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TOPOLOGICAL MANIFOLDS *

by L.C. SIEBENMANN

0. Introduction.

Homeomorphisms — topological isomorphisms — have repeatedly turned wp in
theorems of a strikingly conceptual character. For example :

(1) (19" century). There are continuously many non-isomorphic compact
Riemann surfaces, but, up to homeomorphism, only one of each genus.

(2) (B. Mazur 1959). Every smoothly embedded (n — 1)-sphere in euclidean
n-space R" bounds a topological n-ball.

(3) (R. Thom and J. Mather, recent work). Among smooth maps of one compact
smooth manifold to another the topologically stable ones form a dense open sat.

In these examples and many others, homeomorphisms serve to reveal basic rela-
tionships by conveniently erasing some finer distinctions.

In this important role, PL (= piecewise-linear)(**) homeomorphisms of simplicial
complexes have until recently been favored because homeomorphisms in general
seemed intractable. However, PL homeomorphisms have limitations, some of them
obvious ; to illustrate, the smooth, non-singular self-homeomorphism f: R + R

I
of the line given by f(x) = x + " exp (— 1/x*) sin (1/x) can in no way be regarded

as a PL self-homeomorphism since it has infinitely many isolated fixed points near
the origin.

Developments that have intervened since 1966 fortunately have vastly increased
our understanding of homeomorphisms and of their natural home, the category
of (finite dimensional) topological manifolds(***).1 will describejusta few of them
below. One can expect that mathematicians will consequently come to use freely
the notions of homeomorphism and topological manifold untroubled by the frus-
trating difficulties that worried their early history.

(*) This report is based on theorems concerning homeomorphisms and topological mani-
folds [44] 145] [46] [46 A] developed with R.C. Kirby as a sequel to [42]. T have reviewed
some contiguous material and included a collection of examples related to my observation
that 7, (TOP/PL) * 0. My oral report was largely devoted to results now adequately descri-
bed in [81], [82].

(**} A continuous map f : X = Y of (locally finite) simplicial complexes is called PL if
there exists a simplicial complex X' and a homeomorphism s : X' = X such that 5 and
{5 each map each simplex of X’ (affine) linearly into some simplex.

(***) In some situations one can comfortably go beyond manifolds [82]. Also, there has been
dramatic progress with infinite dimensional topological manifolds (sce [48]).
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1. History.

A topological (= TOP) m-manifold M™ (with boundary) is a metrizable topo-
logical space in which each point has an open neighborhood U that admits an open
embedding (called a chart) f: U >Ry ={(x,,...,x,) € R"x, > 0}, giving a
homeomorphism U = f(U).

From Poincaré’s day until the last decade, the lack of techniques for working with
homeomorphisms in euclidean space R™ (m large) forced topologists to restrict
attention to manifolds M™ equipped with atlases of charts f,: U~ R}, VU, =M,
(o varing in some index set), in which the maps fB [z ! (where defined) are especially
tractable, for example all DIFF (infinitely differentiable), or all PL (piecewise
linear). Maximal such atlases are called respectively DIFF or PL manifold struc-
tures. Poincaré, for one, was emphatic about the importance of the naked
homeomorphism — when writing philosophically [68, §§ 1, 2] — yet his memoirs
treat DIFF or PL manifolds only.

Until 1956 the study of TOP manifolds as such was restricted to sporadic
attempts to prove existence of a PL atlas (= triangulation conjecture) and its
essential uniqueness (= Hauptvermutung). For m = 2, Rado proved existence,
1924 {70} (Kerékjartd’s classification 1923 [38] implied uniqueness up to isomor-
phism). For m = 3, Moise proved existence and uniqueness, 1952 [62], cf. amisproof
of Furch 1924 [21}].

A PL manifold is easily shown to be PL homeomorphic to a simplicial complex
that is a so-called combinatorial manifold [37]. So the triangulation conjecture is
that any TOP manifold M" admits a homeomorphism 4 : M - N to acombinatorial
manifold. The Hauptvermutung conjectures that if # and A’ : M > N' are two
such, then the homeomorphism h'h~! : N = N' can be replaced by a PL. homeo-
morphism g : N -+ N'. One might reasonably demand that g be topologically isotopic
toh'h™ !, or again homotopic to it. These variants of the Hauptvermutung willreap-
pear in §5 and §15.

The Hauptvermutung was first formultated in print by Steinitz 1907 (see [85]).
Around 1930, after homology groups had been proved to be topological invariants
without it, H. Kneser and J.W. Alexander began to advertise the Hauptvermutung
for its own sake, and the triangulation conjecture as well [47] [2]. Only a misproof
of Noebling {66] (for any m) ensued in the 1930’s. Soberingly delicate proofs of
triangulability of DIFF manifolds by Cairns and Whitehead appeared instead.

Milnor’s proof (1956) that some ‘well-known’ S bundles over $* are homeomor:-
phic to S7 but not DIFF isomorphic to 57 strongly revived interest. It was very rele-
vant ; indeed homotopy theory sees the failure of the Hauptvermutung (1969) as
quite analogous. The latter gives the first nonzero homotopy group 7,(TOP/O)= Z,
of TOP/O ; Milnor's exotic 7-spheres form the second ,{TOP/O)= Z .

In the early 1960, intense efforts by many mathematicians to unlock the geo-
metric secrets of topological manifolds brought a few unqualified successes :
for example the generalized Shoenflies theorem was proved by M. Brown {7]
the tangent microbundle was developed by Milnor {60] ; the topological Poincaré
conjecture in dimensions = 5 was proved by M.H.A. Newman {65]. i
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Of fundamental importance to TOP manifolds were Cemnavskif’s proof in 1968
that the homeomorphism group of a compact manifold is locally contractible
[10] [11], and Kirby’s proof in 1968 of the stable homeomorphism conjecture with
the help of surgery [42]. Key geometric techniques were involved — a meshing idea
in the former, a particularly artful torus furling and unfurling idea(*) in the latter.
The disproof of the Hauptvermutung and the triangulation conjecture 1 sketch
below ‘uses neither, but was conceived using both. (See [44] [44 B] [46 A] for
alternatives).

2. Failure of the Hauptvermutung and the triangulation conjecture.

This section presents the most elementary disproof 1 know. 1 constructed it
for the Arbeitstagung, Bonn, 1969.

In this discussion B” = [— 1, 11" C R™ is the standard PL ball ; and the sphere
S" 1 = 38" is the boundary of B". T"=R"/Z" is the standard PL torus,the n-fold
product of circles. The closed interval [0, 1] is denoted I.

As starting material we take a certain PL automorphism o of B? x T",n23,
fixing boundary that is constructed to have two special properties (1) and (2) be-
tow. The existance of o was established by Wall, Hsiang and Shaneson, and Casson
in 1968 using sophisticated surgical techniques of Wall (see [35] [95]). A rather naive
construction is given in [80, §5], which manages to avoid surgery obstruction groups
entirely. To establish (1) and (2) it requires only the s-cobordism theorem and
some unobstructed surgery with boundary, that works from the affine locus
Q*: 25 +22+ 22 =1 in C3 This Q* coincides with Milnor's £; plumbing of
dimension 4 ; it has signature 8 and a collar neighborhood of infinity M3 x R,
where M? = SO(3)/A; is Poincaré’s homology 3-sphere, cf. [61, § 9.8].

(1) The automorphism B induced by a on the quotient T**" of B* x T"(obtai-
ned by identifying opposite sides of the square B?) has mapping torus

T =1x T {0,x)=(,80)N

not PL isomorphic to T3'" : indeed there exists(**)a PL cobordism (W ; T"*3, T(8))

and a homotopy equivalence of W to {I x T # Q U )} x T" extending the stan-

dard equivalences T**" ~ 0 x T*> x T* and T(8) ~ 1 x T* x T". The symbol ¥ in-
- dicates (interior) connected sum {41].

(2) For any standard covering map p: B* x T - B% x T" the covering automor-
phism o, of a fixing boundary is PL pseudo-isotopic to a fixing boundary. (Co-
vering means that pa, = ap). In other words, there exists a PL automorphism i of
(:0,1)x B2 x T" fixing I x 0B> x T" such that HIO x B> x T" = 0 x a and
Hlle’xT”—lxa,

---------------

(*) Novikov first explolted a torus furling idea in 1965 to prove the topological inva-
riance of rational Pontrjagin classes [67]. And this led to Sullivan’s partial proof of the
.Hauptvermutung [88]. Kirby’s unfurling of the torus was a fresh idea that proved revo-
'lutionary

(**) This is the key property. It explains the exoticity of T(f) — (see end of argument),
and the property (2) — (almost, see {80, § 5]).
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In (2) choose p to be the 2"-fold covering derived from scalar multiplication
by 2in R". (Any integer > | * would do as well as 2.) Letopy(= o), @, 0, . ..
be the sequence of automorphisms of B? x T" fixing boundary such that a,,,
covers a, , i.e. poy ., = o, p. Similarly define H,(= H) ,H,,H,, ... and note that
H, is a PL concordance fixing boundary from o, to a,,,. Next define a PL auto-
morphism H' of [0, 1) x B? x T" by making H'lla,,a,,,] x B*> x I, where

1
a, =1-— 7*’ cortespond to H, under the (oriented) linear map of la;,a,,,]

onto [0, 1] = /. We extend H' by the identity to [0, 1) x R? x T". Define another
self-homeomorphism H'" of [0, 1) x B> x T" by H" = ¢H ¢~ where

o, x,y)=G,(l—t)x,y)
Finally extend H" by the identity to a bijection
H':IxB*xT">IxB*xT1"

[t is also continuous, hence a homeomorphism. To prove this, consider a sequence
q,>9,,... of points converging to q = (¢,, x,,y,) in [ x B? x T" Convergence
H"(q,) —~ H"(q) is evident except when ¢, = 1,x, = 0. In the latter case it is
easy to check that p, H"(q,) > p,H"(q) = 1| and p,H"(q;) > p,H"(q) = 0 as
j = o, where p;,i=1,2,3 is projection to the i-th factor of I x B x T ltis

not as obvious that p,H"(q;) > p;H"(q) = y,. To see this, let
H,:IxB*xR">IxB*xR"
be the universal covering of H, fixing / x 3B* x R". Now
sup {Ipyz —pyH,z| ; z€10,1}x B*x R"}=D,
is finite, being realized on the compactum [ x B> x I". And, as ﬁ,, is clearly
0, ' H 6,, where 6,(t,x,y)=(t,x,2"y), we have D, =%,Do. Now D, is

> the maximum distance of p, H,, from p,, for the quotient metric on 7" = R"/Z"5;
so Dy = O implies p,H"(q;) = p3H"(q) =y, as | > oo

As the homeomorphism H" is the identity on / x 8B8% x T it yields a self-
homeomorphism g of the quotient / x T2 x T" =7 x I'**". And as ]

glox T =0xp ,
and g}l x T**" = identity, g gives a homeomorphism & of T{(B) onto
T(id) =7' x 77" = 73"

by the rule sending points (1,2) to g *(¢,z) ~ hence (0,2) to (0,6 "(2)) and "
(1,z2) to(l,2) _.

The homeomorphism h : T3" ~ T(B) belies the Hauptvermutung. Further, |
(1) offers a certain PL cobordism (W ; T2*#, T(B)). Identifying 72*" in W to T(ﬁ)l\
under h we get a closed topological manifold
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XM = {T'xT?#QUo}x T"

(= indicating homotopy equivalence).

If it had a PL manifold structure the fibering theorem of Farrell {19] (or the
author’s thesis) would produce a PL 4-manifold X* with w, (X*) = w,(X*)= 0
and signature (X" =o' x T? #Q U o) =0(Q U )= § mod 16, cf. [80 § 5].
Rohlin’s theorem [71] [40] cf. § 13 shows this X* doesn’t exist. Hence X**" has no
PL manifold structure,

Let us reflect a little on the generation of the homeomorphism h : T(8) =~ 73",
The behaviour of H" is described in figure 2-a (which is accurate for B® in place of
B? and for n = 1) by partitioning the fundamental domain / x B2 x I" according
to the behavior of H". The letter « indicates codimension | cubes on which H”
is a conjugate of o.

,. >

Figure 2a

B}

- Observe the infinite ramification (2"-fold) into smaller and smaller domains
converging to all of 1 x 0 x T”, In the terminology of Thom [92, figure 7] this
reveals the failure of the Hauptvermutung to be a generalized catastrophe !

Remark 2.1, — Inspection shows that & : T() =~ T*" is a Lipschitz homeo-
morphism and hence X**” is a Lipschitz manifold as defined by Whitehead [98]
-for the pseudogroup of Lipschitz homeomorphisms — see §4. A proof that
NT(ﬁ) T3*" (as given in [44]) using local contractibility of a homeomorphism
-group would not reveal this as no such theorem is known for Lipschitz homeo-
morphlsms Recall that a theorem of Rademacher [69] says that every Lipschitz
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homeomorphism of one open subset of R™ to another is almost everywhere
differentiable,

3. The unrestricted triangulation conjecture.

When a topological manifold adinits no PL manifold structure we know it is
not homeomorphic to a simplicial complex which is a combinatorial manifold
[37]. But it may be homeomorphic to some (less regular) simplicial complex
— i.e. triangulable in an unrestricted sense, cf. [79]. For example Q U oo (from §2)
is triangulable and Milnor (Seattle 1963) asked if (Q U o) x S? is a topological
manifold even though Q U o obviously is not one. If so, the manifold X an of
§ 2 is easily triangulated.

If all TOP manifolds be triangulable, why not conjecture that that every locally
triangulable metric space is triangulable ?

Here is a construction for a compactum X that is locally triangulable bul is
non-triangulable. et L,, L, be closed PL manifolds and

Wi L, xR,L,xR)

an invertible(*) PL cobordism that is not a product cobordism. Such a W exists for .
instance if n,L;=2Z,,, and L, =~ L, compare [78). It can cover an inver-

tible cobordism (W', L, x S', L, x §') [77, § 4]. To the Alexandroff compac-
tification W U oo of W adjoin {(L, x R) Uoo}x [0, 1] identifying each point -
(x, 1) in the latter to the point x in W U oo, The resulting space is X. See Figure 3-a. !
The properties of X and of related examples will be demonstrated in {83]. They

complement Milnor's examples [57] of homeomorphic complexes thatare PL (com-
binatorially) distinct, which disproved an unrestricted Hauptvermutung. '

{(Ly x RyU e} x [0, 1} «x0,1]

Figure 3a

(*) This means that W can be expressed as a union W = C; U C,, where C; is a cloSé(_ijl_'g
collar neighborhood of L; x R in W.
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~

4. Structures on topological manifolds.

Given a TOP manifold M"™ (without boundary) and a pseudo-group G of homeo-
morphisms (") of one open subset of R™ to another, the problem is to find and
classify G-structures on M™. These are maximal “G-compatible” atlases {U, , f,}
of charts (= open embeddings) f, : U, - R™ so that each fyf;' is in G. (Cf. [29]
or {48}.)

One reduction of this problem to homotopy theoretic form has been given
recently by Haefliger [28] [29]). Let G (M™) be the (polyhedral quasi-) space {(**)
of G-structures on M. A map of a compact polyhedron Pto G(M)is by definition
a G-foliation & on P x M transverse to the projection p,: P x M > P (i.e. its de-
fining submersions are transverse to p, )(***). Thus, for eacht € P, & restricts to a
G-structure on ¢ x M and, on each leaf of &, p, is an open embedding. Alsc note
that & gives a Gp-structure on P x M where G, is the pseudo-group of homeomor-
phisms of open subsets of P x R™ locally of the form (r,x) - (¢, g(x)) with
g€G. If G consists of PL or DIFF homeomorphisms and P = [0, [}, then
& gives (a fortiori) what is called a sliced concordance of PL or DIFF strustures
on M (see [45] [46]).

We would like to analyse G(M™) using Milnor’s tangent R™-microbundle 7 (M )of
M, which consists of total space E(rM) = M x M, projection p,: M x M > M, and
(diagonal) section 6 : M+ M x M ,8(x) = (x,x). Now if §" is any R™ micro-
bundle over a space X we can consider G*(¢) the space of G-foliations of E (§)
transverse to the fibers. A map P - G*(§) is a G-foliation & defined on an open
neighborhood of the section P x X in the total space E(P x §) = P x E (§) that is
transverse to the projection to P x X. Notice that there is a natural map

d: GM™ > GaM™)

which we call the differential. To a G-foliation & of P x M transverse to p,, it
assigns the G-foliation d¥ on Px M x M = E(P x v(M)) obtained from G x M

(*) e.g. the PL isomorphisms, or Lipschitz or DIFF or analytic isomorphisms. Do notcan-
fuse,G with the stable monoid ¢ = VU G, of § 5.5.

(*") Formally such a space X is a contravariant functor X : 2 - [P, X] from the categcry
of PL maps of compact polyhedra (denoted P, @ etc.) to the category of sets, which carries
uniqn to fiber product. Intuitively X is a space of which we need (or want or can) only
know the maps of polyhedra to it.

("*") A G-foliation on a space X is 2 maximal G-compatible atlas {V,, g,} of topological sub-
mersions g, : ¥V, = R™. (See articles of Bott and Wall in these proceedings.)Amap g : V - W
is a ropological submersion if it is locally a projection in the sense that for each x in ¥ there
exists an open neighborhood W, of g(x) in W a space F, and an open embedding onto a
neighborhood of x, called a product chart about x, v : F, x W, = V¥ such that gy is piojec-
tion p,: F, x W, = W, C W. One says that g is transverse to another submersiong’: ¥ > W'
if for each x, y can be chosen so that £, = W_ x F, and g’y is projection to W, an open subset
of W', This says roughly that the leaves (= fibers) of f and g intersect in general position.
Above they intersect in points.
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by interchanging the factors M. If P is a point, the leaves of d5i are simply
{(PxMxxix€eM}
Clearly d& is transverse to the projection P x p, to P x M.
THEOREM 4. 1. CLASSIFICATION BY FOLIATED MICROBUNDLES. — The differential
d: GM™) = G*(vM™)

is a weak homotopy equivalence for each open (metrizable) m-manifold M™ with no
compact components.

Haefliger deduces this result (or at least the bijection of components) from the
topological version of the Phillips-Gromov transversality theorem classifying maps
of M transverse to a TOP foliation. (See [29] and J.C. Hausmann’s appendix).

As formulated here, 4.1 invites a direct proof using Gromov’s distillation of im-
mersion theory {25] [26]. This does not seem to have been pointed out before,and
it seems a worthwhile observation, for 1 believe the transversality result adequate
for 4.1 requires noticeably more geometric technicalities. In order to apply
Gromov's distillation, there are two key points to check. For any C C M™, let
Gy (C) = inj lim {G(U)|C C U open in M}.

(1) For any pair A C B of compacta in M, the restriction map n - Gp(B) = Gy, (A)
is micro-gibki — i.e., given a homotopy f : P x I = Gy (A)and F : P x 0 = G, (B)
with 7F, = f|P x 0 there exists € >0 and F:Px [0,€] > Gy(B) so that
7nF = fIP x [0, €). Chasing definitions one finds that this follows quickly from
the TOP isotopy extension theorem (many-parameter version) or the relative local
contractibility theorem of 10} [17].

(2) d is a weak homotopy equivalence for M™ = R™. Indeed, one has a commu-_
tative square of weak homotopy equivalences

G (R™ -2 GLirR™)

:':'.l l:

~

G ®— G*(7R™10)

in which the verticals are restrictions and the bottom comes from ldenufymg
the fiber of 7R™|0 to R™, cf. [27).

Gromov’s analysis applies (1) and (2) and more obvious properties of G, Gt to
establish 4.1. Unfortunately, M doesn’t always have a handle decomposition over -
which to induct ; one has to proceed more painfully chart by chart. —1"

We can now pass quickly from a bundle theoretic to a homotopy classﬂicatlon
of G-structures. Notice that if f : X' = X is any map and ¥ isa R" mlcrobundle
over X equipped with a G-folitation &, transverse to fibers, defined on an opén=
neighborhood of the zero section X, then f* over X' is similarly equipped with,
a pulled-back foliation f*%. This means that equipped bundles behave much hke
bundles. One can use Haefliger’s notion of “gamma structure” as in [29] to deduce
for numerable equipped bundles the existence of a universal one (yg ,% ;) over a'
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base space By (*). Thfare is a map Brg) ~* Brop(, Classifing ¥ as an R™-
microbundle ; we make it a fibration. Call the fiber TOP(m)/I'(G). One finds that
there is a weak homotopy equivalence G* (§) ~ Lift(f to Brs)), to the space of
liftings o B, of a fixed classifying map f : X = Bygpy,,, for §”. Hence one
gets

THEOREM 4.2. — For any open topological m-manifold M™, there is a weak ho-
motopy equivalence G(M) == Lift (r to Bp¢,) from the space of G-structures G(M)
onM to the space of liftings to By, of a fixed classifying map map v : M = Byopy
forT(M).

Heafliger and Milnor observe that for G = CAT™ the pseudo-group of CAT
isomorphisms of open subsets of R™ — CAT meaning DIFF (= smooth C7),
or PL (= piecewise linear) or TOP (= topological) — one has

4.3) 7, (CAT)T(CAT™ N =0 , i<m

Indeed for CAT = TOP, 4.2 shows this amounts to the obvious fact that

7o (G ' x R™%)) = 0. Analogues of 4.2 with DIFF or PL in place of TOP can
be proved analogously (**) and give the other cases of (4.3). Hence one has

THEOREM 4.4, — For any open topological manifold M™, there is a natural bi-
jection 1, CAT™(M™) == wy Lift (7 to Boag(my)- -
This result comes from [44] for m = 5. Lashof [50] gave the first proof that was
valid for m = 4. A stronger and technically more difficult result is sketched in
- [63] [45]. It asserts a weak homotopy equivalence of a “sliced concordance”
vatiant of CAT™(M™) with Lift (7 to Bcape))- This is valid without the openness
restriction if m # 4. For open M™ (any m), it too can be given a proof involvinga
‘micro-gibki property and Gromov’s procedure,

5. The product structure theorem.

THEOREM 5.1 (Product structure theorem). — Let M™ be a TOP manifold, Ca

* closed subset of M and o, a CAT (= DIFF or PL) structure on a neighborhood of

~Cin M Let T be a CAT structure on M x R® equal 64 x R® near C x R°. Provide
that m = 5 and oM C C.

Then M has a CAT structure o equal o, near C. And there exists a TOP isotopy
(a5 small as we please) h,: My x R°=> (M x R*)5 ,0< 1t <1, of hy = identity ,
" fixing a neighborhood of C x R*, to a CAT isomorphism h, .

1t will appear presently that this result is the key to TOP handlebody theory and
transversality, The idea behind such applications is to reduce TOP lemmas to their
DIFF analogues.

‘(*) Alternatively, for our purpose, Bp., can be the ordered simplicial complex having
one’d-simplex for each equipped bundie over the standard d-simplex that has total space in
some R" C R™,

’ (":*)The forgetful map o : Br(m."') = Bpy (my is more delicate to define. One can make

BI‘(I;Lm) a simplicial complex, then define v simplex by simplex.
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It seems highly desirable, therefore, to prove 5.1 as much as possible by pure geo-
metry, without passing through a haze of formalism like that in § 4. This is done
in [46]. Here is a quick sketch of proof intended to advertise [46].

First, one uses the CAT s-cobordism theorem (no surgery !) and the handle-
straightening method of [44] to prove — without meeting obstructions —

THEOREM 5.2 (Concordance implies isotopy). — Given M and C as in 5.1, con-
sider a CAT structure I' on M x I equal 04 x I near C x I, andlet ' \M x 0 be cal-
led 0 x 0. (I' is called a concordance of o rel C).

There exists a TOP isotopy (as swmall as we please) hy: M, x I > M x D);,
0<1t <1, of hy = identity, fixing M x 0 and a neighborhood of C x I, to a CAT
isomorphism h, .

Granting this result, the Product Structure Theorem is deduced as follows.

In view of the relative form of 5.2 we can assume M = R™. Also we can assume
s = | (induct on s !). Thirdly, it suffices to build a concordance I' (= structure on .
M x R® x I) from o x R® to 2 rel C x R®. For, applying 5.2 to the concordance I’
we get the wanted isotopy. What remains to be proved can be accomplislied quite
elegantly. Consider Figurq S-a.

Cross harching indicales co-incldence
with . Double vertical hatching ln-

T‘:V;; ';‘,if:‘J:z. ;';:Ef'“’ “‘jj‘“" ’:_}
; ;5// | l
%% | RN
w2z
4_5_44/// %/////A
T ’?77:""}
ol gl
e
?////// l// // |
m////z ga7ai11

Figure 5a
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We want a concordance rel C x R from ¥ to o x R. First note it suffices to
build £, with the properties indicated. Indeed Z, admits standard (sliced) concor-
dances rel C x R to ¢ x R and to Z. The one to 0 x R comes from sliding R over
itself onto (0, o). The region of coincidence with ¢ x R becomes total by a sort
of window-blind effect. The concordance to £ comes from sliding R over itself
onto (—o°,— 1). (Hint : The structure picked up from X, at the end of the slide
is the same as that picked up from X).

It remains to construct £,. Since M x R = R™! we can find a concordance
(not rel C x R) from X to the standard structure, using the STABLE homeomor-
phism theorem(*) [42]. Now 5.2 applied to the concordance gives Z,, which is
still standard neer M x [0, =). Finally an application of 5.2 to Z,IN x [~ 1, 0],
where N is a small neighborhood of C, yields Z,. The change in Z,[M x O (which
is standard) on N x O offered by 5.2 is extended productwiseover M x [0, ).
This completes the sketch.

It is convenient to recall here for later use one of the central results of [44].
Recall that TOP,/PL,, is the fiber of the forgetful map By m) = Bropem)- And

TOP/PL is the fiber the similar map of stable classifying spaces By = Bigp- Si-
milarly one defines TOP,,/DIFF,, = TOP, /O, and TOP/DIFF = TOP/O.

THEOREM 5.3(**) (Structure theorem).— TOP/PL ~ K (Z,, 3) and
7, (TOP, /CAT,) = n, (TOP/CAT)

for k <m and m 2 5. Here CAT = PL or DIFF.

Since 7,(0,,) = 7, (O) for k <m, we deduce that =, (FOP,TOP,) =0 for
k<m>5, a weak stability for TOP .

Consider the second statement of 5.3 first. Theorem 4.4 says that

7, (TOP, /CAT, ) = my(CAT™(S* x R™*)) = s™

for k <m >5. Secondly, 5.1 implies S} = S7*! = §7" =-...m > k. Hence
7, (TOP, /CAT,,) = m, (TOP/CAT).

We now know that m, (TOP/PL) is the set of isotopy classes of PL structures on
S* if &k > 5. The latter is zero by the PL Poincaré theorem of Smale [84], combined
with the stable homeomorphism theorem [42] and the Alexander isotopy. Simi-
larly one gets @, (TOP/DIFF) = ©, for k = 5. Recall 85 = 6, = 0 [41].

. The equality =, (TOP/PL) = =, (TOP/DIFF) = m, (K(Z,,3)) for k<5 can be
-deduced with ease from local contractibility of homeomorphism groups and the

sutgical classification [35] [95], by H3(T® ; Z,), of homotopy 5-tori. See [43]
[46 A] for details.

’ g-’Combining the above with 4.4 one has a result of [44].

-------------

(*) Without this we get only a theorem about compatible CAT structures on STABLE
mgnifolds (of Brown and Gluck [8]).

" (**) For a sharper result see [63] [45), and references therein.
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CLASSIFICATION THEOREM 5.4. — For m1 2 5 a TOP manifold M™ (without boun-
dary) admits a PL manifold structure iff an obstruction A(M) in H ‘M 3 2Z,)
vanishes. When a PL structure T on M is given, others are classified (up to concor-
dance or isotopy) by elements of H*M ; Z,).

Complement. — Since @, (TOP/DIFF) = m, (TOP/PL) for ¥ < 7 (see above calcu-
lation), the same holds for DIFF in low dimensions.

Finally we have a look at low dimensional homotopy groups involving
G = lim{G,|n = 0}

where G, is the space of degree*! mapsS™~! - §"~!_ Recall that n,G = TekS s
k large. G/CAT is the fiber of a forgetful map Bo,p — B¢, where Bg is a stable
classifying space for spherical fibrations (see [15], [29]).

.1r4G 0
N /\
zZ —

7,G/0 > m,G/TOP 2] onto

/ | onto
1r4TOP/Ol al 7, TOP/O 0/ J 1 \z
) 2
\ 7 AN /

7,0 — @, TOP ZoZ,

Z —
4 (onto) \ -
Z5

Ty G

The left hand commutative diagram of natural maps is determined on the right.
Only #;TOP is unknown(*). So the exactness properties evident on the left

leave no choice. Also @ must map a generator of ,G/TOP = Z to (12,1) in_
Z © Zj2Z = w,TOP. :

The calculation with PL in place of O is the same (and follows since 7, (PL/O) = '
I, = 0fori<6).

6. Simple homotopy theory [44] [46 A}

The main point is that every compact TOP manifold M (with boundary aM)"
has a preferred simple homotopy type and that two plausible ways to define
it are equivalent. Specifically, a handle decomposition of M or a combinatorial "

triangulation of a normal disc-bundle to M give the same simple type. -

The second definition is always available. Simply embed M in R", n large;:
with normal closed disc-bundle E [31]. Theorem 5.1 then provides a small ho-.
meomorphism of R" so that #(9E), and hence # (E), is a PL submanifold.

...............

(*) That 7,G/TOP is Z (not Z @ Z,) is best proved by keeping track of some normalé
invariants in disproving the Hauptvermutung, see [46A]. Alternatively, see 13.4 below.
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Working with either of these definitions, one can see that the preferred simple
type of M and that of the boundary oM make of (M, oM) a finite Poincaré
duality space in the sense of Wall [95], a fact vital for TOP surgery.

The Product structure theorem 5.1 makes quite unnecessary the bundle theoretic
nonsense used in [44] (cf. [63]) to establish preferred simple types.

7. Handlebody theory (statements in {44 C] [45], proofs in [46 A]).

7.1. The main result is that handle decompositions exist in dimension > 6.
Here is the idea of proof for a closed manifold M™, m > 6. Cover M™ by finitely
many compacta 4,,...,4,, each 4, contained in a co-ordinate chart U, ~ R™.
Suppose for an inductive construction that we have built a handlebody H C M
containing A,V ...UA,,,,i =>0. The Product Structure Theorem shows that
HNU; can be a PL (or DIFF) m-submanifold of U; after we adjust the PL
(or DIFF) structure on U;. Then we can successively add finitely many handles
onto H in U, to get a handlebody H’ containing 4, U ... UA,. After k steps we have
a handle decomposition of M.

A TOP Morse function on M™ implies a TOP handle decomposition (the con
verse is trivial) ; to see this one uses tlie TOP isotopy extension theorem to prove
that a TOP Morse function without critical points is a bundle projection. (See
[12] [82, 6.14] for proof in detail).

Topological handlebody theory as conceived of by Smale now works on the model
of the PL or DIFF theory (either). For the sake of those familiar with either, [ des-
cribe simple ways of obtaining transversality and separation (by Whitney’s method)
of attaching spheres and dual spheres in a level surface.

LEMMA 7.2. (Transversality). — Let g : R®" > R™, m > 5, be a STABLE ho-
meomorphism. In R™, consider R? x 0 and Ox R, p + q=m, with ‘ideal’
transverse intersection at the origin. There exists an eisotopy ofgtoh : R™ - R"™
such that h(RP x Q) is transverse to 0 x R? is the following strong sense. Near
each point x € h~ (0 x R") N R? x 0, h differs from a translation by at most a
homeomorphism of R™ respecting both R? x 0 and 0 x R9.

Furthermore, if C is a given closed subset of R™ and g satisfies the strong trans-

“versality condition on h above for points x of R™ near C, then h can equal g near
C.

Proof of 7.2 — For the first statement €/2 isotop g to diffeomorphism g' using
Ed Connell's theorem [14] (or the Concordance-implies-epsilon-isotopy (heorem
.5.7), then €/2 isotop g' using standard DIFF techniques to a homeomorphism h’'
which will serve as h if C = Q.

“ The further statement is deduced from the first using the flexibility of homeo-
-morphisms. Find a closed neighborhood C' of C near which g is still transverse
such that the frontier C' misses g7 '(0 x R?) N (R® x 0) — which near C is a
discrete collection of points. Next, find a closed neighborhood D of C' also missing
270 x R7) N (R? x 0), and § : R™~ (0, ) so that d(gx, 0 x R) <8 (x) for
X in DO (R? x 0). If e - R™ - (0, ) is sufficiently small, and &' in the first pa-
ragraph is built for e, Cernavskii’s local contractibility theorem {11} (also [17]
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and [82, 6.3]) says that there exists a homeomorphism h equal g on C' and equal
h' outside C' U D so that d(h', g) < §. This is the wanted h.

7.3. THE WHITNEY LEMMA.

The TOP case of the Whitney process for eliminating pairs of isolated transverse
intersection points (say of M? and N7) can be reduced to the PL case [99] [37].
The Whitney 2-disc is easily embedded and a neighborhood of it is a copy of
R™,m = p + q. We can arrange that either manifold, say M?, is PL in R™, and(*)
N7 is PL near M? in R™. Since 5 <r1 = p + g, we can assume ¢ < m/2 ; so N9
can now be pushed to be PL in R™ by a method of T. Homma, or by one of R.T.
Miller [54 A), or again by the method of [44], applied pairwise [44 A] (details in
[73]). Now apply the PL Whitney lemma [37]. On can similarly reduce to the ori-
ginal DIFF Whitnev lemma [99).

7.4. CONCLUSION,

The s-cobordism theorem [37} [39], the boundary theorem of [76], and the .
splitting principle of Farrell and Hsiang [20] can now be proved in TOP with the
usual dimension restrictions.

8. Transversality (statements in {44 C] [45], proofs in [46 A}).

If f: M™ > R" is a continuous map of a TOP manifold without boundary to"
R" and m — n > 5, we can homotop f to be transverse to the origin 0 € R". Here
is the idea. One works from chart to chart in M to spread the transversality,
much as in building handlebodies. In each chart one uses the product structure
theorem 5.1 to prepare for an application of the relative DIFF transversality .
theorem of Thom.

Looking more closely one gets a relative transversality theorem for maps
S M™ > E@#") with target any TOP R”-microbundle §" over any space. Itis.
parallel to Williamson’s PL theorem [100}, but is proved only form ¥4 #¥m —n.
It is indispensible for surgery and cobordism theory.

9. Surgery.

Surgery of compact manifolds of dimension 2 5 as formulated by Wall [95]
can be carried out for TOP manifolds using the tools of TOP handiebody theory.
The chief technical problem is to make the selfintersections of a framed TOP
immersion f : S* x R¥ > M?* of S, k > 3, transverse (use Lemma 7.2 repeatedly),.
and then apply the Whitney lemma to find a regular homotopy of f to an embed-
ding when Wall’s self-intersection coefficient is zero. "

In the simply connected case one can adapt ideas of Browder and Hirsch [4],_-

Of course TOP surgery constantly makes use of TOP transversality, TOP simp_!é '
homotopy type and the TOP s-cobordism theorem.

B I T T S Y

(*) Use of the sirong transversality of 7.2 makes this trivial in practice.
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10. Cobordism theory : generalities.

Let 2TOF [respectively S257°°] be the group of [oriented] cobordism classes
of [oriented] closed n-dimensional TOP manifolds. Thom’s analysis yields a ho-
momorphism

0, : 2,°7 > 7, (MTOP) = lim =, (MTOP (k))
k

Here MTOP (k) is the Thom space of the universal TOP R*-bundle v§,, over
Bropgy — obtained, for example, by compactifying each fiber with a point
(cf. [49]) and crushing these points to one. The Pontrjagin Thom definition of
0, uses a stable relative existence theorem for normal bundles in euclidean space —
say as provided by Hirsch [30] and the Kister-Mazur Theorem [49].

Similarly one gets Thom maps
0,: Q370" > 7 (MSTOP), and @, :QSPINTOP 4 (MSPINTOP),

and more produced by the usual recipe for cobordism of manifolds with-a given,
special, stable structure on the normal bundle {86, Chap. 1I].

TueoreM 10.1. — In each case above the Thom map 6, : 2, ~ 1r,,(M ) is surjec-
tive for n # 4, and infective for n % 3.

This follows immediately from the transversality theorem.

PrOPOSITION 10.2. — Bg,, ® Q = Beyop © Q, where Q denotes the rational num-
bers.

Proof. — n,(STOP/SO) = w,(TOP/O) is finite for all i by [40] [44] ef. § 5,
STOP/SO being fiber of Byg—> Bgyop. (See §15 or [90] for definition of & Q).

Prorosition 10.3. — 7, MSO ® Q = 7, MSTOP @ Q.

Proof. — From 10.2 and the Thom isomorphism we have

H,(MSO ; Q) = H,(MSTOP ; Q)
Now use the Hurewicz isomorphism (Serre’s from [75]).
ProrosiTion 10.4. — SZ,S,O ® Q= ﬂfmp ® Q each being therefore the polyno-

mial algebra freely generated by CP,,,n 2 1.

Proof of 10.4, — The uncertainty about dimensions 3 and 4 in 10.1 cannot pre-
vent this following from 10.2. Indeed, Q25" - ,MSTOP is injective because
every TOP 3-manifold is smoothable (by Moise et al., cf. [80, § 5]). And

QST & 7, MSTOP

is rationally onto because £35°— m,MSTOP is rationally onto.

Since w,(STOP/SPL) = w,(TOP/PL) is Z, for i = 3 and zero for i # 3 the above
three propositions can be repeated with SPL in place of SO and dyadic rationals
Z[1}) in place of Q. The third becomes :
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ProrosiTioN 10.5. — 2" & Z[1] = 97 & Z[1].
Next we recall

PrOPOSITION 10.6. — (S.P. Novikov). 250 - QSTOF js jnjective.

This is so because every element of £25° is detected by its Stiefel-Whitney

numbers (homotopy invariants) and its Pontrjagin numbers (which are topological
invariants by 10.2).

In view of 10.2 we have canonical Pontrjagin characteristic classes p, in
A% (Bgrop : Q) = H*(Bsg 3 Q)

and the related Hirzebruch classes L, = L, (p,,...,p,) € H* . Hirzebruch sho-
wed that L, : S5 ® Q - @ sending a 4k-manifold M** to its characteristic num-
ber L, (M*) =L, (r(M*))(M*] € Q is the signature (index) homomorphism.
From 10.2 and 10.4, it follows that the same holds for STOP in place of SO. Hence
we have

PropoSITION 10.7. — For any closed oriented TOP 4k-manifold M** the signa-
ture o (M*¥) of the rational cohomology cup product pairing H ke H* > H* = @
is given by o (M**) = L (+M**)[M¥] e Z.

11. Oriented cobordism.

The first few cobordism groups are fun to comnpute geometrically — by elemen-
tary surgical methods, and the next few pages are devoted to this.

TueoreM 111 — Q5% ~ Q%% o R, forn <7, and we have R, = 0 forn <3 ,
R, <Z,Ry=0,R,=Z, R,<Z,.

Proof of 11.1. —For n=1,2,3,Q5 = Q%° = 0 is seen by smoothing.

For n = 4, first observe that Z = ﬂio -> ﬂfw" maps Z to a summand because
the signature of a generator CP, is 1 which is indivisible. Next consider the Z,
characteristic number of the first stable obstruction A € H* (Bgtop 3 Z,) to smoo-
thing. It gives a homomorphism 57°F -+ Z, killing 3°. If

AMH=ACM*) MY =0

then, by 5.3, M* x R has a DIFF structure . Push the projection (M* x R); - R
to be transversal over 0 € R at a DIFF submanifold M' and behold a TOP oriented”
cobordism M to M'. Thus R, < 0. '

For n > 5§ note that any oriented TOP manifold M" is oriented cobordant to a
simply connected one M’ by a finite sequence of 0 and !-dimensional surgeries..
But, forn = 5,H*(M' ;Z,) = H,(M' ; Z,) = 050 M’ is smoothable. Hence Ry = 0.

For n = 6 we prove

PROPOSITION 11.2. — The characteristic number Aw, : QUg°" > Z, is an iso-
morphism.
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Proof. — It is clearly non-zero on any non-smoothable manifold M6 ~ Cp,,
since w,(M®) = w,(CP;) # 0, and we will show that such a M® exists in 15.7
below.

Since 50 = 0 it remains to prove that Aw, is injective. Suppose Aw, (M®) = 0
for oriented M®. As we have observed, we can assume M is simply connected.
Consider the Poincaré dual DA of A = A(TM) in

H,(M® ;2,) =H,(M®;Z)'® Z, = m,(M%) ® Z,

and observe that it can be represented by a locally flatly embedded 2-sphere § C M°.
(Hints : Use [24], or find an immersion of S? x R* [52] and use the ideaof Lemma
7.1).

Note that A[(M — S)= A(M — §) is zero because A[x] = x «-DA (the Z, in-
tersection number) for all x € H,(M ; Z,). Thus M — § is smoothable.

A neighborhood of S is smoothed, there being no obstruction to this ; and §
is made a DIFF submanifold of it. Let N be an open DIFF tubular neighborhood
of §. Now Q0 = Aw,[M] = w,[DA] = w,(S] means that w,(vM)|S is zero. Hence
N = S? x R*. Xilling S by surgery we produce M’, oriented cobordant to M, so
that, writing My = M — S® x B*, we have M’ = M, + B® x S (union with boun-
daries identified). Now M’ is smoothable since M, is and there is no further obstruc-
tion. As 25° = 0, Proposition 11.2, is established.

ProPOSITION 11.3. — The characteristic number (BAYw, : Q5% > Z, is injec-
tive, where § = Sq*.

Proof of 11.3. — We show the (BA)w,[M] = 0implies M7 is a boundary. Just as
for 11.2, we can assume M is simply connected. Then 7,M = H,(M ; Z)and we can
kill any element of the kemel of w, : H,(M ;Z)—~ Z,, by surgery on 2-spheres in
M. Killing the entire kernel we arrange that w, is injective.

We have 0 = (fA)w,[M]} = w,|DBA]. So the Poincaré dual DA of BA is
‘7810 as w, is injective.

Now BA = 0 means A is reduced integral ; indeed § is the i&ockstein
§:H*M ;Z,) >H'M, Z)
‘followed by reduction mod 2. But
HSM:Z)=H M Z,), since H,(M ;Z) = H,(M ; Z,)

(both isomorphisms by reduction). Thus A = 0 implies 6A = 0, which means;

A is reduced integral. Hence DA is reduced integral. Since the Hurewicz map

“wgM—~ Hy(M ; Z) is onto, DA is represented by an embedded 3-sphere S. Follo-,
‘wing the argument for dimension 6 and recalling 7,0 = 0, we can do surgery onS

:lto obtain a smoothable manifold.

i
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12. Unoriented cobordism (*).

Recalling calculations of € and Q3° from Thom [91] we get the following
table

i 4 5 6 7
Q° z z, 0 0
QorQl =R, | <z, 0 z, R,<Z,
Q? Z,ez, |2,12,92,92, z,
QoF Q0 <R,<Z| z, zZ,92, Z,82,0R,

The only non zero-entry for 0 <7 < 4 would be 2 = Z,.

To deduce the last row from the first three, use the related long exact sequences
(from Dold {16])

@, ), d) ]

=0 -9 QpP, e, »Qf, ~...

(12.1) 4 ¢ \ {

.~ QSTOP_, QTOP @.4) QSTOP o QTOF I, QsTor s

I transversality fails 7,(M ?) should replace €] in the TOP sequence. (See
{93, §6], [3] for explanation).

All the maps are forgetful maps except those marked j and (3, d). The map
j kills the second summand, and is multiplication by 2 on the first summand (which
is also the target of ).

At the level of representatives, 0 maps M ! to a submanifold M'~?! dual to w, W,
and d maps M' to M'~? c M'~" dual to w, (M")IM'~!

The map d is onto with left inverse ¢ defined by associating to M2 the RP2
bundle associated to A ® €2 over M'~2, where A is the line bundle with

W) =w, (M%)
and €? is trivial.
The diagram (12.1) gives us the following generators for S, = Q7°7/Q?.
S, <Z,:Any M* with A(M) # 0---if it exists.
S, =Z,: Any M*® detected by Aw,.
S, = Z, ® Z,:Non-smoothable M}§ =~ CP;, detected by Aw, ;
M5 = RP, x (Q U =)

-------------

(*) Added in proof : A complete calculation of §2TOPhasjust been announced bmemﬁe}
Madsen and Milgram (Bull. AMS to appear)
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detected by Aw?. M$ x R can be RP, x X5, where X* is the universal covering
of a manifold constructed in [80, § 5].

S, =2Z, ® R,:M] = pM] detected by Awj; M] is detected by Aw,w,,
M7 = T(p), the mapping torus of an orientation reversing homeomorphism of
M$ ~ CP, homotopic to ‘complex conjugation in CP,. Such a p exists because con-
jugation doesn’t shift the normal invariant for M§ =~ CP, in [CP,, G/TOP]. Finally
M? a generator of R, detected by (BA)w, (if it exists).

13. Spin cobordism.

The stable classifying space Bgpnyop 15 the fiber of w,: Bgpop = K(Z;,2) .
So , Bgpyrop 15 0 for i <3 and equals 7, Bqp for i = 3. Topological spin cobor-
.dism is defined like smooth spin cobordism §25™" but using TOP manifolds. Thus
QSPINTOP i¢ the cobordism ring for compact TOP manifolds M equipped with
a spin structure — i.e. a lifting to Bgp yrop Of 2 classifying map M = Byq, for 7(M)
— or equivalently for the normal bundle v(M).

TueoreM 13.1. — For n <7, "N s isomorphic to 5™, which for
n=90,1,...,8 has the values Z ,2,,2,,0,Z,0,0,0,Z o Z [59] [86). The
image of the forgetful map Z = SU5*™ - Q5NTOP = 7 i the kernel of the stable
triangulation obstruction & : SQUSFINTOP = Z,,

The question whether A i3 zero or not is the question whether or not Rohlin’s
congruence for signature o (M*) = 0 mod 16 holds for all topological spin mani-
folds M*. Indeed o (M*) = 8A(M*) mod 16, A(M*) being 0 or 1.

Proof of 13.1. — The isomorphism Q5PNTOF = Q5PN for , < 3 comes from
smoothing.

Postponing dimension 4 to the last, we next show ﬂiP'NTOP/.QimN =0 for
n =15,6, 7. Note first that a smoothing and a topological spin structure determine
a'unique smooth spin structure. The argument of § 11 shows that the only obstruc-
tion to performing oriented surgery on M" to obtain a smooth manifold is a charac-
feristic number, viz. 0, Aw,, (BA)w, forn = 5, 6, 7 respectively. But w,(M") = 0
for any spin topological manifold. It remains to show that the surgeries can be
performed so that each one, say from M to M’, thought of as an elementary co-
bordism (W"*': M", M'™), can be given a topological spin structure extending that
of M. The only obstruction to this occurs in H>(W , M ; Z,), which is zero except
if the surgery is on a I-sphere. And in that case we can obviously find a possibly
different surgery on it (by spinning the normal bundle !) for which the obstruction
is zero.

Finally we deal with dimension 4. if A(M*) = 0 for any spin 4-manifold, then
M? is spin cobordant to a smooth spin manifold by the proof of 11.1. Next sup-
pose M* is a topological spin manifold such that the characteristic number A(M *)
is.not zero. If we can show that o(M*) = 8 A(M*) mod 16 the rest of 13.1 will
follow, including the fact that Q3PNTOP = Z rather than Z @ Z,. We can assume
M?* connected (by surgery).
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LEMMA 13.2. — For any closed connected topological spin 4-manifold M*, there
exists a (stable) TOP bundle £ over S* and a degree | map M ~ S* covered by a
TOP bundle map v(M)—> £. This & is necessarily fiber homotopically trivial A
similar result (similarly proved) holds for smooth spin manifolds.

Proof of 13.2. — Since any map My, =M — (point) = Bgpnrop 1S contractible,
v(M)IM, is trivial, and so »(3:) - & exists as claimed. Now £ is fiber homotopically

trivial since it is — like v(M) — reducible, hence a Spivak normal bundle for S*,
(Cf. proof in [40].)

LEMMA 13.3. — A fiber homotopically trivialized TOP bundle & over the 4-sphere
1
is (stably) a vector bundle iff 3 P, () [S°] = 0 mod. 16.

1
Proof of 13.3. — Consider the homomorphism — 3 p,: 7,G/TOP = Z given by
1 )
associating the integer 3 p, ) [$*] to a such a bundle ¢ over S*. The composed

map 3

]

= p,: 7, G/0 = Z sends a generator i to * 16 € Z. Indeed, by Lemma 13.2 ,~
i .

DIFF transversality, and the Hirzebruch index theorem, 5 P, (n) is the least index::

of a closed smooth spin 4-manifold, which is * 16 by Rohlin’s theorem [40]. Thﬁ~
lemma follows if we grant that =, G/TOP Z(notZ o Z,).

Now we complete 13.1. In Z/16 Z we have

| 1 7
oM?) = 3P (tM) M} = EP.(E) [ = 8A(®) [S*] = 8AGM)) (M*]= SA(M"‘);?

the third equality coming from the last lemma.
7,G/TOP = Z is used in 13.3 and in all following sections. So we prove it. as

ProposiTiON 13.4. — The forgetful map n, G/O ~ n,G/TOP is Z Xz J
Proof of 13.4. — (cf. naive proof in [46A]). Since the cokernel is 1r3TOP/O —','

] &

n,TOP/PL = Z,, it suffices to show that 301 : m, G/TOP — Z in the proof of 133
sends some element { to + 8 € Z, ' ”h
Such a ¢ is constructed as follows. In §2, we constructed a closed TOP mam:«
fold X**" with w ,(X) = w,(X) = 0 and a homotopy equivalence f: N* x T" = X“" i
where N is a certain homology manifold (W|th one singularity) having a(N*) = * 8.; A
Imitating the proof of 13.2 with N* and v’ = f*»(X**")] N* in place of M and'£
»(M*) we construct § over 8* and v’ = £ over the degree l map N* - S*. Thjsj
£ is fiber homotopically trivial because v(X),/*v(X) and v’ are Spivak normal<

bundles. Let & represent ¢ in n,G/TOP.

It remains to show — l p,({) = % 8, First we reducen to linf: N* x T" =~ X“

by using repeatedly a sphttmg principle valid in dimension = 6. (eg. use the TOM

(

version of [76], or just the PL or DIFF version as in the latter part of 5.4 (a)g;g
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in [80}). Consider the infinite cyclic covering
F:N*xR=~X5 of [f:N*xT'=2X5

Splitting as above, we find that CP, x X5 ~ ¥Y® x R for some 8-manifold Y5.
Thus using the index theorem 10.7, and the multiplicativity of index and L-
classes we have

+8=0(N*)=0(CP, xN) = a(¥Y®) = L,(¥Y®) = L, (CP,) L, (X®) [CP, x N] =
_ 1 ! l
LAYV ==L 0NN = —7p 0NN = =P @IS )= —3p, ).

(We have suppressed some natural (co)homology isomorphisms).

14. The periodicity of Casson and Sullivan.
A geometric construction of a “periodicity” map
7 . G/PL - *G/PL

“was discovered by A.J. Casson in early 1967 (unpublished)(").

" He showed that the fiber of 7 is K(Z,, 3),-and used this fact with the ideas of
"Novikov’s proof of topological invariance of the rational Pontrjagin classes to esta-
“blish the Hauptvermutung for closed simply connected PL manifolds M™,m = 5,
with H*(M™, Z,) = 0. (Sullivan had a slightly stronger result [88]).

" . Now precisely the same construction produces a periodicity map #’ in a ho-
_motopy commutative square

_. G/PL— Q*G/PL
{_( 14.1) tpl ' \l o4y
G/TOP > Q*G/TOP
+ The construction uses TOP versions of simply connected surgery and transver-
- sahty Recalling that the fiber of ¢ is K (Z,, 3) we see that ﬂ4¢ is a homotopy equi-
_wvalénce. Hence 7' must be a homotopy equivalence. Thus (7')™! o (2% ) gives a ho-

motopy identification of 7 to ¢ ; and an identification of the fiber of # to the fiber
TOP/PL of v. Thus TOP/PL had been found (but not identified) in 1967 !

S “The perfect periodicity @’ : G/TOP ~ Q*(G/TOP) is surely an attractive feature
of TOP. It suggests that topologlcal manifolds bear the simplest possible relation
"to. their underlying homotopy types. This is a broad statement worth testing.

g N R

‘Ci’(*) Essentially the same construction was developed by Sullivan and Rourke later in
1967 68, see [72]. The “penodlcny # is implicit in Sullivan’s analysis of G/PL as a fiber pro-
duc of (G/PL),) and By @ Z[ ] over B, ® Q, [88] [89].
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15. Hauptvermutung and triangulation for normat invariants ; Sullivan’s thesis(*).

Since TOP/PL-1» G/PL-Y+ G/TOP-2» K (Z,, 4) is a fibration sequence of H-
spaces see 15.5 we have an exact sequence for any complex X

H3(X ;Z,) = X, TOP/PL] > [X , G/PL]—=» X, G/TOP)—> HA(X ;Z,)

Examining the kernel and cokernel of ¢ using Sullivan’s analysis of G/PL),,(**)
we will obtain

L

THEOREM 15.1. — For any countable finite dimensional complex X there is an
exact sequence of abelian groups :

i 3 a,

H*(X ; Z,)/Image H*(X ; Z)>— [X , G/PL] 21, G/TOP}— {Image(H*(X ;2) .
+ Sq*H*(X ; Z,)}

The right hand member is a subgroup of H*(X ;Z,), and j* comes from

K(Z,,3) ~ TOP/PL-1» G/PL

In 1966-67, Sullivan showed that v, is injective provided that the left hand group
vanishes. Geometrically interpreted, this implies that a homeomorphismh : M' = M-
of closed simply connected PL manifolds of dimension = 5 is homotopic to a PL
homeomorphism if H>(M ; Z,){Image H>(M ; Z) = 0, or equivalently if H* (M ; Z)
has no 2-torsion [88]. Here [M, G/PL] is geometrically interpreted as a group of
normal invariants, represented by suitably equipped degree | maps f: M' > M
of PL manifolds to M, cf. [95]. The relevant theorem of Sullivan is :

(15.2) The Postnikov K-invariants of G/PL, except for the first, are all odd ;
hence

(G/PLYyy = (K2, ;) %, 1 K €, 9V x K(Zy, 6) X K(Zgg), 8) X K(Z,,10)

xK(Z(z),IZ)x... .

11 l
where Z,y = £ 3'5°7"

one of the chief results of Sullivan’s thes:s 1966 [87]. For expositions of it see—
[72} [13] [74] {89].

] is Z with — forall odd primes p adjoined. This is

-------------

(*) Section 15 (indeed § §10-16) discusses corollaries of n,(TOP/PL) = Z, collected in.
spring 1969. For further information along these lines, the reader should see work of
Hollingsworth and Morgan (1970) and S. Morita (1971) (added in proof).

(**) The localisation at 2, 4,y = A4 ® Z,, of a space A will occur below, only for oountable'(
H-spaces A such that, for countable finite dimensional complexes X, [X, 4] is an abelian
group (usually a group of some sort of stabie bundles under Whitney sum). Thus E.H. Brown’s:
representation theorem offersaspace 4 ) and map A + 4, so that [X , A] ® Z,, = (X, A(z)]-‘";
For a more comprehensive treatment of localisation see [89]. The space A © ledeﬁned_\
similarly.
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Sullivan’s argument adapts to prove
(15.3) The Postnikov K-invariants of G/TOP are all odd ; Hence
(G/TOP)(Z) = K(Z,,2) x K(Z3,4) x K(Z,, 6) x K(Z;,,8)x...

Indeed his argument needs only the facts that (1) TOP surgery works, (2) the
signature map Z = m,, (G/TOP) > Z is x 8 (even for k = |, by 13.4),and (3) the
Arf invariant map Z, = 7,,,,(G/TOP) = Z, is an isomorphism.

Alternatively (15.2) = (15.3) if we use £2*(G/PL) =~ G/TOP from §!4.

Remark 15.4.

It is easy to see directly that the 4-stage of G/TOP must be K (Z,, 2) x K(Z , 4).
For the only other possibility is the 4 stage of G/PL with K-invariant 8Sq? in
H%(K(Z,,2),Z)=Z,. Then the fibration K(Z,,3) = TOP/PL - GL/PL - G/TOP
would be impossible. (Hint : Look at the induced map of 4 stages and consider the
transgression onto §Sq?). This remark suffices for many calculations in dimension
< 6. On the other hand it is not clear to me that (15.2) = (15.3) without geometry
in TOP.

Proof that Kernel ¢ = H*(X ;Z,)/image H*(X ; Z).
This amounts to showing that for the natural fibration
QG/TOP - TOP/PL - G/PL
the image of [X , G/TOP} in [X, TOP/PL] = H3(X ; £,), consists of the reduced
integral cohomology classes. Clearly this is the image of [X, SZ(G/TOP)(Z)] under
Ji

©(G/TOP) 4y~ (TOP/PL) 5, = TOP/PL. Now j,, is integral reduction on the
factor K (Z(3), 3) of S(G/TOP),, because m,(G/TOP) - 7,(TOP/PL) is cnto,

and it is clearly zero on other factors. The result follows. The argument coines
from [13] [72].

. Proof that Coker(y) = {Image HY(X ;Z) + SqQ*H*(X ; Z,)}.
The following lemma is needed. Its proof is postponed to the end.

*LEMMA 15.5. — The triangulation obstruction A : Biqp = K(Z,, 4) is an H-map.

Write ¢ : A = B for ¢ : G/PL - G/TOP and let ¢, : 4, - B, bethe induced map
of Postnikov 4-stages, which have inherited H-space structure. Consider the fibra-
") a
tion A, — B, — K(Z,, 4).
Assertion (1). — (A)4[X,B,] = {Image H*(X ;Z) + Sq’H*(X ; Z,)}.
“Proof of (1). — Since B, = K(Z,,2) x K(Z,4) and

[X,B,)=H*(X;Z,)® H*(X ;Z)

7
I

what we have to show is that the class of 4, in
~i

By, K(Zy, M) = H*(K(Z,,2) x K(Z,4);Z,) =

: = H*(K(Z,,2),Z,)eH*(K(Z,4),;Z,)
is{(Sq’, p) where p is reduction mod 2.
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The second component of A, is A,|K(Z, 4) which is indeed p since
Z=n,G/TOP » Z, = w,K(Z,,4)

The first component A, |K(Z,,2) can be Sq? or 0 a priori, but it cannot be 0
as that would imply 4, ~ K (Z,,2) x K(Z,4). This establishes Assertion (1).

Assertion (2). — (A)),[X ,B,] = A_[X, B} by the projection B - B,.

Proof of (2). — In view of 15.5, localising B, and B at 2 does not change the-
left and right hand sides. But after localization, we have equality since By is the .
product (15.3). i

The theorem follows quickly '
[X, AV, [X A1 = A,[X,B] = (4,),[X,B,] = (Image H*(X , )+ SPH* (X 5 Z,)}

The three equalities come from Lemma 15.5 and (1) and (2) respectively.

It remains now to give

Proof of Lemma 15.5 (S. Morita's,replacing something more geometrical).

We must establish homotopy commutativity of the square

a
Brop X Brop — Brop
AxAl Al
K(Z,, 8 x K(Z,,4)—> K(Z,, 4)
where o represents Whitney sum and o represents addition in cohomology. - e

Now a©°(A x A) represents Ax ! + | x A in H* (Byop X Brop 3 Z;). Also -
A og certainly represents something of the form A x t + I x A+ E where-
Z is a sum of products x x y with x, ¥ each in one of H(Brop ; Z,) = H' By, 5 Z,),+
for i = 1,2 or 3. Since A oo restricted to By, x Bp, is zero, £ must be zero.,‘”j

Theorem 15.1 is very convenient for calculations. Let M be a closed PL.
manifold, »-manifold m > 5, and write $.,, (M), CAT = PL or TOP, for the’
set of h-cobordism classes of closed CAT #-manifolds M’ equipped with a homo-
topy equivalence f : M’ = M. (See [95] for details).

There is an exact sequence of pointed sets (extending to the left) :

.. [EM, GICAT] = Lypyy (1, wy) > Sgpr(M)— [M, G/CAT] = L, (w, w;) %

(

It is due to Sullivan and Wall {95]. The map v equips each f : M' *M(above)asx,
aCAT normal invariant. Exactness at 8c4y (M) isrelative to an action of L, (7, w, )’
on it. Here L, (w,w,) is the surgery group of Wall in dimension & for fundamental
group m = T, M and for orientation mapw, = w (M) ; 7 =+ Z,. There isa generah- k
sation for mamfolds with boundary. Since the PL sequence maps naturally to the\‘e
TOP sequence, our knowledge of the kernel and cokemnel of

{M, G/PL] - M, G/TOP]
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-will give a lot of information about S, (M)~ $,,.(M). Roughly speaking failure

of triangulability in 8,5, (M) is detected by non triangulability of the TOP normal
_ invariant ; and failure of Hauptvermutung in 8, (M) cannot be less than its failure
for the corresponding PL normal invariants,

In case w,M = 0, one has 8., (M) =S, (M,) = [M,, G/CAT] where M, is
M with an open m-simplex deleted, and so Theorem 15.1 here gives compiete
“information.

Example 15.6. — The exotic PL structure Z on §* x $*, n > 2, from
1eH*(S*2,) =

admits a PL isomorphism ($*x § ")y = 53 x S™ homotopic (not TOP isotopic} to
the identity.

Example 15.7. — For M = CP, (= complex projective space), n = 3, the map
M,, GIPL] - {M,, G/TOP] is injective with cokernel Z, = H*(M,.Z,). This means
that ‘half’ of all manifolds M’ = CP,, n 2 3, have PL structure. Such a PL structure

_is unique up to isotopy, since H?*(CP,,Z,) =0,
j 16. Manifolds homotopy equivalent to real projective space P”.

.. After sketching the general situation, we will have a look at an explicit example
of failure of the Hauptvermutung in dimension 5.

- From [54] [94] we recall that, for n = 4,

'—“'" n

{de6.1) {P",G/PL1=Z, ® Z 7,(G/PL) ® Z,
T i=6
This follows easily from (15.2). For G/TOP the calculation is only simgler.

- ,:_Oxie, gets

L (16.2) [P", G/TOP] = ¥ 7,(G/TOP) @ Z,
i i=2

- ; Calculation of 8,,,_(19") =1, is non-trivial [54] [94]. One gets (for [ > 1)
(16-3) Tasa = Ly = [PY, GIPLY s14p13 = Lz ® Z 31000 = I4162® Z, .
-" The result for Syop(P") is similar, when one uses TOP surgery. Then
L B (P") > Spop(P")
‘is d¢§cﬁbed as the direct sum of an isomorphism with the map
' = [P*, G/PL] ~ [P*, G/TOP] = Z, ® Z, ,
which sends Z, onto Z, = x,G/TOP.

Remark 16.4. — When two distinct elements of 8, (P") , n = 5, are topologicajly
the same we know already from 15.1 that their PL normal invariants are distinct
smce H (P";Z,) is not reduced integral. This facilitates detection of examples.
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Consider the fixed point free involution T on the Brieskorn-Pham sphere in
Cmﬂ

Tt ket b2y ko2 =0, dzl=1

given by T(z5,24,...,2,)=(2y,— 24,...,— z,,). Here d and m must be odd
positive integers, m 2 3, in order that Z:’"" really be topologically a sphere
[61].

As T is a fixed point free involution the orbit space IT;"™' = 23" /T isa
DIFF manifold. And using obstruction theory one finds there is just one oriented
equivalence I5"~! - P?"~! (Recall P™ = K(Z,, 1)). lts class in S p(P™ 7Y
clearly determines the involution up to equivariant CAT isomorphism and con-
versely. ’

THEOREM 16.5. — The manifolds 115, d odd, fall into four diffeomorphism classes
according as d = 1,3,5,7 mod 8, and into two homeomorphism classes accor-
dingasd =+ 1 ,+ 3 mod 8. I} is diffeomorphic to P5.

Kemark 16.6. — With Whitehead C' triangulations, the manifolds ™15 have a .

PL isomorphism classification that coincides with the DIFF classification (§5,

C

[9] [64]). Hence we have here rather explicit counterexamples to the Hauptver--~
mutung. One can check that they don’t depend on Sullivan’s complete analysis of -
(G/PL)m. The easily calculated 4-stage suffices. Nor do they depend on topological :

surgery.

ProBLEM. — Give an explicit homeomorphism P° =~ I15.

Remark 16.7. — Giffen states [23] that (with Whitehead C' triangulations) the

manfolds ﬂ;’"_l ,m=15,7,9,... fall into just four PL isomorphism classes

d=1,3,5,7 mod 8. In view of theorem 16.4., these classes are already distin-_

guished by the restriction of the normal invarant to P% (which is that of II;).

So Giffen's statement implies that the homeomorphism classification is d =+ 1 ;
* 3 mod &.

Proof of 16,5 (**)

The first means of detecting exotic involutions on S°, was found by Hissch:
and Milnor 1963 [32]. They constructed explicit(*) involutions (M;,_,,ﬁ,), r an.
integer > 0, on Milnor’s original homotopy 7-spheres, and found invariant spheres

M, _. DMS _, DM;,_,. They observed that the class of M), , in [y /2T, s,
an invariant of the DIFF involution (M:,_l ,B,) — (consider the suspension opera-.

tion to retrieve (Mz,_l ,B) and use I'g = 0). Now the class ofM;,~l inZ,, =T, is

r(r — 1}/2 according to Eells and Kuiper [ 18], which is odd iff » = 2 or 3 mod 4.~
So this argument shows (M3, _,,f,) is an exotic involution if r = 2 or 3 mod 4.

Fortunately the involution (M5, _, , 8,) has been identified with the involution .

(5 ..,

r+l>

(*) B, is the antipodal map on the fibers of the orthogonal 3-sphere bundle M;’,_l.
(**) Sce major correction added on pg. 337.
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There were two steps. In 1963 certain examples (X s,oz,) of involutions were
given by Bredon, which Yang [101] explicitly identified with (M3,_,, 8,). Bredon’s
involutions extend to O(3) actions, a, being the antipodal involution in O(3). And
for any reflection o in O(3) , « has fixed point set diffeomorphic to
L*Qr+ 1,1 :22" + 2% +27=0; |zl = 1. This property is clearly shared
by (25,44 ,T), and Hirzebruch used this fact to identify (Z3,,,,7) to (X, a,)
[33, 84] [34]. The Hirsch-Milnor information now says that I is DIFF enotic
ifd= 5,7 mod 8.

Next we give a TOP invariant for Il; in Z,. Consider the normal invariant
v, of I, in [P*,G/O] = Z,. Its restriction »,]P? to P? is a TOP invariant because
iP? G/O] = {P?, G/TOP} = Z

Now Giffen [22] shows that v,|P?is the Arf invariant in Z, of the framed fiber
of the torus knot zd + 22 = 0, |zo]2 + |z,1* = | in S* C C*. This turns out to
be 0 ford=x1 mod 8 and | for d =+ 3 mod 8, (Levine [53], cf. [61, § 8]).

We have now shown that the diffeomorphism and homeomorphism classifica-
tions of the manifolds I1; are af least as fine as asserted. But there can be at most
the four diffeomorphism classes named, in view of [6.3. (Recall that the PL and
DIFF classifications coincide since I'; = m,(PL/O) = 0, < 5). Hence, by Remark
16.4, there are exactly four — two in each homeomorphism class.
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Correction to proofof 16.5 : Glen Bredon has informed me that
{101} is incorrect, and that in fact (X3 ,a;) can be identified to
J(M%Hl ,B:+1) . Thus, a different argument is required to show that
._"the DIFF manifolds I13 ,d=1,3,5,7mod 8 , respectively, occupy
~;’[he four distinct diffeomorphism classes of DIFF 5-manifolds
hiomotopy equivalent to PS5 . The only proof of this available in 1975
“is the one provided by M. F. Atiyah in the note reproduced overleaf.
’;So many mistakes, small and large, have been committed with these
involutions that it would perhaps be wise to seek several proofs.




