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L. C. Siebenmann

1. Introduction

The handlebody theory of high-dimensional manifolds developed by
M. Morse, S. Smale, and A. WallaceT is one of the key methods for classifying

a manifolds. Unfortunately it has never functioned well in dimensions 4 or 3.

This article shows that some of the most useful theorems of high-dimensional
handlebody theory in fact fail in low dimensions. For one, the s-cobordism
theorem is false in dimension 4 or 5. W.-C. Hsiang has also noticed this. I
expect others have noticed various failures because it was for some time
easy to “prove” the Hauptvermutung for manifolds by assuming valid in
low dimensions enough results of high-dimensional handlebody theory.
Upon the disproof of the Hauptvermutung ([19] and [20]) it remained for
me to locate the counterexamples. I have not succeeded completely.

One of the most interesting features of the counterexamples established
for DIFF (= differentiable C*) mantfolds and PL (= piecewise linear) mani-
folds is this: Some and perhaps all are no longer counterexamples when
viewed in the category of TOP (= topological) manifolds. There I know of
just one failure : Some closed TOP manifolds of dimension 4 or 5 admit no
TOP handle decomposition (see Section 5). .

Rohlin observed long ago (cf. [16]) that Whitney’s method of eliminating
double points breaks down in dimension 4. This is the main obstacle to
finding a 3-dimensional handlebody theory. Rohlin’s observation and the
results of this article as well as the failure of the Hauptvermutung are all
traceable to

1

+ And several others. Perhaps the theory began with H. Poincaré’s description of u
generic smooth real-valued function on a smooth manifold [44, sec. 2].
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Rohlin’s Theorem ([30] and [15)). For any closed oriented DIFF or PL
4-manifold M* with vanishing second Stiefel-Whitney class w(M), the signa-
ture { = index) s(M) of M is divisible by 16.

The expected divisibility is 8 in the sense that, for Poincaré complexes
in place of PL manifolds, a minimum signature of 8 is realized (by a complex
arising from Milnor’s plumbing [3]). Rohlin’s theorem is undecided for
topological manifolds.

In this article Rohlin’s theorem intervenes as part of the analysis of
homotopy tori due to Wall, to Hsiang and Shaneson, and to A. Casson. It.
is reviewed in Section 3. Results are collected in Section 2, proofs are given
in Section 4, and Section 5 is devoted to manifolds admitting no handle
dewmposxtlon.

This article is a by-product of joint work with R. Kirby ([20] and [21]),
and in this sense he is joint author.

2. Statements

Here I describe failures of %, the “ribbon” conjecture; 6,, the s-cobordism
conjecture; and %,, the pseudoisotopy conjecture, in versions known to be
valid in dimensions > 6. The subscripts 0, 1, and 2 are suggested by relatlons
with the functions K, K, and K, of algebraic K-theory. -

SOME NOTATION. If X is a manifold, éX denotes its boundary and int X
denotesits interior. DIFF manifolds are allowed corners along the boundary.
The symbol ¢ alone is used as an abbreviation of “its boundary™ or “the
boundary,” also the plural. I = [0, 1]. T” = the n-torus, the n-fold product
of circles S! = T!. Weagree that T"*! = T" x S',sothat T" > T""! o ---
= St. §' is identified with R/Z {(the real numbers modulo the integers)
and I/¢I (the interval with boundary points identified). Then T" = R"/Z".
B" = {xe R";|x| < 1} is the smooth unit n-ball assigned a compatible PL
structure, PL isomorphic to I" < R™.

Definition. A ribbont W" is a noncompact (connected) manifold (of
category DIFF, PL, or TOP) such that (a) é¢W = N x R for some compact
(n — 2)-manifold N, and (b) there exists a finite complex K and a properL
map r : K x R — W, inducing an isomorphism 7, K = m, W, such that r 1s
a retraction in the category of proper homotopy classes of proper continuous
maps.

Any ribbon has two ends. Call one . There is an invariant o(g) defined
in £,Z[x,(¥)}. It comes from Wall’s finiteness obstruction [39] of any
suitable closed neighborhood X of e. Suitable here means that W — X is a

+ Called pseudoproduct in [37].
* Proper means that the preimage of cach compactum is compact
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neighborhood of the other end and X isa submanifold. For more discussion
see (331, [35], and [34a, sec. 4].

%,(n): Ribbon Conjecture (DIFF, PL, or TOP). A4 ribbon W" of dimension
u is isomorphic to M x R for some compact manifold M if and only if the
incariant o(g) of either end ¢ of W is zero.

The conjecture is established for n 2 6 in [33]. Browder first treated the
simply connected case in [4]. The PL and TOP proofs are patterned on the
original DIFF proof ([33] and [21)). Recall that, if =, W is free abelian,
then KoZim, W] =0 by (1], so that no obstruction intervenes. For n = 3
the result has been proved by Husch and Price [14] with the extra provisos
that éW # 0 or ;W # Zy, and that W be irreducible (ie., each embedded
locally flat 2-sphere in W bounds 3-disk). Clearly €,(3) implies the Poincaré
conjecture. ;

Theorem 0. In the DIFF and PL categories the conjecture €o(n) is false
for dimension 5,4, or 3. More precisely, either Go(n) fails for a ribbon which is
proper homotopy equivalent to S? x S' x R or S* x R, or else the 3-dimen-
sional Poincaré conjecture fails.

Definition. Let W” be a compact (connected) n-manifold and ¥, V7 dis-
joint compact(n — 1)-submanifolds of ¢}V such that oW — (int Vuint V') =
&V x 10,1 = v’ x [0, 1]. Suppose that Vs W and 3V’ o W are homo-
topy eguivalences. Then (W; V, V')is called an h-cobordism (mod boundary)-

%, (n): s-Cobordism Conjecture (DIFF, PL, or TOP). An h-cobordism
(W ¥, V') is a product cobordism, ie, (W;V, V)=V x (I1;0,1), if and only
if the inclusion V.S Wisa simple homotopy equivalence.

REMARK. It is useful to note that (W;V,Vy=Vx ([0, 11; 0, 1) implies
directly the existence of an isomorphism extending any given isomorphism
oW — {int Vuint V) = 8V x [0, 1] that sends 0V to @V x 0 (cf. [34, prop.
.

%,(n) has been proved for n > 6 ([17] and [13]); the simply connected
version is due to S. Smale, and the general case was first treated by B. Mazur.
The PL and TOP proofs are again patterned on the original DIFF proof
(7131 and [21]). Simple homotopy type of topological manifolds is defined
in [207, and can equally well be defined by a handle decomposition when-
ever one exists [22]. Note that every homotopy equivalence V & Wis simple
if 7,1V is free abelian, because then Wh(z, W) = 0 [1}.

4,43) is valid if both m W = 0 and there is an isomorphism V = V* in the
preferred homotopy class ([40] and [32]). 6,1 (3) 1s established with the same
provisos as %(3) in [38] and [2}.

Theorera 1. In the DIFF and PL categories the conjecture 6\(n) is jalse
for dimension n = 5 or 4 (one or both). To be more specific, fixk=0,1,0r2,
and choose the DIFF or PL category. Then there exists an h-cobordism
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(W; V, V') of the following description. '

(a) Vis B* x T* *or B* x T3~ ¥ (perhaps both possible).

G V=V ‘

) (W;V,V)isan invertible cobordism.

(d) There exists a topological homomorphism eV x (I;0,1) ~(W. V, V)
that gives an isomorphism &(V x I) — ow.

(e) (W;V, V') is not-a product cobordism. In fact, no finite odd covering¥
of it is a product cobordism.

Let M be a manifold (DIFF, PL, or TOP) and a:1 x M2 an auto-
morphism respecting 0 x M, 1 x M, and fixing I x éM. o is called a
pseudoisotopy (mod 0). : :

%,(n): Pseudoisotopy Conjecture (DIFF, PL, or TOP). For any connected

* compact (n — 1)-manifold M, such that m,(M) is free abelian the following
holds. Each pseudoisotopy o:M x 12 is isotopic fixing oI x M) to an
automorphism respecting the slices t % M, tel, (i.e, to an isotopy). Equiva-
lently, each automorphism of I x M fixing I x éM w0 x M is isotopic
through such automorphisms to the identity.

%,(n) has been proved forn > 6 in case M = 0, by Cerf for DIFF ([6]

and {7]) and by C. Morlet and Rourke [31] for PL. Armstrong’s [45] may -

help prove €,(n) for TOP. %,(n),n 2 6, is still undecided for z; # 1. Itisknown
that, without the restriction that 7, be free abelian, nontrivial obstructions
come into play [36]. However, %,(n), n = 6, cannot be far wrong, since
Proposition 2.1. For n > 6 the following conjecture €(n) holds true.
@5(n): Weak Pseudoisotopy Conjecture (DIFF, PL, or TOP). With the
data of %,(n), for every automorphism a1 X Mo fixing I x IMu0 x M,
there exists a finite covering M of M, even one of odd order, so that the
automorphism & : I x M D covering « and fixing { x 8M LU0 x M is iso-
topic, fixing I x éM w0 x M to the identity.
Parallel to Theorem 1 we have ;
Theorem 2. In the DIFF and PL categories the conjecture &,(n) is false

for dimension n = 5 or 4 (one or both). To be more specific fix j = 0or 1 and

choose the DIFF or PL category. Then there exists an automorphism

a: I x M.

(@) M = B/ x T*7Jor B' x T>7/(perhaps both possible).

(b) #&(I x M) = identity.

(c) (the empty condition).

(d) = is topologically isotopic, fixing &(I x M) to the identity.

{e) a is not isotopic (in the category) to id|] x M, fixing I x MU0 x M.
In fact, no finite odd-order covering of o is isotopic to the identity in this way.

+ And no finite even covering either, itk = 2. See n’(1) in Corollary 3.3 and the proof
of Theorem 1. A similar remark applies io Theorem 2if j = L.
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3. Resulis from Surgery

Transversality is used extensively in this section. In the PL category we
agree to use Williamson’s PL microbundle transversality [43], always with
respect to an obvious PL microbundle in the target space.

Adopt the DIFF or the PL category and let X denote a compact -
manifold with boundary 8X. We consider compact manifolds W equipped
each with a homotopy equivalence f: W — X that gives an isomorphism
on &.1 Sullivan calls f a homotopy smoothing [resp. triangulation] of X in
the DIFF [resp. PL] category. Another f": W' > X is called equivalent if
there exists an isomorphism i : W — W' such that [ = fon ¢W and f'y
is homotopic to f fixing boundary. The equivalence classes form a pointed
set denoted F(X, éX) or simply (X, ©).

Theorem 3 (Wall [42] and Hsiang and Shaneson [12]). Adopt the PL
category. For n + k = 5 there is a bijection [*] (B x T o) = HY 7% x
(T"; Z5).

Complewent 3.1. The bijection [*] enjoys these naturality properties:

n(1). If f: W — B* x T" is a homotopy triangulation and p:B* x T" —
Bt x T" is a covering map, a corresponding covering f:W—-BxT"of
f. pf = pf, satisfies [ f] = p*[f]. Hence if p has odd degree, or k =3, then
[f1=[f] since p* = id.

n(2). Consider a homotopy triangulation f:W— B* x T" that is h-trans-
verse to BX x T" 1. The prefix “h->" means} that the restriction f, f B x
T*= 1y — B* x T""! of f is a homotopy equivalence. Then the class [ f1]e
H3~YT"Y; Z,) is the restriction of { f1.

From n(2) we get

Complement 3.2. For any dimensions n and k, [*]:9(B* x T" &) —
H3"KT":Z,) can be defined by letting [f] be the restriction to T" of
[f % (idiT%je H> YT %; Z,). It continues to enjoy the naturality properties
n{1y and n(2), but may not be an isomorphism.

This is also clear from the definition of [*] below.

The DIFF Version

Since every PL manifold has an essentially unique smoothing in dimen-
sions < 6 ({5] and [261), the theorem holds for DIFF in dimensions 5 and 6.
By imitating the PL proof one avoids Cerfs difficult theorem
ro=0{s)

¥ 1n DIFF, when X has corners on ¢ X, one must insist that fI¢X extends to an iso-
morphism of neighborhoods of the boundaries.
* The notion of h-transversality will be used repeatedly betow.




e it 5

62 TRIANGULATION AND CLASSIFICATION

s as follows for n + k = 5.Bya
orem parallel to that of [20], the smoothness structures
on the topological manifold B* x T" that extend the standard structure
on & are classified up to isotopy fixing ¢ by [B* x T/é; TOP/O}. The
‘forgetful map to P(B* x T" d)isan isomorphism. Thus we have

F(BEx T, 0) = [B* x T%¢é; TOP/O] = zHi""(T";ni(TOP/O)).

reMaRK.T The general result in DIFF 1

classification the

The PL result can also be stated
S LB x ThE) = [B* x T"2; TOP/PL] =
3 [20]. This gives a very convincing “explana-

H3~XT"; n5(TOP/PL))

since i;TOP/PL = 0 fori s
tion™ of the naturality properties under Theorem 3.
consider automorphisms o : B x T"

In the PL or DIFF category,

Bt x T fixing ¢ and homotopic? fixing ¢ to the identity. Agree that two
such automorphisms %o and o, areequivalent if there existsan automorphism
B:I x B*x T"o fixingl x ¢B* x Trwith i x Bt x T"=1X a;,i =01
pis called a pseudoisotopy mod é. The set of equivalence classes is denoted
ABF x T", )

Given an automorphism
0<t<1, of xg=1d to*
setting f(L,  ¥) = (¢, ot V)
(B! x T"). The correspondence & — F 8

o e/(B x T, 8y — LB x T 0).

o of
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n(1). If p:B* x T"2 is a covering map, and {a), {«') are related by
px’ = ap (i.e., 2" covers ), then {x'> = p*{u).

n(2). If x:B*x T"o represents {x) and respects B* x T" !, then
(B x T""'>e HY KT "1, Z,) is the restriction of ().

The map {*) is bijective forn + k = 5inthe PL categoryand forn + k = §
in the DIFF category.

Discussion of the Proof of Theorem 3. The proof is a calculation that
starts from an exact sequence of Sullivan-Wall [41, sec. 10]:

coo = [E(N/E), G/PL] S L. (n,N) - LN, &) - [(N/é), G/PL] & L,(m N),

where N = B* x T", m = n + k. The maps G, © turn out to be injective,
so F(B* x T" ) = coker (©). Leaving the details aside, I will now give a
definition of [ f] which makes evident the naturality properties of [f] in
Complement 3.1 and, more important, indicates the role of Rohlin’s theorem. ¥

Adopt the DIFF or PL category and consider a compact oriented 3-
manifold M3 with 7; M free abelian. Let f : W"*3 — M? x T"beahomotopy
smoothing or triangulation mod ¢ such that there exist (a) a manifold X
with w{X) = w,{X) = 0 forming a cobordism (X ; M3 x T", W"*3), (b) an
isomorphismy:0X = X — {int M> x T"uint W} - &(M?) x T" x Isuch
that 3(x) = (x, 0) for xe cM> x T"and y(x) = (f(x), 1) for xe dW, and (c) a
retraction g : X —» M?® x T"extending f and the projection X — M> x T"
provided by ;. We will construct an invariant Oxy(f)e Z, of the class of f in
F(M x T"). Suppose first that g|W = f can be made h-transverse to the
submanifolds M?* x T" ' o M3 x T"" 25 ... o M3 x T! o M>. When
this has been accomplished we can further deform g fixing 0X to make g
transverse to M>. Then set X* = g7 }(M?>) and define

0\(f) = s(X*)/8 (mod 2).

Here s(X*) is the signature of the orientable 4-manifold X* with boundary.
It can be defined as the algebraic signature of the intersection pairing
D H)(X:ZY® H(X, Z) - Z. This is divisible by 8 since w; X = w, X =0
implies that &{x ® x)is even for all x [3]. To make fh-transverse one attempts
1o use repeatedly

Theorem F (Farrell [10]). Let f':W" — M"~ ! x S' be a homotopy equi-
nilence of compact DIFF or PL manifolds that is an isomorphism on é. Then
' can be made h-transverse to M x 0 by a homotopy fixing & provided m,M
is free abelian and n > 6.

REMARK. Farrell has shown this to be a formal consequence of €y(n)
supported by 4,(n + 1) and %,(n). For the definition of 8, it would suffice

" Iis the one explained to Kirby and me by W. Browder. It may be explicit in [12}.
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to make h-regular some covering of f’ induced from a covering S* — S*.
For this %,(n) suffices (see the proof of Theorem 0).

As Theorem F may fail for n = 5, or 4, we are obliged to proceed by
artifice. Let PP = CP(2k), p = 4k > 8. Then make g = (id|P) x gh-trans-
verse on W = P x W and (simply) transverse on X=Px XtoP x M
Set X4 = g~ }(P x M?)and define

Ou(S) = s(X)/8 (mod 2).

This is consistent with our first attempt since s(P x X 4 = s(P) x s(X*) =
s(X*).

We now check that s(X¥)/8 is an integer and that Op(f) is well defined.
Suppose the above process of definition is carried out twice in different
ways, giving data distinguished by subscripts 0 and 1. Form Y"** from
Xow X, wa(Xo) x I, by identifying 8X, in Xo to 8Xo x 0 and ¢X,; in
X, to X, x 1inthenatural way. We shall now defineh:Y = P x Y"** -
P x M? x T" extending gow g; :Xow X; = P X M3 x T On P x
(M3 x T"U oM> x T") X I} x I« P x (8Xo) x I we can let it be pro-
jection to P x M* x T". A homotopy mod @ from go|W to g,|W further
extends this over W x I to give h. Now h can be altered on int(W x I),
by repeatedly applying Theorem F, so that hjW x I is h-regular to P X
M3 x T°,0 <s < n. This leaves hXo w X; = 80w g unchanged.

Consider the closed (p + 4)-manifold Y® =h™}(P x M 3). It is not hard
to check that s(Y¥) = s(X§") + s(X{*). But by another application of
transversality Y® is orientably cobordant to P x Y*#, where Y* is obtained
by making h=h/Y"** transversal to P x M3cPx M*x T It is
easily seen that w(Y*) = wy(Y?) = 0. Hence Rohlin’s theorem shows that
s(Y*) = 0(mod 16). Thus S(X$) + s(X89) = s(Y®) = s(Y*) = 0 (mod 16).
From the case X{ = X" we see that s(X') is divisible by 8, so that Ox( f) =
s(X)/8 (mod 2) makes sense. Now s(X{M)/8 = s(X5V)/8 (mod 2) by the same
congruence. Hence 6(f) is a well-defined function of the equivalence class
of f.
A further use of Theorem F shows that 8,,(f) = Ou(¥ fywherey :M x T"2
permutes the factors of T%; in other words, Ox( f) is independent of the choice

of the nest
MPx T o M3 x T"" 2> ... o M x St o M
Given a homotopy triangulation f: W — B* x T", we are now ready to
define its cohomology class [f]e H3(B* x T", &:Z,) by specifying its effect

on each generator of H 4(B* x T" é; Z,). There are of them: the
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fundamental classes {B* x T37*} of B* x T>7* where T>~* here ranges

[ n
over all l k) standard (3 — k)-dimensional subtori. Fixing any one

T3k write B* x T" = (B* x T>~% x T" by reordering the factors of T"
and define

S {B* x T>7%}) = Opxx 13- f).

Injectivity of © shows that gy rs-« f) can always be defined; ie., a co-
vordism (X ; B* x T" W) with w{X) = w,(X) = 0 can be found. In fact,
X can be (stably) PL parallelizable. This completes the definition of [f]
and the discussion of Theorem 3.

4. Proofs

This section proves the results of Section 2 using the known results
described in Section 3. The minimum required from the latter is the pair of
invariants [*], {*) and their naturality properties, together with the examples
constructed in Section 5 {see Construction 5.5).

Proof of Theorem 0. Fix the DIFF [or PL] category and consider a
homotopy smoothing [or triangulation] g : X" — B* x T"7*(modé),n 2 5,
such that 0 # [g]e HYT""3;2Z,) = Z,. Letf : W"— §> x T"> be formed
by welding g to the identity map B> x 7773 — B> x T"™? by identifying
their restrictions to 8. Now Os(f) = (g} = [g] # 0 in Z,, according to
the description of # and [*] in Section 3. We write [ f] for Os:(f) since like
fp» it has the naturality properties n(1), n(2) of Complement 3.1. We have thus
fiWn 8% x T3, a homotopy smoothing [or triangulation] with
[f]# 0and n = 5. Assuming %,(5), we will find

{a} suchan f forn = 4.

Choose f: W3 — 8% x T? with [f] # 0, and let /: W° -S> x §' x R
be a proper homotopy equivalence covering the homotopy equivalence f.
Applying %,(5) we find that W* = M* x R for a closed manifold M*. We
can now find a homotopy f, 0 <t < 1, of f so that f is transverse to
S x S'x 0 with fiNS? x §' x0)=W* and f, 0 <t <1, fixes all
points outside a compactum. Then f; induces on any finite covering of

large order f': W' — 8% x §' x §! of f that is covered by f, a homotopy
f1,0 <t < 1, such that f7 is transverse to S® x §' x Oat /17 1(S* x §* x
0)= W+ and fi|W*:1W* > §* x $! is a homotopy equivalence. By n(2),
FUWH = (£)), and, by n(1), [f1] = [f7 = [f] # 0. Hence, f}|W* com-
pletes step {a}.

Applying the above argument to f:W* - $* x S' with [f]#0, we
find that %,(4) applied to a ribbon proper homotopy equivalent to $* x R
allows one to find
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{b} suchanfforn=3.

This f: W? — § is then a contradiction of the Poincaré conjecture. The
proof of Theorem 0 is now complete.

REMARK. Since J: 13S0 — 138G is onto, W3 (if it exists) bounds a paral-
lelizable compact 4-manifold M*. The definition of [f]tells us that [f]=
S(M*)8 (mod 2). As[f1# 0, (. 1*) is not divisible by 16 and we conclude
that W? is not even h-cobordant to 5°.

The proof of Theorem 1 will require

Lemma 4.1 (from [20]). Giten any self-homeomorphism f : B x T"2 fix-
ing & and homotopic fixing 8 to the identity, there exists a covering map
p:BxT"— B* x T" of odd finite degree and a self-homeomorphism
J:B* x T"o fixing & and covering f (ie, of = fp) such that f is isotopic
fixing ¢ to the identity.

Proof of Lemma 4.1. Forany compact topological manifold M with metric
d there exists ¢ > 0 such that, for every self-homeomorphism f: M2 with

d(f,id) = sup{d(f(x), x)ix€ M} < eand f|éM = identity, there is an isotopy
of f toid|M fixing ¢M. Thisisa case of theorems of Cernavskii and Edwards—
Kirby ({8] and [9]). Let the metric on B* x R™ be inherited from R**" =
R x R* - B* x R". Assign to B* x T" = B* x (R"/Z") the quotient metric

d(x, y) = inf{dix’, Ylgx' = x, @' =y}, q:B* x R* — B* x T" being the

quotient map. Then choose ¢ > 0 to correspond as above to M = Bt x T"
with this metric.

Letp, = (id|B*) x q,:B* x T"— B* x T" where gy, 6,) = (5015, 58,),
and let f, be an automorphism of B* x T such that fp, = p.f; and f}d =
identity. If k 5 0, this defines f, uniquely, but if k = 0, 0B x T" = &,
so that f, is defined up to a covering transiation only. To completely specify
f, when k = 0, choose a path y from the zero point O € T"to f(0)e T" and
insist that 7 lift to a path from 0 to f(0).

Let f: B* x R" be the automorphism such that fl0 = identity, ¢f = fg,
where g:B* x R"— B* x T" = B* x (R"/Z") is the quotient map, and (in
case k = 0) - lifts to a path from 0 € R” to f(0)e R".

Assertion. If p:B* x T"— T" denotes projection, then d(pfs p) =
sup{dipfix), plx)ix e B* x T} < C/s for some constant C independent of s.

To check this, first observe that d(pf, p) = sup{ d(pf(x), p(x)} is finite, where
p:B*x R"—>R"is projection. For, as f, fixes © (BEx T, fcommutes with
covering franslations, and the value is sup{d(pf (x), BONp(x) e " =C < 0.
Next observe that d(pfo p) < d(if P), where f,: B* x R is any covering
of f,. Now one choice of f, is fl,y) = (1/5)f (¢, sy). This gives d(pf p) <
A(5f,, p) = (/). p) = Cfs.

To complete the proof choose s odd so that C/s < &2. Let {e} : R — R*
denote multiplication by &. Then define f on (5/2)B* x T" < Bf x T"to be

({&/2} x id|T" £,
identity. Then f
d(f,id[B* x T") <
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({e/2} x id|T™ - f;o({2/e} x id|T"). Elsewhere in B* x T" let it be the
identity. Then f is isotopic to f, fixing ¢ (increase ¢ to 2) and
d(f,id|B* x T") < ¢/2 + ¢/2 = ¢, so f. is isotopic to id|B* x T, fixing 4.
This completes the lemma.

Proof of Theorem 1. Fix a nonzero element x in H2 4T3 % ; Z,) such that
the restriction of x to T? *(where T"*! = T x S§')is nonzero. By Corollary
3.3, there exists an automorphism f : B* x T°~* o fixing 0 and homotopic
fixing ¢ to the identity, such that x is the obstruction ¢ f') to finding a pseudo-
isotopy from f fixing @ to id|B* x T*~* Supposing %,(5) and %,(4) we shall
repeatedly rechoose f until f respects each of the three nested submanifolds
B*x T* "< B*x T® * < B* x T*7* and f|B* x T?>™* = identity. In
view of Corollary 3.3, this shows that x = { /> has restriction zero on T27¥
a contradiction.

Step (a): Making f respect B* x T*™k Write T> ™% = T47% x §!, §! =
{1/¢1). By passing if necessary to a finite covering f;, s odd, of fwe can rechoose
fso that fis topologically isotopic fixing J to id|B* x T°7* and, in addition,
f(B* x T*"* x ) and B* x T*"* x 0 are disjoint (this uses Lemma 4.1).

Their complement in B x T°~* has two components. Let W and W’ be
their closures, W the one containing B* x T4 * x ¢, for small t > 0.
Set c=(W;V, V)= W, ;B*x T** x0,f(B*x T*"* x ). Then
¢ = (W'; V', V)is its inverse; i.e,, the compositions ¢¢’ and ¢’c are product
cobordisms. In particular, ¢ is an h-cobordism. Properties (a), (b), and (c)
are clearly verified.

We now check (d). Lift f to an automorphism f of the covering
B x T*7* x R, §' = R/Z, with f(B* x T** x §) c B* x T* % x I
Now ¢ lifts to an isomorphic cobordism &= (W;B* x T* * x 0,
f(B* x T*7% x 4)). The isotopy f, 0 < t < 1, of f fixing @ to the identity,
lifts to an isotopy f, of f, fixing 8, to the identity. (If k = 0, we may have to
rechoose f; to get fi = identity rather than a covering translation.) Find an
integer j > 0 so large that f(B* x T*™* x (—o0, —j]) is disjoint from
f(B* x T*™* x §) for all te[0, 1]. The isotopy extension theorem of Lees
{24] and Edwards-Kirby [9] then provides an isotopy g, 0 < t < 1, of fsuch
that g, = f, on B* x T*"* x (—o0, —jl and g, = fon B* x T*7* x [, o).
Then g, is identity on B* x T* % x —j and so gives a homeomorphism
BEx T* ¥ x ([—ji4): =i, 3) » (B  x T+ % x [—j,00U W B* x T*7* x —},
F(B* x T* % x 1), which is an isomorphism on all boundaries. Since the
right-hand side is isomorphic to ¢ and to c=(W;V,V), (d) is
established.

Ife = (W; ¥V, V')defined above is a product cobordism, it is an easy matter
to construct an isotopy of ffixing @ to make frespect B¥ x T*7% x 0. The
isotopy is written in terms of a suitable product structure on ¢ [see the remark
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below %,(n) in Section 2] and 2 suitable collaring of 8W in B* x T Sk,
1 leave the reader to supply it.

‘We have now established:

Assertion a. 6,(5) applied to a cobordism satisfying (a),..., (d) implies that f
can be chosen to respect B* x T4k

So we can embark on

Step (b): Making frespect B* x T3 % < B* x T* *aswellas Bf x T+
Consider f|B* x T* -k Note that a homotopy of f, fixing &, to the identity
provides one of f |B* x T*~* to the identity (by projection). We now argue
as for step (a), with the following two refinemenis. Each time we pass t0o &
finite covering f' of odd order of f1B* x T* % we simultaneously pass to
such a covering of f which restricts to f'. When f|B* x T+~* is isotoped to
respect B* x T°7% extend the isotopy to an isotopy of f. This allows us to
prove
Assertion b. When f respects B® x T*7k the conjecture %,(4) applied to a
cobordism satisfying (), (d) implies that f can be chosen torespect B* x T37*
as well as B¥ x T*7%

Step (c): Making frespect B x T> *aswellas B x T*> *and B* x T*
Since fIB* x T?>7*is homotopic, fixing &, to the identity one can use three-
dimensional methods to find an isotopy of f fixing 0 to the identity. However,
for us it is simpler to use once again the argument for step (a). It
establishes

Assertion ¢. Step (c) can be completed by an application of 4,(3) to an
invertible cobordism ¢ == (W3 V. V), where V = B x T*7k

Now %, (3)is known for h-cobordisms (W3, V, V") such that Wisirreducible
(i.c., every locally flat 2-sphere in W3 bounds a 3-ball) and V 2 P*(R) ([38]
and [2]). But W< Bf x T2~% x I as c is invertible; so W is irreducible.
Thus step (c) can always be completed.

Step (d): After step (c), f can be made the identity on B* x T?7* by an
isotopy fixing €. This is elementary 2-dimensional topology. With step d)
jon x| T2 7% = {fHT>7* = Qusing the naturality of {f>
Thus %,(5) in Assertion a oOr %,(4) in
fter passage to a finite covering of odd

we get the contradict
under restriction (Corollary 3.3).
Assertion b does not apply, even a
order. This completes the proof of Theorem 1.

Since it mimics the preceding proof of Theorem 1, we now undertake

Proof of Theorem 2. Fix the DIFF or PL category. Let k=j+ 1belor
2, and fix 2n element xeH 2-KT5k; Z,) with nonzero restriction to
T2-% < T37% We consider automorphisms f: B* X TS %o fixing ¢ and
homotopic mod ¢ to the identity, such that {f) = x € H2~HT>7K Z,).

Supposing %2(5) and %,(4) we shall be able to carry out steps (a), (), (),
and (d) of the preceding proof to get the contradiction x{T27% = 0.
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Step (a): Making f respect B* x T*~* In the PL case identity B* with
I x B, k=j+ 1 so that f can be regarded as an automorphism of
[ x Bl x T™-

In the DIFF case first use an isotopy fixing @ to make f = identity near ¢.
Then identify B* with (I x BY, k =j + 1, where (I x B) denotes I x B
with its corners rounded. This makes of fan automorphismof I x B’ x T3k
as well as B¥ x T37¥ just as in the PL case.

In either case, after passage to a finite covering of odd order, f is topolog-
jcally isotopic fixing ¢ to the identity and one can apply %5(5) to
f:Ix (B x T* )2 to make f respect the slices t x (B' x T*7)), for
t e I. Note that if we set a = f, then o satisfies conditions (a), (b), (c), and (d)
of Theorem 2.

Writing T37% = T*7% x S, S§' = (1/0I), we arrange by passing to a

hat f(B* x T** x }) and B*x T**x0
are disjoint. Their complement in B* x T3~* has two components. Let W
be the closure of the one containing B* x T*-* x t for small t > 0. Since f
still respects slices ¢ X (B x T>Mfortel, the isotopy extension theorem
(1241 and [9]) shows there exists an automorphism g: 1 x (B’ x T35 %o
preservingslices, extending f|I x Bl x T* % x 4,andfixingf x 8B’ x 37K
0x Bl x T>7% and I x B/ x 0. Then f1B* x T*7* x [0,3] provides a
product structure for (W;B* x T*7% x 0, f(B* x T4 % x 4)). Now step
(a) can be completed as for Theorem 1. So we have
Assertion a. %5(5) applied to an automorphism satisfying (a),... (d} implies
that step (a) can be completed.

Step (b): Making f respect B*

the argument for step (a) one gets

Assertion b. €5(4) applied to an automorphism satisfying (@),..., {d) implies
that step (b) can be completed.

As steps (¢) and (d) can always be completed, the proof of Theorem 2
is now concluded just as Theorem 1 was.

We now return to the proof of the weak pseudoisotopy conjecture in
dimension >6, which we have just disproved in dimension 4 or 5.

Proof of Proposition 2.1. Tt consists of an induction on r = rank(z, M)
starting from the established case r = 0 and using the s-cobordism theorem.
Choose f: M — S' to give a surjection of fundamental groups: make f
transverse to a point * in §'; and change f by surgery with 1- and 2-handles
to arrange that 7,(f ™ '{(*)) = kernel{ f, : myM - 7, S') = Z7~1 by inclusion.
The infinite cyclic cover M" of M induced by ffromexp : R! — Stisadoubly
infinitc composition of copies 1; ofa cobordism W from f 7 }(*) toitsell. Thus
M o= U W, uW,u W, u--, where W,n W, = V; is a copy of
f~'(%). Van Kampen’s theorem shows that m, W = oM =72

finite covering of odd order t

x T3k gs well as B* x T*~* Following
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Leta :I x Mo bethecoveringofa: I x Mo thatfixes] x M U0 x
M. Now choose ksolargethat x’(I x Vp)n I x (Vo v Vi) = . Passing
to an odd finite covering of z we arrange that k = 1. Then «'(I x V}) splits
I x {W,u W, uW,} into two codimension-zero submanifolds X, X,
which by a purely geometrical argument are h-cobordisms with initial ends
0 x W, and 0 x (W, u W>), respectively. By the s-cobordism theorem, each
has a product structure extending «|I x ¥; and idjl x V_; or id|I x V;.
Using 4'(n) for n; = Z"*, we find an isotopy of this product structure
fixing I x (V-; u Vy) to idiW, u W, u W, at least after passage to an odd
finite covering. This isotopy repeated on I x (W,u Wi, u W.,), i =0,
+3, +6,.. deforms 2’ to make x|I x V; = identity and covers an isotopy
of the evident 3-fold covering x5 of #. A second application of the inductive
hypothesis to 21 x (W, u W; U 1) gives an isotopy of some odd finite
covering of z3 to the identity. This completes the inductive proof.

All the results of Section 2 are now established.

5. Manifolds That Cannot Be Handled

The failures of 4,, %, , and %, are intimately related to

Theorem S.1. There exists a closed orientable manifold M of dimension 4

or 5, with w, = 0, that admits no ropologicai handle decomposition.

REMaRK. Handle decompositions always exist for TOP manifolds of
dimension >6 ({22] and [21]). Classically they exist for all DIFF and PL
manifolds.

The proof of Theorem 5.1 would be clear if we knew the statement of
Rohlin’s theorem to be false for topological manifolds. For suppose M*
is a counterexample. It cannot be given a PL manifold structure because it
could then be given a smoothness structure by a result (I'; = 0) of Smale and
Munkres (see [26]). Further, M cannot have a handle decomposition because
every four-dimensional handlebody admits a PL structure. This is proved by
induction over handles. Consider Mg v H, where M, has a PL manifold
structureand H = D* x R*"¥{where DF = [~ 1, 1]* = R¥isan open handle
attached to éM$ by a topological embedding h:@8D* x R*™¥ 5 gM,.
Think of H as a closed handle D* x D*~*with an extra collar. We want a PL
structure on My U D* x D*~* Moise has shown [24] that there is a topolo-
gical isotopy h,, 0 <t < 1, of h fixing éD* x (R*™* — 2D**%) to an em-
bedding h, PL near éD* x D*~* Using this isotopy to alter the PL structure
of M, on a collar of £M, we give My U (D* x D*%) PL structure that
coincides with the standard one on D* x D*7%,

REMARK. The above argumentmakes Moise’s results seem anomalous.
However they can be obtained [21] by the same handle-straightening
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method [20] that has settled so many questions in dimension > 5. To
assure that no irreducible 3-manifolds occur among the ““torus problems”
encountered, it seems best to work with handies so small that their images
are irreducible and use the Novikov embedding as in [23] in place of the
immersion called x in [20]. Then %,(3), proved in [14], should be used in
constructing and solving the “‘torus problems.” A proof of Lemma 1 of
[23], now needed for their construction, can be extracted from [34, sec. 4]
(or [9, sec. 8] or again [34a, secs. 5.2, 5.3)).

There is a near failure of the statement of Rohlin’s theorem for TOP that
yields Theorem 5.1. Let P* be Milnor’s plumbing [3] of eight copies of the
unit tangent disk bundle of $% according to the scheme

¢P* is the binary dodecahedral space, an integral homology sphere.

Let X* be the double D(P*) of P* with one of the copies of P* collapsed
to a point *. This X* is an orientable integral homology manifold. Further,
w,{X) = 0 since X — * = int P is parallelizable, and the signature s(X)
of X is 8. (Contrast Rohlin’s theorem.)

Proposition 5.2. There exists a closed topological manifold W homotopy
equiralent to X* x T" ifn > 1. ‘

Proaf of Proposition 3.2. Deleting from X* and D(P*) the interior Bofa
smooth 4-disk, one obtains a compact homology manifold X$with bounddry
S?* and a degree 1 map

f (M, S - (Xo.5%).

Aiming to do surgery we find a (stable, trivial) vector bundle g over X,
extending t{B2), where B2 is the lower hemisphere of §° < X, and a
(stable) bundle map ¢ : o(M) — ¢ extending idjz(B?). This is easy since
DiP*) is parallelizable on the complement of a point.

Consider the problem of doing surgery on (f, ¢} changing M, Jand ¢
(not X, or &) away from B> to make fa homotopy equivalence of pairs.
In view of Rohlin’s theorem, anyone who can do this has disproved the
Poincaré conjecture ' This being undecided, multiply the problem with the
n-torus T". n > 2. Then the surgery can be done because the total dimeansion
is n > 6 and surgery is allowed over a piece of the boundary of the target
with the same fundamental group as of the whole. This purely geometrical
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result [39, sec. 3.3] is a foundation stone of Wall’s theory of nonsimply

connected surgery.
After surgery we havea homotopy equivalence of triads

f:(v;8.¥,0.V) > (Xo; B, B3) x T
B> x T"andglo_V = id|BY x T" Hence
gld.V gives a homotopy smoothing of B3 x T"{mod 7). As such, it is
homotopic mod 2 to a homeomorphism (n = 2) (see (18], [20], and [21]).
For n > 3 this was directly proved : Apply the s-cobordism theorem to get
an automorphism ; then apply Lemma 4.1, using the fact that glo .V isequiva-
lent to any of its finite coverings. (Each finite covering of g is a solution of the
same surgery problem, but this solution is unique [39, sec. 3.3.1].) To define
WwHr ~ X* x Trattach B* x T"to ¥4+ by a homeomorphism of S x 1"
homotopic to g|é. This establishes Theorem 5.1 if n= 2. To find
W5 ~ X+ x S, start with W** and split infinite cyclic covering using
%,(6) for TOP.T
REMARK. The elementary construction of W**", n =3, extends to the
case n = 2 as follows. We need only show that the interior of a collar neigh-
borhood of V¢ in V¢ is homeomorphic t0 S3 x T? x R. A covering trick
reduces this to finding a homeomorphisr of V¢ x S to $3 x T? x S\
This last problem is solved directly, as in the body of the proof of Proposition
52.
To complete the proof of Theorem 5.1 we make
Assertion 5.3. If W3 = X* x S' of Proposition 5.2 {or even its oo-cyclic
covering W), has a handle decomposition, then Rohlin’s theorem fails for TOP.
Proof of Assertion. Suppose that W has a handle decomposition, for
example one covering a handle decomposition of W. Choose a compactum
K so large that W — K has two unbounded components; i.e,, K separates
the ends of W. Let H be a finite subhandlebody of W (= a union of handles
of W that forms a handlebody) so large that H = K and hence H separates

the ends of W.
Then clearly ¢ H also separates the end

duality to check that a compact connec
without boundary M separates the ends iff H,— (M) - H,- (W) is nonzero.
Also, verify that, if no component of ¢H separated the ends, 0H could not
separate the ends. Hence some component M 4 of 8H separates the two ends
of . We will show that this M 4 violates Rohlin’s theorem.

From the construction of Wa+n ~ X+ x T" it is clear that w{IV) = 0.
{Alternatively use the Wu formulas.) Since M* hasa trivial normal bundle in
T, we also have wo(M) = 0.
+See Remark 5.4 below.
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The image of the fundamental class [M*]e Hy(M*; Q) is a generator u
of H,(W: Q). Novikov observes [29] that s(M) coincides with the signature
of the quadratic form {x v x, #) on HX(W ;0). As W ~ X, this signature
is +8. Thus M* would violate Rohlin’s theorem for TOP. This completes
the proof of Theorem 5.1,

REMARK 5.4. (2) To eliminate %,(6) for TOP from the proof of 5.1 and 5.2,
proceed as follows. In [21], a direct argument, using 4.1 and recalled in 5.2,
will be sharpened to yield a homeomorphism Ve ~ §* x T? Thus an
infinite cyclic covering 77® = X x S' X R!of V®hasdV® ~ S* x §* x R%
Now find a closed neighborhood U® of (just) one end of V%, having compact
smooth frontier Fr(U) in V. Arguments of [33] applied almost verbatim let
one alter U by finitely many embedded smooth handle surgeries along cU
fnot just Fr(U)] untll ¢U S U is a homotopy equivalence. The new oU is
easily seen to be the interior of a compact TOP manifold V3 = X, x §’
with V% ~ §3 x S'. This improves the construction of W3~ X x St in

5.2. (Added in proof.)

{b) Alternatively, Novikov’s observation can be replaced by using %o(9)
in TOP to express W> x CP(2) as N® x R. Then N® is cobordant to
Af* x CP{2), so that X, N8, M* x CP(2), M* all have the same signature,

Construction 5.5. In the proof of Proposition 5.2 we incidentally con-
structed the exotic element of PB x T =Zy,nz2 1t is straightfor-
ward to calculate its invariant as s(X*)/8 (mod 2). The target cobordism
(X,: B3, BY) used in Proposition 5.2 can be described as B® x (1;0, 1) # X
provided we trim off the interior of a small tubular neighborhood in X,
of S2 = B A BY. Here # indicates a connected sum avoiding boundary
and the singularity of X. Similarly, form B x T3 % x(I;0, 1) # X. 1t
can be used to build an element of F(BEx T ¢ k+nz 6, with a pre-

scrived invariant x e H3(B* x T, &; Z,) as follows. For cach of the " X
standard (3 — k)-subtori T7 % of 7" form a cobordism 3-

(B* x T>7F x (1;0,1) # X} x TR,

where X, is X or §* according as x evaluated on B x T3 Fyields 1 or 0.
The two ends are naturally identified to B x T",s0asto send T3 *to T3 7%
Now compose these cobordisms in any order to get (Z;0-74,0.2). Much
45 in Proposition 5.2 one can do surgery to find a compact smooth.(n + k)-
manifold V¥ and a homotopy equivalence f :(V,éV) — (Z,7Z) that gives a
homotopy smoothing f : 8,V = 710, Z > 0. Z = B* x T" (mod ¢) and a
dificomorphism elsewhere on ¢V. 1leave the reader to check that[ fI0 . V1= x.
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piscussioN. I have left open the question whether the misbehavior of
handlebody theory demonstrated in this article occurs in dimension 4 or 5
or both. [t deserves attention.

When this has been answered one should inquire precisely which lemmas
of smooth and PL handlebody theory fail.

Most of the results of this article would be neatly explained if the following
two conjectures hold: o

(1) %y, €,, 6, are all valid for TOP manifolds in all dimensions.

(1) Isotopy classes of PL structures on any topological manifold M
are in bijective correspondence with equivalence classes of nonstable
reductions of their tangent microbundle to PL microbundle. (This makes
sense for manifolds with boundary.)

Conjecture (I) is perhaps too optimistic, as it includes the classical
Poincaré conjecture. Conjecture (II) is known ([20] and [27)) if dim(M) and
dim(8M) are #4. R. Lashof has nearly proved it for open connected 4-
manifolds (these proceedings). See also Moriet [28].
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