation cells and hence we may use Lemma
6.10 to remove these intersections.

Lemma 73. If dim(K) < n — 1 then for any cochain, z, representing m"(K)
there is a general map g:K — E" such that m;(K) = .

Proor. Let b(s, ) be the equivariant cochain which is 1 on ¢ X 7, 41 on
7 X o and zero elsewhere. It is clearly sufficient to prove that for any general
map f there is a general map g such that

b, ) = my — my .

To this end pick points @ and b in f(¢) and f(r) respectively that are not in the
image of any other simplex. Since the dimension of K is less than n — 1 there
is an arc joining @ to b which does not meet f(K) elsewhere. We may use the
trivial case of Lemma 5.2 withr = —1, A = f(¢), B = f(+) to find a deformation
cell T which is then an arc meeting f(K) only at @ and b. Furthermore there is
no difficulty in choosing I' so that the tangent to I' at a is not tangent to the
image of any closed simplex having ¢ as a face and similarly at b for 7. The bundle
V(4, B; T) being a vector bundle over two peints may be considered as a product
bundle in two essentially different ways corresponding to a change of orientation
of one of the fibres. Let &; and ks be two corresponding separating normalizing
maps for N(R, T'). For sufficiently small &, W(T, ¢) will meet the image of only
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those simplices which have ¢ or 7 as a face. Consider the isotopy ® = ®(vy ™", h1)
of Lemma 6.10 which is the identity outside W(T, ¢). Let ®, be the homeo-
morphism of E” on itself corresponding to the parameter value ¢ of the isotopy
®. Define f; by

P, f(x) zef (W(T, €)) n star ¢
Ji(x) = { .
f(x) otherwise.

Since &, is the identity on a neighborhood of the boundary of W(T, ¢), f: is a
C” map.

Let F:K X I — E be defined by F(z, t) = f,(x) and finally let ¢ = f .

Then it is easy to show that

8b(e, 7) = (=1)""F(e X I) A f(r))(mg — m})

using the definition of m;, the elementary properties of intersection numbers,
and the fact that f agrees with g outside star ¢ X star 7 u star 7 X star o.

By construction the tangent spaces to F(c X I) and f(r) are independent
at their point of intersection. Hence F(¢ X I) A f(r) = =1. Since the tangent
space to F(¢ X I) changes orientation when we base our construction on h,
instead of h; we can achieve either sign. Finally it is clear that if our £ was chosen
small enough g will be a general map.

A general map will be called radial near vertices if the image of each straight
line from the vertex is straight in some neighborhood of the image of the vertex.
Barycentric maps are radial near vertices.

LemMA 7.4. If f is a general map of K in E" which is radial near vertices and
o, (p + q = n) are two open simplices whose closures have one vertex, v, in
common then there is a general map, g, of K in E", radial near vertices such that
fla) A f(r) — g(o) A g(r) = L

Proor. Let S be the surface of a sphere about v, small enough so that f is
radial within S. Let A = f(e) n S, B = f(r) n S, and R = S. Use Lemma 5.2
to find a deformation cell T for A, B so that T is an arc joining f(¢) to f(7) in S
and not meeting f(K) elsewhere. In S apply the construction of 7.3 to modify
f177(S) using T'. Let ® be the isotopy of S used in the construction. Extend
® to an isotopy ®' of E™ on itself equal to the identity outside a ball containing S
by letting ® be linear on radial segments inside S and & = &' (@, g) outside S
where g is constant on outward unit normal vectors and & @, g) is defined in
construction 6.8. Let ®;1 be the final value of ® and let

3 ®; f(z) x e star (o)
a f(x) otherwise.

A check similar to that of Lemma 7.3 shows that f(¢) A f(r) — g(o) A g(7) =
+1 or —1 according to which separating normalizing map was used for T'. Al-
though ®; is not necessarily differentiable at f(v), ¢ is general since there is no
differentiability condition on g at v.

g()
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Lemma 7.5. If dim(A) 4+ dim(B) = n and T s a deformation cell for (A, B)
and if the intersection numbers have opposite signs at the two poinis of intersection
of A and B then there exists a separating normalizing map for T.

Proor. We need only show that V (4, B; T') is a product bundle; since it is
a vector bundle over a circle, it is sufficient to show that it is orientable.

Let W, denote an orientation for the tangent spaces to A determined by the
choice of a frame. If the tangent spaces to A and B intersect in the zero element
at a point of 4 n B let W, X Wj be the orientation of the space they span, de-
termined by taking first the chosen frame for A and then the frame for B to con-
stitute a frame for the sum. If the tangent space to B is a subspace of the tangent
space to A at a point there is a unique orientation, W,/Wj, of the quotient space
determined by taking a frame for A which extends one for B and letting the
projection of the vectors of the A-frame which are not part of the B-frame, in
order, be the frame for A/B.

Choose orientations Wy, W4, Wi, Wr and Wyar. Let a be the point of
A n B such that W, X Wi = Wx and b the point of A n B such that W, X W,
= —Wg . Orient B n T so that Winr X Wear = Wr at a. Since

Wa = Waar X Wa/W anr at AnT
Wy = Waar X Ws/Wpar at BnT
we have
Wi X Ws = Wainr X Wa/Wanr X Waar X Ws/Wpar at AnB
or

Wi X Wp = £Wanr X Waar X WB/WBnI‘ X WA/WAnI‘ at AnB

where the sign does not depend on the point of A n B in question.
Ata, Wa X Wy = Wrand Wyar X Waar = Wr while at b, W, X Wy =

—Wzr and Waar X Wear = — Wi since the intersection of A n I with Bn T
in T is algebraically zero. Thus we have
WR = :|:W[‘ X WB/WBnI‘ X WA/WAnI‘ at A nB

the sign being independent of the point of A n B. This shows that the orientation
W 4/ W anr agrees with Wg/Wg/Wear X Wrat bif it agrees at a. Hence V(4, B; T')
is orientable and the lemma is proved.
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