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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 156, May 1971 

ON THE SIGNATURE OF KNOTS AND LINKS(') 

BY 

YAICHI SHINOHARA(2) 

Abstract. In 1965, K. Murasugi introduced an integral matrix M of a link and 
defined the signature of the link by the signature of M+ M'. In this paper, we study 
some basic properties of the signature of links. We also describe the effect produced 
on the signature of a knot contained in a solid torus by a further knotting of the solid 
torus. 

1. Introduction. A link I of multiplicity u is the union of Z ordered, oriented and 
pairwise disjoint polygonal simple closed curves 1i in the oriented 3-sphere S3. In 
particular, if ~ =1, it is called a knot. Two links I and 1' of multiplicity u are said to 
be of the same link type if there exists an orientation preserving homeomorphism 
h of S3 onto itself such that h li is an orientation preserving homeomorphism of l, 
onto li, i=1, 2,..., u. 

Now let I be a link and L a projection of 1, that is, the image of I under a regular 

projection. In 1965, K. Murasugi associated an integral matrix M to L, called the 

L-principal minor of 1, and he showed that the signature of M+ M' is an invariant 

of the link type of 1 [8]. The signature of M+ M' will be called the signature of the 

link I and denoted by g(l). 

H. F. Trotter [12] in 1962 and J. W. Milnor [6] in 1968 also defined the signature 

of a knot in different ways, and D. Erle [1] showed that Milnor's definition is 

equivalent to Trotter's. The author of the paper proved in [11 ] that for the case of a 

knot Murasugi's definition is equivalent to Trotter's. 

In ?2 we will state some known results which will be used in later sections. 

Let I be a link of multiplicity Zu and Al(t) the reduced Alexander polynomial of 1. 

In ?3 we first prove that if A1l(- 1) 7/ 0, then cr(l) is even or odd according as Zu is odd 

or even (Corollary 2). Furthermore we will show that if Al(t) #0, then the absolute 

value of g(l) is not greater than the degree of Al(t) (Theorem 3). In [8] Murasugi 

showed that if k is a knot, then I Ak(- 1)J 1 or 3 (mod 4) according as g(k) _0 or 

2 (mod 4). We will generalize this result to the case of a link by using the Hosokawa 

polynomial (Theorem 4). 

Presented in part to the Society, November 8, 1968 under the title On the signature of 
knots; received by the editors September 25, 1969. 

AMS 1970 subject classifications. Primary 55A25; Secondary 57A10. 
Key words and phrases. Signature of links, Seifert matrix. 
(1) This paper is a portion of the author's doctoral dissertation prepared under Professor 

S. Kinoshita at Florida State University. 
(2) The author was partially supported by National Science Foundation Grant GP-5458 

and GP-8417. 
Copyright ( 1971, American Mathematical Society 

273 



274 YAICHI SHINOHARA [May 

Let k be a knot, V a tubular neighborhood of k and V* a trivial solid torus in S3. 

Letf: V* -- V be a faithful homeomorphism of V* onto V. Let l* be a knot in V* 
and I-f(l*). Then I is homologous to some multiple of k, say 1- nk, in V. In ?4 we 
will prove that 

a(l) = u(l*) if n is even, 

= U(l*)+ug(k) if n is odd 

(Theorem 9). 
The author wishes to express his sincerest gratitude to Professor S. Kinoshita for 

his encouragement and helpful suggestions. 

2. Preliminaries. Let I be a link, L a projection of I and M the L-principal minor 
of 1. We first state the following two results proved by Murasugi [8]: 

(a) nullity (M+ M') is an invariant of the link type of 1. nullity (M+ M') + 1 is 
called the nullity of I and denoted by n(l). 

(b) Let Al(t) be the reduced Alexander polynomial of 1. Then 

(2.1) Al(t) = + t det (M-tM') for some integer A. 

Now let I be a link of multiplicity Zu and F an orientable surface in S3 whose 
boundary is 1. Let T: F -* S3 - F be a translation in the positive normal direction 
of F and al, a2,..., a2h+U-1 a homology basis on F, where h denotes the genus of 
F. The matrix 

j1 Link (Tai, a1j) jj,j= 1,2, ...,2h+u -1 

is called a Seifert matrix of I with respect to F [5]. 
Let L be a projection of a link 1. The orientable surface with boundary I which is 

constructed by using L as shown in ?1 of [9] is called the orientable surface associated 
with L. 

THEOREM A. If I is a link with a connected and special projection L, then the 
L-principal minor of I is a Seifert matrix of I with respect to the orientable surface 
associated with L. 

For the definition of a special projection, see Definition 3.1 of [8]. The detailed 
proof of Theorem A may be found in ?2 of [ 1]. We note that every link can be 
deformed isotopically to a link with a connected and special projection. 

Finally let k be a knot and V a Seifert matrix of k. It was shown in [12] that the 
signature of V+ V' is an invariant of the knot type of k. Further, as a consequence 
of Theorem A, it was proved in [11] that 

THEOREM B. The signature g(k) of k is equal to the signature of V+ V'. 

Throughout the paper Z and Q will denote the ring of integers and the field of 
rational numbers respectively. 
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3. Some properties of the signature. 

THEOREM 1. If 1 is a link of multiplicity ,u, then a(l) - n(l) (mod 2). 

Proof. First we deform I isotopically to a link lo which has a connected and 
special projection Lo. Let M be the LO-principal minor of lo. It follows from 
Theorem A that M+M' is a (2h+,u- 1) x (2h+,u- 1) matrix, where h is the genus 
of the orientable surface associated with Lo. Since I and lo belong to the same link 
type, we have g(l) = signature (M+ M') and n(l) = nullity (M+ M') + 1. 

Now M+ M' is congruent over Q to a diagonal matrix with r positive, s negative 
and n(l) -1 zero entries on the diagonal. Since 2h + u -1= r + s + n(l) -1 and 
a(l) = r - s, it follows that 

a(l) = t-n(l)+2h-2s 

_ t-n(l) (mod 2). 

COROLLARY 2. If I is a link of multiplicity ,u such that Al1(-1) 0 O, then a(l) is even 
or odd according as u is odd or even. 

Proof. (2.1) implies that Al1(-1) # 0 if and only if n(l) = 1. Hence Corollary 2 is 
an immediate consequence of Theorem 1. 

THEOREM 3. If I is a link with Al(t) #0, then lcr(l) I < the degree of Al(t). 

Proof. Let M be the L-principal minor of I and m the number of rows of M. 
Since Al(t) # 0, (2.1) implies det (M-tM') # 0. 

Now if M is a singular matrix, it is congruent over Q to the matrix 

0 0 

a MA, 

where M1 is (m-1) x (m-1) and a is (m-1) x 1. Moreover, det (M-tM') # 0 
yields that a has at least one nonzero entry. Therefore M is congruent over Q to the 
matrix 

IO O O~ 

0 q M2] 

where M2 is (m-2) x (m-2) and q is (m-2) x 1. It is easy to show that AT+AT' is 
congruent over Q to the direct sum of [O 1] and M2+M2' and that M- tM~' is 
equivalent over the rational group ring of H= (t: ) (in the sense of Fox [2]) to the 
direct sum of [O -I] and M2-tM2. 

From this it follows that 

signature (M+ M') = signature (M2 + M2) 
and 

det (M-tM') = c1t det (M2-tM2) 

for some nonzero rational number c1. 
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Since det (M2 - tM2) #0, if M2 is singular, by applying the preceding argument to 
M2 we can obtain an (m -4) x (m -4) matrix M3 such that 

signature (M2 + M2) = signature (M3 + M3) 

and 

det (M2-tM2) = c2t det (M3-tM3) 

for some nonzero rational number c2. 
By repeating this process several times, if necessary, we can show that there 

exists a nonsingular (m - 2n) x (m - 2n) matrix N for some n such that 

cr(l) = signature (N+ N') 

and 

AI(t) = ctA det (N-tN') 

for some integer A and some nonzero rational number c. 
It is clear that 

(3.1) 1cg(l) I _ the number of rows of N. 

Since the constant term and the leading term of det (N- tN') are det N and 
+ det N respectively, these are nonzero rational numbers. Hence we have 

(3.2) the degree of AI(t) = the degree of det (N- tN') 

= the number of rows of N. 

Theorem 3 is a consequence of (3.1) and (3.2), which completes the proof. 
Let I be a link of multiplicity Zu and 11, 12,. .., 1/ the components of 1. If Z > 2, we 

define the matrix A= lh4Ill,1=1,2. by the formula 

lij = Link (11, 4j) for i :1, l5 = - i 4i 
j PA 1; i 

Let Ai be the matrix obtained from A by deleting the ith row and the ith column. 
Clearly det Ai does not depend on the choice of i or the order of 11, 125 . . ., ll. Then 
we define 

(3.3) D(l) = 1 if =1, 

= det Ai if ~u> 2. 

It is easy to see that D(l) is an invariant of the link type of 1. 
The polynomial 

(3.4) V1(t) = 40/0 -ty - 

is called the Hosokawa polynomial of / [4]. 
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THEOREM 4. Let 1 be a link of multiplicity ,u. If Vl(-1) # 0 and a(l) = em, where 
e=+landm>0, then 

I Vl-1) -Em-l)M-U + 1)/2 D(l) (mod 4). 

Proof. We may assume that I has a connected and special projection L. Let M 
be the L-principal minor of 1, F the orientable surface associated with L and h the 
genus of F. Then by Theorem A M is a Seifert matrix of L with respect to some 
homology basis on F. 

Now it follows from the argument given in ?3 of [4] that we can choose a homol- 
ogy basis on F with respect to which the Seifert matrix V of / is of the form 

LC B'1 
V= LB Al 

where C is a 2h x 2h matrix such that C-C' is the direct sum of h copies of [-1 ] 
and A1 is a (~-1) x (1 - 1) matrix appearing in (3.3). Therefore there exists a 
unimodular integral matrix P such that PMP'= V. 

Let 

f(t) = det (V-tV')/(l-t)u-l = tCB' 
(1 -t)B Al 

Note that since A1 is symmetric, each of the last -1 columns of V-tV' has a 
factor 1-t. 

By (2.1) and (3.4) we havef(t)= ? tAV#(t) for some integer A. Sincef(t) is a poly- 
nomial of degree at most 2h and satisfies the conditionf(t) = t2hf(t -1), we may put 

f(t) = cO + clt + * * + C2ht , 

where Ci = C2h -i for 0 < i < h-1. Using the facts det (C-C') = 1 and det A1= D(l), 
we obtain 

h-1 

f(l) = D(l) = 2 2 Ci + Ch. 
i =O 

From this and the fact ( )i _)( )h = (mod 2) it follows that 

h-1 

f(-1) = 2 (-1)ici+(-1)hcCh 
i=O 

h-1 

(3.5) = -)D(l) + 2 {(1)i_(l}c 
i=o 

= (- 1)'hD(1) (mod 4). 

Since V,(-1) # 0 and g(l) = em, for some unimodular rational matrix, Q, 
QP(M+M')P'Q'= Q(V+ V')Q' is a diagonal matrix with diagonal entries 
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where aj, a' and bk are positive rational numbers. Therefore we have 

f(-1) = det (M+ M')/2u- 

= (-1)nemal. *an a'* -a'b... bm/21l1 

and 

(3.6) signf(-1) = (-I)nem. 

Since 2n +m =2h +,u-1, it follows from (3.5) and (3.6) that 

jV1(-1)j = If(-1)I =f(-1)*signf(-1) 
_ gm(_ 1)(m-'+ 1)/2D(1) (mod 4) 

Thus the proof is completed. 

COROLLARY 5. Let k be any knot. If I a(k) I = 2m, then I A(- 1)1 (- I)m (mod 4). 

This corollary was first proved by Murasugi (Theorem 5.6 in [8]). 
Now it follows from Corollary 5 and Theorem 1 of [6] that 

3 Aft(-1) I-(-I)m (mod 4) if and only if Ij(k)I -2m (mod 4), 
and if IAk(-1)I = 1 then g(k) 0 O (mod 8). 

Moreover the condition (3.7) is the best possible in the following sense: 

THEOREM 6. Let m and n be nonnegative integers. Then there exists a knot k such 
that 

(1) I Ak(-1) =4m + 1 and Ia(k)I = 8n, 
(2) IAk(-1)I =8m+5 and Ij(k)I =8n+4, 
(3) jAf(-1)j =4m+3 and jr(k)j =4n+2. 

REMARK. The existence of a knot k such that 

(4) IAk(-1)1=8m+1 (m>O) and lr(k)l=8n+4 
can be proved for the case m _ + 1 (mod 3). The case m _O (mod 3) still remains 
open, though the affirmative answer is expected. 

Proof of Theorem 6. We will use the following facts (a)-(e): 
(a) If k=kl # k2 is the composition of two knots k1 and k2, then g(k) 

= u(kl) + ?(k2) and I Ak(- 1) I = I kl(- 1) I k2( 1) 1. 
(b) If k-1 is the mirror image of a knot k, then ur(k1)= -r(k) and IAk-1(-1) 

= IAk(- 1)1l 
Let K(p, q) denote the torus knot of type (p, q). 
(c) r(K(5, 3))=8 and I AK(5,3)(- 1)1 = 1. 
(d) g(K(2p+ 1, 2))=2p and I AK(2p+1,2(-1)1 =2p+ 1. 
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r crossings (r ? 0) 

K(r) 

FIGURE 1 

Let K(r) be the knot shown in Figure 1. 
(e) g(K(r)) =0 or 2 according as r is even or odd and IAK(r)( 1)1 2r+ 1. 

Now let kl, k2 and k3 be knots defined by 

ki = K(2m) # K(5, 3)# ... # K(5, 3) (n times); 

k2= K(8m + 5, 2) # K(5, 3)e- ..# K(5, 3)e 

(I n-m I times), where e = sign (n-rm); 

k3 = K(2m + 1) # K(5, 3)... .f K(5, 3) (s times) if n = 2s, 

= K(2m + 1) - 1 # K(5, 3) .# K(5, 3) (s + 1 times) if n = 2s + 1. 

Then, by using (a)-(e), we can show easily that ki satisfies the condition (i) of 
Theorem 6 for i= 1, 2, 3. 

4. Knots in solid tori. Let U and V be solid tori in S3. A homeomorphism of U 
onto V is called faithful if it preserves the orientations induced by the orientation 
of S3 in U and V and if it carries a longitude of U onto that of V [3]. 

LEMMA 7. Iff: U -- V is a faithful homeomorphism, then 

Link (a, ) = Link (f(a), f(/)) 

for any pair of disjoint 1-cycles a and in Int U. 

Proof. Let q be a longitude of U. Then a is homologous to some multiple of q, 
say a - mq, in U and there exists a 2-chain C in U such that a - mq = AC. Using the 
fact thatf is faithful, we obtain 

(1) f(a) - mf(q) = af(C), 
(2) f(q) is a longitude of V, 

(3) S(C,5 ) = S(f(C), f(), 
where S(A2, B') denotes the intersection number of a 2-chain A2 and a 1-chain B' 
in S3. 

Since / lies in Int U and q bounds a 2-chain Q in S3- Int U, it follows that 
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Link (q, 3) = S(Q, /) = 0. Applying the same argument to f(q) and f(/), we can 
show that Link (f(q), f(,B)) = 0. Therefore we obtain 

Link (a, /) = Link (a -mq, 3) = S(C, f) 

= S(f(C),f3)) 

= Link (f(a) - mf(q),f(/)) 

= Link (f(a),f(J8)). 

LEMMA 8. Let q be a longitude of a solid torus U and Q a 2-chain in S3 - Int U 
such that aQ =q. If a is a 1-cycle in Int Uand , is a 1-cycle in S3- U with S(,B, Q) =0, 
then Link (a, /) =0. 

Proof. Since a mq in U for some integer m, there exists a 2-chain C in U such 
that a =mq + AC= a(mQ + C). Therefore we obtain 

Link (a, /) = S(mQ+C, /) = mS(Q, ,B)+S(C, ,) = 0. 

Let k be a knot in S3, V a tubular neighborhood of k and V* a tubular neighbor- 
hood of a trivial knot k*. Letf: V* -- V be a faithful homeomorphism of V* onto 
V, 1* a knot contained in Int V* and I-f(l*). Then l*,nk* in Int V* for some 
integer n. 

THEOREM 9. 

a(1) = u(l*) if n is even, 

-a(l*)+r(k) if n is odd. 

Proof. There is no loss of generality in supposing that n is nonnegative. Note that 
the signature does not depend on the choice of orientation for a knot. 

Case I. n=O. 
Since l* is nullhomologous in V*, I* bounds an orientable surface F* in Int V*. 

Let h be the genus of F* and a*, c, ..., ac*' a homology basis on F*. Clearly 
F=f(F*) is an orientable surafce contained in Int V whose boundary is 1, and 
a1 =f(al), a2 =f(a*2), . . , a2h =f(afth) is a homology basis on F. Let T*: F* -* S3 -F* 
and T: F -- S3 - F be translations in the positive normal direction of F* and of F 
respectively. We may assume that T*aoc and Tai are contained in Int V* and in 
Int V respectively. Since Tai f(T*a*) in V-F, it follows from Lemma 7 that 

Link (T*a*r, a*l) = Link (f(T*a*), aj) 
= Link (Tar, aj). 

Therefore we have shown that a Seifert matrix jjLink (T*ai*, a*)jji,j=1,2,...,2h of 1* 
coincides with a Seifert matrix 11 Link (Tai, ao) li = 1, 2,...,2h of 1. This implies im- 
mediately that u((1)=cu(1*). 

Case II. n is a positive integer. 
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First we will construct orientable surfaces F* and F bounded by l* and I respec- 
tively. Our construction is the same as the one given in ?4 of [10], but for the sake 
of completeness we include it here. 

We choose n pairwise disjoint longitudes q*, q*, . . ., q* on the boundary of V* 
such that q* is homologous to k* in V*, i= 1, 2, ..., n. Since l* nk* iqn= l q?* in 
V*, there exists an orientable surface F0* in V* with F0*= 1*-_, = 1qi*. Let 
F1*, F2* ,. . ., Fn* be pairwise disjoint 2-cells in S3-Int V* with aFi* =qi*, i= 1, 2, 

n. Then F* = F* u U%= 1 F* is an orientable surface in S3 whose boundary is 
l*. 

Let Fo =f(Fo*) and qi =f(q*) for i= 1, 2, .. ., n. Then Fo is an orientable surface 
contained in V whose boundary is 1- i. 1 qi. Since q1 is a longitude of V, it bounds 
an orientable surface F1 in S3-Int V. Without loss of generality we may assume 
that q1, q2, . . ., qn are ordered in the positive normal direction of F1. By pushing F1 
isotopically in its positive normal direction we obtain an orientable surface F2 in 
S3- Int V which is parallel to F1 and whose boundary is q2. Similarly, by pushing 
F2 isotopically in its positive normal direction, we obtain an orientable surface F3 
in S3- Int V with t9F3 =q3 which is parallel to F2 and intersects neither F1 nor F2. 
By continuing this process we finally obtain n pairwise disjoint orientable surfaces 
F1,..., Fn in S3-Int Vwith U3Fi=qi, i=1, 2,..., n. Clearly F=Fo u U1=% Fi is an 
orientable surface bounded by 1. 

Let g be the genus of F* and let 

(4.1) 
a*a . * a*2 

be a homology basis on F*. Since F*, ... ., F* are 2-cells, we may assume that these 
basis elements are lying on Fo*. Therefore al =f(al*), a2 =f(a2*)... , * =f(a*4) are 
lying on Fo. Let h be the genus of F1 and a', a.5,. ., a', a homology basis on F1. 
For v=2, 3, .. ., n, we choose cv, a,. . .. aV1, as a homology basis on F, where av 
is the image of .4 under the above described isotopy which carries F1 to Fv. Then 
it is easy to show that 

(4.2) a15, aC2,.. . * *a2h; . . . *; a1 2 . . . a Cn2h; 1, a2 . .. a 2g 

is a homology basis on F. 
Now we want to consider the Seifert matrix of 1 with respect to the homology 

basis (4.2) on F. Let T*: F* _ S3-F* and T: F-- S3-F be translations in the 
positive normal direction of F* and of F respectively. Let 

A* = I|Link (T*a5, aj )DJiJ=1,2,...,2g 

be the Seifert matrix of l* with respect to homology basis (4.1) on F*. Then the 
argument in Case I implies easily that 

(4.3) IlLink (Tat, oc,)JJ|,,=1,2,...,2g = A*. 
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Since a, is a 1-cycle in V and Tay r) F1 = 0, it follows from Lemma 8 that 

(4.4) Link (Tar, as)-=O for I < v < nl; < i _ 2h; 1 < s < 2g. 

Since a> - Tao in S3 - V, we have Link (Tar, a) = Link (Tar, Tajv). Applying Lemma 
8 to Tar and Tav, we obtain 

(4.5) Link (Tar,ay)=O for1 _v<n;1 <j<2h;1 <r<2g. 

If v>,u, we have a> aoc in S3-Tav (see Figure 2(a)), from which we obtain 
Link (Tay, aj ) = Link (Tav, a'). If v < ,u, Ta> T - 1a in S3 -all, where T - 1: F-? S3-F 

is a translation in the negative normal direction of F (see Figure 2(b)). From this 
we obtain 

O Tc4 

~~~~~~~~~~a} 

(a) v : 

q a 

(b) v < IL 

FIGuRE 2 
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Link (Tac, a0) = Link (T - 1, (>4) = Link (a4, Ta4). Therefore we have shown that 

Link (Tac, c4) = Link (Tac, av) if v > ?, 

= Link (0cc, Tcc) if v < ,. 

Since q1 and k belong to the same knot type, the matrix 

B = IlLink (Tac, al)1ij =1, 2...,2h 

can be considered as a Seifert matrix of k. By the construction of av, 0c4..., acch it is 
clear that 

Link (Tac, av) = Link (Tcl, oc) 

for v= 1, 2,.. ., n. From this and (4.6) we have 

(jLink (Tac, c4a)| ==1 2.2h=B if v _ , 

= B' if v < . 

Let A be the Seifert matrix of 1 with respect to the homology basis (4.2) on F. 
Then (4.3)-(4.7) show that A is a matrix of the following form: 

A = 
B 

A 

Lo A* 

where B= |B,v,IL n. 

B, = B if v _ , 

= B' if v < ,u. 

To calculate signature (A + A'), we will make use of the facts that A - A' is the 
matrix S= JIS(cl, c1)l111i =12...,2h of intersection numbers of ac and ac on F1 [5] and 

that S is a unimodular skew symmetric matrix [9]. In A + A', we subtract the 2nd 
row block from the 1st and the 2nd column block from the 1st; the 3rd row block 
from the 2nd and the 3rd column block from the 2nd; ... ; the nth row block from 
the (n - I)th and the nth column block from the (n - I)th, which shows that A + A' 

is congruent over Z to the following matrix: 

n blocks 

O -S 0 

S 0 -s 

(4.8) n blocks 
0 so -s 

S B+B' 

0 A* +A*' 
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Furthermore, by adding the 1st row block to the 3rd and the 1st column block to 
the 3rd; the new 3rd row block to the 5th and the new 3rd column block to the 5th; 

it can be shown that (4.8) is congruent over Z to the matrix 

3 G) ... (. g ? ? (A* + A*') (n/2-1 copies) if n is even, 

( &) ... (.?(B+B') ((A* +A*') ((n-1)/2 copies) ifnis odd, 

where 

= [S 0] and [S B+B] 

Since S is congruent to 3 over Z and signatue 3= 0, it follows from (4.9) that 

a(l) = a(l*) if n is even, 

= a(1*) + a(k) if n is odd. 

This completes the proof of Theorem 9. 
REMARK 1. In [10] H. Seifert showed that Ap(t) = Al*(t)Ak(tn), where Al(t), A1.(t) 

and Ak(t) are the Alexander polynomials of 1, 1* and k. 
REMARK 2. Let M2(l), M2(1*) and M2(k) be the 2-fold branched covering spaces 

of 1, 1* and k. Then it follows from (4.9) that 

H1(M2(l)) = H1(M2(1*)) if n is even, 

= H,(M2(l*)) 0 H,(M2(k)) if n is odd, 

where the coefficients of these homology groups are the integers. 
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