Andrew Raniclu

ARE NONTRIANGULABLE MANIFOLDS TRIANGULABLE?

13 (1966).

manifolds.

folds, Bull.

nd Related NJ., 1962.

Sec. A295

40 (1965).

niversity of

Jath. Soc. 1

h. 83 (1966).

dei Circolo

vé. Vol. VI.

Comment

L. C. Siebenmann

The awkward title refers to the following awkward situation. R. Kirby and the author [4, 5] have shown that in each dimension ≥ 5 there exist closed topological manifolds that admit no piecewise linear† manifold structure (= a piecewise-linearly compatible atlas of charts to euclidean space), and hence admit no triangulation as a combinatorial manifold (= a simplicial complex in which the star of each vertex is piecewise linearly homeomorphic to a simplex). Is it, however, possible that some, or perhaps every, such topological (metrizable) manifold can be triangulated as a simplicial complex?

This note exhibits strong connections of this question with the classical Poincaré conjecture (that every closed manifold homotopy equivalent to S^3 is homeomorphic to S^3) and the conjecture that the suspension $\Sigma^{n-3}M^3$ of a 3-manifold cannot be homeomorphic to S^n if $\pi_1M \neq 1$. The latter has been studied by Glaser [2].

Theorem A (Generalizing [1]). If M^3 is a homotopy 3-sphere, then the double suspension $\Sigma^2 M^3$ of M^3 is homeomorphic to S^5 by a homeomorphism sending the suspension circle to $S^1 \subset S^5$.

Proof. For any space X, $\Sigma^2 X$ is the join $X * S^1$ and so can be expressed as the quotient of $X \times D^2$ under identification of $X \times \partial D^2$ to $\partial D^2 = S^1$ by projection. Let $r: R^2 \to \operatorname{int} D^2 = \{x \in R^2 : ||x|| < 1\}$ be a ray-preserving homeomorphism.

For any homotopy 3-sphere M^3 , $M^3 \times T^2 = M^3 \times S^1 \times S^1$ is homeomorphic to $S^3 \times T^2$, in virtue of being homotopy equivalent to $S^3 \times T^2$. This is proved in [4] and [5].

^{† [15]} is a reference for piecewise linear topology.

Let $H: M^3 \times T^2 \to S^3 \times T^2$ be a homeomorphism so that $h_*: \pi_1(M^3 \times T^2) \to \pi_1(S^3 \times T^2)$ commutes with projection to $\pi_1(T^2)$. Then any homeomorphism $h': M^3 \times R^2 \to S^3 \times R^2$ covering h satisfies

$$||p_2(x) - p_2h'(x)|| < \text{constant},$$

for all $x \in M^3 \times R^2$. Here p_2 denotes projection to R^2 . Hence

$$f_0 = \{ (\mathrm{id}|S^3) \times r \} \circ h \circ \{ (\mathrm{id}|M) \times r^{-1} \}$$
$$f_0 : M^3 \times \mathrm{int} D^2 \to S^3 \times \mathrm{int} D^2$$

extends to a homeomorphism $f: M^3 * S^1 \to S^3 * S^1 = S^5$ that is the identity on the suspension circle. (This is a version of a key argument in [4].)

REMARK. If M^3 is the boundary of a contractible (PL) manifold W^4 , then $W^4 \times T^2$ is (PL) homeomorphic to $D^4 \times T^2$ by the s-cobordism theorem, and a homeomorphism $M^3 \times T^2 \approx S^3 \times T^2$ follows without appeal to [4] and [5].

For a smooth homology 3-sphere M (= a closed smooth 3-manifold with $H_*(M; Z) \simeq H_*(S^3; Z)$) there is the following interesting invariant in Z_2 for which no algorithm is known in terms of a handle decomposition of M. Since the J-homeomorphism

$$\pi_3 SO \to Z_{24} = \pi_3 G = \pi_{3+k}(S^k), \quad k \text{ large,}$$

is onto, M is the boundary of a parallelizable smooth oriented compact 4-manifold P^4 . The signature $s(P^4)$ of P^4 is always divisible by 8. It is divisible by 16 if M is diffeomorphic to S^3 by a theorem of Rohlin [6]. Thus $s(P^4)/8 \pmod{2}$ is an invariant of M. Call it $\alpha(M)$. Since the smooth, piecewise linear (PL), and topological (TOP) classifications of 3-manifolds coincide, α is a topological invariant defined for any homology 3-sphere.

Lemma 1. If M is a homotopy 3-sphere, then $M \times T^n$, n > 2, is PL homeomorphic to $S^3 \times T^n$ if and only if $\alpha(M) = 0$.

Proof. Once M is oriented we have a natural homotopy equivalence $f: M \times T^n \to S^3 \times T^n$. In Section 3 of [8] is given an invariant $\theta_{S^3}(f) \in Z_2$ of the class of f on the set $\mathcal{L}(S^3 \times T^n)$ of homotopy triangulations of $S^3 \times T^n$. It is easily seen that $\alpha(M) = \theta_{S^3}(f)$. If $\theta_{S^3}(f) = 0$, f is homotopic to a PL homeomorphism by a result of C. T. C. Wall, and W.-C. Hsiang and J. Shaneson. See the references in [8].

Suppose there exists a PL homeomorphism $g: M \times T^n \to S^3 \times T^n$. Then $f' = f \circ g^{-1}: S^3 \times T^n \to S^3 \times T^n$ has zero normal invariant in $[S^3 \times T^n; G/PL]$ since f has. This implies that f', and hence f, is homotopic to a PL homeomorphism as follows. It suffices to show this in case f' fixes $\pi_1(T^n) = Z^n$, and preserves orientation. Since $T^n = K(Z^n, 1)$, the component of f' on T^n then is homotopic to the projection. The component of f on S^3 is a map

 $h: T^n \to G_4$. Co

Recall that G_4 /invariant zero, tractible in G_4 /by a PL autom

Lemma 2. If a Proof. Such a h-cobordant to $S^3 \times T^2$ by the contradiction.

Consider the f

(H) There expanded the parallelizable 4-1
Theorem B. 1

logical 5-manifol complex.

The largest pa

Lemma 3. Suppose (hence a homeom which $(S^1 \times R^4)_{\Sigma}$ and $\Sigma | S^1 \times R^4 - i.e.$, corresponds to

[0, 1) $\times X/0 \times X$ morphism, and a Proof of Lemma by (H). Note that * = cone point) a Now $S^1 \times c'M$ Theorem A sends a homeomorphism

NOTATIONS. WI

Let θ impose a (po $\theta(S^1 \times *)$, which w

 $_{1}(M^{3} \times homeo-$

e identity

W², then theorem, appeal to

-manifold variant in sosition of

Il compact is divisible hus s(P⁴) 8 swise linear cide, a is a

PL homeo-

equivalence $d_{S^3}(f) \in Z_2$ of $S^3 \times T^3$, this to a PL stang and J.

T. Then $\int_{0}^{3} \times T^{n}$ bpic to a PL $\int_{0}^{3} T^{n} = Z^{n}$ it of f on T^{n} $\int_{0}^{3} S^{n} = x \operatorname{map}$

 $h: T^n \to G_4$. Consider the fibration sequence

$$\tilde{P}L_4 \rightarrow G_4 \rightarrow G_4/\tilde{P}L_4 \simeq G/PL$$
.

Recall that $G_4/\tilde{P}L_4 \simeq G/PL$ by stabilization (see [7]). Since f' has normal invariant zero, h becomes contractible in G/PL and hence is already contractible in $G_4/\tilde{P}L_4$. Thus h lifts to $\tilde{P}L_4$, which shows that f' can be realized by a PL automorphism of $S^3 \times T^n$, in fact one extending over $D^4 \times T^n$.

Lemma 2. If $\alpha(M) \neq 0$, then $M^3 \times R^2$ is not PL homeomorphic to $S^3 \times R^2$. Proof. Such a PL homeomorphism would easily imply that $M^3 \times S^1$ is h-cobordant to $S^3 \times S^1$. Hence $M^3 \times T^2$ would be PL homeomorphic to $S^3 \times T^2$ by the s-cobordism theorem. Hence $\alpha(M) = 0$ by Lemma 1, a contradiction.

Consider the following hypothesis (H). It asserts that the classical Poincaré conjecture fails dramatically.

(H) There exists a homotopy 3-sphere M that bounds a compact smooth parallelizable 4-manifold with signature ± 8 .

Theorem B. If (H) holds, every connected orientable (metrizable) topological 5-manifold W without boundary can be triangulated as a simplicial complex.

The largest part of the proof is

Lemma 3. Supposing (H), one can find a polyhedral structure Σ on $S^1 \times R^4$ thence a homeomorphism with a simplicial complex) so that the points near which $(S^1 \times R^4)_{\Sigma}$ is not a PL manifold form a circle C homologous to $S^1 \times 0$, and $\Sigma | S^1 \times R^4 - C$ is not isotopic to the standard PL manifold structure, i.e., corresponds to the nonzero element of

$$H^3(S^1 \times R^4 - C; Z_2) = Z_2.$$

NOTATIONS. Write $cX = [0, 1] \times X/0 \times X$ for the cone on X and $c'X = [0, 1) \times X/0 \times X$ for the open cone on X. The symbol \cong denotes PL homeomorphism, and \approx denotes ordinary homeomorphism.

Proof of Lemma 3. Let M^3 be a combinatorial homotopy 3-sphere provided by (H). Note that $c'M^3$ has a natural triangulation making c'M - * (where c'M = c cone point) a PL manifold.

Now $S^1 \times c'M^3$ is a subset of $S^1 * M^3$ which the homeomorphism of Theorem A sends onto a neighborhood of S^1 in S^5 . By engulfing we deduce a homeomorphism

$$\theta: S^1 \times c'M^3 \to S^1 \times R^4$$
.

Let θ impose a (polyhedral) PL structure Σ on $S^1 \times R^4$. Let C be the circle $\theta(S^1 \times *)$, which we can (and do) arrange to coincide with $S^1 \times 0$.

Then $(S^1 \times R^4 - C)_{\Sigma}$ is not even PL homeomorphic to $S^1 \times R^4 - C \cong S^1 \times S^3 \times R$ since a PL universal covering of it is $R^1 \times (c'M^3 - *) \cong R^2 \times M^3$, which is not PL homeomorphic to $R^2 \times S^3$ by Lemma 2. This completes the proof of Lemma 3.

Proof of Theorem B. (a) Compact case. We can assume that the single obstruction ([4] and [5]) $k(W) \in H^4(W; \mathbb{Z}_2)$ to imposing a PL manifold structure on W is nonzero. Represent the Poincaré dual of k(W) by a map of a circle S into W. The map can be a locally flat embedding. This follows from Homma's method [3]; alternatively, one could use the results of [4].

A neighborhood of S is triangulable as a PL manifold, there being no obstruction to this, and we can assume S is PL embedded in it. Then S has an open tubular neighborhood in W. Since W is orientable we can identify this neighborhood with $S^1 \times R^4$ sending S to $S^1 \times O$.

Now consider $(S^1 \times R^4)_{\Sigma}$ and the contained circle C provided by Lemma 3. $W^5 - C$ admits a PL manifold structure σ since the obstruction to this, the restriction of k(W), is zero.

Now $H^3(S^1 \times R^4 - C; Z_2) = Z_2$ implies [4, 5] that $S^1 \times R^4 - C$ has exactly two concordance or isotopy classes of PL structures. But $\sigma | S^1 \times R^4 - C$ is not of the standard class; else σ would extend over W. Nor is $\Sigma | S^1 \times R^4 - C$ by Lemma 3. Hence $\sigma | S^1 \times R^4 - C$ and $\Sigma | S^1 \times R^4 - C$ are $(\varepsilon -)$ isotopic. This shows that there exists a small isotopy of σ after which σ and Σ agree on $S^1 \times R^4 - C$. This means that W has a (polyhedral) PL structure, and hence is triangulable as a simplicial complex.

(b) Noncompact case. The obstruction $k(W) \in H^4(W; \mathbb{Z}_2)$ has its Poincaré dual Dk(W) in $H_1^{LC}(W; \mathbb{Z}_2)$, where H^{LC} here indicates homology based on locally finite but possibly infinite singular chains. Every 1-dimensional homology class is represented by a proper map into W of a combinatorial 1-manifold S, a countable union of circles and lines. The circles can be replaced by lines with the help of a locally finite family of paths in W one from each circle to ∞ .

As under (a) we can arrange that S is locally flatly embedded and equipped with tubular neighborhood $S \times R^4 \subset W$. And W - S can be given a PL manifold structure σ . The rest of the proof continues to imitate (a) using the universal covering of the structure Σ provided by Lemma 3.

REMARK. Orientability was not used in the noncompact case. However, in the compact nonorientable case S may be orientation reversing. One could deal with this if some M^3 provided by (H) had an orientation-reversing homeomorphism, or more generally if M # M (M oriented) could bound a contractible manifold.

Added March 1970: It is now thought that the arguments of [2] are not decisive and leave open, for example, the possibility

Define $C = h(S^1)$ define Σ on $h(S^1)$ x there is no obstr structure given by $S^1 \times R^4$ and it rer PL manifold structure of C below.

circles in $S^1 \times S^4$

The converse to believe it is known

Theorem C. If triangulated as a single there exists a homo $\Sigma^{n-3}M^3$ is homeon

Proof. The trian plement of the (n-k)-simplex in homology of S^{k-1} . until k=4, when 3-spheres, but perh

Let σ denote the (n-4)-simplex A

Assertion. The st where M is the link

at the single PL manifold by a map of follows from of [4], ere being no. Then S has can identify

by Lemma 3. ction to this,

 $R^4 - C$ has uctures. But over W. Nor $S^1 \times R^2 - C$ py of σ after a (polyhedral)

s its Poincaré logy based on 11-dimensional combinatorial circles can be aths in Wone

and equipped be given a PL te (a) using the

le. However, in ing. One could ation-reversing could bound a

s of [2] are not

(H') There exists a (integral) homology 3-sphere M such that $\pi_1 M \neq 0$, $\Sigma^2 M$ is homeomorphic to S^5 , and M bounds a compact smooth parallelizable 4-manifold with signature ± 8 .

Thus Theorem B should be strengthened by

Assertion. Theorem B is valid assuming (H') in place of (H).

To justify this it clearly suffices to give

Proof of Lemma 3 assuming (H') in place of (H). We will lean on arguments given in Theorems C and A' below.

Let M^3 be as provided by (H'). Then $\Sigma^2 M$ homeomorphic to S^5 implies that $S^1 \times cM$, $S^1 \times \Sigma M$, and $R \times \Sigma M$ are topological manifolds. Thus $R \times \Sigma M \approx R \times S^4$ (\approx denoting homeomorphism) by an argument recalled in the proof of A' below. This implies $S^1 \times \Sigma M \approx S^1 \times S^4$ (see [14]).

Let $p \in \Sigma M$ be a point distinct from the suspension points. Then $S^1 \times (\Sigma M - p) \approx S^1 \times (S^4 - \infty) \approx S^1 \times R^4$ since homotopic locally flat circles in $S^1 \times S^4$ are ambient isotopic [3]. We deduce a composed embedding

$$h: S^1 \times cM \subseteq S^1 \times (\Sigma M - p) \stackrel{\approx}{\to} S^1 \times R^4$$

Define $C = h(S^1 \times *)$ where * = cone point. Let M be triangulated and define Σ on $h(S^1 \times cM)$ to make h a PL embedding. Since $H^*(S^1 \times R^4, C) = 0$, there is no obstruction to extending over $S^1 \times R^4 - C$ the PL manifold structure given by Σ near C in $S^1 \times R^4 - C$. Thus Σ is extended over all of $S^1 \times R^4$ and it remains only to check that $\Sigma | S^1 \times R^4 - C$ is not the standard PL manifold structure. But this is implied by the last assertion in the proof of C below.

The converse to Theorem B can be proved in complete generality. I believe it is known to M. Cohen and D. Sullivan.

Theorem C. If a topological manifold W^n (without boundary), $n \ge 5$, is triangulated as a simplicial complex, but admits no PL manifold structure, then there exists a homology 3-sphere M^3 with $\alpha(M^3) = 1$ such that the suspension $\sum^{n-3} M^3$ is homeomorphic to S^n .

Proof. The triangulation of W gives a PL manifold structure to the complement of the (n-k)-skeleton $W^{(n-k)}$, $k \le 4$. This is because the link of a (n-k)-simplex in the first barycentric derived subdivision W' has the homology of S^{k-1} . So one can check inductively that the links are PL spheres antil k = 4, when they will be combinatorial manifolds that are homology 3-spheres, but perhaps not 3-spheres.

Let σ denote the natural PL structure on $W = W^{(n-4)}$. Fix an open (n-4)-simplex $A \subset W^{(n-4)}$.

Assertion. The structure σ can be extended over A if and only if $\alpha(M) = 0$, where M is the link of A in W'.

The assertion implies the theorem. Supposing $\alpha(M) = 0$ for every link M of every (n-4)-simplex A, we can extend σ over $W - W^{(n-5)}$. Then the obstruction to further extending σ over W lies in $H^4(W, W - W^{(n-5)}; Z_2) = 0$.

So W has a PL manifold structure, against hypothesis.

Proof of Assertion. Since the star of the closed simplex \overline{A} in W' is $\overline{A}*M$, the open star of A in W' is PL homeomorphic to $R^{n-4} \times c'M$, where c'M denotes then open cone on M, and in such a way that A corresponds to $R^{n-4} \times \{*\}$ (* = cone point). This shows, incidentally, that $\Sigma^{n-3}M^3$ is a manifold. As it is homotopy equivalent to S^n , $n \geq 5$, it is homeomorphic to S^n .

The assertion can now be restated as

Assertion. The natural PL manifold structure σ on $R^{n-4} \times \{c'M - *\}$ extends over $R^{n-4} \times c'M$ iff $\alpha(M) = 0$.

Let P^4 be a compact smooth parallelizable 4-manifold with boundary M, and consider $X = P^4 \cup c(M)$, where the base of the cone is identified with $M = \partial P$.

Since the obstruction to extending σ is the primary obstruction $k(R^{n-4} \times X) \in H^4(X; \mathbb{Z}_2) = \mathbb{Z}_2$, to imposing a PL manifold structure on $R^{n-4} \times X$, the assertion follows from

Lemma 4. $k(R^{n-4} \times X) = s(X)/8 \pmod{2}$.

Proof. Identify R^{n-4} with an open disk in T^{n-4} about $O \in T^{n-4}$. There is an evident tangent topological microbundle map $\tau(T^{n-4} \times X) \to \tau(T^{n-4} \times X)|O \times X$ (even if X is not a manifold). The target is microidentical to $\tau(R^{n-4} \times X)|O \times X$. Since k is the obstruction to lifting a tangent bundle classifying map to B_{TOP} up to B_{PL} , it follows that $k(T^{n-4} \times X) \in H^4(T^{n-4} \times X; Z_2)$ is the pullback by projection to X of $k(R^n \times X) \in H^4(X; Z_2)$. In particular, the one obstruction vanishes iff the other does.

Let X_0 be X with the interior of a PL disk in $int(P^4) \subset X$ removed. We identify the boundary of the disk with S^3 . Split S^3 into hemispheres B^3 and B^3 . Now there is no obstruction to extending the standard structure on $R^{n-4} \times B^3$ to all of $R^{n-4} \times X_0$. The paragraph above shows that the same holds with T^{n-4} in place of R^{n-4} . Write σ for such a structure on $T^{n-4} \times X$.

Restricted to the boundary, σ provides a homotopy triangulation modulo boundary

$$f =$$
 "identity": $(T^{n-4} \times B^3_+)_{\sigma} \rightarrow T^{n-4} \times B^3_+$.

The invariant $[f] \in Z_2$ of the class of f in $\mathcal{S}(T^{n-4} \times B^3_+, \hat{c})$ as described in $[8, \sec. 3]$ is clearly $s(X)/8 \pmod{2}$. So now it suffices to show that σ can be extended over $T^{n-4} \times X$ iff [f] = 0. Extendability easily implies that [f] = 0 $[8, \sec. 3]$. On the other hand, [f] = 0 implies that $\sigma/T^{n-4} \times S^3$ is isotopic to the standard structure [5] and hence σ extends over $T^{n-4} \times X$.

This completes
The following
worthwhile. It was
of L. C. Glaser to

Conjecture (G (without boundar simplex is homoto

Theorem A' (nhomotopy n-man of each j-simplex is a topological m

Proof of A'. Of itself a homotop simplex τ of M^k join $\sigma * \tau$.

Since the star (open) simplex σ usual, $c'(M^k)$ mea

As noted for T And M^3 is a Pl denoting homeo $M^4 \times R$ is a top

Assertion. M⁴ For a proof of [12]. Then note that tion to the fact embeddings do n

Inductively as $n \geq 5$. (A' is trivior in X satisfies

—trivially for k for k = 4; and b homeomorphism [12], since by ind manifold. Thus λ

Complement to subcomplex that boundary, consis than homotopy e very link Mb). Then the F^{3j} ; Z_2) = 0.

W is $\overline{A} * M$, where c'M responds to $r^{n-3}M^3$ is a omorphic to

 $\{c'M-*\}$

boundary M, entified with

obstruction structure on

 k^{n-4} . There is $k^{n-4} \times X \rightarrow 0$ icroidentical ingent bundle $k^{n-4} \times X \in 0$ icroidentical ingent bundle $k^{n-4} \times X \in 0$ ingent bundle $k^{n-4} \times X \in 0$ ingent bundle $k^{n-4} \times X \in 0$ in $k^{n-4} \times X \in 0$ in $k^{n-4} \times X \in 0$ in $k^{n-4} \times X \in 0$ in a structure on $k^{n-4} \times X \in 0$ in $k^{n-4} \times X \in 0$ in a structure on $k^{n-4} \times X \in 0$ in $k^{n-4} \times X$

s described in that σ can be implies that $T^{n-4} \times S^2$ is for $T^{n-4} \times X$. This completes the proof of Lemma 4 and, with it, the proof of Theorem C. The following theorem is a corollary of Theorem A that may prove worthwhile. It was suggested to me by results of M. Cohen [9] and by efforts of L. C. Glaser to prove the

Conjecture (Generalizing one studied in [2]). In any topological manifold (without boundary) that is triangulated as a simplicial complex, the link of each simplex is homotopy equivalent to a sphere of appropriate dimension.

Theorem A' (Added November 1969). Let X be a connected simplicial homotopy n-manifold, i.e., a connected simplicial complex such that the link of each j-simplex is homotopy equivalent to an (n - j - 1)-sphere. Then X is a topological manifold provided that the dimension of X is not A.

Proof of A'. Observe first that the link M^k of each (n-k-1)-sphere σ is itself a homotopy manifold (of dimension k). In fact, the link in M^k of a simplex τ of M^k coincides with the link in X^n of the simplex which is the join $\sigma * \tau$.

Since the star of σ in X^n is the join $\sigma * M^k$, an open neighborhood of the (open) simplex σ in X is PL homeomorphic to $c'(M^k) \times R^{n-k-1}$, where, as usual, $c'(M^k)$ means the open cone on M^k . Clearly such open sets cover X^n .

As noted for Theorem C, M^k is PL homeomorphic to S^k if k = 0, 1, or 2. And M^3 is a PL manifold so that $c'(M^3) \times R \approx R^5$ by Theorem A (\approx denoting homeomorphism). This shows, for one thing, that, for k = 4, $M^4 \times R$ is a topological manifold.

Assertion. $M^4 \times R \approx S^4 \times R$; hence $c'(M^4) \approx R^5$.

For a proof observe that $(M^4$ -point) $\times R \approx R^5$ by topological engulfing [12]. Then note that the six-line argument under 4.5 in [1] reduces the assertion to the fact that isolated nonlocally flat points of codimension-one embeddings do not exist [11]. See also [13].

Inductively assume Theorem A' for dimensions < n and ≥ 5 , where $n \ge 5$. (A' is trivial for $n \le 3$.) Then for each simplex σ of X, the link M^k of σ in X satisfies

$$c'(M^k) \times R^{n-k-1} \approx R^n$$

—trivially for k = 0, 1, 2; by $c'(M^3) \times R \approx R^5$ for k = 3; by $c'(M^4) \approx R^5$ for k = 4; and by a homeomorphism $M^k \approx S^k$ for $5 \le k \le n - 1$. The last homeomorphism comes from the topological Poincaré theorem of Newman [12], since by inductive hypothesis each M^k , $5 \le k \le n - 1$, is a topological manifold. Thus X^n is covered by copies of R^n , as required.

Complement to Theorem A'. If X^n is allowed a formal boundary [i.e., a subcomplex that is a simplicial homotopy (n-1)-manifold without formal boundary, consisting of simplices whose links in X^n are contractible rather than homotopy equivalent to a sphere], then X^n is a topological n-manifold

with boundary, provided that $n \neq 4$, 5, or n = 5 and the formal boundary is known to be a topological manifold.

The proof is similar and uses the fact that $\Sigma^2 M^3 \approx D^5$ for every homotopy 3-disk, which is proved like Theorem A.

M. Cohen gives some results related to the above in [10].

References

- 1. L. C. Glaser, On the double suspension of certain homotopy 3-spheres, Ann. of Math. 85 (1967), 494-507.
- 2. L. C. Glaser, On double suspensions of arbitrary nonsimply connected homology n-spheres, these proceedings.
- 3. H. Gluck, Embeddings in the trivial range, Ann. of Math. 81 (1965), 195-210.
- 4. R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749.
- 5. R. C. Kirby and L. C. Siebenmann, sequels to [4] (to appear).
- 6. M. Kervaire and J. Milnor, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proceedings of the International Congress of Mathematicians, Edinburgh, 1958, pp. 454-458.
- 7. C. P. Rourke and B. J. Sanderson, Block bundles III, Ann. of Math. 87 (1968), 431-483.
- 8. L. Siebenmann, Disruption of low-dimensional handlebody theory by Rohlin's theorem, these proceedings.
- 9. M. Cohen, Most homotopy manifolds are homeomorphic to combinatorial manifolds, Notices Amer. Math. Soc. 17 (1970), 298.
- 10. M. Cohen, Homeomorphisms between homotopy manifolds and their resolutions, Invent. Math. (to appear).
- 11. R. C. Kirby, The union of flat (n-1)-balls is flat in R^n , Bull. Amer. Math. Soc. 74 (1968), 614-616.
- 12. M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math. 84 (1966), 555-571.
- 13. R. Rosen, Concerning suspension spheres, Proc. Amer. Math. Soc. 23 (1969), 225-231.
- 14. L. Siebenmann, Pseudo-annuli and invertible cobordisms, Arch. der Math. 19 (1968), 528-535.
- 15. J. F. P. Hudson, Piecewise Linear Topology, W. A. Benjamin, New York, 1969.

MANIFO