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Abstract. In this paper we compute homotopical equivariant bordism for the

group Z/2, namely MO
Z/2
∗ , geometric equivariant bordism N

Z/2
∗ , and their

quotient as modules over geometric bordism. This quotient is a module of
stable transversality obstructions. We construct these rings from knowledge
of their localizations.

In this paper we compute homotopical equivariant bordism for the group Z/2,
namely MO

Z/2
∗ , geometric equivariant bordism N

Z/2
∗ , and their quotient as N

Z/2
∗ -

modules. In doing these computations, we use the techniques of [10]. Note that
N
Z/2
∗ has been computed in [1] and MOZ/2 was described as a two-stage Postnikov

system in [5], although explicit generators and relations were not given for MO
Z/2
∗ .

The results here are explicit, and hence new, making systematic use of localization.
The computation of the quotient of these theories, a module of stable transversality
obstructions closely related to those of [6], is new. Bröcker and Hook showed
that one may obtain MOZ/2 from NZ/2 by introducing suspension isomorphisms
for non-trivial representations [2]. Our computations capture the algebra of this
stabilization procedure.

The paper is structured as indicated by section titles; we give basic definitions,
then statements of theorems, and finally proofs. The proofs aim to be complete,
assuming the reader has no familiarity with equivariant homotopy theory. Hence,
preliminary results proven are well known to experts.

Thanks go to Peter Landweber for a close reading of this paper.

1. Definitions

Although all of the basic constructions can be made for an arbitrary compact
Lie group, we state things only for the group Z/2. For a thorough introduction to
equivariant bordism see Chapter 15 in [8] by Costenoble. Let τ denote the trivial
one-dimensional real representation of Z/2, and let σ denote the non-trivial one in
which the non-trivial element acts on R by multiplication by −1. Let BOZ/2(n)
be the Grassmannian of n-dimensional subspaces of U =

⊕
∞(τ ⊕ σ), with Z/2

action inherited from U , and let ξZ/2n be the universal Z/2 n-dimensional bundle
over BOZ/2(n), and T (ξZ/2n ) its associated Thom space. Given a representation V ,
let SV be the one-point compactification of V .
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Let N
Z/2
∗ denote the ring of bordism classes of Z/2-manifolds (manifolds with an

involution), where bordism is defined in the usual way using manifolds with bound-
ary as in [4]. To define homotopical bordism, first note that for any representation
V there are maps SV ∧ T (ξZ/2n )→ T (ξZ/2n+|V |) defined by passage to Thom spaces of

the map classifying V × ξZ/2n . For non-negative n, MO
Z/2
n is the colimit

lim−→W

[
Snτ⊕W , T (ξZ/2|W |)

]Z/2
,

where [, ]Z/2 denotes the set of homotopy classes of Z/2-maps, which in this case
of taking maps from spheres is an abelian group. As in the ordinary setting, the
Pontryagin-Thom construction gives rise to a map N

Z/2
n →MO

Z/2
n (again see [4]).

But we will see that this map is not an isomorphism. Indeed, we extend the
definition of MO

Z/2
n to negative degrees in the standard way as

lim−→W

[
SW , T (ξZ/2|W |+|n|)

]Z/2
.

We will see that these groups are non-zero for any n, whereas N
Z/2
n are zero

for negative n by definition. We may in fact define an equivariant spectrum
MOZ/2, equipped with deloopings for any formal difference of representations of
Z/2, giving rise to associated homology and cohomology theories where MO

Z/2
∗ ∼=

MO
Z/2
∗ (pt.) ∼= MO−∗Z/2(pt.). There are periodicity isomorphisms (see [8]) which im-

ply that MO
Z/2
V−W depends only on the virtual dimension of V −W , so we restrict

our attention to integer gradings.
The difference between geometric and homotopical bordism arises from the

breakdown of transversality in the presence of a group action. The most impor-
tant examples of classes in MO

Z/2
∗ not coming from geometric bordism are the

Euler classes (indeed, for Z/2 we will see that these are essentially the only exam-
ples). The representation σ defines a Z/2 vector bundle over a point by projec-
tion. There are no non-zero equivariant sections of this bundle. The Euler class
eσ ∈ MO1

Z/2(pt.) reflects the equivariant non-triviality of this bundle. Explicitly,
given a representation V define the Euler class eV to be the class of the composite
S0 ⊂ SV → T (ξZ/2|V | ) in MO

Z/2
−|V |, where the second map is defined by passing to

Thom spaces the inclusion of V as a fiber of ξ|V |.

2. Statements of the theorems

Euler classes play an important role at every step in this paper. Tom Dieck [7],
refining ideas of Atiyah and Segal, showed that localization by inverting these Euler
classes corresponds to “reduction to fixed sets”. We take tom Dieck’s work as a
starting point, translating his results from the complex setting. Once we are taking
geometric fixed sets, we can make explicit computations.

Let P(V ) be the projective space of one-dimensional subspaces of a representa-
tion V , with inherited Z/2-action, and let [P(V )] ∈ MO

Z/2
|V |−1 be the image of the

bordism class of P(V ) under the Pontryagin-Thom map. Let R∗ be the sub-algebra
of MO

Z/2
∗ generated by the Euler class eσ and [P(nτ ⊕σ)], as n ranges over natural

numbers, and let S be the multiplicative set in R∗ generated by eσ. By abuse, use
S to denote the same multiplicative set in MO

Z/2
∗ .
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Theorem 2.1. The canonical map S−1R∗ → S−1MO
Z/2
∗ is an isomorphism.

In other words, any class in MO
Z/2
∗ can be multiplied by some power of eσ to

get a class in R∗ modulo the kernel of the localization map (which is in fact zero by
the next theorem). Hence, to understand MO

Z/2
∗ it suffices to understand R∗ and

division by eσ. We will prove Theorem 2.1 by explicit computation. It will follow
from the computation of S−1MO

Z/2
∗ that R∗ is a polynomial algebra. In fact, R∗

is a maximal polynomial subalgebra of MO
Z/2
∗ .

Remarkably, divisibility by eσ is closely tied to the interplay between equivariant
and ordinary bordism. Let α : MO

Z/2
∗ → N∗ be the augmentation map, that is, the

map which forgets Z/2-action. Clearly eσ is in the kernel of α. In some sense, this
Euler class accounts for the entire kernel.

Theorem 2.2. The sequence 0→MO
Z/2
∗

·eσ→ MO
Z/2
∗

α→ N∗ → 0 is exact.

Using the exactness of this sequence, we define an operation on MO
Z/2
∗ . First

note that the augmentation map has a splitting ι : N∗ → MO
Z/2
∗ which we may

define by taking a geometric representative for a class, imposing a trivial action,
and passing to homotopical bordism through the Pontryagin-Thom map. Hence
there is also a splitting of multiplication by eσ.

Definition 2.3. For any x ∈MO
Z/2
∗ define x to be ι ◦ α(x). Then x− x is in the

kernel of α, so we define Γ(x) to be the unique class such that eσΓ(x) = x− x.

Directly from Theorem 2.1 and Theorem 2.2 we may deduce the following.

Theorem 2.4. MO
Z/2
∗ is generated over N∗ by eσ and classes Γi([P(nτ ⊕ σ)])

where i and n range over natural numbers. Relations are
• eσΓ(x) = x− x,
• Γ(xy) = Γ(x)y − xΓ(y),

where x and y range over the classes Γi([P(nτ ⊕ σ)]).

When x is a geometric class, that is, x is in the image of some [M ] under the
Pontryagin-Thom map, there is a geometric construction of Γ(x), a construction
which dates back to work by Conner and Floyd [4].

Definition 2.5. Let γ(M) = M ×Z/2 S1, where S1 = {(x, y) ∈ R2|x2 + y2 = 1}
has antipodal Z/2 action and Z/2 acts on the quotient by the rule g · [m,x, y] =
[m,−x, y], where g is the non-trivial element of Z/2 and the brackets denote taking
equivalence classes.

Theorem 2.6. Γ([M ]) = [γ(M)].

Because we have a geometric model for this operation, and because we may for
Z/2 identify geometric equivariant bordism as a sub-ring of homotopical equivariant
bordism, we also have explicit understanding of the geometric theory.

Theorem 2.7. The geometric Z/2 bordism ring N
Z/2
∗ is the sub-ring of MO

Z/2
∗

generated over N∗ by the classes [γi(P(nτ ⊕ σ))].

Finally, we may identify the quotientMO
Z/2
∗ /N

Z/2
∗ , which represents some stable

transversality obstructions, as a N
Z/2
∗ -module.
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Theorem 2.8. The N
Z/2
∗ -module MO

Z/2
∗ /N

Z/2
∗ is generated by classes xk, k ∈ N,

in degree −k, with relations [γ(M)]xk = [M ]xk−1 − [M ]xk−1. The class xk is the
image of the Euler class ekσ under the canonical map from MO

Z/2
∗ to this quotient.

Hence the Euler classes are essentially the only transversality obstructions in

this setting. This is not true in general, as for Z/3 for example the class Sρ z 7→z2

→
Sρ
⊗2 → T (ξZ/32 ) is a non-trivial class in the quotient of homotopical and geometric

bordism which is not a multiple of an Euler class.

3. Proofs

As should be expected, our computations start with exact sequences due to
Conner and Floyd, and tom Dieck. Indeed, the work of [1] and [5] starts from
these exact sequences. Most of the results in this section which lead up to the final
computation have been known to experts for some time.

3.1. The Conner-Floyd exact sequence. Our goal is to prove the following
theorem, and then explicitly compute some of the terms.

Theorem 3.1 (Conner-Floyd). There are maps η, φ and δ, to be defined below, so
that the sequence

· · · → N∗(BZ/2)
η→ N

Z/2
∗

φ→
⊕
k

N∗−k(BO(k)) δ→ N∗−1(BZ/2)→ · · ·

is exact.

Historically, Conner and Floyd developed their exact sequence geometrically. We
proceed in what is in some sense the reverse of historical order, starting with the
long exact sequence in N

Z/2
∗ theory of the based pair (c(EZ/2)+, EZ/2+), where

EZ/2 is a contractible space on which Z/2 acts freely (for example, the unit sphere
in
⊕
∞ σ) and c(EZ/2)+ denotes the cone on EZ/2 with a disjoint basepoint added.

To be complete, we include the definition of relative bordism.

Definition 3.2. Let (X,A) be an admissible pair of Z/2-spaces. A Z/2-manifold
with reference to (X,A) is a pair (M, f) of a Z/2-manifold with boundary M
and a map f : M → X such that f(∂M) ⊆ A. Two Z/2-manifolds (M1, f1) and
(M2, f2) are bordant when there is a Z/2-manifold (W, g) such that M1tM2 is Z/2-
diffeomorphic to a codimension zero sub-manifold of ∂W , g|M1 = f1, g|M2 = f2,
and g(∂W − (M1 tM2)) ⊆ A.

Definition 3.3. Let N
Z/2
n (X,A) denote the group of equivalence classes up to bor-

dism of Z/2-manifolds with reference to (X,A).

The functor N
Z/2
∗ defines an equivariant homology theory. In this theory, the

exact sequence of the pair (c(EZ/2)+, EZ/2+) reads

(1) · · · → ÑZ/2∗(EZ/2+) i∗→ N
Z/2
∗

j∗→

N
Z/2
∗ (c(EZ/2), EZ/2) ∂→ ÑZ/2∗−1(EZ/2+)→ · · · .

We will identify the first and third terms in this exact sequence with more familiar
bordism modules. Note that these identifications are standard, and are done in some
generality by Costenoble in Chapter 15 of [8]. We start with analysis of the term
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N
Z/2
∗ (c(EZ/2), EZ/2) and the map j∗. Form the bordism module of Z/2-manifolds

with free boundary, where we define the bordism relation as in Definition 3.2.

Proposition 3.4. The module N
Z/2
∗ (c(EZ/2), EZ/2) is naturally isomorphic to

the bordism module of Z/2-manifolds with free boundary.

Proof. Any manifold with reference to (c(EZ/2), EZ/2) must have free boundary.
Conversely, given a Z/2-manifold with free boundary, there is no obstruction to
constructing a reference map to (c(EZ/2), EZ/2). Applying these observations to
manifolds which play the role of bordisms, we see that these correspondences are
well defined up to bordism and inverse to each other.

Up to bordism, a Z/2-manifold with free boundary depends only on its fixed-set
data.

Proposition 3.5. A Z/2-manifold with free boundary M is bordant to any smooth
neighborhood N (MZ/2) of the fixed set of M as Z/2-manifolds with free boundary.

Proof. Let W = M × [0, 1], with “straightened angles”. Then ∂W is free outside of
M × 0 and N (MZ/2)× 1, so W is the required bordism.

Thus the map j∗ : N
Z/2
∗ → N

Z/2
∗ (c(EZ/2), EZ/2) “reduces to fixed sets” in the

sense of sending a representative of a bordism class M to the bordism class of
smooth neighborhoods of its fixed set. If we choose N (MZ/2) to be a tubular
neighborhood of MZ/2, then we can use standard equivariant differential topology
to identify this tubular neighborhood with a Z/2-vector bundle over the fixed set,
where the action of Z/2 is free away from zero.

Proposition 3.6. N
Z/2
∗ (c(EZ/2), EZ/2) ∼=

⊕
k N∗−k(BO(k)).

Proof. Use the identifications we have made so far to equate N
Z/2
∗ (c(EZ/2), EZ/2)

with the bordism module of Z/2-vector bundles over trivial Z/2-spaces where the
action is free away from zero. The fiber of a Z/2-vector bundle over a trivial Z/2-
space is a representation. Because Z/2 has only one non-trivial representation, the
action on any fiber and thus the total space is completely determined. Hence the
forgetful map from this bordism module of Z/2-vector bundles which are free away
from the zero section to the bordism module of vector bundles is an isomorphism.
The result follows from the fact that BO(k) is the classifying space for vector
bundles. Note that we must grade according to the dimension of the total space of
the bundle in question.

Interpreting the term ÑZ/2∗(EZ/2+) is more immediate. Any manifold mapping
to EZ/2 must itself have a free Z/2-action, so this module is isomorphic to the
bordism module of Z/2-manifolds with free Z/2-action.

Proposition 3.7. The bordism module of Z/2-manifolds with free Z/2-action is
isomorphic to N∗(BZ/2).

Proof. Consider the following diagram:

M̃
f̃−−−−→ EZ/2y y

M
f−−−−→ BZ/2
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Given a representative M with reference map f to BZ/2, pull back the principal
Z/2-bundle EZ/2 to get M̃ , which is in fact a free Z/2-manifold. Conversely,
starting with a free Z/2-manifold M̃ , there is no obstruction to constructing a map
f̃ to EZ/2. Pass to quotients to obtain f : M → BZ/2.

These maps are well defined, as we apply the previous argument to the manifolds
which act as bordisms. The composites of these maps are clearly identity maps.

Corollary 3.8. The module ÑZ/2∗(EZ/2+) is isomorphic to N∗(BZ/2).

We may now deduce Theorem 3.1. We now give more geometric definitions of
the maps in this exact sequence. We omit the proofs that these definitions coincide,
which are straightforward.

Definition 3.9. Let η : N∗(BZ/2)→ N
Z/2
∗ denote the N∗-module homomorphism

which, using the identification of Proposition 3.7, sends a free Z/2-bordism class to
the corresponding Z/2-bordism class.

Proposition 3.10. The homomorphism η coincides with the homomorphism i∗ of
the exact sequence (1) under the isomorphism of Corollary 3.8.

Definition 3.11. Let ϕ : N
Z/2
∗ →

⊕
k N∗−k(BO(k)) be the map which sends a

class [M ] to the fixed set of [M ] with reference map to
⊔
BO(k) classifying the

normal bundle to the fixed set.

Proposition 3.12. The homomorphism ϕ coincides with the homomorphism j∗ of
the exact sequence (1) under the isomorphism of Proposition 3.6.

Finally, we identify the boundary map.

Definition 3.13. Let δ :
⊕

k N∗−k(BO(k)) → N∗−1(BZ/2) be the map of N∗-
modules which sends E, a vector bundle, to the sphere bundle of E with fiberwise
Z/2-action defined by letting the non-trivial element of Z/2 act by multiplication
by −1.

Proposition 3.14. The homomorphism δ coincides with the homomorphism ∂ of
the exact sequence of equation (1) under the isomorphisms of Proposition 3.6 and
Corollary 3.8.

Using theorems of Thom [11], we can identify N∗(BZ/2) and
⊕

k N∗−k(BO(k))
given the standard computations of the mod 2 homology of BZ/2 and BO(k).

Proposition 3.15. N∗(BZ/2) is a free N∗-module generated by classes xi in de-
gree i, where i ranges over natural numbers. As the bordism module of free Z/2-
manifolds, the generator xi is represented by the i-sphere with antipodal Z/2-action.

Proof. The mod 2 homology of BZ/2 = RP∞ is well known to be Z/2 in every
positive dimension. The class in dimension i is the image of the fundamental class
of RPi under inclusion. Under the identifications of Proposition 3.7 these classes
correspond to spheres with antipodal action.

Next note that there are classifying maps for direct sums of the associated uni-
versal bundles BO(k) × BO(l) → BO(k + l). These maps give rise to an H-space
structure on

⊔
BO(k), which in turn gives rise to a multiplication on homology.
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Proposition 3.16. As a ring,
⊕

k N∗−k(BO(k)) is a polynomial algebra over N∗
generated by classes bi ∈ Ni−1(BO(1)) represented by the tautological line bundle
over RPi−1.

The fact that this ring is a polynomial algebra follows from the mod 2 homology
computation, which is standard [9]. The fact that generators are represented by
projective spaces is a straightforward Stiefel-Whitney number computation.

3.2. The tom Dieck localization sequence. Tom Dieck realized that there was
a connection between the Conner-Floyd exact sequence and the localization meth-
ods in the equivariant K-theory of Atiyah and Segal. This connection has been
fundamentally important in our work.

The following lemma provides translation between localization and topology.
Once again, let S be the multiplicative subset of MO

Z/2
∗ generated by eσ.

Lemma 3.17. As rings, M̃O
Z/2
∗ (S⊕∞σ) ∼= S−1MO

Z/2
∗ .

Proof. Apply M̃O
Z/2
∗ to the identification S⊕∞σ = lim−→S⊕nσ. After applying the

suspension isomorphisms M̃O
Z/2
∗ (S⊕kσ) ∼= M̃O

Z/2
∗+1(S⊕k+1σ), the maps in the re-

sulting directed system are multiplication by the eσ.

Consider the cofiber sequence S(∞σ)+ → S0 → S∞σ, which is a model for

the sequence EZ/2+ → S0 → ẼZ/2, essentially our sequence of a pair from the

previous section. By the previous lemma, after applying M̃OZ/2∗ to this cofiber
sequence, the second map in this sequence is the canonical map from MO

Z/2
∗ to

S−1MO
Z/2
∗ . We now identify the outside terms in this sequence.

Theorem 3.18. M̃OZ/2∗(ẼZ/2) ∼=
⊕

k∈ZN∗−k(BO).

Proof. Recall the definition of MO
Z/2
∗ (ẼZ/2) and consider the space of maps from

SV to ẼZ/2 ∧ T (ξZ/2n ), for any representation V .
First we show that for any Z/2-spaces X and Y , the restriction map

MapsZ/2(X, ẼZ/2 ∧ Y )→ Maps(XZ/2, (ẼZ/2 ∧ Y )Z/2) = Maps(XZ/2, Y Z/2)

is an equivalence. First note that this restriction of mapping spaces is a fibration.
Over a given component of Maps(XZ/2, Y Z/2) a fiber is going to be the space of

maps from X to ẼZ/2∧Y which are specified on XZ/2. We filter this mapping space
by filtering X . Because the maps are already specified on XZ/2, we need only adjoin
cells of the form G×Dn, where G denotes Z/2 acting on itself by left multiplication.
Hence the subquotients in this filtration will be spaces of equivariant maps from
Z/2×Dn to ẼZ/2∧ Y whose restriction to the boundary of Z/2×Dn is specified.
Because Z/2×Dn is a free Z/2-space, it suffices to consider the restriction of such

a map to one copy of Dn. But ẼZ/2 ∧ Y is contractible, hence so is this mapping
space. Therefore the fibers of our restriction map are contractible.

Applying this argument for X = SV , Y = T (ξZ/2n ) we see that our computation
follows from knowledge of T (ξZ/2n )Z/2. We claim that T (ξZ/2n )Z/2 =

∨
T (ξi) ∧

BO(n − i). We show this by analysis of the fixed set of ξZ/2n . Any fixed point
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of ξZ/2n must lie over a fixed point of BOZ/2(n). The fixed set of BOZ/2(n) is the
classifying space for Z/2-vector bundles over trivial Z/2-spaces. A vector bundle
over a trivial Z/2-space decomposes as a direct sum according to decomposition of
fibers according to representation type. As there are only two representation types
for Z/2, we deduce that (BOZ/2(n))Z/2 =

⊔
BO(i) × BO(n − i). Restricted to a

component of this fixed set ξZ/2n will be ξ(i) × ξ(n − i) where Z/2 fixes all points
in the first factor and acts by multiplication by −1 on fibers in the second factor.
Hence one component of the fixed set of ξZ/2n will be ξ(i)×BO(n− i).

Passing to Thom spaces we find

T (ξZ/2n )Z/2 =
∨
T (ξ(i)) ∧BO(n− i)+.

Using this result along with our first reduction we see that

[SV , S∞σ ∧ T (ξZ/2n )]Z/2 = [SV
Z/2
,
∨
T (ξ(i)) ∧BO(n − i)+].

The theorem follows by passing to direct limits.

As M̃OZ/2∗(ẼZ/2) ∼= S−1MO
Z/2
∗ we are interested in multiplicative structures

as well.

Corollary 3.19. S−1MO
Z/2
∗ ∼= N∗[xi, e, e−1], where as elements of

⊕
k N∗−k(BO),

xi are the images of the generators given in Proposition 3.16 under the canonical
inclusions of BO(k) into BO, and as an element of S−1MO

Z/2
∗ , e is the image of

the Euler class eσ.

Proof. The multiplication on MO
Z/2
∗ restricts to T (ξZ/2j )Z/2 =

∨
T (ξ(i)) ∧

BO(n − i)+ as the standard multiplication on T (ξ(i)) factors smashed with the
classifying map for the Whitney sum on BO(n− i)+ factors.

Passing to the direct limit and neglecting grading, we are computing N∗(Z×BO),
where Z×BO has an H-space structure which is the product of the group structure
on Z and the H-space structure on BO arising from Whitney sum. Let e−1 denote
the unit class in N∗(BO×1) in degree 1. The result follows by noting that N∗(BO)
is a polynomial ring in classes xi where xi is the image of the generator of Ni(BO(1))
under the inclusion from BO(1) to BO. That e is the image of eσ follows directly
from their definitions, chasing through the identifications of Theorem 3.18.

Theorem 3.20. M̃OZ/2∗(EZ/2+) ∼= N∗(BZ/2).

Proof. In the spirit of giving elementary proofs, we argue geometrically as follows.
Consider a Z/2-map from SV to EZ/2 +

∧
T (ξZ/2n ). Because the latter space has

a free Z/2-action away from the basepoint, (SV )Z/2 must map to the basepoint. If
we pass to the map from the quotient SV /(SV )Z/2, we have a Z/2-map between
Z/2-spaces which are free Z/2-manifolds away from their basepoints. We now use
transversality arguments, which hold in the presence of free Z/2-actions. Given
a Z/2-map from SV /(SV )Z/2 to EZ/2 +

∧
T (ξZ/2n ) we may homotop it locally to

a map which is transverse regular to the zero section of T (ξZ/2n ) and pull back a
sub-manifold of SV /(SV )Z/2 which must necessarily be free.

Hence, we identify M̃OZ/2∗(EZ/2+) with the bordism module of free Z/2-
manifolds. The theorem follows from Proposition 3.7.
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As one should suspect at this point, the tom Dieck localization sequence is pre-
cisely the homotopical version of the Conner-Floyd sequence. The following theo-
rem is due to tom Dieck in the complex setting.

Theorem 3.21. The diagram

· · · −−−−→ N∗(BZ/2) −−−−→ N
Z/2
∗

ϕ−−−−→
⊕

k∈NN∗−k(BO(k)) δ−−−−→ · · ·y id

y PT

y ι

y
· · · −−−−→ N∗(BZ/2) −−−−→ MO

Z/2
∗

S−1

−−−−→
⊕

k∈ZN∗−k(BO) ∂−−−−→ · · · ,
where the first vertical map is the identity map, the second is the Pontryagin-Thom
map and the third is defined by the standard inclusion of BO(k) into BO, commutes.

3.3. Proofs of the main results.

Proof of Theorem 2.1. We show that the images of eσ and [P(nτ ⊕ σ)] along with
e−1
σ generate S−1MO

Z/2
∗ .

Consider the following diagram:

N
Z/2
∗

ϕ−−−−→
⊕

k∈NN∗−k(BO(k))

PT

y ι

y
MO

Z/2
∗

S−1

−−−−→
⊕

k∈ZN∗−k(BO) ∼= N∗[xi, e, e−1],

which combines results of Theorem 3.21 and Corollary 3.19. To compute the image
of [P(nτ ⊕ σ)] under localization it suffices to look at fixed-set data, because it is a
geometric class.

There are two components of the fixed set [P(nτ ⊕ σ)]Z/2. Using homogeneous
coordinates [y0, . . . , yn], these components are defined by the conditions yn = 0
and y1 = · · · = yn−1 = 0. The condition yn = 0 defines an (n − 1)-dimensional
projective space. Its normal bundle is the tautological line bundle. The condition
y1 = · · · = yn−1 = 0 defines an isolated fixed point which has an n-dimensional
normal bundle. Using the generators named in Corollary 3.19 we have

S−1[P(nτ ⊕ σ)] = xn + e−(n+1).

In Corollary 3.19 we also noted that the image of eσ under localization was e.
It thus follows that the images of eσ and [P(nτ ⊕ σ)] under localization, along with
e−1
σ , generate S−1MO

Z/2
∗ ∼= N∗[xi, e, e−1], which is what was to be shown.

Proof of Theorem 2.2. The exact sequence in question is a Gysin sequence. Apply
M̃OZ/2

∗
to the cofiber sequence G+

i→ S0 j→ Sσ, where the first map is projection
of G onto the non-basepoint of S0. The resulting long exact sequence is

· · · → M̃OZ/2
n
(Sσ)

j∗→MOZ/2
n i∗→ M̃OZ/2

∗
(G+) δ→ M̃OZ/2

n+1
(Sσ)→ · · · .

By the periodicity of MOZ/2, M̃OZ/2
n

(Sσ) ∼= MOZ/2
n−2. By definition j∗ is

multiplication by eσ. From the fact that MapsZ/2[G+, Y ] is homeomorphic to Y

for any Z/2-space Y , we see that M̃OZ/2
∗
(G+) ∼= N∗ and i∗ is the augmentation

map α.
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As we remarked after the statement of Theorem 2.2, the augmentation map α
is split. Hence our long exact sequence breaks up into short exact sequences, and
the result follows.

Proof of Theorem 2.4. First we verify relations. Then we show that the classes
listed generate MO

Z/2
∗ . Finally we show that the relations are a complete set of

relations. We may view MO
Z/2
∗ as a subring of S−1MO

Z/2
∗ ∼= N∗[xi, e, e−1], which

we can do as eσ is not a zero divisor. Hence, we may verify the second family of
relations by direct computation. The first family of relations holds by definition.

For convenience, rename [P(nτ⊕σ)] as Xn. By Theorem 2.1, any class in MO
Z/2
∗

when multiplied by some power of eσ is equal to a class in R∗ modulo the annihilator
ideal of eσ, which is zero. Hence we may filter MO

Z/2
∗ exhaustively as

R∗ = R0
∗ ⊂ R1

∗ ⊂ · · · ⊂MO
Z/2
∗ ,

where Ri∗ is obtained by adjoining to Ri−1
∗ all x ∈ MO

Z/2
∗ such that x · eσ = y ∈

Ri−1
∗ . By Theorem 2.2 the set of all such y is Ker(α) ∩ Ri−1

∗ . The kernel of the
augmentation map is clearly generated by all classes y − y. So we may obtain Ri∗
from Ri−1

∗ by applying Γ to every class in Ri−1
∗ . Since Γ(xy) = Γ(x)y − xΓ(y),

it suffices to apply Γ only to primitive elements. It follows that eσ and Γi(Xn)
constitute multiplicative generators.

Finally, to show these relations are complete we identify an additive basis of
MO

Z/2
∗ . There are two types of monomials in the additive basis, those of the form

ekσf , f ∈ N∗[Xi], and those of the form Γk(Xj)f , f ∈ N∗[Xi|i > j]. We may check
that these classes are additively independent by mapping to S−1MO

Z/2
∗ . Define

the complication of a monomial in our basis elements to be the sum of the number
of times both eσ and Γ appear in the monomial and the sum of all i where Γi(Xk)
appears for some Xk where k is not minimal among the Xi which appear. And
define the complication of a sum of monomials to be the greatest of their individual
complications. We may use our two families of relations to decrease complication,
which inductively allows us to reduce to our additive basis whose members have
zero complication.

Corollary 3.22. An additive basis for MO
Z/2
∗ is given by monomials of the form

ekσf , f ∈ N∗[Xi], and those of the form Γk(Xj)f , f ∈ N∗[Xi|i > j].

Proof of Theorem 2.6. Once again we use the fact that the map from MO
Z/2
∗ to

S−1MO
Z/2
∗ ∼= N∗[xi, e, e−1] is a faithful representation, along with direct compu-

tation. By Theorem 3.21, we may compute the image of [γ(M)] under localization
by analyzing fixed-set data.

Recalling the definition of γ(M) we see two types of fixed points [m,x, y] under
the Z/2-action, those with x = 0 and those with y = 0 and gm = m. The first
fixed set is α(M), with a trivial normal bundle. The second fixed set is the fixed
set of M , whose normal bundle is the normal bundle of this fixed set in M crossed
with a trivial bundle. Because multiplication by e−1 in S−1MO

Z/2
∗ corresponds

geometrically to crossing with a trivial bundle, this fixed set is the fixed set of
Γ([M ]).

Proof of Theorem 2.7. By analysis identical to that in the proof of Theorem 2.2,
the map ϕ : N

Z/2
∗ →

⊕
k N∗−k(BO(k)) is injective.
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We deduce from the comparison of exact sequences in Theorem 3.21 that the
Pontryagin-Thom map from N

Z/2
∗ to MO

Z/2
∗ is injective. So the image of ϕ is

the image of MO
Z/2
∗ in the subring N∗[xi, e−1] of S−1MO

Z/2
∗ . The images of

[γi(P(nτ ⊕ σ))] generate this image, so these classes generate N
Z/2
∗ .

Proof of Theorem 2.8. This theorem follows from Corollary 3.22 and Theorem 2.7.
Any monomial of the form Γk([P(jτ ⊕ σ)])f , where f ∈ N∗[P(iτ ⊕ σ)] for i > j,
is in fact in the image of the Pontryagin-Thom map. Monomials of the form ekσf ,
f ∈ N∗[P(iτ ⊕ σ)], are generated over N

Z/2
∗ by ekσ which we denote by xk. The

module relations for the quotient follow from the ring relations for MO
Z/2
∗ .
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[2] T. Bröcker and E. Hook. Stable Equivariant Bordism. Mathematische Zeitschrift 129 (1972),

269–277. MR 47:9652
[3] G. Carlsson. A Survey of Equivariant Stable Homotopy Theory. Topology 31 (1992), 1–27.

MR 93d:55009
[4] P. E. Conner and E. E. Floyd. Differentiable Periodic Maps. Springer, Berlin-Heidelberg-New

York, 1964. MR 31:750
[5] S. R. Costenoble. The structure of some equivariant Thom spectra. Transactions of the

A.M.S. 315 (1989), 231–254. MR 89m:57038
[6] S. R. Costenoble and S. Waner. G-transversality revisited. Proceedings of the A.M.S. 116

(1992), 535–546. MR 92m:57044
[7] T. tom Dieck. Bordism of G-Manifolds and Integrality Theorems. Topology 9 (1970), 345–358.

MR 42:1148
[8] J.P. May, et al. Equivariant Homotopy and Cohomology Theory. Volume 91 of the CBMS

Regional Conference Series in Mathematics. AMS Publications, Providence, 1996. MR
97k:55016

[9] J. Milnor and J. Stasheff. Characteristic Classes. Volume 76 of Annals of Mathematics Stud-
ies. Princeton University Press, Princeton, 1974. MR 55:13428

[10] D. P. Sinha. Computations in Complex Equivariant Bordism Theory. Preprint, 1999.
[11] R. Thom. Sur quelques proprétés globales des varietés differentiables. Commentarii Mathe-

matici Helvetici 28 (1954), 17–86. MR 15:890a

Department of Mathematics, Brown University, Providence, Rhode Island 02906

E-mail address: dps@math.brown.edu

http://www.ams.org/mathscinet-getitem?mr=44:7563
http://www.ams.org/mathscinet-getitem?mr=47:9652
http://www.ams.org/mathscinet-getitem?mr=93d:55009
http://www.ams.org/mathscinet-getitem?mr=31:750
http://www.ams.org/mathscinet-getitem?mr=89m:57038
http://www.ams.org/mathscinet-getitem?mr=92m:57044
http://www.ams.org/mathscinet-getitem?mr=42:1148
http://www.ams.org/mathscinet-getitem?mr=97k:55016
http://www.ams.org/mathscinet-getitem?mr=55:13428
http://www.ams.org/mathscinet-getitem?mr=15:890a

	1. Definitions
	2. Statements of the theorems
	3. Proofs
	3.1. The Conner-Floyd exact sequence
	3.2. The tom Dieck localization sequence
	3.3. Proofs of the main results

	References

