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Introduction 

Edwards and Kirby have presented in [14] an attractive and powerful method for 
deforming homeomorphisms of topological manifolds, which elaborates the "torus 
unfurling" technique of Kirby [20], and offers an alternative to the "meshing" 
technique of Cernavskii [8] [9]. In this article I shall develop the method further to 
deal with non-manifolds. 1) In particular I shall prove the new 

T H E O R E M  0. The topological group H(X)  of homeomorphisms of a finite sim- 
plicial complex X onto itself is locally contractible. 

This result does not extend to ENR's  (euclidean neighborhood retracts). To see 
this let a space X be obtained from S 3 = R 3 u o o  by crushing to a point each of  a 
sequence of mutually disjoint wild non-cellular arcs in R 3 :,41, a 2 ,  A 3 . . . .  such that 
each A,, n~> 1, is a copy of the same wild arc A in the unit ball in R 3 translated by 
the vector (4n, 0, 0). This X is an ENR;  indeed X x R  is homeomorphic to S a x R  
= R 4 - 0  by a result of Andrews and Curtis [4]. Clearly this compactum admits 
self-homeomorphisms h : X ~ X  arbitrarily near the identity which nontrivially 
permute the images o fA 1, A2, A3, .... But no such h is isotopic to the identity because 
these are isolated points at which Y fails to be a manifold. (See also the fish skeleton 
of w 

The treatment of non-manifolds rests roughly speaking on a method for deforming 
homeomorphisms on R" x cX, cY being the open cone on X, once one is given such 
a method on R "+1 xX-. Then the proof proceeds by induction on the depth of X. 
Here Xis regarded as a stratified set, and depth is the greatest difference of dimensions 
of  nonempty strata of X. 

Stratified sets are vital to the proof  because their open subsets are themselves 
stratified sets, and often of a lesser depth. Thus it will only clarify matters to deal 
from the outset with suitable stratified sets. I take this opportunity to introduce classes 
of  pleasant stratified sets that may come to be the topological analogues of  polyhedra 
in the piecewise-linear realm or of  Thom's  stratified sets in the differentiable realm. 

This technique of proof  almost automatically provides strong relative and respect- 
ful deformation theorems (w 4.3, w 5.10), which a counterexample (w 2.3.1) suggests are 

t) Presumably one could equally well have extended (~ernavskii's method, but perhaps not so 
briefly or clearly. 
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the best possible. For one, the space of those homeomorphisms of a finite simplicial 
complex X, that respect (alternatively fix pointwise) a given subcomplex, is proved 
locally contractible. This contains some new information even if X is a manifold 
cf. [14]. 

I have compiled a long list of elementary consequences of the deformation theorems 
proved. Most certainly, they lack glamor, and for several reasons. Many are straight- 
forward enlargements on corollaries drawn by ~ernavskii, Lees, Edwards and Kirby, 
Cheeger and Kister, or Gauld. Again many have well known differentiable analogues 
that can be proved instantly by Thorn's device of choosing suitable vector fields and 
integrating. 

This article was inspired by R. D. Edwards' proof (summer 1970) of Cernavskii's 
theorem asserting local contractibility of spaces of embeddings of manifolds in co- 
dimension /> 3. In it Edwards combined the torus furling and unfurling methods of 
[14], my inversion device in [31], and a horn device of (~ernavskii [8]. I noticed that 
inversion converts this horn device into conjugation by a "horn like" expansion 
(which has become E9 in w 3) in the normal direction, and suddenly the methods were 
adequate to deform homeomorphisms on R m x (cone), and here the inversion device 
became unnecessary. The text is an expansion of lectures given at Orsay, France, fall 
1970. I am indebted again to Edwards for his generous assistance in eradicating errors. 

List of Contents 

Introduction; w Philosophical remarks; w Locally cone-like TOP stratified 
sets (---CS sets); w Deformation theorem; w Proof of handle lemmas; w Defor- 
mations respecting subsets; Edwards' wrapping lemma; w 5. WCS sets; w 6. Familiar 
applications: respectful versions ~ (X; 5:); (~ernavskii's noncompact version; ex- 
tensions of isotopies; submersions; foliations; line fields normal to a codimension 
one foliation; counting CS sets. 

w Philosophical Remarks on Deformation Principles (OPTIONAL READING) 

For a space X (which is assumed locally compact and Hausdorff throughout this 
section) the following deformation principle (=axiom or property which may or 
may not hold) seems to be the center of interest. 

-X~-[ For each set U c  X and each B c  U the following statement open compactum 

holds: 

[ ~ i  (X; B; U) ] I f  h: U ~ X  is an open embedding sufficiently near to the identity 
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inclusion i: U ~ X  (for the compact-open topology) then there is a rule assigning to h 
a homeomorphism h':X--} X equal h on B and equal the identity outside U. For h near i 
the rule h~--}h' can be continuous and send i to id [ 2". 

One might call h' a deformation of the identity id I X induced by the perturbation 
h of the inclusion i: U---} X. 

The deformation property ~ ( X )  (see w that we will establish for pleasant 
stratified sets X is similar but more complicated. It is obviously as strong as ~1 (X); 
in fact it is stronger even for ENR's as the property ~1 holds (while ~ fails) for the 
3-dimensional ENR of the introduction. This is an easy consequence o f ~ l  ( R  3 - -  kJ iA i). 
Nevertheless ~1 fails for certain compact ENR's. For a simple example let X be the 
fish skeleton, the 1-point compactification of Z+ x [ - 1 ,  11 • [0, ~ ) x  0. (Here Z .  is 
the integers t>0). It is a retract of [0, oo) x I-- 1, 1] w ~ ,  a 2-disc. Although 9 1 holds 
for this X, it fails for the cone on X. 

If one insists on a powerful deformation principle which may still have very wide 
applicability, then one might first fix a pointed topological space (A, 0) of parameters 
and consider 

~ For each U c X ,  each B c  U, and each continuous rule open compactum 

~: 2~--~h a mapping a neighborhood of  O in A into the space of  open embeddings U ~  X 
(with compact open topology) the following holds: 

[ ~ ( X ;  B; U ) )  Suppose ho=i. Then there exists a neighborhood N of  O in A and 

a continuous rule 0':2}---~h~ defined for 2~ N such that h'z:X--} X is a homeomorphism, 
h'z equals ha on B, and h'z is the identity outside U. (One could adjust ~' so that 
hl =id I X.) 

Clearly ~1 (X) implies ~ a ( X )  for all A; and conversely, using embeddings to 
parameterize themselves. The first question is perhaps: Does ~ (X)  hold for all 
ENR's X? (It does hold for the cone on the fish skeleton.) 

~ (X) should be thought of as an isotopy extension principal - for local extension 
in parameters A. Indeed ~A(x )  (in place of ~ (X) )  is quite enough to prove our 
isotopy extension theorem (w part I) if we restrict attention to parameter space A 
(called B there); and conversely, for locally connected X, this implies ~ (X). 

Note that if ~A (Z) holds, then the mapping ~: A x U ~  A x X given by (2, x)~--~ 
~--~ (2, ha (x)) can be shown to be an open embedding by using conditions ~x a (X; B; U) 
suitably. In the absence of ~A (X) one needs to assume that X or A is locally connected 
to prove this (Lemma 1.6). 

In case ~A (X) turns out to be often valid we make the 

Observations (generalising w 6) 



126 L.c. SI~nENMAr,rN 

1) With few exceptions z) each topological application 6.8 to 6.35 of ~ is proved 
on the basis of an isotopy extension principle a) ~ ,  and does not require 9 .  (And the 
appropriate A is easy to spot. Here we are letting the base point in A vary.) 

2) In these same applications the hypotheses that certain spaces be locally con- 
nected become superfluous when an isotopy extension principle of the form ~A is 
hypothesized. This occurs because ~ (X) implies that O:(2, x)~-*(2, h~(x) )as  
mentioned above, is an open embedding even if X, A are not locally connected. 

To conclude, we try to clarify the relation o f ~ l  (X) to the stronger principle ~ (X). 
The property ~1 (X; B; U) above can be given a relative version ~ (X' ;  A, A', B';  U) 
where A, A' are closed subsets of  Xand  A' is a neighborhood of A. It differs by treating 
only embeddings h that equal the identity on A' n U and in return it promises an h' 
equal the identity on A. 

I f  to this property 9 1 (X; A, A', B; U) we add that for h small, there exists an 
isotopy ht, 0 ~< t ~< 1, of  h0 =id  I X to h l =h '  so that the rule h~--~ {ht, 0 ~< t ~< 1 } is con- 

tinuous and each h, I A =identity, then we have a property ~ ( X ;  A, A', B; U) which, 
taken for all such A, A', B, U in X, is obviously equivalent to the property ~ (X), 
provided X is locally connected, see w Thus the statement ~ ( X )  is two steps more 
complicated than ~ l  (X). 

However there are two implications proving that the real difference is slight and 
vanishes for very pleasant X. 

(i) -@1 (X) implies ~ (X; A, A', B; U). Indeed -~l (X; B';  U ' ) impl ies  it if we set 
U'= V - Z ,  where Z = B u ( X - U ) ~ A  and V is a small open neighborhood of Z, 
and set B' equal the (compact) frontier of  a smaller closed neighborhood of Z. (Draw 
a diagram!) V should be so small that it lies in a neighborhood of Z of the form 
U~ w U 2 o A' where U~ and U2 are disjoint neighborhoods respectively of B and 
( X - U ) .  Work on (hi U 1 ) w ( i d l A ) w ( i d [  U2) to get the desired h'. 

(ii) For spaces X that have a basis of open sets that are (abstractly) open cones on 
compacta, the property Nl  (X)  implies N ( X ) .  The derivation from ~1 (X) of 

~ ( X ;  A, A', B; U), or N(X;  A, A', B; U) ofw uses Alexander isotopies on many 
open cones as follows. One uses properties of  type ~ l  (X; Ao, A;, Bo; Uo) to express h 
as a finite composition hsh ~_ ~ ... hlho where h 0 : U ~  X is the identity near B and h~, 
j =  1,2 .... , s, is a homeomorphism X-* X fixing points outside a compactum B i con- 
tained in a cone in U - A .  Each of  h o ... . .  hs depends continuously on h near i: U ~  X 

3) All of which come from the second argument in the proof of 6.13, which is not needed if the 
parameter space B in 6.13 is an ANR. So all exceptions vanish if all parameter spaces involved are 
ANR's. Alternatively all exceptions vanish if we abandon the isotopies ht in 6.13, 6.19, 6.20, 6.23. 
The loss is slight and, incidentally, the normality assumption there vanishes. 

z) Sometimes in a relative form parallel to ~(X; 6e) of 6.0. Unfortunately the proof of an impli- 
cation ~(X)=> ~ (XxB ;  oq') in 6.1 fails for ~1. Badly indeed, since ~I(XX R; St) easily implies 
~(X). In particular ~I(X x R; ,9') fails if X is the fish skeleton. 
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and equals the identity for h = i ;  also Bt .... , B s are independent of  h. Then we define 
h' =h~... h a and ht =h}S) oh~ ~- a) . . . . .  hl ~), 0~< t~< 1, where h~ j) is the Alexander isotopy, 
cf. 5.3, o f  hj to id I X (arising from the cone containing B j). 

w 1. Locally Cone-Like TOP Stratified Sets 

We will use a simple notion of  topological stratified set suggested by work of  Cerf 
or of  Armstrong and Zeeman [6]. It  is just a filtered topological space having a few 
pleasant properties. Recall that  abstracting the differentiable properties of  algebraic 
varieties, Thom has produced a notion of  differentiable stratified set [35] [24]. 
It is a filtered space with lots o f  extra equipment - certain manifold structures and 
submersions. Although the definition is complex, it is so formal that one can define 
piecewise-linear and topological stratified sets in the sense of  Thorn. Our CS sets 
are simpler, cruder and (as unfiltered spaces) slightly more general [33]. 

D E F I N I T I O N  1.1. A stratified set X will in this article be a metrizable space X 
equipped with a filtration X = . . .  = X ( " ) = X ( " - I ) =  . . . = X  (-1) = 0  by closed subsets 
X ("), n/> - 1, (called skeleta) such that, for each n i> 0, the components  of  X ( " ) -  X ("- 17 

are open in X ( " ) - X  ~"-~). A vertex of  X is a point  in X (~ 

It is a TOP stratified set if, for each n>~O, X ( " ) - X  ("-1) is an n-manifold without 
boundary,  which is called the (total) n-stratum of  X. The symbol TOP signifies that 
topological manifolds are involved. 

Let X be a compact  stratified set. Note  that  the open cone cX, obtained from 
X x [0, ~ )  by smashing X x 0 to a point, has a natural stratification ( cX)  (") = c (X  (n- x)), 
n 1> 1, and (cX)  ~ = c o n e  point. The cone on the empty set is a point. Likewise there is 
an evident join of  two compact  stratified sets; and a product  of  any two. 

Every open-subset of  a stratified set is a stratified set. 
An isomorphism h : X ~  Y of  stratified sets is a homeomorphism of  topological 

spaces such that h ( X  (")) = Y~") for all n >/0. The symbols ,,~, ~ denote respectively 
homeomorphism,  and isomorphism of  stratified sets. 

D E F I N I T I O N  1.2. A stratified set X is locally cone-like if for each point  x in X, 
with x in X (") - X ("- 1) say, there exists an open neighborhood U o f x  in X (n) - X ("- x), 
a compact stratified set of  finite formal dimension 4) L called a link of  x in X, and an 
isomorphism of  U x  cL onto an open neighborhood of  x in X. (Regard U as stratified 

with U =  U " -  U("-I) . )  
Notation. A locally cone-like TOP stratified set will be called a CS set. 

4) The formal dimension of L is sup {n I L(n) -- L("-x) ~ 0}. 
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R e m a r k ) )  Similarly one defines piecewise linear CS sets by working from cate- 
gory of polyhedra and piecewise-linear maps rather than the category of metric spaces 
and continuous maps. 

Remark.  We have not assumed that the links L in a CS set are TOP stratified 
sets although one might conjecture that they can always be even CS sets by a suitable 
choice. Certainly cL may be a TOP stratified set although L is not one. To see this 
let L be the ENR mentioned in the introduction. 

Remark.  Examples of  Milnor [25] show that another link E for x in X may not 
be homeomorphic to L even if both L and E are closed manifolds, in view of the 
topological invariance of torsions for manifolds [21] [22]. Contrast this with the fact 
that in piecewise-linear CS sets links are unique up to piecewise linear isomorphism [19]. 
We must be content with a fattened uniqueness theorem proved as 4.12 and 4.13 below. 

EXAMPLES OF CS SETS 1.3. 0) A topological m-manifold X. Here X (")=X 
for n>~m, X (m-l) = S X= ( t he  boundary of X), and X(~)= 0 for i < ~ m - 2 .  

1) A locally finite simplicial complex X. Here X (") is the union of simplices of 
dimension ~<n. 

2) A polyhedron X with its intrinsic stratification in the sense of Armstrong and 
Zeeman [6]. Here X (") is the intersection of all simplicial n-skeleta for piecewise linear 
triangulations of X. This is a piecewise-linear CS set. 

3) A differentiable stratified set X in the sense of Thorn [35] [24]. Here X (") is 
the union of all of Thorn's strata of dimension ~<n. 

4) A manifold pair (X, Y) where Y r  is locally flat in X. Supposing O X = O = S Y  

we form just two non-empty strata, X -  Y and Y. The equipment required to make 
this a TOP Thorn stratification certainly would include a normal microbundle to Y 
in X, which may not exist [26A]. 

5) In [33] I construct a compact CS set that is locally triangulable but not a 
simplicial complex. Also I construct a CS set that is not locally triangulable. 

Questions 1.4. (Stratification conjectures). Is a metrizable topological space X of 
finite dimension homeomorphic to a CS set if and only if for each point x ~ X  there is 
a compactum K, an open neighborhood V of x in X, and a homeomorphism V ~  eK 

carrying x to the cone point? Does the space underlying a CS set have a unique 
intrinsic (minimal) stratification in the sense of Armstrong and Zeeman ? Its n-skeleton 
should be the intersection of all possible n-skeleta of  CS stratifications of the space. 

D E F I N I T I O N  1.5. The depth d ( X )  of a stratified set X is 

d ( X )  = sup{m - n [ X ('n) - X (m-l) ~ 0 ~ X (") - X ("-1)} 

s) Other species of stratified sets are experimented with later on. But one can still conjecture 
that each coinsides with the CS sets or else with the more inclusive species the W C S  sets in w 5 below. 
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Note that d(1"xM)=d(1") if M has one stratum. More generally d(Xx Y) 
= d(X) + d(Y), for any two stratified sets. Also, i fL is a link for x in 1", d(U x ( eL -  v)) < 
< d ( U x  cL)<<.d(X), v being the vertex of the cone eL. 

To convince himself of the utility of depth (as distinct from dimension), the reader 
can give a trivial proof of Sullivan's discovery [37] that a compact piecewise linear CS 
set has zero euler characteristic if each nonempty stratum has odd dimension. Hint: 
Carve out a nice regular neighborhood of the stratum of lowest dimension (a closed 
manifold), then double to get a compact piecewise linear CS set of lesser depth. 
Now calculate by induction on depth. 

It is appropriate to recall here that if X and Y are locally compact and locally 
connected Hausdorff spaces and f~:X-~ Y, t e l  is a path of open embeddings 6) for 
the compact open-topology, then the continuous m a p f  : I x  X ~ I x  Y defined by the  

rule f (t, x ) =  (t, f t  (x)) is itself an open embedding. Thus f t  is automatically what is 
called an isotopy (through embeddings). This is relatively easy to see if there is an 
compactum K c  X such that each ft  fixes all points outside K (and t" need merely be 
Hausdorff). In general one shows roughly that a continuous family of open embeddings 
cannot suddenly uncover points. The details are collected in a lemma. 

LEMMA 1.6 (known but not well known cf. [11]). Consider a continuous map 
f :B x F--* B x F' of cartesian products of topological spaces, such that f respects the 
first factor projection Pl onto B, i.e. p l f  =pl. Suppose that for each point bEB the 
map fb:F--* F' defined by fb (x) =P2 f (b, x) is an open embedding. 

Then f is an open embedding in case either condition (I) or (II) holds: 
(I) F' is Hausdorff and locally compact, and B is locally connected 
(II) F' is Hausdorff locally compact, and locally connected. 
Proof of 1.6 (by border watching): It will suffice to show that, given a point x in 

an open set U of F with compact closure t?, and a point aeB, one can find a neigh- 
borhood N of a in B and a neighborhood V o f f ,  (x) such that fb (U) = V for all b in N. 

Case L Let C, D be compact neighborhoods of x in U with C=/5 (=interior  of 
D in F). Choose a connected neighborhood N of a in B so small that 

1) p 2 f ( N x  C ) c f . b  
2) p 2 f ( N x  6 u ) c e ' - f a D ,  

where 6 U is the (compact!) frontier of U in F; i.e. fb (6U)c F'- faD for all beN. 
We define V=f,C. For each yeC and beN, the set p 2 f ( N x y ) ~ F '  misses the set  

fb(gU) =6fb (U) by 1) and 2), i.e. p 2 f ( U x  y)c fb  (U)w (r'--fbU). As P2 f ( U x y )  is 
connected and has the pointfb (y) in common with fb (U), we must have P2 f (N x y ) c  
cfb(U ), for each y. So V - f , ( C ) c f b U  as required. 

6) An open map is one that carries open sets onto open sets. 
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Case I1. Let C c  U be a compact neighborhood of x that is connected. There exists 
a neighborhood N of a in B so small that for each b in N 

1) fb (X) lies in the neighborhood V=fa (C) o f L  (x), and 
2) fb ( fU)  lies in r ' - f , ( C )  where 6U denotes the (compact!) frontier of U. 

(Observe that fb (6U) =6fb(U)). 
To complete the proof  we show that f b ( U ) ~  V=fa(C ) for all b in N. Since foC 

is connected, a n d f , , C c F ' - f f b U = f b U u  (F'--fbU), we concludef,,CcfbU from the 
fact that fb(x)e fbUc~f,C. 

Remark 1.6.1 (data of 1.6). I f  f :B x F ~  B x F' is open, and K is a compactum in 
f . (F) ,  then Kc fb (F) fo r  all b near a. The proof is trivial. 

Remark 1.6.2 (data of 1.6). I f  f is open and there exists a compactum C c F  such 
that for xr C, fb (x) is independent of b e B, then fbF =faF for all b near a. (Proof: For 
b near a, 1.6.1 assures fbF~f,C, hence fbF~f,F; and fbFcf ,  F is more trivial.) Hence, 
if B is connected, then fbF=f, F for all b~B. (Proof: b,~c iff fbF=fcF is now an open 
equivalence relation on B). 

COROLLARY 1.7. Let h:F--* F' be an open embedding of locally compact locally 
connected Hausdorff spaces. Let C be an compactum in F. I f  g : F ~ F '  is another open 
embedding sufficiently near h in the compact-open topology then h ( C ) c g (  F). Further, 
if g=h outside C, and g is sufficiently near h, then h(F)=g(F) .  

Proof of 1.7. Let B be the set of open embeddings F--* F', equipped with the 
compact-open topology. Define f :B x F ~  B x F '  by f :  (g, x)~--,(g, g(x)). Then 1.6 
applies; s o f i s  open. Now the above two remarks complete the proof. 

COUNTEREXAMPLES 1.8. Lemma 1.6 breaks down for lack of local compact- 
ness for the family of homeomorphisms of separable Hilbert space, f : [0, 1] x l 2 

[-0, 1] x/2 given in [5, w This example suggests the following finite-dimensional 
example f  :F0, 1] x F ~  [0, 1] x F where F is the origin union the positive half plane, 
F =  {(0, 0)} w {(x, y)eR 2 ; x > 0}. The fo rmu la f  (t, x, y) =(t, x, gt (x) y) defines f where 
gt: R ~ R has the graph 

r 

( - - -  

for 0<t~< 1 and go =identity. 
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Lemma 1.6 breaks down, for lack of local connectedness, on the m a p f  :B x F ~  
-o B • F defined as follows. Let F be the subset of the 2-point compactified line 
R u  { -  ~ ,  +oo} given b y Z u  { + oo}. Let B = Z +  u { + ~ } .  For b~Z+ (=integers ~>0), 
we define fb:F-~ F to be the cyclic permutation n ~ n - 1  modulo 2b on the segment 
1-- b, b) of F and setfb equal the identity elsewhere. For b = + 0% we definefb (n) = n - 1 
for n e Z and fb ( + ~ )  = + oo. To showf  - ~ is not continuous, note that fb ( - b) = b - 1 
for all beZ+.  

w 2. The Deformation Theorem 

We will often work within the category LOC of continuous maps of locally 
compact, locally connected, Hausdorff topological spaces. Let X be a space in LOC. 
Our study ofhomeomorphisms centers on the following deformability statement-@ (X), 
which generalizes the statement of Theorem 0. Our first goal is to prove it if X is 
any CS set. 

- ~  Let A A' be closed subsets X such that A' is neighborhood of  A. of c a 

Let B c X  be compact, and let U c X  be an open neighborhood of  B. Then the following 

statement always holds. 

[ .~ (X; A, A', B; U) ] I f  h: U--* X is an open embedding equal to the identity inclusion 

i: U ~ X  on A' n U and h is sufficiently near to i: U - o X  (say for the compact-open 
topology), then there exists an isotopy ht, 0~<t~<l, of  h through open embeddings 
ht: U ~ X such that h 1 = i on A u B, and ht = h on A and outside some eompactum K in U 
(independent of  t and even of  h). Further, the isotopy is standard in the sense that it is 
constructed to be a continuous function o f  h (for the same topology) as h varies suffi- 
ciently near i. Also ht =i in case h =i. 

By 1.6.2, it is inevitable that h U= htU, 0 ~< t~< 1. Thus, for example, if gt:X-~ X 

is defned for h near i by gt(x)  = x  for xChU and gt(x)  =hh~ -1 (x) for xehU,  then gt 
is an isotopy through homeomorphisms fixing A and points outside hK, from go =id ] X 
to a homeomorphism gl equal h on B. One can think of the rule h ~ g t  as assigning 
to a perturbation h of i: U ~  X a deformation gt of the identity homeomorphism id [ X 
to coincide with h near B c  U. This is the description of ~ ( X )  which suggested the 
title of this article. 

Convention. When we speak of a statement N(X; A, A', B; U) for certain sets 
X, A, A', B, U the assumptions made above about these sets are automatically pre- 
sumed to hold unless some contrary statement is explicitly added. 

Remark 2.1. Note that as U and A' become smaller (while X, A and B remain 
unchanged) the statement -@ (X; A, A', B; U) becomes stronger. Thus in testing ~ (X), 
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U may as well have compact closure /5, and h have a continuous extension to U. 
From this we easily conclude that in case X is metric one might as well use the 
uniform (epsilon) topology on the open embeddings U--* X. 

Remark 2.2. ~ ( X )  is true if (and only if) X is covered by open sets U such that 

~ ( U )  holds. To see this first prove that, for U~ and U2 open in X, N(U~) and N(U2) 
together imply ~ ( U  1 ~ U2), - -  by taking advantage of A, A' in ~(U~; A, A', B, U). 

DEFORMATION THEOREM 2.3. Suppose X is a CS set. Then the statement 

(X)  is true. 

Our main task will be to prove this (in w and w and then generalize it. A 
complement concerning subspaces is proved in w and results are extended to locally 
weakly cone-like stratified sets in w 

Remark 2.3.1. Supposing Xis a manifold, t2ernavskii asks whether ~ (X; A, A', B; U) 
is true when A =A'  in defiance of our convention that A' be a neighborhood of A. 
Theorem 4.3 below implies that it is true if A =A'  is locally tame in X. However, it is 
not true in general even if A is a manifold. For example ~ (S 3; A, A, S 3; S 3) is untrue 
if A c S 3 =R3w oo is the wild circle described as follows. 

Let B, be the ball of radius �89 about the point (n, 0, 0), n =0, _+ 1, +2  .... , and form 
an arc A, in B, from (n- �89 0, 0) to (n+X2, 0, 0) in which two trefoil knots are tied 

Bn_ I Bn + ~ 

One arranges that A. c~ aB. = 8A., where ~ means boundary, so that A = { u .A.}  u oo 
is a circle in S 3 = R a u o o  with one wild point, at 00. 

There is a homeomorphism h. of S a = R 3 u oo fixing A and the complement of B. 
such that h. induces a map of rq (S 3 - A )  distinct from the identity. Namely h. can 
come from interchanging the two trefoils in B. (slide one through the other). Now h. 
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converges to id I $3 as n tends to infinity. This shows that the group H ( S  3 relA) of 
homeomorphisms of S 3 fixing A is not locally connected. 

Proof of  Deformation Theorem. The proof exploits the Alexander isotopy on cones 
and induction, in a simple way illustrated by the following trivial 

Test Case of  ~ ( X ;  A, A', B; U): where X =  U = c M  is the cone on a compact topo- 
logical manifold M without boundary," A =A'  =0;  B=ver tex of cM. 

Proof of  test case: If h: cM--+ cM is near the identity, then 

h(M x (�89 o o ) ) c c M -  B =  M • (0, ~ ) ,  

and ~ ( / x  (0, ~ ) ) ,  (which is known to be true [14]), provides an isotopy o fh  to an 
embedding h' : cM-~ cM which is the identity near M x 1. Define h": cM ~ cM by 

h , , ( x ) = S h ' ( x )  for x e c i M ,  t h e q u o t i e n t o f M •  
lx for x ~ M  • [1, ~ ) .  

Then the Alexander isotopy H ,  0 ~< t ~< 1, of h" to identity (see [3] or w 5) permits us 
to define 

ht = Hth"-lh, 0 <~ t <<, 1, 

which is the required isotopy of h. The rule h.'*h' is continuous by hypothesis 
N ( M x  (0, m)). So the rule h,-*h, 0~<t~<l, clearly is too. Also h t=id  if h=id .  

Thus test case is proved. 
Setting the above case aside we now reduce the Deformation Theorem to cases 

where X = R  m x (cone), which will be proved in w 
First note that the case where X is of finite dimension really includes the general 

case, because X is locally of finite dimension. (See Remark 2.1 or 2.2.) 
We deal with the case of finite dimension by induction on depth. Thus suppose 

inductively that ~ ( Y )  is true for each CS set Y of  depth < d <  ~ .  We proceed to prove 
~ ( Z )  for any CS set Z of depth d. Beware that the inductive assumption persists until 
the end of  this section (2.5 and 2.6 excepted). 

As usual, it will suffice to prove handle lemmas. 
Notations2.4. B i n = I - l ,  1 ] " c R  m and / ~ " = ( - 1 ,  1)mcR m. If S c R  ~, 2 S =  

{ 2 x ~ R m l x ~ S } .  We identify R " = R k x R "  when k + n = m .  If cL is an open cone, 
c~L = [0, 2) x L/O x L ~ cL and 5aL = [0, 2] x L/O x L c cL, is its closure. The vertex 
of cL is denoted by v. 

2.5. HANDLE LEMMA (index 0). The statement ~ ( X ;  A, A', B; U) is true in 
case: X = R  ~ x cL, where L is a compact stratified set and ~ ( R  m x ( c L -  v)) holds; 
A = A ' = 0 ;  B =  B'n x 51L; U= lOf3m X Clo L. 
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2.6. HANDLE LEMMA (index k). The same as index 0 except that 

A = A '  = ( R  k - [3 k) x R n • c L ,  k + n = m .  

Observe that for k > 0 ,  A' is not a neighborhood of A. 

First note that the handle lemmas applied stepwise finitely often to some handles 
of a suitable array of small handles in R m will prove 

ASSERTION (1). Let X = R  m x cL be CS depth d," let B c R  ~ x v be a compactum; 
and let U be an open neighborhood of  B. 

Let closed sets A ~ A' X be given with A' a neighborhood of  A. Then there exists 
a compact neighborhoodB' of  B in Usuch that ~ ( X ;  A, A', B'; U) holds true. 

The handles can correspond to the simplices of a linear triangulation of a neigh- 
borhood of B in R n x v so fine that no closed star meets both A and R n -A ' .  Cf. argu- 
ments in [14], [31, w 

ASSERTION (2). ~ ( X )  is true i f  X = R " x  cL is a CS set of depth d. 
Proof of(2): According to Assertion (1), there exists a compact neighborhood B' 

of B n  (R m x v) in X such that ~ ( X ;  A", A', B'; U) holds for A c  c A " c  cA ' .  Here 
S c c T means closure (S) c interior (T).  

Choose a compactum B" so that B ~  (Rmx v ) c  c B " c  c B'. Since B- /~"  is a 
compactum in X - R ' x  v, which has depth <d,  the inductive hypothesis that 

( X - R "  x v) holds shows that 

~ ( X ;  A u B " ,  A " u B ' ,  B -  I~"; U) 

holds true (cf. Remark 2.1). This is the same statement as 

~ ( X ;  A u B " ,  A " u B ' ,  B; U) 

But together with ~ ( X ;  A n, A', B' ; U) this implies ~ ( X ;  A, A', B; U) simply by 
composing isotopies. So assertion (2) is established. 

If  X is a CS set of depth d, it is covered by open sets, each isomorphic to R m x cL 
for suitable R rn and L, and each of depth ~< d. Since each ~ (R'~x cL) holds by 
Assertion (2), ~ (X) also holds in view of Remark 2.2. Thus the Deformation Theorem 
is established by induction on depth assuming, of course, the proof of the handle 
lemmas in the next section. 

w 3. Proof of Handle Lemmas 2.5, 2.6. 

We will use the uniform epsilon topology of standard metrics throughout. 
First consider index 0. We proceed to construct a sequence gt, g2, g3, g4, gs of 

open embeddings all of  which we stipulate must 
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1) be equal h on B" x 61L, 7) 

2) be a continuous function o f  h as h varies near i, and 
3) be the identity when h =identity. 
These properties will usually not be explicitly mentioned again as the construction 

proceeds. 

[ g l : T m x c 9 L - ~ T m x c L  ], where T m is the m-torus Rm/8Z m which contains 3B ~' 

quotient of  3Bmc R m. This gl is constructed by wrapping up h, m-times successively, 
once along each co-ordinate axis of  R m, using each time the "wrapping-up" idea of  
R. Edwards in a form that we will state as 4.9 in the next section. The reader un- 
acquainted with this method should examine closely 4.9 or [14, w as the con- 
struction of  g~ is basic. 

g2 : Tm x cL ~ T m x cL I' a homeomorphism equal the identity outside T ~ x c2L. It is 

obtained by applying . ~ ( T "  x ( c L - v ) ) ,  which is equivalent to ~ ( R m x  ( c L - v ) )  by 

Remark 2.2, to the restriction T m x ( c 9 L -  d l L ) - ~ T  m x (cL--  v). This is defined when h, 
and hence g~, is near the identity. 

This lets us alter gl outside T m x c lL  to be the identity near the frontier of  T m x czL. 

Then by fiat we change it to equal the identity outside T ~ x c2L thus obtaining g2. 
By 1.7, g2 is a homeomorphism.  

g3 : Rm x cL --* R"  x cL ] is the homeomorphism covering that is the identity g2 near 

and equal the identity outside R"  x c3L. 

[ g4:R m x c L - - * R ' + e L  }, will be defined to be O - l g 3 0  where O is a " h o r n "  homeo- 

morphism of  R m x eL defined as follows. 
Let 7t: cL - ,  cL, 0 <, t ~ 1, be defined by hq  (u, y) = q ((1 - t)  u, y) where q: [0, ~ )  x 

x L ~ cL is the quotient map. It is an isotopy for t < 1, and 7i ( c L ) =  v. 
Let/3: [-0, oo) ~ [0, 1) map [0, 2] to 0 and give a homeomorphism [2, o o ) ~  [0, 1). 

Now define O (x, z ) = ( x ,  7~r (x, z ) ~ R ' x  cr .  
Observe that g4 has properties 1), 2), 3) and also three more:  
4) It is bounded on the R"  factor, i.e. 

sup{Ix - p l g , ( x ,  z)[; (x, z ) ~ R "  • cL} < ~ 

where p l  is projection to R m. 
5) For  each neighborhood N of  v in cL there exists a radius R ( N )  such that 

g4(x,  z ) =  (x, z) if Ixl > R ( N )  and zCN.  
6) It equals the identity outside R m x c4L. 

7) To make this always meaningful we will identify 3B m x eL with its quotient in T m x cL. 
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[ gs : Rm X cL ~ R m x cL I' is defined using a ray preserving embedding j : R"  ~ R m onto 

5/)" that is the identity on 2B m. 

Let J = j x  (id I c L ) : R "  x cL ~ R m x cL and define g5 by 

g5 (x) = Jg4J -1 (x)  for x ~ I m a g e ( J )  
g5 (x) x otherwise. 

In view of 4) and 5) it is a homeomorphism. And it clearly equals the identity outside 
5B m x Cs L. 

We now use gs to construct ht, 0 ~< t ~< 1. Being the product (cSB m) x (cL) of two 
open cones, Rmx cL is naturally an open cone. So there is an Alexander isotopy 
Gt, 0 ~  t~< 1, of g5 =Go to the identity (see remarks preceding 5.4 below), and Gt 
will certainly fix the complement of  5B m x c6L. 
Define 

ht = Gtg51h,  0 ~ t <~ 1. 

Now h l = g ~ l h  certainly equals the identity on B m x ? i L .  Also h t=h  outside 
h -  1 (5B,~ • c 6 L )  ' which lies in the compactum 9B m x ~9 z c 10/) 'n • C 10 L ---- U if h is near 
the identity. Thus the rule h'-~ht establishes the handle lemma for index 0. 

About the handle l emmafor  index k > 0 .  We will indicate the changes required in 
the above proof  for index 0. 

To the stipulations 1), 2), 3) about g l , . . . ,  gs, add that each gl 
O) be equal the identity on A = ( R k - j ~  k) x Rnx cL or on .4=(Tk--J~ k) X T n x  cL 

(whichever set meets the domain o f  gl). 

To assure this, one need only change the construction in two minor ways. 
First, in changing g~ a) to be the identity near the frontier of T m x c2L , one must 

at the outset alter g~ to g] equal the identity on a small neighborhood of A n  T m x  

• Fr(c2L ). Here Fr indicates frontier in cL. This is to be done by conjugating gl by 
a fixed small self-homeomorphism of T"  x cL that maps _~ into ,4, maps ,~ c~ T m x 
x Fr ( c 2 L )  into the interior of A and fixes T m x c lL  and the complement of  T m x caL. 

Then by building g2 from g~ (rather than gx) we can assure 0). 
Second, one must alter the construction of g3 from g2. Observe that the universal 

covering g'3:Rmx cL-~ Rmx  cL of  g2 near the identity equals the identity on the 
frontier (SB k) x RmX cL of A but not on the translates of  Bk x RmX cL by 8 z k  c 8zm. 

So we just set g3 =identity on A and set g3 =g~ outside A. 
After these two modifications the construction of ht becomes valid for index k > 0. 

At all other points of the construction, condition 0) is automatically verified. 
The handle lemmas have now been proved. 

s) For which 0) is assured as we wrap up trivially along the first k factors of R '~. 
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w 4. Deformations Respecting Subsets 

D E F I N I T I O N  4.1. A sub stratified set Y of a stratified set X consists of a closed 
subspace Y of the space X equipped with the filtration Y<") = X  <") n Y, such that, 
for each n, Y~")- y<,-1) is open (as well as closed) in X < " ) - X  c"-~). We write Y < X  
to indicate this. 

D E F I N I T I O N  4.2. Let U be an open subset of any space X. We will say that 
an open embedding h: U--, X thoroughly respects a subset C c X if h gives by restriction 
an open embedding U ~  C---, C. 

We shall prove the 

4.3. C O M P L E M E N T  TO THE D E F O R M A T I O N  THEOREM.  Let X be a CS 
set. The statement ~ ( X )  remains valid when the following statement is appended to it. 

-X-~ For each Y < X  it is true that whenever h: U--, X thoroughly respects Y or 

pointwise fixes I1, then h t does likewise for all t. 
As preparation for the proof  of this complement we insert some lemmas. In them 

X will denote a stratified set. 

LEMMA 4.4. A closed subset Y of  a TOP stratified set X is a sub stratified set of  X i f  
(and only if) Y(" ) -  y ( . -1 )= Y n  ( X ( " ) - X  ("-1)) is a topological n-manifoM without 
boundary for each n >>. O. 

Proof4.4. Clearly Y ( " ) - y ( . - 1 )  is closed in X(" ) -X(" -a ) .  Also Y(") -Y("-a)  is 
open in X ( " ) - X  ("-~) by invariance of domain. 

We can now find all sub stratified sets of X. Consider the space ~ (not Hausdorff 
in general) obtained on dividing X by the equivalence relation which equates pairs 
of  points that belong to the same connected (open and closed!) component of  some 
stratum of X. It has one point for each such component. 

L E M M A  4.5. Let q : X ~  be the (continuous) quotient map. A subset Y o f X  
constitutes a sub TOP stratified set of X i f  and only i f  Y = q - a C  where C is a closed 
subset of  ~ .  

Definitions have been expressly chosen to make this trivially true. 

LEMMA 4.6. Let M be a connected manifold without boundary. Then, for each 
Z < X •  M, one has Z =  Y x  M for some Y < X .  

Proof of  4.6. In view of 4.5 this amounts to observing that ~ ( X •  ^ by 
sending the quotient of  a stratum component S to the quotient of S x M. 
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LEMMA 4.7. Let X = R  m x cL, where L is a compact stratified set. The sub TOP 

stratified sets of  X are precisely the sets R" x cK for K< L. 
Proof o f  4.7. Suppose Y < R  m x cL. Then Y - R  ~ x v < R  m x ( c L -  v)~-R m+l x L, 

v being the vertex of cL. Hence Y -  R m x v = R = x ( c K -  v) ~ R r" + 1 x K, for some K <  L 
by Lemma 4.6. I t  follows easily that Y = R "  x cK as required. 

An immediate consequence of this lemma is the 

L E M M A  4.8. l f  X ix a CS set, then every sub-stratified set Y of  X is itself a CS set. 
(Call it a sub CS set.) 

We now give 
Proof o f  complement 4.3. We assert that the construction of ht, 0~<t~<l, from 

h: U--* X described in proving the original deformation theorem automatically satisfies 
(X) if a little extra care is taken in specifying it. 

More specifically, the proof  of ~ (X) can be repeated with the addition of a state- 
ment of the form ~ ( X )  to each statement of the form ~ ( X ) ,  or ~ ( X ;  A, A', B; U) 
encountered in it. Only the complemented handle lemmas require further proof. 

As for these handle lemmas add to their proof  in w as follows. For  the construc- 
tion of gl ..... gs add the extra stipulation that 

(*) For each R m x cK< R m x cL, each g~ thoroughly respects [fixes] R" x cK or 
T" x cK (whichever makes sense) whenever h thoroughly respects [fixes] R m x cK. 

Fortunately the construction as given guarantees (*). This is evident for g2, g3, g4, 
gs. To check (*) for g t :Tmx  cqL~T~'x cL we recall Edwards wrapping up process. 

PROPOSITION 4.9. Let A be a metric space in LOC. Let A ~ B ~ C  where B, C 

are open and the closure C of  C is a compactum in B. 

Consider open embeddings 

h:( lO/~ m) x B ~  R m x A .  

I f  h is sufficiently near to the inclusion i:(101~m) x B ~ R m x A  (say for the uniform 
topology 9) o f  the metric on R m x A) ,  then there exists a construction producing from 

h an open embedding 

h ' : T = x  C ~ T m x  A 

where T m =Rm/8Z =. The rule h,-*h' has the following properties: 
(a) h equals h' on 2B m x C, when we identify 3B ~ with its quotient in Tm. 

(b) h' is a continuous function of  h (for the same uniform topology). 
(c) h" is a product with id I Tm when 

h is a product with id I 10/~ ~. 

9) Equivalently one could use the compact-open topology. Then 4.9 holds without a metric on A. 
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(d) For each closed subset D c A  it is true that whenever h thoroughly respects or f i xes  

R"  x D, then h' does likewise f o r  T m x D. 

The proof  of 4.9 can easily be adapted from that of  Lemma 8.1 in [14]. Here I 
simply define h' and leave a diagram to help readers to complete the proof  by 
inspection. 

An m-fold application of the case R m - R yields the general case. Hence we can 
assume m = 1 for the proof. 

A 

- v " hJr " h W ~ 

Figure 4a 

cl 
Writing q : R  x A ~ ( R / 8 Z )  x A = T  x • A - ~ S  1 • .4 for the quotient map define 

h' (qx)  = qh (x)  for points qx in q W g  W, where 

W = { x ~ E - 2 , 6 ] x C l P ~ h ( x ) < ~ 2 } ~ R  ~ x C.  

It  remains to define h' on q W " ~  W",  where 

W " = { x e [ - 2 , 6 ]  • C [ p l h ( x )  >~ 2} = R l  x C, 

as the composition of homeomorphisms 

qW" q-1 W,, h_~ h W  . . . .  id i~ / h(#• W, q_~ q W ,  c T 1 • A .  

Here a : R  ~ R is any homeomorphism sending 2 to - 6  and fixing points >I 5 while 
fl: R ~ R is any homeomorphism sending 6 to - 2 and fixing points ~< - 5 ,  so that fla 
maps [2 ,  6 ]  linearly onto [ -  6, - 2]. To assure the continuity of h -  1 here as a function 
o f h  we need 1.6 and A~LOC.  

This completes the construction of h', valid for h near i. For A = B = C  it is the 
construction I made in [24, w 

The complement 4.3 is now established. 
This section concludes with a digression. 
There is a variant of  Edward's proposition that is more truly a generalization of 

the proposition X •  R '~  Y x  R=*.X• S i ,.~ Y•  S x for compacta X, Y, which suggested 
it. We mention it because it proves a topological analogue in CS sets of the PL 
invariance of  links in polyhedra. 
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4.10. V A R I A N T  OF 4.9. Suppose we alter the data o f  4.9 by considering open 

imbeddings 

h : ( -  10, 10) x B - - , R  x A* 

where A* is a locally compact metric space distinct f rom  A. Then f o r  certain such h 

there is a construction producing an open embedding 

h ' : T  1 x C--,  T 1 x A * .  

And  the rule h ~ h '  satisfies conditions (a), (b), (c), (d) o f  4.9 (for m = I). The following 

conditions on h are quite sufficient to guarantee that h' be defined. 

(i) p l h : ( - 1 0 ,  1 0 ) x B - - , R  is near the l s t  fac tor  projectio~t onto ( - 1 0 ,  10), say 

everywhere within distance 1 o f  it. 

(ii) h ( ( -  10, 10) x B ) =  [ - 8, 8] x p2h ( [ -  2, 6] x C)  where P2 is projection R • .4" --, 
""~ a * .  

The p roo f  of  4.10 is essentially identical to that  of  4.9. 
A straightforward m-fold application of  this variant yields: 

P R O P O S I T I O N  4.11. Let  C, C* be locally compact stratified sets with one vertex 

each v, v*. Suppose h: 10/~ m x C--, R m x C* is an open embedding inducing an isomor- 

phism onto its image, and equal the natural identification R m x v ---, R '~ x v* o n  10B m • v. 
Then there is a neighborhood Co o f  v in C and an open embedding h' : Z m • C O ~ T m • C*, 

realizing an isomorphism onto its image, such that h =h'  near B m • v, and h' extends 

the identification T m x v = T  m x v*. 

C O R O L L A R Y  4.12 of  4.11. In this situation, i f  C, C* are open cones cL, cL*, then 

(i) T ~ x cL ~- T m x cL* by an h' as in 4.11, 
(ii) T m + i x L ~ T m + 1 x L* and 

(iii) R"  x cL ~- R m x cL*. 

Proo f  o f  4.12 f r o m  4.11. In 4.11 we can arrange that  Co = c z L  with 2 > 0  (notation 
o f  2.4). Applying the theorem of  uniqueness of  open cone neighborhoods [23] (which 
is clearly valid in a stratified version) we find t h a t . h ' ( T ~ x  czL)~-TmX cL fixing a 
ne ighborhood of  T m • v*. 

This proves (i); and (ii), (iii) follow from it. 
The salient conclusion to draw from 4.12 is that  if L, L* are two links in X for 

x e X ( m ) - x  (m-l), then T ~ x c L ~ - T  m x cL*. More  precisely we get 

C O R O L L A R Y  4.13 of  4.12. STAR U N I Q U E N E S S  (cf. 5.12 for  WCS sets). Let  

X be a C S  set and let C, C* be two open cones on stratified sets. Suppose R "  x C, 

R m x C* isomorphic to open neighborhoods o f o n e p o i n t  o f X ( m ) - X  (~- l )  by embeddings 
j , j*. 
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Then there exists an isomorphism O:R" x C~-R " x C*. Further i f  j ( R  m • o) = 

j *  (R m x v), then 0 can equal ( j * ) - ~  oj near B m x v in R"  • C, and on R m x v. Further 0 

can cover an isomorphism T"  x C~- T m • C*. 

w 5. The Generalisation to WCS Sets 

D E F I N I T I O N  5.1. A stratified set X is locally weakly cone-like if it is locally of  
finite depth, and for each n>~0 and each point x in X C")-X r there is a mock open 
cone C with vertex v (to be defined presently) and a homeomorphism 0: R" x C ~ N 
onto an open neighborhood of x in X so that O-aX ("~ = R  ~ • v. 

Notation. A locally weakly cone-like TOP stratified set is called a WCS set. 

D E F I N I T I O N  5.2. A mock open cone C with vertex v is a locally compact metric 
space C equipped with a homotopy 7t: C-~ C, 0~< t~< 1, such that 

(1) 7t, 0 ~< t < 1, is an isotopy of id ] C (through homeomorphisms). 
(2) 7 o = i d l C ,  7 I ( C ) = v E C ,  and y t ( v ) = v  fo ra l l  t. 

Call such a homotopy 7t a crush (of C to v). 
Open cones on compacta are the trivial examples. 

5.3. N O N  TRIVIAL EXAMPLES OF MOCK OPEN CONES. Consider C =  
W u  5+ where 

(a) W is an open TOP manifold of dimension i-> 5 that is proper homotopy 
equivalent to (or even properly dominated by) K x R where K is a finite connected 
complex. 

(b) 5+ is one of two end points ~_, 5+ of W. 
For this example a crush ~'t of W u c +  to ~+ can be constructed by an engulfing 

argument so that (1) and (2) hold and, for each t, Yt fixes points outside a compactum 
in W (depending this time on t). See [28, w [30, w [32]. I f  an obstruction a(~+) in 
/~o~1W is non-zero, then C =  Wu~+ is not an open cone [27] [28] [21]. All the mock 
open cones I know of that fail to be open cones, are built from these examples and 
variants of them where W has boundary. 

Observe that if h: C-~ C is a self-homeomorphism of a mock-open cone fixing all 
points outside a compact set K c  C, then there is an Alexander isotopy of h to the 
identity defined by 

ht = 7th~ -1 for t < 1 (5.3) 
h t i d ] C  for t = l .  

To see that ht varies continuously with t observe that ht fixes Vt ( C -  K)  = C -  vtK, and 
that Vt (K) lies in any prescribed neighborhood of v for t sufficiently near 1. 
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Note that each WCS set X is locally compact, locally contractible, and locally 
finite dimensional, and so is locally an ENR (globally if d i m X <  oo). 

The evident fact that the product o f  two mock open cones is a mock open cone 
shows that the product of  two WCS sets is a WCS sets. 

Now we prove 

5.4. D E F O R M A T I O N  T H E O R E M  (generalized). N (X) is true for each WCS set X. 
The proof  for CS sets has been so constructed that after a few changes (mostly 

notational) our proof  for CS sets can be reread verbation. Here are the changes. 
Substitute "WCS set" for "CS set". Substitute "mock open cone" for "open cone". 
Substitute a mock open cone C with vertex v for the open cone cL with vertex v, 
wherever cL is mentioned. 
Let Vt: C ~  C, 0~< t~< 1, crush C to v and substitute this 7t for the ?t used to define g4. 
Let C~ c (72 c C3 c ... be any sequence z0) of open neighborhoods of the vertex v in C 
with compact closures Ca, C2, C3 ....  such that for each 2>/1 and each te[0 ,  1], one 
has 7, ( C a ) c  Cx+ 2. Now substitute Ca for caL and C a for ~aL for 1 ~< 2~< 10. 

Consider next the problem of making isotopies respect subsets of  the WCS set X. 
The discussion ofw 4 generalizes trivially if we restrict attention to "orderly" WCS sets. 

D E F I N I T I O N  5.6. Let C be a mock open cone with vertex v that is simulta- 
neously a stratified set. A crush ?t: C ~ C, 0 ~< t ~< 1, of  C to v is orderly if, for each n/> 0 
and for each t <  1, 7t maps C (*) homeomorphically onto C ("). Then C is an orderly 

mock open cone. 
An orderly crush ?t clearly has the property that for each t <  1, ?t maps each 

component  of  C c~) - C  ("- ~) homeomorphically onto itself. From this we immediately 

deduce: 

L E M M A  5.7. Let ~ t : C ~ C ,  O<<,t<<,l, be an orderly crush of  a locally compact 

stratified set C to v. Then for  each D <  C, Vt gives an orderly crush o f  D. In particular 
D is a mock open cone. 

D E F I N I T I O N  5.8. An orderly WCS set is defined by replacing mock open cones 
by orderly mock open cones in the definition of WCS sets (5.1 above), while insisting 
that  0 be an isomorphism of  stratified sets. 

Remark. Conceivably every WCS set is orderly. 
An immediate corollary of  5.7 is 

z0) It is important that Czo can be as small as we please when one (re)proves assertion (1) 
below 2.6. 
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LEMMA 5.9. I f  Y <  X and X is an orderly W C S  set, then Y is also an orderly 
W C S  set. 

5.10. G E N E R A L I Z E D  C O M P L E M E N T  TO D E F O R M A T I O N  THEOREM.  
Let  X be an orderly W C S  set. The statement ~ (X )  remains valid when the statement 

( X )  o f  4.3 is appended. 
Proof  o f  5.10. In the proof  of the complement for CS sets given in w we merely 

make the same substitutions as we have made above to prove the Deformation 
Theorem for WCS sets. The two lemmas 5.7, 5.9 above replace analogous results 
from w 

Remark  5.11. I f  we append only the restricted version of ~ (X) where Y< X is 
fixed, then the assumption that X be orderly can clearly be weakened somewhat. 

Remark  5.12. The star uniquenesg result 4.13 holds in W C S  sets i f  orderly mock 
open cones replace open cones. The proof  is as in w except that the uniqueness theorem 
for open cone neighborhoods must be replaced by a generalization in [32]. 

Question 5.13. When is a mock open cone C = W u 8  o f  example 5.3 stably cone- 
like? i.e. when is R"  x C locally cone-like for  some m? 

Here is one step toward the answer. Suppose that, for some compactum L, R" x eL 

embeds t in R" x C sending R" x (vertex) into R" x (vertex). By Remark 5.12 and 4.13, 
we can find an isomorphism T" x C-~ T" x eL and arrange that it extends the identity- 
isomorphism T" x (vertex) -~ T" x (vertex). Hence T" x V ~ T  "+1 x L where V is W 
with its two ends glued together as in [30, Chap. II] and the homeomorphism respects 
the natural projection of each fundamental group to Z " x  Z = Z  "+1. 

Conversely if T " x  V ~ T  "+a x L for some compactum L by a homeomorphism 
respecting fundamental group in this way, then we find R" x C~-R" x eL as follows. 
Passing to a covering of T" x V~ T" + 1 x L we get a homeomorphism R" x W ~  R" + 1 x L 
commuting with action of Z "+1 as covering translations. This extetads therefore over 
suspension spheres to a homeomorphism Z " ~ E " + I L  where Iv '=  W u  (8_, ~+} is the 
end compactification of W, cf. [33, Theorem A, p. 77] [33A]. Since Z"(e_, a+} 
corresponds to E" + ~ (0) ~ S" we deduce an open embedding respecting strata R" x eL 
~ R "  x ( W u e + }  =R"  x C, which by 4.13 implies R" x C_~R" x eL. This discussion 
generalizes immediately to any mock open cone C with vertex v such that ~ ( C -  v) 
is valid (so that isotopy extensions are available permitting the gluing construction of 
[30] and the considerations of [32]). 

Applying this for n = 1 we get 

PROPOSITION 5.14. Let  C = W u e +  be a mock open cone f rom example 5.3, 
with dim W>>, 5. Then C x R is locally cone-like i f  and only i f  a (e + ) = x -  ( - 1 ) a l ~  rv 2 

t As an open subset. 
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with xeKorqW where bar indicates the duality involution [27] depending only on 
wl (W): nj W-, Z2. 

Proof of 5.14. C x R is locally cone-like implies Y x T 1 ~ L x T 2 respecting funda- 
mental groups, as shown above. This occurs iff Y is invertibly cobordant to L x S l, 
and W to L x R. Finally, if W is invertibly cobordant to L x R, then [33] one has 
a@+)=X+(-- 1)dimW.,~, for xe/~oTr a W, and conversely if dim W~>5. (The element x 
is the infinite torsion of a cobordism from W to L x R). 

w 6. Familiar Consequences of .~ (X) 

These consequences are developed in generality to provide a convenient reference 
for eventual applications. 

6.0. The hypothesis of deformability ~ (X) is stated in w In applications we fre- 
quently want a relative form of it concerning a family de of one or more subsets of X. 

I (x, 

The 
s; v). 

de) ]denotes the statement N ( X )  modified as follows: 

(i) Restrict attention to open embeddings h: U ~ X which thoroughly respect each 
Y in de (in the sense of w 

(ii) Demand that the isotopy ht of h thoroughly respect each Y in de. 
(iii) For any Y in de, demand that h t [ Uc~ Y= (inclusion) for all t, whenever 

h [ Uc~ Y= (inclusion). 
same modifications define ~ ( X ;  A, A', B; U; de) when applied to ~ ( X ;  A, A', 

Note that if X is a CS set and de some family of sub CS sets Y< X, then ~ (X, de) 
is implied by 4.3 (complement to the deformation theorem). 

The next theorem verifies ~ (X,  de) in a rather different situation. 

THEOREM 6.1. Consider a product X x  B in LOC and let de be the family 
{Xxb;  b in B}. Then ~ ( X )  implies .~ (Xx  B; de). 

Proof of  6.1. We have to prove an arbitrary statement ~ ( X x  B; A, A', C; U; 6e) 
given the usual assumptions about A, A', C, U (cf. w The reader will easily check 
that for this it suffices to establish the Special Caseii): Where A, A', C, U are of 
the form 

A = A  o x B u X  x A l; 

A' = A~ x B u X  x A~ ; 

C = C o x C ~ ;  

U=Uo• 

ii) The proof will apply even when Ai = A'l. So something stronger than 6.1 holds. 
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Proof of  Special Case. Consider an open embedding h: Uo x U1- - .XxB  which 
thoroughly respects each set X x b, b in B. Define h (b) : U o ~ X for b in U~ by the 
equation h(x, b)=(h(b)(x), b). If h is near the inclusion ~ ( X ;  A o, A~, Co; Uo) pro- 
vides an isotopy h~ b), 0~< t~< 1, which depends (uniformly) continuously on h (b), and 
satisfies certain conditions (listed in w In particular h~ b) is the inclusion for all t if 
h (b) is - hence if b~A'~. And h~ b) (x )=h  (b) (x) for x outside a compactum K o c U0. 

Let K 1 be a compact neighborhood of C~ in U1 and let c(: U~ ~ [0, 1] be a con- 
tinuous map such that a (C~)= l  and ~ (U~-K~)=0 .  Then tor (x, b)~Uo x U~ define 

h,(x, b) (~) = (h~(b)t(x), b). 

It is an isotopy of h and the rule h.--*h, establishes N(X;  A, A', C; U; 6 a) in this 
special case. 

EXAMPLE 6.2. Beware that ~ ( T 2 ;  6 a) is false if 6 p is the foliation of T 2 
derived from the lines in R 2 with a given irrational slope. 

Now we give 12ernavskii's generalization [8] of ~ (X; A, A', B; U). It attempts to 
allow B to be any closed set. 

If  IV, X are metric spaces let Map(W, X) denote the set of continuous maps 
(= func t ions ) f  : IV~ X. On it consider two topologies 

(a) The compact-open topology 
(b) The majorant topology in which base of neighborhoods o f f  in Map(iv,  X) 

is the collection of sets 

N , ( f )  = {gEMap (W, X)[  d ( f ( x ) ,  g(x)) < ~(x)} 

where e varies over positive continuous functions e: W ~  (0, oo) called majorants. 
Emb (W, X) c Map (IV, X) will denote the set of open embeddings of W into X. 
A homotopy ht: W--* X, 0 ~< t ~< 1, is identified with the continuous function (t, x) 

~ h , ( x )  in M a p ( I x  IV, X). 
Consider the following statement about a metric space X in LOC. 

~ Let A c A' be any closed subsets of  X such that A' is a neighborhood of A. 

Let B c X be closed and let i : U--* X be the inclusion of  an open neighborhood of B. 
Finally let e: U ~  (0, oo ) be a continuous map. Then the following always holds. 

[ .~'(X; A, A', B; U; e) I There exists a continuous map 6: U--*(O, oo) and a rule F 

that assigns to each embedding h : U-~ X in Nn (i) and equal i on A' a homotopy F (h) = 
(ht: U ~  X, O<~t~<l) in M a p ( I x  U, X )  such that 

(1) F ( h ) = ( h,, O <. t <~ 1) is an isotopy ~) through open embeddings U ~ X from h to 
an embedding hi equal i on B. 

13) See remarks preceding 1.6. 



146 L.C. $IEBENMANN 

(2) ht=h on A and ht~N~(i). 
(3) F :hF-~(ht) is a continuous function of h when Map(U, X)  and M a p ( I x  U, X) 

are assigned either both the compact open topology, or both the majorant topology. 
Also F (i) is the constant isotopy of i. 

Question. Is ~ '  (X) true if X is separable Hilbert space? 

THEOREM 6.3..@(X) implies N ' ( X )  for any metrizable X in LOC. 
The proof will generalize trivially to prove: 

COMPLEMENT 6.4. (Respectful version, same data). In X single out a class 5r 
of closed subsets, and indicate membership Ye 5 a by Y< X. Then ~ (X) with statement 
~ ( X )  (under 4.3) appended implies N ' (X )  with ~ ( X )  appended. 

Again, the (weaker) hypothesis ~ (X; SP) implies the (weaker) conclusion ~ '  (X; S~). 
(The latter indicates ~ '  (X) modified by (i), (ii), (iii) in 6.0). 

Proof of Theorem 6.3. 1) The case where B is expressible as a disjoint union of 
compacta Ba, BE, ... with each B i open in B. 

Proof of 1). Choose disjoint open neighborhoods Uj of Bj in X, each with 
compact closure in U. By assumption -@(X; A, A', Bj; Uj) holds for eachj.  Then if 
h: U ~ X  fixes A' and is (majorant) near i we can define htl Uj to be the isotopy 
(fixing points outside a compactum), offered by this statement. This defines F: h ~ (h,) 
and it is routine to verify (1), (2), (3). 

2) The general case. 
Proof of 2). Every connected locally compact metric space is separable [36, 

Appendix 2]. Without loss of generality we assume X connected. Then find a nest 
X 0 t z S  a c~X 2 c . . .  of compacta in X such that X =  k.) k Xk and X k (z~ ZYk+ 1" Set X k =0  
for k < 0  and d e f i n e  Zl,k=X4k+a--~f~4k; Z2,k=X4k+l--S4k_2 . Define Zj=k.3kZj ,  k. 
Then Zj  is dosed, X=Z1  w2~2, and Zi, k is a compactum open in Zj. 

Choose a closed set A" in X with A c ~ " ,  A" c.4 ' .  
Let B' be a closed neighborhood of B with B' ~ U and set Bj = B' c~ Z j, Bj = B c~ Zj. 

By 1) 

A", a', U; (*) 

is valid for any y: U ~  (0, ~ ) .  Similarly Step 1) proves 

~ '  (X; A u (B - / )2 ) ,  A" w B~, B2 ; U; e). (**) 

Composing (on adjacent intervals) isotopies offered by (*) for suitable ? with those 
offered by (**), we obtain a rule F:hv-+(ht) establishing ~ ' (X;  A, A', B; U; ~). The 
majorant ~ is suitable if it is ~< the majorant 6 =6 (e) offered by (**). 

This completes the proof  of 6.1. 
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Extension of  Isotopies 

One of the most useful corollaries of -~ is an isotopy extension theorem. 
Consider a continuous family f,: V ~ X ,  teB of open embeddings. Continuous 

means that (t, x)~-~(t, f t  (x)) is a continuous map f :B x V ~  B • X. Given a closed 
subset C ~  V and beB we enquire when there exists a (continuous) family Ft:X~ X, 
teB, of self-homeomorphisms of X such that Ft~ I C=ft I C. To simplify notation 
we identify V to fbV~X.  The inclusion V ~  X is then fb. 

ISOTOPY EXTENSION THEOREM 6.5. cf. [8] [23A] [14]. About the above 
data, make the following suppositions: X is Hausdorff locally compact and locally 
connected(i.e. X~ LOC); C has compact frontier in V; for each t in B, f t  ( C ) is closed," 
~ ( V - C )  holds true. Finally suppose that either B is locally connected or X has finitely 
many components. 

(I) There exists a neighborhood N of b in B and a continuous family Ft: X-o X, t eN  
of homeomorphisms such that F t I C=ft for  all teN. 

(II) l f  B=I"=[O, 1]" or any retract of I" then N in (I) can be all of B. 
(III) Further if K c I "  is a retract of B = I  n containing b and Ft ' :X~X,  teK, is a 

continuous family of homeomorphisms with F t' I C=ft I C, then the family Ft, tel", 
provided by (II) can be chosen so that Ft =F/for teK. 

EXAMPLE. (justifying the last supposition under 6.5). Statement (I) fails if 
X = V = C = Z ;  B={O}w{1/n; n>>.l in Z}; b={0}; f o = i d  ] Z, f l / , ( x ) = x  for x<~n, 
f l / , ( x ) = x + l  for x>n. 

The proof will generalize trivially to prove 

COMPLEMENT 6.6. (Respectful version). Theorem 6.5 remains valid when the 
data are modified as follows. Single out a family 50 of closed subsets of X, and suppose 
that each ft, teB, thoroughly respects [or fixes] each Y in 50. In place of ~ ( V - C )  
suppose ~ ( V -  C; 50o), where 500 ={ Yn ( V -  C) I'Y in 50}. Finally insist that each 
Ft or F t' mentioned thoroughly respect [or fix] each Y in 5 ~ 

Proof of (I). Find a closed set D c X  with Cc /~  and D c  V such that D - C  is 
compact and hence D has compact frontier 6D in V -  C. Find an open neighborhood 
U of 6D in V -  C, with compact closure O c  V -  C; and let E be a compact neighbor- 
hood of 6D in U. 

Applying N ( V - C ;  O, O, E; U) we get a rule that associates, to each em- 

bedding U ~  V - C  sufficiently near the inclusion, an embedding gt:U-o V - C  such 
that gt =id  on E= 6D, gt =ft outside a compactum in U, and gt (U)=f ,  (U). 

Now if t is sufficiently near b in N the map 0-~ V -  C lies within any prescribed 
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neighborhood of the inclusion for the compact-open topology. Thus the rule f,"*gt is 
defined for t in a small neighborhood No of b. 

For t near b define 

H , ( x ) = f ( x )  if x e V - U  

H, (x) = gt (x) if x e U .  

This is clearly a continuous family of open embeddings lit: V---+X and H, [ 6D=in-  
clusion. Define H: No x V ~  X by H(t, x) =Hi(x) .  

ASSERTION 1). For t near b, tit D =D (say for all t e N c B ) .  
Proof 14, D is the union of the closed set HtC =ftC and the compactum Ht ( D -  C ). 

So HtD is closed in Xand  hence Ht/) is closed in X - 6 D .  Also Htl) is open in X - 6 D .  
So Ht/~ consists of some of the components of X -  6D. 

If B is locally connected, let Nt c N o be a connected open neighborhood of b. 
For each x in b ,  the connected set H(Nlx)  lies in the same component of b as does 
H(b, x). Thus for all t in N~,/-/t/) =Hbb =b, which proves 1). 

In case X has finitely many components (and B is not locally connected) we 
complete the proof  of 1) differently. Recall the 

LEMMA 6.5.1. [18, p. 111]. Let M be a connected, locally connected, and locally 
compact Hausdorff space. For any compactum K in M and any neighborhood U of K, 
all but finitely many of the (open.t) components of M - K  lie in U. (Hint: 6U may as 
well be compact). 

This shows that, for t in No, and x in/5, Ht(x)=x unless x lies in one of finitely 
many open components/~1, ...,/Sk of/5. Choose x~el) i, i<~k, then choose a neighbor- 
hood N I = N  o o f b  in B so small that, for t in NI, Ht(xi)eb,, i<~k. Then Ht(l~,)=l~,, 
and we conclude that Htb =/~ and HiD =D. This completes the proof of 1). 

Finally define the continuous family Ft :X~  X for t eN  by 

F , ( x )  = H , ( x )  i f  x e D .  

F , ( x )  = x if x e X  - 15. 

Assertion 1) shows that F t is a homeomorphism. This completes the proof of (I). 
Proof of (II). First use a retraction 4: I " ~ B  to define f t  for all tel" by setting 

f t=fo( t )  for tCB. Find a "Lebesque" number ~>0 so small that each set in I" of 
diameter <e  lies in some N, provided by (I) applied with aeI" in place of b. Dice I" 
into n-cubes of diameter <e, (lexicographically) ordered CI, Cz, C3 .... so that if 
D~ = w {Cj [J < k}, then there is a retraction r = rk:D k + 1 ~ Dk. 

Now, for each C~, there is aeI" and a family of homeomorphisms F f f ) : X ~ X ,  
t e Ck, with Fff)f,[ C =f , [  C. 
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Suppose for an inductive construction that Ft is defined for t eD, ,  (k>~ 1), so that 
F t f  b --ft. Then define 

Ft' = GtF~(t) , t E C k  , 

Since Gtf,.(t ) I C = ft  l c 

where G, = Ft (k) (F,(~)-I ,  t e Ck. 

we have Ft'ft , [ C = ft  [ C, t ~ Ck. 

Also F'(o =F,(t). So we can define Ft=F t' for t ~ C  k to complete the induction - pro- 
vided we know that Gt is a continuous family of homeomorphisms. But this follows 
from Lemma 1.6. 

Proof  o f  (III). I f  lit, t e l" ,  provided by (II) satisfies Htfb ] C=f t  l C define 

Ft = HtH~t~F~(t), t e l "  

where ~ : I" --. K is a retraction. 
This completes the proof of the isotopy extension theorem. 

6.7. OTHER CATEGORIES. An isotopy extension theorem holds in two more, 
familiar categories. 

PL - The objects are metric spaces equipped each with a maximal piecewise 
linearly compatible atlas of charts to finite simplicial complexes; the morphisms are 
piecewise-linear maps. 

DIFF. - The objects are smooth C ~ finite dimensional manifolds possibly with 
corners (say as in [22]); the morphisms are C~ maps. 

Indeed the isotopy extension theorem holds true in CAT ( = D I F F  or PL) when 
the statement has been modified as follows: 

(a) Assume all objects and maps mentioned are CAT. 
(b) By CAT open embedding understand a CAT isomorphism onto an open subset. 
(c) Omit the hypothesis - ~ ( V - C ) .  

Call the resulting statement J ( X ) .  
However the CAT proof is radically different. See [24] for DIFF, [18] for PL. 
Respectful CAT versions J ( X ;  5O) (parallel to 6.6 with the assumption 

J ( V - C ;  5oo) suppressed) can be produced by reinforcing the existing CAT proofs. 
One has to determine what families 5 ~ will work (See [24] [2]). From J (X) one can 
at least prove J ( X x  B; 5O), where 5O={Xx b I b~B},  by making use of(Il l) ,  cf. proof 
of 6.1. 

As topological companions for DIFF and PL we use two categories 
T O - The category of continuous maps of topological spaces. 
L O C -  The category of continuous maps of locally compact locally connected 
Hausdorff spaces. 
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Submersions 
Next we present a proof  that a proper submersion is often a bundle map. 

D E F I N I T I O N  6.8. A CAT map ( C A T = D I F F ,  PL, To, L O C ) p : E - - , X i s  a CAT 
submersion if for each y in E, there is a CAT object U, an open neighbourhood N of 
p (y) in X, and a CAT open imbedding f :U x N--, E onto a neighborhood of y such 
that p f  is the projection U x N--, N c X .  Then F = p - l p  (y) is a CAT object. When f 
is normalised so that U is an open subset of  F and f ( u , p ( F ) ) = u  for u in U c F ,  
then we call f a product chart about U for p. 

Recall that p : E ~  X is a CAT bundle if for each x in X, there is a CAT product 
chart f :p -  ~ (x) x N ~ E about the fiber p -  1 (x) of  p, such that Image ( f )  = p -  ~ (iV). 

U N I O N  LEMMA 6.9. ( C A T = D I F F ,  PL or To). Data: p : E - , X  a CAT sub- 
mersion; F = p -  1 (xo)fo r a point Xo in X," A, B compacta in F," U, V open neighborhoods 
of  A, B in F, ' f :  U x N ' ~  E and g: V x N " - - ,  E product charts about U and V for p. 
I f  CAT = T o, suppose F is in LOC and ~ (F) holds. 

Given this data one can find a CAT product chart h: W x N ~ E  about an open 
neighborhood W of  A u B in F. Further one can choose h so that h = f  near A x Xo and 

h =g near ( B -  U) x Xo. 
As usual the proof  will establish a respectful version. With the data of  the union 

lemma single out a class SP of closed subsets of E and indicate Yeb  a by Y<E.  
A product c h a r t f  : Ux N--*E about U for p is said to respect ~SP if for each Y < E ,  
.f  - 1 y =  ( y n  U) x N and f gives by restriction to f - i y a product chart about Y n  U 

for y Z ,  X. 

FIRST C O M P L E M E N T  6.10. (Respectful version, CAT = D I F F ,  PL or To). The 
union lemma continues to hold when modified as follows: Assume f and g respect 6a ; 
suppose that J ( F ;  Sar) holds where Sf F = {Fn  Y I Yin 6a }," finally, insist that h respect 
de. 

SECOND C O M P L E M E N T  6.11. (CAT = To). The union lemma continues to hold 

when further modified as follows: For f ixed  Y< E suppose that, in ( Y n  F)  x X, f and g 
agree whenever bothare defined, namely on ( Y n  U n V) x (N '  n N"). Then insist that h 
agree with f i n  ( Y n F )  x X wherever both are defined, and that h agree similarly with g. 

The reader will verify these complements by using the complemented isotopy 
extension theorem (6.5, 6.6) to generalize the following. 

The proof  of  the union lemma uses another lemma which is a direct consequence 
of the CAT isotopy extension theorem 6.5, 6.7 (form I)). 

L E M M A  6.12. ( C A T = D I F F ,  PL or To). Consider projection p 2 : F x B ~ B ,  and 
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identify F to F x  b for some point b in B. Let U c F  be open bounded and C c  U be 
compact. Let f : U• N ~  F x B be a product chart for P2 about U. In case CAT = T 0, 
suppose that F~ LOC and that ~ (F) holds. 

Then there exists a product chart g : F x  N ' ~  F x B about F for P2 such that f = g  
near C • b, and g = (identity) outside K• N '  where K is some compact neighborhood of  
C in U. (Do not confuse B here with B in the Union Lemma.) 

Proof of  Union Lemma. Let A' c U, B' = V be compact neighborhoods of A, B 
respectively in F. Using lemma 6.12 we can find a product chart for p about V 
g ' : V x ~ - - * E  such that g '=g  on ( V - U )  x/~ and g ' = f  on ( A ' n B ' ) x _ ~ .  Let 
W=/~'w1)',  N = N ' c ~ ;  and define h : W x N - - . E  by h l . , { ' x N = f l . ~ ' x N  and 
h I ~' x N=g '  I 1)' xN.  This is the required product chart provided it is injective. At 
least h is locally injective. And h I (W x b) is injective - being the inclusion. It follows 
that, after W and N are cut down if necessary, h will be an embedding. To see this, 
check that for each compactum W 1 c W the set of double points of h I 14/1 x N is 
closed in W x N, and disjoint from the compactum (A u B) x Xo. A double point x e K  
of any map f : K ~ L  is one such that f ( x ) = f ( y )  for some y r  in K. This com- 
pletes the proof. 

The following addition to Lemma 6.12 will be recast as a uniqueness theorem (6.19) 
for "transverse" normal microbundles to closed leaves in a foliation. 

A D D E N D U M  6.13 to 6.12. Given the data of  6.12, let A be a closed subset o f F  
such that f :  U x N ~ F x B equals the identity near A x B. 
(~t) Then g can equal the identity near A x b. 
(fl) I f  CAT = T o, suppose now that B is Hausdorff and normal. Then one can find a CAT 
isotopy ht, 0<~ t<~ 1, of id [ F x  B through CAT automorphisms such that 

(i) ht(x) =x  for x in F x  b, near A x b, and outside Ux  N', 

(ii) p2ht =P2, 
(iii) h I = g = f  near C x b. 

Proof of  Addendum 6.13. Part (e), being easy, is left to the reader. 
For part  (fl) we use two arguments. The first applies if there is a CAT homotopy 

Or, 0~<t~< 1, of id ] N'  fixing the complement of a compactum in N' ,  to a CAT map 
01 : N '  ~ N '  such that 0~- 1 (b) is a neighborhood of b. This certainly exists if C A T =  
DIFF  or PL. Define the CAT isomorphism g [a] : F ~  F for a in N '  by the equation 
g(x ,a )=(g[a]  (x),a). Then define the CAT isotopy h t : F x B ~ F x B ,  0~<t~<l, by 

h,(x, a) = (g [0, (a)] -1 g[a] (x), a), for a in N '  

h t ( x , a ) = ( x , a )  , f o r a i n B - N ' .  

The wanted properties are evident. 
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The second argument  applies when C A T  = To. We use -~ (F; A", A', O; X) where 
A"~ A' are closed neighborhoods  of  ( F -  U) w A so tha t  g = (identity) near  A' x b. This 
produces a certain isotopy g Ea]t, 0 ~< t <~ 1, of  g l-a] for  a in a small open neighborhood 
N" of  b in N'. Using the normali ty  of  B, find 0: B ~ 1-0, 1-I a continuous function equal 
1 near  b and equal  0 near  B - N " .  

N o w  define ht:Fx B - , F x  B, 0~<t~< 1, by 

h,(x, a) = ({g[a]o(~),}-log[a] (x), a) for  a in N" 

h, (x, a)  = (x, a)  for a in B - N" 

This completes 6.13. 

C O R O L L A R Y  6.14. (to union lemma)  C A T  = D I F F ,  PL  or To. Let p : E ~  X be a 
C A T  submersion that is closed 13) (i.e. p maps dosed sets onto closed sets). Suppose 
p-1 (x) is compact for each x in X. For C A T = T o  provide that for each x in X, p-1 (x) 
is in L O G  and ~ ( p - l ( x ) )  holds. Then p is a C A T  bundle map. 

This is explained more  precisely by 

C O R O L L A R Y  6.15. (to union lemma).  Adopt the data of 6.9, and suppose F is 
sigma-compact. There always exists an open neighborhood Y of F x Xo in F x X and a 

C A T  open embedding h: Y ~ E  with ph=(projection): Y c F  • X-% X. Hence if F is 
compact there exists a product chart about F, namely h ] Fx  N, where N is a small 
neighborhood of xo in X. 

Proof of 6.15. The union l emma 6.9 implies that  there is a p roduc t  chart  abou t  a 
ne ighborhood of  each c o m p a c t u m  in F. When  F is s igma-compact  we have compac ta  
C1 c C2 c C3 ~ ' "  with Ci c C~+ 1 and w Ci =F, and abou t  each C / w e  have a p roduc t  
chart. Applying the union l emma (especially its last part)  in an infinite induction, we 
alter these to agree and give h. 

Proof of 6.14 from 6.15. For  each x in X, 6.15 says there is a product  chart  g :p  - i  (x) 
x N ~ E about  p -  1 (x) for  p. The set S = p  (E-image (g)) is closed in X since p is closed, 

and it does not  contain x. Let N' = N n  { X - S } .  Then p-1 (x)xN'g-~E has image 
equal  p -  i ( N ' )  not  less. Indeed if p (y)  e N ' ,  then p (y)  r S so y ~ Image  (g). 

Remark 6.16. For  C A T  = To the first complement  6.10 of  the union l emma gives 
an evident respectful version of  this corollary. I t  closely resembles Thorn 's  1st isotopy 
theorem [35], [24] or again Rourke ' s  theorem [26] abou t  covering the t rack of  a PL  

isotopy. 

i8) A continuous map of metric (or compactly generated Hausdorff) spaces is closed if it is proper 
in the sense that the preimage of each compactum is compact. See [34]. Conversely for any topological 
spaces, a closed map with all point preimages compact is necessarily proper, cL [7; Chap I, w 
p. 115, p. 118 ex. 4, p. 164]. The proofs are trivial. 
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What the second complement 6.11 makes of this corollary is best stated as an 
isotopy extension theorem. 

THEOREM 6.17. EXTENSION OF LOCALLY FLAT ISOTOPIES. Adopt the 
category LOC. Let f t : M ~ Q, t e B -  [0, 1]", be a continuous family of  closed embeddings 
such that the map f :  M • B ~ Q x B given by (x, t ) ~  ( f t  (x), t) is closed, and locally 
flat in the following sense. For each point (y, a) in M x B there is an open neighborhood 
f ( y ,  a) Ux  N o f f ( y ,  a) and a local product chart (see 6.8) g: Ux N---r Q x B for Pz: 
a •  (see 6.10) so that g t f ~ ( y ) = f t ( y )  for all (y, t) in 

f - ~ ( U )  x N .  
For each t in B assume ~ ( Q ;  { f t m  } ) holds. (Recall that this is a local question in 

each pair (Q, f tM)  - cf. 2.2; so it is independant of t.) 
Provide that, for each point x outside a certain compaetum in M, f t  (x) is constant as 

t runs through B. 
Then for any bEB there exists a family F t : Q ~ Q ,  t~B so that F t f b = F t f o r  all 

t i nB .  
Indication of proof of  6.17. The second complement to the union lemma plus the 

proof of Corollary 6.15 together provide a local extension as in part (I) of 6.5. Deduce 
global extensions by imitating the proof of part (II) of 6.5. 

Fol iat ions  

For CAT = DIFF, PL or T O define a CAT foliation of a CAT object X with model B 
to the maximal family ~ of CAT submersions p,:  U, ~ B of open subsets U, covering 
X, subject to the compatibility condition for pairs p,,  pp in ~:  For each point x o in 
U ~  Ua there exists an isomorphism h of an open neighborhood ofp~(xo) in  B to 
one ofpa(xo)  so that h p , ( x ) = p p ( x )  for all x near x o. 

Every open subset U of X clearly inherits from ~ a foliation with model B denoted 

Consider the least equivalence relation N on X such that x ~ y  if, for some U,, it 
is true that x, y both lie in U,, p ,  (x) =p ,  ( y ) -  z and x, y lie in the same component of 
p~-~ (z). The equivalence classes are called leaves, and the decomposition space o f  

leaves (with quotient topology) is called the leaf space. 
The product foliation on F x  N, N open in B, is given by the submersionsp~: U, --* B 

compatible with Pz : F x  N ~  N c B .  If F is connected, the leaves are the sets F x  {t}, 
for t in N, and space of leaves is identified to N by Pz. 

A product chart for ~ is a product chart in the sense of 6.8 for one of the submer- 

sions in ~. 
A product chart for ~ can be described as an open CAT embedding q~: U x N ~  X 

carrying the product foliation to ~ [Image(q~). Hence cp carries leaves of U x N  

into leaves into leaves of  ~. 
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L E M M A  6.18. ( C A T = D I F F ,  PL or To). I f  r : U• N ~ F • B is a product chart 
for the product foliation on F x B, and U, F are connected, then there exists a unique 
CAT open embedding h making commutative the square 

U x N  ~ - ~ F x B  

N ~ B 

Proof. Indeed h is the map of leaf spaces induced by q~. Locally, it coincides with 
open CAT embeddings expressing compatibility of Image (q~)p2~-~ ~ N c  B with 
p2:FxB--*  B. 

Let F be a closed leaf of ~. Then F is easily seen to be a dosed CAT subobject of  
X. Suppose one has a retraction r : E ~  W of an open set of X onto an open subset 
W of F. We say that r is transverse to ~ near W if W is covered by open sets U such 
that there is product chart q~: Ux N ~  X for ~ about U (with r (x, b ) = x  for x in U) 
such that rq~(x, y)=~o(x,  b), for all (x, y) in Ux  N. Such a product chart ~0 is said 
to be parallel to r. Clearly r : E ~  W is a CAT microbundle with fiber germ the germ 
of B about b. The next proposition is a uniqueness lemma for such r. 

PROPOSITION 6.19. (CAT = D I F F ,  PL or To). Let ~ be a CAT foliation with 

model B of a CAT object X. 
Consider rl, r 2 : E ~ F  two CAT retractions of  an open set in X onto a closed leaf 

F o f  q~, both transverse to ~ near F. 
I f  CAT = T o, suppose that F~LOC,  and that ~ ( F )  holds. 
Suppose r 1 = r 2 near a closed subset A c F. Let C c F be a given compactum and let 

f2 be an open neighborhood of  C in E. 
Then there exists a retraction r'2 : E ' ~  F o f  an open set E '  to F transverse to ~ near 

F such that r'2 =r2 near A w C, and r'2 =rl  near A and outside f2. 
I f  B is Hausdorff and normal, then r'z can be obtained as hlrl where ht, 0<~ t <. 1, is a 

CAT isotopy of id [ E such that htfixes point in F, near A, and outside f2, and ht respects 

leaves (i.e. h*~ = ~ ) .  
Proof. Because of the relative form of this result, it suffices to give a proof  for all 

C in some base of  compact  neighborhoods in F. Thus we can assume that C and f2 lie 
in images of  product charts ~pl, q~2 for ~ about neighborhoods of C that are parellel 

to rl ,  r2 respectively, and in addition satisfy Image qh ~ I m a g e  ~Pz. 
This case is equivalent to assuming (1) ~ is the product foliation of F •  B =X, with 

Fidentified to F x  B say, (2) r 1 is projection F x  B ~ F, and (3) there is a product chart 
q~2: U x N ~  X about a neighborhood U of  C in F so that ~P2 is parallel to r 2. 

By Lemma 6.18 we can even assume that (4) cp 2 is a product chart forp2 : F x B ~ B. 
But in this situation the proposition follows immediately f rom Lemma 6.12 and 

Addendum 6.13. 
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In a standard way one deduces 

COROLLARY 6.20. (same data). UNIQUENESS OF TRANSVERSAL MICRO- 
BUNDLES. I f  B is Hausdorff and normal, there exists an isotopy ht, 0~<t~<l of 
id [ E through homeomorphisms mapping leaves to leaves so that 

(1) hlr2=tl  near W 
(2) h, ] F-- id  I F 
(3) h, (x) for x outside a prescribed neighborhood ofF.  

COROLLARY 6.21. (same data). EXISTENCE14). I f  F' is any closed leaf of  
there exists an open neighborhood E' o f F '  in X and a CAT retraction r ' :E '  ~ F "  
transverse to ~ near F' provided, for CAT = T o, that F' ~ LOC and ~ (F') holds. 

To deduce the second corollary note that such retractions exist to open subsets 
forming a covering { W~} of F'.  Inductive application of 6.19 combines them to give 
r'. For this application note that each (open!) component of W, is a closed leaf of 
X -  6 W~. Here 6 indicates frontier. 

The last corollary is exactly what is needed to complete the topological version of 
the classification (by holonomy) of foliated neighborhoods of a closed leaf in a folia- 
tion. 

HOLONOMY THEOREM 6.22. (well known for DIFF). Let M be a CAT mani- 
fold of  finite dimension (CAT =DIFF ,  PL or TOP) equipped with a CAT foliation 
with model RL Let F be a connected leaf of ~ that is closed in M and is a CAT 
submanifold. 

Then the germ of M about F is uniquely determined by the holonomy homorphism 
0 :~1 (F) ~ G to the germs of  CAT embeddings (R q, O) - ,  (RL 0). Uniquely determined 
means that if  primes indicate a similarly described situation and by chance F = F '  and 
0 = 0 ' ,  then there is a leaf-preserving CAT isomorphism of an open neighborhood of  F 
in M to one o f F '  in M '  that equals the identity on F=F' .  

O is defined by choosing a foliation chart about a base point * in F for which �9 
projects to 0 in R q and "sliding" a germ of it about loops in F based at *, always 
respecting leaves. (Lemma 6.17 is vital here.) 

For  clarifications and proof  see Haefliger [16, w 2.7] and [17, 298-301 and 303-304]. 
One could retain the generality of Proposition 6.19. 

D o u b l e  Fo l ia t ions  

There is a useful generalization of 6.19, 6.20, 6.21 that respects a second CAT folia- 

14) There is a stronger result that applies to all leaves at once, at least i fB  = Rr It maps Haefliger's 
abstract normal microbundle of  ~ into X giving an immersed normal microbundle to each leaf. One 
proof uses 6.23 locally. 
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tion 3 '  on X. Let 3 '  have model B' and suppose that 3 and 3 '  are mutually transverse 
(form a double foliation) in the sense that X is covered by open sets U equipped with 
isomorphisms r :B~ x Uo x B o -+ U (called double charts) where B~, B o are open in 
B', B respectively, such that 3 ' [  U is given by p l q ~ - l : U ~ B ' o c B  ', and 31 U by 
p3~o-i: U ~  BocB.  

There results a foliation 3 '  n 3 with model B' x B from the submersions (projec- 
tion)o r 1 : U ~ B' o • BomB' x B. 

Consider a (normal microbundle) retraction r:E-+ W to a closed leaf W of 3,  
which is transverse to 3. It  is said to respect 3 '  if W is covered by double charts 
q~: B~ x Uo x Bo ~ U =  E such that ~0 (B~ x U o x b) = U n W for some b ~ B o and r lrtp 
is projection to B~ • U o • b. 

PROPOSITION 6.23. ( C A T = D I F F ,  PL or To). The propositions 6.19, 6.20, 6.21 
remain valid when a foliation 3'  transverse to 3 is given and we alter both hypotheses 
and conclusions 1) by insisting that all retractions and isotopies mentioned respect 3' ,  
and 2) (when CAT- -  To) by supposing ~ ( Y) for the leaves 15) Y of 3 n 3'  rather than 
for leaves of 3. 

Proof of  6.23. Recall that the proof  of  6.19, 6.20, 6.21 boils down to local applica- 
tions of 6.12 and 6.13. But as we have observed under 6.11, the proposition 6.12 and 
6.13 have an appropriate respectful version, namely the version respecting the collec- 
tion S: of  fibers of  a projection p':F x B ~ B' to a cartesian factor of F i.e. F =  B' x Fo. 
This version comes from the respectful version of the isotopy extension principle 
denoted J ( F ;  5~ 5 e o = { a x F o l  a~B'} in 6.7 (cf. 6.6), or from ~ ( F ,  5ao) if 
CAT = T o. 

Caution. In the proof  of  6.23, when we work in a double chart U~-B'o • Uo • Bo 
with UnF=B'o x U o • b (F being a closed leaf of  3 for 6.19 generalized), we have to 
deal with certain open embeddings f :  V ~  U, where V c  U, which are known a priori 
to (thoroughly) respect the leaves of 3 ' .  Yet we need to know that f respects  the (more 
numerous) leaves b '  • (U 0 x Bo) of  3 '  [ U. A similar difficulty explains the counter- 
example 6.2. Fortunately we also know thatf f ixes  points of  UnF~-B '  o • Uo x b. And 
we can arrange that each leaf of  3 '  I Vis connected and meets B~ x U o x b. T h e n f m u s t  
respect the leaves of  3 '  I U, as desired. 

To show the way toward applications of  6.23 we give a corollary of generalized 
6.20 which can be regarded as a version of 6.15 (submersions are bundles) respecting 
a foliation. 

C O R O L L A R Y  6.24. ( C A T = D I F F ,  PL or To). Let 3, 3'  be a pair of mutually 

15) The leaves are CAT objects with the leaf topology obtained by aUowing as open each fiber 
of each submersion defining the foliation. 
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transverse CAT foliations on X, with models B, B' respectively. Suppose that ~ is given 
by a submersion p:X-* B. In case CAT = T o, suppose FELOC for each leaf of ~ and 
.@(Y) holds for each leaf of ~c~ ~'. Then, for any sigma-compact leaf F of ~, there 
exists a neighborhood U of F• in F x B ,  where b=p(F) ,  and an open embedding 
q~: U-* X such that 1) pq~ =p, and 2) ~p* ~ '  = {(~ '  ] F)  • B} [ U, where q~* ~' is the 
pullback of ~' by q~ and ~' [ F is the foliation on F induced by ~' (or by ~ c~ ~'). 

Proof of 6.24. By 6.21 and 6.23 there exists an open neighborhood E of F i n  X and 
a (microbundle) retraction r : E-* F transverse to ~ and respecting ~ ' .  

The map ~ : E - * F x B = X  given by ~p(x)=(r(x) ,p(x) ) i s  an immersion near F, 
hence an embedding on a smaller neighborhood of F. I f  E '  is a sufficiently small 
neighborhood of F we can define q~ as if-1 

qg:U = ~E'------~ E c X .  

This completes 6.24. 
CONSEQUENCES OF 6.24. (a). In case X = F x  B a n d p  is projection to B, 6.24 

asserts a local triviality of a family ~'t, t ~ B, of foliations on F. And if Fis  compact and 
B = [0, 1 ], we quickly deduce an isotopy qg,, 0 ~< t ~< 1, of id [ F so that q~* ~, = ~o for all t. 

(b) Suppose ~ '  comes from a family of s ubmer s ions f t :F~  B', teB, giving a sub- 
mersion f : F x B - * B ' x B  by f ( x ,  t ) = ( f , ( x ) ,  t). Then for any bounded open set 
UcF,  6.24 offers a CAT isotopy through open embeddings q~t: U-*F, t near b in B, 
such that q~* ~'t = ~  on U, and henceftq~t =fb for all t near b. This means that every 
reasonable family of submersions arises (locally) from pushing the source over itself. 16) 

(c) A relative form of 6.25 (coming from 6.19 and 6.23) implies the CAT isotopy 
extension principle J ( X ;  ~ )  for embeddings thoroughly respecting the leaves of  a 
CAT foliation ~ of X. For CAT = LOC one assumes ~ (Y), for each leaf Y of 
(with leaf topology). 

Line Fields Normal  to a Codimension One  Fol iat ion 

A foliation with model R q is regularly called a codimension q foliation. Consider 
a codimension q CAT foliation ~, CAT = (DIFF, PL or To), on a connected CAT 
object X. I f  C A T =  T O we assume X is Hausdorff, F~LOC,  and ~ ( F )  holds for each 
leaf F of ~ (with leaf topology). We enquire whether there exists a foliation ~ '  
transverse to ~ so that the leaves of ~ '  are q-manifolds (with leaf topology). Then ~ '  
clearly can have as model F where F is any leaf of ~, and the double foliation ~, ~:' 
looks locally like that on F x RL 

The answer is no in general. The Hopf  fibration S 3 -* S 2, regarded as a foliation of 
S 3 by circles, is a simple counterexample (suggested by Haefliger). If  there were a 

16) This fact was first proved by Gauld [15]. An open question: When does a merely continuous 
family f t, t ~B, of submersions X~ Y in LOC provide a submersion f : X  • B~ Y • B via the rule 
f(x, t) = ( f  t(x), t)? 
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transverse foliation each leaf would be a covering of  S 2, hence a copy of S 2 giving a 
section of the fibration - which does not exist. 

However we show ~ '  exists if q = 1. This is obvious (but useful) if CAT = D I F F ;  
just find a line field normal to ~ and integrate. The proof for PL and T O rests on the 
following relative uniqueness theorem for ~' .  I thank Harold Rosenberg for encourag- 
ing me to give a proof. 

THEOREM 6.25. (CAT = P L  or LOC). Given X and the codimension 1 foliation 

as above, consider ~1, ~2 two foliations by 1-manifolds, transverse to ~. 
Suppose ~ l = ~2 near a closed subset A c X. Let B c X be a compacturn and U c X 

an open neighborhood o f  N. Then there exists a third foliation ~'2 by 1-manifolds, 
transverse to ~ such that ~ ;  equals ~1 near A w B  and equals ~2 outside U. 

Proof of  6.25. In view of the strongly relative form of this proposition it suffices to 
prove it in case U belongs to a given base of neighborhoods of X. Thus we can and do 
assume that we have U = F  o x ( - 1 ,  1) relatively compact in X = F x  R, and that ~, 
~1 come respectively from projection to R and to F. 

Notice that the hypotheses give a foliation ~ defined (only) on some neighborhood 
V of  A w B w ( X -  U) satisfying all other conditions on ~ .  

Consider any leaf Ft = F x  t of ~. Now find a neighborhood Nt of t and a foliation 
by 1-manifolds ~ o f F x  Nt with model F s o  that ~ is transverse to ~, and equals ~ 
near A u B u ( X -  V). If  t is not in ( -  1, 1) we can and do choose ~ = ~2 I F x Nt. If  
t ~ ( - 1 ,  1), note that one some open neighborhood E of Ft the foliations ~1, ~2 are 
given by retractions rl, r2 : E ~  Ft transverse to ~. Then 6.19 offers another r~ :E '  ~ Ft 
whose foliation ~( r~)  would serve as ~ if E '  contains some F x  Nt. If  not, for Nt 
small, we can define ~ l  Wx N t = ~ 2 ( r ~ )  for an open neighborhood W of U in F 
with compact closure, and define ~ = ~ elsewhere in F x Nr 

Since [ ' -  1, 1] is compact there exists a subdivision - 1 = to < tl < t2 < ' "  < t~ = 1 
such that each interval Irk-l ,  tk] is contained in some N,  say Nt(k). Write ~2 (k) for 
~ k )  [ F •  [tk_l, tk]. The foliations 

~2 ] F x ( - - ~ ,  -- 1], ~2 (1), ~2 (2), ..., ~2 (s), ~2 I f  x [1, ~ )  

agree on the interfaces F x  to ..... F x  t~ and together define a CAT foliation ~ on X 
as required by 6.25. 

Remarks (a) Only the last paragraph of  this proof  breaks down for codimensions 
q > l .  

(b) This proof  does not quite work for DIFF. Our definition of ~ allows kinks 
in the leaves at the interfaces F x  t o .... , F x  tk. Fortunately, for C A T = P L  or LOC 
there is no trouble, because of X =  X 1 w X2 andf~,f2 are maps of the category defined 
on closed subobjects X 1, X 2 that agree on Xlc~X2, then there is a unique map of the 
category defined on X and extendingf~, f2- 
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THEOREM 6.26. ( C A T = P L  or LOC). Given X and a codimension l foliation 
as for 6.25, one can always f ind ~ '  a foliation by 1-manifolds, transverse to ~, provided 
X is sigma-compact. I f ~ "  is a given foliation by 1-manifolds transverse to ~ anddefined 
near a closed set C c X ,  then one can choose ~ '  equal ~" near C. 

Complement. The same result for foliations F with model R+ ={x Rlx >0 }, 
follows by the device of doubling (Unite two copies of X by identifying to its duplicate 
each leaf of ~ that must project to 0~R+). 

Proof of  6.26. Since ~ '  exists for ~ I U, where U is any chart for ~, this follows 
from the uniqueness theorem 6.25 by a routine argument. 

Theorem 6.25, 6.26 permit one to establish topological versions of many theorems 
about codimension 1 DIFF foliations - simply by inspecting existing proofs. The 
generalizations of 6.25, 6.26 respecting a foliation transverse to ~ (see 6.23) may also 
prove useful. 

Counting Compact CS Sets 
COUNTING THEOREM 6.27. There are only countably many (=No)  homeo- 

morphism classes of  (Hausdorff) compacta X such that each point of  X has an open 
neighborhood that is homeomorphic to a CS set (o f  w 1). 

Notice that this class of compacta includes compact manifolds, locally triangulable 
compacta, and compact CS sets. 

Cheeger and Kister counted compact manifolds in [10]. 
Proof o f  6.27 by induction on depth. Suppose the result has been proved for the 

smaller class cK d_ 1 of compacta covered by open sets that are (homeomorphic to) CS 
sets of depth ~< d -  1. Any compactum X e ~  d is covered by finitely many open CS sets 
of the form R m x C where C is a stratified open cone of depth ~<d. 

ASSERTION 6.28. Such a CS set R m x C is homeomorphic to one o f  No model CS 

sets $1, $2, $3 . . . . .  
Proof. By our induction on depth there are up to homeomorphism only No CS 

sets of the form T m+ 1 x L. In this proof L stands for a compact stratified set of depth 
~< d -  1, which may not be a CS set. Hence there are only N O such up to homeomorphism 
respecting projection of fundamental group to Z m+ 1 =zqTm+ 1. 

Now, passing to coverings with group Z m+l (as under 5.13 or in [34a, Theorem 
A]) and adding the m-sphere S m at infinity we find that there are up to homeomorphism 
respecting S m, only No CS sets of the form Sm*L. Then, by the open star uniqueness 
theorem 4.13, there are, up to homeomorphism, only N O CS sets of the form R m x cL. 
This proves the assertion. 

The following proposition now shows that up to homeomorphism there are 
~< N O sets in ~d and thus completes the induction to prove the counting theorem. Fix 
a finite collection A1, Az ..... A k of spaces in LOC so that ~(A~) hold 1 <~i<~k. 
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PROPOSITION 6.29. Up to homeomorphism there exist only countably many 
metric compaeta X such that X is expressible as a union of  open subsets A*, A~ .... , A~ 
with A* ~Ai ,  and dim X < oo. 

Proof of  6.29. In each A~ consider a compactum B~. In this proof  variable subscripts 
are understood to range through, 1, 2, ... k. Form a metric space Jr '  depending on 
Ai, B~, i = 1 .. . . .  k, as follows. A point of J r '  consists of a compactum X in separable 

Hilbert space H and embeddingsfi:Bi ~ H, such that X---u fiBi and each set ffl3i is 
open in X. We write {ft} for this point, X being determined as wf~[~ i. 

We install a rather fine metric 17 on Jr'. Let/3~ the Alexandroff one point compacti- 
fication o f /~  and fix a metric d i on/~;. Definefij to be the composed map Bi ~ X ~ / 3 j ,  
where the second map collapses X-f j ( /31)  to a point mapping the quotient to 
/]j under f j -  1. Define 

d ({fl}, {f[}) = ~2 sup {If  (x) - f i '  (x)]; x e B,} + ~ sup {dj (flj  (X), fi) (X)); X E Bi} 
i x i j  x 

Thus dg has a metric inherited as a subspace of l-/~ Map (Bi, H• • "'" • Now 
Mr' is separable since any subset of  a separable metric space is separable and Map (B, H)  
is clearly separable for any compactum B in an euclidean space E. (There is a countable 
dense subset consisting of  certain maps that extend to simplicial maps of a compact 
neighborhoods of B in E to finite dimensional subspaces of H). 

Clearly the proposition will follow when we show that, for each such space Jr 
~<N o compacta X up to homeomorphism occur as image sets X =  wf~B~. 

Consider the subset d~=Jt  ' x H consisting of points ({f~}, x) with x e X =  u~f~B~. 

ASSERTION 6.30. The (first factor) projection map ~: do ~ Jg is a (locally trivial) 
bundle map. 

Since Jr '  is separable it has a countable base of  open sets, hence also a countable 
base over which 7z is trivial. Thus n has up to homeomorphism ~< N o fibers which are 
just the image sets u f~Bi for {fi} ~Jg. Thus the assertion implies the theorem. 

Proof of  Assertion 6.30. According to 6.14, which characterises bundle maps with 
compact fiber, it suffices to show (a) that 7z maps closed sets to closed sets and (b) that 
rc is a submersion. 

To prove (a) let Ccdo be closed and consider a point { f ~ } ~ - n C .  Then the 
compactum 7r-1 { f~} = { f~} x u i f i  (Bi) lies in the open set d ~  C of g. As X = u i f l  (Bi) 
is compact, n - l { f i }  has a neighborhood in d o - C  of the form don{Ux W} where 
U c d t '  is a neighborhood of {fi} in ~ and W is a neighborhood of X in H. But if 
U is small, the metric on ~ '  dictates that, for every { fi'} e U, one has w~f~'B~ ~ W. Thus 
7 r - l U c S c ~ { U x  W } c d o - C .  Hence U c ~ f - T r C  and we conclude that ~ ' - T r C  is 

open proving (a). 

17) cf. A. Shilepsky's remark in [10]. 
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To prove  (b) consider the maps  O j : ~ l l x B j ~ g  given by Oj({f~},x)=({f~}, 
f j ( x ) ) e &  As nO~ is projection to ~ it is easily seen that  Oj is a homeomorph i sm 
onto its image. Also u j  O~ (Jr '  x / J  j )=@.  To verify that  n is a submersion with charts 
Oj  I ~ '  x/~.. we now check that  each Oj I ~ '  x/~j is an open mapping  into d ~. This 
amounts  to showing that  O~(J't' x / ~ )  c~ O~ (~r x/ l~)  is open in O~ (Jr '  x / ~ )  for any 
index values e, fl among  1 . . . . .  k. For  this it suffices to show that  if {f/} is fixed and 
f , (x)=fr  for some x~B, ,  ye/3a, then for any compact  neighborhood K of x in 
[J,c~f,-xfjJ~ there exists a neighborhood U of {fl} in J r '  so that  { f~ ' }~g  implies 
f~(Bp)=f" (K)i.e. [~a=f'p(K). But as {f[}  approaches  {fi} our choice of  metric on 
~r makes  f~a: B, ~ /3a  approach f,p, so U exists. This establishes the submersion. 

Assert ion 6.30 is now proved and with it Proposi t ion 6.29 and Theorem 6.27. 
Historical Remark 6.32. Cheeger and Kister observe in [10] [1, p.3] that  their 

counting argument  also gives the submersion characterisation (6.14) of  bundle maps  
with compact  fibers, a result that  had already been proved (as in 6.14) to show that  
a proper  (topological) Morse function on a manifold yields a handle decomposit ion.  
We prefer to deduce the counting f rom 6.14. 

Next we indicate two standard generalizations for the counting theorem 6.27. 

D E F I N I T I O N  6.33. I f  in the definition of  WCS set w 5, we insist that  each stratified 
mock  open cone C be regular in the sense that  it 

(i) be orderly in the sense of  5.8, 
(ii) be an isotopy regular neighborhood [32] of  its vertex v (in the category of  

stratified sets), is, 19) 

then we have the definition of  a so-called regular WCS set. 

C O M P L E M E N T  6.34 to 6.27. Theorem 6.27 remains valid if regular WCS sets 
replace CS sets. 

The only part  of  the p roof  of  6.27 requiring adjustment  is Assertion 6.28. The CS 
sets T m+l • L are replaced by regular WCS sets Tmx M where M is obtained f rom 
C -  v by gluing its ends in the manner  of  [30, w 5] respecting strata. Here Cis a stratified 
regular m o c k  open cone. To  complete the adjustment  of  6.28 one needs an isomorphism 
of  C -  v with the s tandard infinite cyclic covering 21~ of  M. To  get this follow the p r o o f  
of  [30, w and refer to [32]. 

C O M P L E M E N T  6.35 to 6.27. There are ~<No homeomorphism classes of compact 

18) Definition of an isotopy regular neighborhood as a nest of open sets each compressible 
towards v in the next larger [32] shows that (ii) implies (i) (always). 

19) Does (i) imply (ii)? If so, then regular would mean no more than orderly (see 5.8). A suffi- 
ciently general isotopy extension principle would prove this. 
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(Hausdorff) (n + 1)-ads (X; X~ . . . .  , Xn) (a 2-ad is a pair) in which each point has an 

open neighborhood homeomorphic (as (n + 1)-ad) to a regular W C S  (n + 1)-ad. 

Proof  o f  6.35. The adjus tments  to the p roo f  o f  6.27 and 6.34 required are strictly 

routine.  Theorem 6.14 is replaced by  its respectful version (see 6.16). 

Note that  the group H of  au tomorph i sms  of  such an (n + 1)-ad fixing X1 has coun-  

table h o m o t o p y  groups  n i H  since the maps  S i ~  H sufficiently near  a given map  are 

homotop ic  by 5.10, and H is separable.  Hence H is weakly h o m o t o p y  equivalent  to 

a countable  complex.  
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