
DIFFERENTIABLE STRUCTURES ON THE
15 SPHERE AND PONTRJAGIN CLASSES

OF CERTAIN MANIFOLDS

NOBUO SHΪMADA

Introduction. No manifold had been known which can carry two distinct
differentiable structures until the recent important contribution due to J. Milnor
[7] concerning the 7 sphere appeared.

In connection with his work, there are several problems, for example, about
the existence of any other manifold with such property, about the topological
invariance of the Pontrjagin classes of manifolds, etc. some of them will be
discussed in the present note.

First in § 1 and § 2, it will be shown that his method is applicable also for the
case of lδ sphere to prove existence of many distinct differentiable structures.
Secondly in § 3 we shall give some examples of differentiable manifolds which
are all of the same homotopy type while any homotopy equivalence between
them does not preserve their Pontrjagin classes.* * In addition we shall obtain
the following result. Consider 2w manifolds X2n whose homology groups
Hi(X2n) =  Z for i =  0, n, 2n and Hi(X2n)  0 for i * 0, n, 2n. Known examples
are the following: complex projective plane (w =  2), quaternion projective plane
(n =  4) and Cay ley projective plane (n  8). We shall show in § 4 that for n =  4
and 8 there exist several examples of such topological (triangulable) 2w manifolds
with different homotopy types.

All manifolds considered in this note, with or without boundary, are to be
differentiable of class CΛ (unless otherwise stated) and orientable.

§1. Invariant λ(MVύ)

For every closed, oriented 15 manifold Λflδ satisfying the hypothesis

Received March 28, 1957
*> After completing this note, I had an opportunity to notice Thorn's remark in [16]

and to read Dold's paper [15]. I understand that Dold has given already such examples.
But I should like to preserve the original style of the present note, since it stands on a
different view point. Cf. James and Whitehead [17], also Tamura [18].
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a) there exists a Iβ manifold BI δ with M ιΓi as its boundary,υ

(*) and
b) H ί(M1 =02) for * =  3, 4, 7, 8, 11, 12,

we will define a residue class / (iWlδ) of integers modulo 381. This is to be an
invariant of differentiable structure for such a 15 manifold, and will be defined
as a function of the index τ and the Pontrjagin classes pi of the open sub
manifold B16 = B1G Mlύ of B16 with the induced differentiable structure. An
orientation of J516 and that of B16 are chosen in such a way that they are
consistent and the homological boundary of thereby oriented S1 6 is equal to
the standard fundamental cycle of MVo. Then the index means that of the
quadratic form defined by the cup product over the group H%(B1&> R) with
real coefficients (H* means cohomology group with compact supports).

The hypothesis (#) implies that the inclusion homomorphism

7} : # 4 / ( £ 1 6 , M 15) » # 4 ί ' ( 51 6)

is an isomorphism for i =  1, 2, 3. This permits us to consider the f th Pontrjagin
class pi of the manifold B16 as an element of Ht(Bie) for i =  l, 2, 3 (cf. [2]).

Let v be the standard generator of i7*(J916) which is dual to the orien
tation of B16. Then λ(M15) is defined by the following equation3)

λ(M15) v =  3* 52 7 τv +  lpzpi +  19$  22̂ 2/>\  +  3 $ (mod 381).

THEOREM 1. The residue class λ(M15) modulo 381 does not depend on the
choice of the manifold B1G.

Let B\ \  B26 be two manifolds with boundary Λf15. Then C16 =  B ί 6U B ϊ 6

is a closed Iβ manifold which possesses a differentiable structure compatible
with that of B\ 6 and f. Choose that orientation of C16 to be consistent with
the orientation of B}6 (and therefore consistent with the negative orientation
of Bf). Then the proof of Theorem 1 will be proceeded similarly as in the
case of the invariant λ(M7) (See Milnor [7]) by making use of the Hirzebruch's
index formula [5] :

3 ι δ2 7 r(C16) v =  381̂ 4  71 A£ i  l$Pl +  22p2pl  3pi,

^ A 15 manifold is not always the boundary of a 16 manifold. See Dold [3].
2) Integer coefficients are to be understood.
3 > As Milnor remarked, for every n — 4k— 1 a residue class λ,(Mrt) modulo Sk u{Lk)

could be defined similarly. (See [5], p. 14.)
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where v is the standard generator of / / 16(Clfi) and >̂/s are the Pontrjagin
classes of C16. Therefore the proof will be omitted here.

The following property of the invariant λ is clear.

LEMMA 1. If the orientation of M 15 is reversed, then x(M lδ) is multiplied
by  1.

As a consequence we have

COROLLARY 1. / /  λ(Mhl) *? 0, then Mu possesses no orientation reversing
diffeomorphism^ onto itself.

§ 2. Examples of 15 manif olds

Consider 7 sphere bundles over the 8 sphere with the rotation group SO(8)
as structural group. The equivalence classes of such bundles are in one one
correspondence55 with elements of the 7th homotopy group π (S0(8)) of the
stractural group. This homotopy group is known to be isomorphic to Z + Z ,
and a specific isomorphism between these groups is obtained as follows.6) For
each (ft, j) ZΞZ + Z, let fhj : S7 * SO(8) be denned by fhj(u) v = uhvuf for
v G  R3. Cayley number multiplication is understood on the right.7'

Let c be the standard generator for H*{SS) and denote by ξh,j the sphere
bundle corresponding to {fhj) G  τr;(SO(8)).

LEMMA 2. The Pontrjagin class p?X h,i) equals ±  β(ft — j) c.

(The proof will be given at the last of this section.)

For each odd integer k, let M\ s be the total space of the bundle ξhj, where
ft and j are determined by the equation ft +  j =  1, ft — j — k. This manifold Ml3

has a natural differentiate structure and orientation, which will be described
as follows.

Let the base space S8 be imbedded in R9 by the equation

12 ( 1 Ϋ  1 •  2

1 V7 2 I ~~ 4 ~  ° '  ̂σ = s ,

4 ) A diffeomorphism /  is a homeomorphism such that both /  and f~ ι are differentiate.
5 ' See [10] §18.
6 ) S e e [ 9 ] . B y m a k i n g u s e o f t h e fibration of S p i n ( 7 ) b y Gi o v e r S 7 , i t c a n b e p r o v e d

that {/ i, i} generates τz7(SO(7)). See Toda, Saito and Yokota [19].
7 ) The division algebra of Cayley numbers is not associative, but it is known that any

subalgebra generated by two elements is associative. Cf. Dikson, Linear Algebras, Cam
bridge Tract, 1914.
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where 5, \ s\  and a denotes a Cayley number, its norm and a real number

respectively, and is, a) forms a coordinate system of R\  In S8 let Vu VQ be

the complements of (0, 0) and (0, 1) respectively. Consider two spaces V xS'

and VoxS7, and identify the two copies of subset (ViΠ Vo) x S7 under the

diffeomorphism

(s, σ th + (5, a f')o, f = shts'/ \ s\

(using Cayley multiplication). The constructed space can be considered as M ιk

and has the natural differen tiate structure.

Now define a function /  : Ml5 * R by

(5, a ί)i > V

(s, a ϊ)o +$l(Jt')Ni a,

where OiU) denotes the real part of £ and s denotes the conjugate of s. I t is

easily verified that /  has only two critical points (namely (0, 1 ± l ) i ) and

that these are non degenerate. Thus the manifold M i5 satisfies the condition

(H) stated in §2 of the paper [7], and therefore by Theorem 2 in [7] (cf. also

[8]) we obtain

LEMMA 3. The manifold M ι£ is homeomorphic to the 15 sphere S15.

Associated with each 7 sphere bundle Ml5 » S8, there is an 8 cell bundle

Pk ϊH 6 * S8. The total space Wk of this bundle is a differen tiate manifold

with boundary M l5. The cohomology group H\ (Bk) is generated by the

element a = pk(c), where 1 denotes the standard generator of HS(SS). Choose

orientation for M * and J31*6 so that the index τ(Bk) will be + 1 .

The tangent bundle of Bk is the Whitney sum of (1) the bundle of vectors

tangent to the fibre, and (2) the bundle of vectors normal to the fibre. The

first bundle (1) is induced (under pk) from £/,,/ , and therefore has the Pontrjagin

class p2 = pt( ± 6(h j)ι) =  ± 6ka. The second is induced from the tangent

bundle of S8, and therefore has second Pontrjagin class zero. Thus we have

%)= ± 6ka.
This and Lemma 3 give

LEMMA 4. The invariant λ(Ml5) is the residue class mod 381 of 78(1 ~k2).

Combining the above lemmas we h ave:

THEOREM 2. For k2 * I2 mod 127 the manifolds M * and MY are homeo
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morphic but not diffeomorphic.

(F or k =  ±  1 the manifold M'k is diffeomorphic to S15 but it is not known
whether this is true for any other k.)

COROLLARY 2. There exist such differentiable structures on S15 that cannot
be extended throughout Rm.

Proof of Lemma 2. I t is clear that the Pontrjagin class piiζhj) is a
linear function of h and j . F urthermore it is known that it is independent of
the orientation of the fibre. But if the orientation of S7 is reversed (for example
replace t by F ), then /,,y is replaced by Jt h. This shows that p2( h,j) is
given by an expression of the form c(h — j)c. H ere c is a constant determined
by c c =p Λ ι,o) (and therefore c a ^p ΛBl6)). In order to evaluate the constant
cy we will note that the maniford B{6 is diffeomorphic to the Cayley projective
plane IT  with a 16 cell removed.*j The Pontrjagin class p2(7I) is known to be
six times of a generator of H8{Π) (See H irzebruch's announcement in [63, also
Borel and H irzebruch [1]) . Therefore the constant c must be ± 6 . This proves
Lemma 2.

§ 3. Certain types of 16 manif olds

Some examples of 16 (respectively 8 )manifolds of the same homotopy
type will be constructed and it will be shown that any homotopy equivalence
between them does not preserve their second (respectively first) Pontrjagin
classes. These can be done by parallel methods for the respective cases, and
therefore we shall t reat here mainly the case of the 16 manifolds.

Associated with each of the 7 sphere bundles Ml5, there is an 8 sphere
bundle whose total space Blk is a closed 16 manifold. These 16 manifolds Blk

will serve as the examples mentioned above.
Consider, in general, 8 sphere bundles over the 8 sphere with rotation group

SO(9) as structural group. The equivalence classes of such bundles are in one
one correspondence with elements of τrτ(SO(9)). This group is known to be
isomorphic6) to Z. Let i : SO(8) » SO(9) be a natural injection map, then the
induced homomorphism z* : 7Γ7(SO(8)) •  πΛSO{9)) is onto and the kernel of i*

is generated by (fltl) (in the notation of §2, cf. [10] §23).

8) This fact is proved by using the expression by matrices of points of TI. See [4].
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Let fhj ' S7 * SO(9) be defined by fhj =  i ° fhj, then {/i,o} is a generator

of τr7(SO(9)) and we have {7A,/ } =  (A jHfi.o). Denote by ?*./  the 8 sphere

bundle corresponding to {fhj). Since the structural group of yjhj is reduced

to SO(8), we have pMhj) = pz(ξhj).

F or each odd integer & let B™ be the total space of the bundle ηhj> where

h and j are determined by the equation h+j  1, h j  k. This manifold has

a natural differen tiate structure and orientation, which will be described as

follows. Let (s, σ), U, r) with |s | 2 =  tf(l *), lf|2 =  r ( l r ) be the coordinates

of the base S3 and the fibre S8 respectively (See §2). Consider two spaces

Vi x S8 and F o x S\  and identify the two copies of subset ( Fi Π F o) x S s under

the diffeomorphism

(s, <J ί, r ) 3 > (s, <; ί;, r')o, t' = shtsJ'/ \ s\ , τ' = τ.

The constructed space is considered as B}? and has the natural differentiable

structure. There are two natrual cross sections (s, a 0, 0), (s, <; 0, 1). The

part ( r ^ ^ J and the part ( r ^ ^ ) °̂  ^ e manifold 2?" are just regarded as

two copies of Bl* previously constructed.

LEMMA 5. The manifold B™ is considered as the sum B™ U  Blk of two

copies of Elk with identification of the corresponding points on their boundaries

Mlk. The differentiate structure is compatible tυith that of each Si6. An ori

entation of B k is consistent ivith that of the one of lk and consistent with

the negative orientation of the other lk.

Let ??o> tii Bk* * Bιi be the above inclusion maps, then there are natrual

injection homomorphisms ηf : H%(Blk) •  H\Bk), i =  0, 1. It is easy to see that

pziBl6) =  7}ΐ(p2(Bk6)) +yΐ(p ΛBk6)). I t follows from Lemma 2:

LEMMA 6. p AB™) = 6ka0 +  βkau ivhere at ~ ηf(a) are generators of H^iB™).

We shall prove the following theorem in the next sect ion :

THEOREM 3. The manifolds Blk and BY have the same homotopy type if

and only if k= ± 1 mod 240.*i0

F rom this theorem and Lemma 6 we have

**> Cf. [ 15] , [ 17] .



DIFFERENTIABLE STRUCTURES ON THE 15 SPHERE 65

THEOREM 4. The second Pontrjagin class of a (16 )manifold is not, in
general, a homotopical invariant***]

As for the first Pontrjagin class, we can construct 8 manifolds B\  similarly
as Bf which are 4 sphere bundles over the 4 sphere associated with the 3 sphere
bundles Ml which was treated in Milnor's paper [7] , We can obtain similarly
(see the next section).

THEOREM 3'. The manifolds B\  and B) have the same homotopy type if
and only if k= ± 1 mod 24.**°

THEOREM 4'. The first Pontrjagin class of an (8 )manifold is not, in general,
a homotopical invariant ****

COROLLARY 3. Either {a) the Hureivicz s conjecture^ is negative for the
above cases, or (b) the first Pontrjagin class of a closed S manifold and the
second Pontrjagin class of a closed 16 manifold are not topological invariants.

§ 4. Homotopy types of the manifolds B1/ ?.

In this section we shall prove Theorem 3 (and Theorem 3'), and give also
an interesting side result.

We need some preparation. Let (x, y) denote the coordinate system of R1

and let (5, a) denote that of R9, where x, y, s are Cayley numbers and a a real
number. The 15 sphere S15 in R16 is denned by the equation U i 2 +  \ y\ 2 =  1, and
S s in Rd by the equation \ s\ 2 =  σ(l  a) as above.

Consider the map gπj : Slύ > Sb for any pair of integers h, j which is
defined by ghjix, y)  (\x\ i"h'ixhyx\  \y\ 2). Let t h e m a p ghj : S  x S' > S  be
defined by ghjiu, v) =fhyJ(u)v (as for fhj see §2), then ghj is no other than
the so called Hopf construction of ghj. The / homomorphism: π iSO{8))

* 7riδ(Ss) in the sense of G. W. Whitehead [12J is known to be onto in this
case and maps {fh,j) to {gh,j)  It follows easily

LEMMA 7. ghj represents the element (h + j)σ$ j E(τ t) of κ\ Si)i ivhere
as is represented by the Hopf fibre map gljQ, and E(τ ) is the image of a gener
ator τi of πu(S') by the suspension homomorphism and is represented by gι, ι.

LEMMA 8. a) ( — ί6) ° {ghj} =  {gjji), ivhere rs is the standard generator of
π$(Ss). b) Ds, c$] 2ίTs — E(ττ), the left side denotes the Whitehead product.

9) By the H urewicz's conjecture we mean that two manifolds of the same homotopy
type would be homeomorphic.

***> Cf. [18].
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This is a known result (cf. Toda [11]), but we shall give here a simple
proof. Let K : Slδ > S15 be denned by κ(x,y) = ix,y) and K' : S8 > S8 by
Λ'(S, </) =  ( S , </). Then we have κf ° g/i.y ° K =  g , Λ. Since Λ' reverses the orien
tation of Ss, we obtain a) , b) follows immediately from a) and Theorem 5.
15 of G. W. Whitehead [14].

Now we return to our purpose. Let ψ : S ι° » Mf be an orientation pre

serving homeomorphism, of which existence is assured by Lemma 3, and denote

by pk the projection Mϊ° » S8 as in the preceding section. We shall determine

the element of πu>(Ss) represented by the composition map pk ° ψ.

For this purpose, define the following map <ff : S15 > Ml5 by

φ'(χ, y) = <

1 ) * , 2\y? l ;yl\y\ \ for \ y\ 2>\>

(0, 0 2*Vy)o for

for \ y\ 2 ± 9

where h and j are the integers determined by the equation h + j 1, h j = k.

Thus defined map φ' is obviously continuous and, we may consider, of degree 1.

Since ψ1 is homotopic to φ, we have only to consider the map pk ° ψ' : S15

^ S8, which is defined by

Pk

for

for

1
2 '

Denote by Es the closed spherical 8 cell defined in R8 by \ x\£l. The
boundary (E8 x Es)' of Es x Es is homeomorphic to S15. A specific homeo
morphism /  is defined by

f(Q> r ) =
(<7/ V2, on Es x E\

on E8xE\

F urther define two maps ψu Ψo (Es x J£8)* ^ S15 by

Φλq.r) =  { Q'
,  0)

. on Es X 5 s ,

on £"8 x E\
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(0, r) on  E* x E\

The maps / , 0j, ψ0 are all considered as of degree 1 with respective to the
natural orientation of (Es x E8Y and S15.

Let µ, γ : S15 > S15 denote two maps of degree 1 and of degree 1 which
are defined by µ(x, y) =  (y, x) and γ(x, y) =  (x, y) respectively. And let
I : S8  S8 be defined by Z(s, a) =  (s, 1  <;).

Set
Fi = X o go,o ° r ° β° Ψi

and

then Fi, F o are two maps of (E8 x E8)* into S8 and satisfy the following
conditions:

9k ° f' ° / (^ , r) on ^ s x £ 8,
(0,0) on ^ ί ,

and
I (0, 0) on £ 8 x E\

"^ Pk° <f' ° Aq, r) on B8 x E 8 .

Denote the 8 cell E* x 1 in  E* x £ 8 by E? and 1 x E 8 in έ 8 x £ 8 by El
Let / i : {E\ t El) * (S8, ί + ) and / 0 : (Ej, J&J) > (S8, ̂ ) be the restriction of
Fι and F o respectively, where p* denotes the south pole (0, 0). Since fι(qy 1)
=  (VΓH ^Γ2^ 1  \q\ 2) and / 0( l, r) =  (VΓ= "M 2r, 1  |r |2 ) , both Λ and / 0 repre
sent the standard generator r8 of 7τ8(S

8).
Now from the theorem of G. W. Whitehead [13] we have

{pk° ψ' «>/} =  {Ft} + {F 0} +  [{/ i>, {/«>].

Clearly Fi represents the zero element and F o represents the element
 (  cs) ° {ghj}, therefore by using Lemmas 7 and 8 we have

{pk ° ψ) = {pk ° ?>'}=  {gjth} + lc*> <sl = σs  j E{τ7)

T H E O R E M 5. The projection pk : M ί? > S δ represents the element

 ( ) 0/  7Γ15(S
S).

THEOREM 5f. T/?̂  projection pu : M * > S4 represents the element
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vί+ 9 (k l)E(ωa) of τ:ASi), where v.\  is represented by the Hopf fibre map

and E(ωs) is the image of a generator ω3 of π^iS5) by the suspension homo

morphism.

Proof of Theorem 3. It is easily seen that the homotopy type of the

manifold B\* is the same as' that of the reduced cell complex Lk constructed

as follows. Consider the union of two copies of 8 sphere with only one point

in common, which is denoted by S8y S\  Attach a 16 cell e16 to Ssy S* by

such a map βk of the boundary eu into S8y Ss that represents the element

{pk σ ψ) +  {pk ° ψ) of 7ri5(S
8) +  7ri5(S

s) C τri5(S8 VS8) . The constructed cell

complex {S8y S8) U  e15 is the above mentioned complex Lk.

Since the homotopy type of Lk is determined by the element {βk} of

τri5(S8V S8) and the order of the element £{π) is known to be 120 (See [9]),

Theorem 3 can be now proved easily. Theorem 3' can be proved similarly.

Now we shall state the side result. Consider the following hypothesis for

a topological 2 w manif old X2n:

^ Hi(X2n) = Z for * =  0, n, 2n,

Hi(X2n)=0 for *>0, ny 2n.

Manifolds with the properties ( *) are known for n =  2, 4, 8 (complex, qua

ternion, Cayley projective planes respectively).

THEOREM76. There exist several topological 2n manifolds satisfying the

hypothesis (*) and having different homotopy types for the cases n =  4, 8
respectively.

(The author does not know if these topological manifolds admit any differ

entiable structures. Cf. Problem 5 in [6].)

Let XT  be the closed manifold obtained from Γ by collapsing its boundary

(a topological (2« — 1) sphere) to a point xQ for n = 4, 8. Then the topological

manifolds X\ n serve themselves as the examples of the manifolds stated in

Theorem 6.
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