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TOPOLOGICAL MANIFOLDS * 

by L. C. SIEBENMANN 

O. Introduction. 

Homeomorphisms - topological isomorphisms - have repeatedly turned up in 
theorems of a strikingly conceptual character. For example : 

(I) (19th century). There are continuously many non-isomorphic compact 
Riemann surfaces, but, up to homeomorphism, only one of each genus. 

(2) (B. Mazur 1959). Every smoothly embedded (n - I )-sphere in euclidean 
ll-space R n bounds a topological n-ball. 

(3) (R. Thorn and J. Mather, recent work). Among smooth maps of one compact 
smooth manifold to another the topologically stable ones form a dense open Sc~t. 

In these examples and many others, homeomorphisms serve to reveal basic rela
tionships by conveniently erasing some fmer distinctions. 

In this important role, PL (= piecewise-linear)("·) homeomorphisms of simplicial 
complexes have until recently been favored because homeomorphisms in general 
seemed intractable. However, PL homeomorphisms have limitations, some of them 
obvious ; to illustrate, the smooth, non-singular self-homeomorphism f ; R ~ R 

I 
of the line given by [(x) = x +"4 exp (- I/x?') sin (l/x) can in no way be regarded 

as a PL self-homeomorphism since it has infinitely many isolated fIXed points near 
the origin. 

Developments that have intervened since 1966 fortunately have vastly increased 
our understanding of homeomorphisms and of their natural home, the category 
of (finite dimensional) topological manifolds(u*).l will describe just a few of them 
below. One can expect that mathematicians will consequently come to use freely 
th~ notions of homeomorphism and topological manifold untroubled by the frus
trating difficulties that worried their early history. 

(*) This report is based on theorems concerning homeomorphisms and topological mani
folds [441 (451 [461 [46 A1 developed with R.C. Kirby as a sequel to [421. I have reviewed 
some contiguous material and included a collection of examples related to my observation 
that 1T 3 (TOP/PL) =1= o. My oral report was largely devoted to resuits now adequately descri
bed in [81), [82). 

(**) A continuous map f : X -+ Y of (locally finite) simplicial complexes is caUed PL if 
there exists a simplicial complex X' and a homeomorphism s : X' -+ X such that sand 
Is each map each simplex of X' (affme) linearly into some simplex. 

(***) In SOme situations one can comfortably go beyond manifolds [82}. Also, there has been 
dramatic progress with infinite dimensional topological manifolds (see [48)). 
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l. History. 

A topOlogical (= TOP) m-manifold Mitt (with boundary) is a metrlzable topo
logical space in which each point has ap open neighborhood U that admits an open 
embedding (called a chart) I : U -+ R'; = {(x l' ••• , x ltt ) E Rlttlx 1 ;;;.. O}, giving a 
homeomorphism U ~ I(U). 

From Poincare's day until the last decade, the lack of techniques for working with 
homeomorphisms in euclidean space RItt (m large) forced topologists to restrict 
attention to manifolds Mitt equipped with atlases of charts Ill: U Il -+ R'.:' , u U Il = M, 
(0: varing in some index set), in which the maps III I; 1 (where defmed) are especially 
tractable, for example all D1FF (infinitely differentiable), or all PL (piecewise 
linear). Maximal such atlases are called respectively DlFF or PL manifold struc
tures. Poincare, for one, was emphatic about the importance of the naked 
homeomorphism - when writing philosophically [68, §§ I, 2] - yet his memoirs 
treat D1FF or PL manifolds only. 

Until 1956 the study of TOP manifolds as such was restricted to sporadic 
attempts to prove existence of a PL atlas (= triangulation conjecture) and its 
essential uniqueness (= Hauptvermutung). For m = 2, Rado proved existence, 
1924 [70] (Kerekjcirt6's classification 1923 [38] implied uniqueness up to isomor
phism). For m = 3, Moise proved existence and uniqueness, 1952 [62J,cf. amisproof 
of Furch 1924[21]. 

A PL manifold is easily shown to be PL homeomorphic to a simplicial complex 
that is a so-caJJed combinatorial manifold [371. So the triangulation conjecture is 
that any TOP manifold Mitt admits a homeomorphism h : M -+ N to a combinatorial 
manifold. The Hauptvermutung conjectures that if hand h' : M -+ N' are two 
such, then the homeomorphism h'h- J : N -+ N' can be replaced by a PL homeo
morphism g : N -+ N'. One might reasonably demand that g be topologically isotopic 
to h'h- 1

, or again homotopic to it. These variants of the Hauptvennutung willreap
pear in §5 and § 15. 

The Hauptvermutung was first fonnultated in print by Steinitz 1907 (see [85]). 
Around 1930, after homology groups had been proved to be topological invariants 
without it, H. Kneser and J.W. Alexander began to advertise the Hauptvermutung 
for its own sake, and the triangulation conjecture as well (47) [2]. Only a misproof 
of Noebling [66] (for any m) ensued in the 1930's. Soberingly delicate proofs of 
triangulability of DIFF manifolds by Cairns and Whitehead appeared instead. 

Milnor's proof (1956) that some 'well-known' S3 bundles over S4 are homeomor.:
phic to S7 but not DIFF isomorphic to S7 strongly revived interest. It was very rele
vant ; indeed homotopy theory sees the failure of the Hauptvermutung (1969) as 
quite analogous. The latter gives the frrst nonzero homotopy group 7l' 3 (TOP/O) == Z2 . 
of TaPIa; Milnor's exotic 7-spheres fcinn the second 7l'7(TOP/O) = Z28' 

In the early 1960's, intense efforts by many mathematicians to unlock the geo-" 
metric secrets of topological manifolds brought a few unqualified successes : 
for example the generalized Shoen flies theorem was proved by M. Brown (7] .; 
the tangent microbundle was developed by Milnor (60] ; the topological Poincare 
conjecture in dimensions ~ 5 was proved by M.H.A. Newman [65]. " 
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Of fundamental importance to TOP manifolds were Cernavskii's proof in 1968 
that the homeomorphism group of a compact manifold is locally contractible 
[10] [11], and Kirby's proof in 1968 of the stable homeomorphism conjecture with 
the help of surgery [42]. Key geometric techniques were involved - a meshing idea 
in the former, a particularly artful torus furling and unfurling idea(·) in the latter. 
The disproof of the Hauplvennutung and the triangulation conjecture I sketch 
below • uses neither, bu t was conceived using both. (See [44 J (44 B) [46 A] for 
alternatives). 

2. Failure of the Hauplvermutung and the triangulation conjecture. 

This section presents the most elementary disproof I know. I constructed it 
for the Arbeitstagung, Bonn, 1969. . 

In this discussion Bn = [- 1 , 11n C R n is the standard PL ball; and the sphere 
Sn-I = aBn is the boundary of Bn. Tn = Rn /zn is the standard PL torus, the n-fold 
product of circles. The closed in tervall 0, 1] is denoted I. 

As starting material we take a certain PL automorphism a of B2 X Tn, n ~ 3, 
fIxing boundary that is constructed to have two special properties (1) and (2) be
low. The existance of a was established by Wall, Hsiang and Shaneson, and Casson 
in 1968 using sophisticated surgical techniques of Wall (see [35] [95]). A rath,'r naive 
construction is given in [80, § 5], which manages to avoid surgery obstruction groups 
entirely. To establish (I) and (2) it requires oq,ly the s-cobordism theof(:m and 
some unobstructed surgery with boundary, that works from the affine locus 
Q4 : z~ + z; + z; = I in C3• This Q4 coincides with Milnor's £8 plumbing of 
dimension 4 ; it has signature 8 and a collar neighborhood of infinity .M 3 X R, 
where M3 = SO(3)/As is Poincare's homology 3-sphere, cr. [61, § 9.8]. . 

(I) The automorphism P induced by a on the quotient T 2+n of B2 X Tn (obtai
ned by ide1ltifying opposite sides of the square n2) has mapping torus 

T(P) = I X T2+n /{(O ,x) = (I ,P(x»} 

not PL isomorphic to T 3+n ; indeed there exists("·)a PL cobordism (W ; T n+3
, T(P» 

and a homotopy equivalence of W to {J x T3 # Q U oo} x Tn extending the stan
dard equivalences T3+ n ::::: 0 x t'3 x Tn and T(J3)::::: I x T3 X Tn. The symbol 4J in
dicates (interior) connected sum (41). 

(2) For any standard covering map p : B2 X Tn -+ B2 X Tn the covering automor
phism (XI of a fixing boundary is PL pseudO-isotopic to a FIXing boundary. (Co
vering means that pal = ap). In other words, there exists a PL automorphism H of 
(1 ; 0 , 1) X B2 X Tn FIXing I x an2 x Tn such that HIO x B2 X Tn = 0 x a and 
HI 1 x B 2 

X Tn = I x a l • 

(*) Novikov frrst exploited a torus furling idea in 1965 to prove the topological inva
fiance of rational Pontrjagin classes (67]. And tills led to Sulltvan's partial proof of the 

,Hauptvermutung [881. Kirby's unfurling of the torus was a fresh idea that proved reve
-Jutionary • 

'(**) This is the key property. It explains the exoticity of T(f!) - (see end of argument), 
and the property (2) - (aJrnost, see [80, § 5». 
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In (2) choose P to be the 2n -fold covering derived from scalar mUltiplication 
by 2 in Rn. (Any integer > I . would do as well as 2.) Let ao(= a) • a l • a

2 
•• •• 

be the sequence of automorphisms of B2 X Tn fixing boundary such that ak + I 

covers ak' i.e. PCXk+ 1 = akP. Similarly define Ho(= H) ,HI' 1l2 , ••• and note that 
Hk is a PL concordance fIXing boundary from cxk to CXk+1 • Next define a PL auto
morphism H' of (0, l) X B2 X Tn by making H' I[a k ,ak + 1 ] x B2 x Tn, where 

I 
a k = I - 2k ' correspond to Hk under the (oriented) linear map of [a k , a k+1 ] 

onto (0 , I] = I. We extend H' by the identity to (0, I) X R2 X Tn. Define another 
self-homeomorphism H" of [0 , I) X 0 2 

X Tn by H" = I{JH' I{J-I where 

I{J (I , X , y) = (I , (I - I) X , y) 

Finally extend H" by the identity to a bijection 

H" : I x B2 X Tn -+ I X 8 2 X Tn 

It is also continuous, hence a homeomorphism. To prove this, consider a sequence 
ql,q2' ••• of points converging to q = (to'xo'yo) in 1 x 0 2 

X T~ Convergence 
H"(qj) -+ H"(q) is evident except when 10 = 1 ,xo = O. In the latter case it is 
easy to check that PIH"(qj) -+ PIH"(q~ = I and P2H"(qj) -+ P2H"(q) = 0 as 
j -+ 00, where Pi' i = I , 2 , 3 is projection to the i-th factor of 1 x 0 2 

X Tn. It is 
not as obvious that P3H"(q j) -+ P3H"(q) = Yo' To see this, let 

ilk: I x 0 2 
X R n -+ 1 X 0 2 

X R n 

be the universal covering of Hk fIXing 1 x aB2 x Rn. Now 

sup {lP3z - P3ilk z l ; z E [0, I] x BZ x Rn} == Dk 

is finite, being realized on the compactum 

o;lilook, where 0n(/,X ,y) = (/,X, 2ny), 

1 X B2 x r. And, as ilk is clearly 
I 

we have Dk = 2k Do· Now Dk is_ 

~ the maximum distance of P3Hk fromP3' for the quotient metric on Tn = Rn/Zn'i 
so Dk -+ 0 implies P3H"(qj) -+ P3H"(q) = Yo' as j -+ 00. 

As the homeomorphism /I" is the identity on 1 x aD2 x Tn it yields a self
homeomorphism g of the quotient 1 x T2 X Tn = J X THn. And as 

g lOx rHn = 0 x 13 

and g II x T 2+n = identity, g gives a homeomorphism h of T(J3) onto 

TOd) = 7' 1 X r2+n = T 3+n 

by the rule sending points (I, z) to g-l (I, z) - hence (0, z) to (0,13- 1 (z» and> 
(1 ,z) to (l ,z) 

The homeomorphism II : T 3+n ::::s T(J3) belies the Hauptvermulung. Further~ '\ 
(I) offers a certain PL cobordism (W ; T3+n, T(J3». Identifying r3+n in W to nfl) , 
under h we get a closed topological manifold . 
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x 4+n ~ { TI X r3 # Q U oo}x Tn 

(~ indicating homotopy equivalence). 
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If it had a PL manifold structure the fibering theorem of Farrell [19] (01 the 
author's thesis) would produce a PL 4-manifold X4 with W 1 (X4) = W

2 
(}(4) = 0 

and signature O(X4) = O(SI X T3 # Q U 00) =o(Q U 00)= 8 mod. 16, cf. [80, § 5]. 
Rohlin's theorem [71] [40] cf. § 13 shows this X 4 doesn't exist. Hence x 4 +n has no 
PL manifold structure. 

Let us reflect a little on the generation of the homeomorphism h ; T(P) ~ T3+1I. 

The behaviour of H" is described in figure 2-a (which is accurate for Bl in place of 
B2 and for n = I) by partitioning the fundamental domain I x B2 X In according 
to the behavior of H". The letter ~ indicates codimension I cubes on which H" 
is a conjugate of ~. 

{
" 

8' 

I 

Figure 2a 

. Observe the infinite ramification (2n -fold) into smaller and smaller domains 
converging to all of 1 x 0 x Tn. In the terminology of Thom [92, figure 7] this 

.reveals the failure of the Hauptvennutung to be a generalized catastrophe! 

Remark 2.1. - Inspection shows that lz : T(P) ~ T 3+n is a Lipschitz homeo-
morphism and hence X 4

+
n is a Lipschitz manifold as dermed by Whitehead [98] 

. (or the pseudogroup of Lipschitz homeomorphisms - see §4. A proof that 
-T:(P> ~ T3+n (as given in [441> using local contractibility of a homeomorphism 
:group would not reveal this as no such theorem is known for Lipschitz homeo
morphisms. Recall that a theorem of Rademacher [69] says that every Lipschitz 
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homeomorphism of one open subset of Rm to another Is almost everywhere 
differentiable. 

3. The unrestricted triangulation conjectnre. 

When a topological manifold admits no PL manifold structure we know it is 
not homeomorphic to a simplicial complex which is a combinatorial manifold 
[37]. But it may be homeomorphic to some (less regular) simplicial complex 
- Le. triangulable in an unrestricted sense, cf. [79]. For example Q U 00 (from § 2) 
is triangulable and Milnor (Seattle 1963) asked if (Q U 00) x Sl is a topological 
manifold e~en though Q U 00 obviously is not one. If so, the manifold X 4

+
n of 

§ 2 is easily triangulated. 

If aU TOP manifolds be triangulable, why not conjecture that that every locally 
triangulable metric space is triangulable ? 

Here is a construction for a compactum X that is locally triangulable but is 
IZOIl-triangulable. Let LI ' L2 be closed PL manifolds and 

(W ; LI X R ,L2 x R) 

an invertible(*) PL cobordism that is not a product cobordism. Such a W exists for 
instance if 11' I L; = Z2S7 and L I :::: L2, compare [78]. It can cover an invet
tible cobordism (W', LI x Sl ,L2 X Sl) [77, § 4]. To the Alexandroff compac- . 
!ification W U 00 of W adjoin {(L I x R) U oo} x [0, II identifying each point ~ 
(x , 1) in the latter to the point x in W U 00. The resulting space is X. See Figure 3-a. ' 
The properties of X and of related examples will be demonstrated in [83]. They 
complement Milnor's examples [57] of homeomorphic complexes that are PL (com
binatorially) distinct, which disproved an unrestricted Hauptvermutung. 

(L, x R) U 00 

ex" X 10,1\ , 

Figure 3a 

(*) This means that W can be expressed as a union W = CI U C2 , where C, is a cloSedj; 
collar neighborhood of L, x R in W. 
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4. Structures on topological manifolds. 

Given a TOP manifold Mitt (without boundary) and a pseudo-group G of hom eo
morphismsC) of one open subset of RItt to another, the problem is to find and 
classify G-structures on Mm. These are maximal "G-compatible" atlases {Ua ,fa} 
of charts (= open embeddings) fa: Va -+ RItt so that each fjJfa- J is in G. (Cf. [29] 
or (48).) 

One reduction of this problem to homotopy theoretic form has been given 
recently by Haefliger [28) [29). Let G (Mm) be the (polyhedral quasi~) space (**) 
of G-structures on M. A map of a compact polyhedron P to G (M) is by definition 
a G-foliation ~ on P x M transverse to the projection PI : P x M -+ P (i.e. its de
fming submersions are transverse to PI )( ••• ). Thus, for each t E P, fji restricts to a 
G-structure on t x M and, on each leaf of 1Ji, PI is an open embedding. Alseo note 
that fji gives a Gp-structure on P x M where Gp is the pseUdo-group of homeomor
phisms of open subsets of P x Rm locally of the form (t ,x) -+ (I ,g (x)) with 
g E G. If G consists of PL or DIFF homeomorphisms and P = [0, I), then 
fji gives (a fortiori) what is called a sliced concordance of PL or DIFF strut;tures 
onM (see (45) (46)). 

We would like to analyse G(Mm) using Milnor's tangent Rm-microbund1e r(M)of 
M, which consists of total space E(rM) = M x M, projection p, : M x M -+ M, and 
(diagonal) section 6 : M ..... M x M , 6 (x) = (x ,x). Now if ~m is any R m micro
bundle over a space X we can consider G.l. (~) the space of G-foliations of E (~) 
transverse to the fibers. A map P -+ GJ. (~) is a G-foliation fji defined on an open 
neighborhood of the section P x X in the total space E (p x ~) = P x E (~) that is 
transverse to the projection to P x X. Notice that there is a natural map 

d : G (Mm) -+ GJ.(rMm) 

which we call the differential. To a G-foliation ~ of P x M transverse to p" it 
assigns the G-foliation d3i on P x M x M = E (P x reM»~ obtained from fji x M 

n e.g. the PL isomorphisms, or Lipschitz or DlFF or analytic isomorphisms. Do notcon
f.use.G with the stable monoid G = U Gn of § 5.5. 

eO) Formally such a space X is a contravariant functor X; P -+ [P, Xl from the catcgcry 
of PL maps of compact pOlyhedra (denoted P, Q etc.) to the category of sets, which carries 
union to fiber product. Intuitively X is a space of which we need (or want or can) only 
know the maps of polyhedra to it. 

(0") A G-Jo/iation on a space X is a maximal G-compatible atlas {VIl • gil} of topological su~ 
mersions gil: VIl -+ Rm. (See articles of Bott and Wall in these proceedings.) A map g; V -+ W 
is a rop%gica/ submersion if it is locally a projection in the sense that for each x in V there 
exists an open neighborhood W x of g (x) in W a space Fx and an open embedding onto a 
,neighborhood of x, called a product chart about x, cp : Fx x Wx ~ V such that gcp is plojec
tion,P2: Fx x Wx -+ Wx C W. One says that g is transversetoanothersubmersiong': V-+W' 
if for each x, II' can be chosen so that Fx = W~ x F~ and g'cp is projection to W~ an open subset 
of W'. This says roughly that the leaves (= fibers) of f and g intersect in general position. 
Apove they intersect in points. 
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by interchanging the factors M. If P is a point, the leaves of dSi are simply 

{PxMxxlxEM} 

Clearly dSi is transverse to the projection P x PI to P x M. 

THEOREM 4.1. CLASSIFICATION BY FOLIATED MICROBUNDLES. - The differential 

d : G(Mm) -+ GJ.(TMm) 

is a weak homotopy equivalence for each open (metrizable) m-manifold M m with 110 

compact components. 

Haefliger deduces this result (or at least the bijection of components) from the
topological version of the Phillips-Gromov transversality theorem classifying maps 
of M transverse to a TOP foliation. (See [29] and J.C. Hausmann's appendix). 

As formulated here, 4.1 invites a direct proof using Gromov's distillation of im
mersion theory [251 [261. This does not seem to have been pointed out before,and 
it seems a worthwhile obselVation, for I believe the transversality result adequate' 
for 4.1 requires noticeably more geometric technicalities. In order to apply 
Gromov's distillation, there are two key points to check. For any C C Mm, let 
GM(C) = inj lim{G(U)ICC U open in M}. 

(I) For any pair A C B of compacta in M, the restriction map 11" : GM(B) -+ GM(A) 

is micro-gibki - i.e., given a homotopy f : P x 1-+ GM(A) and Fo : P x 0 -+ GM(B.) 

with 1I"Fo = flP x 0 there exists € > 0 and F: P x [0, €) -+ GM(B) so thaL 
1I"F = flP x [0, €). Chasing definitions one finds that this follows quickly from 
the TOP isotopy extension theorem (many-parameter version) or the relative local 
contractibility theorem of [ lO 1 [17.l. 

(2) d is a weak homotopy equivalence for M m = Rm. Indeed, one has a commu
tative square of weak homotopy equivalences 

G(Rm)~ G1 (rRm) 

~! ! ~ 
GRm(O)::- G

1
(rR

m
I0) 

in which the verticals are restrictions and the bottom comes from identifying 
the fiber of rRmlO to R m , cf. [27). 

Gromov's analysis applies (l) and (2) and more obvious properties of G, GJ. to~. 
establish 4.1. Unfortunately, M doesn't always have a handle decomposition ov,er:c 
which to induct ; one has to proceed more painfully chart by chart. -<, 

We can now pass quickly from a bundle theoretic to a homotopy classification.,.. 
of G-structures. Notice that if f : X' -+ X is any map and ~m is a Rm microbundle\ 
over X equipped with a G-folitation fJi, transverse to fibers, defined on an open:f 
neighborhood of the zero section X, then f*~ over X' is similarly equipped w~t~}~ 
a pulled-back foliation f*~. This means that equipped bundles behave much I*~~ 
bundles. One can use Haefliger's notion of "gamma s{ructure" as in [29) to deduc~:-: 
for numerable equipped bundles the existence of a universal one (~ ,§i G) over a,; 
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base space Br(G) (.). There is a map B r(G) -I> BTOP(m) classifing 'Y~ as an Rm_ 
microbundle ; we make it a fibration. Call the fiber TOP(m)/r(G). One findjs that 
there is a weak homotopy equivalence GJ.. (~) ~ Lift if to Br(G»' to the space of 
liftings (o BnG) of a fixed classifying map f : X -I> BTOP(m) for ~m. Hence one 
gets 

THEOREM 4.2. - For any open topological m-manifold Mm, there is a weak ho
motopy equivalence G(M)!:'!! Lift(r to Br(G» from the space ofG-structures G(M) 
on M to the space of liftings to B r(G) of a FIXed classifying map map r : M -I> lIrol'(m) 

for reM). 

Heafliger and Milnor observe that for G = CATm the pseudo-group of CAT 
isomorphisms of open subsets of Rm - CAT meaning DIFF (= smooth C"'), 
or PL (= piecewise linear) or TOP (= topological) - one has 

(4.3) i <m 
Indeed for CAT = TOP, 4.2 shows this amounts to the obvious fact that 
1ro(G (Sl X Rm-/n = O. Analogues of 4.2 with DlFF or PL in place of TOP can 
be proved analogously (_.) and give the other cases of (4.3). Hence one has 

THEOREM 4.4. - For any open topological manifold Mm
, there is a natural bi

jection 1roCATm(Mm) ~ 1roLift(r to BCAT(m»' -

This result comes from [441 for m ;;;.. 5. ~shof [50] gave the rust proof that was 
valid for m = 4. A stronger and technically more difficult result is sketched in 

. [63] [45]. It asserts a welik homotopy equivalence of a "sliced concordance" 
variant of CATm(M m) with Lift(r to BCAT(m»' This is valid without the op(~nness 
restriction if m =1= 4. For open M m (any m), it too can be given a proof involving a 
micro-gibki property and Gromov's procedure. 

5. The product structure theorem. 

THEOREM 5.1 (Product structure theorem). - Let M m be a TOP manifold, C a 
- closed subset of M and 00 a CAT (= DlFF or PL) structure on a neighborhood of 
~.C in M. Let k be a CAT structure on M x R' equal 00 x R' near C x R'. Provide 

that m ~ 5 and aM C C. 

Then M has a CAT structure ° equal 00 near C And there exists a TOP isotopy 
(as small as we please) ht : Mo x R' -I> (M X Rl)"1;' 0 =s;;; t =s;;; I, of ho == iderility, 

'. /iX.ing a neigllborhood of C x Ra
, to a CAT isomorphiSm hi' 

.It will appear presently that this result is the key to TOP handJebody theory and 
transversality. The idea behind such applications is to reduce TOP lemmas to their 
0WF analogues: 

'(*) Alternatively, for our purpose, Br(G) can be the ordered simplicial complex having 
one;d-simplex for each equipped bundle over the standard d-simplex that has total space in 
some Rn CR", 

- (**) The forgetful map I{J; B m -+ BPL(m) is more delicate to defme. One can make 
, I'(PL ) 

B . m a simplicial complex, then defIne op simplex by simplex, 
r(PL ) 
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It seems highly desirable, therefore, to prove 5.1 as much as possible by pure geo
metry, without passing through a haze of formalism like that in § 4. This is done 
in [461. Here is a quick sketch of proo~ intended to advertise (461. 

First, one uses the CAT s-cobordism theorem (no surgery!) and the handle
straightening method of [441 to prove - without meeting obstructions-

THEOREM 5.2 (Concordance implies isotopy). - Given M and C as in 5.1, con
sider a CAT structure ron M x I equal 0 0 x I near C x I. and let r 1M x 0 be cal
led 0 x O. (r is called a concordance of 0 rei C). 

There exists a TOP isotopy (as small as we please) h t : Mo x I -+ (M x nT-' 
o ~ t =s;;; I, of ho = identity, FIXing M x 0 and a neighborhood ofC x I, 10 a CAT 
isomorphism hi' 

Granting this result, the Product Structure Theorem is deduced as follows. 

In view of the relative fonn of 5.2 we can assume M = Rm. Also we can assume 
s = 1 (induct on s I). Thirdly, it suffices to build a concordance r (= structure on -
M x RII X I) from 0 x RII to k rei C x RII. For, applying 5.2 to the concordance r 
we get the wanted isotopy. What remains to be proved can be accomplished quite 
elegantly. Consider Figur~ 5-a. 

M 

--. 
I 
I 

:\ 

Figure 5a 

00 ... horchlllg Indicates co-Incldence 
with 1:. Double rertlcal horch/ng in
dicates whete the structure Is • 
product along R. ,
I 
I 
I 

J 
IJxR 
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We want a concordance reI C x R from l; to 0 x R. First note it suffices to 
build };2 with the properties indicated. Indeed };2 admits standard (sliced) concor
dances reI C x R to 0 x R and to k. The one to 0 x R comes from sliding Rover 
itself onto (0 ,00). The region of coincidence with 0 x R becomes total by a sort 
of window-blind effect. The concordance to k Comes from sliding R over itself 
onto (- 00, - I). (Hint: The structure picked up from };2 at the end of the slide 
is the same as that picked up from };). 

It remains to construct k 2 • Since M x R = Rm+l, we can fmd a concordance 
(not reI C x R) from 1; to the standard structure, using the STABLE homeomor
phism theorem(*) [42]. Now S.2 applied to the concordance gives };1' which is 
still standard noor M x [0,00). Finally an application of 5.2 to };IIN x [- I ,0], 
where N is a small neighborhood of C, yields };2' The change in };dM x 0 (which 
is standard) on N x 0 offered by 5.2 is extended productwise over M x [0,00). 
This completes the sketch. 

It is convenient to recall here for later use one of the central results of [44]. 
Recall that TOPm/PLm is the fiber of the forgetful map Bl'L(m) -+ BTOl'(m)' And 
TOP/PL is the fiber the similar map of stable classifying spaces BpL -+ BTOl,. Si
milarly one defines TOPm/DIFFm == TOPm/Om and TOP/DIFF == TOP/O. 

THEOREM 5.3(--) (Structure theorem).- TOP/PL!::! K (Z2' 3) and 

1Tk (TOPm/CATm) = 1Tk (TOP/CAT) 

for k < m and m ~ 5. Here CAT = PL or DIFF. 

Since 1Tk(Om) = 1Tk (O) for k < m, we deduce that 1Tk (TOP, TOPm) = 0 for 
k < m > 5, a weak stability for TOP m. 

Consider the second statement of 5.3 first. Theorem 4.4 says that 

1Tk (TOPm/CATm) = 1To(CATm(Sk X Rm- k » == S': 
for k < m ~ 5. Secondly, 5.1 implies S': = S;+l = S;+2 = " ., m ~ k. Hence 
1Tk (TOPm/CATm) = 1Tk (TOP/CAT). 

We now know that 1Tk (TOP/PL) is the set of isotopy classes of PL structures on 
Sk if k ~ 5. The latter is zero by the PL Poincare theorem of Smale [84], combined 
with the stable homeomorphism theorem [42] and the Alexander isotopy. Simi
l~rly one gets 1T k (TOP/DIFF) = 6 k for k ~ 5. Recall 6 s = e 6 = 0 [411. 

_~ The equality 1Tk (TOP/PL) = 1Tk (TOP/D1FF) = 1Tk (K(Z2' 3» for k ~ 5 can be 
-deduced with ease from local contractibility of homeomorphism groups and the 
s~tgical classification [35) [95], by H 3(Ts ; Z2)' of homotopy 5-tori. See [43] 
[46 A] for details. 

- ; Combining the above with 4.4 one has a result of [44]. 

(*) Without this we get only a theorem about compatible CAT structures on STABLE 
m~folds (of Brown and Gluck (8)). 

(~-*) For a sharper result see (63) [45), and references therein. 
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CLASSIFICATION THEOREM 5.4. - For m ~ 5 a TOP manifold Mm (without boun
dary) admits a PL manifold structure iff an obstruction ~(M) ill /l4(M;Z2) 
vanishes. When a PL structure ~ on M is given, others are classified (up to concor
dance or isotopy) by elemellts of H 3 (M ; Z2)' 

Complement. - Since 7rk (TOP/D1FF) = 7rk (TOP/PL) for k < 7 (see above calcu
lation), the same holds for DlFF in low dimensions. 

Finally we have a look at low dimensional homotopy groups involving 

G = lim {Gn In ~ O} 

where Gn is the space of degree±l mapsSn-l -+ Sn-l. Recall that 7rn G = 7rn+k S\ 
k large. G/CAT is the fiber of a forgetful map BeAT -+ BG , where DG is a stable 
classifying space for spherical flbrations (see 115), [29]). 

7r4 G 

/ "" 
7r4 G/O -+ 7r4 G/TOP 

w. TOCIO 1 al w, .:a PI 0 

'\ I 
7r30 -+ 7r3 TOP 

\ ,/ 
7r3 G 

The left hand commutative diagram of natural maps is determined on the right. 
Only 7r3 TOP is unknown(*). So the exactness properties evident on the left_ 
leave no choice. Also a must map a generator of 7r4 G/TOP = Z to (I2, l) in_ 
ZED Z/2Z = 7r3 TOP. . 

The calculation with PL in place of 0 is the same (and follows since 7r1(PL/O) = 
rj = 0 for i ~ 6). 

6. Simple homotopy theory [44] [46 A1. 

The main point is that every compact TOP manifold M (with boundary aMl_ 
has a preferred simple homotopy type and that two plausible ways to derme > 

it are equivalent. Specifically, a handle decomposition of M or a combinatorial~. 
triangulation of a nonnal disc-bundle to M give the same simple type. . . 

The second definition is always available. Simply embed M in Rn, n large~~ 
with normal closed disc-bundle E (31]. Theorem 5.1 then provides a small ho--.. 
meomorphism of Rn so that h (0E), and hence Il (E), is a PL submanifold. . 

(*) That 'ir4 G(fOP is Z (not Z Ell Z2) is best proved by keepIng track of some nonnah 
invariants in disproving the Hauptvennutung, see (46A). Alternatively, see 13.4 below. 
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Working with either of these definitions, one can see that the preferred simple 
type of M and that of the boundary aM make of (M , aM) a finite )oincarc 
duality space in the sense of Wall [95], a fact vital for TOP surgery. 

The Product structure theorem 5.1 makes quite unnecessary the bundle t.heoretic 
nonsense used in [44) (cf. [63]) to establish preferred simple types. 

7. Handlebody theory (statements in [44 C) [45], proofs in [46 AD. 

7.1. The main result is that handle decompositions exist in dimension ~ 6. 
Here is the idea of proof for a closed manifold M m, m ~ 6. Cover M m by finitely 
many compacta AI" .• ,A k , each A, contained in a co-ordinate chart Ui ~ Rm. 
Suppose for an inductive construction that we have built a handlebody If C M 
containing A I U - .. U Al+l' i ;;;.. O. The Product Structure Theorem shows that 
H n Ui can be a PL (or DlFF) m-submanifold of Ui after we adjust the PL 
(or DlFF) structure on Vi' Then we can successively add finitely many handles 
onto H in Vi to get a handlebody H' containing A I U ... U Ai' After k steps we have 
a handle decomposition of M. 

A TOP Morse function on Mm implies a TOP handle decomposition (the con
verse is trivial) ; to see this one uses the TOP isotopy extension theor~m to prove 
that a TOP Morse function without critical points is a bundle projection. (See 
[12) [82, 6_14] for proof in detail). 

Topological handlebody theory as conceived of by Smale now works on the model 
of the PL or DlFF theory (either). For the sake of those familiar with either, I des
cribe simple ways of obtaining transversality and separation (by Whitney's method) 
of attaching spheres and dual spheres in a level surface. 

LEMMA 7.2. (Transversality). - Let g : Rm 
-+ R m , m ;;;.. 5, be a STABLE ho

meomorphism In Rm, consider R P x 0 and 0 x Rq, p + q = m, with 'ideal' 
transverse intersection at the origin. There exists an e-isotopy of g to h : Rm -+ R m 

stlch that h (RP x 0) is transverse to 0 x Rq is the following strong sens~_ Near 
each point x E h-1(0 x Rq) n RP x 0, h differs. from a translation by at most a 
homeomorphism of R m respecting both RP x 0 and 0 x Rq. 

Furthermore, if C is a given closed subset of Rm and g satisfies the strong trans
. versality conditio" on h above for points x of Rm near C. then h can equal g near 
C. 

PIoef of 7.2 - For the first statement E/2 isotop g to diffeomorphism g" using 
:Ed Connell's theorem (141 (or the Concordance-implies-epsilon-isotopy theorem 

. ;S~-2), then fI/2 isotop g' using standard DIFF techniques to a homeomorphism h' 
which will serve as h if C = (/J. 

- The further statement is deduced from the first using the flexibility of tlOmeo-
-morphisms. Find a closed neighborhood C' of C near which g is still transverse 
'such that the frontier C' misses g-1 (0 x Rq) n (RP x 0) - which near C is a 
discrete coUection of points. Next, find a closed neighborhood D of C' also missing 

- g-I(O x Rq) n (RP x 0), and 6 : Rm -+ (0, co) so that d(gx, 0 x Rq) < 5 (x) for 
.:X in D n (R P x 0). If € :. R m -+ (0 , co) is sufficiently small, and h' in the Hrst pa
~agraph is built for f, CernaYskii's local contractibility theorem [11] (also [171 
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and [82,6.3]) says that there exists a homeomorphism h equal g on C' and equal 
h' outside C' U D so that d (h', g) < S. This is the wanted h. 

7.3. TilE WIIITNEY LEMMA. 

The TOP case of the Whitney process for eliminating pairs of isolated transverse 
intersection points (say of MP and Nq) can be reduced to the PL case [99] [37). 
The Whitney 2-disc is easily embedded and a neighborhood of it is a copy of 
Rm, m = p + q. We can arrange that either manifold, say MP, is PL in Rm, aJ'!de) 
N' is PL near Mq in Rrn. Since 5 ~ r-l = p + q, we can assume q ~ ml2 ; so N' 
can now be pushed to be PL in Rm by a method of T. Homma, or by one of R.T. 
Miller [54 A], or again by the method of [44], applied pairwise [44 A] (details in 
[73]). Now apply the PL Whitney lemma [37). On can similarly reduce to the ori
ginal DlFF Whitney lemma [99). 

7.4. CONCLUSION. 

The s-cobordism theorem [37) [39], the boundary theorem of [76], and the, 
splitting principle of Farrell and Hsiang [201 can now be proved in TOP with the 
usual dimension restrictions. 

8. Transversality (statements in [44 C] [45], proofs in [46 AD. 

If f: M m -+ Rn is a continuous map of a TOP manifold without boundary to', 
Rn and m - n > 5, we can homo top f to be transverse to the origin 0 E Rn. Here 
is the idea. One works from chart to chart in M to spread the trartsversality, 
much as in building handlebodies. In each chart one uses the product structure' 
theorem 5.1 to prepare for an application of the relative DIFF trartsversality. 
theorem of Thorn. 

Looking more closely one gets a relative transversality theorem for maps 
f ~ M m -+ E(~n) with target any TOP Rn-microbundle ~n over any space. It is, 
parallel to Williamson's PL theorem [100), but is proved only for m =1= 4 =1= m - n .. 
It is indispensible for surgery and cobordism theory. 

9. Surgery. 

Surgery of compact manifolds of dimension ~ 5 as formulated by Wall [951. 
can be carried out for TOP manifolds using the tools of TOP handlebody theory. 
The chief technical problem is to make the self-intersections of a framed TOP 
immersion f : Sk x Rk -+ M2k of Sk, k ;;> 3, transverse (use Lemma 7.2 repeatedly),. 
and then apply the Whitney lemma to fmd a regular homotopy of f to an embed-: 
ding when Wall's self-intersection coefficient is zero. 

In the simply connected case one can adapt ideas of Browder and Hirsch (4J:_: 

Of course TOP surgery constantly makes use of TOP transversality, TOP simp~e' 
homotopy type and the TOP s-cobordism theorem. 

(*) Use of the strong transversality of 7.2 makes this trivial in practice. 
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10. Cobordism theory : generalities. 

Let n!OP [respectively n~TOP] be the, group of [oriented] cobordism classes 
of [oriented) closed n-dimensional TOP manifolds. Thorn's analysis yields a ho
momorphism 

Here MTOP (k) is the Thorn space of the universal TOP Rk -bundle "y~op over 
BTOP(k) - obtained, for example, by compactifying each fiber with a point 
(cf. [49]) and crushing these points to one. The Pontrjagin Thorn definition of 
8 n uses a stable relative existence theorem for normal bundles in euclidean space -
say as provided by Hirsch [30) and the Kister-Mazur Theorem [49]. 

Similarly one gets Thorn maps 

and 

and more produced by the usual recipe for cobordism of manifolds with'a given, 
special, stable structure on the normal bundle [86, Chap. II]. 

THEOREM 10.1. -In each case above the Thom map On : nn -+ 7rn(M) Is surjec
tive for n =1= 4, and Injective for n =1= 3. 

This follows immediately from the transversality theorem. 

PROPOSITION 10.2. - Bso 8 Q !:::! BSTOP e Q, where Q denotes the rational num
bers. 

Proof. - 7r/ (STOP/SO) = 7r/ (TOP/O) is finite for all I by [40) [44] t~f. § 5, 
STOP/SO being fiber of Eso -+ B STOP' (See § 15 or [90] for definition of ® Q). 

PROPOSITION 10.3. - 7r. MSO e Q ~ 7r. MSTOP e Q. 
Proof. - From 10.2 and the Thorn isomorphism we have 

H.(MSO ; Q) ~ H.(MSTOP; Q) 

Now use the Hurewicz isomorphism (Serre's from (75». 

PROPOSITION 10.4. - n~ e Q ~ n~P e Q each being therefore the polyno
mial algebra freely generated by CP 2n ,n ~ 1. 

Proofof 10.4. - The uncertainty about dimensions 3 and 4 in 10.1 cannot pre
vent this following from 10.2. Indeed, n~TOP -+ 7r3 MSTOP is injective because 
every TOP 3-manifold is smoothable (by Moise et al., cf. [80, § 5]). And 

nSTOP -+ 7r MSTOP 4 4 

is rationally onto because n~ -+ 7r 4MSTOP is rationally onto. 

Since 7r/ (STOP/SPL) = 7r/ (TOP/PL) is Z2 for I = 3 and zero for i =1= 3 the above 
:three propositions can be repeated with SPL in place of SO and dyadic rationals 
rzl }) in place of Q. The third becomes 



322 L.C. SIEBENMANN 

PROPOSlTlON 10.5. - n;PL ® Zl}1 ::: n~TOr ® Z l!l . 
Next we recall 

PROPOSITION 10.6. - (S.P. Novikov). n;o ~ n~TOP is injective. 

This is so because every element of n~o is detected by its Stiefel-Whitney 
numbers (homotopy invariants) and its PonlJjagin numbers (which are topological 
invariants by 10.2). 

In view of 10.2 we have canonical PontJjagin characteristic classes Pk in 

n4k (BSTOP ; Q) = n4k (Bso ; Q) 

and the related Hirzebruch classes Lk = Lk(Pl' ••• , Pk) E n4k. Hirzebruch sho
wed that Lk : n~ @ Q -+ Q sending a 4k-manifold M4k to its characteristic num-

ber L k (M 4k ) = L k (T(M 4k» [M 4k l E Q is the signature (index) homomorphism. 
From ) 0.2 and 10.4, it follows that the same holds for STOP in place of SO. Hence 
we have 

PROPOSITION 10.7. - For ally closed oriented TOP 4k-manifold M4k the signa
ture 0 (M4k) of tlte rational cohomology cup product pairing n2k @ n 2k -+ n4k = Q 
is given by 0 (M4k) = Lk(r M4k) lM4k] E Z. 

11. Oriented cobordism. 

The first few cobordism groups are fun to compute geometrically - by elemen
tary surgical methods, and the next few pages are devoted to this. 

THEOREM I I. I. - n~op ~ n~ ED Rn for n ~ 7, and we have Rn = 0 for 11 ~ 3 , 

R4 ~Z2,R5 = 0, R6 = Z2' R, ~Z2' 

Proof of 11.1. - For n = I ,2,3, n:rop = n~ = 0 is seen by smoothing. 

For Il = 4, first observe that Z = n:O -+ n~op maps Z to a summand because 
the signature of a generator CP 2 is 1 which is indivisible. Next consider the Z2 
characteristic number of the first stable obstruction tJ. E n 4 (BsTOP ; Z2) to smoo
thing. It gives a homomorphism n~TOP -+ Z4 killing n~. If 

~(M4) == ~(r(M4» [M 4 1 = 0 

then, by 5.3, M4 x R has a DIFF structure 1;. Push the projection (M 4 x R)}; -+ R 
to be transversal over 0 E R at a DIFF submanifold M' and behold a TOP oriented
cobordisln M to M'. Thus R4 ~ O. 

For n ~ 5 note that any oriented TOP manifold Mn is oriented cobordant to a 
simply connected one M' by a fmite sequence of 0 and I-dimensional surgeries.. 
But, for n = s,n4 {M' ; Z2) ~ n l (M' ; Z2) = 0 so M' is smooth able. Hence Rs = 0.' 

For n -:= 6 we prove 

PROPOSlTlON 11.2. - The characteristic number ~W2 : nr
op 

-+ Z2 is an iso
morphism. 
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Proof. - It is clearly non4 zero on any non-smoothable manifold M6 ~ CP3 • 

since w2(M 6) = W 2(CP3 ):I= 0, and we will show that such a M6 exists in 15.; 
below. 

Since n~o = 0 it remains to prove that 8W2 is injective. Suppose 8w2 (.A16 ) = 0 
for oriented M6. As we have observed, we can assume M is simply connected. 
Consider the Poincare dual D8 of A = 8(rM) in 

H2(M 6 ;Z2) = H2(M 6 ;zf~ Z2 = 1l'2(M 6) ® Z2 

and observe that it can be represented by a locally flatly embedded 2-sphere S C M6. 
(Hints: Use [24], or fmd an immersion of S2 x R4 [52] and use the idea of Lemma 
7.1 ). 

Note that 8/(M - S) = 8(M - S) is zero because 8[x] = x ·D8 (the Z2 in
tersection number) for all x E H2 (M ; Z2)' Thus M - S is smoothable. 

A neighborhood of S is smoothed, there being no obstruction to tlu~; ; and S \1 

is made a DIFF submanifold of it. Let N be an open DlFF tubular neighborhood > 

of S. Now 0 = 8w2 {M] = w2 {D8 1 = w2 {Sl means that W 2 (TM)\S is zero. Hence 
N = S2 X R4. Killing S by surgery we produce M', oriented cobordant to M, so 

that, writing Mo = M - S2 X 04 
, we have M' = Mo + B3 X S3 (union with boun

daries identified). Now M I is smoothable since Mo is and there is no further obstruc
tion. As n~ = 0, Proposition 11. 2, is established. 

PROPOSITJON 11.3. - The characteristic number ({38) w2 : n~TOP -+ Z2 is Infec
tive. where {3 = Sql . 

Proof of 11.3. - We show the ({38) w2 [M] = 0 implies M7 is a boundary. Just as 
for 11.2, we can assume M is simply connected. Then 1l'2M = H2 (M ; Z) and we can 
kill any element of the kernel of w2 : H2 (M ; Z) -+ Z2' by surgery on 2-sl'heres in. 
M. Killing the entire kernel we arrange that w2 is injective. 

We have 0 = (P8) w2 [M} = w2 [D/38}. So the Poincare dual D{38 t)f {38 is 
:zero -" as w 2 is injective. 

Now {38 = 0 means 8 is reduced integral; indeed {3 is the Bockstein 

I) : H4 (M ; Z2) -+ H S (M • Z) 

'followed by reduction mod 2. But 

H 5 (M ;Z) ~ Jls(M; Z2)' since H2(M ;Z) ~ H2(M ;Z2) 

{both isomorphisms by reduction). Thus [38 = 0 implies 68 = 0, which means,. 
A is reduced integral. Hence D8 is reduced integral. Since the Hurewicz map 

'"1T~M-+ H3 (M ; Z) is onto, D8 is represented by an embedded 3-sphere S. Folio-: 
iwing the argument for dimension 6 and recalling 1T20 = 0, we can do surgery onS 
~ to obtain a smoothable manifold. 
I 
L 
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12. Unoriented cobordism (a). 

Recalling calculations of n? and n~o from Thorn [9 I] we get the following 
table 

i 4 5 6 7 

n50 
I Z Z2 0 0 

nSTOP{nSO = R ~Z2 , 0 Z2 R7 ~Z2 i I I 

nO I Z2 ED Z2 Z2 Z2 ED Z2 ED Z2 Z2 

nToP/no 
i i ~ R4 ~ Z2 Z2 Z2 ED Z2 Z2 (!) Z2 (!) R, 

The only non zero-entry for 0 < i < 4 would be ~ = Z2' 
To deduce the last row from the first three, use the related long exact sequences 

(from Dold [16}) 

so nO (a,d) SO 0 I nSO 
••• -+ n

l 
-+ ,u,1 -+ n /_1 ED n/_2 -+ ,u,/_1 -+ 

(12.1 ) ~ ~ ,J. ~ 
-+ nSTOP -+ n TOP (ad) nSTOP ED n TOP ~ nSTOP -+ 

tllli tllli tllll_ I tllll_ 2 tllll_ I ••• 

If transversality fails 11'4 (M 7) should replace nJ in the TOP sequence. (See 
[93, § 6 I, [3] for explanation). 

All the maps are forgetful maps except those marked i and (0, d). The map 
j kills the second summand, and is multiplication by 2 on the flfSt summand (which 
is also the targe t of j). 

At the level of representatives, a maps MI to a submanifold M I- I dual to WI (M/), 
and d maps M' to M I - 2 C M I - I dual to wI (M/) IM' - I 

The map d is onto with left inverse I{J defined by associating to M I
- '1 the RP? 

bundle associated to A ED €2 over M' -:2, where A is the line bundle with 

w. (A) = WI (MI -'1) 
and €2 is trivial. 

The diagram (12.1) gives us the following generators for SI == nIOP/n? 
S4 ~ Z2: Any M4 with 8(M) :1= 0 - - - if it exists. 

Ss = Z2: Any M S detected by 8W 1.' 

S6 = Z'1 ED Z'1: Non-smoothable M~ z CP 3' detected by 8W'1 

M~ ~ RP2 x (Q U 00) 

(*) Added in proof: A complete calculation of nroPhasjust been announced byBrumfiel 
Madsen and Milgram (Bull. AMS to appear) -
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detected by 8w~. M ~ x R can be RP 2 X XS
, where XS is the universal ¢ovcring 

of a manifold constructed in [80, § 5]. 

S, = 2Z2 ED R, :MI = IPM~ detected by 8W:; M~ is detected by AW2 WI' 

M~ = T(p), the mapping torus of an orientation reversing homeomorphism of 
M~ ~ CP 3 homotopic to 'complex conjugation in CP 3' Such a p exists because con
jugation doesn't shift the nonnal invariant for M~ ~ CP3 in [CP3 , G/TOPj. Finally 
M~ a generator of R7 detected by (P8) w2 (if it exists). 

13. Spin cobordism. 

The stable classifying space BSPINTOP is the fiber of w2 : B STOP -+ K (Zl' 2) . 

So lI';BSPINTOP is 0 for i ~ 3 and equals 1fI B TOP for i ;;;, 3. Topological spin cob or
'dism is defined like smooth spin cobordism n~PlN but using TOP manifolds. Thus 
n~PINTOP is the cobordism ring for compact TOP manifolds M equipped with 

a spin structure - i.e. a lifting to BSPlNTOP of a classifying map M -+ B TOP f.~l· '('eM) 

- or equivalently for the normal bundle v(M). 

THEOREM 13.1. - For n ~ 7, n~PlNTOP is Isomorphic to n~PlN,. whrch for 
n = 0, 1 , ... ,8 IJas the values Z ,Z2' Z2' 0 ,Z , 0 , 0 , 0 ,Z ED Z {59} {86}. The 
image of the forgetful map Z = n:

P1N 
-+ n~PlNTOP = Z is the kernel of the stable 

triangulation obstruction II : n:PINTOP -+ Z2' 

The question whether 8 is zero or not is the question whether or not Rohlin's 
congruence for signature a (M4) == 0 mod 16 holds for all topological spin mani
folds M4. Indeed 0 (M4) == 88(M4) mod 16, 8(M4) being 0 or l. 

Proof of 13.1. - The isomorphism n~P1NTOP S! n~PIN for n ~ 3 coml~s from 
smoothing. 

Postponing dimension 4 to the last, we next show n~PINTOP /n~PIN :: 0 for 
r/ = 5-) 6 , 7. Note first that a smoothing and a topological spin structure determine 
a'unique smooth spin structure. The argument of § 11 shows that the only obstruc
tion to perfonning oriented surgery on Mn to obtain a smooth manifold is a charac
teristic number, viz. 0, 8w2 , (P8)w1 for n = 5 , 6, 7 respectively. But w2 (Mn) = 0 
fot any spin topological manifold. It remains to show that the surgeries can be 
performed so that each one, say from M to M', thought of as an elementcu)' co
bbtdism (wit +I ;Mn,M In

), Carl be given a topological spin structure extending that 
bf M. The only obstruction to this occurs in H2 (W , M ; Z2)' which is zero except 
if t'he surgery is on a I-sphere. And in that case we can obviously fmd a possibly 
~ifferent surgery on it (by spinning the nonnal bundle !) for which the obstruction 
'~s ~ero. 

, Finally we deal with dimension 4. If 8(M4) = 0 for any spin 4-manifold, then 
M4 is spin cobordant to a smooth spin manifold by the proof of 11.1. Next sup
pose M4 is a topological spin manifold such that the characteristic number 8(M4) 

:is,not zero. If we can show that O(M4) == 8~(M4) mod 16 the rest of 13.1 will 
Jollow, including the fact that n~PINTOP :::: Z rather than ZED Z2' We can assume 
M4 connected (by surgery). 

1 
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LEMMA 13.2. - For any closed connected topological spin 4-manifold M4, there 
exists a {stable} TOP bundle ~ over S4 and a degree I map M -+ S4 covered by a 
TOP bundle map v(M) -+~. This ~ is necessarily fiber homotopically trivial A 
similar result {similarly proved} holds for smooth spin manifolds. 

Proof of 13.2. - Since any map Mo := M - (point) -+ BSPINTOP is contractible, 
v(M)lMo is trivial, and so v(ll£) -+ ~ exists as claimed. Now ~ is fiberhomotopically 
trivial since it is - like v(M) - reducible, hence a Spivak nonnal bundle for st. 
(Cf. proof in [40].) 

LEMMA 13.3. - A fiber homotopically trivialized TOP bundle ~ over the 4-sphere 
1 

is {stably} a vector bundle iff 3 PI (~) [S4J = 0 mod. 16. 

Proof of 13.3. - Consider the homomorphism ~ PI : 11"4 G/TOP -+ Z given by,~ 
I - -

associating the integer - PI (~) [S4J to a such a bundle ~ over S4. The composed 
1 3 ' 

map 3" PI : 11"4 G/O -+ Z sends a generator 11 to ± 16 E Z. Indeed, by Lemma 13.2 ,-
I ' . 

D1FF transversality, and the Hinebrucil index theorem, 3" PI (11) is the least inde~~~ 

of a closed smooth spin 4-manifold, which is ± 16 by Rohlin's theorem [40}. The~
lemma follows if we grant that 11"4 G/TOP = Z (not Z ED Z2). ' 

Now we complete 13.1. In Z/16Z we have 

O(M4) = ~ PI (rM) [MJ = ~ PI (~) [S4) = 88(~) (S4J = 88(r(M» [M 4J = 88(M~~i 

the third equality coming from the last lemma. .\. -
...!:=--

11"4 G/TOP = Z is used in 13.3 and in all following sections. So we prove it- a$,' 

PROPOSITION 13.4. - The forgetful map 11"4 G/O -+ 11"4 G/TOP is Z x..; Z. .~',?,~ 
- >i 

Proof of 13.4. - (cf. naIve proof in [46A)). Since the cokernel is 11"3 TOP/O -;:-;~ 
1 : 

11" 3 TOP/PL = Z2' it suffices to show that - PI: 11"4 G/TOP -+ Z in the proof of 13~J 
3 '-'~~ 

sends some element t to ± 8 E Z. . '}'~ 
~ J .. \~~) 

Such a ~ is constructed as follows. In § 2, we constructed a closed TOP ma~i~f 
fold x 4 +n with wl(X) = w 2 (X) = 0 and a homotopy equivalencef:N4 x Tn ~ X4.+.~~ 
where N 4 is a certain homology manifold (with one singularity) having o(N4

) = ± 8.,~ 
Imitating the proof of 13.2 with N 4 and v' = f*v(XHn)l ~ in place of M4 -aii(t~ 
V(M4) we construct ~ over S4 and v' -+ ~ over the degree I map N4 

-+ S4. Th!s~ 
~ is fiber homotopically trivial because v(X) ,f*v(X) and v' are Spivak n0f1l!.al~ 
bundles. Let ~ represent t in 1I"4G/TOP. -,.-

1 --~~\ff:~ 
,. 8 F' d t I' f N 4 Tn X 4 +n

).;J. Itremainstoshow-Plb)=± . lfstwere ucen 0 In: X !:!>! :Tfi0! 
3 . - .-j., 

l'd 

by using repeatedly a splitting principle valid in dimension ~ 6. (eg. use the TO~~~~ 
version of [76), or just the PL or DIFF version as in the latter part of 5.4 _~alc~ 
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in [80)). Consider the infinite cyclic covering 

f : N 4 x R .... XS of f : N 4 x TI .... X 5 • 

Splitting as above, we find that CP 2 x X s 
R:: y8 X R for some 8-manifold y8. 

Thus using the index theorem 10.7, and the multiplicativity of index and L
classes we have 

t8=o(N4)= o(CP2 xN) = O(yB) = L2(yB) = Ll (CP2 ) LJ (Xs) [CP
2 

X NJ ::. 

Ll (X5) [wt] = - Ll (p') [N4] = - ~ PI (v') fN4] ::= - ; Pi (~) [S4] = - ; PI (n. 

(We have suppressed some natural (co)homology isomorphisms). 

14. The periodicity of Casson and Sullivan. 

A geometric construction of a "periodicity" map 

1f : G/PL -+ n 4 G/PL 

'was discovered by A.J. Casson in early 1967 (unpublished)('). 

',' He showed that the fiber of 1f is K (Z2' 3),. and used this fact with the ideas of 
Novikov's proof of topological invariance of the rational PontIjagin classes to esta

. blish the Hauptvennutung for closed simply connected PL manifolds Mm, m ~ 5, 
~with .nl(Mm, Z2) = O. (Sullivan had a slightly stronger result [88]). 

- ~ Now precisely the sam e construction p,roduces a periodicity map 1f' in a ho
~motopy commutative square 

0.4.1) 

, -
. ~,; The construction uses TOP versions of simply connected surgery and transver
;-,~!ility. Recalling that the fiber of IP is K (Z2' 3) we see that n41P is a homotopy equi
;oJaience. Hence 1f' must be a homotopy equivalence. Thus (1f')-l 0 (n41P) gives a ho
:-:rhot6py identification of 1f to IP ; and an identification of the fiber of 1T to the fiber 
-::tQP/PL of IP. Thus TOP/PL had been found (but not identified) in 1967 ! 
-.. :". -
:) -rhe perfect periodicity 1f' : G/TOP ~ n4 (G/TOP) is surely an attractive feature 
:'~f toP. It suggests that topological manifolds bear the simplest possible relation 
[jp', t~eir underlying homotopy types. This is a broad statement worth testing. 

~':"~'-----.. .:. ......... .. 
·L';;j(;It).Essentially the same construction was developed by Sullivan and Rourke later in 
') ~67-68, see 172]. The "periodicity" 'IT is implicit in Sullivan's analysis of G/pL as a fibe.r pro
~BC.9f.(G/PL)(2) and Bo ~ Zl~] over Bo ~ Q, [881 [89]. 
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15. Hauptvermutung and triangulation for nonnal invariants; Sullivan's thesis(e), 

Since TOP/PL~ G/PL~ G/TOP~ K(Zl' 4} is a fibration sequence of H
spaces see ]5.5 we have an exact sequence for any complex X 

op, A 
H 3 (X ;Z2) = [X, TOP/PL] ~ [X ~ G/PL]~ [X, G/TOPl~ H4(X ;Z'1) 

Examining the kernel and cokemel of I{J using Sullivan's analysis of G/PL)(2)( **) 
we wilJ obtain 

THEOREM 15.1. - For any countable finite dimensional complex X there is all 
exact sequence o[ abelian groups : 

3 3 Ie OPe A. 4 
H (X ;Zl)/lmageH (X ;Z)~ [X, G/PL)~ [X, G/TOP)~ {Image(H (X ;Z) 

+ Sq'1 Hl (X; Z2)} 

The right hand member is a subgroup of H4(X ; Z2)' and j* comes from 

K(Z2' 3) ~ TOP/PL~ G/PL 

In 1966-67, Sullivan showed that I{J* is injective provided that the left hand group 
vanishes. Geometrically interpreted, this implies that a homeomorphism h : M' -+ M· 
of closed simply connected PL manifolds of dimension >- 5 is homotopic to a PL 
homeomorphism if H 3 (M ; Zl)/Image H 3 (M ; Z) = 0, or equivalently if H4(M; Z) 
has no 2-torsion [88J. Here [M, G/PLJ is geometrically interpreted as a group of 
normal invariants, represented by suitably equipped degree I maps [ : M' ~ M 
of PL manifolds to M, cf. {95J. The relevant theorem of Sullivan is : 

05.2) The Postnikov K-invariants o[ G/PL, except [or the first. are all odd; 
hence 

(G/PL)(2) = {K(Z2 ; 2) xSSq1K(Z(1)t 4») x K(Zl' 6) x K(Z(l)' 8) x K(Zl' (0) 

X K(Z('1p (2) x .•• , 

[
1 I I] I .. Thi " where Z(2) = Z "3' 5" ' 7 ' . .. is Z with p [or all odd primes p ad/omed. SIS. 

one of the chief results of Sullivan's thesis 1966 [87J. For expositions of it se~· 
[72} [131 [74J [89J. . 

(*) Section IS (indeed § § 10-16) di!icusses corollaries of 7T3 (TOP/PL) = Z2 coUected .in. 
sprrng 1969. For further information along these lines, the reader should see work of, 
Hollingsworth and Morgan (1970) and S. Morita (1971) (added in proof), 

.-
(**) The localisation at 2, A(2) = A @ Z(l) of a space A will occur below, only for count~~le: 

H-spaces A such that, for countable finite dimensional complexes X, IX, A) is an abeliaJ:); 
group (usually a group of some sort of stable bundles under Whitney sum). Thus E.H. Brown's; 
representation theorem offers a space A (2) and map A ~ A(2) so that [X , Al e Z(2) ::: [X ,A(2jI5~ 
For a more comprehensive treatment of localisation see (89). The space A fiI Q isdefrned., 
similarly. 
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Sullivan's argument adapts to prove 

(15.3) The Postnikov K-invariants of G/TOP are aI/ odd: Hence 

(G/TOP)(2) = K (Z2' 2) x K (Z(2)' 4) x K (Z2' 6) x K (Z(2)' 8) x ... 
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Indeed his argument needs only the facts that (I) TOP surgery works, (2) the 
signature map Z = 1I"4k(G/TOP) -+ Z is- x 8 (even for k = I, by 13.4), and (3) the 
Arf invariant map Z2 = 11" 4k+2 (G/TOP) -+ Z2 is an isomorphism. 

Alternatively (15.2) ~ (15.3) if we use n 4(G/PL)::! G/TOP from § 14. 

Remark 15.4. 

It is easy to see directly that the 4-stage of G/TOP must be K (Z2' 2) x K(Z , 4). 
For the only other possibility is the 4 stage of G/PL with K-invariant 5Sq2 in 
H 5 (K(Z2' 2), Z)=Z2' Then the fibration K(Z2' 3) = TOP /PL -+ GL/PL -+ G/TOP 
would be impossible. (Hint : Look at the induced map of 4 stages and consider the 
transgression onto I)Sq2). This remark suffices for many calculations in dimension 
~ 6. On the other hand it is not clear to me that (15.2) ~ (15.3) without geometry 
in TOP. 

Proof that Kernel tp fl!! H 3 (X ;Z2)/imj:lge H 3 (X ;Z). 

This amounts to showing that for the natural fibration 

nG/TOP -+ TOP/PL -+ G/PL 
the image of [X , nG/TOPJ in [X, TOP/PL] = H 3 (X ; Z2)' consists of the reduced 
integral cohomology classes. Clearly this is the image of [X , n (G/TOP){2)] under 

n.(G/TOP){2)~ (TOP/PL)(2) = TOP/PL. Now h2) is integral reduction on the 

factor K (Z{2)' 3) of n (G/TOP){2) because 11"4 (G/TOP) -+ 11"3 (TOP/PL) is c'nto, 
and it is clearly zero on other factors. The result follows. The argument comes 
from [13J [72J. 

_ .Proof that Coker(tp) = {Image 114(X ;Z) + Sq2H2(X ;Z2)}' 

The following lemma is needed. Its proof is postponed to the end. 

'LEMMA 15.5. - The triangulation obstruction II : BTOP -+ K(Z2' 4) is an H-map. 

Write tp : A -+ B for tp : G/PL -+ G/TOP and let tfJ4 : A4 -+ B4 betheinduced map 
of Postnikov 4-stages, which have inherited H-space structure. Consider the fibra-

\04 A4 

tion A4 --+- B4 --+- K(Z2' 4). 

Assertion (I). - (1l4).[X ,B4] = {lmageH4(X ;Z) + Sq2H2(X ;Z2)}' 

;"Proof of (1). - Since B4 = K(Z2' 2) x K(Z, 4) and 

[X ,B4] = H2(X ;Z2) ED H4(X ;Z) 

-~hat we have to show is that the class of 114 in -, 
(44,K(Z2,4)] = H 4(i«Z2' 2) x K(Z,4);Z2) = 

, 

is;(Sq2, p) where p is reduction mod 2. 
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The second component of 8 4 is 841K(Z , 4) which is indeed p since 

Z = 1T4 G/TOP ~ Z2 = 1T4 K(Z2' 4) 

The rust component 8 4 I K(Z2' 2) can be Sq2 or 0 a priori, but it cannot be 0 
as that would imply A 4 ~ K (Z2' 2) ~ K (Z , 4). This establishes Assertion (l). 

Assertion (2). - (8 4 ).[X ,B4 J = 8.[X ,B) by the projection B-+B 4• 

Proof of (2). - In view of 15.5, localising B4 and B at 2 does not change the' 
left and right hand sides. But after localization, we have equality since B(2) is the ~ 
product (15.3). ;:-

The theorem follows quickly 
, , 

[X ,AJ/'P* [X ,A 1= 8. [X ,B) = (84 ). [X ,B41 = {ImageH 4(X,Z) + Sq2H'1(X ; Z2)} , 

The three equalities come from Lemma 15.5 and (l) and (2) respectively. 

I t remains now to give 

Proof of Lemma 15.5 (S. Morita's,replacing something more geometrical). 

We must establish homotopy commutativity of the square 

where a represents Whitney sum and a represents addition in cohomology. 

Now a 0(8 x 8) represents A x I + I x A in H 4 (BTOP x BTOP ; Z2)' Also., 
a 00 certainly represents something of the form 8 x I + I x 8 + :E, where~ 

E is a sum of products x x y with x , y each in one of Hi(BTOP ; Z2) = H;(BPL ; Z2» 
for i = 1,2 or 3. Since 8 00 restricted to BPL X BPL is zero, }; must be zeto.,c~ 

Theorem 15.1 is very convenient for calculations. Let M be a closed PL', 
manifold, m-manifold m;;;" 5, and write ~CAT (M), CAT = PL or TOP, for the: 
set of h-cobordism classes of clos~d CAT m-manifolds M' equipped with a homo:::t 
topy equivalence f : M' -+ M. (See (95) for details). " 

There is an ex.act sequence of pointed sets (ex.tending to the left) : 

v ' .~ 

.,. -+ [:EM, G/CATJ -+ Lm+l (1T, Wi) -+ ~CAT(M)~ [M, G/CATJ ..... Lm (1T, WI) '. ~ 
. :;;i( 

It is due to Sullivan and Wall [95]. The map v equips each f : M' -+ M(above)_ as ';, 
aCATnormalinvariant.Exactnessat ~cAT(M)isrelativeto an action of Lm +1(1T, WI ).': 

on it. Here Lk (1T , WI) is the surgery group of Wall in dimension k for fundam~ntal;~ 
group 1T = 1T 1 M and for orientation map WI = WI (M) ; 1T -+ Z'1' There is a genet~~'~~ 
sation for manifolds with boundary. Since the PL sequence maps naturally to thi) 
TOP sequence, our knowledge of the kernel and cokemel of 

[M , G/PL] -+ {M , G/TOP) 
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-:will give a lot of information about iBPL(M) -+ (WTOP(M). Roughly speaking failure 
of triangulability in ~Top(M) is detected by non triangulability of the TOP normal 

. invariant; and failure of Hauptvermutung in ~PL (M) cannot be less than its failure 
~or the corresponding PL normal invariants. 

- In case 'trIM = 0, one has iBCAT(M):::: ~CAT(Mo) ~ [Mo' G/CAT] where Mo is 
M with an open m·simplex deleted, and so Theorem 15.1 here gives compiete 

-jnformation. 

. _ Example 15.6. - The exotic PL structure l: on S3 X Sn, n ~ 2, from 

1 E H 3(S3;Z2) = Z2 

admits a PL isomorphism (S3 X sn)r. :::: S3 X Sn homotopic (not TOP isotopic) to 
the identity. 

Example 15.7. - For M = CPn (= complex projective space), n ~ 3, the map 
[Mo' G/PLj-+ [Mo, G/TOP] is injective with i;okernel Z2 = H 4 (Mo'Z2). This means 
that 'half' of all manifolds M' ~ CP n' n ~ 3, have PL structure. Such a PL structure 

_ is unique up to isotopy, since H3 (CP n ,Z2) = o . 

. 16. Manifolds homotopy equivalent to real projective space pn • 

. , 

,-_ Mter sketching the general situation, we will have a look at an explicit example 
of-failure of the Hauptvermutung in dimension 5. 

~. - From [54] [941 we recall that, for n ;;-: 4, 

n 

(1~.l) [pn, G/PL] = Z4 ED ~ 'tr/(G/PL) 8 Z2 
£=6 

n. This follows easily from (15.2). For G/TOP the calculation is only simpler. 
-;Onc', gets 

n 

06.2) [pn, G/TOP] = L 7r1 (G/TOP) ® Z2 
1=2 

--.: Xalculation of iBpL(pn) == In is non-trivial [54} [941. One gets (for i ~ I) 

(16.3) 141+2 = 14 ;+1 = [p4/, G/PL] ;/4H3 = 14/+2 e Z ;14/+4 = 141+2 e Z2 . 

. - -The result for ~TOp(pn) is similar, when one uses TOP surgery. Then 

- -'.,- , (gPL (pn) -+ (gTOp(pn) 
'. f 

-'is d~~cribed as the direct sum of an isomorphism with the map , 

Z4 = [p4, G/PL] -+ [p4, G/TOP] = Z2 e Z2 , 

.which sends 'Z4 onto Z2 = 'tr2 G/TOP. 

_.R_e~ark 16.4. - When two distinct elements of ~PL (pn) , n ~ 5, are topologica~ly 
the sbe, we know already from 15.1 that their PL nonnal invariants are distiI1jct 
sinc~ l,H 3 (pn ; Z2) is not reduced integral. This facilitates detection of examples. 
~~,,-~. ~ ~ . 
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Consider the fixed point free involution T on the Brieskom-Pham sphere in 
Cm~l 

I Z I == 1 

given by T(zo' ZI' ••• , zm} = (zo' - zl' ••• , - zm). Here d and m must be odd 
positive integers, m ~ 3, in order that l::!m-l really be topologically a sphere 
[61 ]. 

As T is a fixed point free involution the orbit space n~m-l == I~m-l IT is a 

DIFF manifold. And using obstruction theory one finds there is just one oriented 
equivalence n!m-l ~ p2m-1 (Recall poo = K (Z2' I». Its class in ~CAT(p2m-l) 

clearly detennines the involution up to equivariant CAT isomorphism and con
versely. 

THEOREM 16.5. - The manifolds n~, d odd, fall into four diffeomorphism classes 
according as d == I , 3 , 5 , 7 mod 8, and into two homeomorphism classes acc01:
ding as d = ± I , ± 3 mod 8. ni is diffeomorphic to pS . 

F.emark 16.6. - With Whitehead C 1 triangulations, the manifolds !1! have ~ , 
PL isomorphism classification that coincides with the DIFF classification (§5, ~ 
[9] [64 D. Hence we have here rather explicit counterexamples to the Hauptver< 
mutung. One can check that they don't depend on Sullivan's complete analysis 0(
(G/PL)(2). The easily calculated 4-stage suffices. Nor do they depend on topological . .' 
surgery. 

PROBLEM. - Give an explicit homeomorphism p5 ~ n~. 

Remark 16.7. - Giffen states [23] that (with Whitehead C 1 triangulations) th~

marufolds n!m-I , In = 5 , 7 ,9 , ... fall into just four PL isomorphism classes 
d == I , 3 , 5 , 7 mod 8. In view of theorem 16.4., these classes are already distin- ~ 

guished by the restriction of the nonnal invariant to pS (which is that of n~~. 
So Giffen's statement implies that the homeomorphism classification is d == ± I ;' 
± 3 mod 8. 

Proof of 16.5 (**) 

The first means of detecting exotic involutions 011 SS, was found by HirsCh: 
and Milnor 1963 [32]. They constructed explicit("') involutions (M1,-JI 13,), r an
integer ~ 0, on Milnor's original homotopy 7-sphcres, and found invariant spheres 
M~'_l :> M~r_1 :> M;,_l . They observed that the class of M~'_1 in r2S /2 r 28 i~r' 
an invariant of the DlFF involution (Mir_1 ' 13,) - (consider the suspension operll7~ 
tiOll to retrieve (M~, _I ,13) and use r 6 = 0). Now the class of M~r-l in Z2S = r'7 is.' 
r(r - 1)/2 according to Eells and Kuiper [IS], which is odd iff r == 2 or 3 mod 4:,' 
So this argument shows (Mi,_1 ,13,) is an exotic involution if r == 2 or 3 mod 4-.; 

Fortunately the involution (M~'_l ' /3,) has been identified with the involuti~~-: _ 

(~ir+J! T). 

(*) f3r is the antipodal map on the fibers of the orthogonal 3-sphere bundle M~r_I' 

(**) See major correction added on pg. 337. 
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There were two steps. In 1963 certain examples (X S
, (Xr) of involutions were 

given by Bredon, which Yang [101] explicitly identified with (MIr_I' (Jr)' Bredon's 
involutions extend to 0(3) actions, (Xr being the antipodal involution in 0(3). And 
for any reflection (X in 0(3) , (X has fixed point set diffeomorphic to 
L 3 (2r + 1 , 1) : z~r+ I + z! + z~ = 0 ; Iz I = 1. This property is clearly sJ~:lred 
by C£~r+ I , T), and Hirzebruch used this [act to identify (1;;r+ I , T) to (X, ~) 
[33, §4 J [34]. The Hirsch-Milnor information now says that n~ is DIFF e'lotic 

if d == 5,7 mod 8. 

Next we give a TOP invariant for nd in Z2' Consider the normal invariant 
"d of nd in [ps, G/O J = Z4' Its restriction Vd Ip2 to p2 is a TOP invariant because 

(P2, G/O] = [P2, G/TOPJ = Z2' 

Now Giffen [22) shows that Vd Ip2 is the Arf invariant in Z2 of the framed fiber 
of the torus knot z: + z: = 0, IZol2 + Iz.l2 = I in S3 C C2

• This turns out to 
be 0 for d == ± I mod 8 and 1 for d:: ± 3 mod 8, (Levine [53), cf. [61, § 8». 

We have now shown that the diffeomorphism and homeomorphism clas:;ifica
tions of the manifolds n~ are at least as nne as asserted. But there can be at most 
the four diffeomorphism classes named, in view of 16.3. (Recall that the PL and 
D1FF classifications coincide since r l = 1I"i(PL/0) = 0, i ~ 5). Hence, by Remark 
16.4, there are exactly four - two in each homeomorphism class. 
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Correction to proof of 16.5: Glen Bredon has informed me that 
:[ 101] is incorrect, and that in fact (X5 , (Xr) can be identified to 
.,(M~r+ I ,Pr + I) . Thus, a different argument is required to show that 
-:the DIFF manifolds na ' d = 1, 3, 5, 7 mod 8 ,respectively, occupy 
:the four distinct diffeomorphism classes of DIFF 5-manifolds 

-.homotopy equivalent to p5 . The only proof of this available iJ;1 1975 
-.-is the one provided by M. F. Atiyah in the note reproduced overleaf. 
So many mistakes, small and large, have been committed with the.se 

, ! 
involutions that it would perhaps be wise to seek several proofs. 


