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Inventiones math. 6, 245 —261 (1968)

On Detecting Euclidean Space Homotopically
among Topological Manifolds

L. C. SIEBENMANN (Orsay)

§ 1. Introduction

It is known that there exist uncountably many topologically distinct
contractible open topological manifolds of any given dimension =3 [4].
Our problem is to give a supplementary homotopy theoretic condition
which guarantees that a contractible open topological manifold is
euclidean space.

Main Theorem 1.1. Suppose M" is a contractible metrizable topological
n-manifold without boundary, which is 1-LC at infinity. If n> 5, then M"
is homeomorphic to euclidean n-space R".

A generalization of this result is proved in §4. It attempts (with
only limited success) to characterize homotopically topological open
collar neighborhoods.

The condition 1-LC at oo is a weak form of the condition (C) that
there be arbitrarily large compacta K in M so that every map of a circle
into M —K is contractible to a point in M — K.

Definitions 1.2. A neighborhood of infinity (co) in a Hausdorff space X
is a subset N such that the closure of X — N is compact. X is said to be
1-LC at oo (1-locally connected at infinity) if for any neighborhood U
of oo there exists a smaller neighborhood V of co such that any contin-
uous map of the circle into V is contractible in U.

The reader can easily check that the property of being 1-LC atoo
is invariant under proper homotopy equivalence!. Hence Theorem 1.1
qualifies as a homotopy theoretic characterization of euclidean space of
dimension =5 among all topological manifolds. It is unknown whether
proper homotopy equivalence of topological manifolds preserves the
stronger condition (C) mentioned above.

Luft [6] treated Theorem 1.1 under the assumption of (C). The
following amusing corollary cannot be proved using Luft’s version.

! i.e. homotopy equivalence in the category of proper continuous maps. A map is
proper if the preimage of each compact set is compact.
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Corollary 1.3. Let M", n>5, be an oriented metrizable topological
n-manifold without boundary. Suppose there exists a proper degree 1
map f: R"— M". Then M" is homeomorphic to R".

This result has been proved by Epstein and the author for the dif-
ferentiable and piecewise linear categories. Here the proof is similar.
It uses Theorem 1.1 and the fact that any proper degree 1 map induces
a surjection of homology groups and of fundamental group. For details
see [9, § 2.7].

Note that Corollary 1.3 includes

Corollary 1.4. Let M" be as in 1.3. Suppose M" is proper homotopy
equivalent to R". Then M" is homeomorphic to R".

It is conceivable that metrizable topological manifolds are all
triangulable as piecewise linear manifolds, for which all the above
results were established in [13] and [9]. If so, may this article represent
a small step towards a proof of triangulability!

The remainder of this paper is organized as follows: §2 proves an
engulfing lemma; §3 uses it to prove Theorem1.1; §4 generalizes
Theorem 1.1; and § 5 establishes a general position lemma used in §2.
A proof of Theorem 1.1 under the extra hypothesis (C) is contained in
the brief § 3 alone — i.e. it doesn’t require the result of § 2 (see Remark 3.2).

This article was written in spring 1967 after I was able to circumvent
a fault in a manuscript version of Luft’s article [6]. It was revived (in
spite of the incompleteness of my results in § 4) when Newman pointed
out that a fault persists in Luft’s published version. In the proof of
Theorem 3.2 of [6] (=my Theorem 1.1 with condition (C)) the property
(c) on p.197 of [6] generally cannot be satisfied. By work independent
of Luft or me, Newman [17] had constructed a (rather complicated)
proof of Theorem 1.1 with condition (C).

Here is some terminology we will employ. The support of a map
h: M — M of a space M to itself is the closure in M of {xeM; h(x)=+x}.
An automorphism of M is a homeomorphism of M onto itself. A compact
automorphism of M is an automorphism with compact support.

§ 2. Two Set Engulfing of a 2-Complex

This section is devoted to an engulfing lemma that allows us to
work with manifolds 1-LC at infinity.

Proposition 2.1. Let M" be a metrizable topological n-manifold, n=5,
without boundary and Oy= M" an open set equipped with a p.l. manifold
structure. Let P<Q, be a possibly infinite subpolyhedron of O, closed
in M and of dimension <2. Let V and U be connected open subsets of M
with V< U such that P—V is compact and




Detecting Euclidean Space Homotopically 247

(@) m,(M, V)=0.

(b) 7, (U, V) maps (by inclusion) onto n,(M, V).

Then there exists a homeomorphism h of M onto itself such that
h(U)> P and h fixes all points outside some compact set.

This result should be a prototype of a general theorem for engulfing
with a nest U> V> Wo--- of many open sets instead of with two open
sets UoV as in this proposition or with one open set as in ordinary
engulfing [14]. Such a theorem exists in p.l. manifolds, and can replace
engulfing with U when (M, U) is not sufficiently connected to apply
Stallings’ engulfing theorem. See [7] where a special case is proved.

The proof of Proposition 2.1 requires a re-examination of the proof
of the topological engulfing theorem. Since two expositions of this
exist already [8, 3] we chose to break the proof (unnecessarily) into
three parts of increasing difficult: n>=7, n=6, n=5. The only unfamiliar
idea in the proof appears already for n=7 so that the reader familiar
with engulfing may be content with this case. Again, this case is relatively
simple and so should be instructive for a reader who wants to under-
stand topological engulfing.

Proof of Proposition 2.1. To begin, allow any n>5. Let PocP be a
closed subpolyhedron such that B, <V but Q=closure(P —R) is com-
pact. Let 6Q=0n k.

Since (M, V)=1 and 7,(U, V)% n,(M, V) there is a deforma-
tion of P<~M fixing P, to a map into U. This can be regarded as a map

f: Px0u@xI->M, I=[0,1],

such that f| P x 0 gives the inclusion P~M, f|0Q x[is6Q x | > 6Q—M,
and f(Q x 1)cU. Note that f(X)c U where X=P,x0udQxIuQx1

(cf. Fig.1).
R 0 90 0

d 1
oxI 1
Y 0

Fig. 1

Remark. In obtaining f we have met the one small point where the
proof of 2.1 is genuinely a refinement of the usual topological engulfing
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argument. From this point we engulf as usual. We continue only to
convince the reader that this is possible. It should become clear that
2.1 remains valid if, for example, one replaces (a), (b) by the assumption
that f exists as above, and replaces dim P<2 by the condition that
dim P<n—3 and

2dim P+2—n<k, where =n;(M,U)=0, iZk.

Note that (a) implies that =;(M, U) is trivial. Hence this is a generaliza-
tion of 2.1 even for n=5.

A chart in M will always mean an open p.l. n-ball imbedded as an
open subset of M. Since P is closed there is an atlas o/ of M by charts
Bc M such that

(i) Either BnP=0 or B<O,.
(i) If Bc O, the p.l. structure on the chart B is inherited from O,.

Choose an integer N so large and a triangulation of Q so fine that
if 0,,0,,...,0, is a list, in any order of non-decreasing dimension, of
all the closed simplices lying in Q but not in §Q, then for all ¢; and all

C ol '
LOZjSEN-1, f(aix[Ni, ]—;}—]) lies in at least one chart of /.

C T '
Order the subpolyhedra g; x [NL’ %—:I lexicographically on (N —j, i),
1N —j<N,1<£i<k, and to save notation relabel the resulting sequence
Y,,Y,, ..., Yy, Foreach Y;, 1 Si< Nk, select a chart in &/ containing f(Y;)
and call it O;. Note that, if O; meets P, 0;=0, and O; inherits its p.l.
structure from Oy.

)4
)
1 2 ... k

(N—1k+1 | NES_y,
Nk

Px0
Fig.2

Write X; for XuY,u---UY; and set X,=X. Note that X;,, collapses
cellularly over Y;,, to X;.

Fix i, 0<i< Nk, and suppose for an induction on i that there is a
compact automorphism h; of M and a map f;: Px0uQ xI— M with
the following properties
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1) fiIPx0=f|Px0.

2) Forallj, fi(Y)<O,.

3) If n27, hy(U)> fi(X;), where X;=X U Y,u---UY,.

If n=6 or 5, h;(U)> f;(6X;) where dX; is by definition the frontier of X;
in Px[—1,0]uQx1, or, equivalently, 6X; is the union of X;n (P x0)
with the frontier of X; in Px0uQ x 1.

This is trivially true for i=0. We proceed to construct h;,, and f;,,
with similar properties for the integer i+1 to complete the induction.
This done, we can put h=hy,. Then h(U)> P by 1) and 3) so that the
proposition will be established.

We will say that a map f: Px0uQ xI— M is (i-) admissible if it
satisfies 1), 2), 3) with f; in place of f;.

Using a p.l. isomorphism O, , =~ R" assign to O, a linear structure.
We can regard the open subset f;"1(0;,,)=P x0u Q x I as a polyhedron
(usually non-compact). Find an i-admissible approximation f; to f; that
gives a p.l. map f;7%(0;4+,)— 0;4;=R" and coincides with f; outside
fi 1(0+,); also choose a triangulation of f;~1(0; ) such that f; is linear
on simplices. (Here is one method: Begin with any triangulation of
fi7YO;4,) such that f;|Px0nf~1(0;,,) is linear on simplices. When
this triangulation is suitably subdivided the unique map f~1(0;,,)—
0;:,=R" coincident with f; on vertices and linear on simplices will
provide f/; and the subdivided triangulation can be the one chosen.)
Since there is an elementary cellular collapse from Y., to Y,,,nX;
in f;~%(0;+,) — viz. a collapse across a p.1. cell — we can further subdivide
£i71(0;4,) so that Y;,, collapses simplicially to Y;,,X; — say across
simplices oy, 0,_;,...,0, in this order (see Zeeman [16, Chapter 3,
Lemma 13]). Now the general position Lemma 5.1 (in appendix) shows
that we can alter f; slightly on f;"* O,,, so that as a map to O,,, it is
in general position, is linear on simplices, and remains admissible.

Recall that the double point set of a continuous map g: 4 — B is the
closure in A of the set of all xe 4 such that g(x)=g(y) for some y+x, ye A.
It is denoted S(g).

The Case n=7. Suppose now that n>7 (or dim Q<1). Then general
position means that S(f/)nY;,, has dimension<3+3-7=—-1 — i.e.
that it is empty. In other words Y., is imbedded and its image doesn’t
meet that of its complement. Thus it is an easy matter to make h, U
successively engulf the linearly imbedded simplices f (,), ;' (5,), - .., f (,)
by means of automorphisms of M having compact supportin O, , — f;'(X)).
Hence the induction can be completed if n>7.

The Cases n=6 and n=5.If n=6 or 5,dim(S(f;)n X;,,)is <Oor <1
respectively, and in either case the above engulfing process is obstructed.
17 Inventiones math., Vol. 6
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We use a method of Stallings to exploit the fact that it is quite enough
to engulf the image of the 2-skeleton of the 3-complex X;, ;. For a given
(closed) simplex ¢ of X;,, let & be the boundary do in case dimo=3,
and let 6 =0 in case-dim =0, 1 or 2. Suppose for a subsidary induction
on ay,...,0j, ..., 0 that there exist a compact automorphism 6 of M"
and an admissible map f;” such that

(a) There is a neighborhood N of f;(Y;,,) such that f""*N=f"'N
and the two maps coincide there.

() 0h, U f"(0X; 06,06, U - UG)).

This is so for j=0 as h;(U)> f{(6X;). When it is established for j=s
we will clearly have 0h, U> f;"(6X;,) and then we will be able to put
his1=0h;, ;.1 =1/ to complete the main induction. Hence the theorem
will be proved when we have completed the subsidary induction.

Ifr=6,S(f"|6X;ué;U--UE)N0o;, hasdimension<2+3—6=—1
i.e. is empty (cf. (a)). Hence we can complete the subsidary induction by
pushing 0h; U across the linearly imbedded simplex £ (). 1)= fioj41)
by a compact automorphism of O,,, that fixes f"(6X {UG U UG
Note that in this case one can keep f;" = f;" for all j.

The Case n=5 (concluded). There remains the case n=35. The set
S(f"16X;U 6y ... UG) N0,y (call it S) has dimension<2+3—5=0and
consists of a finite number of points in the interior of g;, . Let the collapse
across g;. be from the face t opposite vertex v. Then o;., is the join
t*v and (0t)*v<dX;U6,U---UG;. Let Sco;,, be the union of all
segments through points of S parallel to the segment from v to the
barycenter of 7.

Assertion 2.2. There exists a compact automorphism 0 of M and an
admissible map f;” satisfying:

(3) The inductive assumption (a) with f;" in place of f;".

(b) O U f"(0X; UG, UL G;US).

Granting this, note that g;,; =7*v collapses to dt*vu S which has
image in Oh; U and that by (@) this collapse crosses no singularity of f;".
Recalling that f; 0;,,=f" 6;, is linearly imbedded in O, ,, we can find
another compact automorphism 8 of M so that

g}li U:)f}"((SXiua'lu s U&juaj+1)

which (a fortiori) completes the subsidary induction on j.

Assertion 2.2 will be proved using the following version of Newman’s
engulfing. This version is in fact Newman’s main result [8, Theorem 6]
first stripped of unneeded generality then subjected to some generalization
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that we will explain presently. Using the above arguments as a guide
a patient reader could provide a proof himself (especially for the case p=1).

Engulfing Theorem 2.3 (Newman). Consider the following data: M",
n2 5 a topological n-manifold (without boundary) endowed with a metric d;
V an open subset of M such that n,(M,V)=0 for 0ZiZ<p; f: T—-M a
proper continuous map to M of a possibly noncompact polyhedron I" having
dimension<n—3; H<T a closed subpolyhedron such that Hf (M — V)
is compact and has a neighborhood in H of dimension<p; U< M an open
subset having a p.l. manifold structure; L< I a closed subpolyhedron such
that f|L is a p.l. map into U; ¢ a real number >0.

With this data, there exists a homeomorphism h of M onto itself that
fixes all points outside some compact set and there exists a continuous
proper map g: I'— M such that the following hold:

A) h(V)og(H).
B) g|L=f]|L.
) d(g(x), f(x))<& for all xeT.

Explanatory Remarks. (1) The case where I'=H =L corresponds
closely to Stallings’ p.l. engulfing theorem [13]. This simple case is the
only one used in later sections.

(2) In spite of the fact that Newman assumes 7;(M)=0, i<p and
n;(V)=0, i< p—1, the only connectivity assumption needed in his proof
is m;(M, V)=0, 0<i<p. The stronger assumption would suffice for the
proof of Theorem 1.1 but not for its generalization Theorem 4.1 below.

(3) Again, Newman assumes dim I"< p, but his proof applies with
our assumptions on dimension.

(4) Newman assumes that f|L is an embedding. We do not. Again
one can observe that Newman'’s proof'still applies. But we more cautiously
deduce the theorem as we state it — denote it (T) — from the seemingly
weaker result — denote it (Tp) — having the extra assumption that f|L
is an embedding. We do this by forming a quotient polyhedron I'" with
PL quotient map ¢q: I'— I', and forming a continuous map f': I'-» M
so that the following conditions are verified: f|L=f"q|L; d(f(x),
fq(x))<e/2 for all xel'; and f’'|(gL) is a PL embedding. Now (T)
follows from (T;) applied by substituting (M™, V,I",qH,qL, f", /2, p)
for the data (M", V,I,H,L, f,¢,p) of (Tp). It remains to check that
r—%> 'L M exists as stated. Here is one proof. Write A for f "1 UcT.
Choose triangulations of A and U so that L is a subcomplex of A, f|L
is a simplicial map L — U, and each simplex of U has diameter <¢/4.
By the method of relative simplicial approximation [15], find a sub-
division A’ of A mod L and a map g: '—+M such that g|L=f|L,
17*
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glA’: A'— U is simplicial, and d(g(x), f(x))<e/2 for all xeI. Define a
formal simplicial complex B by identifying two vertices v,,v, of A’
whenever v,, v, are in L and f(v;)=f(v,). The simplicial quotient map
q': A'— B is a simplicial isomorphism outside the star StL of L in A".
Also as g|St L is simplicial there is a unique map g': B— M withgg'=g".
This g’ embeds L simplicially. Now glue I' — St L to B by the p.1. homeo-
morphism A'—StL—%>B—g¢'StL to define the polyhedron I". The
factorization I'—2I"—L5 M of f, in which g derives from ¢’ and f’
derives from g’ clearly has the required properties.

Here are the substitutions into Theorem 2.3 needed to establish
Assertion 2.2:

M"—>M?), (V0hU), (—1), (fof),
(M—Px0u@xI), (H-dX;06U-U5;US),

also (L f/ ~“1BU P x 0, where B is a compact polyhedral neighborhood
of f{(Y;,1) contained in the neighborhood N of condition (a) on which f/
and f;" coincide), (U O, if 0;,,<0,; otherwise U+ disjoint union
of an open subset of O, containing B and an open subset of O, con-
taining P). Furthermore ¢ is to be chosen so small that

(i) the map Px0uQ xI— M provided by g in the conclusion of
Theorem 2.3 and to be called f;” must be i-admissible,

(ii) there is a neighborhood NcB of f/(Xir1)=f(X;4+,) such that
f"~Y(N) is exactly f; "}(N) — not larger. i

Condition (ii) along with g|L=f|L implies that g=f;" satisfies (a).
Define 6 to be hf where h is the automorphism of M3 provided by
Theorem 2.3, and 6 is the automorphism in (b). Then h(V)>g(H)
becomes (b) and so Assertion 2.2 is established. The tedious case n=S5
of Proposition 2.1.is finally complete. Thus 2.1 is fully proved.

§ 3. The Proof of Theorem 1.1

We begin with the known fact [6] that there are two open sets 0y, O,
in M" each homeomorphic to R" such that O, U 0,=M". For later use,
endow O, with a p.1. manifold structure (from R").

Let C be any compact set in M. We will show that C is contained
in a ball. It is known that this implies the proposition [1]. The ball will
in fact be the image of 0, under an automorphism of M.

Let U <=M be an open neighborhood of oo such that Un C=0. As M
is contractible, U has just one component having noncompact closure,
and that component is a connected neighborhood of co. See [9, §1].
Hence we can and do assume that U is connected.
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As M is 1 — LC at oo there exists a neighborhood Vof «o, V< U, such
that any loop in V is contractible in U. Again we can assume V is con-
nected. Then inclusion induces the zero map n, V—n,U. As M is
2-connected the boundary map =, (M, V) —2- x,(V) is an isomorphism.
Hence the commutative diagram with exact row

(U, V)— ny(V) — n,(U)

i 8
n; (M’ V)
shows that the map j (from inclusion) is surjective. Also

shows that n,(M, V)=0. We shall presently apply our engulfing Re-
sult 2.1.

Let L be a closed infinite polyhedral neighborhood in the p.l. mani-
fold O, of the closed subset 0,— 0, of 0,. We provide that L form a
closed subset of M. This is possible because 0, — 0, =M —0, is closed
in M and so has a neighborhood 4 <0, that is closed in M (since M is
a normal space). L is necessarily closed in M if we choose it so small
that it lies in A. Next fix a triangulation of O, such that L is a subcomplex.

Now Proposition 2.1 provides an automorphism h of M with com-
pact support such that h(U) contains the 2-skeleton I!? of L. It is vital
here that, because L is closed in M, the part of L outside V is compact.

Remark 3.1. If the hypothesis (C) of the introduction holds we can
assume that U is simply connected. Then, as n;(M)=0, i <2, the engulfing
theorem of Newman 2.3 with I', H, L all equal I!? provides this h. All
mention of V and of Proposition 2.1 becomes superfluous.

Let X be a compactum containing the support of h and M —U.
Let St(L)=0, be the subcomplex formed of all closed simplices that
meet L. Let X be the compact enlargement of X formed by adding to X
all the simplexes of St(L) that meet the compactum X nSt(L).

Since the interior L of L in M contains M —0,, one has M=Lu 0,.
Hence one can find a locally flat n-dimensional disc D <= O, so large that

Lub>X.
Next find a finite subcomplex L= L so large that
EubsX.

At this point Fig. 3 should help to fix in the reader’s mind the inclusions
among the sets mentioned above.
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Let L, _s denote the union of all closed simplices of the first
barycentric subdivision of L that do not intersect the 2-skeleton
L®=IPAL. This L3, is called the dual (n—3)-skeleton of L. Apply
Newman’s Engulfing Theorem 2.3 (taking I', H, L all equal L,_3,— D)

Fig.3

to find a compact automorphism g, of M —D such that g,(0, —D)
contains L,_3,—D. Clearly g, extends to an automorphism g of M
with the same support.

Recall that h(U)> P> L@, Now the stretching process of Bing
and Stallings [ 14, § 8.1] can be applied in O, to provide an automorphism
0 of M such that

(i) 0h(U)ug(0,)>L,
(i) 6(4)=4 for each simplex 4 of 0,,
(iii) @ fixes all points outside the compact set St(L)<O,.

Here is a rough explanation of the process. Every simplex ¢ of the
barycentric subdivision of L is uniquely the join of a simplex of the sub-
division in L® and a simplex of the subdivision in L,_3). For each
such simplex g, 0 stretches h(U) along the join parameter to cover
o—g(0,). Outside L, 6 is a stretching between the 2-skeleton 09> L®
and the “dual (n—3) skeleton” O, ,- 3> L3, but the stretching is
attenuated away from L and becomes the identity outside St(L).
Precise formulas can easily be adapted from [15, § 8.1]. .

From (ii), (iii) and the definition of X, it follows that 6(M — X)=
M —X. Note that we cannot assert that (M — X)=M — X. This explains
why X was introduced. Now we have

Oh(U)20h(M—X)=0(M—X)>0(M—-X)=M—-X. (%)
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Combining (%) and g(0,)>D with (i) gives
Oh(U)ug(0)>(M—-X)UDUL=M.
Uu@h)'g0)=0h"'M=M.

As Un C=9, the ball (8 h)~*g(0,) must contain C. This ball completes
the proof of Theorem 1.1.

Hence

§ 4. A Generalization

We say that n, is essentially constant at oo in a manifold M if there
is a sequence of connected open neighborhoods of co in M: U; o U, >
Us;>--- with ﬂc]osure(UJ=¢ such that the corresponding sequence of

fundamental groups m, U, <—f‘—7r1 U, <L~ ... induces isomorphisms
Image(f;) —— Image(f,)«—— ---. If in addition Image(f)=n,M by
inclusion we say that m;(c0)=~=, M (by inclusion). It turns out that the
above statements are unaffected by change of base points and connecting
base paths. Also they are in an obvious sense preserved under proper
homotopy equivalence — as was the condition 1-LC at co of §1. For
a careful treatment of these notions see [10] or [11] (also [9]).

Theorem 4.1. Let M" be a metrizable topological n-manifold, n=35,
such that the inclusion bM <M of the boundary is a homotopy equi-
valence?. Suppose that m, is essentially constant at co in M and that
n(c0)=n, M by inclusion. Then M is homeomorphic to bM x [0, 1)
provided that one of the following (possibly unnecessary) hypotheses is
verified

(@) M is 2-connected.

(b) bM xR admits a p.l. manifold structure.

Clearly this theorem generalizes Theorem 1.1. The following corol-
lary generalizes Corollary 1.3. For proof see [9, §2.8].

Corollary 4.2. Suppose M is an oriented metrizable topological n-man-
ifold n>5, with nonempty simply-connected boundary bM. If there is a
proper degree 1 map (b M x [0, 1), bM x 0)— (M, b M) then M is homeo-
morphic to bM x [0, 1), provided M is 2-connected or bM x R admits a
p. 1. manifold structure.

Proof of 4.1. The proof occupies the remainder of this section. It is a
generalization of the proof of Theorem 1.1 given in §3. We present it
in a sequence of assertions 4.3, 4.4, 4.5, 4.6, relying wherever possible on
the argument of § 3. With no loss of generality assume M is connected.

2 The fact that b M <M is a homotopy equivalence implies, via Poincaré duality, that

the manifold M (if connected) has arbitrarily small connected open neighborhood of co.
See [9, §1.2] for a more general result.
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Assertion4.3. M is the union of an open collar neighborhood Oy of
bM and an open subset O, that carries a p.l. manifold structure.

Proof of 4.3. Let U; be an open collar neighborhood of bM in M.
Such exists by [2]. If (a) holds let U, be an open ball in int M =M —bM.
If (b) holds let U, be U;. In either case n;(M, U,)=0, i=0,1. On the
other hand =;(M, U,)=0, for all i. At this point a standard engulfing
argument (cf. [6, Lemma 3.1], § 3, or [3]) proves

Assertion4.4. Let A, U, be a closed collar of bM. Let A, U, be
respectively another closed collar of bM or a closed disc according as
(a) or (b) holds in 4.1. If KM is any compactum, there exist compact
automorphisms hy, h, of M fixing pointwise A;, A, respectively such that

hy(Up)w by (U)o K.

Using 4.4 in the infinite stretching process of Stallings on infinitely
nested copies of U, U, one can next construct embeddings f, f, of
U,, U, onto the sets 0,, 0, wanted in 4.3. See [6, Theorem 3.1]. Asser-
tion 4.3 is now justified. In summary, the Proof of 4.3 is a natural
generalization of the proof in [6] that an open manifold of dimension =5
is the union of two open balls.

Following the argument of § 3 we now set about proving

Assertion4.5. If C<M is a given compactum, there exists an open
collar neighborhood of bM that contains C.

Then there also exists a closed (sub-)collar N of bM containing C.
Next apply this fact to M — N (which is homeomorphic to M). Iterating
we decompose M into a sequence of closed collars and obtain thus a
homeomorphism of M with bM x [0, 1JubM x [1,2]u---=bM x [0, 00)
as 4.1 requires.

Thus 4.5 implies 4.1. To prove 4.5 we use the argument given in § 3,
starting with O, and O, as provided by Assertion 4.3. Just one part of
that argument offers difficulty in this new situation, namely the proof of

Assertion 4.6. If C< M is a given compactum, there exist open neigh-
borhoods U>V of o in M such that CAU=0 and

1) n, (M, V)=0.

2) Inclusion induces a surjection n,(U,V)— 7,(M, V).

Thus Theorem 1.1 is established when we establish this (nontrivial!)
assertion. Hypotheses (a), (b) of 4.1 are irrelevant in 4.6.

Proof of 4.6. Let U be any connected open neighborhood of cc in
M so that Un C=#. Since =, is essentially constant at oo and =n,(00)=
7, M there exist connected open neighborhoods V< U of oo so small that
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A) The map i: ny V— ny U induced by inclusion has image Im (i)~ n, M
(by inclusion).

Next observe that if K is a compact set in M there exists a larger
compactum L< M such that the inclusion bM U K<—bM U L is homo-
topic fixing bM to a map into bM. This is so because b M is a strong
deformation retract of M.

It is thus possible to find a connected neighborhood V of o so
small that one has simultaneously the conditions:

A) (stated above),
B) bMUK<—bMuyU L is homotopic fixing bM to a map into b M.

We assert that 1) and 2) in 4.6 hold for this choice of U, V. As for 1)
it is an immediate consequence of the exact sequence

nV—sa,M—n,(M,V)>n, V=0

and condition A). The verification of 2) will require Poincaré duality.
It will be broken into four steps.

M —25M will denote the universal covering space of M, and for
XcM X will denote p~'(X). Cech homology theory with integer
coefficients is used throughout.

Step 1. Inclusion induces a surjection
HZ(U) I7)_-) HZ(M’ 17)'
For the proof we need

Lemma 4.7. Suppose the commutative square of continuous maps of

Hausdorff spaces p_l.B

A-LsC

gives the fiber product (=pull-back) of f and g. If f is proper, then f
is also proper. .

Proof of 4.7. For the proof we can assume we have the standard fiber
product D={(a, b)eA x B| f(a)=g(b)}, with f(a, b)=b and g(a,b)=a.
If K is a compactum and f is proper consider f ~!(K). It is a closed
subset of S=Dn(f ~'(gK)x K). But f ~!(gK) is compact as f is proper,
and D<= A x B is closed as C is Hausdorff. Thus S is compact and hence
f~Y(K) is compact as required.

Proof of Stepl. We will establish the equivalent statement that
H,(M,V)— H,(M, U) is zero. Define K=M — U, L=M —V. Poincaré
duality in the simply connected (hence orientable) manifold M gives a
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commutative diagram:
H,(M,M-L) —> H,(M,M~K)
ElP.D. = |P.D.
H 2(bMUL,bM)—2>H"2(bM UK, bM).

H¥ is integral cohomology with compact supports. The vertical arrows
are Poincaré duality isomorphisms essentially in the form given in
Theorem 10, p. 342 in [12]. In fact, this theorem is stated for manifolds
without boundary. So it is to be applied after adding to M an open
collar along b M. The maps i, and j* are induced by inclusions. The
commutativity of the square is a naturality property of the Poincaré
duality isomorphism.

Now B) provides a homotopy f: (b M UK)xI—->bM UL, fixing b M
pointwise, of the inclusion bM U K<bM UL to map into b M. This f
is proper, simply because K is compact. Let f: bM UK)xI —-bM UL
be the (unique) homotopy, covering f; of the inclusion j: bM U K<
bMUL. Then f is a bundle map, which means that the evident com-
mutative square r

[.]

is a fiber product. Thus Lemma 4.7 tells us that f is a proper homotopy.
Now properly homotopic maps induce the same map of cohomology
with compact supports. It follows that j*=f*=f* factors through
H" 2(bM,bM)=0, i.e. j*=0. This shows i, =0, which completes Step 1.

Step 2. H, (U)— H,(M) is onto.

Proof of Step2. Use Step1 and the map of exact sequences corre-
sponding to (U, V)—(M, V).

Remark. In the proofs of Steps 1 and 2 the behavior of m; at co has
been irrelevant.

Step 3. n, V— 7, M is onto.

Proof of Step3. For each element of the kernel of i: n; V—mn, U
attach to V a 2-cell killing this element. This produces X = V such that
inclusion Ve—U extends to a continuous map p: X -»U. As m; V is
countable X is nothing worse than a separable ANR — see [5]. Consider
the commutative diagram

Ve U—M

\],, /‘
q
X
n, X = p, m; X =~Im(i) by the construction of X and p. Hence condition A)

says that g,: m, X —=>m, M.
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Since n,U—n; M and m, V—n; M are onto, U and V must be
connected and it makes sense to talk of n, U(=~n, U) and =, V(==, V).

Next consider the following commutative diagram

AT

T,

N \l/

iy

T,

Unlabelled arrows arise from inclusion or else are Hurewicz homomor-
phisms. X >V is the covering of X induced from U — U by p: X - U,
or equ1valently from M—M by q: X > M. Since g, mX—=->m1, M,
we see X is simply connected and so n, X =~ H, X 1,

We have to show that the composition 7, U — nz M is onto. Now @
is onto by Step 2. But U can be an arbitrarily small neighborhood of co.
Hence @ is also onto. Thus ® is onto, and the wanted conclusion
follows. This establishes Step 3.

Step4. n,(U,V)— n,(M,V) is onto.
Use the diagram with exact rows:

1, V—— 1, U — n,(U, V) —> 1 V—> 1, U,

o L] N

n, V—s ;M ——n,(M,V)—n, V—> 1, M

together with Condition A) which says that n; V— &, U factors through
7, M (dotted arrows).

§ 5. Appendix on General Position

Let f: K— M" be a p.l. map from a simplicial complex to a p.l.
n-manifold M without boundary. The map f is said to be in general
position if:

1) f embeds each simplex of K.

2) If 0,, o, are simplices of K, then fo,n fo,—f(6,N a,) has dimen-
sion £dim g, +dim g, —n.

We have used in § 2 the following easy general position lemma. For
the sake of completeness we include a proof.

Lemma 5.1. Let K be a countable simplicial complex of dimension <n,
and let Lc K be a full subcomplex. Let f: K— R" be a map linear on
simplices that embeds L. Let €2 K— R be a positive continuous function.
Then there exists a map g: K — R" in general position such that
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1) g is linear on the simplices.
2) glL=f]|L.
3) For all xeK, ||g(x)—f(x)| <&(x).

Remark. The assumption that f|L is an embedding can be replaced
by the assumption that f|L is in general position.

Proof of 5.1. Here is the construction of g. Set g|L=f|L. Let
vy, Uy, U3, ... be the vertices of K outside L. We define g on these vertices
by induction and extend to K by linearity. When g(v;) has been defined
for i<k, let g(v;) be a point in the open ball of radius &(v,) about f(v;)
such that g(v,) lies in none of the countably many affine subspaces
spanned by sets of <n points among the vertices of g(L) and g(v,), ...,
g (Vk—y).

Clearly g satisfies conditions 1), 2), 3).

It is also clear that g imbeds each simplex of K. Small Greek letters
will denote (closed) simplices of K and the corresponding small latin
letters will denote their dimensions. It remains to show that for any two
simplices o, o, of K.

dim(g 0, N g 6,) Smax(dim(s, N o,), 5, +5,—n). ©®)

As L is a full subcomplex of K, a; =0, L, a, =0, N L are simplices.
Write y=a; na, and express a,, a, as joins

a=Pi*y, ay=Pf*y.

Then write 6, N g, as a join y*¢ and ¢, 6, as joins
O1=0;*E*Ty, O, =0,*ExT,.

This situation is schematically represented in Fig.4

¢

o\

gy | 02

ﬁ] .\ / BZ
fxi\ o
AN

Y
Fig.4

We identify R" with a hyperplane in R"*! not containing the origin.
If o« is any simplex of K, & will denote the a+1 dimensional vector
subspace of R"*! that is generated by g().
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If 5,+6,=R"*' — ie. if no proper affine subspace of R" contains
go,vga, — thendim(g o,ng 0,)<dim(G,NG,)—1=s,+5,—nand (§)
holds.

On the other hand, if G, +3,+R"*! then, by the construction of g,
the vertices of g ¢, and g o, outside g L i.e. those of g 7;, g &, g 7, span a
nonsingular simplex X in R" such that

I (@ +a,)=0eR"*!

where ¥ =7, + &+7, is the vector subspace generated by X in R"*1 It
follows that the segments in R” from the points of X to the points of
goyuga, form the abstract join Zx[ga, Uga,]. By looking at this
join we conclude that go,=g(t,*&*a)=g(r;*E)*ga, meets go,=
gty xExoy)=g(1,x&)*ga, in glxganga]=glrgy=g(l*y)=
g(o, N a,) which again proves (§).
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