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1. Introduction

We consider holomorphic function germs f : (€™t O) — (€', 0) and
allow arbitrary singularities (isolated or non-isolated). We are inter-
ested in the topology of this situation, especially the so called vanishing
homology.

We first recall the definition of the Milnor fibration. For € > 0 small
enough there exist an e-ball B, in €"*! and an n-disc D, in € such
that the restriction:

f: E=fYD,)NnB.— D,

is a locally trivial fibre bundle over D, \ {0}. The fibres, mostly denoted
by F, are called Milnor fibres. The groups H.(FE,I') are called the
vanishing homology groups.

The Milnor fibre F', its homotopy type and homology are interesting
topological objects. So is the monodromy operator

T, : H.(F) = H.(F)

of the fibration.
Well known facts are:

— The Milnor fibre is 2n-dimensional and has the homotopy type of
an n-dimensional CW-complex (Milnor [33]),

— The Milnor fibre is (n — s — 1)-connected, where s is equal to the
dimension of the singular locus of f (Kato-Matsumoto [26]),

— If f has an isolated singularity then the Milnor fibre has the homo-
topy type of a bouquet of n-dimensional spheres. The number p of
these spheres is called the Milnor number of the isolated singularity

(Milnor [33]),

— the eigenvalues of the monodromy operator are roots of unity. See
Griffiths [19] for references to four different proofs.
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2 Dirk Siersma

Isolated singularities have been studied in great detail during the last
30 years. They have wonderful properties, which relate different aspects
of the singularity. In this paper we want to discuss especially non-
isolated singularities. Although the properties (e.g. the topological type
of the Milnor fibre) are more complicated than for isolated singularities,
there is a lot of interesting structure available.

Let ¥ = X(f) be the singular locus of f. For every point of ¥ we
can do the Milnor construction. So for every 2 € ¥ we have a (local)
Milnor fibration (e.g. a space FE(z), the local Milnor fibre I,y and a
Milnor monodromy 'T(l,)). We want to investigate the relation between
these objects for all 2 € X. This is (near to) the study of the sheaf of
vanishing cycles [10].

To be more precise: one could try to define a stratification of X in
such a way that two points of X are in the same stratum if they can
be joined by a (continuous) path such that there exits a (continuous)
family of Milnor fibrations of constant fibration type.

According to a result of Massey, the constancy of Lé numbers (for
definition see the contribution of Gaffney [17] in this Volume) implies
constancy of the fibration type under certain dimension conditions
(more precisely s < n — 2 for the homotopy-type and s < n — 3 for
the diffeomorphism-type). We refer to Massey’s monograph [31] for
details and for many other related facts.

Let us suppose that we end up with a situation, where we have
stratified ¥ (according to the above principle):

v=xFy...uxtux?,

where ¥7 \ ¥/~ is j-dimensional and smooth. For every connected
component of 37\ ¥/~! we have a monodromy representation of its
fundamental group on the homology groups of a typical Milnor fibre at
a general point on the statum:

m (S \ S ) = Aut [Ho(F,)] -

We call these monodromies“vertical”. The vertical monodromies con-
tain a lot of extra information about the singularity. The Milnor mon-
odromy is called “horizontal” and commutes with the vertical mon-
odromies.

We intend to discuss this situation in several examples; paying most
attention to the situation where ¥ is 1-dimensional, where the stratifi-
cation is rather simple. We also intend to treat some examples of higher
dimension.
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This paper is organized as follows. In section 2 we recall some
facts about isolated singularities. In particular we discuss the relation
between variation mapping, monodromy and intersection form.

In section 3 we treat singularities with a 1-dimensional critical set.
We follow first [50] and [51], treat several examples, where vertical and
horizontal monodromy play a role, and focus at the end on bouquet
decompositions of the Milnor fibre. These seem to occur as soon as we
stay near to the case of isolated singularities.

Section 4 is about singular sets of higher dimension. We discuss and
summarize recent work.

2. About isolated singularities

The theory of variation mappings plays an important role in our discus-
sions. We first repeat some of the well known facts about isolated singu-
larities. They can be found in the literature on several places, e.g. Mil-
nor [33], Lamotke [27], Arnol’d-Gusein Zade-Varchenko [3], Stevens [55].

In the isolated singularity case there exists a geometric monodromy
h : F'— F such that h|sp is the identity.
Let T, = h. : Hy(F) — H,(F) be the algebraic monodromy. The map
T,—1: H,(F)— Hy(F) factors over:

VAR, : H,(F,0F) — H,(F)
which is defined by
VAR, [o] = [h(x) - a]

We have a commutative diagram:

H, (F) o=, (F)

J= Gan |-
H,(F,0F) Y=l g, (F,0F)
LEMMA 2.1. VAR, : H,(F,0F) — H,(F) is an isomorphism if ¢ # 0.

Proof. Consider the exact sequence of the pair (S?"*1, F) and the
following isomorphism:

Hyp i (ST Y =2 H(F,0F) @ Hy(1,01) = H,(F,0F).
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4 Dirk Siersma

This gives the following exact variation sequence
2n41 VAR, 2041
coo—= Hy (8" — Hy(F,0F) — Hy(F) — H (5°") — ...

The lemma now follows from the fact that H,(S?"+") = 0 for ¢ # 2n+1

PROPOSITION 2.2. For isolated singularities, Ker j. = Ker (T, —1I).
Proof. Let I/ be the total space of the Milnor fibration f: E — dD,,.
The diagram above relates the variation mapping and j. to the Wang
sequence of the fibration:
0= Hyyy(E) = Ho(F) 25" Hy(F) = Hy(E) = 0

REMARK 2.3. The intersection form S on H,, (F') is related by Poincaré-
duality [, ] to j« by

S(xvy) = []*wyy]

So: T has eigenvalue 1 < S is degenerate.
Let K = f~1(O) N dB. A related fact is that for n # 2:

K is a topological sphere < det(T,, — I) = £1.
Because F 2 S27+\ K and by duality

Hop (E)= HYK) 2 H,(K)

H,(E)= H"(K) 2 H,_,(K)
the Wang sequence tells:
K is a homology sphere < det(T, —I)= £1.

For the step from homology sphere to topological sphere we refer to
Milnor [33].
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3. One dimensional singular locus

3.1. INTRODUCTION

In this section we consider singularities with a 1-dimensional critical
locus (for short: 1-isolated singularities) and study the vanishing ho-
mology in a full neighbourhood of the origin. In this case the vanishing
homology is concentrated on the 1-dimensional set ¥. We can write

Y=31U...UX,

where each X; is an irreducible curve.

At the origin we consider the Milnor fibre F of f and on each
Y; — {0} alocal system of transversal singularities:
Take at any € 3;—{O} the germ of a generic transversal section. This
gives an isolated singularity whose p-class is well-defined. We denote a
typical Milnor fibre of this transversal singularity by F/. On the level
of homology we get in this way a local system with fibre H,_; (F!).

More precisely we consider in the 1-isolated case the following data:

The Milnor fibre F. The vanishing homology is concentrated in di-
mensions n — 1 and n:

{ H,(F) = Z", which is free.

H,_1(F), which can have torsion.
The Milnor monodromy acts on the fibre F :
T, :H,(F)— H,(F)

Tn—l : Hn_l(F) — Hn_l(F)

The transversal Milnor fibres F/. The vanishing homology is con-
centrated in dimension n — 1:

H,_1(F!) = Z" ,which is free.
On this group there act two different monodromies:

1. the vertical monodromy (or local system monodromy)
Ai s Hor(F)) = Hyer (F))

which is the characteristic mapping of the local system over the
punctured disc ¥; — {O}.
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2. the horizontal monodromy (or Milnor monodromy)
Tt Hyey (F)) = Hyoa ()

which is the Milnor fibration monodromy, when we restrict f to a
transversal slice through = € 3; — {0}.

In fact A; and T; are defined over (X; — {O}) x S, which is homotopy
equivalent to a torus. So they commute:

AT, =T A;

One of the topics of this section is to show how the above data enter
into a good description of the topology of a 1-isolated singularity. For
details we refer to [50, 51].

EXAMPLE 3.1. D_-singularity: f = zy® + 22.
3} is given by y = z = 0 and is a smooth line. The transversal type is
Ay,
It is known that F is homotopy equivalent to S? (cf. [45]).
One can show that:

H(F)y=%Z T=1 and A=-I

EXAMPLE 3.2. Ty o,co-singularity: f = zyz

Y =Y, U, U5 and consists of the three coordinate axes in €.
The transversal type is again A4;.

It is known that I is homotopy equivalent to the 2-torus S' x S?!
(cf. [46])

One can show that:

Hy(F)=Z Ty =1
H(F)=Z®Z T,=1
H(FY=Z  T;=1 and A; =1 i=1,2,3.

EXAMPLE 3.3. Let f be l-isolated and homogeneous of degree d. In
this case one has the relation:

AZ':T._d

K3

We can assume that all the X;’s are straight lines through O. We can
suppose that ¥; is the zg-axis; the formula follows from f(szg, 21, -+, 2,) =
sl f(xo, s ey, -+, 57 wy,), of [54].
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Non Isolated Singularities 7
3.2. SERIES OF SINGULARITIES

Let again f : (€1 0) — (€, 0) be a germ of an analytic function. Let
[ have a 1-dimensional critical locus ¥ = 3(f). One considers for each
N € IN the series of functions:

In=r+ea"

where z is an admissible linear form, which means that f=1(0) N {z =
0} has an isolated singularity. One calls this series of function germs
a Yomdin series of the hypersurface singularity f. Under the above
condition all members of the Yomdin series have isolated singularities.
Moreover their Milnor numbers can be computed using the so-called
Lé-Yomdin formula:

u(f + @) = o () = pnea () + Neo(S).

Here p,,, resp pi,—1 are the corresponding Betti-numbers of the Milnor
fibre F' of the non-isolated singularity f and e,(X) is the intersection
multiplicity of > and # = 0. The formula holds for all N sufficiently
large. Moreover eq(X) = 3~ d; i, where d; is the intersection multiplicity
of ¥; (with reduced structure) and z.

The following formula relates the characteristic polynomials of the
monodromies of f and fy. Other ingredients are the horizontal and
vertical monodromies. The eigenvalues of the monodromy satisfy Steen-
brink’s spectrum conjecture, cf [54]. This conjecture was later proved
by M. Saito [42], using his theory of Mixed Hodge Modules.

THEOREM 3.4. Let f: (C",0) — (€,0) have 1-dimensional crit-
ical locus ¥ = ¥4 U ---UX, (irreducible components). Let x be an
admissible linear form. Let M(f)(X) be the alternating product of the
characteristic polynomials of the monodromy T of f in dimensions n
and n — 1. Let M(f + exV)(A) be the characteristic polynomial of the
monodromy of f + exV in dimensions n. For all N sufficiently large

M(f +e™)(A) = M(f)(\) [[det W4T — AN,

where A; and T; are the vertical and horizontal monodromy along the
branch X;.

Proof. The idea behind the proof is to use polar methods and to
consider the map germ

b= (fz) :C" 5 OxC.
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The Milnor fibres F of f, resp F'N of fy occur as inverse images
under ® of the sets {f = t}, resp {f + ez’ = t}. Next one constructs
via a (stratified) isotopy an embedding

FcFN.

From the corresponding homology sequence one gets the following 4-
term exact sequence

0— H,(F)— H,(FY) = H,(FN,F) = H,_,(F) = 0.

The difference F'V\ I is (by excision and homotopy equivalence) related
to the part of I’V located near the d; intersection points of ¥; and FN.
One obtains:

Hy(FN,F)=a'_, &r% H,_y(Fig),

where each F;, is a copy of the Milnor fibre of the transversal singu-
larity F/. From this one gets

b(F) = bt (F) = by (FN) = N> dip.

To obtain the monodromy statement one constructs a geometric
monodromy, which acts on the 4-term sequence. One uses Lé&’s carrousel
method. The monodromy on FV respects the distance function |z| as
nearly as possible. The geometric monodromy gets an z-component,

which gives rise to the appearance of the vertical monodromy A; in
det( AN — A; TN, For details cf [50).

REMARK 3.5.  M][f] is related to Z¢, the zeta function of the mon-
odromy, which is defined by Z;(t) = [],>o(det(I - FTYDTY of [33),

For homogeneous singularities of degree d the formula Z(t) = (1 —
td)_ﬁdﬁl is well known and valid in all generality (without assumptions

on the dimension of the critical set), cf eg [13].

REMARK 3.6. The theorem can be used in two ways: computing
mononodromies for isolated singularities in the series, but also for
computing monodromies of certain non-isolated singularities with one
dimensional singular sets.

In the case of a homogeneous polynomial one can compute almost
all ingredients in the formula by taking N as the degree d of f.

One gets in this way the formula Z¢(t) = (1—td)_X(Ff-Tleg)iz " (where
the ! are transversal Milnor numbers), and x(£}¢,) = 1+(—1)"(d—1)",
the Euler characteristic of an isolated singularity of degree d. Also
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(in some cases) generalizations to the quasi-homogeneous case can be
obtained. See also [12].

Also some questions about the relative monodromy being of finite
order can be treated with the above formula, cf [53].
Generalizations of the method are in Tibar’s work [58].

3.3. VARIATION MAPPINGS

It is not possible to construct a geometric monodromy h : F' — F which
is the identity on the whole of the boundary dF of the Milnor fibre F.
However it is possible to make it the identity on a big part  F of O0F
but not on its complement 0o F, which is situated near the singular
locus 3. We can suppose dF = W F U 0F and O, F = dF N'T, where
T is a tubular neighborhood within S?"*! of the link L := X n §27+L,

The homology sequence of the pair (F,0:F) gives the following
fundamental sequence:

0— Hn+1(F7 82F) — Hn(agF) — Hn(F) —

I{n(]?7 82F) — Hn_l(agF) — Hn_l(F) — 0

The homology groups of d2 F' play an important role in this sequence.
They are related to the local system monodromies A4; : F/ — F} in the
following way:

09 F' is a disjoint union 0y = U 82F concentrated near the compo-

nents of X. Bach 0y F; is ﬁbered over the circle (which is the neighbor-

hood boundary of ¥;) with fibre F.
The Wang sequence of this fibration is:

0 = Hy(0oF3) = Hoy(F)) 5" Hooy (FY) = Hooy (0205) — 0
So:
H,(0,F) = & Ker(A; —1I)
H,_1(0:F) =2 & Coker (4; — 1)
The first group is always free, the second can have torsion.

COROLLARY 3.7.

1. dim H,(0:F) = 0 < no vertical monodromy A; has an eigen-
value 1 = dim H,,_1(F) =0, but H,,_1 (F) can have torsion!
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2. Let X be an eigenvalue of T,y : H,—1(F) — H,_1(F), then A
is also an eigenvalue of some T; : H,_1(F!) — H,_1(F}); in fact
one of the eigenvalues occurring in Coker (A; — I).

EXAMPLE 3.8. If the transversal type of the singularity is A; for
all the branches then T,,_; can only have eigenvalue 1 if n is even, or
eigenvalue —1 if n is odd.

Given a geometric monodromy h : F' — [ such that h|s, p is the
identity, we can consider the variation mappings

VAR! . H.(F,0,F) — H.(F)
VARY . H.(F,0F) — H.(F,0,F)
VARHL . H(OF,0,F) — H.(0:F).

One can show that they are isomorphisms near the middle dimensions,
along the same lines as in the isolated singularity case. One has a first
variation sequence

VAR
v Hyp (SPTYNL) = H(F,00F) —" Hy(F) — H,(S*"T\L) — ...
and a second variation sequence:

VARI!

vy Hypt (S L) — H(F,0F) =" H,(F,05F) — H,(S*" T, L) — ...

The vanishing of H,(S***'\L) and H,11(5*"*!, L) determine the range
of isomorphisms.

Moreover there are Lefschetz type dualities involved (for manifolds
with boundary and corners) between

H.(F) and H.(F,0F)
H.(F,0,F) and H.(F,,F)

See [47] or Dold [16], chapter VII. See also the remark at the end of
the paper of Samelson [43].

A lot of homological information about the singularity is contained
in a big commutative diagram, which we call the variation ladder.
Recall that dim 3 = 1. We shall assume n > 3 in order to avoid special
features of low dimensions. In [51] there is a version adapted for the
case n = 2. Most of the corollaries that follow from the variation ladder
are also true in that case.

THEOREM 3.9. [The variation ladder] The following commutative
diagram has as columns the exact sequences of the triple (F,0F, hF)
and the pair (F, 02F). The maps < are induced by inclusion. The maps
VAR are isomorphisms.
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0 =  H, (F,0F) VAR{IH. Hopi (F) = 0
Zzvr-t = Ha (F,OF) YA M, (F,0,F) =z
VAN H,(OF,0.F)_VARZ — H, (0 F) = Z°
zmn = H,(F,0,F) _VARL H,(F) = g
1)%

Zhn T = H,(F,dF) _VARY H, (F,0,F) =Z" T
2 )%

ZoDTy= H,_1(0F,0,F) ARty H,_(0,F)  =Z"aT,
Zrn=r &= Hooy (F,00F) YARaor  H,_((F) ' @ T
0 = H,q(F0F) YANL H, ((F,0:F) = 0

where
pn = dim H,(F)
Hn—1 = dlmHn_l(F)
a = dim H,(0,F) = Zdim ker(A; —I)
=1
Ty = torsion part of H,—1(02F")
T = torsion part of H,_1(F)
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It follows from the Lefschetz dualities mentioned above that the rows
are “opposite dual” to each other. The composition of < and VAR is
T, —T.

COROLLARY 3.10. If all vertical monodromies have only eigenvalues
A # 1 then

1° (j2)« is injective (even bijective over )

2° Hyy1 (F,0F) =0 and H,_1(F) is torsion.

REMARK 3.11. The variation ladder occurs also in the following way.
Consider the sheaf @ of vanishing cycles, cf [10]. The stalk of this sheaf
at a point is the reduced cohomology over €' of the Milnor fibre of f at
the point. Our approach works with homology and with coeflicients in
Z, and we are also interested in torsion.

Let j denote the inclusion of O in X = f~1(0), ¢ be the inclusion of
X —-0Oin X, and let K’ denote @ (C), Then there exists a distinguished
triangle:

The associated stalk cohomology exact sequence at the origin be-
comes:

0= B (Ko} = & Ker(A; = 1) H"((.K o) =

— H™((K)o) — élKer(Ai — 1) = H" ('K )o) = 0

where H*¥((K')o) = H*(F, C).

Since H*((j.j'K')o) can be identified with H*(F,do; €'), this se-
quence is the cohomology sequence of the pair (F,d;F) and is the
cohomology version (over €') of the right hand side of the variation
ladder 3.9, at least for n > 3.

Other work in this direction was done by M. Saito [42] and D. Barlet
[5, 6]. They deal with Hodge theoretical aspects.
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3.4. RELATION BETWEEN THE MONODROMY AND THE
INTERSECTION FORM

In the isolated singularity case it is known [33] that
S is degenerate < T has eigenvalue 1.

This follows from S(z,y) = [j«z,y] by Poincaré Duality and the fact
that ker j. = Ker (T, — I) . We discussed this already in section 2.
What happens in the case dim > = 17

Consider the diagram:

H,(F,0,F) VAR H,(F)
JT=
jl* ~
m,(F)Ia=1p, (r) Jox
T j2*
H,(F,0F) VARY H,(F, 0, F)

So T, — I= VAR 0 ji.; Ker j1. = Ker (T, — I) and (j3). o (T, = I) =
VAR o j,

PROPOSITION 3.12. T has eigenvalue 1 = S is degenerate
Proof. We have Ker (T,, — I) = Ker j1. C Ker j, .

In the other direction we have the following two partial results:

PROPOSITION 3.13. If all vertical monodromies have only eigenval-
ues A # 1, then:

T, has eigenvalue 1 < S is degenerate
Proof. Since (jz2)« is injective we have Ker (T, — I) = Ker j,.

PROPOSITION 3.14.

S is non-degenerate Ker (T, - 1)=0
H, 1(F,€)=0 Ker (A; — I) =0 for all i.
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EXAMPLE 3.15. We consider the following homogeneous polynomial
f=a%y + P + 2% = 2eyz(a +y + 2)

In IP? this defines a curve, which is known as Zariski’s example with 3
cusps. So f has a 1-dimensional singular locus, consisting of 3 complex
lines and transversal type As.

Since fis homogeneous of degree 4 it is known that A; = TZ»_4 where
T; is the monodromy of A,. Since the eigenvalues of T} are ¢ and ¢,

where ¢ = €27/6 it follows that A; has eigenvalues ¢* and ¢=*.
As a corollary: {

Ker (A4; —I)=0
Coker(A; — I) = Zs5 torsion
H,_1(F) is torsion.

The eigenvalues of T, : H,,(¥) — H,(F) can be deduced from 3.4:
r,r? and 3 where r = €2™/4, So in particular Ker T, — I = 0. As a
consequence S is non-degenerate.

In this case the fundamental group = (F) = Zs , so we have only
3-torsion in Hy(F) = Zs. Although bi(F) = 0, we will point out, that
the monodromy on Hy(F') is non-trivial!

The 6-term exact sequence in the variation ladder reduces to:

and this implies that

0= Z° = Z°® Xy — (Zs3)° — Zz — 0

The action of the monodromy on Hy(F') is induced by the actions
on each Coker (A; — I) = Zs, which is multiplication by —1. It follows
that action of the monodromy on H;p(F') is non-trivial. This remark is
also in [14].

EXAMPLE 3.16.  Proposition (3.12) can be used to construct sev-
eral examples with totally degenerate intersection forms. Dimca gave
2%y%=* 4 yz?=1 and other examples, where the geometric monodromy

can be chosen homotopy equivalent to the identity. This implies that
Ker (T, — I) = Ker j. = H,(F).

In case of homogeneous polynomials in z,y, z of degree d it follows
from [12] or [50] that a necessary condition for T, = [ is x(#) = 0.
Since in the homogeneous case x(F) = d° — 3d? + 3d — d > !, this is
equivalent to

Yub=d* —3d+ 3,

where ! are the Milnor numbers of the transversal singularities.
Melle [4] pointed out that this condition is not sufficient. First re-

mark that x(F') = 0implies that the zeta function of the monodromy
is Z(t) = (1 - td)_@ = 1 (due to homogeneity). It follows that
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Ty = 1 is equivalent to Ty = 1; so any eigenvalue of T different from 1
has to cancel against an eigenvalue of Ty and vice versa. In case Ty = 1
it follows that the 6-term sequence splits into two 3-term sequences,
one has

0— I{n(l*—’7 82F) — Hn_l(azF) — Hn_l(F) — 0

So also the monodromy of the middle term must have only eigen-
values 1.

Melle’s example f = (y* + 222)(axz + 2% + ay?®) is a polynomial
of degree 4, where the corresponding projective curve has only one
singularity, which is of type A7. A straightforward calculation gives
dim H,,_1 (02 F) = dim Coker (A, — I) = 3 and the eigenvalues of T, on
this space are 7, —1, 1.

Examples of homogeneous singularities with T = [ are used in [7] in
order to construct complex hypersurfaces which are homology IP"’s.

Cancelling of eigenvalues of the monodromy is also the subject of
Barlet’s studies [5, 6] and Denef’s conjectures [11] about the topological
zeta function.

3.5. Is OF A TOPOLOGICAL SPHERE?

In Milnor’s book [33], section 8 is entitled: Is K a topological sphere?
Remember K = f~!(0) NdB. For isolated singularities Milnor showed:

K is a topological sphere 7! < det T,, — [ = +1
Since dF is diffeomorphic to K in this case, we also have
JF is a topological sphere $*" ™1 & det T, — I = £1

In this section we study the 1-isolated case. Since K is not smooth, we
only study dF. The vertical monodromies play an important role in the
final result.

PROPOSITION 3.17. Let n > 2. The following are equivalent:
1. OF is a topological sphere 5?71

{ a)) Hy_ 1 (F) =0

(
% (b) The intersection form S on H, (F) has determinant £ 1
3 (@) det(A; —I)==%1 forallt=1,...,r
"L (b) det(T, —1I)==1
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NB. For n =2 replace (1) by: OF is a homology sphere.

REMARK 3.18. 0F is a topological sphere if and only if K is a
homotopy sphere and det(A4; — I) = +1.

REMARK 3.19. Let f be l-isolated with transversal type A;. We
have A; = =+ 1I.So in this case dF can never be a topological sphere.

REMARK 3.20. Let f be l-isolated, and moreover be homogeneous
of degree d; then OF is never a homology sphere.

To show this, consider the exact homology sequence from (3.2) in
the case N = d:

0— H,(F) = H,(FY) = H,(F',F) = H,_(F) — 0.

This sequence compares the homology of the Milnor fibre F' with the
homology of F¢, the Milnor fibre of the function f; = f + ex?. This
function is also homogeneous of degree d, but has an isolated singular-
ity.

In case of a homology sphere, we have H,_1(F) = 0. Moreover the
monodromy actions commute with the sequence. The eigenvalues of T,
on H,(F?%) and of T/¢ on H,(I'?, F) are explicitly known, so we can
compute exactly all the eigenvalues of T,, on H,(F). It follows that it
is not possible to satisfy the condition: det(T,, — I) = +1.

QUESTION 3.21.  Are there examples where 0F is a topological
spheres 7
Up to now only counter-examples are known.

3.6. TRANSVERSAL TYPE Aj.

In this section we study germs of holomorphic functions f : (C"*1 O) —
(€', 0), where the critical locus is 1-dimensional and the transversal
singularities at points of ¥ — {O} are of type A;. References are [45],
[46], [47).

We know already that the homology of the Milnor fibre F is con-
centrated in dimensions n — 1 and n. The topology seems to depend
partly on properties of the critical set. In [47] we showed the following

PROPOSITION 3.22. Let f : (€1, 0) — (€, 0) have a I-dimensional
singular set, which is an ICIS (isolated complete intersection singular-
ity) and let f have transversal type Ay outside the origin. Then the
homotopy type of F' is a bouquet of spheres:
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h n n
— Case A: F~S"V.-..V 8" (general case)

~ Case B: FL§=1vgny...vgn (special case)

The main idea of the proof of this type of theorem is deformation
with constant topology. This generalizes the concept of Morsification
from the case of isolated singularities. While Morsifications are generic
deformations in the isolated case, it is easy to destroy the topology
in the non-isolated case, e.g. for a Yomdin series one finds a infinite
variety of Milnor fibres. One has to be careful and to study special
deformations, which deform both f and X in a good way [25].

Let us suppose that we have constructed a deformation (f, ¥;) of
(f, ), defined on the same neighborhood as (a Milnor representative
of) f, with properties:

— the critical set of f, consists of a curve ¥, and some isolated points
ay - - - a, inside the Milnor ball,

— during the deformation from f to F; the fibration is of constant
fibration type,

In this case one can use the principle of additivity of the vanishing
homology, which says:

H(E,F) = H.(E;, Fy) |

=0
where £ = Milnor ball of f,
Fy = tube neighborhood along ¥,
F; = small Milnor ball at s;,
I = Milnor fibre of f,
F; = restriction of nearby fibre to FEj.
t; = the Milnor number at a;.

From the properties of isolated singularities it follows that:

H,(F) = Hoy1 (B, F) = Hypy(Eo, Fo) & 22

Hy_y(F) = H,(E, F) = H,(Eo, Iy) .

The contribution to H,_1(F) comes entirely from H,(Fo, I'y) and
this is the part related to 1-dimensional part of the deformed critical
set.

Returning to the Aj-case with X an ICIS one can always produce
the above type of deformation, even with the extra properties:
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18 Dirk Siersma

1. all isolated critical points of fs are of type Ay,
2. X, is smooth, the Milnor fibre of X,

3. For the non-isolated critical points of f; we have only two types:

2

— type A, local formula w3 +w? 4 - - w?

(transversal Morse),

— type Dy, local formula wow? + w3 + ---w? (Whitney um-
brella).

Cases A and B in the above proposition are distinguished by D, >
0, in case A, and §D., = 0 in case B. In general, D, is related to the
vertical monodromy.

As soon as X is not an ICIS it can occur that b,_;(F) > 2. For
example, if f = ayz, we have by (F) = 2.

3.7. BOUQUET THEOREMS

In the last few years different types of ‘bouquet theorems’ have ap-
peared. Some of them deal with germs f : (X,2) — (€,0) where f
defines an isolated singularity. In some cases, IV has the homotopy type
of a bouquet of (dim X — 1)-spheres, for example when X is an ICIS
, or X is a complete intersection. Moreover if both (X, z) and f have
isolated singularities, then F' has a bouquet decomposition

FEFRVSTYV...v 5"

where Fj is the complex link of (X, ), cf [52]. Later Tibar proved a
more general bouquet theorem for the case when (X, ) is a stratified
space and f defines an isolated singularity (in the sense of the stratified
spaces) for details, cf [57]. Related results are in [23].

In the case of non-isolated singularities the bouquet situation is no
longer standard, e.g. the torus is the Milnor fibre of f = zyz. At the
other hand in several special cases (eg many cases discussed in this
paper), we still encounter bouquets of spheres (sometimes in different
dimensions).

Némethi treated as part of his paper [37] the question: When is a
CW-complex a bouquet of spheres ¢ A necessary condition is of course
that all homology groups are free (over Z). In the 1-connected case
he added the condition, that the Hurewicz map (from homomotopy to
homology groups) is surjective in all dimensions. These two conditions
together are sufficient.

As a special corollary he showed:
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PROPOSITION 3.23. Let f: (€"T1,0) — (€,0) (n > 3) be a germ of
analytic function with a 1-dimensional critical locus. Then its Milnor
fibre F' has the homotopy type of a bouquet of spheres if and only if
H.(F,Z) is free.

REMARK 3.24. The condition n > 3 is important, the statement
does not work in the surface case. For example, f = zyz gives a 2
torus; but g = xyz + w? (its suspension) gives a bouquet S? v S% v 3.
In general, the case n = 2 is more difficult, due to the influence of the
fundamental group. Results in special cases are treated in [45, 46, 47].

REMARK 3.25. It seems that the following question is relevant: If
f has a deformation with constant topology, such that the homology
splitting discussed above is valid, does there exist space Fy and a
decomposition:
FEF VS V...V 5n

where the spheres correspond exactly to the vanishing cycles at the
isolated critical points 7 Is the splitting ‘forced’ by the topology of
CW-complexes or by properties of singularities 7

3.8. OTHER DIRECTIONS

Several developments in the case of 1-dimensional singular sets are not
discussed here. We mention them below and give some references.

— The topology of line singularities (smooth 1-dimensional singular
set) with transversal type A, D or E studied by De Jong [24]. Sev-
eral data of the vanishing topology have been recently computed
by J. Fernandez de Bobadilla.

— The fundamental studies of Pellikaan about the algebraic aspects
of the theory. From his thesis, there originated a series of papers.
We mention [39, 40].

— The relation between the deformation theories of weakly normal
hypersurface singularities and normal surface singularities given
by De Jong and Van Straten [25].

— Van Straten’s [56] description of the De Rham complex of 1-isolated
singularities and an algebraic description for the highest Betti
number. See also [47].

— Jiang’s [21, 22] study of functions on an isolated complete inter-
section with 1-dimensional singular set.
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— Relation with Mond’s [34, 35] work on map germs from €? to €?
of finite codimension. See also the contribution of Damon [9] in
this volume.

— Lé numbers, studied by Massey [31], where polar methods are used
to study the structure of the singular set. For the 1-isolated case,

cf [32].

— Aleksandrov’s study of differential forms and vector fields tangent
to a hypersurface germ D. In particular Saito singularities, where
the module of vector fields tangent to D is locally free. Also non-
isolated singularities occur [1, 2].

— Grandjean’s approach to residual discriminants and bifurcation
sets [18] for function germs of finite codimension within a given
singular set.

4. Higher dimensional singular sets

4.1. 2 DIMENSIONAL SINGULAR SET

We restrict the discussion below to a two dimensional singular set X,
which is an ICIS and with (generic) transversal type A;.

The thesis of Zaharia [59] deals with this case; part of it is more
general. He considers the situation where f has finite codimension in
the space of functions with the set ¥ as part of the critical set. This
condition is equivalent to having ¥(f) = X and the germ of f at every
point of ¥\ {O} equivalent to a so-called D(k,p) singularity [39]. In
our two dimensional case we encounter for dimension reasons only:

D(2,0): 2%+ -+ 22 ; Aso X €
D(2,1):x@d+ a3+ -+ 22 Do x C
(coordinates are zg,- -, &,).

Outside the origin one only has to deal with two types of local Milnor
fibers, with homotopy type S"~2, respectively S®~'. The closure of
the set of D(2,1) types forms an ICIS -curve A inside X. In excep-
tional cases, A can be void. The stratification according to vanishing
homology type consists of the following strata:

.8\ A AN {0}, {0}.

Zaharia [59, 60] studied especially the topology of the Milnor fibre.
This was later improved by Némethi [37]. The following statement
shows that the homotopy type is still a bouquet of spheres, indeed of
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n-spheres, in certain cases extended by one sphere of dimension n — 1
or n — 2. This is very close to the case of isolated singularities.

PROPOSITION 4.1. Let f: (C™*1,0) — (€, 0) have a 2-dimensional
singular set, which is an ICIS , and let [ have transversal type A,
outside a curve A in X; then the homotopy type of F is a bouquet of
spheres:

~ Case A: FL§0v...vgn

~ Case B: FL§=1vgny...vgn

~ Case C: FL g2y gny...y S™ (special case).
If n =2, statement C should read F L g0 CRAVERRAVACE

This theorem is due to Némethi [37], especially the homotopy part. The
results of Zaharia played a crucial role in the proof.

The idea behind the proof is similar to the 1-dimensional case: con-
struct a deformation with constant topology, which has only certain
elementary singularity types as ‘building blocks’. More precisely Za-
haria constructed a deformation (fs, X, Ay) of (f, 3, A) with constant
topology and if s = 0:

— thesingular set of f; consists of 35 and finitely many points, where
fs is Morse,

— Y, and A are Milnor fibres of ¥, resp A (recall: they are both
ICIS ),

— fs has only points of type D(2,0) and D(2,1) on X,
— Ay is the D(2,1)-locus in X;.

Remark next that above each point of A; one can consider the Milnor
fibre of the D(2,1)-singularty, which has the homotopy type of 5™
These induces a monodromy map:

= im(Ag, %) = Aut (H,_1(S™, Z)) = %,

This local system of vertical monodromies plays an important role in
the determination of the toplogy of the Milnor fibre. It seems to be
‘deeper’ than the vertical monodromy on the A-stratum, since the
system is defined on its Milnor fibre A,;. Then cases A, B and C in
the above proposition are distinguished by:
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case A: A, is non void and = non trivial,

— case B: Ag is non void and = trivial,

case C: A, is void.

Zaharia showed that the Euler-characteristic of the Milnor fibre is equal
to:

L (<1 (2pa + s + 0 — 1),

where ¢ is the number of Ay -points which appear in the deformation,
ps is the Milnor number of the ICIS X, and pa is the Milnor number
of the ICIS A. (We use the convention ug = —1; moreover in case C, if
n =2, one has x(F) =2+ 2uy).

4.2. CODIMENSION 1 CASE

Shubladze [44] studied the case, where the singular set is a hypersur-
face 3. Generically there is only one transversal type, which must be
an Ay, singularity. The function f can be written as f = h*g, where
h = 0 defines the singular set. Considering the case when f has finite
codimension in the set of these functions he showed that if ¢(O) =0

F~Styvshy...v S™,

NB The case g(O) # 0 gives k copies of the Milnor fibre of h. The finite
codimension condition is equivalent to the conjunction of two conditions
(a) ¢ defines an isolated singularity, (b) the pair (g, h) defines an ICIS
. Later Némethi [36], unaware of the results of Shubladze, recovered
the Shubladze result as a by-product of his theory of composed singu-
larities. The number of n-spheres is related to the Milnor numbers as
follows:

by (F) = (k+ L)p(h, g) + kp(h)) + p(g).
4.3. COMPOSED SINGULARITIES

The method of composed singularities can give rise to non-isolated
singularities of codimension 2 or 1. We discuss here the work carried
out by A. Némethi in his paper [36]. The situation is as follows. One
considers the sequence of mappings:

fromtt W ez B oo

where the pair (g, h) defines an ICIS Y and P is any germ. If P has an
isolated singularity at the origin, then the singular set ¥(f) is exactly
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the ICIS Y and has dimension n — 1. The local system of vanishing
homology groups is defined over (each component) of Y — {O}. The
transversal type is equal to the singularity type of P.

If P is not reduced then the singular set of f is the inverse image of
the non-reduced locus of PP and has dimension n. The situation becomes
more complicated.

Let D be the (reduced) discriminant locus of the ICIS (g, k).

THEOREM 4.2. Let P~'(0)N D = {O} then the Milnor fibre F' of the
composed mapping [ has the homotopy type of the disjoint union of wg
copies of a bouquet of spheres

Slv...vstyvsry...v8n

where wy is the number of connected components of the Milnor fibre

of P.

The number of 1-spheres in a connected component of F' is equal to
the Milnor number of P, the number of n-spheres is determined by
topological data.

Némethi treats also the ‘bad case’ where P~1(0) N D contains 1-
dimensional components. His work has some interesting consequences,
e.g. the relation to series of singularities.

The theorem also allows P to be regular. In those cases f has an
isolated singularity, at least if the condition P=1(0) N D = {O} is
satisfied. In special cases well known situations occur:

— P =z (a generic coordinate), Lé attaching formula,

— P = z+ w" : formula for lomdin series if f has a 1-dimensional
singular set,

— P = z+ w and ¢ and h have separate variables and isolated
singularities: Sebastiani-Thom formula.

A second theorem in the same paper [36] gives a formula for the zeta
function of the monodromy of f as a product of other zeta functions
related to the topological data of the composed singularity.

4.4. OTHER CASES

Above we studied more or less the summit of the iceberg of non-isolated
singularities, those which seem to be close to isolated singularities.
There are natural candidates for further investigation of the full sys-
tem of vanishing homology: central arrangements of hyperplanes, and
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discriminant spaces of Coxeter arrangements. In both cases, there is
also combinatorial and geometric structure around. For the homology
of the Milnor fibre of an arrangement we refer to Orlik-Terao [38]. The
zeta function is just Z(t) = (1 —t*)X(M") where M* is the complement
of the arrangement, modulo the natural €*-action. The zeta function
of the discriminant hypersurface of a Coxeter arrangement is studied
in geometric terms by [15].
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