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STEENROD SQUARES IN SPECTRAL SEQUENCES. II 

BY 

WILLIAM M. SINGER 

ABSTRACT. We apply the results of the previous paper to three special 
cases. We obtain Steenrod operations on the change-of-rings spectral sequence, 
on the Eilenberg-Moore spectral sequence for the cohomology of classifying 
spaces, and on the Serre spectral sequence. 

In the previous paper (hereafter called "I") we developed a theory of 
Steenrod operations on a general class of spectral sequences. Our object now is 
to compute these operations on E in some interesting special cases. We will 
find it convenient to change the notation of I: we now deal with "vertical" 
Steenrod squares Sqk and "diagonal" Steenrod squares Sqk: 

(0.1) Sqk: EP,q Ep,q+k (0 < k < q) V 2 ~~~2 

(0.2) Sqll-: EP q E( P k,2a (O < k <,p). 

They are defined by Sqk = Sqk (with Sqk as in (0.1) of I) and sqk- Sqq+k 

(with sqk as in (0.2) of I). 

In our first application we suppose given an extension of cocommutative 

Hopf algebras A -4 C -* B, as in [13], [14.1; it may in general be twisted and 
noncentral as an extension of algebras, and twisted as an extension of coalgebras. 
Suppose given a commutative left C-coalgebra M and a commutative left C-algebra N. 
First we show, by analogy with the theory of groups, that the action of B on ExtA (M, N) 
can be described directly in terms of an action of B upon A. In this we rely 
heavily on [13], [14], where it is demonstrated that an extension of Hopf algebras 
determines an action of base upon fiber by "conjugation". This result permits 
us to set up the change of rings spectral sequence converging to ExtCA(M, N) by 
analogy with Mac Lane's construction of the Lyndon spectral sequence [8, Chap- 
ter XI]. We then consider the Steenrod operations on E2: 

(0.3) Sqk: Extp (Z2, ExtA (M, N)) ExtP (Z2X Extq +k (M, N)), 
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(0.4) Sqk: Extp (Z2' ExtAqM, N)) - Extp +k(Z Ext2 q(M, N)), 

and find that Sqk is induced by the Steenrod square one ordinarily defines on the 
v~~~~~~~~~ cohomology of the Hopf algebra A, whereas Sqk coincides with the Steenrod 

square one usually defines on the cohomology of B. 

In our second application we consider a topological group G and a principal 

G-bundle E. Then the spectral sequence described by Moore in [11] converges to 

H*(E/G) (coefficients in Z 2) and the Steenrod operations on E2 look like 

(0.5) Sqk : Ext p,q (H *(E), Z ) Extp q+k (H (E) Z 
H*(G) 2 H* (G) * '2' 

(0.6) Sq : Ext P, q (H *(E), Z ExtP+k,2q (H (E) Z D !I* (G) 2 H* (G) * '2 

We show that the vertical squares are induced by the topological squaring opera- 

tions on HM(E) and H*(G); whereas the diagonal squares coincide with the 

algebraically defined operations on the cohomology of the Hopf algebra H*(G). 

In our final application we use the derivation of the Serre spectral sequence 

given by Dress in [4], and recover the results of [1], [7], and [18]. 

We will find in each of our applications that the vertical squares satisfy the 

Cartan formula and the Adem relations (both with Sqo / 1), and that the diagonal 

squares satisfy the Cartan formula and the Adem relations (both with Sq?0 1). 

We also find that vertical and diagonal squares satisfy an interesting commutation 

relation 

(0.7) Sq Sq] = Sq]SqtVj 
(ed 

k/2 
(read Sq = 0 if k is odd). It is likely that these statements hold in general 

for the spectral sequence of a bisimplicial coalgebra. 

The reader interested in the change of rings spectral sequence should cover 

the first five sections of this paper. The reader interested only in the Eilenberg- 

Moore spectral sequence is directed to ??1, 2, 6, and 7. The reader concerned 

with the Serre spectral sequence may proceed directly to ?8. 

1. Actions of A on Extr(N, r Our object in this section is to describe 

relationships among algebras A, f and left F-modules 1, Q, that permit one to define 

a A-action on Extr (, IQ). 

Conventions concerning algebras, coalgebras and Hopf algebras over Z2 are 

the same as in I, ?1. Tensor products are over Z2 unless otherwise stated. We 

continue to assume comultiplications commutative. A left action of an algebra A 

is written co(A, Q): A X Q) Q and a right action is written p(l, A): E ? A -. 

We fix throughout this section a Hopf algebra A and a right A-algebra f. 

Definition 1.1. By a mixed A-F module we mean a left F-module E that is 
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also a right A-module in such a way that a(F, 1): F ? I , I is a map of right 

A-modules (here A acts diagonally on F ? 1). A map of mixed A-F modules 

must respect both left F-action and right A-action. 

Proposition 1.2. Suppose r a right A-Hop/ algebra, and suppose 1, it 

mixed A-F modules. Then Y ? > is a mixed A-F module, under diagonal left 

r-action and diagonal right A-action. 

Definition 1.3. By a left A-F module we mean a left A-module Q that is also 

a left F-module in such a way that the diagram commutes: 

p(r1A.1)AOS2 (2,1,3) A|o (r, | 

FOA(&AOQ X&@A@ r A (9 Q (9 ' ' -- A C QX 

(Here the notation (2, 1, 3) is as in [5, p. 355]; it denotes the permutation of 

factors in a tensor product.) A map of left A-F modules must respect both left 

F-action and left A-action. 

Proposition 1.4. Suppose r a right A-Hopf algebra, and suppose Q and Q' 

left A-F modules. Then Q ? Q' is a left A-F module under diagonal left F- 

action and diagonal left A-action. 

Suppose now we are given left F-modules , t'; and a left A-F module Q. 

Suppose further we are given a Z2-homomorphism 0: 0 A -> satisfying 

F ?9 
` O A o(P, )0 _ _ __A_?' _- _ 

(1 .2) i 3:<,l < ') 

(1,3,2,4)_ _ _ _ _ 
r 0 1 0 A 0 A (13 0r< A <E S 0 A PA) r E 

Then for any Z2-homomorphism f: 2 -Q we will write b*(f): 0 0 A Q for 

the composition a, (A, Q) (2, 1)(f o$ A)(9 ? A)(V 0 '7b). 

Proposition 1.5. Suppose f: > -2 9 is a map of left F-modules. Then for 

any A c A the Z2-homomorphism A(f): I - Q defined by (A(f))(x) = (0*(f))(x A) 

is in fact a F-homomorphism. Thus the correspondence (A 0 f) - A(f) defines 

(1.3) u(A, Hom): A O Hom (I, Q) -Hom (5, Q). 
r I' 

If X is a mixed A-F module, if>2 = X, and if 0b p(Ei, A): Xd 0 A J, then 

(1.3) gives Hom r(1, Q) the structure of a left A-module. 

Proof. That A(f) is a F-homomorphism is an easy diagram chase which uses 

(1.1), (1.2), and the commutativity of V: A - A ?9 A. If I is a mixed A-F 
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module, if I = ', and if + p(>2, A), then the relations a(A, Q(, )Q Q) = 

or(A, Q)(A 0 o(A, Q)) and p(>, A)(1 ? z) = p(, A)(p(l, A) 0 A), and the Hopf 

condition (,u X ,u)(1, 3, 2, 4)(r 0 Xq/) = Viii: A 0 A 1fA 0 A imply that (1X A2)f= 

A I(X 2f). 

If E is a mixed A-r module and Q a left A-F module, then Proposition 1.5 
gives a A-action on Hom r(>, Q). We now use Proposition 1.5 to define a A-action 
on Extr (E, 9). Some conventions: an augmented complex of modules An A 

o AO -- 0 will be denoted A > -f O. By a "projective" left F-module 
we mean an extended left F-module. 

Proposition 1.6. Suppose A - 0 and A' ' 0 are F-projective 

resolutions of the left F-modules E and >'. Suppose given a Z2-homomorphism 

O(M, A): EC 0 A o I' satisfying (1.2) (with / = 0(1, A)). Then there exists a 

map of Z2-chain complexes b(A, A): A 0 A -- A' which extends 0(1, A), and 
which satisfies (1.2) (with b = b(A, A), and A, A' replacing X, >'). Any two 
such O(A, A)'s differ by a Z2-chain homotopy e(A, A): A 0 A A' which 

satisfies (1.2) (with 6b 4(A, A), and A, A'l replacing >, I'). 
n n 

Proof. Suppose inductively O(A, A) is defined, with all desired properties, 
in dimensions <n - 1. Write An = F 0 An as a left F-module, and choose any 
Z 2-homomorphism ?: A 0 A A' satisfying do = O(A, A)(d 0 A). Define 

O(A, A) in dimension n by setting it equal to the composition a(F, A,)(p(F A,) 0 A) 
*(1,3, 2, 4)(r F A E 

0: r e) An b) A A'. Then (b(A, A) commutes with d. 

That it satisfies (1.2) (with O5 95(A, A), and A , A` replacing 2, ') follows 
from the fact that ,u: F 0 Fr F is a map of right A-modules. That any two such 

I's differ by an appropriate chain homotopy follows from a similar argument. 
Suppose now E a mixed A-F module and Q a left A-F module. To define a 

A-action on Extr(>, Q) we choose a F-projective resolution A > 0, and a 

Z2-chain map 5(A,, A): A 0 A p A as in Proposition 1.6 (with ' ->2, A' = A, 

OM>, A) = p(2, A)). Then we use Proposition 1.5 with 5 = f((A, 1A), and the func- 
torial properties of the construction described there, to obtain a map of cochain 

complexes ur(A, Hom): A 0 Homr (A, 9) Po Hom (A )ology we 
obtain a Z2-homomorphism for each n > 0: 

(1.4) a(A, Ext): A 0 Extn (E, Q) Extn(>, 9). 

Since Proposition 1.6 guarantees existence of chain homotopies we have 

Proposition 1.7. a(A, Ext) is independent of choice of A, and of the choice 
of Ob(A, A). 

It remains only to verify the relation a(A, Ext)(ii 0 Ext) = o(A, Ext) 
* (A 0 a(A, Ext)). (This is not immediate: Ob(A, A) of Proposition 1.6 has no 

associative property.) To this end, 
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Definition 1.8. By a projective mixed A-I module we mean one of the form 

I 0 A. Here A is a right A-module, A acts diagonally on the right of r 0 A, 

and the left action of I is Itr X A: F I` 0 A - r 0 A. By a AT projective 

resolution of the mixed A-r module E we mean a complex over E of projective 

mixed A-F modules, that is split exact when regarded as a complex of right A- 

modules. 

The existence of a A-F projective resolution of any X, and its uniqueness 

up to homotopy type, is proved by standard arguments in relative homological 

algebra (e.g. [8, Chapter IX]). 
Proposition 1.7 enables us to use a A-T projective resolution to compute 

u(A, Ext): we just take O(A, A) of Proposition 1.6 equal to p(A, A). Since each 

An is now a mixed A-I module, we get from Proposition 1.5 the structure of a 

left A-module on Homr (An, Q). Consequently 

Proposition 1.9. or(A, Ext) of (1.4) gives Extn (1, Q) the structure of a left r 
A-module (n > 0). 

The reader has noticed that we could have defined or(A, Ext) in the first 

place by using A-r projective resolutions. But Proposition 1.6 permits us to use 

resolutions having only a r-structure. The resulting flexibility will be useful in 

??3 and 5 (see Proposition 3.11). 

2. Products and Steenrod squares. In this section we find the relationship 

between the action of A on Ext r(1, Q), and the products and Steenrod squares on 

Ext r(, Q). The main results are Propositions 2.5 and 2.7. 

We denote the Steenrod algebra by the symbol &, and interpret the Adem rela- 

tions as given on p. 2 of [171 with Sqo / 1. Also we interpret the standard for- 

mula for the coproduct with Sqo / 1. If we define an augmentation by d(Sq0) = 1, 

c(Sqk) -0 (k h O) then ( is a Hopf algebra. 

Suppose now I a Hopf algebra, E a left I-coalgebra, and Q a commutative 

left I-algebra. We define products and Steenrod squares on Ext r(, Q) in the 

usual way: choose a IT-projective resolution A E 0; define a rnap of cochain 

complexes 

(2.1) ?b:Hom (A, Q)?Homr (A,Q) Hom (A0A,Q) r ~~~~~~~r 

as in I, (2.2); and choose a sequence of I-homomorphisms Dk: A -. A 0 A homo- 

geneous of degree k and satisfying 

(2.2) dDk + Dkd d Dk- + TDk 1- 

Do must be a chain map extending i,r: E E 0 E. Then the cochain operations 

?Ax 0 y) = D*O(x 0 y); Skx = D*k (x 09 x) (n = dim x) define products and Sqk. 

Well-known arguments (e.g. [91) show--that under these definitions Ext r(Y ) 

becomes a commutative a -algebra. 
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We fix for the remainder of this section a Hopf algebra IV, and a right A-Hopf 

algebra F 

Definition 2.1. By a A-F coalgebra we mean a mixed A-F module E that is 

also a coalgebra in such a way that ?: E E X E and c: - Z2 are maps of 

mixed A-F modules. (Here E 0 C has the tensor product A-F structure, as in 

Proposition 1.2.) 

Definition 2.2. By a A-F algebra we mean a left A-F module Q that is also 

an algebra in such a way that ti: Q C 5- Q and 71: Z2 -Q are maps of left A-F 

modules. (Here Q X Q has the tensor product A-F structure, as in Proposition 1.4.) 

? We fix for the rest of this section a A-F coalgebra E and a commutative 

A-F algebra Q. Now, a tensor product of projective A-F resolutions is again a 

complex of mixed A-F modules (Proposition 1.2) that is split over A. Consequently, 

Proposition 2.3. Suppose A -+ O- 0 is a A-F projective resolution. Then 

the Dk's of (2.2) can be chosen A-F homomorphisms. 

Next we observe that if A E 0 is a A-F projective resolution, then 

Proposition 1.5 gives to each side of (2.1) the structure of a left A-module. An 

easy diagram chase using the commutativity of ?l: A -A 0C A and the fact that 

Q: Q X Q Q is a A-morphism gives 

Proposition 2.4. / of (2.1) is a homomorphism of left A-modules. 

From Propositions 2.3 and 2.4 follows immediately 

Proposition 2.5. Extr(N, Q) is a left A-algebra. 

To find the relationship between Steenrod squares and A-action we need a 

definition. Recall that if 'F is a commutative Z2-algebra the Frobenius map 

F: F --+ (t is defined by F(x)= x2. Suppose now that (D is a finite dimensional 

(commutative) coalgebra (or, if (ti is graded, finite dimensional in each degree). 

Define the "Verschiebung" V: (F -- ID by V = F*: ((t*)* ((*)*. Then V is a 

morphism of coalgebras. If (tI happens to be a Hopf algebra V is a morphism of 

Hopf algebras. (One can define V without assuming J) finite dimensional; Lemma 

2.6 remains valid. We omit these details.) 

Lemma 2.6. Let D be a Z2-coalgebra finite dimensional in each degree and 

let X c (F be given. Then there exists an element 0 c (I ? (I satisfying 0(A) 

(1 + T)0 + VA ? VA. 

Proof. Using the commutativity of ?: (D -, X (D one easily shows the 

existence of 0 and w in (1 X (F satisfying (A) = (I + T)0 + w X w. Then for 

any a in the dual algebra (D we have [VA., a] = [A, Fal I [A, 1t(a ? a)] 

[A,a ? all = [w, a] * [w, all [w, a] (modulo 2). Thus w VA. 
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Proposition 2.7. Suppose E a A-F coalgebra and Q a commutative A-F 

algebra. Then for any X e A, u E Ext' (1, Q), and k > 0, r 

(2.3) X(Sqku) = Sqk(V(X)u). 

Proof. Choose a A-F' projective resolution A -E -* 0, and choose a 

cocycle x E Hom (A , Q) to represent u. By Lemma 2.6 we can choose a., 

.8i . A so that 

(2.4) q(X) =E(a. 0 1+1 + C a.) + V V(X). 

Now X(Sqku) is represented by the cocycle X(D* kf(x ? x)) in Homr (Ak, Q). 

But if we choose the Dk's to be A-F morphisms (Proposition 2.3), Dn_k pre- 

serves A-action. Combining this observation with Proposition 2.4 and equation 

(2.4) we get 

,X(D*_ko(x X X)) 

(2.5) = D*kb0(V(X)x 0 V(A)x) + YD*_k,(cL.X f3x + ? / x). 

But (2.2) implies 

D*nk (czx 0 3.x + f3.x ? ax) = D*k(1 + T)\(a.x ? f3x) 

(2.6) 
aDn-k+l*(a x 0 Fix) + D*_,+108(a.x 0 f3x). 

But the second term on the right of (2.6) is zero (5 commutes with the action of A 

on Hom r(A, Q), and x is a cocycle); and the first term is a coboundary. Hence 

X(Sqku) is represented by the cocycle D*_,5(V(X)x 0 V(X)x). But this also 

represents Sqk (V(X)u). 

The results of Propositions 1.9, 2.5, and 2.7 can be summarized in a useful 

way. We define a right action of (t on the Hopf algebra A by setting 

p(A, fl)(A 0 Sqk) = V(A), k = 0, 

(2.7) - 0, k > 0. 

One verifies that this rule is consistent with the Adem relations on (&, and gives 

A the structure of a right c?-Hopf algebra. 

Proposition 2.8. Suppose E a A-F coalgebra and Q a commutative A-F 

algebra. Consider Ext, (.(5, Q) as an ( -algebra, and as a left A-module as in 

Proposition 1.9. Then Ext[ (1, Q) becomes a commutative ( -A algebra. 

Proof. We need only check that Ext r(1, Q) is a left C-A module. In fact, 

the commutativity of the diagram 
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A(?(7)(3Ext (Ci) 
A 

)o-(Ld, Ext) - 
- *A Extt ( (- ) 

I 
o-(d, Ext) 

(2.8) A?gb?Ext &OExtr(1 Q) 

IOa(A, Ext) 

p (A,(f)?& f E xt (2,1,3) 
A?&fO?Ext r(1, 4) , A?f0Extr(1,Q) Y ? aA0Extr(1,Q) 

is just a restatement of Proposition 2.7. 

3. Extensions of Hopf algebras. In this section we show how an extension 

of Hopf algebras A -- C -p B determines actions of C and B upon A by 

"conjugation". In particular we will find that A becomes a C-Hopf algebra. We 

will then use these results to discuss actions of C and B upon modules of the 

form HomA (P, Q). 

We assume all algebras, coalgebras, Hopf algebras are graded and connected 

(G.C.). We do this in order to apply the results of [141, but we have no other use 

for this grading and will suppress it. If :? is a G.C. coalgebra and Q a G.C. 

algebra we write Hom(X, rn for the set of G.C. homomorphisms E Q; i.e., 

gradation preserving Z2-maps which reduce in dimension zero to the identity 

Z- Z2. Then Hom(X, Q) is a group under "cup product", or "convolution" 

([Io, ?81, [6, ? 1.51). We use the notation of [61 and write / * g for the convolu- 

tion of / and g. We write / - for the inverse of f under convolution, but never 

for its inverse under composition. In sets such as Hom(X 0 ', Q e Y') we 

define the convolution using tensor product comultiplication on E 0 El, and 

tensor product multiplication on Q 0 2'. 

We suppose fixed an extension diagram 

(3-1) A 
a 

B 

of G.C. Hopf algebras, and suppose the multiplication on A commutative. "Exten- 

sion" is as in Definition 2.1 of [141: there exists a G.C. map k: C -4 A 0 B 

that is simultaneously an isomorphism of left A-modules and right B-comodules. In 

this paper we are also assuming that comultiplications are commutative. Never- 

theless the extension may have simultaneously nontrivial algebra and coalgebra 

"twistings" (rA and fbB of [141). 
Let 1: A 0 B - C be the inverse of k under composition. As in Definition 

2.2 of [141 we consider G.C. maps y: B -+ C, 8: C - A given by y = 
=B, 

8- 

PAk (here injections iB' * *. and projections PA' -., are as in [14, ?i1). We 

also consider G.C. maps vB: B 09 A - C, vc: C 0 A -* C given by 
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(3.2) VB 
= YPB * aPA * (YpB) 

(3-3) VC PC * aPA *PC 

The map VB has been called a in [141 and its properties have been investigated 

there. They are summarized in 

Proposition 3.1. There exists a unique 'G.C. map o(B, A): B 0 A -. A 

satisfying ao(B, A) = VB. Both V#B and a(B, A) are independent of the choice 

of k, and a(B, A) gives A the structure of a left B-Hopf algebra. 

Proof. Propositions 2.3, 2.5, 2.6 and 2.9 of [141. (Since we assume here 

that the comultiplication on C is commutative, the "coaction" PB: B -* B 0 A 

of [141 is the trivial map (77 0 77)E. Hence Proposition 2.6 of [141 reduces to the 

statement that i/: A -* A 0 A is a map of left B-modules.) 

Proposition 3.2. There exists a unique G.C. map o(C, A): C 0 A ---, A 

satisfying aa(C, A) -VC. Both VC and u(C, A) are independent of the choice 

of k, and a(C, A) gives A the structure of a left C-Hopf algebra. 

In fact Proposition 3.2 follows immediately from Proposition 3.1 and the 

following 

Proposition 3.3. 

(3.4) VC=VB(13A). 

In order to prove Proposition 3.3 we need two lemmas. 

Lemma 3.4. In Hom (C, C), aa * y = C. 

Proof. Use k to identify C with A 0 B. Then we need only show that, in 

Hom(A 09 B, A 09 B), ,u(A 0 ilc 0 77E 0 B)/i = A 0 B, where ,u and f are giver 

by (2.3) and (2.3)* of [141. But this is easily checked. 

Lemma 3.5. In Hom (C, C), yf3 * cO = C, where 0: C -- A is defined by 

0 =a (B, A)(f3 -1 09 8)qC 

Proof. Since the comultiplication on C is commutative, this follows easily 

from Lemma 2.10 of [141, Lemma 3.4 above, and our resuit that A is a B-module 

under o(B, A). 

Proof of Proposition 3.3. Since 3 0 A is a map of coalgebras, we have 

from (3.2) 

(3 5) VBQ(3o A) = Yf3PC * aPA * ()Y3PC 1 

in Hom(C 0 A, C). But from Lemma 3.5 we have yf,PC - PC *a(OpC)9' SO (3.5) 

becomes 
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(3.6) VB(3 ? A) = PC ((OpC) *PA - P) P 

But Hom(C 0 A, A) is an abelian group under convolution, so (OPC) 1 *PA * OPC 
= PA, and (3.6) reduces to (3.4). This completes the proof of Proposition 3.3; and 

so Proposition 3.2 is also proved. 

Now let X: C -* C be the antipode. 

Definition 3.6. To an extension (3.1) we associate the structure of a right 

C-Hopf algebra on A, by letting p(A, C) = o(C, A)(2, 1)(A 0 X) We refer to p as 

the action "opposite" to or. 

A simple diagram chase which uses the fact that X: C C is an antiauto- 

morphism of coalgebras, the relation XX- C, and the commutativity of qVc: C 

C 0 C shows that 

(3.7) acp(A, C) = Pc * 0PA *p 

Having given A the structure of a right C-Hopf algebra we proceed to describe 

certain mixed C-A modules and certain left C-A modules. 

Proposition 3.7. Suppose P a left C-module. If we regard P as a right C- 

module under the associated opposite action, and as a left A-module by restricting 

the original C-action, then P becomes a mixed C-A module. If P was originally 

a left C-coalgebra, it becomes after these constructions 'a C-A coalgebra. 

Proposition 3.8. Suppose Q a left C-module. If we regard Q also as a left 

A-module by restricting the C-action, then Q becomes a left C-A module. If Q 
was originally a left C-algebra, it becomes after these constructions a C-A 

algebra. 

Both Propositions 3.7 and 3.8 follow easily from (3.7). 

Combining Propositions 1.5, 3.7, 3.8 we find that for a pair P, Q of left C- 

modules we have defined an action 

(3.8) or(C, Hom): CO HomA (P, ) -Iom (PI Q). 

The following two propositions all pertain to this action. They can be proved for 

Hopf algebras by analogy with well-known results in the theory of groups (e.g. 

[8, Chapter XI, ?91]). 

Proposition 3.9. Under the action (3.8), HomA (PI Q) is annihilated by the 

augmentation ideal of A. Thus cr(C, Hom) passes to an action of the quotient 

C//A = B: ac(B, Hom): B 0 HomA (P, Q) _* HomA (PI Q). 

Proposition 3.10. Suppose R a left B-module. Then the assignment to any 

B-homomorphism f: R -+ HomA (P, Q) of the map f: R 0 P Q given by f(r ? p) 
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-- /(r)(p) is a Z2 -isomorphism HomB(R, HomA(P, Q)) HomC(R 0 P, Q) (on 

the right-hand side C acts diagonally on R 0 P). 

Suppose given left C-modules M and N, and a C-projective resolution W 

M - 0. We regard M as a mixed C-A module, W as a complex of mixed C-A 

modules (Proposition 3.7), and N as a left C-A module (Proposition 3.8). Then 

W is an A-projective resolution of M, and is equipped with a map of chain com- 

plexes W 0 C W satisfying the conditions of Proposition 1.6. Therefore the 

action of C on ExtA (M, N) can be computed as ExtA (M, N) = HU (HomA (W, N)), 

where the action of C on HomA (W, N) is as in (3.8). But the latter passes to an 

action of CIIA, so we have defined 

(3.9) a(B, Ext): B3O ExtA (Al, N) - ExtA (A, N) 

and proved 

Proposition 3.11. H*(HomA (W, N)) ExtA (AM, N) as left B-modules, for any 

C-projective resolution W M Ol - 0. 

Proposition 3.11 is the motivation for our flexible definition of the action of 

C upon ExtA (M, N), by way of Proposition 1.6. If we had given only the defini- 

tion in terms of projective mixed C-A modules (Definition 1.8), we would have no 

proof for Proposition 3.12. A projective C-module, when regarded as a mixed C-A 

module, is not in general a projective mixed C-A module! 

4. Actions of Ci on ExtB(Z2, ExtA (M, N)). We fix in this section an exten- 

sion of Hopf algebras (3.1); A has commutative multiplication. We fix also a left 

C-coalgebra M and a commutative left C-algebra N. When appropriate we will 

regard M as a C-A coalgebra (Proposition 3.7) and N has a C-A algebra (Prop- 

osition 3.8). We will also regard B as a right Hopf algebra over the Steenrod 

algebra (i, using (2.7) with A= B. 
We apply Proposition 2.8 with A C, r - A, E M, Q - N, and find that 

(3.9) gives ExtA (M, N) the structure of a commutative C -B algebra. Now we 

immediately make a second application of ??I and 2, as summarized in Proposi- 

tion 2. 8, with A -(d, I' = B, E =Z2' - ExtA (AM, N). We obtain a product 

(4.1) rt: Ext B ( 2, ExtA (Al, N)) 0 Ext 6 (z27 ExtA (lM, N)) 
- ExtB (Z27 ExtA(M, N)) 

and a vertical action 

(4.2) or,(a, Ext) cJ(A, Ext): aExt B ( 2, ExtA (M, N)) ExtB (Z2 ExtA (Al, N)) 

under which Ext becomes an -algebra; and a diagonal action 

(4.3) aD(, Ext)= a(, Ext): aoExt , (Z27, ExtA tB(72, ExtA(MA, N)) 
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under which Ext becomes an Li-algebra. Diagram (2.8) says that vertical and 

diagonal actions are related by 

(4.4) Sqk (Sq Du) = Sq D(Sq/2 u) 

for any u e Ext. (Recall that the Verschiebung is determined on Ci by V(Sqk)= 

Sqk/2; e.g. [17, p. 24].) (Added in proof. Suppose the extension (3.1) is central; 

that is, the associated map cr(B, A): B 0 A - A is the trivial action. Then 

Ext B(Z ExtA (M, N)) - ExtB (Z Z 2) ?9 ExtA(Mp N), and the actions (4.2) and 

(4.3) reduce to Sqk (x ? y) = Sq?x ? Sqky, and Sqk (x ? y) _ Sqkx X y2, for 

x in ExtB (Z29 Z2), y in ExtA (M, N).) 

5. Change of rings spectral sequence. If fr is a Hopf algebra and E a left 

F-coalgebra we write W(F, 1) for the acyclic bar construction over the left r- 
module S. We regard W(J, E) as a simplicial object over the category of left 

F-coalgebras: if w(F, Y)n = ?(n+') 0 E is the "tinhomogeneous" representa- 

tion, then the comultiplication is that of the (n + 2)-fold tensor product. 

Fix an extension of Hopf algebras (3.1). Fix a left C-coalgebra M and a 

commutative left C-algebra N. Define a bisimplicial left C-coalgebra X by set- 

ting Xp q = W(B)p e W(C, M)q a~s a tensor product of left C-coalgebras (we 

abbreviate W(B, Z 2) W W(B)). X is equipped with an obvious augmentation (in the 

sense of I, ?1) A: X - W(C, M). Since C has an antipode, the tensor product of 

a projective left C-module with an arbitrary left C-module is again projective. 

So X can be regarded as a C-projective resolution of M, and we have: 

Proposition 5.1. X*: Extc(M, N) -* H*(Homc (X, N)) is an isomorphism of 
Z 2-modules. 

Consequently the spectral sequence of the bisimplicial C-coalgebra X con- 

verges to Extc (M, N), and is equipped with Steenrod squares enjoying all the 

properties listed in I, ?1. From Proposition 3.10 we have 

(5.1) Ep,q = Hom(W(B) ? W(C, M), N) = Homr (W(B)p, HomA (w(C, M)q, N)) 

and since W(B)p is B-projective we get from Proposition 3.12 

(5.2) EP,q = HomB (W(B)p, Extq (M, N)) 

from which follows 

(5.3 ) EP, q = Extp3 ( Z 2,Extq ( M, N) ). 2 13 2' -A 

Proposition 5.2. The actions of the vertical Steenrod squares on E2 are 

given by ov(aExt) of (4.2). 

Proof. We take Ep,q as given by (5.1) of I. Suppose u in EP,q is repre- 
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sented by the C-homomorphism x: Xp q -* N. Let (Dk) be a special Eilenberg- 

Zilber map in the sense of I, ?2. Then by Proposition 5.1 of I, Sqk u= Sqk u 

EP q+k is represented by a C-homomorphism Xp qk N given by 

W(B)p ?W(C, M) +k2!4W(B)p W(B)p ?W(C, M) +k Cw(C, M)+k 

idid@iDq,q 
(5.4) - ( W(B)p ? W(B) p W(C, M)qX W(C, M)q 

(1,32,4) x@x 
( '32 W(B) W(C, M)A W(B)p W(C, M) NON- - N. p q q 

We must compare this with the purely algebraic description of Sqk u given 

in (4.2). 

Under the isomorphism of Proposition 3.10, x corresponds to a B-homomor- 

phism x': W(B) p o HomA (W(C, M)q' N); which in turn represents an element 

x": W(B)p Extq (M, N) of EP q (see (5.2)). Now observe that if B is regarded 

as a right a -Hopf algebra (as in (2.7), with A = B), then W(B) is an c -B pro- 

jective resolution of the mixed Cl-B module Z2. (In fact, for any b E W(B)p we 

set (b)Sqk - 0 if k > 0 and (b)Sqo = Vb, where the Verschiebung is defined by 

virtue of the coalgebra structure on W(B).) Therefore (Proposition 1.5) the 

algebraically defined sqk u is represented in EP q+k by the composition 

definedq 1q 
byth omoito 

(5.5) W(B) p )YW(B) 
p-- ExtA (M, N) -* ExtA (M, N), 

Now since (Dk) is an Eilenberg-Zilber map in the sense of 1, ?2, it is easy 

to see that the compositions 
D 

I-V(C, M) LW(C, M) X W(C, M) A W(C, M) 0W(C, M) 

form an Eilenberg-Zilber map in the sense of II, ?2, equation (2.2). That is, Sqk 

on Extq (M, N) can be computed by means of the cochain operation Sk: 

HomA (W(C, M)q, N) HomA (W(C M)q+kJ N) given by 

(5.6) Sk(x) = qf* D* c/(x' x'). 

Now, the value of the composition (5.5) upon an arbitrary b E W(B)p is an ele- 

ment of ExtA (M, N). Using (5.6) we can represent this element by a specific 

cochain f(b) E HomA (W(C, M), N). f(b) is 

Dq fq 

W(C, M) +k W(C, M)q+k 0 W(C, M) q+k W(C, m) qW(C, M)q 
(5.7) 
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Using Lemma 2.6 write V(b) = b. ? b. + I b. I? b. + Vb ?) Vb, and define 

cochains gi(b) C HIomA (W(C, M), N) by the compositions 

Dq,q 

w1(c, mV) +k I(C, M) +k w (C, mt) q+k __ W(C, M) 0 W(C, M) 

By an argument similar to that used in the proof of Proposition 2.7, the identities 

(2.2) imply that all cochains, gi(b) are cohomologous to zero. It follows immedi- 

ately that (5.5) is represente'd on the Eo level by the B-homomorphism h: W(B)p 
HomA (W(C, M)q+k, N) defined by h(b) -/(b) + 1i gi(b). But under the isomor- 

phism HomB (W(B)p, HomA (W(C, M)q +k N)) = Homc(W(B) p ? W(C, M)q+k, N), h 

corresponds exactly to (5.4). This completes the proof. 

Proposition 5.3. The actions of the diagonal Steenrod squares on E2 are 

given by oD(d(, Ext) of (4.3). 

Proof. Suppose u in EP1 q is represented by the C-homomorphism x: Xpq N. 

Let (Dk) be a special Eilenberg-Zilber map. By Proposition 5.1 of I, Sqk u= 

Sqq+k uE EP +k2q is represented by the C-homomorphism 2 

W(B) p+ W(C, M) 2q , WB p 0 k W(B) c l(, M)2 q W(C, 'A)2q 

(5-9) - 
-P ,U(B) ? W(B)p ? w(C, M) ? U(C, ' Al) p p q ' 

,(1,3,24) ? 
( 'i' ' ).W(B)p ) w(C,M) ?W(B)p ?W(C,M)- N?N -N. 

We must compare this with the purely algebraic description of Sqk u given 

in (4.3). 

Under the isomorphism of Proposition 3.10, x corresponds to a B-homomor- 

phism x': W(B)p -HomA (W(C, M)qJ N); which in turn represents an element 

x": W(B)p Extq (M, N) of EP q (see (5.2)). By the construction in ?2 of the 

Steenrod squares on ExtB (Z2) ExtA (Al, N)), we find that SqD u is represented in 

the complex TlomB (W(r3), ExtA (M, N)) by the cocycle 

DP sP 

W(B)p+k ,IVO(B) )9 VI -*)pwk - W(B) ? W(B) 
(5.10) 

+ p+k p+k 

ExtA (M,N) 0 Ex A (Al, N) A (I ,V) 

But by the definition in ?2 of the product on ExtA (M, N), we find it can be rep- 

resented by the cochain operation f: HomA (W(C, M), N) ? HomA (W(C, M), N) 

HomA (W(C, M), N) given by 1A(x' ? y')= D/*D x ?y'). Then the element of 
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EP+k,2q that is given by (5.10) can be represented on the EQ level by 

W(B)p+ - 
b 

V(B)p+ ( W(B) 
p+k 

) W(B)p 
X 
W(B)p p+k ~ P+k P+k p kp 

(5.11) ,t 

- > HomM (W(C, M)q, N)?HomA(W(C, M)q, N) - HomA(W(C, M)2q, N). 

But under the isomorphism HomB (W(B)p+kl HomA r Cn M)2q, N)) = 

Homc (W(B)p+k 0 W(C, M)2q, N), (5.11) corresponds exactly to (5.9). This 

completes the proof. 

Proposition 5.4. The product on E2 is given by ,t of (4.1). 

The proof is similar to what we have just done. One uses Proposition 5.1 

of I. 

6. Actions of d on ExtH*(G)(H*(E), Z2). Suppose G a topological group 

and E a G-space. Then H*(G) (coefficients in Z2) is a Hopf algebra in the 

usual way, and the action G x E -*E defines a module structure H*(G) 0 H*(E) 

oH*(E) under which H*(E) becomes a left H*(G) coalgebra. Moreover the usual 

actions of (a on the right of H*(G) and H*(E) give H*(G) the structure of a 

right d -Hopf algebra, and H*(E) the structure of an L -H*(G) coalgebra. 

We now apply the results of I?? and 2, as summarized in Proposition 2.8 

with A Hi, H*(G), E- H*(E)) Q= Z2. We obtain a product on 

ExtH (G(H*(E), Z 2); a vertical action 

(6.1) av ((T Ext) = o(:X, Ext): E i XExtH1 (Q- (H*(E) z2) ExtH1 (G)(H*(E), Z2) 

under which Ext becomes an a -algebra, and a diagonal action 

(6.2) rD (, Ext)= ((T, Ext): e EExt (G)H(H*(E)7 Z2) Ext ( (H*(E)' Z2 

under which Ext becomes an (i-algebra. The vertical and diagonal actions are 

related by 

(6.3) Sqk (Sqj u) - Sqj (Sq /2u) 

for any u E Ext (Proposition 2.7). 

7. Eilenberg-Moore spectral sequence. Suppose G a topological group. To 

any G-space E we assign a G-space T(E) = G X E, where the action of G is 

given by g(g', x) = (gg', x). T is a functor from the category of G-spaces to 

itself. Let I be the identity functor on the category of G-spaces. Define natural 

transformations d: T - I, s: T - T2 by setting d(g, x) gx; s(g, x)= (g, e, x), 

where e 6 G is the identity element. Then (T, d, s) is a cotriple [21 on the 
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category of G-spaces. This cotriple gives rise in the usual way [2, p. 2461 to a 

functor i, which to any G-space E assigns a simplicial object SE over the 

category of G-spaces. In fact (E)p = GX(P+l) x E, and the face and degeneracy 

operations are as in [2]. Set (E)p = (iE)p/G . Then iE is a simplicial object 

over the category of topological spaces. We let r: (E)o 0 E/G be the projec- 

tion E - E/G. 

Now let S be the "singular" functor from topological spaces to simplicial 

coalgebras: i.e., if K is a space, (SK)q is the free Z2-module on the singular 

q-simplices A of K, and the coproduct is defined by (l(A) = A ? A. From YE 

we obtain a bisimplicial coalgebra X by setting Xp _ = S(TE). The map r 

passes to an augmentation (in the sense of I, ?1) A: X - S(E/G). 

Proposition 7.1. Suppose E a principal G-space, and H*(G) and H*(E) of 

finite type. Then A*: H*(E/G) H*(HomZ2(CX, z2)) is an isomorphism of 

Z2-modules. 

Proof. This can be proved by an argument similar to that at the end of ?5 of 

[121. In fact, using the Eilenberg-Zilber theorem one shows the homology of the 

total complex CX isomorphic to the differential derived functor TorCSG (CSE, Z2) 

of Eilenberg and Moore [11]. Theorem 3.1 of [11i then implies our result. 

It follows from Proposition 7.1 that the spectral sequence of the bisimplicial 

Z2-coalgebra X converges to H*(E/G), and is equipped with Steenrod squares 

enjoying all the properties of I, ?1. Clearly, E2 = ExtH (G)(H*(E), Z2) 

Proposition 7.2. The actions of the vertical Steenrod squares on E2 are 

given by oVW7 Ext) of (6.1). 

Proposition 7.3. The actions of the diagonal Steenrod squares on E2 are 

given by oD(d Ext) of (6.2). 

The proofs of these results are similar to but less complicated than the 

proofs of Propositions 5.2 and 5.3, and we leave them to the reader. The main 

tool is Proposition 5.1 of I. 

8. The Serre spectral sequence. Dress has shown in [41 how to associate to 

any Serre fibration f: E -4 B a bisimplicial coalgebra X (in Dress' notation, 

X = K(f)), and an augmentation A: X - SE (here S is the singular functor from 

topological spaces to simplicial coalgebras) with the property that X*: H*(E) 

H (Homz2 (CX, Z2)) is an isomorphism. Using Dress' computation of the E2 

term of the spectral sequence, and the general results of I, the reader can recover 

the results of [1], [71, [181. 
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