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PREFACE

Let M be a closed manifold and L UM a closed submanifold of codimen-
éion I with trivial normal bundle. 1I1f one cuts M oper along L one obtains a
manifold M' with boundary oM' = L + L ({(disjoint unien), and by pasting these
two copies of L together again in a different way one car obtain a new closed
manifold Ml. Ml is said to have been obtained by cutting and pasting M.

The theory of so-called SK-invariants--invariants under cutting and past-
ing of manifolds-~was born in a series of papers [13], [14], by Klaus Janich,
characterizing signature and euler characteristic by additivity properties. Later
Rarras and Kreck, in their Diplem theses, extended many of Jdnich's results to
cutting and pasting of bundles.

The idea of defining SK-groups brought many simplifications and in
summex, 1971, a study group was organized in which the authors iIncorporated these
simpiifications in a summary of the known results, in particular, of Karras' and
Kreck's Diplom theses. The results were also extended somewhat. A survey lecture
by Neumann for the Bonn-Heidelberg Colloquium (Dec,, 1970) served as a basis for
this study group, of which these notes are the proceedings.

Chapter 1 brings the general theory of SK-invariants and SK-groups and
proves Janich’s results in this framework. Basic for the theory are Theorems {1,1)
and (1.2}, which reduce calculations of SK-groups to the solution of problems of
the following type: which bordism classes in, say, {1,(X) can be represeated by
an M —> X where M is a manifold which fibres over Sl? The results of these
notes solve this in many cases.

Chapter 2 is mainly the Diplom thesis work of Karras and Kreck om SK

of bundles, An important by-product is results on muiltiplicativity of signature



for fibre bundles--this was originally the main motivatiom for much of this work,

Chapter 3 ou unoriented equivariant SK is based on work of Neumann and
Ossa at a miniconference in Regensburg in June, 1970, It generalizes a result
of Karras from Ez to arbitrary groups. Since euler characteristics of fixpoint
sets and similar iavariant subsets are SK-invariants, a coemplete caleulation of
equivariant SK-invariants would give some general Smith-type theorems.

Chapter 4 brings a generalization of the concept of SK-invariant, due to
K. J&nich. The complete calculation of the corresponding universal group, de-
noted by SKK,, is based on work of K. Jinich, Ossa and Neumann. Ossa has proved
that SKK_ can be identified with the vector-field bordism groups of Reinhart
{16]. The index of an elliptic operator is an important example for an SKK-
invariant which is gemerally not am SK-invariant; this was originally the main
motivation for SKK-invariants,

The cutting and pasting concepts which have previously appeasred in the
literature differ in some cases from ours, and Chapter 5 fits them into the frame-

werk of these notes, Finally in Chapter ¢ some recent results of Neumann which

result from Elmar Winkelnkemper's "open book theecrem" are described, In particular,

it is shown that in odd dimensions % 5 all SK-invariants for bundles over orient-
able manifolds vanish, and the connection between SK &nd muitiplicativity of
signature is recomsidered,

An appendix by Gottfried Barthel on the extension of the theory te cate-
gories of manifolds with (B, {}-structure completes the notes.

W. D. MNeumann was supported in part by National Science Foundation
grant GP7952X3 and E. Ossa was supported in part by National Science Foundation
grant GP7952X2,

The work in Bonn was supported in part by the Sonderforfchungsbereich

"Theoretische ¥athematik".

After these notes were typed it was noticed thet the methods of
chapters 2 and 6 easily lead to the result that for a aimply cormected space X ,
the orientsd SK-zroups sxn(x) are aqual to SKB(pt) for n# 4,6 , and that
thia still holds up to torsion if X has a non-trivial but finite fundamental
group. This lends s swsll smount of credibility to the probably wery wild conjee-
ture thet SKn(X) only depends on the fundamental group 71(X) . This conjec-
ture has been confirmed for n < 3 .

Since it was too late to incorporste these latter results into these
notes, they are left as exercises for the reader snd may possibly appear in a

later paper by the third nemed author.



CHAPTER 1: Introduction.

In these notes manifold always means smooth manifold, usually compact,
and an invariant p for n-dimensional manifolds is assumed to take values in an
abelian group and to be additive with respect to disjoint ymion +. That is, if
=M, + M, then o{M) = p(M)) + p(M,).

Let p be an invaeriant in this sense for closed oriented n-manifolds.
p is called an $K-invariant if whenever N and N' are compact oriected

n-manifolds and ¢, ¥ z 3N —> BN' orientation preserving diffecmorphisms, then
(WU ~H")} = p(NU, -N').
P 0 p i

Here ~N' means N' with reversed orientation, and ng - N' means N pasted
to N' along the boundary by ¢ and smoothed. In othe; words p i3 invariant
under “cutting and pasting” (= Schneiden and Kleben) of the closed manifold
M o= qu - ' alcng the submanifold L = 3N.

. Note that i is a l-codimensional two-sided submanifolé which separates
M. It is no gain in generality to drop the condition that L separate M, since
the wnion of L with a second copy of L, suitably embedded near &, will
separate M,

In the non-orientable case "cutting and pasting'" and "SK-invariant” are

defined analogously.

Examples: 1) Euler characteristic e 1is an SK-invariant for arbitrary

macifolds, This follows from the fact that euler characteristic is gzero for closed

odd-dimensional manifolds, together with the additivity property



XU Y) = elX) + ef¥) - e{XN ¥) preserving diffeomorphism M — M' such that
: M — M’
which holds for any "nice" spaces X and Y which intersect nicely.
2} Signature 7 1is an SK-invariant for orientable manifolds. This f\\\“ w//;’
X
is due to the Novikov additivity property
T(MJ{D'NI) - T(N) - T(NI)’ comautes. Let
50 : . - :
o= tar oriented n-manifolds in Xj.
where N,N',pn are as above. A proof can for ianstance be found im Atiyah- 3Kln (x) {singuiar ori }

Singer [3]. y?bso(x) is a commtative semigroup with respect te disjoint union + =and has a
o

zero given by M = 4.

If G is a compact Lie group cne cam also consider equivariant cutting tet M, =NJ - 8° and M
17 ™ 2

obtainable from each other by cutting and pasting along ON C;Mi. Let fi : M, > X

= N, - N' be closed orientable wanifolds
¥
and pasting of G-manifoids., The case that ¢ acts freely is of particular

interest, as clearly the problem of calcuiating SK-invariants for free G-actions be continuous maps. We say the singular mamifold ("2’f2) is obtained from
. . . ; . lat- .

with oriented (resp. arbitrary) orbit space is the same as the problem of calcula (M17f1) by cutting and pastimg in X if there are homotopies

ing invariants for cutting and pasting of locally trivial fibre bundles with fixed

T 1
fibre, structure group G, and oriented (resp. arbitrary) closed base manifold. fl e f2|N’ filN - fZIN )

1f the total space of the fibre bundle is 2lso a clesed orientable Two singular oriented m-mamifolds (Ml’fl)’ (Mg’fz) c ??Iio(x) ate called
manifold, them r(Base manifold} amd r(Total space) are both SK-invariants, so SKeequivalent if there is an (M, f) € szio{x) such that the disjoint union
non-multiplicity of signature will show up in the SK-invariants, This will be (szfz) + (M, £} can be obtained from (erfl) + (M,£) by a sequence of cutting and
discussed in moxe detail in Chapter 2. pastings in X (Ed Miller atHarvard has recently observed that for non-empty ML’MZ’

this definition is equivalent to the "unstabilized version"--without adding (M,f).

See end of Chapter 5.) The quotient semigroup
We now construct the basic tools for calculating SK-invariants.

) R 50 .
Let X be a space. 4 singular oriented n-manifold in X is an equi- Xvn (X): = a}tn (X)/8K-equivalence

valence class {(M,f), where M 1is a closed oriented n-manifold, £ : ¥M—> ¥ a

is a cancellative semigroup, Define
centinuous map, and (M,f) is equivalent to (M',f') if there is an orientation




SKio(X): = Grothendieck group of BJSO(X).

n

Since }ﬁo{x) is cancellative, it injects into SKio(X), so two singular
manifolds represent the same element in SKiO(X) if and only if they are SK-
equivalent, In fact it follows from Theorem (1.1} below that Xﬁo(x) actually
equals SKiO(X}, but we won't meed this,

By construction, any SK-invariant for sinmgular oriented n-manifolds

in X factors owver the matural map
S0 S0
M0 — 5o,

and this map is itself an SK-invariant. Thus SKiO(X) yields the universal

SK~invariant.

Example: X = 3G (classifying space for G) where G 1is a Lie group.
Then SKiO(BG} gives the universal SK-invariant for fibre bundles with fixed fibre
and structure group G, over oriented n-mapifeolds.

X = * (the one-point space). SKEO(*) gives the universal SK-invariant

for oriented n-manifolds,
One can make completely analogous definition in the not-necessarily-
. . . : . 0 0
oriented case, to obtain a universal SK-invariant 3§Ln(X)-—> SKn(X).

Conventions: In the oriented case we omit the superscript 850 and write

s
SKn(X): = SKHO(X). Furthermore, we write

SK + = SK (%),

[¢] o
B %
SK : = SK.(%),
the SK-groups for oriented resp. arbitrary n-manifolds.
Remmarks: SKn clearly defines a covariant functor from the homotopy

category of topological spaces to the category of abelian groups. Product of

singular manifolds induces a functorial bilirear map
SK_(X) x SK_(¥)—> 8K, (X x Y}.

In particular SK, = || $K, is a graduated ring, and for any X, SK,{X} is a
% l x

graduated SK -module. There is an augmentation
€ 1 SK.(X) —> SK,

induced by X—= &,

Similar remarks hold in the uncriented case,

Statement of Results,

Let gﬁﬂ(X) be SKn{X) factored by the bordism relatioms, that is,
SKn(X) factored by the subgroup generated by all elements which have a represen-

tative (M,f) which bounds in X, SK;(X) is defined analogously. A basic tool

in these notes will be:



THEOREM (1.1}: Let X be path-comnected, There is a split exact

sequence
0 — in — SKn(x) — SKn(X} —> O,

where I = 1is the subgroup of SKn(X) generated by fSn,*} (here * denotes

the -unique up to homotopy- constant map S —> X) and

I ~Z n even,
n ¥

0 n odd.

In the non-orientable case exactly the same holds except that the sequence does

not split for =n even,

A useful corollary of Theorem (1.1) is:
THEQREM (1.1b}: Xf [M,€] = [M',£'} in §E;(x) and e(M) = e(M'},

then [M,f} = [M',£'] in SK_(X).. The same also in the non-oriented case.

Indeed, the assumptions of (1.1b) imply IM,f] - [M',£'] €
Ker(SKn(X) ———>7§En(x)) =1 and e{[M,f] - [M",£']) = 0. Since euler character-
istic clearly classifies the elements of 1 = by Theorem (l.1), it follows that

[M,£} - [M',f'] is zero in I and hence certainly in SK (X).

There are obvious epimorphisms Qn(x)-——> §EA(X) and KLn(X) i §§g(x),

Let F_(X} C £,(X) and FE(X) C.}ln(x) be the subgroups of all elements which

admit a representative (M,f) such that M fibres over the circle Sl.

THECREM (i.2): The sequences
C — Fn(X) —= ﬂn(X)‘“€> SKn(X) —= 0
—0,
Q 2 Fg{x) —-——>]’[n(x)—e- SKn\X)——-"a- 0

are exacth.

— e
This theorem reduces the calculation of SKn(X) and SKn(X) to a

bordism problem,

The calculation of the absolute SK-groups is as follows:
THEOREM (1,3a): For n odd hoth SKn and SKg are zerc, For even

1 one has:

[z B Z with basis {s“]_, [Pn/zc-}’ for n =0 (mod 4);
SK_ o
"= )_ % with basis [s"] , for m = 2 (mod 4);
0 ) .
Sk w z with basis [Pn!] , for n =0 (med 2).

Recall that for oriented manifolds euler characteristic and signature
are congruent modulo 2. The claim as to what oune can choose as bases of the
above groups is clearly equivalent to:; the above three iscmorphism can be given

by E—%’i@rr, %, e respectively, Thus

COROLLARY (1.4): Any SK-invariant for smooth manifolds is a linear

combination of euler characteristic, and signature in the oriented case.



In view of Theorems (1,1) and (1.2) we can give two equivalent formula-

tions of Theorem (1l.3a):

THEQREM (1.3b): ¥For n odd both §Eﬂ and SKq are zerc, For even

o one has isomorphisms

— .1 Z n=0 (med &)
T SKn 3
Lo nz2 (mod 6);
e{mod 2} : EEg =z 22 n = 0 {mod ?}.

Fo=1{M] € o i+ = 0}
Fg = {[M} € F_le() = 0 (mod 2)}.

Theorem (l.3c) has been proved by Conmer and Floyd [9] in the non-
oriented case, and up to torsion by Gonner and Burdick {8} and [3] in the oriented
case (that is F +-Tors(Qn) = {IM] € ﬂniT(M> = 01Y. Thus to prove {(l.3¢c), and

hence also (1.3b) and (l.3a), it suffices to prove
Tors(ﬂn) Can.

The proof we shall give is based on Jdnich's proof [14] of (i.3b).
Actually Janich works with invariants and uses a different concept of SK-invariant
but as we shall show in Chapter 5, his cencept is equivalent to "SK-iavariant,™
Essentially the same proof of (1,3b) has alsc been found independently by Rowlett

[17], who also had independently had the idea of defining $K-proup:. He also had

a different SK-concept, which also turns out to give precisely 8K (see Chapter
5). An independent proof of (l.3c) in the oriented case for mn > 53 can be

found in H. E. Winkelnkemper's dissertation [19] (see also [20]}. Thecrems (1.1)
and (1.2}, which show the equivalence of the three formulations of (L.3), are of
later vintage, though they are latent already in the work of Janich, Burdick and

others,

The procf of Theorem {(1.1):

We first give some lemmas on cutting and pasting which will also be
useful later on, If (M,f} is a singular manifold in X we write [M,E}SK,
{M,f}n, ete., for the class of (M,f) in SK, (X), O.(X), etc., but omit the

subscript if no confusion can occur. If X = * is the one-point space, we

simply write [M]SK’ EM}Q, etc., for classes in the respective groups.

LEMMA (1.5): For any space X we have in SK(X) and SKg(X):
1) {5,817 =0 forany £:s'—s x
ii) If ¥ fibres over S with typical fibre F and f : M—3> X then
[t,£] = [S”J[F, £]F] (recall that SK,(X) is an SK_ ~module).
iii) If M fibres over PLC with typical fibre F and £ : M—> X then

(M, £] = [p c][F, £]r].

iv) In the nen-oriented case iii) also holds with PL replaced by P R.



10,

Proof: We prove the orientable case; in the non-orientable case the
proofs are the same,
i) Let N=-§'"=1+1, where I = {0,1] is the unit interval, We can

paste N to -N' in two ways to obtain either st oor st + Sl:

N N’

RS

z"/\\ _
wSN__S o

Hence [Slj = 2[31], 50 [Sl] = 0. This cutting and pasting can clearly also be
done in any space X.

ii) We can write st = Dn 0 —Dn, pasted along the boundary Sn—l. Since a
fibration over the dise D° is trivial, we have M = (D" x F) U -(D® x F). If
£+ M—>X is any map, then restricted to each piece " x F, f is homotopic
to # X f[F. On the other hand {$" ¥ F, * % fEF) is also of the form
(0" x P U -(0" x B, = x £]F), so [M£] = [S® x F, * x £]F} = [S®I[F, £!F].

iii) We prove iii) by induction on n; for m = 0 it is trivial. Suppose

M fibres over Pnc with fibre F. We can write PnC as

n . .
where - is diffeomorphic to the normal disc bumdle of P_€ in PC. Let

My =MD 4 N x FP=0 X F+NxF

=
]

L MiN+ D x F .

If £:M—> X is a map, we define maps of My and M; to X by taking the

restriction of f on M D2n and MEN and taking * X £f|{F on N X F and

11,

D™ X F. On the boundaries Sn"l ¥ F of these pieces all these maps are homo-

topic to * X f]F, so we caun paste MO to M, in two ways in X to obtain

(“oucp -4, E) = (M0) + (-RC x F, * x £{F),

(M0u¢ - ML) = (Eig) + (™ x F, % x £1E).

In the second case we have pasted the first part of MO to the second part of

Ml and vice versa. E is a fibration over the double £IN = NUid - N of H

with fibre F, and g is a map with g{F = f!F. However, 4N fibres over

| fﬁ with fibre F', where F' fibres over 82 with fibre F. By part ii)

we have [F',g|F'] = [Sz}[F,giF} = [SZ]EF,fiFl, so by induction hypothesis

[E,g] = {Pu_lc]EF',g!F'] = [Pn_fE][SZ][F,fiF}, The above cutting and pasting

thus shows

e11s%1[r, £]7) + [s°®1[F, £[F].

Do) + (-2 €]le €|v] = [2__

That is,

i f] = (e

el In
- €10s%] + (8% - [-eeDiF lF].

It hence oniy remains to prove that

(2] = [p_el[s’} +

SZH} - i-P C},

e

but this follows by taking F = % in the above. The proof of iv) is completely

analogous to iii). Q.E.D.

LEMMA (1.6): Suppose the singuiar manifold (¥',f') in X results

from (M,£} by surgery of type (k+l,n-k) in X. Then in SKn(X) (resp. SK:(X})



12.
M, £l + [s%%) = (v, 6] + (5% x s“'l,*}.

Proof: We must look clogsely at the surgery and its trace. Let
i xplesn

be the embedding on which surgery was done. Then

M o= (M- (8 x DV - (T x gL

where "' is the obvious identification of boundaries Sk X Sn-k—l‘ The trace

T of the surgery can be caonstructed as follows.

Recall that

- K
5% - (Sk . k)U - (Dk+1 % Pl l)

: . : r 1 ket -k
pasted by the obvious identification of boundaries (think of s as (™t x o? .

T is the manifold obtained by taking the disjoint union of M x {0,1] and

Dk+l X Dn-k and then identifying Sk

k -k -k
s x ot Cs"= B{Dk-l-:L x D" ), and then smoothing cormers.

x 077K = (s® x 0,1 CMox [0,1] with

M x [0,1] o 5 p ’ T

(D

The boundary of T is clearly @D = M+ (-M'), The fact that we did surgery in

X means by definition that we have a continuous map

g:T—>X

13,

with giM =€ and gl = f'.

Now

- - - -k-1
M st = (o (8 x DPTR-R x PRy w (88 x 0y x sPTTH

A)
- - k-1 k . k n-k
W S5 x 0K 2 - 5% x 0 I u- x PNy 4 (88 x 0 BT,

. k a~-k
always with the obvious identification of boundaries, so M+ S xD results

by cutting and pasting M + 5%, But we must cut and paste in X. For this, con-

sider §° x 07K

" o - letl -k
and DQ+1 x s k-1 as subsets of B(Dk+1 x D" k) C D X D

(CT. Then we have maps into X of all the pieces on the right haund side of A) by
restricting the map g. The cutting and pastimg is compatible with these maps amd
the resulting maps of M and M’ intoc X are the ones we want. The resulting
maps of 5" and Sk X Sn_k inte X facter over gka+l X Dn_k : Dk+i X Du—k—€> X,
and are hence both homotopic to the comstant map. This completes the proof of the
lemma. Q.E.D.

As an application of this lemma note that Sk+l X Sn_k-l results from

s" by surgery of type (k+l,m-k), since

K+l n-k-1

sy g - (pFtt

ke k-1
sk Ly Rl gnlety

n n-k-1

- 55w DRyt x s ).

(s
Thus the lemma gives
[s%, %] + [s7,%] = [8"F w0 s% M0 o) 4 8% x s" 7,

Putting k = ¢ (alternatively, by Lemma (1.5) i) and ii)) we have



14 15,

-
w)
=
%]

fai
1
ot
#
—
i

i i kernel I_  of
0, and 2 simple induction now shows - Theorew (1.1) is now easily proved. Namely, the kerme a

SK_ (X} —= §En(x) is clearly generated by all classes [M,f] suck that (M,f)

; s o
COROLLARY (1.7): Imn SK, (X): bounds in X. By Corollary {1.8) such an [M,f] is a multiple of [S ,*], se
.7): eI H
: o n <
i = 2kl th s fibres
Cx n-k }Azisn,*], k even In is generated by {S ,*j. If n is odd, say =n +1, en
* - - s - =
SR } } 0 , k odd . over Pﬁt with fibre Sl, so by Lemma (1.5), iii) and i}, it follows that

n
[Sn,*} =0, If n is even the fact that e(SQ} = 2 shows that [S ,*} has

.- . hold in the non-
COROLLARY {1.8): Let (Y¥,g) be 2 bordism in X between the singular infinite order in SK, (X), so I, @ Z. The same arguments all hold i
: iented case, so it only remains to prove the claim on when the sequenmce of
manifolds (M;,f;) and (M, f,). Then in SK,(X): or case, ¥ 4 q

Theorem (1.1) splits,

=7 1 - - .
[Ml’flj - LMz’fZJ (e(¥) e(Ml))ES %3 Assume m  is even, In the oriented case the map {e-7}/2 : SKH(X)-——>

¥~ I, is a retraction of I S SK (X} which splits the sequence

Proof: First suppose Y 1is an elementary bordism, that is the trace of

a surgery of rype (kt+l,n-k) say. Then by Lemma {1.6) and Corollary (1.7} 0 Ly 8K, (%) SKn(X) 0.
. n .
{Ml’flj - [Mz’fz] + (—l}k[Sn,*], In the non-oriented case S  and ZPnl both bound, so they are in the kernel L

of SK:(X)"~—> SKn(X). But euler characteristic classifies the elements of Irl
so it suffices to prove that e(Y) - e(Ml) = (—1)k+l. But Y 1is obtained by

kel n-k n-k

and e(s") =2 = =(2r ®), so [s%,%] = Z[Fnl,*] in SKg(X). Thus the generator of
pasting D XD to Ml X I along submanifoids Sk X D of

In is not indivisible in SKﬁ(X), se the sequence
B(Dk+l X Dn_k) and B(M1 X I) and then smoothing the result, so

- 0C—> I —> SKO(X) 3 SKD(X) —=> 0
k-1, n-k k n-k n n 2
e(Ml X IY + e(D xD ) -els xD )

elY)

does not split. The proof of Theorem {1.1) is complete.

e(MI) + (~l)k+l,

proving this case.

In the general case we can split Y up into a sequence of elementary

: . . H
bordisms and the coroillary then follows easily from the case just proved and the Fibrations over §°.

additivity property of euler characteristic, Q.E.D.

Let N be a closed manifold and ¢ : N—»> N a diffeomorphism.



17,
16.

i it i i =M - - M' is the
Definition: N  is the manifold obtaived from N x I by identifying After swoothing it is easily seen that Y = M Ncp1¥_1 M, so ¥
w . - -
the ends N X {0} and N X {1} via s that is (x,1)} is identified with required bordism, Since we are deing cutting and pasting im X we have homo-
@ s »
i ~ £ ! ~ £ hich can clearly be used to construct
{p{x),0} for each x € N. N is called the mapping torus of . topies f|M1 = £7 M, and fEMz ~ £ iMz which can clearly
CD =
;i i map h : Y—>X with h|M=f and h|M' = £'. Putting g =h|N _ the
The projection N X I —> I induces g. fibration 4 P ¥ w | | | q)‘;l 1’
lemms is proved. Q.E.D.
N —> Sl
®
1, (x)— BK (X is generated
with fibre N. Conversely any fibration over st with fibre N is clearly of To prove Theorem (1.2} mote that Ker({},(X) £ (X)) &
. f th
this form for suitable g. Ncp is orientable if and omly if N is orientable by classes o e form

and ¢ orientatior preserving. The following lemma holds in the oriemtable and [M’fj‘ﬂ _ [M',E']Q,
in the non~orientable category. We formulate the orientable case.

where [M',f'] results from [M,f] by cutting and pasting in X, so by the

LEMMA {1.9): If the singular manifold ({M',f') results from (¥,f) by above lemma
3 i i = - 1 = . —
cutting and pasting zlong N in X, say M = MI Utp M2’ M My U¢ MZ’ where Ker(ﬂ*(x} SK*(X)) CF*(X).
Q.Y ot aMl = N —> BMZ are diffeomorphisms, then
The reverse inclusion is an immediate consequence of Lemna (1.5} {) and ii), so
= L} t

(¥, f]ﬂ = [, f :EQ + [Nw-l’gjﬂ Theorem {1.2) is proved in the orientable case. The non-orientable case is the

in £, (X) for suitable g : N g R same proof. Q-E.D.

r

¥

Proof: A bordism is comstructed as follows., Let Y be the union of
M, X {0,1] and M, x {0,1] with the following identifications: for x € N Before we prove Theorem (1.3) we need a lemma:

identify {x,t) € 3”1 X [0,%-] with (p(x),t}) € BMZ X [0!'];} and

(x,t) € aul X [-:2,'—,1} with  (p{x),t) € BM2 X E%’I-L LEMMA (1.10): Suppose M, = {Ni)cp. for i =1,...,k, with each ¥,
1
orientabie and each s orientation reversing, Then there exists orientable N
" M]_ and orientation reversing ¢ : N~ N with
P ¥
N
Ml X wea XMk = Nm.
M2 MZ

Furthermore if k> 2 then N itself fibres over Sl.

D i/3 273 i3
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Proof: The general case follows from X = 2 by a trivial induction, Tn 1= TOT(QH) C Fn1
so assume k = 2, Let p, : M, —> Sl (i = 1,2} be the projections. Then the .
* * so the first thing to do is deseribe T,. We vecall C. T. C, Wall's description

fibration
in Elﬁq.
P Ml X Mz o sl Lert M be a closed manifold., Then one can always find z closed
L l-codimensional submanifold W M such that
(x,7) #== py (x}p,(y)
1) M - W 1is orientable, and
has typical fibre 2} no submanifold of W satisfies 1),
1 C. T. €. Wall proves that if W can be chosen orientable with trivial normal
No=p 1) = {Goy) €4 X M |po(x) = p,{¥) 1.
’ ! 2[ i 2 bundle in M then the class [W]Q €0, is a torsion element which only depends
There is a fibration ' on Dﬂ?ﬁ € ¥l,. Under these conditions he defines 33[M]n = [W]y so 3 isa
. homomorphism from a subgroup of R* to T, = Tors({i).
q: N—=> S
{x,y)bww)pl(x) Example (1.11}: Let M =N with N orientable and g orientation

®

reversing. Then clearly 63[:1'{} = [N]O.

with typical fibre

-1
q (1} = {{x,y7) € Mo MZIP].(X) = py{y) = 1] = Ny X N, Now let P(m,n) be the quotient manifold of the free imvelutiocn
{x,z)—> (-x,2) om S§" x P C (the "Dold manifcid") and @ : P{m,n) —=> P{m,n)
and one easily checks that this fibration is given by
. the involution induced by the map ({(x,z)+—> (x',z} on s™ P L, where x> x'

N~ (Nl X Nz)cp is reflection in an equator of §°. Let

1 R
Since o, and 9, both reverse oriemtations, @, %@, preserves it, so N is Q{m,n) = P(m,a) .
«
orientable, But Ml X M, is non-oriemtable, so M; X M, must be of the form N
P

_ . ) Remark: P{m,n) is orientable <= min is odd.
with o orientation reversing. Q.E.D.

& is orientation reversing <=—> m is odd.

Recall that to prove the three versions a), b), ¢} of Theorem (1.3) it

) If a is a natural number write a = 2r—1(25+1) and define
only remains to prove
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T
X,, = Q(mun), m=2" - 1, n= 2%,

According to Wall (loc, cit.), the torsiom T, (fﬂ* is generated as a ring by
classes of the form
63{1221 X oees X XZak].

If k> 2 then by the above remarks, Lemma (1.10) and Example {1.1ll),
63[}(2al X ..o X XZak] is represented by a manifold which fibres over Si, so
33[X2a1 X oow X Kzak] € F,, as was to be shown. If k=1 then by Example (1,11}
we have aB(XZa) = [P(m,n)]ﬂ, 50 we must show {P(m,n)}n € F,, or equivalently
{by Theorem (1.2)), [P(mn)] =10 i=n Eﬁ;. The map s™ x PE > s®  induces a
fibraticn P(m,n} —> ?ﬁk with fibre Pﬂn, and P&R fibres over Pdt with
fibre Sl, where q = {(m-1)/2 = 2r-l - 1. Thus P(m,n) fibres over P&E with
fibre F which fibres over Sl, so by Lemma (1.5} [P(mymn}] = [PdE]{F] =0 in

SK,, and hence certainly in EE;. This completes the proof. Q.E.D.

21,
CHAPTER 2: SK gi Fibre Bundles.

Let ¢ be a Lie group. 1In this chapter we investigate SK for fibre
bundles over closed differentiable manifolds with fixed fibre § and structure
group G. As in Chapter 1, SK-equivalence for fibre bundles is defined by saying
that the fibre bundle E Qp E' is obtained from E U$ E' by cutting and pasting
if E and E' are fibre bundles with fibre F and structure group G over
compact manifolds M and M° respectively and o,{ : EIBMA—+> E'EBM' are bundle
isomorphisms which induce diffeomorphisms OM —> 3M' in the bases. SK-groups
for fibre bundles can then be defined in the obvious way. By the homotopy classi-
fication of fibre bundles it is clear that these groups are SK {BG) in the
orlented case and SKg(BG) in the non-oriented case,

Remark: If the fibre F is a smooth manifold one can consider SK of
smooth fibre bundles. This makes no difference for {as is well known) any con-

tinuous fibre bundle admits a smooth structure, unique up to bundle isomorphism.

Interpreting SK,(BG) as the SK-group for fibre bundles with structure

group G, the augmentation

BG
€ : SK*(BG) —=> 8K, = SK*{pt)

is just the map which sends the SK-class of a bundle (E,n,B) to the SK-class [B]

of its base manifold, We have the trivial lemma:

LEMMA {2.1): There are natural isomorphisms

3G
SK,(BC) ~ SK, @ Ker € =,

SK,(BG) ~ 5K, @ Ker BC,
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Proof: The map pt BG, which is umique up to homotopy, induces arbitrary G. We will see another example of this later, but first to the proof
. 3 r

a retraction SK, —> SK*(BG) of EBG, proving the first isomorphism., S§imilarly, of (2.2).
cne has that
5K, {BG) ~ SK, @ Ker 56
* =k ’ By Lemma {2.1) it is sufficient to prove that
where E°C : Eﬁ*(BG)——éb gE* is the augmentationm. But Theorem {1,1) implies =BG

B & SK, (BG) > SK,
BG )
that Rer E° = Ker £ 7, so the second isomorphism is also proved.

is a mod-torsion isomorphism (kernel and cokernel are torsion groups) and an

*
This lemma cau be interpreted as saying that the SK-invariants for isomorphism if H (BG) Is torsion-free. We shall prove this first for ¢ a

bundies split in a natural way into the SK-invariants of the base space, which torus, them for & compact, and them finally i the gemerality of the theorem.

we already know are euler characteristic and signature, together with certain Because of the epimorphism (1 (X) —3> SK (X), to caleulate SK (X) one need

bordism invariants of the whole bundle, given by Ker EBG. As we are about to only do cutting and pasting on a generating set of Q. (X}, The basic idea of
state precisely, these latter additional invariants are in most cases torsion, the proof is that in our case such a generating set can be represented by products
and often actually zero. of projective spaces up to torsion, so Lemma (1.5) iii) gives the result.
Let

THEQREM (2.2): 1) If G is a Lie group with finitely many components t 0, — K (0
then Ker EBG is a torsion group. )

ii) 1f ¢ is compact and E'(BG) torsion free, for instance, be the canonical map given by u[M,f] = £,0, where ¢ is the fundamental homol-
G = (Sl)n, U{n}, SU{(n), Sp{n), then Ker B - 0. 7 ogy class of M.

Remark: The conclusion of part i) above can be formulated: given any THEQREM (2.3): Let X be a CW-complex such that H,(X) has no torsiom,
bundle (E,7,B} with structure group 6, some nmultiple mE of E is SK-equiv- Let singalar manifolds (Mi,fi) in X be given such that {U{Mirfi]} is a
alent to the trivizl bundle with base manifold mB. If now the fibre F is als; generating set of H,(X). Then {[Mi’fiJ} is a generating set of (L (X} as an
2 compact manifold, so that the signatures 7(F) and 71{E) are defined, then it - {,~module,
clearly follows from this that mr{E) = mp{B X F) = mr(B)7r{F), so T(E)} = v(B)T(F).
That 1s, signature is multiplicative for E, Atiyah [2] has given an example of Proof: See Conner and Floyd [10], §18, p. 49. 1In fact, Conner and Floyd

non-muitiplicativity of signature, so Theorem (2.2) does not generalize to prove more, namely that if X 1is a finite CW-complex then the above holds with
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* *
""generating set'' replaced by "base' each time, The finitenmess of X 1is only K (BG) —> H (BT)

used in proving the independence of the base {[M.,f ]}, so it is not needed %
R S : : . - o : :
is mod-torsion injective, and even injective for H (BG) torsion-free. Hence
for our formulation,

H, (BT} —= H, (BG)

An easy application of this theorem is the following lemma, whose proof ) * ) .
. ts mod-toxrsion surjective, and surjective if H (BG) is torsion-free, so all we
we leave to the reader. Let 7, : P& —> BS" be the classifying map for the

need is the following lemma:

canonical line bundle over Pkc.

LEMMA (2.5): Let £ : X-—> Y be a map of (W-complexes. If the
LEMMA (2.4): The set [[P, € X ... X P, €,m, X ... X7, |} generates
. —_— 2 iz = 21 n induced map H, (X} —> H,(Y) is mod-torsion surjective, then so is Q*(X}——l- 0,00
0,.(e(s )n) as an {i, -module {recall that B(Sl)n = (BSl)n}. In fact it is anm . _
) and hence also SK*(X) —> SK,(Y). If H, (X} has no odd torsion and

{l,-base, but we do not need this.

Hy (X)— H (¥} is surjective, them so is Q,(X)-—> Q,(Y), and hence also

. SR () — SE (V).
It follows that ﬁﬂ_(B(S ¥y is generated as an ﬁ_k—module by the

elements [P, € X ... x P, €M, X ... X7, §, soif G is a torus, Theorem (2.2}
4 no L Proof: We need the bordism spectral sequence {see for instance Conner
now follows by Lemma (1.5) iii), R
and Floyd [le for details) so we recall the essentials. For a CW-complex X

the Ez-tErm is
Now let ¢ be any compact Lie group and T (G its maximal torus. The

projection BT —3> BG induces & map EZ q(X) = HP(X;ﬂq)
*
J— —_— o 1
p @ SK (BT) —= 5K, (36) and the E -~temrm is
and the compositio B (X) =7 )
pos n =
P.q p,a"Yo-1,q41
_— — EBG —
SK,(87) —2> SR, (86) > 5K, . where
s s BT s : . 5 BG :
is just €, which we already know to be an isomorphism. Hence to show that ¢ ¢ CJ{) LG C Jo o = 0,0
T Ed

is an Isomorphism or mod-torsiou isemorphism it suffices to show that p is sur-

is the skeleton filtratiom of (I (X), that is
jective or mod-torsion surjective respectively, By a result of Borel [4] the map "

- p
Tpyq = IR () —> 0 GO,
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Furthermore, the hordism spectral sequence is trivial modulo odd torsion.

It follows that a map f : X —>» Y which is wod-torsion surjective
in homology, and hence for the Ez-term, stays mod-torsion suxjective up to %,
and hence also for {,, proving the first statement of the lemma.

Now suppose H_(X) has mo odd torsiom and H,{X)—> H (Y} is sux-
jective. Then EZ(X) has no odd torsion, so by triviality modulo odd torsiom

Z

of the spectral sequence, the differemtial dz(X) : Ep q(X)-—-——> E (x) is
Ll

2

p+27 Q‘i
trivial., Also Ez(x)-—+> EZ{Y) is surjective, so dz(Y) is also trivial, Hence
EZ(X) = EB(X), EZ(Y) = EB(Y), and repeating the argument we eventually get that

both spectral sequences are trivial and E(x) — éka) is surjective., Hence

Q. (X)—= 0, (Y} is surjective, as was to be proved. Q.E.D.

Theorem (2.2} is thus proved for compact G. If ¢ is connected but
not necessarily compact, choose a maximal conmected compact subgroup H Ceo.
Since the structure group of any bundle with structure group G can be reduced

te H,

SK,(BH) — SK_(BG)

BG

is surjective. Since the composition with & = : §§*(BG)~H4> EE* is ¢t

, which
we know to be a mod-torsion isomorphism, aBG is itself a mod-torsion isomorphism,
Finally if G has finitely many, say un, connected components and Gy

is the component of unity, then BGO———b BG 1is an n-fold covering. Hence
H*(SGO)———b H*(BG)

is mod-torsion surjective (the n-fold of amy homology class in BG clearly comes

from BG By Lemma (2.5)

o

5K, (8G) — SK,(BG)

27.
BG 8
is mod-torsion surjective, so again, since the composition with ¢ is € ,
- ; . : N BG : : :
which we know is a mod-torsion isomoxphism, € is a med-torsion isomorphism.
Q.E.D.

We now shall calculate SK*{BG) in some of the cases not covered by

the previcus theorem.

THEOREM (2.6): For G =2

p
Ker eBG = 0.

¢ B8 odd prime, and for & = Z,,

Proof: For any X we have the short exact sequence of Theorem (1.2):
0 —> F (X) — 0, (X) —= 5K (X) —> 0,

Denote Ker(F, (X) —> F*(pt)) by ?;(X). The above sequence surjects at all

three piaces onto the short exact sequence
0 — F,—> (), —> 5K, —> 0,

50 the kermel sequence

(2.7) 0 — ¥, () — T, (X) —> Ker €0 —> 0

is also exact. In particular Ker EBG is the image of ?&(X) C'ﬂ*(X).

We first consider the case X = BC with G =2 ¢ {(p an odd prime),
p
where we consider G as a subgroup of the circle group Sl. S1 acts freely
on the unit sphere S:m—i in ¢ by
t(zl,...,zn) = (tzl,...,tzn), ({t] = 1),

This gives 2 free action of & on SZn—i, inducing a singular manifold (SZn-l

/6, £)



n-1 Observe that this geometric description of 1 is compatible with
in BG, By Conmer and Floyd [10], p. 99, the elements [S /G, E] generate g P B

BG g cutting and pasting, so we have an induced ma
71 (BG) as an O,-module. They hence also generate Ker & as an SK -module. g P &> P

- . Zn-1,.1 cor s L 1 K
But SZ‘:1 1/G fibres over $° /8T = P € with fibre S /G~ S, so by i _S?g : Ker <. 2
- . - BG - =
Lemma (1,5), {Szn l/G,f] is zero in SK*{BG), and hence certainly in Ker € .
BX
The case @G = 22 is rather more difficult, and we must first recall By (2.7) above, ‘ﬁn(azz)—u;, Kex £, 2 is surjective, so the commtative square

some facts on free involutions and bordiswm of BZ.Z.
. ,— 3

: -1 n-1
Let 1 : M —> M be a principal zz—bundle, T :¥—»HW the covering n
transformation. Recall that a l-codimensional submanifold W (M is called a - 11 i
characteristic submanifold if W= n'l(w) is the boundary 8A of 2 compact
4

. 2
submanifold A of W satisfying: AU TA =MW and AN TA=TW. It is easy to ﬁn(mz)-—z- Ker e
see that such a W exists znd is unique up to non-oriented bordism (for imstance, Ez,z

shows that 1' is surjective. Thus for n even it follows that Ker g, =0

by showing that W is a transversal self-intersection ¢f the zero-section of the

since E'zig_l = 0 (Theorem (1.3b}}.
real line bundle E—~» M associated with M-—> M). The characteristic submani-

We can hence assume n  is odd. Then by (l.3b) the diagram becomes
fold in fact defines a map

Vi, Z

2
v Qn(uz)ﬁ—'}a‘l’n—l‘ !

~ ii i’ (0 odd)
By Burdick [6] (see also Hirzebruch and Jinich [11]) the restriction ”l \L

ﬁn(Bz }— Ker ¢ z
N A L0 2 i

. ) where e is euler characteristic modulo 2. Since 1i' is surjective, we must
is an isomerphism whose inverse .

only show that it maps 1 € Z, onto zero.

i =Tf.n__l > ﬁn(lﬂz) Let 3z : PJ.R?.——:'- BZ, (j=1,3) be the class'ifying map for the double

' . . - covering $) > PR. Then for k = ‘n/4] and j = n-4k =1 or 3, we have that
is given as follows, For [N] & ?Rn_l let E—= N be the line bundle associated ] )

[P, & x PR, * % a] represents an element of 7Y (BZ,). Since i & = is given b
with the orientation covering ¥ —> N, and § the sphere bundle of the Whitney & i ] i n( 2) ¢ " e Y

. C o -1 -
taking a characteristic submanifold, ei [P, C x PR, * X a] = &P, & x P. R] =
sum EE 1 of E with a trivial line bundle, S is oriented and has a free orienta- ’ [ 2k I ] { 2k -t ]

. R : . . 1 1 €2,. On the other hand, PR, and hence also P,.@ x PR fibres over s? for
tion preserving involution given by the antipodal map in the fibres § . The induced ] 2k ]

. 1
- J =23 and over § for 7 =1 50 by Lemma (1.5) ii ¢ have that
singular manifold [Sﬂz,f] in BZ, represemts :i[n]. » ¥ (1.5) ii) w a
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(P,,& xP®, * Xa] =0 in 3K (BL.}, and hence certainly also in Ker EBC. B
2Kk i E A ¥ ¥

S . - . ii We acain prove more than required, namely
the commitativity of the diagram it follows that i'{i) = 0, as was to be proved, i) We ag I t q

Q.E.D.

: A simpl cnnected  X.
To close the discussion of SK of bundles in the oriented case we men- for any simply <

3

i i i 3 : : Recall that any connected oriented 3-manifold M is bordant to S7,
tion some isolated results in low dimensioms, In dimensions 0 and 1 everything

3 . i L .
i ivi 2 e redu ! by surgeries of type (2.2)., If (M,f) is a couneccted
is trivial, and can be reduced toe § ¥ oSUrg ¥y {2, R

singular 3-manifold iu X, then restricted to each solid torus, { is null-

3
notopi 30 W z SUTE in ) ] ] M, Lo S8 for some g.
IHEOREM (2.8): i) If G is a Lie group with G/G, abelian then homotopic. so we can do surgery ln X to reduce (M) (57 8) s

; e that M, = in SK LELB.
Ker g, = 0, i.e., SKZ(BG) = SKZ =%, By Lemma (1.3) we deduce that IM,[: ¢ in SKg(X). Q.E. ¢
ii) If G is comnected then also Ker egc =0, so SK3(BG) = 8K, = 0.
Be -
Finally we give an example where 53(: is not an isomorphism, not even

Proof: i) B6 has fuyndamental group ﬂl(BG) = ”O(G) = G/GO’ which is modulc torsien. Let F be an orientable surface of genus = 2. The universal
hence abelian. We shall in fact show more than required, namely cover of F is contractible so F = B {F).
3, (X) = 0
2( ! THECREM (2.93: T1f F is an orientable surface of genus > % then
for any space X with abelian fundamental group, B, 0Py
Ker g, = SKz(&-:l(F}) - Z.

Let (Fn,f) be a singular Z-manifold in X, where Fn is the oriented

surface of genus n. We can write F_ as F = F #(s' x5'). Let s'Crw
) n n n-1 } C n Proof: The bordism spectral sequence shows for any Cl-complex X that

be the circle along which the conmected sum operation ¥ was carried out. Sl
(0 = Hy(X52).  Since B, (F) = F and H,(F,2) = Z, we must show that F,(F) = 0
represents the zero homology class in B {F ), so f(Sl} represents zero in

1 R and the thecrem then follews by Theorem (1,2}, That is, we must show that any
HI(X} = ;l(x). Thus £(37) is uull-homotopic in X and we can do surgery of type

' singular torus in F  bounds,

1

(2,1) in X on this circle, reducing (Fn,f) te (F ; (S1 X Sl),g) for some g. L
n- Since S$ X § and ¥ are K{v,l)-spaces, the homoltopy classes of maps

In this way one sees that any oviented singular 2-manifold im X is co- 1 L

§ XS5 —= T are classified by the set lom(Z P Z. wl(}‘}) {see for instance
bordant to a sum of singular tori in ¥, and hence equal to zerc in SK, (X} by .
2 Mosher and Tangera {15), p. 3). But it is well known that any abelian subgroup of
Theorem {1,2), Thus i) is proved,

ITl(F) is trivial or Infinite cyclic, so any [ & HomiZ § Z, 71(11')) factors as

z T Z e on (7,
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where [ is, without loss of generality, surjective. By a change of splitting of
1 . .
Sl ¥ 8§  as a product if necessary, and hence a change of base in Z €%, we can
- i
assume that £ iIs the projection Py- The corresponding map S X § =3 T thus
splits as
1 P i
st X st ol gty
. 1 z

and hence extends to the seolid torus 57 X B, Q.E.D.

The above proef in fact shows that for any discrete group G, all of
whose abelian subgroups are cyclic, giz(BG) = QZ(BG) = HZ{BG;Z). The finite groups
of this type are just the groups with periodic cohomology (see Cartan-Eilenberg [7},
which all have zero second homology and hence do not yield anything interesting

here,

The Non-orientable Case.

In the non-orientable case, the analog of Lemma {2.1) of course still holds.

=)
The analeg of Theorem (2.2) 1) is trivial: Ker EX, being a subgroup of SK*{X) ,
is always a torsiom group for any connected space X, We hence have:
Triviality (2.10): Fof any connected space X
SKS(X} = SKEGB 2-Torsion,

oo, : sk . . .
where SK, 1s Z, given by euler characteristic, in even dimensions and zero

stherwise,

33.
. BG o G . -
THEOREM (2.11): The argumentation- € = : SK_(BG) —> SK_ is an iso-
morphism for G = (zz}k’ o{k), So{k), (S‘}k, U(k), Su{k), Sp{k), and products of

these groups.

The proof is by showing that one can generate 31*(38) as a }z%—module,
and hence EEQ(BG} as an Eig-madule by singular manifelds (M,f}, where M is a
product of real and cemplex projective spaces. Lemma (1.5) iii) and iv) them shows
£ s §§2{BG)———> §f2 is an isomorphism, so the theorem follows by (1.1).

It is convenient to work with vector bumdlies having ¢ as structure
group rather than with singular manifolds ir BG, If w = {nl,_..,nk) is & tuple
of positive integers, Let E be the bundle §n1 X ooud % Enk over
Pw = Pnll X ..o X Pukl, where §ni is the canonical line bundle over Pnil.

LEMMA {2.12): The following bundles represent a gemerating set of azﬁ—mod—
ule 31*(36):

i} the bundles gy for G = (Zz)k,

ii} the bundles §w with 1 F oLz
iii} the bundles £ @ det g, with n

for G = O{k),

> .. I

Zooy for ¢ = SO(k+1).

1

In cases i) and 1i) the generating set is even a base.

Proof: The analogon of Theorem (2.3) helds in the non-oriented case

{see for instance Conner and Floyd [10], Thecoren 8.3}, Hence we need only show

that under the canonical map

u s ¥ (BGY—> H {BG;Z,)

the set in question goes over to a generating set or base of H*(BG;ZZ).
The proof of i) is completely analogous to Lemma (2.4) and therefore

also left as an exercise.
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For ii) recall that H*(Bc(k);zz) .5 the polynemial ring zz[wl,...,wk]
in the Stiefel-Whitney classes. In fact the inclusion (szk C 0(k) induces an
inelusion H*(Bo(k);az) CH*(B(Zz)k;EZ) =Z,lt,...,5,] and w is the i-th
elementary symmetric polynomial in Eiromertys For w = (nl,...,nk) with
oy > ... 2y let Sy be the smallest symmetric polynomizl in the t, containing

n .

*
the monomial tll e tkk. The S, clearly form & base of H {Bo(k);zz). On the

other hand the homclogy class represented by the bundle gw is (fm)*om, where
fw t oy BO(k) is the classifying map for g, and ¢, the fundamental Z,-
nomelogy class of Pw' A trivial computation shows
* I, w=aw
<Sw"(fw)*°w> = <f 5007 = ,
C, w#uw ,
s0 the set {(fm)*cm} is the basis of H*(Bo(k);z?) dual to {sw}.
iii) Let yk be the universal lk-buudle aver BO(k). Theu Yk@ det yk
is orientable, hence has a classifying map g : BO(k) —> BSO(k+1). Now

S
H (BSO(k+E.);}I2) = 2"'2["’2’-""" and

1]

g+ (880057, —> K (BOCK) 52,

W
for i <k and g (wk_H) = W W.

* - * * *
elements are algebraically independent, g 1is injective. Thus g, 1Ls surjective

L. *
is given by g (w.) = w; + w,w,

i1 Since these

and case iii) follows from ii). Q.E.D.,

Theorem (2.11) is hence proved for ¢ = (R.z)k, o(k)y, SO{k). If N, is
the complex analogon of the bundle Ep then Lemma {2.12) and its proof carry over
k .
to G = (507, U(K) and SU{k) if one replaces Ew by 7, everywhere. Alsc a
proof similar to the proof of iii) above shows that ﬁ*(BSp(k)) has a generating

set represented by the bundles %$%‘ This proves {(2.11) for (S')k, Ulk), sU(k)
and  Sp(k).

35.

Finally if ‘ﬂ,*(acl) is generated by singular manifolds {Mi,fi} and
n*(BGZ) by singulax mavifolds (N_,g.), then n*(B{GI X G,)) is generated by
the singular manifolds (Mi X Nj’fi % gj). 1f the M, and NJ. are products of
projective spaces, then so are the M, X N}.. Hence (2.11) alse helds for products

of the groups listed. Q.E.D.
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CHAPTER 3: Equivariant SK

In this chapter G always denctes a compact Lie group and G-manifolds
are manifolds with smooth G-actions. We are interested in invariants for equi-
variant cutting and pasting of closed G-wanifolds. As usuwal, the Grothendieck
group cf n-dimensional G-manifolds modulo the relations gives by cutting and

pasting gives a universal such invariant. We denote this group by SKg a

S0

(respectively SKG,n

in the oriented case).

The calculation of equivariant SK-groups is made difficult by the fact
that we no longer have Theorem (l.1). 1In this chapter we calculate SKg’n up to
2-torsion. To state and prove the result it is comvenient to have the language of

"slice types" which we therefore recall briefly. For details see Jimich [12], §4.

If B is a closed subgroup ¢f G and V a smooth H-manifold, then
G Xy V denotes the fibre bundle over G/H with fibre V, associated to the
principal H-bundie G-—>= G/H. Recall that G Ky V is G xV factored by the
equivalence relation: (g,x) -(gh,h"lx) for h € H, With the G-action induced
by left multiplication G Xy V is a G-manifold,

If V 1is a vecktor space and the H-action is given by a representation
G : H—2 GL{V) then we also write ¢ Xy @ for G Xy V.

A siice type for G 1s a conjugacy class in G of pairs {(H,{g)), where
H is a closed subgroup of ¢ and (O} ar equivealence class of real represen£a-
tions of H. The slice type represented by (H,0) is denoted by {H,0]. Ome
checks that [H,0] = [H',0'] 4if and only if ¢ *y @ and G X 0 are isomorphic

G-rmanifolds.

If M is a G-manifold and x € M, then the slice type at the point x
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is [G_,0_], where a, is the representation of the isctropy subgroup &
XX

narma] to the orbit through x (the "slice representatiom"), Siice type deter-

mines the local structure of M completely, for the "slice theorem” states {see

for instance Jimich [12], p. 3).

THEOREM {slice theorem}: There is a G-invariant open neighborhood of

x in M which is G-diffeomorphic to G Xg Oy
X

There is a partial order on the set of all slice types for & given by:
{H,0] < [u,7] means [U,7] iIs a slice type of the G-manifold G X%, ©O. A& family
3: of slice types for G will be called permissible if it coutains with each
[#,0] also each {u,r] greater than [H,o]. By the slice theorem, the family
EF(M) of all slice types of a G-manifold M is a permissible family.

1 F is a permissible family of slice types, a G-manifold of type CF
is a G-manifold M all of whose slice types are in :F . That is g:{M} C :F.
Denote by SKO(G,tF) the SK-group resulting from cutting and pasting G-manifolds

of type 3:.

Examples, If G§'= {[[e},en]} where @ is the n-dimensional trivial
. 0O SF 4]
representation, then SK' (G, 7) = SKn(BG).
1t F is the family of all n-dimensional slice types for & (by dim [H,0] we
mean dim(G X, 0)), thea 5%, Ty = sxg ;

e

If M is a G-manifold and [H,o] a slice type, define

Uy,oy ¢ = Ex Eull60,] < [hall.

Via the slice theorem M{H,G} CH is given leocally by G % 99 e Xy O, where
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% is the trivial component of O, so MfH G] is a smooth submanifold of M,
»

Clearly Mi is a closed submanifold if [H,c} is a minimal element of ?(M).

H,0]
Note that it also follows that amy l-codimensional G-invariant submanifold N Cu

along which oune can cut and paste M intersects each M{H O’] transversally, as
¥

G, and hence certainly alse H, acts trivially normal to N,

r i ith fib H. By the above comments
MEH’OI fibres over M[H,U}/G with fibre G/ y the abov

it follows that E[H Sk defined by
»

e[H,c}(M) : = E<M{H,G]/G)’

is am SK-invariant, Tt will turn out that the i give all egquivariant

“[n,a

SK-invariants up te 2-torsion, We first need a further definition.

Let g : E—> B be z differentiable G-vector-bundle over a differentiable
manifold B. Let [H,0] be a slice type for G. We say m : E~—> B has type
[4,0] if just the points of the zero-secticn of E have slice type [H,0]; that
is, E{H,G} is the zero-section B ((E. The typical example of this is the normal
bundle MMEH,UE) of M{H,O‘] in a G-manifold M,

Equivariant cutting and pasting of G-vector-bundles of type [H,G] whose
bases are closed manifelds leads to an SK-group SKOEH,G].

Now let ¥ be an admissible family of slice types for ¢ amd [H,0] € T
a winimal element in the partial ordering of ?Tf Then F' = F - {Ta,2]1 is

also an admissible family and we have an obvious hemomorphism
i s k%6, Tty —> sk, F).

Furthermore, if M is a G-manifold of type #F  then the minimality of [H,q]

implies that M[H o is closed, so Mi—— \;(M[H 0}} defines a homomorphism
3 3
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n: sxo(c,ﬁ)—a- SKO[H,O].

THEOREM {3.1): If  is an admissible family of slice types,
[#,6] € F 2 minimal element, and F' = F- {[H,2]}, then the following

sequence is split exact.

- n
0 —= sk, ) ®2{z]—> ke, F) @z(3] = sk(1,0] @3] —> 0.
d

Proof: We first deseribe the splitting homomorphism 4. Recall that
for any manifoid X the “double” X is defined as X U X pasted along the
common boundary by the map id : 3X—> 33X, If E is a vector bundle of type

[H,O':E, define
(el @1) = [£E] @£,

where DE is the disc bundle of E. (learly ne d = id.

It follows that n is surjective. Since it is clear that i is
injective and =n » i = 0, it only remains to show Ker(n) ({ Im{i).

Suppose a([{M]) = 0. Let N be 2 small tubular neighborhoeod of M[H,dj

in M, isomorphic to the normal bundle \;(M[H c_“]) as a G-manifold, Since
M

n{[M}) = 0, certainly 4 - of{[M]) = 0, that is f@ﬁ} = {. But by cutting and

pasting one has

2[M] = B3] + [OF]
= [0 (M- ]
. ) :F . - .
in SK7(G,F), and the right hand side is clearly in Im{i}. Q.E.D.
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LEMMA (3.2): Assigning co a G-vector-bundie E—> B of type [H,T)]

the SK-class [B/G] defimes an isomorphism
0 1
SKO[H,U} @z[é} 8K ®z[5],

where p 1s the dimension of the trivial component of 0,

Prcof: Write g = 00@0, where &, is the trivial component of 4.
The compesite map E -3 B -~ B/G identifies E as a fibre bundle over B/G
with fibre & XH 0'1 and structure group ’:(01) = AutG(G ><.H Gl). Since
dim{B/G) = dim(cg) = p, we hence have

sk H,0] = sxg(BI‘(ol))

50 the lemma follows from (2.10),
Remark: It is not hard to calculate the structure group I‘(cl) explicitly.

Since H is compact we can assume g 2 H—> 0(k) is an orthogonal representatiom,

and then

F(CI) = NGXO(k) (ﬁ)/ﬁy

where H = {(h,0,(n)) €6 x o(k)|h € Bl

Now by Theorem {1.,3) it follows that SKO[H,(J] @Z[%} is zero if
. . - 1
p = dlm(co) is odd and is 2{7}, generated by the bundie Ey = Ppm X (¢ Xy @13,
if p is even, Thus by Theorem (3,1) and a trivial induction, SKO(G,’}) ®z[—211-}

is the free Z{%’-j-moéule with basis {[0ODE }{[n,0] € F, dim{7,) even}.
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COROLLARY {3.3): The SK-inwvariants e[ﬁ o] with [H,o] € '3‘/ and
- H

dim(GO) even define an isomorphism

(e[y,qy @1d) = s, %) @3] — {ﬁu i
EAge ] 1s)

where the sum is over all EH,G] € 3{ with dim{O’G) even,

Proof: Let {Hl,ol],[k{z,ﬂ’z},... be those [H,0] iu F with even
dimensional trivial component, with indexing so chosen that {Hi,GiE < [Hj,Gj}
implies i < j. Order the basis of SKO(G,L?:} @Z{«é—] mentioned above correspond-
ingly., Now

2 ifi=j
eIHi,oi](s@DEGi) =
0 if i <j.
That is, the matrix of the wap (eiﬁ,U] @ id) with respect to the above basis is

triangular with invertible diagonal entries, so the map is an isomorphism. Q.E.D.

The above corollary can also be formulated that the map
E= ey o ¢ SCET)— I 2
[&,0]
{as usual [H,c] € 3: with dim(co) even) is a module 2-torsion isomorphism.
That is Ker(E) and CoKer{E) are 2-groups, Thus Ker(E) is the torsion sub-
group of SKO(G,g:} and its calculation would complete the calculation of SKO(G,G:).
The caleulation of CoKer(E) is equivalent to finding the relations between the
eﬂH,G] and would be in a seuse a general Smith type theorem. Wote that the
e{H,U] with dim{co) odd are not necessarily zero. However, they are linear com-

binations of the B{U,’r] with [U,T}Z[H,U} and dim(TO) even.



42.

Jénich [14] and Rowlett [17] have some further results on equivariant
SK for G = 12. They both use differemt SK-relations and it turms out that
what they are actually calculating is respectively SK:Z/J and SK:ZIJ, where
J is the ideal penerated by manifeids of the form :E)X, with X an oriented

resp, arbitrary compact X -manifold. Rowlett obtains cowplete results, however

2
JEnich's result is not quite complete and is only module torsiom.

Using these results, it is probably not too hard to obtain a complete
caleculation of Sﬁzz in both the coriented angd uncriemted case, usimg the following
two remarks:

Remark (3.4): ?ﬁc is a quotient of SK./J.

Remark (3.3): Since for finite G, bordism of G-manifolds is given by
G-equivariant surgery, the analog of Théorem (1.1) holds with I, replaced by

tke subgroup of SKn generated by all effective linear G-actiocns on ™.

e
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CHAPTER &4: Controllable Invariants

In this chapter we discuss a generalization of the comcept of SK-
invariant, due to K, Janich (uspublished).

Let M, =N Lb -VN' and MZ = N U¢ - N' be two closed oriented mani-
folds obtzined from each other by cutting and pasting via the diffeomorphisms
w,¥ 1 ON— ON'. An invariant ) for closed oriented manifolds {as usual
additive with respeect to disjoint union) is called $K-controllable if
A(n L% - ®') - AN U$ - N') only depends on the diffeomorphisms gp,§ : BN —> ON'
and oot on the choice of the manifolds N and N', We then speak briefly of an

SKX-invariant (SK-Kontrollierbar),

Clearly any SK-invariant is an SKK-invariant, and the SKK-invariant J

is an SK-invariant if and only if the "correction term"

Aeg,d) = = A{NUQP—N') - R(NUQ;—N')

is always zero.

The above definition is obviously equivalent to the following: Ffor any
oriented manifolds Ny,Np N, NG with W, = BNZ and 5Ni = aNé and any orienta-
Lion preserving diffeomorphisms ¢,y : Wy —> 24, one has

““1%'“1) - MEU N = 1<NZU®—N:;_) - MU,

This makes it clear how one can define z "universal® SKK-group SKKSO, which
n
gives the universal SKK-invariant for closed oriented n-manifolds: factor the

. 50 . .
semigroup Ean of diffeomorphism classes of closed oriented n-manifolds by all

relations of the form



L4b.

!'Ni

2 ¥

* LI - 1 '3
NlUm~N1 + NZU\?J N, = Nzuw H, + N,U
and then take the Grothendieck group of the result. One can wmake precisely the
o
same definitions in the nen-oriented case to obtain a graded group SKK,. As

usual, we drop the superscript in the oriented case and just write SKK_ for

50
KK, .

THEQREM (4.1): a) Assigning to an oriented manifold M its bordism
class in ), is an SKK-invariant and hence defines a surjective homomorphism
SKK, — {1,.

b} The analogous statement holds in the non-oriented case.

Proof: This is just Lemma {1.9) carried over to the {un)-oriented

category, with X = pt. Q.E.D.

K. Jénich {unpublished) had shown that for oriented manifolds bordism
class and euler characteristic give all SKK-invariants up to torsion. It turns
out that there can be further torsion invariants; the following theorem gives a

complete description of SKK-invariants,
THEQREM (4.2): Let In C'SKKn (resp. IS CSKKE) be the cyelic sub-
group generated by [8"]. Then the sequences
0-—2 1 —> SKK_—= (i —> 0
n ! !

0 —s 12-4> skK?

n—-—e»B‘Ln——:\- 0
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are exact. FPFurthermore In (Ig} is the quotient of ¥ by the subgroup generated
by euler characteristics of closed (mt+l)-dimensional (un)-oriented manifolds, that
is:

Z nz 0 (mod 2)

In-; z, n= 1 {med 4)
0 n=3 (mod &)
z oz 0 (med 2)

Io~

Tl no=: {mod 2).

Proof: We shall first prove the exactness of the above sequences,
Suppose we have twoe oriented manifolds MI; and Mg which are cobordamt. We
mist show that in SKK - they differ by a muitipie of [s"]. We shail in fact

prove more, namely

0

LEMMA (4.3): Let Y be an (un)-oriented bordism between M- and MY,

1 2
Then in SKK_ ({resp. sxxg)

[Mll = [M2:[ - (e{¥) - e(Ml))[sn}.

We have proved this lemma for SKn as Corollary (1.8), so we need only
show that wherever equality in SKn oceurred in the proof of {1.8) it can be re-
placed by equality in SKKﬂ.

Let N and N' be oriented manifolds with BN = 3N' = 2P, the disjoint
union of two copies of a manifold P, and let t ; 2P — 2P be the involution
exchanging these two copies. Suppose further that P hounds an oriented manifold

Q. Then by gefinition of SKKn
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[, W' ] + [200,~2¢] = [2QU;,-2Q] + [WU-N'],
so simce 2QU, -2Q = 2QM;.-2Q, we have
gm&dmﬁ}=[m%-w] in SKK .

But in the proof of {1.8) only cutting and pasting of the above type occurred
{namely the cutting and pasting (A) involved in surgery imn the proof of Lemma
{1.6)), so the proof can be carried over to the SKK-case, as desired. The same

arguments held in the unoriented case. Q.ED.

To complete the proof of Theorem (4.%) we must calculate the order of
[s™ ia SKK,  (resp. SKKg}. For n even, euler characteristic is an SKK-

o] -
invariant which is non-zero on the gemerator [S°] of I (resp. 1), showing

it
that Iﬂ‘: Ig ~%. We may hence assume n 1is odd, say =n = Zm-1,
Observe first that Lemma {4.3) with Ml = M2 =g and ¥ = SZm shows
2m-1 . 0 .
that [$°"7] has order at most 2 in SKK, . and SKK, . Furthermore, if
MZn is a closed manifold of odd euler characteristic, then Lemma (&.3) with
M =M, =g and Y= M2 now shows that [Szm_lﬁ = 0; we can take M=P,R

in the uncriented case, and for m even we can take M = Pdﬂ in the oriented

case, It hence only remains to show in the oriented case that {Szm‘l] # 0 in
SKK, | for m odd. We shall prove this by showing that [SZm-l} = 0 implies
the existence of a clesed manifold M2m of odd euler characteristic, which is

impossible in the orientable category if m is odd.
Suppose therefore that [SZm—L] = 0. By definition of SKK, ., this
means that there exist orientable manifolds N, and N£ (i = 1,2} with

aNl = 3, and BN} = IN;, and diffeomorphisms g,y : BN, —-> 3N}, such that

2m-1 . _— . .
s + {qu$-N1) +(N2U¢-N2) = (qup-uz) + (N1U¢—Nl).
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For 1 =1,2, let Y, be the union of WM, X {0,1] and W x fo,1] with the
following identifications: for x € 3N, idemtify (x,t) € 3N; X [0,1/3] with

@(x),t) €N} x [0,1/3] and {x,t) €3, x [2/3,1] with (§{x),t) € 3] X f2/3,1].

2¢ ::::::: i ¥

0 1/3 2/3 1
As in the proof of (1,9}, after smocthing, BYi = (NiqB-Ni) +

—(BNi) gt -(N1U¢—Ni), so by using the above esquation it follows that the dis-

o¥
joint unrion Y2 + —Yl has boundary
Ay, + =Y., ) = gémt oy (N,U =N3) + (N, -N33 4+ (N,) +
2 1 Tl s -1
Py
- _l _N!
((NI!.JP10 Ni) + {N2U¢ M)+ (aNl) ¢_1).
o

Thus by pasting boundary components of YZ + -Y) + DZm pairwise together we get

- 2m
a closed manifold M, whose euler characteristic is easily calculated to be

1 - ZE(BNL)- Since this is odd, the proof of Theorem (4,2) is completed. Q.E.D.

Remark: For unoriented manifolds, Theorem (4.2) shows that bordism class

and euler characteristic give all SKK-invariants,

For orientable manifolds one can show that Kervaire semi-characteristic,

defined by
2k
Gkt L
k{M ) = bi(M) (modulo 2),
1=0
where the bi(M) are the betti numbers, is an SKK-invariant SKK4k+l———b 32,
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which splits the sequence (4.2). So bordism class, euler characteristic, and
Kervaire semi-characteristic in dimensions 4k+l give all SKK-invariants for
orientable manifolds.

We sketch a proef of the SKK-invariance of the Kervaire semi-character-
istic k. For any oriented manifold Yzm an elementary homological argument

using Poincaré duality shows that
LAY} = e(Y) ~ v(Y) {mod 2).

Assume m odd, say m = Z2kil, and apply this equation to the manifold Y used

in the proof of (1.9). This gives
R(Mlucp—}{z) - k(MIUﬁJ-MZ) - k({anl)w_l) = —e(aMl} {mod 2)

which shows that k is an SKK-invariant with correction term k{p,¥) =
k{N —i) - e{N) (mod 2). A simple homological calculation puts this in the neater
1

form
kip,¥) = rank((p™ 1), - 1d) (mod 2),

where, since other dimensions pair off, we need only comsider the middle dimension

1 .

G ™), = By (W) — H,, (N).

Bordism with Vector Fields,

Reinkart [16] introduced bordism with vector fields im order to make

euler characteristic into a bordism invariant.
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Let M1 and MZ be closed (oriented) manifolds, A vector-field berd-

ism between Ml and M2 is a usual (oriented) bordism N between M1 and Mz
together with a non-singular vector field on N which is the inward normal on

Ml and the outward normal on MZ.
It is well known (Reinhart, loc. c¢it,) that if N is connected, such

a vector field exists on N if and only if e(Ml} = e(Mz) = e(N).

THEOREM (4.4): Two (oriented) manifolds M, and M, are vector field
cobordant if and only if they are equivalent im SKKS (resp. SKK*). Thits one

can identify SKK, with Reinbart's vector field bordism groups.

We prove only the oriented version, because the same arguments hold in

the unoriented case.
We must show that two oriented manifolds M? and Mg represent the

same class in SKKn if and only if there exists an oriented bordism N between

them with
e(MI) = e(MZ) = e(N).

The sufficiency of this condition is immediate from (4.3), so it remains to prove

the necessity., Suppose therefore that IMIE = [MZJ in SKK . Since euler charac-
i -

teristic is an SKK-invariaat, Q(Mi) = e{Mz). Also the bordism classes are equal,

50 we can find a bordism Y between M. and M., Lemma (4,3) implies that

1 2
(e(¥) ~ efm ))[s™]

[

G, so for nu even Theorem {4.2) shows that e(Y) = e(Ml),
and we can take N = Y and are finished. For n of the form &kil Theorem (4.2)

shows that e(Ml) - e{Y) is ever, so for arbitrary odd = we can certainly find a

closed manifold Mn+1 with e(Mn+1

Y = e(Mi) - e{Y). 1In this case, the counected
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sum of Y and Mn+l gives & bordism N of Ml and M2 with e(N) =

e{Y) + e(Mn+1) = e(Ml), completing the proof. Q.E.D.

Tangential Characteristic Numbers,

Janich (unpublished)} has shown for oriented marnifolds that the index of
an ellipic operator is an SKK-invariant. Here, a version of this theorem will be

proved in a more general setting.
Let §£ be the universal bundle over BSC{n) and Yo the universal

bundle over BOG(n). By D;n and S?n we denote the corresponding disc bundle

and its boundary sphere bundle,

Let M be a closed oriented n-manifold., The classifying map for the

tangent bundle of ¥ induces a map
(e, 30) — (v, 57),

where tM is the tangent disc bundle of M. Since tM has a natural stable

almost complex structure, we obtain an element
(o) € ¥ (oy ,s7)
o In’ " inl”
In the uncriented case we obtain an element

() € of (oy_,sv).

LEMMA (4.5): x defines az homomorphism

u - =
X 5 SKE,— nZn(DYn’SYn)
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respectively

o] U
% ¢+ SKK_ —> (1, (DY, ,Sy,).

Proof: Suppose Eﬁn] =0 in SKK ; we mist show that w{¥) = 0, By
Theorem {4,4) we can find an oriented manifold Y with @Y =M and a non-
singular vector field § onr Y which is the inward normal on M. Let 'Y be
the disc bundle of the bundle obtained by splitting the line bundle corresponding
to E off from the tangent bundle of Y, and f : (£'Y,0t'Y)-—> (D?ﬁ,s?ﬁ) its
classifying map. £ is clearly a zerc bordism of y{(M). The argument also holds

in the unoriented case, Q.E.D,

*
Now let h, and h  be corresponding homology and cohomology theories
for which stably almost complex manifolds are orientable. Then for any element

. *
x £ h (DYn’SYn) {respectively x € h (Byn,Syn)) we can consider the correspond-

ing characteristic number of a singular stably almost complex manifold. To be

precise we corsider the homomorphism
U, -~ — L
0,4Dy,,5v.) @ b (DY ,Sy }—= & (pt)
*
el ©®  «x s <g x,[R,3] >,

where [N,ON], denotes the h,-orientation class of .

Definition: If M is a closed {un)-oriented manifold, the characteristic

u - —
numbers of y(M} £ ﬂzn{DYn,SYn) (resp. € an(Dyn,Syn)) are called tangential

characteristic numbers of M.
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COROLLARY (4.6): Tangential characteristic numbers are SKK-invariant.

Example: As h*,h* we can choose (complex) K-theory., If M is a
manifold, then an eiement x € K*(tﬁ,atM) car be considered as a symbol of a
(pseuda) -@differential operator, <x,[tM,BtM]K> is then the index of this symbol.
An element in K*(D§;,S;n) {resp. K*(DYn,SYn)) can thus be coansidered as a
“pniversel differential operator" which is defined on all n-dimensiomal (un)-
oriented manifolds. The index of such a "universal operator” is hence an SKK-

invariant.
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CHAPTER 5: Other SK Concepts

Other SK concepts have been comnsidered in the literature. In this
chapter we show how they reduce to the comcept of SK used here. For conveni-
ence we work in the oriented category; however, the discussion is also valid for
warnifolds with other structure, e.g., singular manifolds in a space X, manifolds

with (B,f)-structure, manifolds with a group actiom, etc,

A cutting and pasting "relation" will alweys mesn an equivalence rela-
tion ~ on the class of manifeolds, compatible with disjoint ynion +, and

"cancellative." That is, for manifolds M,M",N we require
Mo M' o B~ MY

Actually, to make our discussion valid also in the equivariant case it
is convenient to define a further cutting and pasting relation by adding to the
5K-relation that the double &M = M Hi—ﬁ of any compact manifold be equivalent te
1

zero, Call this Telation SK. That is, for the corresponding graded groups,
o~
SK, = SE,/J

where T is the subgroup generated in SR, by doubles of closed manifelds,

LEMMA (5.1): In the non-equivariant case 5K = .

Preof: In fact we show this holds for any category of manifolds for
which a suitable analog of Theorem {1.1) holds, i.e., bordism is given by surgery,

and spheres are doubles of discs,
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§E+ = 8K, /L, where I is the subgroup gemerated by manifolds which
bound, and hence contains J. But by (1.1) I 1is already genmerated by spheres,

and hence contained in J. Q.E.D,

We consider the relation used by Janich {141. This relation is gener-

ated by setting any manifold of the form

1 N -M M M, + M -M
(1) {)‘-J% 1 T 1U¢,1 2 2Uq;2 0

equivalent to zerc. Here -4, means M, with reversed orientation and

(indices module 3) are diffeomorphisms.

@; ¢ M > BMH_]_

~
THEOREM (5.2): Jidnich's relation is the same as SK, and hence the same

as SK in the non-equivariant case.

Proof: By cutting and pasting the above manifold (1)} ome obtains the

union of doubles,

MMy MpU-M MM

50 §§ implies Janich's relation., Onr the other hand, putting M, = M

0 ¥
My = M, = ¢, in (1} shows that M+ (-M) ~ 0. Wow taking M, =¥, =M, (1)
shows that @MO + &My + (-E)MO) ~0, so &M ~0. Finally, M, =N, gives
MU - My + (MU - M) + M, ~ 0, whence MJj -M ~M¥U -M. Hence Janich's
Q mo 1 1 cp’\]:/ Cc 0 ? ¢ Py 1 Q @ 1
relation impiies SH. Q.E.D.
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1f one is interested also in compact manifolds with boundary, the most

natural cutting and pasting relation seems to be the one generated by the relations
(2y MOU$~M1 ~ My + ('Ml}’

where @ pastes boundary cemponents of HO to boundary components of Ml-
Call the correspending graded group A, {the Grothendieck group of compact
manifolds modulo these relations). This is the wvniversal group for "additive"
invariants of-manifoids.

Clearly, for closed manifolds the above relations only gemerate the usual
SK-relations, so the subgroup of A, generated by closed manifolds is just SK,.
Now let B, be the Grothendieck group of closed manifolds which bound, subject
oaly to the relations M + (-M) = 0. The torsion subgroup of B, 1is thus 2-torsiom,
generated by bounding manifolds which possess orientation reversing diffeomorphisms.
There is an epimorphism 3 : A —> Byt given by taking boundaries of manifolds,

The following theorem is trivial.

THEOREM (5.3): The sequence

60— SK*—_) A, —> B*..l'”a' ¢}

is exact.

Thus “additive" invariants for compact manifolds reduce to the diffeo-
morphism types of their beoundaries together with SK-invariants for closed manifolds.

Observe that the above sequence does not split for =n even, since [s7] = 2[0"] in

rallv - . .
A,» but [37] is an irreducible element of 8K, = Kex a.

Thecrem (5,3) is due to Rowlett [17]. Actually Rowlett considers a
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slightly different relation, namely
(3} MOUCQ-Ml + (M) + My~ DL

Taking ML = ¢ this implies MO ~ ~(-MO), so in particular relation (2) follows,

as well as the relatiom

(&) MMy ~ 0,

(]

that is, doubles are equivalent to zero. Conversely (2) and (4) ciearly imply
MO a:—(-MO), and hence imply {3). fThus Rowlett's relation (3} leads to the same

o~
results as relation (2} except that SK, must be replaced by SK, .

We now return to a comment of Chapter L. As remarked in Chapter 1,
SKn(X) is actually equal to the semigroup of singular n-manifolds in X wmodulo
SK-equivalence, To assure this, the definition of SK-equivalence in Chapter 1
was slightly umnaturally "stabilized” to make sure that it was cancellative. As

recently remarked by Ed Miller, this is unnecessary, in fact we have:

THEOREM (5.4): Two closed non-empty oriented singular memifolds (Ml,fl)

and (Mz,fz) in a connected space X are SK-equivalent and hence represent the
same element of SK*(X) if and only if one is obtainable from the other by a

sequence of cutting and pasting operatioms in X,

0f course the same holds in the unoriented category. To prove Thecrem
{5.54) let ~ denote the "unstabilized” SK-relatjon; that is (Ml’fL) “'(M2’f2)

means that (Mz,fz} results from (Mi’fl) by a sequence of cutting and pasting
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operaticus in X, It is clearly sufficient to show that the semigroup FJ7,(X)/~
of singular n-manifolds in X modulo this relation is already a group, and hence

equal to SK (X).

1 1

Firstly, this semigrowp has a zero, given by the class of §° X st

1 1

Indeed, we cam cut S5 X 50 n-1

aleng Sﬂ-l to get I XS . Now given any
(M, f} € Bﬂh(x), we cap cut a small dise DY from M, paste I X Sn—l to this
disc as a collar, and paste the result back into M, showing that
6 + (s x * ~ 0,8,

Secondly, the class of s® has an ioverse in this semigroup. Namely
let P be the “sphere with two handles” obtained by removing two discs from

i - -
st x s" ! and pasting the resulting two boundary components st ! together. By

by s™h,

reversing this comstruction, clearly P + $" S
We now have all we need to repeat the proof of Corellary (1,8} and show

that if (Ml’fl) is bordant to (Mz,fz) in X by a bordism Y, then
| n
My, £,] - (e{Y) - (M [$"]

in JfL (X)/~. It follows that any element [M,f] of 7ﬁ£(x)ﬁ~ has an inverse,

namely [-#,f] - e(M[s"], so WL (X}~ is a group, as was to be shown.

Remark: The relation of §K-equivalence as given in Chapter 1 can be
simplified in another direction, which is, however, less interesting. Namely,
(Mi’fl) and (MZ’fZ} are SK-equivalent i1f and only If there exists an (M, f)
such that (Mz'fz) + (M,f) results from (Hl,fl) + (M,£) by a single cutting and

pasting operation. We leave this as an easy exercise for the reader,
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CHAPTER 6: Winkelnkemper's "Oper Book Theorem

This chapter was written after the rest of the notes were completed,
and discusses some SK-consequences of Elmar Winkelnkemper's "open book theorem”
[20]. Maybe the main consequence for SK is the theorem, which strongly super-

cedes Theorem (2.8) iii):

THEOREM (6.1): For amy topological space X and all odd u # 5,

SKn{X} = 0. This is probably also true for n = 5,

Let us first recall Winkelnkemper's definition of an "open book." Let
V be a manifold with 3V # ¢ and h : V—> V a diffeomorphism with hIBV = id.
Form the mapping torus ¥, (see Chapter l) which has 2V, = st X @V, and for
each x € 3V identify the points {t,x), t € Sl, to obtain a closed manifoid M
called an open book. The fibres of the mapping torus are the "pages" and the image
of Sl X 3V  under the identification, which is a codimension 2 closed manifold

di ffeomorphic to oV is called the "binding.” The binding is the boundary of

each page.

Tn 1923, Alexander [1] proved: every orientable 3-manifold is an cpen
book. Winkelnkemper has extended this to the following powerful structure theorem

for manifolds:

THEQOREM (6.2) {(Open Book Theorem): a) Every orientable closed manifold

of dimension = = 2k+l ¥ 5 has an open book decomposition,
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b} A closed simply connected manifold M of dimension =z = 2k > 6

has an open book decoemposition if and only if (M) = 0
In fact in the simply connected case, =2 > 6, Winkelnkemper shows
mich more, namely, that the pages and binding can alsc be chosen simply connected

N - o A -
with H(V,2) = 0 for i [7}. The latter implies that h, : H (V,Z) —> H,(V,2)

s : : : n :
is the identity for i < [EJ, and Winkelokemper also gives necessary and sufficient

conditions that one can choose it to be the idemtity also for i = [%a.

The application te SK is given by the following theorem. We first note

a simple lemmaz

LEMMA (6.3): Let M" be a closed connected orientable manifold. Then

the following four conditions are equivalents:

i) For any map f : M~ X of M iato a space X, [M,f] = 0 in 3K (X);
4505

i) (M) = 0 and for any map £ : M—=> X, [M,£] = {¥,%] in sK (X);
2l

iii) [#,id] = ¢ in EEH(M);

iv) (M) =0 and [M,id] = [M,*] in SK_(M).

THEOREM (6.4): If M" has an open bock decomposition then each of the

equivalent conditions of Lemma (6.3} holds.

Proofs: tLemma (6.3): The equivalences i) <==> i1) and iii) === iv)

are ¢l i = in SK impli [ 5K
Te clear by observing that [M,f] = 0 in SK (X) implies [M,*] =0 1in SK_(X)

and applying Theerems (1,1b) and (1.3b). Trivially 1) = iii), and 1ii) == 1)

foliows f 3K i i i SE
ows from the fact that [M,f] € SKn(X) is the image of [M,ld] € SKn(M} under
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kg = fibre bundle with structure group C and non-multiplicative signature, and
the map SKn{M) 2 SKn(X) induced by f.

f : M—> BG is the classifying map, then [M,f] # [M,*] in SK,(8G), =0

Theorem (6.4): Suppose M has an open book decomposition given by n[M,f] is non-trivial, in fact of infimite ordex, in Ker EBG. Thus by Lemma
typical page V and diffeomorphism h : V-2 V, We shall prove {M,id] =0 (6.3) n{M,id] has infinite order in Ker EM_ Thus n[M,id] £ Ker SM gives an
in gﬁh(M). intrinsic obstruction to multiplicativity of signature for arbitrary bumndles

Cutting the mapping torus Vh along two fibres to get two copies of over M. Two matural gquestions arise:

V x 1T induces a cutting of M (along a manifold diffeomorphic to the double of

V) into two pieces ¥ and N', each of which is diffeomorphic to V X I/~ , Question i: We have seen that finite order of ﬂ[M,id] in Ker EM is
where -~ identifies each x x I (x € 3V) to 2 point (in fact N and N' are sufficient for bundles over M to have multiplicative signature. Is it also

still diffeomorphic to V X I), Use a homotopy between id : V X I—=> Vv X T necessary?

and V x I~ v (Vv x T, where p is the projection, to siide both N and W'

into a single page V of M and re-paste them there to get the double &N Question Z; By Theorem (6.4) triviality of {M,id] in SR(M) {which
mapping into a page ¥ C M. This mapping clearly extends to a mapping of N X I is equivalent to n[M,id] =0 and (M) = 0) is necessary for M to have an open

into V if we consider +ON as 3(N X I). Hence [M,id] is equivalent by an book decomposition. Is it also sufficient?

SK-operation to something which bounds in ¥, and is hence zero in §§n(M). Q.E.D.

Atiyah's examples show that there are bundles with non-mmltiplicative

The open book theorem together with (6.4) clearly implies (6.1}, There signature over any product M of orientable surfaces of sufficiently high genus.
are other interesting implicatioms. Recall that for any connected space X, the Hence Q{M,idj #F 0 in Ker EM, s0¢ M has no open book decomposition., Thus the
augmentation & : SK (X)—>> SK, and the map 7 : SK, (X} — Rer & given by condition wl(M} = 0 in the open book theorem canmct be dropped entirely., It was

this remark, made by Elmar Winkelnkemper (using a mcre direct argument) that led

H

nlM, £} = (M, £] - [m,%]

to this chapter,

define a direct sum representation

3

SK4(X) = SK, @ Ker £,

Since SK, is well understood, it is Ker ax, and hence the elements n[M,f},

which interest us.

As remarked in Chapter 2, if a manifold M is the base of 2 compact
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APPENDIX 1: Cutting and Pasting of (B, f)-manifolds

by G. Barthel

Most of the preceding theory can be generalized to cutting and pasting of
(B, f)-manifolds, so here we give a summary of the generalization.

Let us briefly recall the definition of a (B,f)-structure on a manifold
as given by Lashof {3] (see also Stong [7]). Let (B,f) = (Bk’fk) be a sequence

of fibrations £, : B, —= RO

K x k and maps g * Bk——m> B such that 2ll diagrams

5 3

e P
’ }
£ £
K, ktl
B0, > B,

conmute (jk is the usual inclusion),

ok
Any smooth imbedding it M —s & of a compact smooth n-manifold
0 otk
yields imbeddings ik BV kn+k, k> ko, by the inclusion of B 0 into
R“+k. The geometric normal maps Vi F M BOk {taking BDk as an infinite

Grassman manifold) of these imbeddings are related by Vi = jk'“k' Given a

{Bk ’fk }-structure on (M,ik )} (i.e., a homotopy class of liftings
0 0 0

g B
ki//;a lko
M
Tk——e» BOkO
0
of the normal map to Bko), one obtains a unique sequence § = (gk)kzk of
(Bk,fk)-structures on (M,ik).

Provided that k is sufficiently large, any two imbeddings ik and i&
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otk

of ¥ into ® are regularly homeotopic and any two regular homotopies are

homotopic through regular homotopies of the given iwmbeddings. The induced homo-
topy of the normal maps yield by the homotopy lifting preperty for the maps fk
-structures on {M,i

a one-one correspondence between (Bk’f and (M,ié).

k) k)
Two sequences £ = (gk}kzko and { = (Cﬁ)ﬂzﬂo belonging to embeddings

. n n+k0 . n+£0 . .

lko t M —aR and léo M >R will be called equivalent if gr and

Cr correspond by the above correspondence for some r. A {B,f)-structure on M

is then defined to be an equivalence class of such sequences of (Bk,fk)—structures,
and a manifold M together with a (B, f)-structure ( is called a (B,f}-manifold,

If o 1t M —> ¥ 1is a diffeomorphism, any {B,f)-structure on M induces
one on M', An isomorphism of (B, f)-manifolds is a diffeomorphism inducing the
given structure on the source M', This notion of induced structure and of {B,f)-
morphism can be extended to fmmersions with trivialized normal bundle, see Stong
{71, p. 16, for details.

Let Wn+l be a (B,f)-manifold with boundary. Imbed Wn+l in Eﬁ+k X R+
such that W lies in B'TE x {0} and W meets UL {0} orthogonally along

3W. Then the (Bk,fk)-structure en W induces one on AW by restriction, called

the boundary structure. For & closed (B,f)-manifold M, the boundary structure

on (M X ¥} induces the given structure on M = M ¥ {0] and a structure om
M =Mx {1] called the opposite structure, briefly denoted by -M,

Two closed (B,f)-manifolds M and M' are called bordant if M + (-M")
is a (B, f)-boundary. The (B,f)-bordism classes of closed n-dimensional {B,£)=
manifolds form an abelian group GiB’f) called the o*h (3, £)-bordism group.
We remark that these groups are isomorphic to certain stable hemotopy

groups of appropriate Thom spaces {see [3], [7] for details)., Furthermore, if a

multiplicative structure is given {defined by maps B, xB,—>B 4 Such that the
r+s
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projections fk preserve products up to howotopy, BOr X EOsmw—b BOP+S being the
(8,£)

usual sultiplication}, we get a graded ring structure on (. y

morphism niB,fl“”ﬁ> ¥, is a homomorphism of graded rings.

and the homo-

Suppose that a closed manifold M is the ynion of two bounded manifolds
N and N' pasted along the common boundary 3N = 3N'. Then a given (B,f)-
structure on M induces (B,f)-structures on N and N’ such that the boundary
structures ¢n 2N and 3N' are opposite to each other. If ¢ : W -2 ~3N' is
a (B,f)-isomorphism, the pieces N and N' may be pasted by o to give a new
(B,f}-manifold M', and we say M' has been obtained from M by an SK-operatiom,

Note that in general the {B,f)-structure on M' 1is not uniquely determined by the

(B, f}-manifolds N, ¥' aud by .

As in Chapter 1, oune defines an SK-group SK(B’f}

a as the Grothendieck

group of closed n-dimensional {B,f)-manifolds modulo the relatioms given by SK-

EﬁﬁB’f) is then defined by factoring SKéB’f)

operations. by the bordism rela-

tien, If the (B,f)-structure is muitiplicative, then SKiB’f) and §§i3’f) are

graded rings, and the natural epimorphisms

(B, £) (B, )
K, e K

and

B0, gl5

— 5K,

are graded ring homomorphisms,

We first remark that without loss of generality we can assume the spaces

B, to be connected. Collapsing the connected compouents of the fibres of

Bk———> BOk to points yields a connected covering of Bok, which must be either
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the trivial covering BOk——+> BO,, or the universal covering BSOk——4> BOk. Thus

the fibres of B, have at most two components, so there are at most two (B,f)-
structures on a point, and they are oppesite to each other. The same holds for
the spheres s" with boundary structures induced from the disc Dn+1. These
structures on the sphere are isomorphic by an orientation reversing diffeomorphism,
so in fact there is only one such structure induced from the disc; we call it the
point structure,

Corresponding to Theorems (1.1) and (1.2) of Chapter 1 we have the follow-

ing results:

THEOREM 1: There is an exact sequence

P I[(lss,f)“_:} SfoB’f}'"_} -S?iB,f)_% o,
where IéB’f) is the cyclic subgroup of sx (B ©) generated by the class [S7] of

n

the sphere s® with the point structure, and

Iis’f) ~Z, a =0 {(mod 2)
B, f
Iis ):0 or Z,, n =1 (wd2),

If the fibres of B have two

k comnected components, then the sequence splits for

. even,

THEQREM 2: Let FiB’f) be the subgroup of GiB’f) of all elements

representable by a manifold which fibres over Sl. Then

G 5 Fz(gB, £} ; QIEB, £} ﬁflﬁ, ) ¢

is exact.
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The procfs are as in Chapter 1, wit™ the following reservatin-s: the
connection between SK and surgery discussed in Chapter 1 goes through without
change ta prove Theorem 1, however, the cutting and pasting Lemma (1.5) needs

additional conditioms:

1
LEMMA 3: i) If the {(B,f)-manifold M fibres over § themn [M] =0

in sxiB’f).
n
£1) If ¥ fibres over §" with typical fibre F then [M] = [s% x Fl
L
in SKiB’f), where the structure on S° X F is induced from Dn+ X F, TIf the

theory is wmultiplicative, then F can be given a (B,f}-structure such that
(M) < [s*)[F] 2a skl 00,

iii} If the (B,f)-structure is muitiplicative and if tBere are (B,f)~
stTuctures on Pnc for all =n, then for any (B,f)-manifold M fibred over ?uc

with fibre F,

(M} = [eg](F]

holds in SKiB’E), for a suitable (B,f)-structure on F,

iv) The same as iii) with Png instead of Pnc.

COROLLARY &4, Under the assumption of part iii) above, [52n+l] =0 in
(B, £) (B, £) _
SK2n+l y SO 12n+1 = 0.

Theorem 2 is proved as in Chapter 1, by showing that the (B,f)-bordisé
classes of two manifolds related by a single SK-operation differ by the class of a
manifold which fibres over the circle. HNote that two SK-operations may yield the
same manifold fibering over the circle but with different (B, f}~structures, due to

the non-uniqueness of (B, f)-structures under cutting and pasting mentioned earlier.
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This means that the caiculation of the SKK-groups of Chapter & is not the same in
the (B,f)-case: (B,f}-bordism class needn't be an SKK-invariant. However, the
class in DiB’f)/J, where J 1is the subgroup generated by all (B, f)-structures
on manifolids of the form M X Sl, is an SKX-invarisnt, and the discussion of

Chapter 4 goes through using this group in place of OiB’f).
As an example of {B,f)-SK we now calculate the $K-groups for weakly
complex manifolds, obtaining the following result.

THECREM 5: The rings SKz and §§E are isomorphic to SK, and EE;

by the obvicus hemomorphisms.

Proof: By Lewma 3 and Corollary & we know that ngn+1 is isemorphic
to IRY which is a quotient of [Y Yow 0 is kno namely, it is th
2k’ g S w {1, i W, mamely, it is the

ictegral polymemial ring Z[YO,YI,YZ,...] on 2i-dimensional generators Y, that
can be represented by certain linear combinations of products of complex projective

spaces Pdﬁ and hypersurfaces Hr . in Pés X ?EE (Milnor, Wovikov, Hirzebruch
1
tal, (51, (61, f1D).

—

u
Hence the and thus alsa the SKgn+l = SK2n+1 are zerg, praving

I’

the thecrem for odd dimensions.

In the even dimensional case we see that SE e 54 is onto, as it

2 2n

Maps generators ontc generators, By Lemma 3 iii) these generators may be chosen

as preducts of complex projective spaces. MNow one sees that J&nich's proof that

£Pn+26] = [PnC][ch} in $E, (given in [2], 2., (4a)) holds alse in gﬁg (where

PnF has its usual weakly cemplex structure). Thus SK4k+2 is geunerated by products

with at least one factor Plc and is hence zero, while §E2k is generated by
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¥ ... X P.L (k times) and is hence isomozphic to & by sigmature. Thus

2
= Ef*, and the 3-lemma on
0—> 1 —> s;{ﬂ——:— K —> 0

Lo

0—» I —> SK —> §
n |53

|«

—3 0

=

completes the proof.

Theorems 2 and 5 yield the characterizatjon of weakly complex manifolds

which fibre over the cirele up to unitary bordism, namely, that signature vanishes.
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