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STEENROD SQUARES IN SPECTRAL SEQUENCES. I

BY

WILLIAM M. SINGER

ABSTRACT.     We define two kinds of Steenrod operations on the spectral

sequence of a bisimplicial coalgebra.   We show these operations compatible with

the differentials of the spectral sequence, and with the Steenrod squares defined

on the cohomology of the total complex.   We give a general rule for computing the

operations on  E-.

The purpose of this paper is to define Steenrod squaring operations on a class

of spectral sequences.   In this paper's sequel (hereafter called "II") we describe

these actions in some special cases.

Let  0 be the category of finite ordered sets and nondecreasing maps.   By a

bisimplicial coalgebra we mean a purely contravariant functor from  C x 0 to the

category of commutative  Z. coalgebras.   We can regard the vector space dual of

any bisimplicial coalgebra as a double cochain complex, and filter it in the usual

way.   Our main result is that on the   E    term of the resulting spectral sequence,

for each r > 2, are defined Steenrod operations

(0.1) Sqk: Epr'q -» Epr-q*k       i0<k<q),

(0.2) S<A. EP.a ^EP^-q,2q      ik>q)%
1 r r —  -

These operations commute with the differentials of the spectral sequence (Prop-

osition 1.4).   In particular they are defined on  EM, where they are compatible

with the action of Steenrod squares on the cohomology of the total complex

(Ptoposition 1.5).

We thus obtain a larger set of operations than Rector  [12] and Smith   [l5l,

who consider the related problem of defining Steentod squares on the spectral

sequence of a "mixed" bisimplicial object . . . , i.e., a functor from  Ox G that is

contravariant in one vatiable and covariant in the other.   Rector and Smith obtain

only operations of type (0.1).   Whethet opetations of type (0.2) can be defined for

mixed bisimplicial objects remain an open problem.
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In II we make a number of applications.   The first is to the change of rings

spectral sequence, relating the cohomology of an extension of Hopf algebras to the

cohomologies of base and fiber.   The extensions we consider are in general very

bad . . . noncentral, algebra twisted, and even coalgebra twisted.   Still we are able

to define both types of operation (0.1), (0.2) and show how to compute them.   Our

second application is to the spectral sequence constructed by Moore in  [ll], pass-

ing from the homology of a topological group to the cohomology of its classifying

space.   Again we compute both kinds of Steenrod squares.  Our final application is

to the Serre spectral sequence:   we use our general constructions to recover the

results of  [l], [7] and  [18].

References are to the bibliography at the end of II.   We owe a special debt to

Kristensen's work on the Serre sequence   [7].   Our Propositions 1.4 and 1.5 are

formally identical with the results obtained by Kristensen in the special case.

1. Definitions and results. Our object in this section is to give enough defi-

nitions to state precisely the main results of the present paper. We then state the

results.   Proofs are given in later sections.

We take algebras, coalgebras and Hopf algebras over Z. in the sense of [lO,

Definitions 1.1, 2.1 and 4.1],  but we add the convention that all comultiplications

are commutative.   We write comultiplications  ifr: A —> A ® A, multiplications

p: A ® A —* A, counits  e: A —> Z 2, units   r/: Z2 —»A.   If A is a Hopf algebra then

by a (left) A-coalgebra we mean a coalgebra M that is also a (left) A-module, in

such a way that if/: M —> M ® M and e: M —' Z 2 ate  A-morphisms.   Here  A acts

diagonally on  M ® M  [10, Definition 4.2] and tensor products are always over Z-.

Similarly we define (left) A-algebras and (left) A-Hopf algebras.

We write dv., sv.  for the "vertical" face and degeneracy operators on a bisim-

plicial object, and d^ s* for the horizontal operators.   If X is a bisimplicial

object over a category (? then by an augmentation for X we mean a simplicial £

object R, and a morphism of simplicial Ç objects  A: XQ      —> R_ satisfying

Xdh. = Mhn: X,       -> R     for all  q > 0.
1 0 l,q q —

Suppose A a Hopf algebra and R a simplicial A-module.   Then we write  CR

for the  A-chain complex defined by  (CR)   = R   , d = 1",Q d..   If X is a bisimpli.^

cial A-module we write  CX for the double A-chain complex given by  (CX)       =

Xp   ,dv= l?m0d?; dh = l?=0dh.   We will also regard  CX as a A-chain complex

with increasing filtration

(I'D VCX)77-¿   ®{CX)i,n-r
¿=0

Whenever in this paper a double chain complex appears with a single subscript, the

subscript refers to total degree.

Suppose  X is a bisimplicial A-module and N a A-module.   Then we write
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HomA(CX, N) tot the  Z.-cochain complex with decreasing filtration defined by

(1.2) FpHom"xiCX,N   = [f: iCX)  ) -. N \ f a A-morphism;  /(E   _ jCX) = 0].

We write  (E HomA(CX, N), d ), or simply  (E , d ), tot the spectral sequence of

this filtered cochain complex, and refer to it as the spectral sequence of the bi-

simplicial  A-coalgebra   X.   If  X has an augmentation  À: X —> R,  then  A defines

in an obvious way a  Z  -homomorphism

(1.3) a*: H*(HomA(CR, ¿V)) — /7*(HomA(CX, N)).

In the cases of interest to us  \   will be an isomorphism.   Then  H  (HomA(CR, N))

is filtered, and is the target of the spectral sequence   (E , d ).   We write

(1-4) p: FpHp «(HornK(CR, N)) «-. fi£ 8

for the usual projection.

We can now state the results.   Supposing  A a Hopf algebra,   R  a simplicial

A-coalgebra,  X a bisimplicial A-coalgebra, and N a commutative  A-algebra.   We

define products and Steenrod operations in  H  (HomA(CR, A/)), as well as products

and Steenrod operations in  H  (Homv(CX, N)) (see (3.8) and (3.9)).

Proposition 1.1.   Suppose  A: X —> R   is an augmentation.   Then X    of (1.3)

preserves products and Steenrod squares.

Further, we define products in the spectral sequence   (E HomA(CX, N), d )

(1.5) Ep-q ® Ep'-q' -» Ep+p''q+q'
r r r

(see (4.5)); and Steenrod squares

(1.6) Sqk: £*■«_ E^*+fe       (0 <*<?),

(1.7) Sq*1: E>'« ^FP+^-«.2?       U>9).

(See Proposition 4.2.)

Proposition 1.2.    Products and Steenrod squares on E.  determine products

and Steenrod squares on E   for all r > 2.   E.g. if u £ E? survives to E    and

represents  [u] £ E ,   then Sq  u survives to E ,  and [Sq  u] = Sq  [u].

Proposition 1.3.   Under the pairing (1.5), (E , d ) is a differential algebra.

Proposition 1.4.   Suppose u £ Ep'q (r > 2).

Case 1.   k < q - r + I.   Then d Sqku = Sqkd u.

Case 2.   q-r + l<k<q.   Then Sq  a survives to a class  [Sq  u] £ Ep,q+ ,

where  t = 2r + k - q -I.   Also SqfeaAz survives to a class [Sq^aAz] £ Ep+t'2q~2r+2,

and dt\Sqku] = [Sq^a].
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Case 3. q < k. Then Sqku survives to a class [Sqku] in Ep+k~q,2q where

t = 2r-l. Also Sqkdru survives to a class [Sq^zz] in EP+t+k-q,2q-2r+2> and

dt\Sqku] = [Sqkdru].

Finally we observe that (1.6), (1.7) imply in particular that we have defined

squaring operations on E . These are related to operations on the target of the

spectral sequence:

Proposition 1.5.   Suppose X a bisimplicial A-coalgebra with augmentation

X: X —• R,  suppose N a commutative A-algebra, and suppose À   of (1.3) an

isomorphism.   Suppose u £ FpHp+q(HomA(CR, N)) and v £ FrHr+s(HomA(CR, N)).

Then u ■ v £ FP+TH (HomA(CR, N)), and p(u ■ v) = pu ■ pv (p as in (1.4)).   Further:

Case 1.   0 < k < q.    Then Sqku £ FPH*(HornA(CR, N)) and pSqku = Sqkpu.

Case 2.   q < k.   Then Sqku £ Fp+k~q H* (Horn A(CR, N)) and pSqku = Sqkpu.

The rest of this paper is devoted to proving these results, as well as some

auxiliary ones.   (See in particular Proposition 5.1, which gives a useful description

of the products and Steenrod squares on   E 2A

2.   Simplicial Eilenberg-Zilber maps.   Suppose for each integer  k > 0 and for

every pair of simplicial  Z2-modules  R, S we have defined a  Z2-homomorphism

Dk = Dk(R, S): C(R x S) —» CR ® CS homogeneous of degree   k and natural in the

variables   R  and  S;  suppose that for all  k > 0

(2.1) dDk + Dkd=Dk-x+TDk-J

where   T: C(R x5)^ C(S x R);   T: CR ®CS ~^CS ®CR ate the switching maps

(read  D_ j =0).   Suppose finally that  DQ: C(R x S)Q —> (CR ® CS)0 is the identity.

Then we call the sequence   (D,) a simplicial Eilenberg-Zilber map.   The existence

of such a sequence is proved by Dold   [3].

Suppose now  A is a Hopf algebra.   If  R, S ate simplicial A-modules we write

R x S for the simplicial  A-module   (R x S)    = R    ® S    with diagonal  A-action.

The tensor product  CR ® CS of A-chain complexes is again a  A-chain complex,

with diagonal  A-action.

Proposition 2.1.   Suppose  (D A a simplicial Eilenberg-Zilber map.   Suppose

A a Hopf algebra and R and S simplicial A-modules.   Then D,: C(R x S) —>

CR ® CS  is a  A-homomorpbism.

This follows easily from the functorial properties of D,.   As a consequence

we obtain for any   A-module   N and any simplicial  A-modules   P, S the Z--homo-

morphisms  D*: HomA(CR ® CS, N) —* HomA(C(R x S), N) satisfying the dual of

(2.1).

Now suppose N a commutative A-algebra, and R a simplicial A-coalgebra.

We define a map of cochain complexes
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(2.2) é: HomA(CR, N) ® HomA(CR, N) -, HomA(CR ® CR, N)

by assigning to the pair x: CR —- N, y: CR —> N, the cochain  CR ® CR ^2U

/V ® /V -tL, /v.   We then define cochain operations  p: Hom^(CR, N) ® Horn A(CR, N)

— Hom^iCR, N) and  Sfe: Hom^CR, N) — Homl+kiCR, /V) by the customary

formulas   pix ® y) = <A*D*<M* • V^  *** = <A*D„*-^(x ® x) + ^*D«-*+l <¿(* ® &)>

Here  i//: R —» R x R  is the coproduct.   Then p and S    define products and

Steenrod squares on H (HomA(CR, N)).   These satisfy all the usual rules, although

both Cartan formula and Adem relations must be interpreted with Sq    ^ 1.

The notion of a "special" Eilenberg-Zilber map will be useful to us in   §4.

Definition 2.2.   A simplicial Eilenberg-Zilber map (Dfe) is called "special"

if for all pairs of simplicial  Z  -modules   R, S;  and all integers   n, k:

(1) The image of D k: CiR x S)   —» iCR ® CS)    .   is contained in the sub-

space  2. j<n 0 iiCR)t ® iCS).).   In particular,  D^(C(R x S)n) = 0 if k > n.

(2) The map D  : CiR x S)    -> iCR ® CS).    is given by D  (a® r) = a® r
1        n n ¿n ° y        n

for all  a £ R   , 7 e S .
n' n

Proposition 2.3.   There exists a special Eilenberg-Zilber map.

The proof is an easy modification of Spanier  [16, p. 274].

3.   Bisimplicial Eilenberg-Zilber maps.   Suppose  A a Hopf algebra and X, Y

bisimplicial  A-rnodules.   We define a double  A-complex called the "vertical

tensor product":  (CX ®y CY)p q = \+l=q 0 iXp k ® Yp A.   Here the horizontal

differential is    £. dh. ® dh.,  and the vertical differential is   dv ® id + id ® dv.   We

define the ordinary tensor product of the double complexes   CX, CY by writing

(CX ® CY)pq = 2i+]=plk+Uq 0 iX.k ® Yjt) (action of A is always diagonal).

Fix a simplicial Eilenberg-Zilber map  (Dfe).   Define  A-homomorphisms:

G : CiXx Y) —CX  ®      CY,
s ^v

H: CX ®v CY — CX® CY,

where   Gs is homogeneous of bidegree  (0, s) and  H    is homogeneous of bidegree

(r, 0), as follows.   The restriction of G    to C(X x Y)       is
s P.q

^     d¿\a yp,J-- \,q • v.-*4 ,z ©<*,.* ® vp
& +/ = t? +5

and the restriction of  H    to the summand  X    , ® y    .of  (CX ®17 CV)        is

(* + /=?):

(3-2) Dr(X_,;   y_>;):  Xpfe®  y^ _     Ç    ® (x< ¿  ® y

Clearly
z+;=P+r '•*   ~      >'-''
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dvGs + Gsd"=Gs_l + TGs_J,

(3.3) dhH  + H dh = H    , + TH     ,T,
r r r-1 r-1    '

dhG   = G dh;       cTH  = H dv.
s s      ' r r

We now define for each integer  k > 0 a  A-homomorphism  K, : C(X x Y) —»

CX ® CY homogeneous of degree   k with respect to total degree by setting

(3.4) K   =     ¿Z    TsHTsGs

where   Ts is the s-fold iterate of the switching morphism.   From the relations

(3.3) we find after a short computation

(3.5) dKk+Kkd=Kk_1 + TKk_J

where the  d's  ate total differentials.   Thus   (K.) can be called a bisimplicial

Eilenberg-Zilber map.

It is now apparent how to define cohomology operations on  H  (HomA(CX, N))

tot any bisimplicial A-coalgebra  X and any commutative  A-algebra  N.   Each  K,

defines

(3.6) K*k: HomA(CX ® CY, N) -^ HomA(C(X x Y), N)

and we set up a map of cochain complexes

(3.7) c/J: HomA(CX, N) ® HomA(CX, N) -* HomA(CX ® CX, N)

by analogy with (2.2).   We define cochain operations    p: Homj?(CX, N) ®

Hom^CX, N) — Homp^q(CX, N), Sk: Hom^CX, N) — Hom*+Á:(CX, N) by

(3.8) p(x ® y) = if,*K*0cp(x ® y),

(3.9) Skx = </>*K*_fc#x ® x) + >A*K*_fe+1c/,(x ® Sx).

Then  /j and S    pass to products and Steenrod squares on  H (HomA(CX, N)).

These operations are independent of the choice of (D,), and satisfy Cartan

formulas and Adem relations.   We do not prove these statements here, as we do

not need them.   The reader can construct his own proofs, by using an analogue

of the Eilenberg-Zilber theorem which compares   C(X x Y) to  CX ®CY, where

X, Y ate bisimplicial objects.

Proof of Proposition 1.1.   Suppose  X a bisimplicial A-coalgebra,  R a

simplicial  A-coalgebra, and  À: X  —> R  an augmentation.   Suppose  %: R    —» N

is a cocycle representing   u £ W"(HomA(CR, N)).   Then Sq  A zz is represented by

yj*K*_kcp(\*x ® \*x): (CX)n+k -> N.   Using (3-1), (3.2), (3.4) and the fact that
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Hn = DAX      ;X      ): X„     ® X„     — Xn    ® X        is the identity, we find that
0 0V    —,n'      —,n v,n U ,n u ,zz u,rz y'

Sq  A a  is represented by

X0,zz+fe   ^X0,zz+fe   ®   X0,n+k^--'->   X0,n   ®  X0,rz

(3.10)

n rz

where we have written Dn'",   tot the map Dn_fe followed by projection to the

factor  Xn     ® X„     C (CX ®,, CX)n .  .   But  £>"'",   is natural with respect to the
W,7Z U f7Z V u,2zz zz—Ze x

map of simplicial objects   A: XQ _ —> R_    and since   À preserves the coproduct

we can write (3.10) in the fotm  pix ® x)D*'_^(R, R)ipA: XQ n+k — N.   But this co-

chain represents  À Sq  a.   A similar argument shows  À    preserves products.

4.   The spectral sequence of a bisimplicial A-coalgebra.   If X, Y ate bi-

simplicial A-coalgebras, we give to  CX ® CY the usual (increasing) filtration

associated with a tensor product of filtered complexes.   Then HomA(CX ® CY, N)

has the dual, decreasing filtration (as in (1.2)).   Then  <7J of (3.7) is filttation

preserving.   Further

Proposition 4.1.   Suppose the simplicial Eilenberg-Zilber map (D, )  is special.

Then  KkFpCiX x Y) C Fp+kiCX ® CY), and KkFpCiX x Y) C E2p(CX ® CY).

Proof.   The first statement follows ftom the definition (3.4) of   K,,  and the

second follows from (1) of Definition 2.2.

Consequently the  Z2-homomorphisms   Kk of (3-6) satisfy

(4.1) K* FP CFUg(p/2)

(4.2) K*FpCFp~k
k

where  lig (x) denotes the least integer greater than or equal to x.   From now on

we assume that  (D,) is special.

The spectral sequence   E   = E   HomA(CX, N) (N a commutative   A-algebra)

is obtained by the usual fotmulas:

(4.3) Ep,q = zp,q/[8Zp~T + 1'q+r~2 + Zp+1'q~1]
r T T— 1 T— 1 J

whete

(4.4) Zp-q=[x £FpHomPx+qiCX, N)\ox e Fp +'HomA(CX, N)].

We write  Zp = 2   0 Zp-q;  Ep = S   0 Ep-q.   The differential S on HomA(CX,/V)
r <2 r     '      r i? ^^      r Av       '     '

induces  d : Ep-q  ^Ep+T'q-r+1.
r        r r

We define the product (1.5) by the composition
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E Hom. (CX, N) ®E Hom.(CX, ¿V) — E (HomA(CX, N) ® HomA(CX, N))i.^a, i\j loi. nomA^/\,  m/     'cfv""uiA>

»A<(4"5) ^ E(llom ÁCX, N))

where  zi    is the map of spectral sequences induced by the map   p: HomA(CX, N)

® HomA(GX, N) —>HomA(CX, N) of filtered complexes given by (3-8).   Steenrod

squares in the spectral sequence are defined by virtue of

Proposition 4.2.   Suppose  r>2  and x £Zp,q.

Case 1.   0 < k < q.   Then Skx £ Zp'q+k  (Sk as in (3-9)) and the correspon-

dence x —> Skx passes to a homomorphism Sqfe: Ep,q —>EP.i+k.

Case 2.   q < k.   Then Sx £ zp+k~q'2q,  and the correspondence x —> Skx

passes to a homomorphism Sqfe: Ep'q — Ep+k~q<2c¡.

Proof.   The proofs of these statements depend only on the definition (3.9)

and the properties (3-5), (4.1), (4.2) of  K^.   Case 1 requires (4.1) and Case 2

requires (4.2).   We write out the proof for Case 2.   If x £ Zp,q then  cf>(x ® x) £

F2pHotaA(CX ® CX, N),   so  from (4.2) we have   iff* K*n_k<p\x ® x) £

Fp-q+kHomA(CX,  N);     here  we  have  set    n = p + q.     Also   Sx £

Fp+rHomx(CX,  N)    so

tA*K*_fe + 1cA(x ® 8x) £ pP-1+k+r- lHomA(CX, N) C Fp-q+kHomA(CX, N)    (r > l).

Hence  Skx e Fp-q+hHomA(CX, N).   Further 8Skx = SkSx = if,*K*n_k + l<p(8x ® 8x)

which by (4.2) lies in  Fp+k~q+rHomx(CX, N).   This proves  Skx eZP+k-q.

We claim next that if x, y e Zp,q then  S  (x + y) - Skx - S y represents zero

in  EP+k-q.   In fact <3.5) and (3.9) imply

(4.6) sHx + y) - Skx - Sky = iA*[5R* _fe + 10(x ® y) + K*_¿ + 1<# 1 + T)(8x ?) y)).

But use of (4.2) shows that the first term on the right of (4.6) lies in  SZp+^~q~r + 1,

and that the second term lies in  Zp*.~q+   .   Hence both terms represent zero in
gp+k-q

r

We claim finally that Sk passes to a well-defined map Ep'k —♦ Ep+k~q'2q.

In view of our analysis of (4.6) we need only show that if  x e Zp_.'q~     then

Skx eZp+\-q+\ and that if x £ 8ZP J[+1 >q+r~2 then  Skx £ 8Zp^\~q-^1.   But

both these statements follow easily from (4.2) and the relation  8Sk = Sk8.

Proof of Proposition 1.2.   Immediate from the definitions.

Proof of Proposition 1.3.   Immediate.

Proof of Proposition 1.4.   All the statements are consequences of the relation

¿55   = S 8.  We write out the proof for Case 2.   Suppose x £Zp'q represents

u £ Ep,q.   Then  <5x £ Fp +rHomA(CX, N), and by repeating an argument in the

proof of Proposition 4.2 we find Sk8x £ Fp+tHomA(CX, N), where  t = 2r-q + k-l.
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Since 8Skx = Sk8x we find  Skx £ Zp.   Hence Sqku survives to  E(.   Next we

observe that Sq  d u is represented in  Zp+   by  S 8x.   But this element surely

lies in Zp+t,. since  SS 8x = S SSx = 0.   Hence Sq d u survives to  E .   Finally,

the relation  8Sk = Sk8 implies   d([Sqku] = [Sq^aAz].

Proof of Proposition 1.5.   Let p: FpHp+q(HomxiCX, N)) — Ep^q be the

standard projection.   Then  p = p\  .   To show that  p commutes with products and

Steenrod squares it suffices, in view of Proposition 1.1, to show that  p does.

But this is immediate ftom the definitions (Proposition 4.2).

5.   Operations on E2.   One representation of £2 is given by (4.3), but it is

sometimes more convenient to work with

(5.1) Ep'q=HpHq.
2 h    v

Here the right-hand side is the   pth homology group of the complex

¡5*
...  -♦ HqiHomA(iCX)p _; N)) -» H«(HomA((CX)        _; N)) — ....

Using (5-1) we can represent and element of  E    by a  A-homomorphism  x: X

—» N satisfying  8vx = 0 and  8bx = 8vy tot some  y: X^   .        , —♦ N.   The next

result tells how to compute Steenrod squares on   E      using this representation

Notation.   If  (Dfc) is a (special) Eilenberg-Zilber map, and if R, S ate

simplicial  A-modules, then for any pair of integers  (z, /') for which   i + j = p + k

write  Dl^iR, S): R   ® S    — R.® S. fot the composition

z,(">   )                                    project
R    ®  S  ~-> iCR   ® CS)     ,->R. ® 5..

p P P +« z J

Proposition 5.1.   Suppose x: X        —> N,  y: X       —> zV  are  A-homomorphisms

representing  u £Ep'q,   v £ Er2's.   Then  u • v £EP+T'q+S  is represented by the

composition

tx ®x Dl'lXIl^l^llx       ®x
p +r, q +s p +r, q +s p +r,q+s p +r, q p +r, s

(5.1)

W-.J X-J .
'\.X        ® X      _,   N ® N ^>N.

P.q r,s

If k < q then Sq  a £ Ep,q+k   is represented by the composition

Xp,q+k   -*   Xp,q+k    ®   Xp,q+k

Ö-2) Dq-qÁX      ;X      )
q-k      p,-'   p  -'

•     ^  ■•   XùoJT* N ® N ̂  N,P.q p.q

ind if k>q,  Sq  a e E^+fe-1?.2?   /s represented by the composition
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x   .     , -t X   ,     ,  ® x   ,     ,
p\k-q,2q p+k-q,2q p+k-q,2q

Dq,q(X -X )
(5.3) °      p*-q--'   p+k-q>-\ x    u        ®X   h

'     p+k-q, q p+k-q,q.

Dp,p     AX ;X        ) xSt¡x „
-,      p   q pq

Proof.   We give the proof for (5.2); the others are similar.   The Steenrod

squares on  E    were originally defined in terms of the representation (4.3).   In that

language  zz is represented by a cochain of the form x + y, for some  y e

Fp+1HomA(CX, N), and Sq^zz is represented by Sk(x + y) e 2.^ 0 Hom/X   . ; N).   To

translate back to the language of (5.1) we need only pick out from  S  (x + y) the

component that lies in HomA(X • N).   But use of (4.1) shows that terms in

S  (x + y) involving either y or 8x  (suchas   K-n_k<p(x ® y) or  K*_<p(x®Sx))

make no contribution to the crucial component.   Thus it suffices to find the appro-

priate component of   i/>  Kn_k<p(x ® x) (n = p + q).   Use of (3.1), (3.2), (3.4) shows

that this is the composition

(5.4) p(x ® x)Dppp(X_q, X_)Dqqqk(Xp_; Xp^: Xpq+k _N.

But by virtue of (2) of Definition 2.2,  DP,P(X_    ; X_    ) is the identity map on

Xp q® Xp q.   So (5.4) reduces to (5.2).

Proposition 5.1 can be used to show that the Steenrod squares on  E     (and

hence on   E    tot all  r > 2) are independent of the choice of special Eilenberg-

Zilber map.   It can. also be used to prove Adem relations and Cartan formulas.

But in II we will obtain these results with no extta work, for each of the special

cases we consider.   For this reason we omit the general proofs.


