
http://www.jstor.org

On Detecting Open Collars
Author(s): L. C. Siebenmann
Source: Transactions of the American Mathematical Society, Vol. 142, (Aug., 1969), pp. 201-227
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/1995353
Accessed: 28/05/2008 00:51

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless

you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you

may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at

http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the

scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that

promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

http://www.jstor.org/stable/1995353?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams


ON DETECTING OPEN COLLARS 

BY 

L. C. SIEBENMANN(l) 

0. Introduction. When is a manifold W isomorphic to an open collar of its 
boundary-i.e. when is W- b W x [0, 1)? One would hope for a convenient homo- 
topy criterion at least in these categories of (metrizable, finite-dimensional) 
manifolds: 

DIFF = smooth (i.e. differentiable C") manifolds and smooth maps. 

PL = piecewise linear manifolds and piecewise linear maps. 

TOP = topological manifolds and continuous maps. 

In TOP we have no success(2); but for DIFF and PL manifolds of dimension > 5 
we obtain roughly stated, the following: 

(Open Collar Theorem 1.6). W bWx [0, 1) if and only if the inclusion bW C W 
is a homotopy equivalence and the system of fundamental groups of complements of 
compacta in W behaves algebraically like that in b W x [0, 1). Corollary. Wc b W 
x [0, 1) if and only if the pairs (W, bW) and (bWx [0, 1), bWx 0) are proper homo- 
topy equivalent (3). 

Notice that b W need not be compact. 
In the proof, the fundamental group condition (7r1 condition) permits imbedded 

surgery with handles of dimension < 2 to find large compacta Kc: W such that 
2-connectivity of (W, W- K) can be proved. Poincare duality in the universal 
covering seems essential to show this. A well-known engulfing argument of Stallings 
completes the proof. (We first encountered a proof of this result for n > 6 based 
entirely on handlebody theory cf. [40].) Although the ,r1 condition requires careful 
statement, our applications show that it is pleasant to use. Indeed the main con- 
tention of this paper is that it considerably extends the usefulness of Stallings' 
conception of engulfing. 

That the ,r1 condition is necessary at all (i.e. not redundant) is at first sight 
surprising. This was first noticed in the wake of J. H. C. Whitehead's misproof 
of the 3-dimensional Poincare conjecture in 1934. Whitehead then constructed a 

Received by the editors May 8, 1967. 
(1) The author was supported during a part of this work by the National Research Council 

of Canada. 
(2) The same result for TOP is now established. See note added in proof at the end of this 

article. 
(3) That is, homotopy equivalent in the subcategory with the same objects but only proper 

maps. A map is proper if the preimage of each compact set is compact. 
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202 L. C. SIEBENMANN [August 

contractible open subset U of R3 not homeomorphic to R3 thus disposing of the 
Poincare conjecture for open 3-manifolds. If W3 = U- B3, where B3 is interior of a 
small ball in U, then bW i W is a homotopy equivalence, but Whitehead and 
Newman showed in [36] that the -T condition is violated. All products W x M, 
M a closed manifold, must also violate the I condition. For examples arising from 
higher dimensional contractible manifolds see [37], [54]. 

The Open Collar Theorem immediately gives a homotopy characterization of 
open regular neighbourhoods of subcomplexes of codimension ?3 in DIFF or 
PL manifolds of dimension ? 5. (See ?2.1 for a precise statement.) In DIFF one 
gets a characterization of open tubular neighbourhoods (?2.2). These are more 
general than parallel known characterizations of closed regular (or tubular) 
neighbourhoods [24] via the s-cobordism theorem in that noncompact subobjects 
are treated. There follows (?2.3) a pleasant proof of the stable isomorphism theorem 
(in relative form) for possibly noncompact manifolds of any category. 

It states: Let f: (M1, bM1) -- (M2, bM2) be a (pair) homotopy equivalence of 
manifolds (with boundary) of the same dimension. If the tangent bundle -(M1) is 
isomorphic to f *r(M2) as a stable bundle (or microbundle) in the given category, 
then there exists an euclidean space Rn and an isomorphism Ml x R M2 x R 
(pair) homotopic to f x (1 IRI). B. Mazur, who formulated this result and proved 
it for closed DIFF manifolds, has already presented a proof in this generality 
[26]. It is very different, rather complicated, and seems to contain a gap(4). M. 
Hirsch has given a proof valid iff is a proper homotopy equivalence. The simplest 
case not covered by Hirsch's proof has M1=SI x S' -(point) i.e. the punctured 
torus, MI2 = RJ2 _ (two points), and f any homotopy equivalence. Since M, contains 
arbitrarily large compact sets with connected complement and M2 does not, f 
cannot be a proper homotopy equivalence. Yet visibly M, x R_ M2x RI is a 
doughnut with two holes! 

The stable isomorphism theorem leads one to ask when a tangential homotopy 
equivalence (like f above) can itself be deformed to an isomorphism. For DIFF 
and PL manifolds, without boundary, of dimension n > 5, it suffices that Ml and 
M2 be open regular neighborhoods of complexes of dimension <n/2. This will be 
proved in [41] (also in a relative form) by use of the Open Collar Theorem in com- 
bination with a sort of covering homotopy theorem for regular neighborhoods. 

D. B. A. Epstein suggested 

THEOREM 2.7. Suppose X is an oriented unbounded DIFF or PL n-manifold n ?5. 
If there exists a degree 1 proper map Rn _ X, then X- RI. 

The next application is 

THEOREM 3.1 (FOR DIFF). Let a: G x W -- W be a smooth action of a compact 
Lie group G on a connected unbounded DIFF manifold W. Suppose the fixed point 

(4) In [26] the proof of Proposition 3 begins with an untrue assertion. Then the second 
diagram on page 392 of [26] is not commutative. 
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set M is a submanifold so situated that W is an open tubular neighbourhood of M. 
(See ?2.2 for a test), and suppose that the isotropy subgroups G, for x E W- M are 
all conjugate. (By definition G, = {g E G I a(g, x) = x}.) Then, provided the orbit 
space of a on W has dimension > 5, W admits the structure of a smooth euclidean 
vector bundle over M such that a respects fibers and acts orthogonally on each 
fiber. 

The case (W, M)= (Rn, Rk) together with ?2.2 mends the fault in the engulfing 
argument of Connell, Montgomery and Yang [4] noted in [5]. The remedy intended 
in [5] is different (as Connell has told us) and appears not to establish Theorem 3.1. 
We compare the situation for actions on closed tubes, which is complicated by 
simple homotopy type. 

The last application affirms a conjecture of J. P. Hempel and D. R. McMillan 
[12] as follows: 

THEOREM 4.1. Suppose Ek is a k-sphere topologically, (but possibly wildly) 
imbedded in the n-sphere Sn, n_5, n-k>3, so that Sn_->k is 1-LC at each 
point of Yk. Then Sn _ -k is homeomorphic (indeed diffeomorphic) to Sn - Sk, where, 
Skc Sn is the standard unknotted k-sphere. 

For more discussion of this see ?4. 
The sections to come are as follows: 

?1 The open collar theorem 
?2 Detecting open regular neighborhoods (includes stable isomorphism and Epstein's 

application) 
?3 Application to group actions (with contrasting results about actions on closed 

tubes) 
?4 Unknotting complements of spheres 

1. The open collar theorem. 

PROPOSITION 1.1. If W is a connected topological manifold with boundary such 
that 1T*(W, b W) = 0, then W is noncompact with exactly one end-i.e. for K compact 
in W, W-K has exactly one unbounded component. 

We will deduce this from a considerably more general proposition. 
DEFINITIONS. Let W be a topological manifold. We say that W has ? k ends if 

there exist compact sets Kc W so that W- K has ? k unbounded(5) components. 
We say W has exactly k ends if it has ? k ends but not ? k + 1 and we say W has 
oo ends if it has ? k ends for all finite k. 

PROPOSITION 1.2. Let Wn be a connected topological n-manifold with boundary 
b W. Let e be the number of ends of W (e finite or oo), and let Zt be the bundle of 

(5) An unbounded set is one with noncompact closure. 
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twisted integer coefficients over W corresponding to the orientation homomorphism 
,T1(W){?l}. Then 

rank {H _1(W, b W; Zt)} + I _ e. 

Proof of 1.1 granting 1.2. Since bW C W is a homotopy equivalence, 
H*(W, b W; Zt)=0. Thus 1.2 says W has e < 1 ends. If e were 0, W would be com- 
pact and so O=Hn(W, bW; Zt)=HO(W; Z)-Z by Poincare duality [61, p. 357]. 
Hence e = 1. (Z denotes the integers.) U 

Proof of 1.2. Coefficients for cohomology will be Z. For any Kc W we have an 
exact sequence for (W, W- K) 

0 -Z = HO(W)-- H(W-K) --H1(W, W-K)-* ... 

Taking direct limit over K compact in W we get an exact sequence 

O>Z = HO(W) ->Ho(W) ->H,'(W)CC 

Then rank {HC1(W)}? 1 rank HO (W). 
Now HCl(W) - 1(W, b W; Zt) by Poincare duality [52]. Hence the proof will 

be complete when we show that for all finite k ? e, HO (W) DZk. 
Since W has _ k ends, there exists a compact Kc W such that W- K has at least 

k unbounded connected components L1, L2, . . ., Lk, - - 

Then HO(W-K)=HO(L1) 0 ... 0 HO(LJ) (S .. =Zk G **-. The Zk survives 
in the direct limit HO (W). For, if K' is compact containing K, H(Li) - H(Li- K') 
is injective for each i as Li is unbounded. Hence HO(W-K) -- HO(W-K') injects 
the Zk. * 

DEFINITION. An inverse sequence of groups A1 - A2 -<- A3 is essentially 
constant if there is a subsequence B1, B2, B3, . . . of A1, A2, A3, ... such that 
composed homomorphisms 

B1 <- B2 <- B3 

induce isomorphisms of images 

Im (f') < Im (f2) < Im M GQ < * 

In this event, one clearly has Im (fi) proj limj {A,}. 
Let W be a topological manifold with one end. For each compact K in W, let 

Kc be the one unbounded component of W-K, and consider the inverse system 
of fundamental groups {vrr(Kc) I K compact}. We say that ,r1 is essentially constant 
at oo if for a sequence K1 - K2c K3 .. of compacta with W= U int Ki (where 
int Ki is interior of Ki), the sequence induced by inclusions 

Y: 7r1(Kc) -- 7r1(K2) -- 7r1(K) 

is essentially constant. The choice of {KJ}, of base points, and of connecting base 
paths used to define Y does not affect this property. Also 7rl(oo) = proj lim (Y) 
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proves to be independent of these choices up to isomorphism in a preferred 
conjugacy class; and 7r1(Kc) -- 7r1(W), i large, induces a homomorphism 7r1(OO) -+ 

7r1(W) again determined within a conjugacy class. These elementary facts are 
verified in [40, Chapter III], [43]. 

We now state the main results. 

THEOREM 1.3. Let WI, w> 5, be a connected manifold in DIFF or PL such that 
(1) vi(W, bW)=0, i< w-2. 
(2) W has one end; F7T is essentially constant at oo in W; and ir7.(cx) -?(W) 

is an isomorphism. 
Then W-bWx [0, 1). 

REMARK 1.4. If W-bWx [0, 1), (1) and (2) clearly hold, even when bW is 
noncompact. 

REMARK 1.5. Condition (2) can be verified without difficulty if W is proper 
homotopy equivalent to bWx [0, 1). 

Combining this theorem with Proposition 1.1 one immediately gets 

OPEN COLLAR THEOREM 1.6. Let WW, w _ 5, be a connected manifold in DIFF or 
PL. Then W- bWx [0, 1) if and only if 

(i) b W C, W is a homotopy equivalence (so that W has one end). 
(ii) vr, is essentially constant at oo and 7r1(oo) -- 7r1(W) is an isomorphism. a 

REMARK 1.7. A relative form of 1.6 follows directly from the one given. First 
consider the PL case. For any PL manifold W, a PL homeomorphism f: M u {bM 
x [0, 1)} -- bW can be extended to a PL homeomorphism F: Mx [0, 1) -- W if 
and only if W- b W x [0, 1). (Here M u bM x [0, 1) denotes a PL manifold with 
a collar attached to its boundary.) This follows immediately from the existence of a 
closed collar of bM in M and the isomorphism [0, 1) x [0, 1)- [0, 1] x [0, 1). 

In DIFF one must heed corners. One supposes ww is locally isomorphic to 
Rw + = {x E Rw I xl > 0, x2 > 0} with corners along f(bM). The statement in italics 
now applies to DIFF if Wc bWx [0, 1) is replaced (as it makes no sense) by 
W, b(W3) x [0, 1), where W, is W with its corners rounded [7]. 

There remains in this section the task of proving Theorem 1.3. We propose to 
work simultaneously with DIFF and PL, but remark that in view of the Cairns- 
Hirsch theorem [13, Theorem 2.5], and Munkres [35, Theorem 1], the PL version 
implies the DIFF version-both in Theorem 1.3 and in the geometrical propositions 
below. 

We will need some preliminaries. An admissible neighbourhood of oo in a mani- 
fold ww with boundary is a w-dimensional submanifold V such that V is closed as a 
subset, W- int V is compact (int V being the interior of V as a subspace of W), 
and the pair (W, V) is locally flat in the sense that it is locally isomorphic to 
(Rw, Rw +) where Rw ={x E Rw I x1 > 0} and Rw + ={x E Rw I x1 _ 0, x2 > 0}. One 
says that V is a 0-neighbourhood (of oo) if V and b V are both connected. 
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The first proposition is well known cf. [3, Lemma 6]. 

PROPOSITION 1.8. Let W be a connected DIFF or PL manifold with connected 
boundary and one end. There exist arbitrarily small 0-neighbourhoods V of oo in W. 

Proof. Given a compact set K, one is required to produce a 0-neighbourhood 
not meeting K. One starts with an admissible neighbourhood V not meeting K 
(from a proper Morse function in DIFF, or from a star of K in PL). Neglecting 
compact components one makes V connected. Finally, in order to make vV 
connected one carves from V 1-handles joining the components of bV. a 

The next proposition requires some careful reasoning about fundamental groups. 

PROPOSITION 1.9. Suppose W is a connected DIFF or PL manifold of dimension 
> 5, having a connected boundary. 

(A) If W has one end and vr, is essentially constant at oo, then there exist arbitrarily 
small O-neighbourhoods V of oo such that -r1(oo) -? -r1(V) is an isomorphism. 

(B) If in addition v,(oO) 4 ,r(W) 7r WbW) then there exist arbitrarily small 
0-neighbourhoods V such that 1(b V) 4. ,(V) 4- T(W). Such V are called 1- 
neighbourhoods of oo. 

The proof is delayed until the end of this section in order to present: 
Proof of Theorem 1.3. Stallings' engulfing techniques establish the required 

conclusion under the two hypotheses (1') and (2') below taken in place of (1) and 
(2) in the theorem: 

(1I') -,T(Wg bW) =0, i-<w-3. 
(2') There exist arbitrarily large compact sets K such that ri(W, W- K) = 0, 

i<2. 
We repeat the well-known proof for PL. In the DIFF case one triangulates, 

uses the PL case, then applies [15] or [35] to deduce a DIFF isomorphism. 

PROPOSITION. Let W be a connected PL n-manifold, n _ 5 such that 7ri(W, b W) = 0, 
i? n-3, and let Kc W be a compact set such that 7ri(W, W-K) =0, i < 2. If U is a 
(collar) neighbourhood of b W, there exists a PL homeomorphism h: W --- Wfixing 
b W such that h(U) D K. 

The proof is explained by Stallings [47, ?3], [46, ?3.41, [48, ?8.11. * 
Now let W be a connected PL n-manifold n ?5 such that (1'), (2') hold. Let 

K1 c K2 c K3 c ... be a sequence of compacta in W such that U int Ki = W. Let 

fo: b Wx [0, oo) -? W, fo(x, 0) = x, be any PL imbedding collaring b W. Suppose 
for an induction that the PL imbedding fin: b W x [0, oo) -? W, n > 0, has been 
defined so that f(b Wx [0, n)) D K,. Find by (2') a compact LC W-fn(b W>x [0, n)) 
= W, W such that LD Kn+ 1 r Wn, and -ri(W, W-L)=0, i<2. The proposition 
provides a PL homeomorphism hn: Wn -- Wn fixing b W, such that hn(Cfj[n, n + 11) 
DL. Define 

fn+= hnfn on bWx [n, oo) 
=fn onbWx[0,n] 
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to complete the induction. Then one sets f=fn on b W x [0, n] for all n getting a 
well defined PL homeomorphism 

f: bWx [0, oo)-- W 

as required. * 

Our task is to establish (2'). In fact 
ASSERTION 1.10. If V is any 1-neighbourhood oj so in W, (cf. Proposition 1.9), 

then 7ri(W, V) = 0, i < 2. 
REMARK 1.11. This is clear for i = 0, 1, but 7r2(W, V) = 0 depends via Poincare 

duality on hypothesis (1) and the existence of small 1-neighbourhoods. 
REMARK 1.12. To keep the algebra as simple as possible in proving the assertion, 

we use some elementary handlebody theory to be found in [32], [22] for DIFF or 
[51], [54], [63] for PL. 

Now we prove the assertion. Let K be the closure of W- V, a compact manifold, 
and let X be W-int V=K u bW. Write D,K for K r) bV and a-K for K r) bW. 
By first pushing V away from b W on any sufficiently large connected submanifold 
of bW, one arranges that K, a_K, and a+K are all connected and a+K ( K 2 K 
give 71-isomorphisms. We leave the reader to check that this is so with the help 
of the following lemma. (For example, in showing that a-K , K can give a 7T- 
isomorphism, G -- H of the lemma will be Tr1b W l1(b W u K).) 

LEMMA 1.12. Let G={xo, x1, x2, . . ; ro, r1, r2, . . .} and H={xo, y, x1, x2, * 

ro, s, ri, r2,. . .} be groups with presentations where each of xi and y is a set of 
generators while each of ri =r i(xo, x1, . . ., xi) and s = s(xo, y) is a set of relators. 
Suppose the natural map G -- H is an isomorphism and y, s are finite sets. Then 
for all large n the natural map 

Gn = {X0, . . ., Xn; ro, . . ., rn} -*Hn = {xo, y, xi, . . , Xn; ro, s, rl, * ,rn} 

is an isomorphism. 

Proof of 1.12. Since G -- H is onto and y is finite, y can be expressed as 

y=9(x0o, X,. . ., Xa) in H. Again because y is finite y=-q(x0, . . ., Xa) is in Hn for n 
large, say n >a' ( >a). Then 

H = {xo, x1,. . . ; ro, s(xo, -q(x1, . . ., Xa)) r1, .-.. 

and similarly for Hn, n > a'. As G -* H is injective, and s is finite, s(x, q(Xo0,, Xa)) 
is, for the last presentation of H, in the consequence of ro, r1, . . ., ra for some a". 
Then the same is true for Hn, for n large, say n > b (> max (a', a")). Thus 
Hn = {X0, * ., xn; ro, . . ., rn} and Gn -? Hn is an isomorphism for n > b. U 

Take a handle decomposition for K on a - K. Since ri(K, + K) = 0, i _ 1, easy 
cancellation theorems for (dual) 0- and 1-handles tell us that no handles of 
dimension (w -1) or w need appear. 
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By the rearrangement theorem for handlebodies, we can have the handles added 
in order of increasing dimension so that we obtain a handle decomposition of X 
on bW 

X=bWuhOuhlu...uhw-2 

where hi is a finite thickened set of i-handles. Putting X_ j=b W and Xi = b W 
u h? u u hi, i=O, 1, .. ., w-2, we get a filtration 

X-1 C XO C Xl C ... C XW-2 = X. 

Recall that Xi has as a strong deformation retract Xi-1 with one i-cell attached 
for each handle. Let WJ be the universal covering of W and for Sc W let S-c J'/ 
be the induced covering. Then the filtration f 1 C c... c if gives a free complex 
C*(If, bU), or C* for short, over A=Z[7r,W] for the singular integral homology 
H*(If, b W_ ). By definition Ci = H*(X , X, -1), which is a free module over A with 
one generator for each i-handle; and &: Ci - Ci-1 is the boundary for the triple 
(Xi, Xi-1, Xi -2). We recall the well-known 

PROPOSITION 1.13. Let X1 c X C XCX2 C... be a possibly infinite filtration 
of a space X= U Xi, homotopy equivalent to a C. W. complex. Suppose for each i 
that I IXi - extends to a homotopy equivalence of Xi with a space formedfrom Xi-1 
by attaching a collection of cells by maps of the boundary spheres to Xi 1. Let a 
homotopy equivalence f 1: X_ 1 -- 1 to a C. W. complex be given. Then there 
exists a C. W. complex Y: Y- 1 with a filtration of Y by subcomplexes Y- '1 YO 
c Yc... such that Yi- Yi- consists of cells attached to Yi-1, and there exists 
an extension of fr1 to a homotopy equivalence f: X -- Y such that fJ Xi gives a 
homotopy equivalence Xi -- Yi. 

The proof (not the statement) is contained in [30, ??3.5, 3.6, 3.7, 17.3]. * 

Applying this proposition to Xc W we obtain a filtered complex Y= YW-2 

... Y_ 1 and a filtration homotopy equivalencef: X Y. This is covered by a 
homotopy equivalence of (universal) coverings /: X Y such that fJ XI gives a 
homotopy equivalence Xi -- i. It follows that 7 induces a A-isomorphism of 

CQ(2, bWJ) with the similarly constructed complex C*(YP, Y--,) (we identify the 
fundamental groups with 7r1 Wc A). 

Next form an infinite handle decomposition of W on X without handles of 
dimension > (w -2). To accomplish this take a sequence of 1-neighbourhoods of 
00, Vo = VD Vi n V2D ... with n v,= z so that for each i one obtains, as in the 
previous construction, a decomposition with no handles of dimension > w - 2, 
for Vi-1-int Vi on bVi21(6). The union of all these gives one of W on X, viz. 
W= X u h1 u h2 u h3 U ... where h1, h2, ... are successively attached and suitably 
thickened handles.- 

(6) In DIFF one need not hesitate to round the corners at b V 1 in constructing the handle 
decomposition, for only the homotopy properties of the resulting filtration are needed. 
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Applying Proposition 1.13 again we find a complex Z Y and a homotopy 
equivalence g: W -- Z such that gI X=f: X Y and Z has one k-cell outside Y 
for each k-handle added to X. Then7: X X extends to a homotopy equivalence 
g: J'/ --2 covering g, where Z Yis a universal covering of Z. Let C* C*(Z, Y_ 1) 
be the A-complex from the filtration of Z by skeletons. Then 

C* _C(,W) C*( Y, _)'C 

and C* is acyclic because 

H*(C') = H*(Z, Y__j) = H*(WJ, bWJ) = 0. 

We now come to the heart of the proof. We have to show that r2(X, bV)=O. 
But 72(X, bV)-H2(X, bV) and the complex C*(X, bV) for H*(, bV) from the 
dual handle decomposition is naturally isomorphic (up to sign of the differentials) 
to 

Hom (CW. -*(X, b V), A). 

This is Poincare duality obtained by inspecting the geometry [33, pp. 395, 398]. By 

Hom (A, A), 

or AT for short, we always mean the left A-module of all additive homomorphisms 
f: A -- A such that f(ga) =f(a)0(g)g'-, for g E -r1(W)c A, where 0: -1(W) -* 

{ ? 1} is the orientation map. Equivalently A = HomA (A, A) with the natural right 
action of A suitably changed using 0 to a left action. 

Consider 

= Hom (C*, A): V - O Cn-2 Cn-3 Cn-4 

We must establish that Cn-2 4- Cn-3 is onto, to show H2(X, b VJ) = 0. Consider the 
commutative diagram 

O > Cn-2 >a 

n C - 2 CLn-3 >C 

Since C* is acylic, it splits completely and there is a retraction p': Cn-2 C- -3 

with p' 3' = 11 Cn - 2. Since Cn- 2 = Cn - 2 ) R where R is free with one basis element 
for each (n - 2)-handle in W outside X, we have a retraction p: Cn -2 * Cn -2 

Let p = (pp') I Cn - 3. Then p9= 1ICn-2, and if we apply 

Hom ( ,A), 

dp=p9=lICn-2 proving Cn-2*2LCn-3 is onto as desired. Hence W2(W, V)=0, 
and the assertion about 1-neighbourhoods of oo is established. Modulo a proof of 
existence of small 1-neighbourhoods (Proposition 1.9) the proof of Theorem 1.3 
is complete. * 
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Proof of Proposition 1.9. Part (A). Let V1 2 V2 n V3 *... be a sequence of 0- 
neighbourhoods of oo with Vi + 1 Cint Vi and n vi = 0, such that we have 

71( V1) 7 1(V2) < S ( V3) 4A ... 

Im (Ai) < _ m (A2) < Im (Ai) 7r(00) 

Writing rl(V3) = {x; r} in terms of generators and relators, one has ( V2) = {x, x1; 

r, rl}, where xl is a finite set of generators and r, a finite set of relators. Write 
Im (f2) = {x; r, s} and let 0: 7rT(V2) -* Im (J2) be the retraction given by the dotted 
arrow. 

Now we have a diagram 

{x, x1; r, r1} < {x; r} 

O{kj 

{x; r, s} 

where 0 is a retraction, and the other homomorphisms come from x F-+ x. Then 
0(x) = x and 0(x1) = 61(x) for some set el of IxIi words in the generators x. We 
insert 

LEMMA 1.14. In this situation x x gives an isomorphism 

{x; r, s} {x, xl; r, rl, xl 161(x)}. 

Proof of 1.14. By a "mapping cylinder" argument applied to 0, 

(* {x; r, s} > {x, xi; r, ri, xi lf6(x), s}. 

As {x; r, s} c {x, xi; r, rl} each element of s can be written as a product of conjugates 
of r, r1 by x, x1. Thus the relators s on the right of (*) are redundant. * 

Lemma 1.14 shows that the kernel of f, is the normal closure in 7T1(V2) 

={x, xl; r, rl} of the finite set of elements x1 l'l(x), and we know that r (oo) 
Im (fr). Let y be one of the set xj 'f1(x). Since dim W? 5 we can represent y 

by bDcint V2 where bD is the boundary of an imbedded 2-disc Dcint V1 that 
meets b V2, transversely, in a finite number of circles in int D. By a familiar process 
of trading thickened innermost 2-discs in D between V2 and W-int V2, [2, Lemma 
3.1] we can change V2 and fl, killing the normal closure of y and possibly more of 
kernel (f1). After one such process for each element of xl 1 '(x), we have a 0- 
neighbourhood Vc int V1 such that this triangle commutes 

Im ( * A~'1 7 O (Q ) 

k /00 
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The map to -r1(V) must be an isomorphism, so 1.9 part (A) is established. * 

Proof of Proposition 1.9. Part (B). Starting with a (small) 0-neighbourhood U 
of oo provided by part (A) such that wj(oo) 7T1(U) 7T,(W), we propose to 
carve from U some 1- and 2-handles attached to bU in U so as to produce the 
required 1-neighbourhood. 

Let X= W- int U, and consider the diagram of maps induced by inclusions 

-7r,(b W) 7T >vW 

'71X 7T1U 

7r,(bU) 

As X= b U u {compact manifold}, if we write 7T(b U) = {x; r} we have '1T1(X) = 

{x, x1; r, r1} where x1 is a finite set of generators and r1 is a finite set of relators. 
Represent each element of x1 as a loop in X (with base point in bU). The diagram 
shows that each loop can be deformed inside W to a loop in U. We imbed each 
deformed loop in U so that the part in intU gives a 1-handle in U attached to bU. 
Subtracting these (thickened, open) 1-handles from U, we obtain a new 0-neigh- 
bourhood U' and a commutative diagram 

{x, x1; r, ri} =7TX 1 -> 71W 

{x, x1; r} = 7Ti(bU') >-rU' 171U. 

The free generators xl in 7r,(bU') correspond naturally to the 1-handles above. 
By definition, p is the quotient map of the presentations and does not arise from 
inclusions, although (by definition) the other maps do. However, T restricted to 
r1(b U) = {x; r}c {x, x1; r} arises from b U C X. Hence commutativity is clear from 
our construction. 

We can now show that the kernel of -r1(b U') --rU' -ri(oo) is the normal 
closure of a finite set E. This kernel is equal to that of pp. The kernel of p is the 
normal closure of r1 = rj(x, x1). By Lemma 1.14 applied to the triangle in our first 
diagram, the retraction p has as kernel the normal closure of a finite set {a1, . .., ak}. 
If p(a) =ai, then {a', . . ., ak} u r1 is the required finite set E. 

To complete the proof, find imbedded 2-discs in U', one for each element of E, 
so that each 2-disc D meets b U' in bD transversely, forming a loop that represents 
the corresponding element of E. We are now using the fact that dim W> 5. 
Thickening these discs and removing the resulting (open) 2-handles from U', one 
obtains the required 1-neighbourhood. This completes the proof of Proposition 
1.9. The results of this section are now established. * 



212 L. C. SIEBENMANN [August 

2. Detecting open regular neighbourhoods. Let K be a closed connected sub- 
complex in a triangulation of a PL manifold M (that may have a boundary). 
We seek homotopy criteria to decide whether a given open neighbourhood W of K 
in M is PL homeomorphic fixing K to the interior points of a regular neighbour- 
hood(7) of K in M. In this event one says that W is an open regular neighbourhood 
of K in M. Notice that W need not be the interior of a (closed) regular neighbour- 
hood of K in M-e.g. W may be M, or its closure may not be a manifold. 

THEOREM 2.1. Suppose dim W> dim K+ 3. Then the following (necessary) con- 
ditions on W are, for dim W> 5, sufficient that W be an open regular neighbourhood 
of Kin M. 

(1) W r) bM is an open regular neighbourhood of K r) bM in bM. 
(2) K C W is a homotopy equivalence. 
(3) W has one end(8); 7, is essentially constant at 00; and wj(oo) wfr,W. 

Suppose next that M is a DIFF manifold and suppose Kc= M is a closed subset 
such that there exists a C'-triangulation of M, f: L -- M by a simplicial complex 
L such that f -(K) is a closed subcomplex. One says that an open neighbourhood 
W of K in M is an open regular neighbourhood if f -(W) is an open regular neigh- 
bourhood of f 1(K) in L in the sense already defined(9) (L has a natural PL 
manifold structure). It is now a matter of definitions that Theorem 2.1 holds for 
DIFF if it holds for PL. 

A most useful variation of 2.1 for DIFF is: 

THEOREM 2.2. Let W be a smooth manifold and Kc- W a smooth, connected, 
properly imbedded, submanifold, such that K meets b W in bK, transversely. Suppose 
dim W? dim K+ 3. Then, provided dim W> 5, the following three (necessary) 
conditions guarantee that W admits the structure of a smooth vector bundle over K: 

(1) bW can be made a smooth vector bundle over bK. 

(7) For noncompact K, regular neighborhoods are treated in [39] and [55]. One can always 
take as regular neighborhood the closed star S of K in the second barycentric subdivision of a 
triangulation of M having K as subcomplex. 

(8) Condition (2), ioK= 0, and dim W? dim K+ 2 together imply that W has just one end 
(see 1.1). 

(9) If so, one would like to know (i) that for any other C' triangulation g: L' -* M such 
that g-'(K) is a subcomplex, g-'(W) is a PL open regular neighborhood of g-'(K). Also 
one wants (ii) uniqueness of these smooth open regular neighborhoods up to diffeomorphism 
fixing a neighborhood of K. For dim_5 (and dim bM _5 if bM# 0) the proof is at hand: 
(i) follows easily from the Open Collar Theorem 1.6; (ii) follows from 1.6 and some smoothing 
theory of Munkres [35]. A proof valid in all dimensions can be based on B. Mazur's theory of 
canonical neighborhoods [25] applied to DIFF. But it is probably best to prove more viz. 
establish simultaneously the notion of closed smooth regular neighborhood of K in M with 
the same uniqueness theorems as in PL. This is done by Hirsch in [14] for the compact case 
without boundary. Hirsch's arguments can now be adapted for the possibly noncompact case 
with boundary using [55]. 
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(2) K i W is a homotopy equivalence. 
(3) W has one end, 7T is essentially constant at oo and j(?oo) -* 7r1(W) is an 

isomorphism. 

Proof of Theorem 2.1. Let R be a regular neighbourhood(10) of K in W, AR its 
frontier and int R = R - AR. We propose to show, using the relative form ?1.7(b) 
of the Open Collar Theorem 1.6 that W-int R bR x [0, 1). Then W int R and 
2.1 will be established. 

Write V for W- int R. Since dim K< w -3 

7r, W 7r, V 7r,(aR) 7r1R Tr1K 

by inclusions. Then by excision in the universal coverings (that are indicated by a 
tilde) 

*(V, aR) r*( V, AR) H*(PV, AR) = O. 

By ?1.2, V has one end and we have left to prove that rl is essentially constant at 
oo and rl(oo) .rl V. We will use a heavy-handed argument that avoids geometric 
subtleties. 

Since R is a closed star neighbourhood of K in a triangulation of M with K as a 
full subcomplex there exists a deformation fixing AR, f, 0< t < 1, of I I(R - K) 
to a retraction onto AR, that has this special feature: For each compact Cc: W, 
there exists a compact C'c W such that ft(x) E C implies x E C'. As W has one 
end we can choose a sequence U1, U2=) U3= *... of connected open sets with 
compact complements such that ni Ui= X (U,=closure of U1). We can then find 
a subsequence (still called Ul, U2, U3, . . . ) such that for each i, ft, 0 _ t _ 1, provides 
a deformation of Ui + 1-K i Ui-K to a map into Ui-int R fixing Ui + 1-int R. 
Thus the diagram 

U - int R; -< i U+ -int R 

Ui - K Uj+j-K 

is homotopy commutative. As Ui+ 1- K is connected 

-ro (Ui -int R) -< ro (Ui + 1-int R) 

is a constant map. Thus each set Ui - int R has one unbounded component, say 

Ui' and f, gives maps -1(U') ?<- rr(Ui+1 - K) such that the sequence (with other 
maps from inclusions) 

(*) 7T, Ul-<- 7T,(U2-K) -<-)iT* * 

factorizes the sequences for {U1 - K} and {Ui'}. Since dim K? dim W- 3, 7rl(Ut - K) 
- r1 Ui by inclusion. As the sequence -r1 U1 -7T U2 7r1 U3 * * * is essentially 

(10) This R must not be confused with R denoting the real line. 
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constant we conclude from (*) that -1Ul <- l U2- U3 is essentially 
constant and that we have a commutative diagram of isomorphisms 

vl(W-int R) < proj lim IT, U' 

7rT W < - proj lmr i 

Condition (3) gives the bottom isomorphism; the top isomorphism is deduced and 
completes the proof of 2.1. U 

Proof of 2.2. The proof of 2.1 can be applied to 2.2 with little modification. 
The last paragraph can even be abbreviated by convenient choice of {Ui} and of R, 
which for the proof of 2.2 is a tubular neighbourhood of K in W. Alternatively 2.1 
implies 2.2 since an open tubular neighbourhood is precisely an open regular 
neighbourhood [14, Lemma 4]. U 

THEOREM 2.3. In DIFF and in PL the following is true: Suppose f: (M1, bM1) 
(M2, bM2) is a (pair) homotopy equivalence of n-manifolds,' such that f*r(M2) 
and r(M1) are isomorphic after addition of trivial bundles. (Here i(Mj) is the tangent 
bundle or microbundle in the given category.) Then for s > n + 1, there is an isomorphism 

F: (M1, bM1) x RS - (M2, bM2) x Rs 

(pair) homotopic to f x 1 IRS. 

Proof of Theorem 2.3. Deform the map 

(f, 0) 
(M1, bMl) > (M2, bM2) x RS 

to a proper map, then using s > n + 1 to a nearby proper imbedding g. Now g has 
an imbedded normal bundle v (for PL see Haefliger and Wall [11, Theorem 4]). 
By a familiar argument, the assumption about tangent bundles implies that v is 

stably trivial. Since s> n, v is actually trivial (for PL see [11, ?3, Corollary]). Then 
the total space E(v) g(M1) x Rs and g extends to the required isomorphism 
F: M1 x Rs -> M2 x Rs. For DIFF use 2.2 here, and for PL use 2.1 (or its proof). 

REMARKS ON 2.3. (a) For Mi compact (and closed) the above result is due to 
Mazur [23], [65]. Hirsch extended Milnor's proof [28] to the case wheref is a proper 
homotopy equivalence [16]. In 1968 Kuiper and Burghelia [60] have established 
2.8 for separable smooth Hilbert manifolds of dimension oc, by using Milnor's 
proof and a result of Bessaga peculiar to dimension oc. Thus far, all efforts to 

prove 2.3 using the elementary ideas of Mazur or Milnor have only led to fallacies 
(see ?0). 

(b) Theorem 2.3 with s>>n is true for TOP (cf. [26], [41]). In fact it follows from 
2.3 for DIFF by an argument of Hirsch given in [16, ?4]. The DIFF manifold to be 
associated to Mi, i= 1, 2, is the total space of a normal microbundle v for an 
imbedding of (Mi, bMI) in (Dt, bDt), t large, chosen by the Kister-Mazur theorem 
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[16] to be an Rt-n-bundle. The restriction vjbMi is to be a normal bundle for the 
imbedding of bM, in bDt. The usual existence theorem for normal microbundles 
[31] applies only to manifolds without boundary. Existence of v follows with the 
help of Hirsch [17, Theorem l(c)]. 

Theorem 2.3 is not definitive even for unbounded manifolds. Letf: M1 -> M2 be a 

homotopy equivalence of unbounded n-manifolds. We place ourselves consistently 
in DIFF or in PL. Suppose f is tangential--i.e. f *i(M2) is stably isomorphic to 
r(M1). Suppose in addition that M1, M2 each admit a possibly infinite handle 
decomposition with handles of dimension < k <n/2 only("). J. Milnor suggested 
the 

QUESTION 2.4. Isf homotopic to an isomorphism? 
If f is proper and one demands a proper homotopy to an isomorphism, the 

answer is no in general. Examples occur for M1 = M2= S2 x RI, r > 5, because the 
J-homomorphism 

0 = Tr20(r) T72G(r) = r+l(Sr) Z2 

is not onto. (G(r) is the space of degree + 1 maps Sri- Sr 
-.) 

When Mi, i= 1, 2, is the total space of a Rk+' -bundle over a k-manifold N/k, 

the proof of 2.3 gives a positive answer. For a positive answer in dimensions > 5, 

see [41]. 

For amusement we unknot a whole forest of Rk'S in Rn, n-k > 3. 

THEOREM 2.5. Suppose N is a union of s disjoint euclidean spaces Rki, Rk2,..., 

Rks, k, < n -3, smoothly and properly imbedded in Rn, n > 5. Then (Rn, N) is diffeo- 
morphic to the standard pair consisting of the cosets Rki + (0, ..., 0, i) c RnT, i= 1, 

Proof of 2.5. There exists a smoothly, properly embedded copy of R1 that meets 

each component of N in a single point, transversely. As any two smooth proper 

embeddings of R1 into Rn are related by a diffeomorphism (use 2.2 or [4]), we can 

arrange that the ith component of N meets the last coordinate axis in (0, . . ., 0, i), 

transversely. Then using uniqueness up to ambient isotopy of tubular neighbour- 

hoods of the last axis [29], [60], one can further arrange that N coincides with 

the standard cosets near this axis. One verifies next that one open regular neigh- 

bourhood W of N u {last axis} gives a pair (W, N u {last axis}) diffeomorphic to 

the standard pair with the last axis added. Finally apply 2.1 to complete the 

proof. * 
REMARKS. The above result is taken from [40]. Using the fact that Rn1 unknots 

in Rn, n #& 4, [47], one can replace ki < n-3 in 2.5 by ki =A n-2. A PL version of 2.5 

can be deduced by smoothing [13]. 

(11) It is equivalent, at least for n ?5 (where 2.1 works), to suppose that Mi is an open 
regular neighbourhood of a closed k-subcomplex, i= 1, 2. 
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We conclude this section with another amusing result that was suggested by 
D. B. A. Epstein and was proved with him. There is a well-known 

PROPOSITION 2.6. Suppose X is a PL (or TOP) oriented closed n-manifold, n > 5. 
If there is a degree 1 map Sn-> X, then X_ Sn. 

The degree 1 map shows that X is a homotopy sphere and one applies the 
Poincare Conjecture proved for n > 5 [38] (see 2.9, 2.10, 2.11 below). 

Epstein suggested the corresponding characterization of Rn, n > 5: 

THEOREM 2.7. Suppose X is a DIFF or PL oriented unbounded n-manifold, n > 5. 
If there is a proper degree 1 map Rn -> X, then X- Rk. 

Its proof also establishes: 

THEOREM 2.8. Suppose X is a DIFF or PL oriented n-manifold, n > 5 with non- 
empty simply connected boundary bX. If there is a proper degree 1 map 

f: bXx[0, 1)-> X 

with f I bXx O the inclusion, then 

X bXx [0, 1). 

Of course the proofs are based on the Open Collar Theorem 1.6. It is the homo- 
topy theoretic form of the -1 condition at oo that makes the proofs painless. We 
present three lemmas which clearly establish 2.7, 2.8 in view of 1.6 and 2.1, 2.2. U 

Suppose M and X are oriented connected topological n-manifolds and. 

f: (M, bM) ->(X, bX) 

is a proper map of degree 1. Let [M], [X] be the preferred free generators of 
Hn(M, bM), HC(X, bX), each Poincare dual to a point. (Hc* is integral singular 
cohomology based on cochains with compact support.) Then the degree deg (f) 
is defined by 

f*[X] = deg(f)[M]. 

LEMMA 2.9. f*: -r1TM -->- iTX is surjective. 

LEMMA 2.10. If M has one end, .7T is essentially constant at oo in M and 71(oo)= 1, 
then the same is true in X. 

LEMMA 2.11. f*: H*(M, bM) -> H*(X, bX) is a retraction of groups. 

Proof of 2.9. Let k24 X be the covering corresponding to f*-riMcr T1X. Then 
f factors through X by a necessarily proper map f: M X-> k, and one knows that 
deg (f) = deg (Pf) = deg (p) deg (f). Hence deg (p) = ? 1, X= X [9, ?2], and so 
f*7lM= 71 X as required. * 
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Proof of 2.10. If X had > 1 end, M clearly would too. So we can find V1 - V2 
D V3 D ... connected neighbourhoods of oc in X with n vi = 0. Let Ui be the 
unbounded component of f -1(V1) and consider the ladder given by f 

U1 U22 U322 

VI 2V2 2 V3 2 
As nUi = 0, we can arrange by picking a subsequence that 7r1 Ui + 1 71 Ui has 
image 1. Certainly fl Ui: Ui -> Vi is proper. It has degree 1 for we can deform f 
slightly tof' on a compactum in Ui so thatf' is transverse at a point p in Vi chosen 
so near oc that f -l(p) c Ui. Then the geometrical interpretation of degree shows 
that deg (f' I Ui) = deg (f') whence deg (flI Ui) = deg (f) = 1. 

See [9, ?2.lb, ?4.2]. Now 2.9 implies T, Vi +1 --> 7T Vi has image 1. (REMARK. Here 
is the one point where 7rTbX= 1 is really essential in the proof of 2.8.) 

Proof of 2.11. Left inverse tof* is (P.D.)f* (P.D.)-1 in the diagram 

Hci(M) <-f Hci(X) 

Hn_t(M, bM) f* > Hn -i(X, bX) 
where P.D. denotes Poincare duality. Commutativity of (*) wants checking if the 
manifolds are not compact. For any compact Kc X and compact LDf - 1K one has 

Hi(M, M-L) < 
P 

Hi(X, X- K) 

(?) l I{ f K 

Hn -_i(M, bM) - f* > Hn -i(X, bX) 

where eK E Hn(X, (X-K) u bX) is the orientation class as is FtL E Hn(M, (M-K) 
u bM), and the downward maps are cap products with these classes. Now f*pUL 

-= K, by the geometrical interpretation of degree cf. [9, ?2. lb, ?4.3]. So (?) commutes 
by a cap product rule. Finally, (t) is the direct limit of such squares (?); so 2.11 
is established. * 

3. Applications to group actions. Here we prove Theorem 3.1 stated in the 
introduction and compare the situation for actions on closed disc bundles. 

There is given for 3.1 a DIFF manifold W without boundary, which can be 
made the total space of a smooth vector bundle over a given manifold Mc W. 
A smooth action a: G x W -- W of a compact Lie group G on W is also given 
such that M is the set of points fixed by a, and for x E W- M the isotropy subgroups 
Gxc G are all conjugate-i.e. a has just one orbit type on W- M. 

THEOREM 3.1. If dim W- dim (G/Gx) > 5, W admits a structure C of euclidean 
vector bundle over M so that a respects fibers of C and gives isometries of each 
fiber. 
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We will state a relative version in ?3.3 below. 
Proof of Theorem 3.1. In outline we follow the argument of [4, Theorem B]. 

Certainly we can assume for the proof that W is connected. A Riemannian metric 
on W averaged with respect to the action can be used to construct an open a- 
invariant tubular neighbourhood E of M which is a euclidean vector bundle 
over M on which a respects fibers and acts orthogonally. E is called an open 
a-equivariant tube and the unit disc bundle EczE is called a closed a-equivariant 
tube (for M in W). Write V= W- int E, V0 = E- int E1, B= Vx (the orbit space 
of a on V) and Bo = VO. Since a has just one orbit type on V, B is a manifold with 
boundary bB=bVa, and V-* Va=B is a smooth bundle with fiber G!GX [38]. 
Uniqueness up to ambient isotopy of (ordinary) tubular neighbourhoods of M 
shows that V- b Vx [0, 1), which suggests: 

ASSERTION 3.2. B-bBx [0, 1). 
The proof uses the Open Collar Theorem 1.6, and is postponed. Since a is 

orthogonal on E, Bo cz B is a collar neighbourhood of bB. Hence the usual theorem 
for uniqueness of collar neighbourhoods up to ambient isotopy implies that 
there exists a smooth isotopy ft, 0 < t $ 1, of Bo C B through smooth imbeddings, 
that fixes a neighbourhood in Bo of bBo = bB and terminates at an isomorphism fi 
of Bo onto B. 

Consider the smooth bundle V-- Vc%=B and its restriction V0 -> Vo= Bo. 
Write Hfor the isotropy subgroup G,0 at a fixed point x0 E Bo. If Nis the normalizer 
of H in G, write P = N/H. Then V -+ B has fiber G/H and group r acting on G/H 
on the right. Let P(V) = {x E V I G, = H}, P(VO) = {x c- VO I G, = H}. Then P(V)- B 
is a principal r-bundle with r acting on P(V) on the left. The vital fact for us is 
that the associated bundle 

(G/H)rP(V) -- B, 

with the obvious action of G on the left, is naturally isomorphic to V -Z- B with the 
action a of G. See [21, ?1.1] and [50]. 

Apply the bundle covering homotopy theorem of Steenrod [49, ?11.3] (in its 
differentiable version) to the homotopyft, 0_ t $1, of Bo (, B. 

One obtains a smooth bundle map p of P(V0) onto P(V) which coversf1: BO . B 
and is the identity over a neighbourhood of bBo = bB. The observation of the previ- 
ous paragraph converts (p into an isomorphism q of V0 onto V fixing a neighbour- 
hood of b Vo = b V and respecting the action of G. Extending q by the identity on 
E(c V one has an equivariant isomorphism of E=E1 u V0 onto W=F1 U V, 
which establishes Theorem 3.1. 

We return to 
Proof of Assertion 3.2. As b V V is a homotopy equivalence the fibration 

G/H -+ V --. B tells us that bB C. B is a homotopy equivalence. As W is (assumed) 
connected, either b V is connected, or W= M x R1. In either case bB must be 
connected. Hence B has one end by ?1.1. Since dim B=dim V-dim (G/H) ?5, 
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the Open Collar Theorem 1.6 will yield B bB x [0, 1) provided we can show that 

71 is stable at oc in B and 7r(oo) .>r71(B). 
Choose a sequence B1 -DB2 ' B3 - . . . of connected neighbourhoods of oo in B 

such that n Bi = o. We aim to show that the sequence 

71l(B) <- r(Bl) - r1(B2) '< *- 

induces isomorphisms 

7T1(B) Im 7T1(Bl) < Im 7T1(B2) < ... 

at least after {Bi} is replaced by a subsequence. 
Since the bundle V -? B has compact fiber, the sets Vi =q - 1Bi, i= 1, 2, 3, . . . 

are neighbourhoods of infinity in V; and clearly n Vi = o. We know that V has 
one end (?1.1) unless W=Mx R1. In either case -7-0(V1) -<- 7-T0(V2) -<--- is essen- 
tially constant and we are able to choose base points and connecting base paths so 
that ij( V1) -*- iT(V2) -- . is well defined and essentially constant. Hence we can 
(and do) replace {Bi} by a subsequence so that isomorphisms 

Tri(V) < Im (7TiV1) < Im (7TiV2) c<= ... 

are induced for i= 0, 1. 
From the rows of fibrations (where F stands for GIH): 

II rN im 
F-V* V2 2 

11 rN ri 
F V2 B2 
11 rN rN 
F V B 

we deduce exact rows in 

7TF-> Im 7T V2 > Im jr1B2 > -oF > Im 7TO V2 

7 -F > Im 71 V1 > Im 7r1Bj > - roF > Im 770 V1 

,T,F 
> -r V - rB - rrF > fo V. 

We established the second and last columns of isomorphisms in the last paragraph. 
A five-lemma argument now shows that the middle column consists of isomor- 
phisms. This establishes Assertion 3.2 and completes the proof of Theorem 3.1. U 
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3.3. Relative version of Theorem 3.1. There is a relative version of 3.1 in which 
M and W have boundaries and a is supposed orthogonal for some euclidean 
vector bundle structure e for b W over bM. The statement of 3.1 again holds true, 
and is proved much as before with the help of ?1.7(b). Further, using a theorem of 
uniqueness up to equivariant ambient isotopy for equivariant tubes(Q2), one 
shows that the bundle structure C promised by 3.1 can be required to coincide 
with e over bM. 

We conclude ?3 with a discussion of the situation for actions on closed disc 
bundles. For Propositions 3.4 and 3.5 below we suppose that W admits a structure 
of smooth closed disc bundle with orthogonal group over an unbounded sub- 
manifold Mc: W. a is still a smooth action of a compact Lie group G on W with 
fixed point set M and one orbit type outside M. Let H be G,0 for x0 a point of 
W-M. 

PROPOSITION 3.4. In the above situation suppose G is connected, dim W- 
dim (GIH) ? 6 and M is compact, simply connected. Then a acts orthogonally with 
respect to a suitable orthogonal disc bundle structure for W over M. 

Proof of 3.4. From the information in [3, ?1, Remark], one deduces that the 
orbit space b W" must be simply connected. Then one employs the method of 
proof 3.1, using the h-cobordism Theorem [32] in place of the Open Collar Theorem 
1.6 (cf. [50, ?3]). U 

To indicate that the general case is more complicated, we offer a classification 
theorem in a second special case. 

Consider smooth actions fi: G x W-- W that fix M pointwise, give the same 
action as a on the normal bundle v(M) of M in W, and have just one orbit type 
outside M. Let a0 be the common action on v(M). For two such actions Iil, Il2 

we say P1-2 if there exists a smooth automorphism F: W-- W that takes p1 
to f2, that fixes Mc: W and that gives the identity automorphism of v(M). Let 
d= e=(ao) be the collection of resulting equivalence classes of actions. 

PROPOSITION 3.5. In the above situation, suppose G isfinite, M is compact con- 
nected without boundary, and dim W> 6. Then s is in natural 1-1 correspondence 
with the kernel of the transfer homomorphism t: Wh-r1(b W")-- Wh-rl(b W) of 
Sylvia de Christ [6] for the subgroup 7T1(b W) c: 7T1(b We). This subgroup is normal 
and of finite index. 

REMARK 3.6: RELATIVIZING 3.4 AND 3.5. Proposition 3.4 continues to hold if M 
is allowed a boundary and one supposes that W is diffeomorphic (fixing M) to a 
smooth disc bundle over M with its corners smoothed. With this change 3.5 con- 
tinues to hold provided b W is replaced in the statement by b(W- M). The proofs 
require the relative form of the h- or s-cobordism theorem [22], but use no new 
ideas. 

(12) See [62]. 
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Before proving 3.5 we explain the transfer. Let A be a discrete group and AO C' A 
a subgroup such that A =AOa1 u ... u Aoad, d finite. Then the integral group 
ring Z[A] is a free module over Z[Ao]czZ[A] with d free generators a1,..., ad. 
(Modules will be left modules.) In this way each Z[A]-automorphism of Z[A]n, 
n finite, becomes a Z[AO]-automorphism of Z[AO]dn. There results a transfer 
homomorphism t: Wh (A) -? Wh (AO). Sylyia de Christ [6] observed that if 
c=(W; V, V') is a smooth compact h-cobordism and c=(W; V, V') is a covering 
with finitely many leaves, then c is an h-cobordism with torsion -(c)=t(r(c)); 
where t is the transfer 

t: Wh (irl V) -*Wh (-rl V). 

The transfer is not easy to calculate, but for Ao normal in A there is a helpful 
identity. Let Ao , A induce i*: Wh (AO) -? Wh (A). For any a e A let x v-> Xa 

be the automorphism of Wh (AO) induced by the automorphism g -> aga1 of Ao. 
The identity is 

t(i*(x)) = Xal + * +Xad, x E Wh (Ao) 

and can be verified by a matrix calculation. The same identity occurs for homology 
of groups. If there is a right inverse j: A/Ao -? A of A -? A/AO, one can check that 
tj*(y)=O for y E Wh (A/A0). 

Proof of Proposition 3.5 (in outline). Assuming b W is connected, the projection 
b W -? b W' to the orbit space is a connected covering. Hence the isotropy subgroup 
is the same normal subgroup H throughout b W. Thus b W--> b W" has I G/HI 
leaves and as many covering transformations, which shows -rl(b W) c= rl(b W`) is a 
normal subgroup. If b W is not connected, W- M x [-1, 1 ] and one sees that a 

must identify the components of b W, whence -rl(b W) = -rl(b W') = IrT,M. 
If fi: G x W -? W represents an element of a, let T be a fl-equivariant tube for 

M in int W. Let V= W- int T and consider the cobordism c = (V:; bTV, b W,). 
It is an h-cobordism and its torsion r(c) E Wh (-rl(b W,)) satisfies ti(c)=O as the 

covering.(V; bT, b W) is a product cobordism. Since a and f: give the same action 

ao on v(M), there is a natural homotopy equivalence of the map b W--> b W,' 
with b W -? b W". Hence r(c) is naturally an element of the kernel of t: Wh rl1(b W`) 

Wh r1 (b W). We let : -? r(c) define 0: d -? ker (t). 
That 0 is well defined follows from the uniqueness theorem for equivariant tubes. 

(See footnote 12.) Injectivity of 0 follows easily from the s-cobordism theorem 
[22, ?11.3], [33]. Surjectivity of 0 follows from Stallings' important observation 
[22, ?11.1] that for a prescribed closed smooth manifold N, and prescribed 
x E Wh (v7N) there exists an h-cobordism with left end N and torsion x. 

This completes the proof of 3.5. U 
DIsCUSSION of 3.5. Suppose a is orthogonal. Every x E s which under the 

bijection a <-> kernel (t) gives an element in the subgroup Hc kernel (t) of ele- 
ments of the form y + (_ 1)w - ly* (w = dim W, * is the duality involution of Milnor 
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[22, p. 398]) has a representative a' which coincides with a on b W. This is because 
a' can be constructed (see proof of 3.5) using a composition of an h-cobordism 
(A; B, B') with its reverse (A; B', B) [22, p. 394]. These actions Hc Q have the 
following interest once mentioned to us by Wu-Yi Hsiang. Suppose in the situation 
of 3.5 that W is a tubular neighbourhood of M in a larger manifold X and that the 
given (orthogonal) action a is the restriction to W of a given action : on X. Then 
one can alter : by changing a to a'. In this way each element of H yields a new 
action 3' on X well defined up to expected equivalence (fixing v(M) as for 3.5). 
It follows from the discussion of wedge cobordisms in [44, ?2.5] that the new action 
/' on X is concordant to : in a strong sense which guarantees that the action 
/ x 1 on X x R is conjugate to /' x 1 fixing v(M x R). Nevertheless : and /' are often 
inequivalent. J. Sondow has shown (unpublished) that if (X, M) = (En, 2k), n > 6, 
n - k > 3, is a pair of homotopy spheres, and a is free outside Ek, then distinct 
elements of H give distinct actions. See [62]. 

4. Unknotting complements of spheres. Let A be a subset of a topological 
space X. One says that X-A is 1-LC at a given point x in X if for each neighbour- 
hood U of x in X there exists a neighbourhood Vc U such that every map of the 
circle S1 -? V-A is homotopic in U-A to a constant map. 

The purpose of this section is to prove: 

THEOREM 4.1 (CONJECTURED IN [12]). Suppose Ek is a k-sphere topologically im- 
bedded in Sn so that Sn_>k is 1-LC at each point of Y2k. Then, provided nA4, 
Stn_k is homeomorphic to Sn-Sk where Skc= Stn is the standard k-space. 

COMPLEMENT 4.2. Sn_ _Zk is in fact PL homeomorphic and diffeomorphic to 
Sn _ Sk. 

DISCUSSION 4.3. (a) Notice that if Ek is locally flat(13) in Sn and n-kk #2, n> 5, 
then by Stallings [48], (Sn, Zk) is homeomorphic to (Sn, Sk), so that, in this case 
4.1 adds nothing new. Conceivably 4.1 never adds anything new for there is the 
following basic conjecture (but see (c) below): 

CONJECTURE(14). Let Xk be an unbounded topological k-manifold imbedded as a 
closed subset of Rn. If Rn - X is 1-LC at X, X is locally flatly imbedded. 

For n = 3, this follows from Bing [1]. 
(b) Fox and Artin [10, ?3.2] give a 2-sphere Z2CS3 wild at one point such that 

each component of the complement is an open disc. At the wild' point S3 2 

is shown to be not 1-LC. We conclude that the 1-LC hypothesis in 4.1 is not 
always necessary for the conclusion. Instead it is clearly a necessary condition for 
flatness Of Ek in Sn, n-k#,42. 

(13) This means that for each x E E there is a neighbourhood U so that (U, U C S') is 
homeomorphic to (Rn, Rk). 

(14) Bryant and Seebeck have now (1968) proved this at least in the metastable range [59]. 
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(c) In 4.1 and 4.2 in the case n-k>3, one can replace the assumption that 
Ek is a k-sphere by the following: Ek is a compact ANR of dimension < n-1 and of 
the homotopy type of Sk. These are exactly the assumptions used by the proofs 
below. 

(d) For codimension 2 I can offer only 
CONJECTURE. A (n-2)-sphere En-2cSn has complement homeomorphic to 

Sn-Sn-2 if Sn_Zn-2 is 1-ALG at each point of 2n-2 (see [12]) and Sn_n-2 

has the homotopy type of a circle. 
For the proof of 4.1 we need 

LEMMA 4.4. Suppose X is a closed set of dimension < n -1 in Mn, a connected 
unbounded n-manifold. Then M- X is connected and i*: 7r1(M- X) -? T1M is onto. 
If M- X is 1-LC at all points of X, i* is an isomorphism. 

Proof of 4.4. The proof is by no means new. We give an outline and refer to 
[27], [8] for details. The facts about dimension that one needs are: 

(1) A subset of dimension < n in Rn has no interior points. 
(2) A subset of dimension <n -1 in Rn cannot disconnect Rn (Hurewicz and 

Wallman [20, Theorem IV 4, p. 48]). 
From (2) it follows that M-X is (path) connected. 
To establish that i* is onto one shows using (1) and (2) that any loop in M can 

be moved slightly to miss X (cf. [27, p. 329]). 
To establish that i* is injective, one has to show that any map f: (D2, bD2) 

(M, M- X) can be changed on int D2 to give a map into Mn -X. Using (1) and 
(2) again, one can, for any triangulation of D2 replacef by a map g of the 1-skeleton 
of D2 into M- X such that g is nearf and gl bD2 f I bD2. If the triangulation of D2 
is sufficiently fine, and g is sufficiently near f, the assumption that M- X is 1-LC 
at all points of X guarantees that g extends to a map D2-? M-X. For details 
see [27, p. 335] or [8, Theorem 2]. * 

Proof of 4.1. The case n -k=2 does not occur since S_n-2 cannot be 1-LC 
at Ek for homological reasons [58]. 

For n < 3 one can even conclude that (Sn, Zk) its homeomorphic to (Sn, Sk)-see 
Bing [1]. For n>5 and k=n-1 the result was proved by D. R. McMillan in 

[27, ?3]. 
There remains for us to prove 4.1 when n > 5 and n - k > 3. As Ek is a retract of a 

neighbourhood, for any connected open U-S2k, there exists a connected open 
VD)2k in U such that V (, U is homotopic in U to a retraction onto 2k. Since 

.T(Zk)= 1, we know 7r1(V) -? 7r1(U) has image 1. Then by 4.4, U_2k and V_ Ek 

are connected and .7r(V_Zk) __ Vr(U_Ek) has image 1. It follows directly that 
S n_2k has one end, r1 is essentially constant at oo and 7r1(oo)= 1. 

By 4.4 again, Sn_Zk is simply connected. Alexander duality says that it has the 
integral homology of SJ, j= n - k-1. Hence it has the homotopy type of Sj. 
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According to Irwin [56] there exists a locally flat PL imbedding f: Si -? Sn_ k 

that is a homotopy equivalence. As 7T is well-behaved at ox, ?2.1 says Sn_ k iS 

an open regular neighbourhood off(Si). Asf(Si) is unknotted in Sn [57], any open 
regular neighbourhood is PL homeomorphic to Si x Rn -' and hence to S n- Sk. 

Proof of Complement 4.2. Since there is a unique DIFF or PL structure on 
Sn_Sk, n<3, [32] and on Sn-Sn-1, n>5, [46], we can assume n>5, and n-k>3. 
Then the proof of 4.1 established a PL homeomorphism Six Rn - j Sn_ 2k. 

The Cairns-Hirsch theorem [13, Theorem 2.5] shows that Sn_ k is differentiably 
a product neighbourhood of some smooth SoC Sn_Ek, which, under a C' tri- 
angulation, is PL equivalent to Si, but unfortunately need not be diffeomorphic 
to Si. Nevertheless any product neighbourhood of Si in Sn is diffeomorphic to 
Sx Rn- by [14, Theorem 7]. * 

Added in proof (April 28, 1969). To bring this article up to date, I add 

OPEN COLLAR THEOREM 1.6 (TOP). The version of the Open Collar Theorem 1.6 
for TOP (= topological) manifolds is valid in dimensions > 5. 

This is not an empty generalization since many topological manifolds admit no 
PL manifold structure, even stably [64]. 

For dimensions > 6 the proof in the text can now be carried out successfully in 
the category of TOP manifolds because recent work of Kirby and the author [64], 
[45] has established the needed TOP handlebody methods in dim > 6. Newman's 
topological engulfing replaces Stallings' (cf. [42]). 

For dimension 5, it seems necessary (at the moment) to reinforce the "pure 
engulfing" approach of [42] with results of [64]. My article [42] was a sequel to this 
one; it established [42, ?4.1] that 1.6 (TOP) is true in case either (a) Wis 2-connected 
or (b) b Wx R admits a PL structure. The assumption (a) or (b) serves in [42, ?4] 
only to provide an open subset U2 of W (W is M in [42, ?4]) such that 

(i) U2 admits a PL structure. 
(ii) The closure U2 is a locally flat suibmanifold of codimension zero. 

(iii) Ti( W- U2, U2- U2) = 0, i <! 2. 
Condition (iii) is the one that I should have cited on line 5 of [42, ?4, p. 256]. (Also 
read "contractible manifold" on line 17.) 

Here is a method for constructing such a U2 in case dim W? 5. Triangulate a 
topological normal closed disc bundle Tto int Win euclidean space. This is possible 
because T is parallelizable [64, (I)]. Deform the projection p: T-> int W, restricted 
to the 2-skeleton T(2), to a map p': T(2) C V such that V is open in int W and has a 
PL structure E making p' a proper PL embedding. The reader can construct p', V 
and E using [64, (I), (II)] and finite induction over (dim W+ 1) coordinate charts 
covering intW [38, ?3.6]. Finally define U2 to be the interior of a regular neigh- 
borhood of p'T(2) in V. 
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