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1 The Next Best Thing to the Unknot

Definition 1.1. A knot is an oriented, locally flat, embedding of S1 ↪→ S3.

In traditional knot theory, a knot S1 K
↪→ S3 is trivial if it bounds a disc. Now, any knot S1 ↪→ S4

is trivial. This is because the freedom of the extra dimension allows one to pass strands through
one another and thus untie any knot. However this operation requires that the disc which this
unknotting operation traces out lives in the D4 on either side of S3 (S4 = D4 ∪S3 D4) - it is
necessary to push one strand into the 4th dimension in one direction and the other strand into the
4th dimension the other way. The interesting question to ask is therefore whether a knot bounds
a disc in D4 on one side only of S3. First we recall some definitions.

Reminder. An immersion is a differentiable map whose derivative is everywhere injective.
An embedding is an immersion which is also a homeomorphism onto its image, where the image
has the subspace topology.

Definition 1.2. An embedding S1 K
↪→ S3 is locally flat if for each point x ∈ S1 there is a neigh-

bourhood U ⊂ S1 of x and a neighbourhood V ⊂ S3 of K(x) such that the pair (V,K(U)) can be
mapped homeomorphically onto (D̊3, D̊1).

Similarly D2 q
↪→ D4 is locally flat if for each point x ∈ D2 there is a neighbourhood U of x and

a neighbourhood V of q(x) such that the pair (V, q(U)) can be mapped homeomorphically onto
(D̊4, D̊2).

Definition 1.3. A knot K is slice if it is the boundary of a locally flat disc D2 embedded into the
4-ball D4.

We may also think of K as the cross-section of a locally flat 2-sphere S2 in R4 by a hyperplane
R3.
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Remark 1.4. Flatness is essential. Any knot K ⊂ S3 is the boundary of a disc D2 embedded in
D4, which can be seen by taking the cone over the knot (see figure below).

The cone over the knot is homeomorphic to a disc D2, and if we embed it
into 4-space there will be no singularities.

However, there is something displeasing about what is happen-
ing at the vertex of the cone, where the knot gets squashed to
a point. The problem is that the embedding at this point is
not locally flat ; there is not a neighbourhood around it which
looks topologically like the standard embedding of a disc D2 into
D4.

Slice knots are special kinds of knots where it is possible to find such a
disc whilst avoiding these kinds of singularities. The original motivation for

the study of slice knots, and the first definition, was made by Fox and Milnor in 1958; they
were interested in smoothing PL singularities of surfaces in 4-space, which arise naturally when
considering complex hypersurfaces.

Slice knots are also intimately related with the failure of the Whitney trick in 4-dimensions. The
Whitney trick is used to remove intersections of submanifolds which cancel algebraically: if there
are paths between the intersection points in each submanifold which form a loop, and this loop
can be made to bound an embedded disk, then by isotoping across the disk the intersections can
be removed. This works in high dimensions, but in dimension 4 the disks can only be immersed
generically. The question of improving these to embeddings is like trying to slice a knot.

Finally, slice knots are interesting because they enable us to make the set of all knots into a
group, which will be our central object of study:

Example 1.5. If K is a knot which is symmetric with respect to a plane R2 ⊂ R3 then K is
slice because we can spin it through R4

+ about the axis R2 to produce the desired locally flat
disc. [We can spin a point x = (x1, x2, x3, 0) of R3

+ about R2 according to the formula xθ =
(x1, x2, x3 cos θ, x3 sin θ). The spin K∗ = {xθ : x ∈ K, 0 ≤ θ ≤ 2π} is a 2-sphere in R4.]

So if K is a knot in S3 and r : S3 → S3 is an orientation-reversing homeomorphism, and if K is
the same knot but with the string orientation reversed, then K#rK is a slice knot.

Example 1.6. Our main bank of examples in this text will be the Twist Knots as shown below.
The box with an n in it should really mean n− 1 full twists, so that the total number of twists is
n. (Figure 1):

We will see in due course that Kn is slice if and only if n = 0 or n = 2 (n = 0 is the unknot so
is trivially slice).

How to see that a knot is slice We can visualise a slice disc by making movies. If a knot
is (smoothly) slice then it bounds a disc D2 ⊂ D4 so that concentric 3-spheres move through
(intersect) it to produce either
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Trefoil: K
-1

Figure-8: K
1

General: K
n

Figure 1: The Twist Knots

1. An ordinary nonsingular knot or link

2. A knot or link with singularities corresponding to one of

(a) Simple maximum or minimum

(b) Saddle point

Maximum Minimum Saddle Point

Example 1.7. Stevedore’s knot, otherwise known as 61 in the standard knot tables, is the simplest
slice knot (other than the unknot). The following “movie” shows how 3-spheres move through the
slice disc:

The slice disc is shown schematically below - of course in reality this is a knotted disc in 4-space:

3



saddle point

minima

Example 1.8. Another example of a slice knot is the 8-crossing knot 88. Here is the corresponding
slice ‘movie’:

Definition 1.9. A ribbon disc is a slice disc without local maxima.

To construct a ribbon knot, start with an unlink (which corresponds to local minima; we can
arrange the disk so that these come first, then the saddles). Now add bands connecting them until
the result is a knot/disc. Then local ribbon singularities are the only self-intersections, as opposed
to clasp singularities.

The ribbon disc is the image α(D2) of a mapping α : D2 → R3 whose only singularities are of
the following form. Each component of the singular set is the image of a pair of closed intervals in
D2, one with endpoints on the boundary of D2 and one entirely interior to D2.

We can locally resolve a ribbon singularity into 4-space to get back a slice disc. See Figure 2,
where the cross-hatched parts can be pushed off S3 into D4 to remove the self-intersections. This
does not work for clasp singularities.

Fact. Every ribbon knot is a slice knot.

The following is a famous unsolved conjecture of Fox.

Conjecture 1.10. Every slice knot is a ribbon knot.

Note that this is about smooth knots. Any ribbon knot is smoothly slice, since we used Morse
theory to get a handle decomposition of the slice disc. As we shall see below there are knots which
are topologically slice but not smoothly slice, so in particular these cannot be ribbon.
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Figure 2: Stevedore’s knot 61 bounds a singular disc with two arcs of intersection

2 The Knot Concordance Group

Definition 2.1. Knots K0 and K1 are called concordant if K0#−K1 is slice. (Here −K denotes
the mirror image of the knot with reversed orientation, while # is connected sum.)

Definition 2.2.
C :=

{
oriented knots in S3,#

}
/ ∼

where K0 ∼ K1 if they are concordant.

Notice that the group can be constructed by semigroup quotient, i.e. K1 ∼ K2 in C iff there exist
slice knots S1, S2 such that K1#S1 = K2#S2.

There is an easier to visualise picture of concordance which is related to cobordism of manifolds.

Definition 2.3. Two knots K0 and K1 are called concordant if there is a locally flat embedding
of S1 × [0, 1] into S3 × [0, 1] having boundary the knots K0 and −K1 in S3 × {0} and S3 × {1}
respectively.

So we can think of concordance as when two knots are connected by a cylinder embedded (nicely)
into the 4th dimension. Slice knots, of course, are those which are concordant to the unknot.

Theorem 2.4. C really is a group.

Proof. For a knot K the knot rK is an inverse. It is possible to glue two null-concordances together,
so that K1]K2 is slice if both K1 and K2 are slice. It is also the case that if K1 + K2 is slice and
K2 is slice, then K1 is also slice. To see this glue the null-concordances together according to:
K1 ∼ K1 + U ∼ K1 +K2 ∼ U .

Lemma 2.5. K is slice if and only if there exists a ribbon knot R such that K#R is ribbon.
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Unknot 

K 

R 

Figure 3: Finding a ribbon knot within a slice cobordism.

Proof. “⇐” Ribbon knots are slice, so R is slice and K#R is concordant to K. Since K#R is
ribbon and therefore slice, this means that K is concordant to a slice knot, and is therefore slice.

“⇒” Suppose K is slice. Then we can draw a cobordism to the unknot with the maxima first,
then saddles then minima

In the middle of this cobordism we can find a knot R which will be ribbon because it is cobordant
to the unknot with only minima (Figure 3).

Take the connected sum of R and K along the left-hand boundary of the concordance (Figure 4,
left-hand picture). With a little imagination this can turn into the right-hand picture in Figure 4,
which is a schematic of a ribbon disc.

Proposition 2.6. The group {knots,#} / {ribbon knots} is isomorphic to C.

Proof. Suppose K1 ∼ K2 in Knots/Ribbon. So there exist R1 and R2 ribbon such that K1#R1 =
K2#R2. But ribbon knots are slice, so this means K1 ∼ K2 in Knots/Slice.

Now suppose K1#S1 = K2#S2 for Si slice. By Lemma 2.5 we can find ribbon knots Ri such
that Si#Ri is ribbon for i = 1, 2. Then

K1#S1#(R1#R2) = K2#S2#(R1#R2)

which we can re-bracket as

K1#((S1#R1)#R2) = K2#((S2#R2)#R1).

Since the addition of two ribbon knots is ribbon, we have the result that K1#ribbon = K2#ribbon.
Thus K1 ∼ K2 in Knots/Ribbon.
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Figure 4: Seeing a ribbon knot in the connected sum.

We want to show that C is non-trivial. We can do this with additive knot invariants that vanish
on ribbon knots (often more convenient to show).

Recall, the linking number of curves l1, l2 ⊂ S3 is defined as lk(l1, l2) = l1 · F2, the intersection
number of l1 with a Seifert surface F2 for l2. To generalise to 4 dimensions, choose Seifert surfaces
F1, F2 embedded in D4 transverse to the boundary such that ∂F1 = l1, ∂F2 = l2. Orient F1, F2 so
that they induce the given orientations on l1 and l2. Then

lk(l1, l2) = F1 · F2

where this intersection number is taken in D4. The observation that linking information in S3

strongly corresponds to intersection data in D4 is a fundamental one, as we shall see.

We must show that this definition is independent of the Seifert surfaces we chose. Pick alternative
surfaces G1 and G2, in a different copy of D4. Then glue the two copies of D4 together to get closed
surfaces F1 ∪ G1 and F2 ∪ G2 in S2. Then H2(S4) ∼= 0 so any intersections cancel: let R be the
3-chain whose boundary is F1 ∪ G1; then the intersections of F2 ∪ G2 with this are arcs whose
endpoints are the intersections of F1 ∪G1 and F2 ∪G2. These endpoints have opposite intersection
signs, so

(F1 ∪G1) ∩ (F2 ∪G2) = 0.

From this definition, we see that a link with non-zero linking number cannot be slice (i.e. bound
disjoint discs in 4-space).

Let F be a Seifert surface for K. Then we have the Seifert pairing on H1(F ) ∼= Z2g

S : H1(F )×H1(F ) −→ Z;
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S(x, y) = lk(x, y+),

where x, y are representative chains of the homology classes, and y+ is the push off of y into S3 \F
along a normal vector to F . From S we can get the Alexander polynomial

A(K)(t) = det(S − tST ) ∈ Z[t]/± tn.

We can show this is independent of basis choices and the choice of surface: this is the case since any
two Seifert surfaces are related by some sequence of isotopies and handle additions/subtractions.
By examining the effect of such moves on the Seifert matrix, detailed below, one can see that the
various invariants are independent of the choice of surface, without which property it would be
hard to justify calling them invariant.

Definition 2.7. The signature σ(K) is the signature of the symmetric form S + ST , taken over R
so that it can be diagonalised. This is also independent of choice of S.

Remark 2.8. Independence of the choice of S is from Morse theory – the elementary changes are
handle additions which have the effect

S ←→


0

...

S
...

...

0
...

0 · · · 0 0 0
· · · · · · · · · 1 ∗


This is called S-equivalence. One also checks that the signature and the Alexander polynomial are
invariant under integral congruences corresponding to changing the basis of H1(F ).

Remark 2.9. We can normalise the Alexander polynomial A(K)(t) ∈ Z[t±1] by

1. A(K)(t) = A(K)(t−1)

2. A(K)(1) = +1 (notice that S − ST is the intersection form J and has det±1).

3. Addition of knots corresponds to block addition of Seifert matrices, so that the signature
is additive and addition of knots corresponds to multiplication of Alexander polynomials:
A(K1]K2) .= A(K1)A(K2).

The Conway polynomial CK(z) is the z = t1/2 + t−1/2 version of this.

Theorem 2.10. If K is slice then there exists a half-rank direct summand L in H1(F ) such that
S|L = 0.

Corollary 2.11. (a) K slice ⇒ σ(K) = 0.
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(b) K slice ⇒ A(K) is of the form f(t)f(t−1) (up to t±n).

Proof. (of corollary)

(a) Let M = S + ST =
(

0 L
LT N

)
, where N = C + CT . The matrix S − ST is non-singular

so S + ST is non-singular over Z2, and therefore also over Z, that is det(S + ST ) 6= 0,

which means that det(L) 6= 0 and L is invertible over Q. Let P =
(

L−1 0
CL−1 −I

)
. Then

PMP T =
(

0 −I
−I 0

)
, so σ(K) = σ(M) = σ(PMP T ) = 0.

(b) S =
(

0 A
B C

)
so det(S−tST ) = det

(
0 A− tBT

B − tAT C − tCT
)

= det(A−tBT ) det(B−tAT ) =

f(t)f(t−1) up to units.

Remark 2.12. The knot signature is not to be confused with the signature of a 4-manifold, which
is the signature of the middle-dimensional intersection form on the 2nd homology of (some cover
of) the manifold. (Although as we shall see for a judicious choice of 4-manifold the two signatures
can coincide.)

Example 2.13. RH Trefoil: S =
(
−1 1
0 −1

)
, so M = S + ST =

(
−2 1
1 −2

)
. Eigenvalues are

both negative, so σ = −2.

Figure-8: S =
(

1 0
1 −1

)
so M =

(
2 1
1 −2

)
. Eigenvalues are ±

√
5 so σ = 0.

The fact that σ = 0 for the Figure-8 agrees with the fact that σ is additive and the Figure-8 is
amphichiral (so 2σ(K) = σ(K#K) = 0, since K#K is slice).

However, A(Fig-8) = det
(

1− t −t
1 −1 + t

)
= −(1− t)2 + t = −t2 + 3t− 1 ∼= −t+ 3− t−1, and

this isn’t f(t)f(t−1) (since A(−1) is not a square). Therefore the Figure-8 is a 2-torsion element in
C, and the Trefoil generates a free summand of C.

Example 2.14. We return to the twist knots. We can get a Seifert surface by resolving the obvious
disc with clasp singularity into two half twisted bands. Then, for the twist knot Kn we get a Seifert
matrix

S =
(
−1 1
0 n

)
.

We constructed a homomorphism σ : C → Z, the signature, by using the theorem that any slice
knot K with a Seifert surface F has a Lagrangian L ⊂ H1(F ) (i.e. a half-rank direct summand for
which S|L = 0). Now we need to prove this.
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Trefoil: K
-1

Figure-8: K
1

General: K
n

Figure 5: The Twist Knots again.

Figure 6: Add a tube and feed the band through. The knot remains the same!

Proof of Theorem 2.10. Warmup exercise for ribbon knots: Prove for ribbon knots that σ
is well-defined. Actually, it is enough to show that σ vanishes on ribbon knots for some Seifert
surface, because we know C = knots/slice ∼= knots/ribbon and σ is independent of choice of surface.

Ribbon singularities can be resolved (see Figure 6).
Desingularising the whole ribbon like this gives a disc and a tube for each ribbon singularity, and

with obvious Lagrangian: circles surrounding the ribbon cuts; a basis for the Lagrangian is given
by an unlink of circles.

Proof of Theorem:
Step 1: There exists an oriented submanifold M3 ⊂ D4 with boundary F ∪∆, where F is a Seifert
surface of K and ∆ is a slice disc.

Proof of Step 1. This elementary application of obstruction theory was lifted from the text-
book of Lickorish. Let X be the exterior of K. We want to define a map φ : X → S1 so that
φ∗ : H1(X) → H1(S1) is an isomorphism and φ−1(pt) = F . On a product neighbourhood of F in
X, define φ to be the projection F × [−1, 1] → [−1, 1] followed by the map t 7→ eiπt ∈ S1. Let φ
map the remainder of X to −1 ∈ S1.

Let N = ∆ × I2, a neighbourhood of ∆. We extend φ to the rest of ∂(D4 −N) so that the
inverse image of 1 ∈ S1 is F ∪ (∆× ∗) for some point ∗ ∈ ∂I2 (note: ∂D × ∗ is a longitude of K).
We now need to extend the map over all of D4 −N .

Consider the simplices of some triangulation of D4 −N . Let T be a tree in the 1-skeleton
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containing all the vertices of this triangulation, that contains a similar maximal tree of ∂(D4 −N).
Extend φ over all of T in an arbitrary way. Then on a 1-simplex σ not in T , define φ so that if c
is a 1-cycle of H1(D4 −N) consisting of σ summed with a 1-chain in T (joining up the ends of σ),
then [φc] ∈ H1(S1) is the image of [c] under the isomorphism

H1(D4 −N)
∼=←− H1(X)

φ∗−→ H1(S1).

Trivially, the boundary of a 2-simplex τ of D4 −N represents zero in H1(D4 −N), so [φ(∂τ)] =
0 ∈ H1(S1). Hence φ is null-homotopic on ∂τ and so extends over τ . Finally, φ extends over the
3 & 4-simplices, as any map from the boundary of an n-simplex to S1 is null-homotopic when n ≥ 3.

Now regard φ : D4 −N → S1 as a simplicial map to some triangulation of S1 in which 1 is not
a vertex. Then φ−1(1) is a 3-manifold M3, and φ was constructed so that ∂M3 = F ∪ (∆× ∗).

Step 2: P := ker[H1(∂M ; Q)→ H1(M,Q)] is a Lagrangian subspace of dimension g (where ∂M
has genus g).

Proof of Step 2. A Lagrangian subspace is a vector subspace P of half rank which satisfies P = P⊥.
Look at the homology exact sequence of (M,∂M) (over Q):

0 // H3(M,∂M) // H2(∂M) // H2(M) // H2(M,∂M) //

P //

��

0

H1(∂M) //

k

77ooooooooooooo
H1(M) // H1(M,∂M) // H0(∂M) // H0(M) // 0

Lefschetz duality says H1(M,∂M) ∼= H2(M) (since Hk(M,∂M) ∼= Hn−k(M) and Hk(M,∂M) ∼=
Hk(M,∂M) by the Universal Coefficient Theorem, as we are working over a field). Poincaré duality
says Hk(M) ∼= Hn−k(M), which again implies dim(Hk(M)) = dim(Hn−k(M)).

So let

a = dim(H3(M,∂M)) = dim(H0(M))

b = dim(H2(∂M)) = dim(H0(∂M))

c = dim(H2(M)) = dim(H1(M,∂M))

d = dim(H2(M,∂M)) = dim(H1(M))

e = dim(H1(∂M))
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Then the exactness of the sequence implies that

a− b+ c− d+ e− d+ c− b+ a = 0⇒ 2(a− b+ c− d) + e = 0

But dimP = e− d+ c− b+ a = e+ (a− b+ c− d).
Therefore 2(dimP − e) + e = 0⇒ 2 dimP = e, and thus dimP = 1

2 dim(H1(∂M)).

Now note that H1(∂M) = H1(F ) (recall ∂M = F ∪ ∆ and H1(∆) ∼= 0). Suppose we have α,
β ∈ ker[H1(∂M) → H1(M)]. There exist surfaces A,B ⊂ M with ∂A = α, ∂B = β. When α is
moved to α+, the surface A can also be moved off M to M × {1} (so ∂A+ = α+), and then the
intersection of A+ and B is empty. Thus lk(α+, β) = A+ · B = 0.

To move from Q to Z coefficients is no problem, although the Z-kernel of H1(F )→ H1(M) might
not be a direct summand. Use instead L = {a ∈ H1(F ) : ∃n ∈ Z\ {0} s.t. na ∈ P}. Its rank over Q
is the same as that of the kernel and it is a direct summand because H1(F )/L is torsion-free - any
torsion is automatically in L. Note also that S(na, b) = 0 =⇒ S(a, b) = 0 by linearity, so S|L = 0,
as required.

Now we can use the twist knots Kn to show that C is not finitely-generated.

Definition 2.15. For ω ∈ S1\ {1} ⊆ C, we define the twisted signatures σω : C → Z by

σω(K) := σ((1− ω)S + (1− ω)ST )

where S is a Seifert matrix for K.

Notice that the matrix Q := (1 − ω)S + (1 − ω)ST is hermitian so the eigenvalues are real and
the signature is well-defined. Note also that Q = (1 − ω)(S − ωST ) and detQ = (1 − ω)2gAK(ω)
where AK is the Alexander polynomial. The finitely many zeros of the Alexander polynomial mean
finitely many places at which the form becomes degenerate. In fact, σω(K) is continuous as a
function of ω (K fixed) except at zeros of the Alexander polynomial. Since signature is an integer,
this means that the signature is constant between roots and jumps around the unit circle.

Theorem 2.16. The signature σω : C → Z is a homomorphism (i.e. σω vanishes on slice knots and
is additive).

Proof. K slice implies that Q =
(

0 ∗
∗ ∗

)
. The proof is thus the same as before provided that

AK(ω) 6= 0. If AK(ω) = 0 then we define σω to be the average of the two limits, extending the
definition to the bad points.

The following Theorem is the central concrete aim of the rest of these notes.

Theorem 2.17. (a) Kn slice ⇔ n = 0, 2 (This was first proved by Casson-Gordon)
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(b) {Kn} are independent in C for n < 0 and for (4n+ 1) = l2 (n > 0)

(c) If n > 0 and 4n+ 1 is not a square, then {Kn} are Z2-independent in C.

Corollary 2.18. All Kn are distinct in C except for the unknot K0 = K2.

Conjecture 2.19. All Kn are Z-independent (other than K0 = K2 = 0) in C.

Proof of Theorem 2.17. Developing the tools to prove the whole of this Theorem will be the ulti-
mate aim of these notes. For now we give the proofs for which we currently have the technology.

We have σω : C → Z defined by σ((1−ω)S+(1−ω)ST ), where for twist knots Kn, S =
(
−1 1
0 n

)
.

Compute σω(Kn) : C → Z; this will jump at the roots of the Alexander polynomial.

AKn(t) = det
(
−1 + t 1
−t n− nt

)
= n(−1 + t)(1− t) + t = −nt2 + (2n+ 1)t− n

= −n(t2 − 2n+1
n t+ 1)

This has roots

2n+ 1
n

±

√
4n2+4n+1

n2 − 4

2
=

2n+ 1±
√

4n+ 1
2n

.

So AKn has real roots if and only if n > 0, in which case σ is constant (σ ≡ 0) around the unit
circle.

For n < 0, the roots are on the unit circle, since ωn · ωn = 1, and they are all distinct from one
another.

Computing at t = −1 we get σ
(
−2 1
1 2n

)
= −2.

(N.B. If A is a symmetric n× n matrix and the principal minors A1, A2, . . . , An are all non-zero
then the signature of A is n− 2×(the number of changes of sign in the sequence 1, A1, ..., An).)

Therefore the {Kn} are independent in C for n < 0.
(We have now proved half of (b)).

Now consider n > 0. The Alexander polynomial is reducible over Q if and only if 4n + 1 is a
square. So assume it is not a square.

For any symmetric irreducible polynomial p ∈ Q[t±1], define a homomorphism hp : C → Z2 by
K 7→ {exponent of p in Ak, mod 2} (factorised over P.I.D. Q[t±1]).

This is additive under # because Alexander polynomials multiply. We need to show that it
vanishes on slice knots. But for these, Ak(t) = f(t)f(t−1), so the exponent of p(t) = p(t−1) is even
in it. For case (c) we have AKn = −nt+ (2n+ 1)− nt−1, which are distinct irreducible symmetric
polynomials. By applying the appropriate hp function we can show that Kn are Z2-independent.

This proves (c).

13



The hard case to do is “4n + 1 = square”, in (b). The conjecture that all {Kn} 6=0,2 are Z-
independent in C is partially known by work of Livingston and Naik.

Suppose 4n+ 1 = l2. Then 4n = (l − 1)(l + 1), l = 2m+ 1, so n = m(m+ 1), m > 0.
Notice that Kn has a genus 1 Seifert surface F , so H1(F ) has two basis vectors, say s and l.

For m = 1 we have K2, called by mathematicians the Stevedore’s knot, which is actually slice.
The claim is proved by finding that γ = −s+ l is a vector with square 0:

(
−1 1

)( −1 1
0 2

)(
−1
1

)
= 0

The curve on the Seifert surface is the unknot - visibly it is a 0-framed (i.e. self-linking zero)
unknot.

K2 is therefore ribbon: we see this by cutting out an annulus around our curve γ = −s+ l to get
two parallel copies of γ. This is possible since γ has zero self-linking. We then attach slice discs for
γ and γ′, and this will introduce only ribbon singularities.

To do the surgery and get two non-intersecting discs we need a 0-framing on the unknotted curve,
and we also need the curve γ to be itself slice.

Lemma 2.20. If n = m(m + 1) then there are precisely two curves with self-linking zero. These
are γ = (−m)s+ l and γ = (m+ 1)s+ l.

Proof. Let γ = αs+ βl, and suppose lk(γ, γ+) = 0. Then we have:

0 = lk(γ, γ+) = α2 lk(s, s+) + αβ(lk(s, l+) + lk(l, s+)) + β2 lk(l, l+)

= −α2 + αβ +m(m+ 1)β2

Completing the square with respect to α, we get that

α =
β ± β(2m+ 1)

2

so that γ = (m+ 1)s+ l or γ = (−m)s+ l.
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Definition 2.21. K is called algebraically slice if there exists a Lagrangian in H1(F ).

Remark 2.22. (a) K slice ⇒ K algebraically slice, by Theorem 2.10.

(b) The Km(m+1) are algebraically slice by Lemma 2.20.

For m = 2 (n = 6) we consider γ = −2s+ l.
This is in fact the trefoil, which is not slice; we can calculate its signature or show that its

Alexander polynomial does not factorise as it should.
Similarly for Km(m+1) we get γ = T (m,m + 1), a torus knot which twists m times round the

meridian of a standardly embedded torus in S3, and m+ 1 times around the longitude. Such torus
knots are slice if and only if m = 1; again one can calculate their signatures. This gives us a good
reason to believe that these twist knots are not slice, though we will need the following theorem
before we can actually prove it.

Theorem 2.23. (Cochran-Orr-Teichner) If K is a genus 1 knot with Ak 6= 1 then K slice ⇒ there
exists γ ⊂ F such that S(γ, γ) = 0 and γ is a generator of H1(F ) such that

∫
ω∈S1 σω(γ) = 0.

So by integrating the twisted signatures of the torus knots T (m,m+ 1) around the circle we can
obstruct the sliceness of the twist knots. We will prove this theorem in Section 6, once we have
developed the necessary machinery. This is our motivating example, although of course the new
theory has a far wider reach than merely reproving the results of Casson and Gordon.

It is not known whether every slice knot has a (collection of) slice γ-curve(s), but this result is
a substitute.

The original proofs of the parts of this Theorem were done by Casson-Gordon for part (a), while
for (b) Tristram did the case n < 0 and Jiang the case 4n + 1 prime. The remaining statements
are contained in the work of Cochran-Orr-Teichner.

3 A Survey of Homology, Intersection Forms and Linking Forms
in Low Dimensions

3.1 Homology

Definition 3.1. Let X be any space. Ωi(X) is the group of oriented bordism classes of manifolds
of dimension i. Elements of Ωi(X) have the form (M i, f), where M i is a closed oriented manifold
and f : M i → X is a continuous map. We say that two such pairs (M0, f0), (M,f) are bordant if
the disjoint union M0 t −M is the boundary of an oriented (i + 1)-manifold W , and there exists
a continuous mapping h : W → X such that h|M0 = f0, h|M = f . The group operation is disjoint
union, and inverses are by reversing orientation.
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Proposition 3.2. Let X be any space; i = 0, 1, 2, 3. Then Ωi(X) is isomorphic to Hi(X), with
the isomorphism given by

(M,f) 7→ f∗[M ]

Proof. The first ‘essential” singularity in an oriented manifold is a cone on CP 2. (With Z2, a cone
on RP 2)

Proposition 3.3. Let Xn be a manifold of dimension n ≤ 4. Then homology classes Hi(X) are
represented by (embedded) submanifolds

3.2 Intersection and Linking Pairings

Let Xn be a closed oriented manifold. Then the Universal Coefficient Theorem gives:

0→ Ext1
Z(Hp−1(X),Z)→ Hp(X)→ Hom(Hp(X),Z)→ 0.

By Poincaré Duality we have
Hn−p(X) ∼= Hp(X).

We also have the isomorphisms1

Ext1
Z(Hp−1(X),Z) ∼= Hom(THp−1(X),Q/Z) ∼= THp(X)

where TA = {x ∈ A | sx = 0 for some s 6= 0 ∈ Z}.
So rewrite as:

0 // Hom(THp−1(X),Q/Z) // Hp(X) // Hom(Hp(X)/THp(x),Z) // 0

0 // THn−p(X) //

OO

Hn−p(X) //

OO

Hn−p(X)/THn−p(X) //

OO

0

Thus

(a) We get an intersection form IX : Hn−p(X)/THn−p(X) × Hp(X)/THp(X)→ Z

(b) We get a linking pairing lkX : THn−p(X) × THp−1(X)→ Q/Z

which are both non-singular.

Geometrically these pairings are given by counting intersections (with sign). The linking number
is got by taking multiples of one class, getting a bounded guy, intersecting and dividing:

lkX(An−p, Bp−1) = #
An−p ∩ βp

m
∈ Q/Z

1See Appendix 6 for proof.
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where ∂βp = mBp−1(m 6= 0). (This is independent of m.)

These are particularly interesting in ‘middle’ dimensions.
i.e.

(a) p = n− p, so n = 2p is even

(b) n− p = p− 1, so n = 2p− 1 is odd.

Then symmetry is that

(a) IX(Ap, Bp) = (−1)pIX(B,A)

(b) lkX(ap, bp) = (−1)p−1 lkX(a, b).

Thus, for n = 4 there is a symmetric intersection form; for n = 3 there is a symmetric linking form.
However, for n = 4 there is also an interesting linking form for manifolds with boundary which we
shall also make use of later.

For manifolds with boundary, which are compact and oriented, we look at the relative (co)homology
groups in the upper short exact sequence above. Thus:

IX : Hn−p(X)/THn−p(X) × Hp(X, ∂X)/THp(X, ∂X)→ Z

lkX : THn−p(X) × THp−1(X, ∂X)→ Q/Z

We we cannot deal with symmetry here. But we can at least use Hp(X)→ Hp(X, ∂X) to get a
nicer pairing.

Remark 3.4. Relative homology classes are representable by proper submanifolds of (M,∂M).

Example 3.5. Let W 4 be a compact oriented 4-manifold with boundary ∂W = M .
Then long exact sequence of a pair in homology gives us:

H2(W )→ H2(W,M)
(�)−−→ H1(M)→ H1(W )

whilst Lefschetz duality and the Universal Coefficient Theorem give us

H2(W,M) ∼= H2(W )
(∗)−−→ Hom(H2(W ),Z)→ 0.

Assume for now that H1(W ) = 0; then (∗) is an isomorphism, as the relevant Ext group from
the Universal Coefficient Theorem vanishes, and (�) is a surjection. We have the exact sequence

H2(W ) IW−−→ (H2(W ))∗ → H1(M)→ 0.

Concrete example: W = B4 ∪framed link L 2-handles.
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Think of 2-manifolds: 1 handles attached
along framed links S0 in boundary S1.

B2 x B2

S1 x B2

B4

Attach 2-handles B2 × B2 to framed links in S3 = ∂B4. Use Z to give the framing of each
component of the link (write a number next to it in a diagram) , i.e. to specify the thickening
of each S1 ↪→ S3 to an embedding S1 × B2 ↪→ S3. The framing measures the self-linking of
the boundaries of the core B2 × {0} of each 2-handle by measuring the linking of two circles
∂B2 × {pi} = S1 × {pi} ⊂ S1 ×B2, i = 1, 2.

We get a linking matrix V . W ' 0-cell ∪ n 2-cells, so H2(W ) ∼= Zn, π1(W ) ∼= 0 ∼= H1(W ). We
have:

Zn V=IW−−−−→ Zn → H1(M)→ 0

A basis for H2(W ) can be represented by the cores B2 × {0} of the 2-handles, union with cones
on link components, or Seifert surfaces for the components. Use cones, intersected with the Seifert
surfaces, to compute linking numbers as intersections.

Now, return to relating the forms algebraically.
The linking form λ on M is determined by IW . Take a torsion element a in H1(M) (λ is defined

on the torsion part of H1(M), so we may as well assume that IW has finite cokernel, so all of
H1(M) is torsion). We can lift a, b to elements A,B ∈ H2(W,M), since (�) above is a surjection.
Now find an integer m such that mB 7→ mb = 0 ∈ H1(M), and so mB comes from an element C
of H2(W ). Then take the intersection of C and A using the image of A under (∗), and divide by
m. We thus obtain λ(a, b)

If we have:
Zn IW−−→ Zn → cokernel = H1(M)→ 0
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W

M
a b

we get a pairing:
(a, b) ∈ H1(M) 7→ (ã, I−1

W (̃b))

where IW is inverted over the rationals, tilde denotes a lift into Zn, and the brackets denote the
Kronecker pairing i.e. dot product of vectors. Compare with the localisation exact sequence in
L-theory.

Let A be a Principal Ideal Domain. Then the group Ln(A) is the group of algebraic cobordism
classes of chain complexes over the ring A. Ln(A,A − {0}) is the group of cobordism classes of
such chain complexes which become contractible upon inverting all non-zero elements of A, which
is the for n = 4 is the group of linking forms on the 1st homology of the chain complexes. L4(A)
is the group of non-singular intersection forms on 4-dimensional chain complexes. The L-theory
localisation exact sequence is:

· · · → L4(Z)→ L4(Q) ∂−→ L4(Z,Z− {0})→ L3(Z)→ · · ·

Every 3-manifold is null-cobordant (Theorem 3.6), so M ∈ L3(Z,Z− {0}) maps to zero in L3(Z).
It therefore lifts to L4(Q); the linking form on M is given by intersections in a 4-manifold which
it bounds, with a non-singular form after localisation, in other words allowing rational numbers to
invert the matrix. This corresponds to the homology of M being Z-torsion.

Recall: given a framed link L ⊆ S3, we attach handles and denote the resulting 4-manifold by
W 4
L, and M3

L := ∂W 4
L. M3

L comes from doing the surgery on S3 specified by the link, and W is a
null-cobordism for M .

Theorem 3.6 (Bing, Rochlin, Lickorish, Wallace, Rourke). Any closed oriented 3-manifold is the
boundary of a 4-manifold, i.e. Ω3 = 0.

Proof. We use the Pontrjagin-Thom construction to get the result that

Ω3
∼= π3(MSO) := lim−→π3+k(MSO(k))
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where MSO(k) is the Thom space of the universal bundle over the classifying space BSO(k): it is
the Thom spectrum for the generalised homology theory of oriented bordism. Ω1 and Ω2 are zero by
classification of 1- and 2-manifolds, so therefore π1+k(MSO(k)) and π2+k(MSO(k)) are zero for k
sufficiently large. We also know that MSO(k) is a (k−1)-connected space since it is the Thom space
of a CW-complex, so that πm(MSO(k)) = 0 for 1 ≤ m < k. Also πk(MSO(k)) ∼= Hk(MSO(k))
by the Hurewicz Theorem, so that π3(MSO) ∼= H3(MSO).

Now by the Thom isomorphism theorem, Hi+k(MSO(k)) ∼= Hi(BSO(k)). By definition of
BSO(k) we have πn(BSO(k)) ∼= πn−1(SO(k)).

Therefore: π1(BSO(k)) = π0(SO(k)) = 0 since SO(k) is connected. Then π2(BSO(k)) ∼=
H2(BSO(k)) by Hurewicz. Next π3(BSO(k)) ∼= π2(SO(k)) = 0 since SO(k) is a Lie group.
Applying Hurewicz again tells us that the map π3(BSO(k))→ H3(BSO(k)) is a surjection, which
means H3(BSO(k)) = 0.

Remark 3.7. We can continue to get Ω4
∼= Z. Then, step 2 is to surger the 4-manifold on circles

to kill π1. (The circles are embedded, with neighbourhoods which are trivial bundles.) This is
equivalent to exchanging the dots for zeros in a Kirby diagram; turning the handle decomposition
upside-down and repeating with the 3-handles we get only 0-handles and 2-handles. The cobordism
class of a 4-manifold is given by the signature of the intersection form on H2(W ; Z) - for a proof of
this see for example Kirby’s Topology of 4-manifolds

Addendum: we can assume all framings are even. This comes from Ωspin
3 = 0, some handle-

slides, and the Wu formula. e.g. L =©+1 ; WL = CP2 − ball (which is the Hopf disk bundle over
S2. See Gompf and Stipsicz p106), is not spin, but it can be closed off with a 4-ball, so it isn’t a
counterexample.

The Wu formula says that the second Stiefel-Whitney class w2(W ) is characterised by w2 ∪ x =
x∪x mod 2. Since every 3-manifold is parallelisable, every 3-manifold can be given a spin structure,
and every spin 3-manifold is the boundary of a spin 4-manifold, such a spin 4-manifold must have
x ∪ x = 0 mod 2 for all x ∈ H2(W ; Z). There must therefore be, by Kirby’s theorem, a sequence
of handle slides which leaves each component of the link having even framing. (See Section 4.2
below.)

Corollary 3.8 (Kervaire, in higher dimensions). Any knot S2 ⊆ S4 is slice; i.e. extends over a
3-ball in B5.

Proof. Pick a Seifert surface F 3 ⊆ S4, ∂F 3 = K. (Use the standard construction of a Seifert
surface using a map S4 − K → S1 representing a generator of H1(S4 − K): Alexander Duality
⇒ H1(S4 − S2) ∼= Z). By Theorem 3.6, F is obtained from surgery on B3 (cap it off with another
B3 to get S3, use the theorem, and remove at the end.) Therefore the converse is also true; we can
surger F to become B3 along some link L ⊆ F . Now it’s no problem: we need only to surger along
these by adding 2-disks in B5. Each circle of L bounds a disk in B5, and they are disjoint, purely
by a general position dimension count.
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We now need to discuss framings: thicken each B2 ⊆ B5 up to a B2×B2. We need even framing
on the link to do it right. Recall that the normal bundle of a disc B2 in B5 is trivial, but then can
always find in any trivial R3-bundle on S2 a 2-plane sub-bundle with any even Euler characteristic.
Thus, surgeries are possible ambiently, if and only if we have even framings, but this is always
possible so we can surger F 3 ambiently in B5 to become B3.

3.3 High dimensional Concordance

Recall:

C1 =
{S1 ⊆ S3}
∂{B2 ⊆ B4}

.

There is an analogous definition of high dimensional concordance groups:

Cn :=
{Sn ⊆ Sn+2}

∂{Bn+1 ⊆ Bn+3}

Remark 3.9. Codimension 2 is the only interesting case to define such concordance groups, at
least in Piecewise-Linear theory: we have the Schönflies theorem for codimension 1.

The difficulty for C1 corresponds to π1 being non-trivial.
The proof of unknotted-ness in codimension 3 starts by observing that the complement has the

same π1 as an unknot complement.

Theorem 3.10. For n ≥ 4, the groups Cn are 4-periodic in n, in the PL category;

(a) C0 = C2 = 0;

(b) C1 is unknown;

(c) C2k = 0 k ≥ 2;

(d) C4k+1
∼= AC− k ≥ 1

(e) C4k−1
∼= AC+ k ≥ 2

In addition:
0→ C3 → AC+ → Z2 → 0

with the Z2 term coming from Rochlin’s theorem, as σ(S+ST )
8 (mod 16). Recall the definition of the

algebraic concordance groups:

AC± =
{Seifert forms S : Zn → (Zn)∗ with S ± ST an isomorphism}
{metabolic forms: those with a Lagrangian summand}
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Denotes the unknot.

Remark 3.11. AC− was original group, (k = 0); AC is the appropriate thing in the other dimen-
sions.
The map: Cn → AC± given by the Seifert form is clear.
AC± are in fact isomorphic to

⊕
∞ Z ⊕

⊕
∞ Z2 ⊕

⊕
∞ Z4.

Lemma 3.12. C1 → AC− is onto.

Proof. Create a knot by making a banded Seifert surface for it: just twist the bands and link them
appropriately. Given any matrix S such that S − ST = J , where J is the standard symplectic
matrix with block diagonals of the form (

0 1
−1 0

)
,

we can do it. As J is the only skew isomorphism (of a given rank, up to congruence), we are done.
(In higher dimensions, use plumbing: plumbing of disks creates linking of their boundary spheres.)

Sketch proof of theorem 3.10 on Cn≥4. We have already proved C2 = 0, while C0 = 0 is clear. Pick
a Seifert surface for the knot. By ambient surgeries below the middle dimension, we can assume
that F is alterable to a slice disk Bn+1 ⊆ Bn+3 for n even. This finishes case (c).

If instead S2k−1 ⊆ S2k+1, with S2k−1 ⊆ F ⊆ S2k+1, then we may assume that F is a connected
sum:

](Sk × Sk)− Ḃ2k

by again performing surgery below the middle dimension. Note that the first stage of this is to
kill π1(F ); so that the fundamental group of the knot complement is infinite cyclic; as intimated
above this is one of the places the argument goes catastrophically wrong in the classical dimension.
After this concordance we have an analogue of the ](S1 × S1)− Ḃ2 which occurs in the dimension
3 case. Now S is again the linking form on the middle homology of this subset F inside S2k+1.
Arrange as before to get the onto case � AC± as appropriate. Final step: if S has a Lagrangian in
Hk(F 2k), then the original knot was slice: this is true when k > 1. In order to see this, represent
the Lagrangian by a link L = qSk ⊆ F 2k ⊆ S2k+1. For k ≥ 3 use the Whitney trick to make them
disjoint. For k = 2 we need the stable Whitney trick, and the power of transverse spheres. We
need a lemma to complete the proof:
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Lemma 3.13. If L : q Sk → S2k+1 has trivial linking numbers and k > 1, then L is slice (in fact
trivial).

We are then done as normal by surgery. The classical dimension is different because the dimension
does not drop with this progression: e.g. when trying to slice a knot S3 ⊆ S5, at this stage have
to slice S2 ⊆ S5.

Proof of Lemma:
We have to remove intersections of discs Bk+1 ⊆ B2k+2. Since the linking numbers of the boundaries
vanish, we know that any intersections pair up, so we can use the Whitney trick to cancel them.
The ambient dimension is at least 6, so this works admirably.

Remark 3.14. Addendum to high dimensional concordance theorem. It is very important to
specify the category in we which we work, either: Smooth, Piecewise Linear, or Topologically
Locally Flat. Theorem 3.10 applied to PL version. For n ≥ 4,

CPLn = CT OPn =


0 n even
AC+ n = 4k − 1
AC− n = 4k + 1,

whereas in the smooth case there is a problem with realising symmetric forms using plumbing: can
get exotic spheres knotted. So we have the same result for CDIFFn for n 6= 4k ± 1, but :

0→ CDIFF4k−1 → AC+ → Znk
→ 0

The map AC+ → Znk
is given by:

S 7→ σ(S + ST )
8

.

nk is the order of the Kervaire-Milnor exotic sphere Σ4k−1 in the group of exotic spheres Θ4k−1.
Recall that:

Θ4k−1 :=
{manifolds homeomorphic to S4k−1}
{those diffeomorphic to S4k−1}

,

with the group operation of connected sum is a finite group. In order to prove that Σ]Σ is diffeo-
morphic to S4k−1, use the h-cobordism Σ× I minus a tube (the connected sum) and a ball (so we
have a cobordism to the standard sphere).

Remark 3.15. In the 4k + 1 case there is a similar Arf invariant problem, better known in this
case as the Kervaire invariant problem.2.

0→ CDIFF4k+1 → AC− → {Z2 or 0} → 0

2It is now known, by recent work of Hopkins, Hill and Ravenal, that no manifold exists with Kervaire invariant 1
in dimensions greater than 126, while in some dimensions below there is such a manifold; 126 is still open.
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The problem in the previous proof was trying to realise an even unimodular form stabilised by
hyperbolics geometrically.

Theorem 3.16 (Serre, 1962).

(S + ST )⊕ hyperbolic ∼=
k⊕
i=1

E8 ⊕ hyperbolic

with 8k = σ(S + ST ).

To realise this as an intersection form of a Seifert surface W 4k ⊆ S4k+1 do plumbing. By Serre’s
theorem, it is sufficient to be able to realise the E8 form. This is equivalent to taking a link L of
(2k − 1)-spheres in S4k−1 (framed, with a π2k−1(SO(2k)) ∼= Z worth of framings to choose from)
whose linking matrix corresponds to the E8 form’s intersection matrix, and using this to attach
handles to B4k as usual to make

W 4k
L ∪ 2-handles '

∨
S2k.

Note that π1(WL) = 1, and the middle dimensional homology is H2k(W 4k
L ) ∼= Z]L, with the

intersection form:
H2k(WL)→ H2k(WL)∗ ∼= H2k(WL,ML)

given by the linking matrix. The isomorphism here is a combination of Universal coefficient theorem
and Poincaré-Lefschetz duality. The boundary ML of WL also has trivial fundamental group, and
is a homology sphere if and only if the linking form is non-singular. This can be seen from the long
exact sequence of the pair (WL,ML). The non-trivial part of this sequence is

H2k+1(WL,ML)→ H2k(ML)→ H2k(WL)→ H2k(WL,ML)→ H2k−1(ML)→ H2k−1(WL)

which yields
0→ H2k(ML)→ Z]L φ−→ (Z]L)∗ → H2k−1(ML)→ 0.

If the linking form is non-singular then the central arrow φ is an isomorphism which implies the
vanishing of the middle-dimensional homology groups of M shown. For k > 1, the h-cobordism
theorem, which implies the high-dimensional Poincaré hypothesis, then implies that we have a
homeomorphism ∂WL ≈ S4k−1. Note that WL is not an h-cobordism which would show this; one
is however certain to exist. ∂WL is Σ4k−1, the Kervaire-Milnor sphere ∂(E8). (This is independent
of the choice of link: it is classified up to isotopy by the linking form.) Also in this construction
W 4k always embeds in S4k+1 (proof below), and is a Seifert surface and knot pair. This shows that

CCAT4k−1 � AC+

for CAT = PL or T OP, but not in the smooth case, because Σ4k−1 is not diffeomorphic to S4k−1.
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Remark 3.17. n2 = 28; Σ7 generates Θ7. This is the famous initial example of Milnor.

Proposition 3.18. WL ⊆ S4k+1.

Corollary 3.19. The proposition, with k = 1, implies that any closed oriented 3-manifold embeds
in S5. (Note that Whitney’s best case would give an embedding in S6 here.)

Proof of Proposition 3.18. Consider WL × I; each handle has its thickening increased by a dimen-
sion, so this is of the form B4k+1 ∪ (2k− handles). They now attach along a trivial link because of
the dimension shift. Then, taking B4k+1 as one half of S4k+1, we can attach the 2k-handles ambi-
ently in the other half, using the fact that the link is slice. We then have to make sure the framing
is right to be sure that the slice disks can be thickened to 4k-dimensional 2k-handles B2k × B2k.
However, at present we have trivially framed 4k+1-dimensional 2k-handles B2k×B2k+1. We claim
that within any 4k + 1-plane bundle, it is possible to find 4k-bundles with any even Euler class.

To see this, examine the exact sequence of homotopy groups associated to the fibration SO(2k)→
SO(2k + 1)→ S2k:

π2k(S2k)→ π2k−1(SO(2k))→ π2k−1(SO(2k + 1))→ 0.

The framing of the link L ∼= qS2k−1 ⊆ S4k−1 yields elements of π2k−1(SO(2k)) ∼= Z as given
by the Euler class of the vector bundle, while after allowing an extra dimension the, now trivial,
link component’s framing gives elements of π2k−1(SO(2k + 1)). From the exact sequence, every
element of π2k−1(SO(2k + 1)) lifts to π2k−1(SO(2k)). It is trivial precisely when the element of
π2k−1(SO(2k)) comes from an element of π2k(S2k). Since this last group is generated by the identity
map, and maps to TS2k ∈ π2k−1(SO(2k)), which has Euler number 2, we see that trivial framings
lift to even framings when we reduce the ambient dimension by one.

It is precisely even framings on spheres which can be extended across disks; furthermore as we
discussed above any 3-manifold can be represented by a link which has only even framings. This
completes the proof.

Theorem 3.20. If a 3-manifold M ∼= ML, for L a 0-framed link which is the union of two slice
links, then M3 embeds in S4.

Example 3.21. Two unknots linked n times via n twists, 0-framed. In other words, two fibres of
n ∈ Z ∼= π3(S2).

H1(ML) ∼= coker
(

0 n
n 0

)
∼= Zn ⊕ Zn

Actually ML is L(n, 1)]L(n, 1), but a single lens space does not embed in S4.

Proof of Theorem 3.20. If the whole link were slice, it would be easy: WL ⊆ S4 as before, but with
the ambient dimension one fewer. We need the zero framing here to be able to thicken the slice
discs to 2-handles inside B4. Now if the individual components are slice, attach one 2-handle in
one B4 half of S4, and the other handle in the other half of S4. WL does not embed in S4 but its
boundary 3-manifold does.
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(Note that WL with one handle surgered to be a 1-handle does embed; i.e. slice knot ∪ dotted
unknotted circle. This is because the 1-handle denotes something to be scooped out of the first B4,
and the 2-handle is then attached into the other half.)

Next, we must consider 4-manifolds with 1-handles, because π1(B4 \ slice disc) ∼= Z. These can
still be drawn with link pictures, where we use dotted circles to indicate 1-handles.

Theorem 3.22 (Laudenbach). A closed 4-manifold N4 with a handle decomposition is determined
by its 2-skeleton. This follows from the fact that any diffeomorphism of ] S1 × S2 extends over
] S1 ×B3.

Remark 3.23. His proof is by the classification of the mapping class group of ] S1 × S2. A
particular element is the Glück twist:

S1 × S2 → S1 × S2

(x, v) 7→ (x, x.v) x ∈ SO(2) ⊂ SO(3) which acts on S2

We can cut out S2 ×B2 from a 4-manifold and reglue it in this way, which might be a way to get
an exotic smooth structure on S4.

4 Back to Classical Knot Concordance

In this section we have knots S1 ⊆ S3, which are slice if they bound properly embedded, locally
flat discs D2 ⊆ D4, such that ∂D2 = S1, ∂D4 = S3.

4.1 The Cappell-Shaneson way to slice a knot

Lemma 4.1. If K is slice then M3
K = 0-framed surgery on K bounds a 4-manifold W such that

(i) H1(M) ∼= H1(W ) ∼= Z with the isomorphism induced by the inclusion M ⊆W ;

(ii) H2(W ) = 0;

(iii) π1(W ) is normally generated by the meridian of the knot.

Theorem 4.2 (Freedman). The converse holds in the topological locally flat category.

Remark 4.3. If (i) and (ii) are satisfied then K is slice in a homology 4-ball. We call such a knot
homologically slice. However, there are no known obstructions which are able to tell the difference
between homologically slice and actually slice.
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Proof of Lemma 4.1. Define W 4 = B4 \ (D2 × D2), a 4-ball minus a thickened slice disk for the
knot. Then ∂W = MK . It is the 0-framed surgery because the push-off of K along the slice disk,
towards its centre, does not link with K. Then (i) and (ii) follow from Alexander duality, or a
Mayer-Vietoris calculation. Decomposing MK = X ∪(S1×S1) (D2 × S1), where X = S3 \ (S1 ×D2)
is the knot exterior, the Mayer-Vietoris sequence yields that Hi(MK ; Z) ∼= Z for i = 0, 1, 2, 3, and
is of course zero otherwise. Decomposing B4 = W ∪D2×S1 (D2 × D2), Mayer-Vietoris implies (i)
and (ii).

(iii) follows from the geometric fact that adding a handle which kills the meridian makes the group
zero. This can be seen with the Seifert-Van Kampen theorem: since D4 = W ∪D2×S1 D2 × D2.
The boundary of D2 ×D2 is D2 × S1 ∪ S1 ×D2, but the S1 ×D2 represents the neighbourhood of
the knot: W and D2 ×D2 are just glued together along D2 × S1 which is properly embedded in
D4. Therefore:

π1(D4) ∼= 1 ∼=
π1(W ) ∗ π1(D2 ×D2)

π1(D2 × S1)
∼=

π1(W )
π1(D2 × S1)

which shows that the image of the meridian generates π1(W ) as claimed. If B4 were just a homology
4-ball, then (i) and (ii) still hold, but (iii) might not.

Proof of Remark 4.3. Suppose there is a W such that (i) and (ii) hold. Start with this W , and
attach a 2-handle to W 4 along the meridian - do the reverse surgery to that which made MK from
S3. Then W ∪MK

(D2 ×D2) is a homology 4-ball. Its boundary is S3, and the knot lives in S3 as
the belt sphere of the attached 2-handle {0} × S1 ⊆ D2 × D2, and the cocore of the handle is a
homology slice disk for the knot.

Proof of Theorem 4.2. Start as above, making a homology 4-ball B with a slice disk. If we also
have condition (iii), then π1(B) = 0 so we have a homotopy 4-ball. We can then apply Freedman’s
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topological Poincaré hypothesis show that B is homeomorphic to B4. This is a strange homeo-
morphism: the same strangeness which means that it may not be smoothly a 4-ball, and which
made embedding Casson handles so hard. The slice disk looks strange but it is locally flat because
the homeomorphism carries a regular neighbourhood with it. The smooth case of this is an open
question: is a homotopy 4-ball diffeomorphic to B4?

Remark 4.4. There are examples of knots which are topologically locally-flat but not smoothly
slice: for example, the Whitehead double of a 0-framed trefoil had Alexander Polynomial 1 and so
is topologically slice, however results of gauge theory which estimate the slice genus can show that
it is not smoothly slice.

The Cappell-Shaneson way to slice a knot is, instead of looking for the slice disk, to start with a
slice disk in a 4-manifold with boundary MK and try to change the 4-manifold so that the conditions
of Lemma 4.1 are satisfied. In this way the machinery of surgery theory can be employed to build
an obstruction theory.

4.2 Drawing 4-manifolds with 0, 1, and 2-handles

We have already discussed the case where there are no 1-handles. To attach a 1-handle to B4, we
attach a copy of B1 ×B3 to a pair of embedded 3-balls in the boundary S3. Since 1- and 2-handle
pairs cancel, this is the same as removing a 2-handle from the interior of B4 (it is helpful to first
imagine the picture in 1 dimension fewer, and then cross everything with I). For all the 1-handles
to be attached, we indicate the belt spheres {0} × S1 of the 2-handles to be removed from the
interior by drawing unknotted, unlinked dotted circles in S3 (in the 3-dimensional case we would
indicate an S0 in the boundary S2). The 1-handles generate the fundamental group.

We can then draw a framed link in S3, which may link with the dotted circles, to indicate the
attaching spheres for the 2-handles with their framing.

Theorem 4.5. The diffeomorphism type of WL is unchanged under the following moves on L:

(a) Isotopy of L.

(b) Handle slides of one handle over another. This means taking connected sum of one component
of L with a push off of another, using the framing to perform the push off (1-handles have
zero framing for this purpose). This is legal for 1-handles on 1 handles, 2 on 1, and 2 on 2.

(c) After first pushing them both off everything else, cancellation of a 1- and 2-handle pair. They
will be represented in L by a Hopf link in which one of the components is dotted.

Remark 4.6. We can compute π1(WL) by writing relations corresponding to the way in which
the 2-handle attaching maps link the dotted circles, which represent generators of the fundamental
group. We can compute H∗(WL) using the handle chain complex. Actually, we can compute the
handle chain complex and homology of the universal cover of W : replace each Z in the chain
complex with a copy of Z[π1(W )], and read off the intersection matrix with Z[π1(W )] coefficients.
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These can be defined if each of the handles is attached to a base point with some choice of path; each
intersection point between two handles comes with an element of π1(W ) given by concatenating
the paths belonging to each of the handles.
π2(WL) = π2(W̃L) = H2(W̃L; Z) = H2(WL; Z[π1(W )]) can be computed using the handle chain

complex as described.

Remark 4.7. When sliding handles over one another, we cannot do a band sum going through the
spanning discs for the 1-handles, since the spanning disk has been removed from B4; recall that
this is what the dotted circle denotes.

Remark 4.8. If L = L1 q L2, then WL = WL1]WL2 ; ∂WL = ∂WL1]∂WL2 . This means that
adding a ±1-framed unknot to L does not change the boundary of WL: it changes WL to WL]CP2.
This is called blowing up, and the reverse procedure is called blowing down. The name comes
from algebraic geometry, where the technique is used to blow up unwanted singularities of complex
surfaces by adding the freedom of an extra copy of CP2. (See Gompf and Stipsicz, Section 2.2)

Theorem 4.9 (Kirby). Two 3-manifolds M3
L1
∼= M3

L2
are diffeomorphic if and only if L2 can be

obtained from L1 by a finite sequence of isotopies, handle slides, births/deaths, and blowing up
and down.

Remark 4.10. For any smooth manifold, handle decompositions exist, since there exists a Morse
function and a gradient-like vector field on the tangent space. They are unique up to handle slides
and cancellation (Cerf theory - it has to be shown that the handles can always be arranged in
ascending or descending index with respect to the Morse function.)

4.3 Which 4-Manifolds does MK bound?

First attempt:
MK = ∂(B4 ∪K 2-handle)

The trouble with this is that it is simply connected but has second homology non-zero. We want
to get one with fundamental group equal to Z, so that the first homology is also Z.

Theorem 4.11. (a) There always exists a W 4 with ∂W = MK and H1(M) i∗−→ H1(W ) ∼= Z an
isomorphism. (and π1(W ) ∼= Z). The H2(W ) = 0 condition of Lemma 4.1 then gives rise to
the obstruction to slicing the knot. π2(W ) = H2(W̃ ) is a free Z[Z]-module of the same rank
as the rank of H2(W ) over Z.

(b) Let λ = I
W̃

be the intersection form on the universal cover of W . Then representing the
intersection form as a matrix over Z[π1(W )] = Z[Z] = Z[m.m−1] we have that det(λ)(m) =
∆K(m), the Alexander polynomial of K.

(c) Our W 4 from (a) has a twisted signature σ(I
W̃
⊗ C(z)), which coincide with the original

definition for a knot signature σz(K), for z ∈ S1 ⊆ C. C(z) is the field of fractions (so that a
signature is well-defined) of the ring of polynomials in z with complex coefficients, and z is a
character on Z ∼= π1(W ), n 7→ zn ∈ S1 ⊂ C.
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Remark 4.12. Recall that if a knot K is slice then it is homologically slice, so MK is the boundary
of N with H1(N) ∼= H1(MK), H2(N) = 0. This last condition, however, would force the intersection
form to be trivial and hence the Alexander polynomial to be 1. Since such knots are already known
to be slice, we are interested in those without this property, and so will need 4-manifolds with
more complicated groups than Z in order to apply the Cappell-Shaneson method to the classical
dimension.

Proof of Theorem 4.11. (a) Pick a Seifert surface F for the knot, and draw it in band form. Note
that the linking and framing of the bands define the Seifert matrix of linking numbers, which will
be of the form

V =
(

A C
I + CT B

)
,

where A = AT , B = BT , and V − V T is symplectic.
We can use this presentation of the Seifert surface to draw a link in S3, and thus to define a

4-manifold with the desired properties. The central disc of the Seifert surface becomes a dotted
circle, and the bands become 2-handle attaching maps, whose embeddings depend on the knotting
and linking of the bands. Figure 7 shows the procedure.

“a” curves, with framing according to twists 
in the corresponding bands

2

“b” curves, 0-framed but with 
correct number of twists.

0

Dotted circle = 1-handle

Repeated accordingly for 
the genus of the Seifert surface

Overall linking of 2-handle attaching 
maps with 1-handle circle is zero.

Linking 1 here,
corresponding to symplectic 
intersection form of H

1
(F)

Figure 7: Drawing a 4-manifold W0 with π1(W0) ∼= Z and ∂W0 = MK .
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So W0 is comprised of a 0-handle, a 1-handle, and 2g 2-handles. π1(W0) ∼= Z since there is a single
1-handle which has zero algebraic linking numbers with each of the 1-handles. W0 ' S1 ∨

∨
2g S

2.

Thus π2(W0) ∼= H2(W̃0) ∼=
⊕

2g Z[π1(W0)] ∼=
⊕

2g Z[Z], while H2(W0) ∼= Z2g.
To see that this 4-manifold has boundary MK , we have to apply some Kirby moves to change this

link into the knot: change the 1-handle to a 2-handle and slide it twice over each of the “a”-curves,
using a band which follows the “b”-curves to perform the connected sum for one of the slides, and
the obvious small band for the other one. This leaves the a and b curves as geometric duals which
can be cancelled, and leaves the old 1-handle zero framed and in the shape of K.

(b) To compute the intersection form λW on H2(W̃ ) ∼= π2(W ), we take a basis of immersed
spheres fi : S2 # W , with a threading. A threading is a path from the basepoint of W to the
basepoint of fi(s) where s is a basepoint of S2. Such spheres arise as the unions of the cores of the
2-handles with immersed discs which form null-homotopies of the attaching maps of the 2-handles
inside S1 × B3, which is the 4-manifold created by attaching a single 1-handle to B4. These null-
homotopies exist because each of the 2-handle attaching maps link the dotted circle zero times. We
count intersections of our spheres

(fi, fj) =
∑

x∈fi(S2)∩fj(S2)

ε(x) · g(x)

where ε(x) is the sign which arises from comparing orientations of the tangent bundles at a trans-
verse intersection, and g(x) is an element of π1(W ) which is the composite of the threading of fi,
paths from fi(s) to x and then from x to fj(s), followed by the inverse of the threading for fj . The
self intersections are counted by taking a parallel copy of each fi and counting as usual. (Not to
be confused with the quadratic self-intersection µ-form which we have not introduced.) Note that
we must have spheres and not surfaces (we could guarantee embedded surfaces to represent each
homology class of W ), unless there are conditions on the fundamental groups of the surfaces, since
otherwise they will not lift to the covering space due to their non-trivial fundamental groups. The
intersection form satisfies

λ(f1, f2) = λ(f2, f1)

where the involution used is induced from g 7→ g−1 on π1(W0). There is no sign change when
switching variables since the dimensions are even.

In order to relate the intersection form to the Alexander polynomial, consider the long exact
sequence of the pair (W0, ∂W0 = MK) with Z[Z] coefficients:

H2(W0; Z[Z]) λ−→ H2(W0, ∂W0; Z[Z])→ H1(MK ; Z[Z])→ H1(W0; Z[Z])

π1(W0) ∼= Z, so H1(W0; Z[Z]) ∼= 0. Poincaré-Lefschetz duality and universal coefficients mean that
H2(W0, ∂W0; Z[Z]) ∼= H2(W0; Z[Z]) ∼= HomZ[Z](H2(W0; Z[Z]),Z[Z]). This justifies the labelling
of the arrow λ; it is indeed the intersection form. H2(W0; Z[Z]) is free since there are no 3-
handles of W0. We therefore have H1(MK ; Z[Z]) ∼= coker(λ), and since the Alexander polynomial
is the characteristic polynomial of this Z[Z]-module, we have that ∆K = det(λ). Note that the
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determinant of λ depends on a choice of basis, which could vary by units in Z[Z]; however the
Alexander polynomial is also only ever defined up to a unit.

(c) Now, to compute the signature of the intersection form, we give an explicit matrix for it, using
the explicit 4-manifold W0 depicted in Figure 7. The immersed 2-spheres which form our basis of
H2(W0; Z[Z]) are given, as usual, by the cores of the 2-handles combined with immersed discs in
S1 × B3. These discs will have self intersections governed by the framing of the link components,
and will intersect one another depending on the way the components link one another. We count
these intersections with coefficients in 〈m〉 governed by linking with the dotted circle which denotes
the 1-handle. We claim that:

λ
W̃0

=
(

A I + (m− 1)C
I + (m−1 − 1)CT (m− 1)(m−1 − 1)B

)
where each of A,B,C are block g × g matrices from above, so A = AT and B = BT . For the off
diagonal entries, we try to homotope the a curves away from the b curves (look again at Figure 7).
Since the b curves imitate the bands of a Seifert surface, we get pairs of intersection points, and
an extra intersection at the end (the +1) due to the single linking of the a and b curves. Since
the two strands of the b curves differ by a single passage around the 1-handle i.e. through the
dotted circle, this explains the (m − 1) coefficient of C in the top right. The Hermitian property
of λ fills in the bottom left square for us. For the b-b pairs, each linking of the bands induces four
intersection points: hence (m − 1)(m−1 − 1)B. Similarly λ-self intersections, that is homological
self intersections, so intersections with a pushed off copy of the sphere, produces 4 intersection
points for each twist in the band. Note here the difference with the µ-form which counts actual
self intersection points. The intersections of the a curve spheres depend on the framing of the a
curves which were taken from the linking of the corresponding bands in the Seifert surface and do
not depend on m. Now, tensor with C(z), so that we can invert polynomials. We have

λ
W̃0

=
(

A I + (z − 1)C
I + (z−1 − 1)CT (z − 1)(z−1 − 1)B

)
Make a change of basis with change of basis matrix

P =
(

(z − 1)I 0
0 I

)
In particular note that z − 1 can be inverted now, so P is an invertible matrix. Also, in the
calculation below, the key step is that q = z − 1 is a quadratic element, so that qq = q + q. The
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matrix of λW0 becomes:

λW0 = P
T
(

A I + (z − 1)C
I + (z−1 − 1)CT (z − 1)(z−1 − 1)B

)
P

=
(

(z−1 − 1)I 0
0 I

)(
A I + (z − 1)C

I + (z−1 − 1)CT (z − 1)(z−1 − 1)B

)(
(z − 1)I 0

0 I

)
=

(
(z − 1)(z−1 − 1)A (z−1 − 1)I + (z − 1)(z−1 − 1)C

(z − 1)I + (z − 1)(z−1 − 1)CT (z − 1)(z−1)B

)
=

(
((z − 1) + (z−1 − 1))A (z−1 − 1)I + ((z − 1) + (z−1 − 1))C

(z − 1)I + ((z − 1) + (z−1 − 1))CT ((z − 1) + (z−1))B

)
= (z − 1)

(
A C

I + CT B

)
+ (z−1 − 1)

(
AT C + I
CT BT

)
since A = AT and B = BT

= (z − 1)V + (z−1 − 1)V T

the signature of which was defined earlier to be the signature of the knot σz(K). If z = 1, this

change of basis is not possible; however, we then have σ1(K) = 0, and the matrix
(
A I
I 0

)
, so

we still have agreement.

Example 4.13. Consider the link shown in Figure 8. This is a Kirby diagram for a 4-manifold
W with π1(W ) ∼= Z ∼= 〈m〉, π2(W ) ∼= Z[π1(W )] ∼= Z[m,m−1] (since W has just one 2 handle it
is homotopy equivalent to S1 ∨ S2) and H2(W ) ∼= Z. The Hurewicz homomorphism is given by
augmentation m 7→ 1. The intersection form IW = (1), as given by the framing on the 2-handle
attaching map.

+1

Figure 8: The Whitehead link with one component dotted as an example of W 4 with π1(W ) ∼= Z
and ∂W = MK .
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We can also compute the intersection form I
W̃

of the universal cover, which here is the infinite
cyclic cover. We can generate the second homology H2(W̃ ; Z) ∼= H2(W ; Z[m,m−1]) with an im-
mersed 2-sphere constructed from the union of the core of the 2-handle with a disc in S1×B3 with
one self intersection. We cannot use the core union a Seifert surface here because the Seifert surface
isn’t a disc, and so doesn’t extend to the universal cover as a surface because it has non-trivial
fundamental group. Passing through the dotted circle takes us to a different sheet of the covering.
The attaching circle of the 2-handle links adjacent copies of itself with linking number −1 and
links itself with linking number 1. This corresponds to analogous intersections of the corresponding
2-spheres. Therefore

I
W̃

= (−m−m−1 + 1)

which is the Alexander polynomial of the trefoil. Furthermore, we can work out the boundary of
W as follows. First, change the 1-handle to a zero framed 2-handle. Then exploit the symmetry
of the Whitehead link to obtain the same picture as in Figure 8 but with the dot replaced with a
+1 and the +1 replaced with a 0 (See Figure 9, where the link components are labelled x and y).
Slide the handle labelled x twice over the handle labelled y, once for each strand of x which passes
through y. This should be done with orientations opposite on each handle slide. The effect of this
is to move y away from x, and to introduce a full twist in x, without changing the framing. We
can then blow down y to leave a trefoil knot with 0 framing. Therefore W has boundary M31 , the
zero-surgery on the trefoil.

+1

0

x

y

Figure 9: Finding the boundary of W .

5 L2-homology

5.1 Introduction

So far we do not have any new concordance invariants beyond the “high-dimensional” invariants
which detect non-algebraically slice knots: we have only looked at 4-manifolds with fundamental
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group Z. In order to obtain more sophisticated invariants we need to look at 4-manifolds with larger
groups, and their equivariant intersection forms. The group rings will be non-commutative rings;
our tools (to be defined below) for detecting the signatures of forms over non-commutative rings
will be the L2-homology and the L2-signature. We need a generalisation of the idea of dimension for
submodules after embedding the group ring in its Von Neumann algebra. This enables us to look
at the difference between the dimensions of the positive and negative eigenspaces of a Hermitian
operator on a Hilbert space corresponding to a symmetric sesquilinear form, and so to define a
real number which is the L2-signature, giving a homomorphism from the Witt group of such forms
to R. When defining this for a knot, to get a concordance invariant, we look at the L2-signature
of the equivariant intersection form of a 4-manifold whose boundary is MK . We then define the
reduced L2-signature which is an invariant of the zero surgery, so does not depend on the choice of
4-manifold. In order to calculate these signatures we are therefore able to make judicious choices
of 4-manifold, whose intersection forms we can exhibit explicitly. In the case of W0 above, it turns
out that the L2-signature is given by integrating the twisted signatures of the knot around S1.

5.2 Atiyah’s original definition of L2 Betti Numbers

Suppose M is a compact Riemannian manifold, and M → M is a regular cover with an infinite
group as deck transformations, so M is non-compact. The idea is to measure the space of smooth
L2-integrable p-forms on M (if they exist - this is not immediately clear). It will be either zero or
infinite dimensional, so we want a measurement of dimension which is zero if and only if there are
no such forms. Thus, the analytic L2-Betti number is

b(2)
p (M) = lim

t→∞

∫
a fund. domain for M

trC(et4p(x, x)) dx

• 4p : Ωp(M)→ Ωp(M) is the Laplacian on p-forms (lift the metric).

• et4p(x, x) is the heat kernel.

• trC means the normal matrix trace of the section of End(Λp(TM)) i.e. fibre-wise trace.

• The group Γ of the covering is brought in by the choice of fundamental domain i.e. it cannot
just be an invariant of the covering.

Remark 5.1. These Betti numbers are zero for circle and tori, but are non-zero for surfaces and
H2 covering spaces.

5.3 Alternative Approach

If X̃ → X is the universal covering of a finite CW-complex X, andM is a π1(X) module, then we
can define

Hp(X;M) = Hp(C∗(X̃)⊗Z[π1(X)]M).
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For example, suppose we have a surjection π1(X) � Γ. Then we can define Hp(X; Z[Γ]) =
Hp(C∗(X̃) ⊗Z[π1(X)] Z[Γ]) = Hp(X), the homology of the cover corresponding to Γ. Hp(X) is
a Z[Γ] module, but algebraically it is not at all well understood - it might not even be finitely
generated, since the ring Z[Γ] is non-Noetherian which means that submodules of finitely generated
modules may not be finitely generated.

The idea is then to embed Z[Γ] ↪→ NΓ, the Von Neumann Algebra of Γ, a ring with a much
simpler representation theory. Then:

Definition 5.2.
Hp(X) = Hp(X;NΓ) is the L2 homology; and

b(2)
p (X) = dimNΓHp(X;NΓ) ∈ [0,∞) .

We now define the Von Neumann Algebra.
Let Γ be a countable discrete group and consider the Hilbert space l2Γ of square-summable

sequences of group elements with complex coefficients.

{Σagg | ag ∈ C,Σ|ag|2 <∞}.

The group Γ acts by left- and right- multiplication on l2Γ. These operators are obviously isometries
and we can consider the embedding

CΓ ↪→ B(l2Γ)

corresponding to (sums of) right multiplications into the space of bounded operators on l2Γ.

Definition 5.3. The (reduced) C∗-algebra C∗Γ is the completion of CΓ with respect to the operator
norm on B(l2Γ). The von Neumann algebra NΓ is the completion of CΓ with respect to pointwise
convergence in B(l2Γ). In particular we have CΓ ⊆ C∗Γ ⊆ NΓ.

Von Neumann’s double commutant theorem says thatNΓ is equal to the set of bounded operators
which commute with the left Γ-action on l2Γ:

NΓ = B(l2Γ)Γ

Example 5.4. (a) |Γ| <∞⇒ NΓ = C[Γ] which is semisimple, so the algebra is manageable.

(b) Γ = Z: then NΓ = L∞(S1; C), the space of (almost everywhere) bounded functions S1 → C.
C[Γ] sits inside this as Laurent polynomials.

5.4 Trace

We define a trace operator in order to measure dimension of subspaces: recall that if we have
a subspace U of a finite dimensional vector space V , then choosing a basis and representing the
projection pr : V → U as a matrix, and taking its trace tells us the dimension of U ; this follows
easily from the fact that the trace is invariant under change of basis, and so in a sense the trace
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tells us the definition of the projection operator. We need to generalise this to the setting of Hilbert
spaces operators and thus to Von Neumann algebras; we now get a real valued idea of dimension.
We define:

tr : NΓ→ C by:

a 7→ 〈a(e), e〉l2Γ,

where e ∈ l2(Γ) is the identity element, so that for a ∈ CΓ, tr(a) = ae = coefficient of e. (This is
not the usual augmentation.) It satisfies:

(i) tr(ab) = tr(ba).

To see this, it is enough to show that it is true for a ∈ NΓ and g ∈ Γ by linearity. But

〈ag(e), e〉 = 〈(ae)g, e〉 = 〈ae, g−1e〉 = 〈g(ae), e〉

using the bi-module property and that the left and right Γ-actions are isometries.

(ii) tr is faithful, i.e. tr(a∗a) = 0 if and only if a = 0. This is because

〈a∗a(e), e〉 = 〈ae, ae〉 = 0⇔ ae = 0.

But then ag = 0 for all g ∈ Γ by right multiplication and then by continuity a · CΓ = 0 so a = 0.

Definition 5.5. Let P be a f.g. projective NΓ module; i.e. P = im(p) for some p ∈Mn(NΓ) with
p2 = p = p∗. Then we can use the trace operator to define the Γ-dimension:

dimNΓ P = trΓ(p),

where the right hand side is given by the sum of the Γ-traces of the diagonal entries of p. Since
p = p∗ and tr(a∗) = tr(a), this is a real number, in fact a positive real number: tr(p) ∈ [0,∞) since:

tr(p) = tr(p2) = tr(p∗p) = 〈pe, pe〉 ≥ 0.

We therefore have a map:
K0(NΓ)→ R.

Theorem 5.6 (Farber,Lück). NΓ is a semi-hereditary ring: any f.g. submodule of a projective
module is projective.

Corollary 5.7. Given X → X, there are finitely generated projective modules Pi, Qi such that
the following is exact:

0→ Pi → Qi → H
(2)
i (X)→ 0

(The L2 homology modules have homological dimension 1.) Thus we can define, for H(2)
i (X), which

is not necessarily projective, the Betti numbers:

b
(2)
i (X) = dimNΓQi − dimNΓ Pi.
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Remark 5.8. According to W. Lück we can actually extend the dimension to all modules over
NΓ.

Remark 5.9. Specialise again to Γ = Z: l2(Z) is the Fourier expansion L2(S1; C) but taking
closure in bounded operators gets us as above to L∞(S1; C) which is all bounded functions modulo
differences on sets of measure zero; trace becomes integration over S1, since in 〈f.e, e〉, e is the
constant function 1 and inner product is integral.

Let A be a C∗ algebra with involution ∗. Pick a ∈ A which is normal, that is aa∗ = a∗a, and
consider spec(a). Since A is a C∗-algebra, spec(a) is compact, so there is a ∗-ring homomorphism.

C0(spec(a); C)→ A; f 7→ f(a)

which sends Idspec(a) 7→ a, and the constant 1 7→ 1. We send functions to S1 to units, polynomials
to polynomials and real valued functions to hermitian operators. a generates an abelian subalgebra
which equals C0(spec(a)) by Gelfand-Naimark. If A is a Von-Neumann Algebra, then the above ap-
plies, and moreover it also applies with L∞(spec(a); C)→ A, i.e. with bounded almost everywhere
functions rather than just with continuous functions. This map is the functional calculus - starting
with a normal element of our Von Neumann algebra we obtain a new element for each function on
the spectrum. For A = Mn(NΓ), this element can be used to define projective submodules of A.

Given h ∈ Mn(NΓ) which satisfies h = h∗, we want to define the L2-signature σ(2)
Γ (h) ∈ R.

To define the L2-signature, consider a hermitian (n × n)-matrix over NΓ, h ∈ Hermn(NΓ), as a
bounded, hermitian Γ-equivariant operator on the Hilbert space (l2Γ)n. Its spectrum spec(h) is a
(compact) subset of the real line and for any bounded measurable function f on spec(h) we may
define the bounded Γ-equivariant operator f(h) ∈ Mn(NΓ) by functional calculus. In particular,
consider the characteristic functions p+, p−, p0 : R→ R of (0,+∞) respectively (−∞, 0), {0}.

Theorem 5.10 (Functional Calculus). There are finitely generated projectiveNΓ-modulesH+, H−, H0

such that after a base change (h 7→ aha∗), there is an orthogonal decomposition

H := (l2Γ)n = H0 ⊕H+ ⊕H−

such that

h =

 0
+1

−1


Proof. h is a Hermitian operator in H := B((l2Γ)n). Then spec(h), the set of λ ∈ C such that
h − λ.Id is not invertible, is a compact subset of R. (Bounded operators have compact spectra;
Hermitian operators have real elements in their spectra.)

Then, given any bounded function f : spec(h) → R, there is a Hermitian operator f(h) with
spec(f(h)) = f(spec(h)). The proof of this is that for polynomial f , f(h) is defined uniquely. In
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general, f is the point-wise limit of polynomials fi: define f(h) = point-wise limit of fi(h), which
by definition lives in Mn(NΓ). Note that, as above, the functional calculus

L∞(spech,C)→Mn(NΓ);

f 7→ f(h)

is a C∗-algebra homomorphism. Now define f+, f−, f0 by Heaviside type functions, so that we
use the characteristic functions of the intervals (0,∞), (−∞, 0) and the singleton {0} in R. 1 =
f+ +f−+f0, so h = f+(h)+f−(h)+f0(h) giving an orthogonal decomposition of the Hilbert space
as H+ := f+(h)(H), H− := f−(h)(H) and H0 := f0(h)(H). For example, f+(h) ∈ Mn(NΓ), so its
image is a projective submodule of H. Since the functional calculus is a homomorphism, the maps
f+, f−, f0 are commuting projections, and so we get an orthogonal decomposition as claimed.

Definition 5.11. The signature map σΓ : Hermn(NΓ) → K0(NΓ) is defined by sending h to the
formal difference p+(h) − p−(h) of projections in Mn(NΓ). The L2-signature of h ∈ Hermn(NΓ)
is defined to be the real number

σ
(2)
Γ (h) := trΓ(p+(h))− trΓ(p−(h)) = dimNΓ P+ − dimNΓ P−.

Remark 5.12. |σ(2)
Γ (h)| < n. To see this note that dimNΓ(NΓ) = 1; since p = p2 = p∗ acts on

one NΓ. Also 0 ≤ tr(p) ≤ 1: just use (1− p)∗ = (1− p) as well, so tr p ≥ 0, tr(1− p) ≥ 0.

Lemma 5.13. The L2-signature only depends on the Γ-isometry class of h ∈ Hermn(NΓ), i.e. it
is unchanged under h 7→ a∗ha for a ∈ GLn(NΓ).

Proof. Consider the Hilbert space H := (l2Γ)n with the bounded Γ-equivariant operators h and a.
We have an orthogonal decomposition of Hilbert spaces

H = H0 ⊥ H+ ⊥ H−

as above. For a vector v in one of the three summands above, one has by definition that

〈h(v), v〉 = 0, > 0 respectively < 0.

It follows that depending on whether v is in a−1H0, a−1H+ respectively a−1H− one has

〈(a∗ha)(v), v〉 = 〈h(av), av〉 = 0, > 0 respectively < 0.

Therefore, the three orthogonal projections

a−1H† → p†(a∗ha)H for † ∈ {0,+,−}

are monomorphisms and thus

dimΓH† = dimΓ a
−1H† ≤ dimΓ p†(a∗ha)H for † ∈ {0,+,−}.

But the three dimensions on both sides must sum up to the total dimension n of H and therefore
the inequalities are actually equalities.
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Example 5.14. We recapitulate the crucial example, and consider once more the case Γ = 〈t〉 ∼=
Z. Then CΓ consists of Laurent polynomials C[t, t−1] which embed naturally into the space of
complex valued continuous functions on the circle S1. Indeed, Fourier transformation gives an
isomorphism of Hilbert-spaces l2Z ∼= L2(S1; C) and point-wise multiplication by a function induces
the isomorphism C∗Γ ∼= C(S1; C). This is a consequence of the Stone-Weierstraß theorem on the
density of polynomials in the space of all continuous functions in the supremum norm. Completing
in the topology of pointwise convergence then leads to the von Neumann algebra NΓ which turns
out to be the space L∞(S1; C) of complex valued, bounded, measurable functions on the circle,
defined almost everywhere. Finally, the standard Γ-trace is just given by integration.

Now consider h ∈ Hermn(C(S1; C)) and think of it as a continuous map from S1 to Hermn(C).
The ordinary signature σ : Hermn(C) −→ Z counts the number of positive Eigenvalues minus the
number of negative Eigenvalues.

Definition 5.15. The twisted signature of h is the step function σ(h) : S1 −→ Z which assigns to
each s ∈ S1 the signature σ(h(s)). Moreover, the real number σ(2)(h) is defined to be the integral
of this function σ(h) over the circle (normalized to have total measure 1).

Thus σ(2)(h) is the average of all the twisted signatures. It is clear that σ(h) makes sense almost
everywhere for h ∈ Hermn(L∞(S1; C)) and therefore σ(2)(h) is well defined even in this case. As
an example, consider the following element in Herm2(C[t±1]):

h :=
(
t+ t−1 − 2 t− 1
t−1 − 1 t+ t−1 − 2

)
Notice that σ(h) is a step function with jumps at most at the zeroes of the “Alexander polynomial”
det(h) ∈ C[t, t−1]. We have, up to multiplication by a unit ±tn, det(h) = (t + t−1 − 2)2 − (t −
1)(t−1 − 1) = (t − 1)2(t + t−1 − 1) = (t − 1)2 genus(31)∆31(t) which has roots on S1 exactly for the
two primitive 6-th roots of unity ±eiπ/3, and for t = 1. For t = 1 we have the zero matrix and
so this does not contribute to the signature. We only need to calculate σ(h) at two points on the
circle which interlace with the two roots of ∆31(t), e.g. at −1 and

√
3/2 + i/2. One easily checks

that the ordinary signature of h(−1) is −2, and of h(
√

3/2 + i/2) is zero. Since these roots are of
distance 1/3 and 2/3 apart, depending on which way round of the circle we measure, we therefore
have:

σ(2)(h) = (1/3) · 0 + (2/3) · (−2) = −4/3 6= 0.

Of course this Hermitian operator is equivalent to the equivariant intersection form of our 4-
manifold W0 from Theorem 4.11 for the trefoil knot, so has the twisted signatures of the trefoil for
each s ∈ S1 ⊆ C. It is possible to similarly work this out for all twist knots and for torus knots
(recall that the torus knots arise as the self-linking zero curves on the obvious Seifert Surfaces for
the twist knots).

Lemma 5.16. The average σ(2)(h) equals the L2-signature σ(2)
Γ (h) for Γ = Z.
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Proof. Notice that trΓ(p+(h)) is the Γ-dimension of the “positive Eigenspace” of h. In the functional
calculus one approximates (say) p+ by a sequence of real polynomials pi into which any operator
can easily be substituted. Then one takes the pointwise limit to define

p+(h) := lim
i
pi(h) for h ∈ NZ.

For example, if h is a finite dimensional matrix, then one checks that p+ is just the projection onto
the (+1)-Eigenspace of h. This implies that for a point s ∈ S1, a fancy way to count the number of
positive Eigenvalues of h(s) ∈ Hermn(C) is to take the ordinary trace of p+(h(s)) := limi pi(h(s)).
But now one clearly sees that the integral of the function σ(h) which associates for each s ∈ S1 the
difference p+(h(s))− p−(h(s)) is almost everywhere the same as σ(2)

Γ (h).

Corollary 5.17.

σ
(2)
Z (h) =

∫
S1

σ(h(z)) dz

Remark 5.18. Note that the orthogonal projections (p = p∗ = p2) in NZ correspond one to one
with measurable sets in S1.

p = p∗ ⇒ p ∈ L∞(S1,R);

p2 = p⇒ p has values 0 or 1 almost everywhere, so we can view it as a characteristic function. A
consequence of this is that any positive real number occurs as a dimension of a projective module
over NZ: just use the function p to define pNZ with dimension p, 0 ≤ p ≤ 1. Then add copies of
NZ to make larger numbers.

Also K0(NZ) ∼= L∞(S1; Z). This follows since a projection operator can be diagonalised without
changing the trace, with each diagonal element satisfying pi = p∗i = p2

i as above, which means it
picks out a measurable subset of S1 as the characteristic function. Taking the matrix trace of the
trΓ’s yields the sum of these characteristic functions which is a bounded measurable function S1 →
Z. Negative numbers are associated to the projective modules in K0(NZ) which are included as
formal inverses in the Grothendieck completion which defines the projective class group. Integrating
the elements of L∞(S1; Z) yields an epimorphism to R.

5.5 Properties of L2 Betti Numbers

Recall H(2)
i (X) = Hi(X;NΓ), where ZΓ ⊆ CΓ ⊆ NΓ = B(l2Γ)Γright , which is a completion of CΓ

under point-wise convergence of operators. We can actually think of the chain complex:

Ci(X)⊗ZΓ NΓ = (NΓ)] i cells

with the boundary maps being matrices di ∈Mn(NΓ).
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Property 1. Homotopy Invariance If f : X ' Y is a homotopy equivalence which lifts to a
homotopy equivalence of the Γ-cover, then H

(2)
i (X) = H

(2)
i (Y ). (This would be surprising using

the analytic integral of the heat kernel definition of L2-Betti numbers.)
Recall that Hi(X) is not quite a projective module: it can be given by

0→ Pi → Qi → H
(2)
i (X)→ 0

where H(2)
i (X) decomposes as a f.g. projective part, as measured by the dimension, and a torsion

part, as measured by the Novikov-Shubin invariants.

Property 2. Euler-Poincaré Formula For a finite complex:

χ(X) =
∑

(−1)ibi(X) =
∑

(−1)ib(2)
i (X)

Property 3. Multiplicative under finite covers Consider the tower of covering spaces

X
Γ0 //

Γ
��

X ′

n
~~}}

}}
}}

}}

X

where Γ0 has index n in Γ. Then

b
(2)
i (X ′)Γ0 = n · b(2)

i (X)Γ.

Proof of Property 2.∑
(−1)ibi =

∑
(−1)i dimQ(Ci(X)⊗Q) =

∑
(−1)i dimNΓ(Ci(X)⊗NΓ) =

∑
(−1)ib(2)

i (X)

just from additivity of rational dimension under short exact sequences and similarly for the Von
Neumann dimension. Both chain complexes consist of free modules whose rank in each dimension
is equal to the number of cells of that dimension. Since X is a finite complex, this is legal.

Proof of Property 3. The algebraic statement necessary is that Γ0 ≤ Γ induces NΓ0 → NΓ; if M
is an NΓ-module then we can restrict to NΓ0 with dimension given by

dimNΓ0(resNΓ0M) = n · dimNΓM.

Conjecture 5.19 (Atiyah Conjecture). Γ torsion free implies that b(2)
i (X)Γ ∈ N. This is known

for elementary amenable groups, free groups, class closed under certain operations (not hyperbolic
yet).
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Property 4. Poincaré Duality If X is a closed oriented manifold of dimension n, then
b
(2)
i (X)Γ = b

(2)
n−i(X)Γ. The proof is that the usual chain equivalence between homology and coho-

mology complexes, tensored with NΓ, remains a chain equivalence. There is a subtlety, namely
that we have to use L2-cohomology, but it is very close to L2-homology.

Property 5. Künneth formula

b(2)
n (X1 ×X2)Γ1×Γ2 =

∑
p+q=n

b(2)
p (X1)Γ1b

(2)
q (X2)Γ2 .

Property 6. If X is connected, then:

b
(2)
0 (X)Γ =

{
1
|Γ| |Γ| finite; and

0 otherwise.

Look at
C1(X) = ZΓn → C0(X) = ZΓ→ H0(X)→ 0

and use homotopy invariance. 1-cells have e1
i 7→ e0(gi−1). Then for the finite group case, H0(X) =

Z, which as a ZΓ-module has dimension 1/|Γ|. In the infinite case we get

NΓn d−→ NΓ→ H0(X)→ 0

and we claim that the dimension of the image of d is 1.

Remark 5.20. Also a limiting process for residually finite groups can express b(2)
i as weighted limit

of the usual Betti numbers.

Example 5.21. These properties allow us to deduce the L2-Betti numbers of some spaces.

• S1 with group Z: b
(2)
0 = b

(2)
1 = 0 from connectedness, infinite group and χ formula (or

duality).

• This does the torus too by Property 5.

• For a surface Σg and universal cover, b(2)
0 = b

(2)
2 = 0, b(2)

1 = 2g − 2.

• For the free group Fn (so the space
∨
n S

1; we talk of the Betti numbers of a group, by which
we mean the Betti numbers of a corresponding K(π, 1)), we have b0 = 0, b1 = n− 1

• For a knot complement, we need to find out, but guess that they are all zero. L2-torsion
should be the Alexander polynomial. Also, for a 3-manifold we guess all Betti numbers are
zero. L2-torsion is hyperbolic volume or Gromov norm.
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5.6 Application to Manifolds

Definition 5.22. Let X4k be a compact oriented manifold, and ρ : π1(X) → Γ a representation.
Then define

σ
(2)
Γ (X, ρ) = σ

(2)
Γ (λ(2)

X ) ∈ R

where λ(2)
X is a Hermitian form defined as the following intersection form:

λ
(2)
X : H2k(X;NΓ)→ H2k(X, ∂X;NΓ) ∼= H2k(X,NΓ)→ HomNΓ(H2k(X;NΓ),NΓ).

The last map may not be an isomorphism: instead of Universal Coefficient Theorem there is a
spectral sequence. The definition of the map is the usual one.

Remark 5.23. To define σ for hermitian form h on a projective module P which is not a free
module, use the inverse Q in K0, so that P ⊕Q = (NΓ)n and take σ(hP ⊕ 0Q) as the definition of
the signature.

Definition 5.24 (Lück). Given M a finitely generated module over NΓ, define the torsion of M

T (M) = {m ∈M : f(m) = 0 for all linear f : M → NΓ}.

The usual definition of the torsion submodule fails for non-commutative rings. Now, λ(2)
X is viewed

as a pairing on H2k(X;NΓ)/T (H2k(X;NΓ)).

Theorem 5.25 (Lück). M/Torsion is projective. (Like f.g. abelian groups.) That is, any M is of
the form M/T (M)⊕ T (M).

Theorem 5.26 (L2-signature theorem (Atiyah)). If Y 4k is a closed manifold then for any repre-
sentation ρ:

σ
(2)
Γ (Y, ρ) = σ(Y )

Actually, this is true for any elliptic operator. e.g. lift a twisted Dirac operator to the Γ-cover,
compute the index via dimNΓ. The above theorem is also true for Poincaré complexes.

Lemma 5.27. If π1(X4k
i )

ρi−→ Γ are given (additively) such that ∂X1
∼=φ ∂X2 and

π1(∂X1) ' //

ρ1

��

π1(∂X2)
ρ2

xxqqqqqqqqqqqq

Γ

then
σ

(2)
Γ (X1, ρ1) + σ

(2)
Γ (X2, ρ2) = σ

(2)
Γ (X1 ∪X2, ρ1 ∪ ρ2).

Proof. The proof is exactly the same as the usual proof of Novikov Signature additivity: decompose
the module as a projective and torsion part, ignore the torsion and follow through the definitions.
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Corollary 5.28. The reduced L2-signature σ̃(2)
Γ (X, ρ) = σ

(2)
Γ −σ(X) is an invariant of the boundary

∂X and the representation ρ|∂X .

Remark 5.29. Given (M4k−1, g, ρ), where g is a metric we can define the η invariant, which is
independent of the choice of metric:

η̃
(2)
Γ (M, g, ρ) = η

(2)
Γ (M, g, ρ)− η(M, g)

(Theorem of Gromov and Cheeger). By Atiyah-Patodi-Singer,

η̃
(2)
Γ (M,ρ) = σ̃

(2)
Γ (X, ρ)

if M = ∂X.
Thus, the reduced L2 signature is defined when there does not exist a null-bordism.
The η-invariant is obtained using the eigenvalues of the σ-operator.

Definition 5.30. Given a knot K ⊆ S3, and a representation ρ : π1(MK)→ Γ, define σ̃(2)
Γ (K, ρ) =

η̃
(2)
Γ (MK , ρ).

Example 5.31. Γ = Z, ρ = abelianisation π1 → H1
∼= Z. Then we may as well choose an expedient

4-manifold with which to make our calculations:

σ̃
(2)
Γ (K, ρ) = σ

(2)
Γ (W0, ρ)

where W0 is the nice 4-manifold we constructed earlier with π1(W ) ∼= Z which is bounded by MK .
This is just σ̃(2)

Γ (λ(2)
W ) = σ̃

(2)
Z (λ(2)

W ) which by Corollary 5.17 is∫
S1

σZ(K) dz.

6 Casson-Gordon Invariants and the Cochran-Orr-Teichner Fil-
tration

To summarise the previous section, we defined the reduced L2-signature σ
(2)
Γ (K, ρ) ∈ R, given

ρ : π1(S3
K)→ Γ, such that, if Γ = Z and ρ is the abelianisation, we have that

σ̃
(2)
Z (K, ρ) =

∫
S1

σz(K) dz.

What we really want are more interesting choices of Γ, ρ, which are such that these are concordance
invariants. We already know that for Γ = Z we can detect the non-algebraically slice knots. Recall
that we are aiming to reproduce the famous result of Casson-Gordon that the twist knots are not
slice, using the L2 signatures to detect the intersection forms on the 4 manifold. We will choose
a 4-manifold with a more complicated fundamental group, and correspondingly more complicated
representations; these will be related to quotients π/π(n) of π by its derived subgroups.
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Definition 6.1. Define
Γ =

Q(t)
Q[t±1]

o Z

where Z = 〈t〉; define A := Q(t)/Q[t±1], so Z acts on A via right multiplication by t. Γ is a
metabelian group. A is an infinite dimensional Q-vector space. The construction of A is analogous
to the situation where Q is the field of fractions of Z, and the Q/Z is formed to be the value ring
of linking forms. Q/Z was for torsion abelian groups, whereas A is for torsion Q[t, t−1] modules.
There are no finite dimensional representations of Γ, except for 1-dimensional ones which factor
through Z, so we are going to have to use l2Γ to make our interesting representations.

Now, define a representation variety

Rep∗(π,Γ) := {ρ : π → Γ | ρ(meridian) = t}.

Note that since Γ is metabelian they will all factor through π/π(2), where the (2) here denotes
the 2nd derived subgroup. (In fact, Γ(1) = [Γ,Γ] = A.) Further, we know that:

π

π(2)
=
π(1)

π(2)
o

π

π(1)
,

since the sequence

0→ π(1)

π(2)
→ π

π(2)
→ π

π(1)
∼= Z→ 0

is exact and splits since Z is free. Therefore, Rep∗ is given by ρ o id : π(1)

π(2) o Z → A o Z, where ρ

must be a homomorphism of abelian groups π(1)

π(2) → A commuting with the Z-action.

Definition 6.2.

AK =
π(1)

π(2)
⊗Q

the rational Alexander module of K.

Thus, Rep∗(π,Γ) = HomQ[t,t−1](AK , A) is a finite dimensional Q-vector space. (We could work
with integers here, but it is easier not to.) The dimension is finite because AK is a finitely generated
torsion module over Q[t, t−1], as we will prove shortly. It should be reasonably clear, however, from
the fact that the Alexander polynomial is always monic over Q, and this represents the zero element
in AK . Therefore any high powers of t can always be replaced with lower ones using the relation
imposed on AK by the Alexander polynomial.

Theorem 6.3 (Cochran-Orr-Teichner ). If K is slice then there is a vector subspace R ⊆ Rep∗(π,Γ)
of half dimension such that σ(2)

Γ (K, ρ) = 0 for all ρ ∈ R. In fact, R comes from a Lagrangian of the
Blanchfield form.
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Proof. We denote by M the 0-framed surgery along K ⊆ S3, and by M its infinite cyclic cover.
We also abbreviate π = π1(M). Then π1(M) = π(1), and H1(M) = π(1)

π(2) . By definition AK =
π(1)

π(2) ⊗ Q ∼= H1(M ; Q). To prove that it is a f.g. torsion module over Q[t, t−1], we use the Gysin
sequence, with Q coefficients. (As always from now on, we would like to not have to use Q but it
makes life a lot easier.) The sequence which arises, where we use rational coefficients, is:

H1(M) 1−t−−→ H1(M)→ H1(M) b−→ H0(M) 1−t−−→ H0(M)

M is connected so H0(M) ∼= Q, and the map (1 − t) here is the zero map. Also H1(M) ∼= Q,
and the map labelled b is an isomorphism, since any surjective homomorphism from Q to Q is an
isomorphism. Therefore, by exactness of the sequence, the map (1 − t) : H1(M) → H1(M) is a
surjection. This cannot be the case if there is a free part of H1(M) over Q[t, t−1], since 1 − t is
not invertible. Therefore it is indeed a torsion module. It is finitely generated because 1-chains are
f.g. free, Q[t, t−1] is a Principal Ideal Domain, and so is Noetherian, so a sub-quotient is finitely
generated.

Note that the same argument would apply to show that for any CW complex with H1(·; Q) ∼= Q,
the 1st homology of the infinite cyclic cover with Q coefficients is a f.g. torsion Q[t, t−1] module.

We now recall the algebraic approach to the torsion linking form on the homology AK =
H1(M ; Q) = H1(M ; Q[t, t−1]) of the infinite cyclic cover: the Blanchfield form.

First, apply Poincaré duality with twisted coefficients to get AK ∼= H2(M ; Q[t, t−1]). From the
coefficient sequence

0→ Q[t, t−1]→ Q(t)→ Q(t)
Q[t, t−1]

→ 0

we get the Bockstein homomorphism, which fits into the long exact sequence which arises from this
short exact sequence:

H1(M ; Q(t))→ H1(M ;
Q(t)

Q[t, t−1]
)→ H2(M ; Q[t, t−1])→ H2(M ; Q(t)).

Now, Q[t, t−1] is a principal ideal domain, so its quotient field Q(t)) is flat over Q[t, t−1]. Therefore,
H1(M ; Q(t)) ∼= H1(M ; Q[t, t−1]) ⊗ Q(t) by the universal coefficient theorem for homology. Since
Q(t) is a field, H1(M ; Q(t)) ∼= H1(M ; Q(t)). With Poincaré duality, and the fact that AK is
Q[t, t−1]-torsion, we see that both of the end groups displayed in the previous sequence are zero,
meaning that AK ∼= H1(M ; Q(t)

Q[t,t−1]
). Another application of a universal coefficient theorem yields:

AK ∼= A∧K := HomQ[t,t−1](H1(M ; Q);
Q(t)

Q[t, t−1]
)

which isomorphism is the adjoint of the Blanchfield form:

Bl : AK ×AK → A
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a unimodular hermitian linking form. (A∧K is sometimes called the Pontrjagin dual.) Geometrically,
do the usual linking form construction, multiplying an element of H1(M ; Q) by polynomials until
it is zero, choosing a surface whose boundary is this chain, intersecting this with the other element,
and then dividing out by whatever we needed to make the 1st 1-cycle bound. Geometrically, it is
then clear that this is a Hermitian form. The theorem constructs a Lagrangian

R ≤ Rep∗(π,Γ) = HomQ[t,t−1](AK , A) = A∧K
∼= AK

where the last isomorphism is by the Blanchfield isomorphism as above.
We now show that there exists a Lagrangian R. Let W be B4 minus a slice disk for K, so that

∂W = S3
K = M , the zero surgery on S3 along K, and H1(W ) ∼= H1(M) and H2(W ) = 0. (So

homologically slice will be enough in this case to prove the theorem, i.e. a knot which is slice in a
homology 4-ball.) Consider the following sequence of homology of covering spaces:

→ H2(W ) ↪→ H2(W,M)→ H1(M)→ H1(W )� H1(W,M) 0−→ H0(M)
∼=−→ H0(W )

Define R := im(H2(W,M))→ H1(M) = ker(H1(M)→ H1(W )) Then we claim:

(1.)

dimQ(R) =
1
2

dimQH1(M)

(2.) If ρ : π → Γ comes from R then it extends to ρ̃ : π1(W )→ Γ.

The point here is that we can calculate the L2 signature of (M,ρ) via the 4-manifold with its
extended representation ρ: σ̃(2)

Γ (K, ρ) = σ
(2)
Γ (W, ρ̃) − σ1(W ). The final step will then be to show

that the Betti numbers vanish: b(2)
2 (W, ρ̃) = 0⇒ σ

(2)
Γ (W, ρ̃) = 0. This is Lemma 6.5 below.

To see (1.), we need to look at linking forms on W . They are constructed just like the linking
form above:

Hi(W ) = Hi(W ; Q[t±1]) ∼= H4−i(W,M ; Q[t±1]) ∼= H3−i(W,M ;
Q(t)

Q[t±1]
)

∼= HomQ[t±1](H3−i(W,M ; Q[t±1]),
Q(t)

Q[t±1]
)

Again this uses Poincaré Duality, the Bockstein homomorphism, which is again an isomorphism
since all are torsion modules again. The universal coefficient isomorphism follows again since there
are no higher Ext groups; we therefore have isomorphisms Hi(W ) ∼= H3−i(W,M)∧. This yields the
following diagram:

0 // H2(W ) //

∼=
��

H2(W,M)
∂∗ //

∼=
��

H1(M)
i∗ //

∼=
��

H1(W ) //

∼=
��

H1(W,M) //

∼=
��

0

0 // H1(W,M)∧ // H1(W )∧
i∧

// H1(M)∧
∂∧

// H2(W,M)∧ // H2(W )∧ // 0
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Noting that dimQ N∧ = dimQ N , we see that the dimensions on the top and bottom sequences
agree, so the standard argument for Lagrangian dimensions applies.

To see the extension of the representation, x ∈ R maps to a function Bl(x, •), which comes from
an element of y ∈ H1(W )∧ which we can use to extend ρ:

π1(W )

π1(W )(2) = H1(W ) o Z

yoid

��

H1(M) o Zoo

ρ

uulllllllllllllll

Γ = Ao Z

R is a Lagrangian of the Blanchfield form. To see this, take x, x′ ∈ R. Now, we can lift x to an
element w ∈ H2(W,M) such that linking with x, which is an element Bl(x, •) ∈ H1(M)∧ coincides
with linking with w, which is an element y ∈ H1(W )∧. We can think of x′ ∈ H1(M) as an element
of H1(W ) under the inclusion induced map i∗. We have Bl(x, •) = Bl(∂∗(w), •) = i∧(BlW (w, •) by
commutativity of the diagram above. Then by definition of i∧, we get that Bl(x, •) = BlW (w, •)◦i∗,
so that Bl(x, x′) = BlW (w, i∗(x′)). However, x′ also belongs to R, so i∗(x′) = 0 ∈ H1(W ) which
implies Bl(x, x′) = 0 by linearity. The proof is then finished modulo Lemma 6.5.

Remark 6.4. The basic idea is that the infinite cyclic cover of M behaves like a surface, and the
slice disk complement W behaves like a null-cobordism of the surface. This is true for fibred knots,
while for other knots it is true homologically.

Lemma 6.5. Let Γ be a Poly-Torsion-Free-Abelian (PTFA) group. This means a group which
can be constructed with a finite number of iterated extensions by torsion-free abelian groups. If
H1(W 4; Q) ∼= H1(∂W ; Q) ∼= Q and ρ : π1(W )→ Γ then b

(2)
Γ = b2(W ).

Remark 6.6. If π = π1(S3 \K) is a knot group, then π/π(n) is PTFA; Strebel showed that the
quotients are torsion free. Also, if Γ is torsion free, then ZΓ has an Ore skew-field of fractions.
KΓ: it has no zero divisors and all pairs as−1 can be reversed to pairs of the form c−1d. ZΓ injects
into KΓ. An example of a sequence of PTFA groups is as follows. These groups are universal with
respect to maps of knot groups into solvable groups.

Γ0 = Z← Γ1 =
Q(t)

Q[t±1]
o Z =

KΓ0

Q[Γ0]
o Γ0 ← Γ2 =

KΓ1

Q[Γ1]
o Γ1?

Note that A is torsion-free abelian. The final group is a first attempt at an extension by a value
ring for a secondary Blanchfield pairing. It is not quite right yet however. Note that we used above
the fact that Q[Γ0] is a PID. This is not true for Q[Γ1], so we make a small alteration: we include
Q[Γ1], which is actually a twisted polynomial ring, into a larger ring where the coefficients of the
original polynomial ring are inverted.

QΓ1 = Q
[
KΓ0

Q[Γ0]

]
α

[t±1] ⊆ K
(

Q
[
KΓ0

Q[Γ0]

])
α

[t±1]
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We have here twisted polynomial rings: α is a choice of automorphism of the ring of which it is a
subscript, which occurs when commuting coefficients and the indeterminate t. Due to this choice,
the identifications here with twisted polynomial rings are non-canonical. We now have a Principal
Ideal Domain. Γ2 is therefore given by:

KΓ1

K[Γ(1)
1 ]α[t±1]

o Γ1

Note that the denominator here is the same as above i.e. Γ(1)
1 = [Γ1,Γ1], the commutator subgroup

of Γ1, is isomorphic to Q[ KΓ0
Q[Γ0] ].

We don’t really want to have to do this, but having a Principal Ideal Domain at certain points
turns out to be very useful, particularly when defining non-singular higher order Blanchfield pair-
ings, but also in order to sidestep some slice-ribbon difficulties to do with R ⊆ R⊥ versus R = R⊥,
by making the functor •∧ right exact. Iterating the process, we define:

Γn+1 =
KΓn

K[Γ(1)
n ][t±1]

o Γn

the “universal rationally solvable groups” based on Z = Γ0, corresponding to H1 of a knot comple-
ment (we could try taking Γ0 = Zn to deal with link complements).

Theorem 6.7 (Main Theorem of Cochran-Orr-Teichner). If K is slice then it is h-solvable for all
h ∈ 1

2N.

Definition 6.8. A knot is (0)-solvable if and only if its Arf invariant is zero. This implies the
existence of a well-defined obstruction to being slice:

B0 ∈ L0(KΓ0)/L0(ZΓ0)

which can be detected using L2 signatures (different use of the letter L) and therefore corresponds
to integrating the signature σz(K) over the circle z ∈ S1. This is the usual obstruction to a knot
being algebraically slice: the Blanchfield or Seifert form. This gives the normal twisted signature:
B0 is essentially of the form (1 − z)S + (1 − z−1)ST , a hermitian matrix over the group ring
ZΓ0, which becomes invertible upon localisation, that is, when we consider it as a matrix over the
quotient field KΓ0. This then gives us an element of L-theory: a symmetric non-degenerate form.
Quotienting by L0(ZΓ0) corresponds to a lack of signature at z = 0.

A knot is (0.5)-solvable if and only if K is algebraically slice ⇒ B0 = 0. (the actual definition
of h-solvable is in terms of gropes or in terms of intersection forms on the middle dimensional
homology of derived covers of a 4-manifold whose boundary is M .

A knot is (1)-solvable implies there exists a Lagrangian P0 inside B0 such that for all f0 ∈ P0

there is a well defined obstruction

B1 ∈
L0(KΓ1)
L0(ZΓ1)

σ̃
(2)
Γ−−→ R
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That is, there is a representation extending to a 4-manifold which defines an intersection form. This
doesn’t depend on the choice of extensions. If a knot is (1.5)-solvable, then the Casson-Gordon
invariants vanish. (1.5) solvable implies that there exists P0 ∈ B0 such that B1(p0) = 0 for all
p0 ∈ P0. This implies there is a Lagrangian P1 ∈ B1(p0).

In general, a knot being (n)-solvable implies that there exists P0 such that for all p0 ∈ P0, there
exists P1(p0) ∈ B1(p0) such that for all p1 ∈ P1, there exists P2(p0, p1) ∈ B2(p0, p1) such that for

all p2 ∈ P2, ... there exists a well-defined obstruction Bn(p0, .., pn−1) in L0(KΓn)/L0(ZΓn)
σ̃

(2)
Γn−−→ R.

(n.5)-solvable means that the knot is (n)-solvable and Bn = 0.

Theorem 6.9 (Cochran-Orr-Teichner, Cochran-Harvey-Leidy). There exist knots which are (n)-
solvable but not (n.5)-solvable for all n ∈ N.

Remark 6.10. Before embarking on the proof of Lemma 6.5, we make some remarks. We will
actually prove that dimKΓ(H2(W ;KΓ)) = b2(W )) in a homological algebra sense rather than in the
L2 way. Why is this?

Recall that Γ is PTFA: we can do a completion QΓ ⊆ NΓ. Any Von Neumann algebra satisfies
the Ore condition, with no zero-divisors, so has an embedding NΓ ⊆ UΓ. This last is not a skew
field, but any finitely presented module over it is projective, and quite nice. For example, if Γ = Z
then NΓ = L∞(S1; C) is all bounded functions and UΓ is all measurable functions (e.g. 1/x for
x 6= 0 is now allowed). We can then do a division closure of QΓ ⊆ KΓ by closing in UΓ. This
closure actually is the Ore localisation if that exists. Now, the Ore localisation is flat, so that:

dimΓ(H2(W ;NΓ)) = dimΓ(H2(W ;NΓ)⊗NΓ UΓ).

We can extend the dimension function to UΓ but not the trace function. However, dim =
trΓ : K0(NΓ) → R does extend to K0(UΓ) → R (K0 denotes the projective class group of sta-
ble isomorphism classes of modules over a certain ring) because any projection p : (UΓ)n � Q
satisfies p2 = p · p∗ which makes it bounded because of normal algebra.

By flatness, dimΓ(H2(W ;NΓ) ⊗NΓ UΓ) = dimΓ(H2(W ;UΓ)). Also, H2(W ;KΓ) ⊗KΓ UΓ =
H2(W ;UΓ). The dimension is an integer over a skew-field. (This shows the Atiyah conjecture
for PTFA groups: KΓ is the Ore localisation, and this shows that L2 Betti numbers are inte-
gers.) Thus H2(W ;KΓ) is free (over a skew field), which implies that so is H2(W ;UΓ), and so
dimΓ(H2(W ;UΓ)) ∈ Z.

Proof of Lemma 6.5. We aim to prove that bΓ2 (W ) := dimKΓ(H2(W ;KΓ)) = b2(W ). We claim that
bΓ0 = bΓ1 = bΓ3 = 0 for W . Then this implies the lemma since the Euler characteristics agree χΓ = χ.
Firstly, note that with a skew-field the universal coefficient spectral sequence collapses and we have
a universal coefficients isomorphism:

H i(X;KΓ) ∼= HomKΓ(Hi(X;KΓ),KΓ)

Poincaré duality therefore means that it is enough to show that bΓ0 = bΓ1 = 0.
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First,

H0(W ;KΓ) =
KΓ

{(1− g)k | g ∈ Γ, k ∈ KΓ}
the set of co-invariants for Γ-actions on KΓ, as usual for a connected complex. For g 6= 1, 1− g is
invertible so this is zero. Now, in order to show the remaining fact, which is that bΓ1 = 0, we need
another Lemma.

Lemma 6.11. Let X be a connected finite CW complex, ρ a representation π1(X)→ Γ, which is
non-trivial, to a PTFA group. If bQ1 (X) = 1 then bKΓ

1 (X) = 0. (Recall that for a PTFA group KΓ
exists and ZΓ ⊆ KΓ.)

Proof. Let f : S1 → X be a map which induces an isomorphism on H1(X; Q). Then Hi(X,S1; Q) =
0 for i = 0, 1. Let X̂ Γ−→ X be the covering space with deck group Γ, and form the pull back covering:
Ŝ1 → S1. Then look at the chain complex C∗(X̂, Ŝ1; Q). It is a free QΓ chain complex such that
Hi(C∗ ⊗QΓ Q) = 0 for i = 0, 1, because the latter is just Hi(X,S1; Q).

We claim that this implies that Hi(C∗ ⊗QΓ KΓ) = 0 for i = 0, 1. From this claim, the lemma
follows because then the relative homology groups being zero imply that the absolute groups
Hi(X;KΓ) = Hi(X̂; Q) = Hi(Ŝ1; Q) = Hi(S1;KΓ), and the chain complex of S1 is given by

QΓ z−1−−→ QΓ where z is the image of 1 ∈ π1(S1) under the map π1(S1)
f∗−→ π1(X)

ρ−→ Γ. Now,
z − 1 is invertible in KΓ and so the complex is contractible and so has Hi(S1;KΓ) = 0 for i = 0, 1,
proving the lemma.

Now, to see the claim we shall use the following theorem of Strebel:

Theorem 6.12. If Γ is a PTFA group and f : F → F ′ is a homomorphism of free QΓ-modules
such that f ⊗Q is injective, then f is injective.

Example 6.13. Γ = Z, Q[t, t−1]
f−→ Q[t, t−1]; if f(1) 6= 0 in Q i.e. f ⊗Q 6= 0, then multiplication

by f is injective. But Q[t, t−1]n
f−→ Q[t, t−1]; just need to show that det 6= 0 but this is the case

because det(f(1)) 6= 0. In the general case with a non-commutative Γ, we must iterate this kind of
argument.

The consequence of this theorem for our purposes is that, if the rank of F and F ′ are equal, then
f ⊗ Q is an isomorphism, and therefore so is f ⊗ KΓ. This is because KΓ is flat over QΓ, so the
tensor product preserves injectivity of maps. With Q or KΓ coefficients we then have vector spaces
of the same dimension, so injective maps are isomorphisms. (This is the same as saying that QΓ
embeds in its Cohn localisation, which is the universal localisation with respect to the diagram

QΓ //

��

KΓ

Cohn(QΓ)

99tttttttttt

where both the maps originating from QΓ are injections.
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Continuing with the proof of the claim, let C∗ be a free chain complex over QΓ such that
Hi(C∗ ⊗QΓ Q) = 0 for i = 0, .., n (n = 1 in our case). Since each of the modules in C∗ ⊗Q are f.g.
projective (in fact free), there are partial chain homotopies h : Ci ⊗Q→ Ci+1 ⊗Q which are chain
contractions for C∗⊗Q up to dimension n, that is as far as the complex is acyclic. Since C∗ is free,
these partial homotopies can be lifted. Furthermore ∂h + h∂ is the identity up to dimension n,
and so the lifted homotopies are also isomorphisms, by the consequence of Strebel’s result above.
This means that C∗ ⊗ KΓ is also chain contractible up to dimension n, which proves the claim as
required and finishes the proof.

Example 6.14. Now let’s give some example calculations and an application. Recall the twist
knots Kn, with Seifert matrices: (

−1 1
0 n

)
Recall that they are algebraically slice if and only if 4n + 1 is a square which is if and only if
n = m(m + 1) ≥ 0. Also K0,K2 are actually slice. Let s, l be the curves on the Seifert surface
which go round each of the generators of H1(F ). The curves γ1 = −m.s+ l, γ2 = (m+ 1).s+ l are
the only primitive curves on F with lk(γ+

i , γi) = 0. See Kauffman p.223 “On Knots” where these
curves are seen to be torus knots T (m,m+ 1). Thus m = 0, 1 cases are unknots and so K0,K2 are
slice. The other cases are not unknots: we use this to show that the knots are not actually slice
(though they are algebraically slice).

Theorem 6.15. The knots Kn, n = m(m+ 1),m ≥ 2 are Z-independent in the group C1.

Theorem 6.16 (Cochran-Orr-Teichner, but see also Casson-Gordon and Gilmer). Let K be
an algebraically slice genus one knot with non-trivial Alexander polynomial. If K is slice then
σ

(2)
Z (γi) = 0 for one of the two curves γi on a Seifert surface which have lk(γ+

i , γi) = 0

Remark 6.17. The second theorem implies that the knots of the first are not slice by checking
that the signatures σ(2)

Z (T (m,m + 1)) 6= 0 for the torus knots T (m,m + 1). There is a bit more
work to show independence.

Proof of COT/CG. Let F be a genus 1 Seifert surface for K. The curves γi in H1(F ) are La-
grangians of the Seifert form. They don’t generate H1(F ) over Z though. Recall that:

H1(F )⊗ Z[t, t−1] λ−→ H1(F )∗ ⊗ Z[t, t−1]� A → 0

where A = H1(MK ; Z[t, t−1]) is the Alexander module of K, and λ = (1 − t)S + (1 − t−1)ST is a
hermitian restriction of the Blanchfield form. (i.e. Bl(a, b) = λ−1(a)(b) where λ is invertible over
Q(t) and we take the result modulo Q[t, t−1].) So a Lagrangian in S gives a Lagrangian of the
Blanchfield form; and vice versa actually: (γ1, γ2)↔ (l1, l2) ⊆ L1 × L2. Define, for each i = 1, 2:

ρ(li) : π1(MK) = π �
π

π(2)
= AK o Z→ Q(t)

Q[t, t−1]
o Z = Γ1
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(x, n) 7→ (Bl(li, x), n)

Remember that AK ⊗Z Q = Q⊕Q, and 0 6= li ∈ Li ⊗Q = Q We have a lemma:

Lemma 6.18.
σ̃

(2)
Γ1

(K, ρ(li)) = σ
(2)
Z (γi)

These signatures are independent of the choice of li ∈ Li.

In this setting, the main theorem, here the fact that K is (1.5)-solvable, now says that K being
slice implies that there exists a Lagrangian L ⊆ Bl0 such that for all l ∈ L, σ̃(2)

Γ1
(K, ρ(l)) = 0. Here

there are just two Lagrangians, so K slice implies that σ(2)
Z (γi) = 0 for one of the γi. This can be

calculated not to be the case for the torus knots T (m,m + 1), obstructing sliceness of the twist
knots as claimed. The proof just requires the proof of Lemma 6.18.

Proof of Lemma 6.18. Recall the picture of W0, with boundary MK in Figure 7. We define a new
4-manifold W with the same boundary: Let K be our knot and let k be the (primitive, so it can be
embedded) curve on the Seifert surface F which has self linking number zero. Since it is primitive,
which means that it is not a multiple in H1(F ; Z), we can think of it as being one of the bands in
the Seifert surface - it may well be necessary to make an isotopy of the knot and the Seifert surface
in order for this to be clear. We call W0 from Theorem 4.11 with respect to a knot J the manifold
W (J). We define W by drawing W (K), and then letting the curve for k, one of the “a” curves
from our Kirby diagram Figure 7 for W0, be the 1-handle for the drawing of W (k). See Figure
10. The construction is reminiscent of gropes: we are trying to test whether the secondary knot
k is slice. To show that this has the correct boundary, first go through the Kirby moves for the
secondary Seifert surface handles for k, to give the original k to attach a 2-handle to. Now, let l be
the linking of k and a dual band γ, and let B be the twisting of γ. Then the Seifert matrix of K is:

S =
(

0 l + 1
l B

)
The Alexander polynomial of K is then ±((l + 1) − tl)(l − t(l + 1)). We now compute π1(W ). It
has generators which we call M,m, the meridians of K, k respectively. (〈M〉 will be the Z in the
representation to Γ1 = Q(t)/Q[t±1] o Z now.)

π1(W ) = 〈M,m |m[M,ml]〉

This is computed because of the curve in the Kirby diagram of W corresponding to the γ band
of the Seifert surface with self linking B; the “b” curve in Figure 7 and Figure 10. Choosing a
base-point and following it around we can see that it links the 1-handles in the word claimed as
the relation of π1(W ); the first m corresponds to the linking which we always have in order to
get the right intersection form. The ml terms appear from linking which is occurring in the box;
we know the linking number from the Seifert matrix and this is the only information we need.
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The diagram of W(k)
(may have higher
genus)

The diagram of the original W(K)

Unspecified Twisting and linking occurs in the large 
box - but we know from the  Seifert matrix that the 
“b” curve links the m 1-handle with linking number l.  

“a” curve,  the 0 self 
linking curve on F 
becomes 1-handle
 giving generator m.

“b” curve,
corresponding 
to dual band.

1-handle giving
generator M

B

Figure 10: Drawing another four manifold W with more complicated fundamental group; more
sophisticated 4-manifolds are required to obstruct sliceness at the higher levels of the Cochran-Orr-
Teichner filtration.

It links twice with the M 1-handle in opposite directions. Hence m−1 ∈ [π1(W ), π1(W )] and so
m ∈ [π1(W ), π1(W )].

There’s a short exact sequence of groups

π1(W )(1) � π1(W )� π1(W )/π1(W )(1) ∼= Z

where the fact that m ∈ π1(W )(1) means that π1(W )/π1(W )(1) ∼= Z as generated by M . Since Z is
free, this sequence splits and we see that

π1(W ) ∼= π1(W )(1) o Z ∼= (Normal closure of m) o 〈M〉.

Now, we work modulo the second commutator group, so all conjugates of m commute. We claim
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that:
π1(W )
π1(W )(2)

∼=
Z[t, t−1]
lt− (l + 1)

o 〈M〉

To see this, modifying the above short exact sequence yields

π1(W )(1)/π1(W )(2) � π1(W )/π1(W )(2) � π1(W )/π1(W )(1) ∼= Z

which means that
π1(W ) ∼= H1(W ; Z[Z]) o 〈M〉

where H1(W ; Z[Z]) = H1(W ; Z[t, t−1]) is the homology of the universal abelian cover of W , with M
acting on it as deck transformations: conjugation by M translates as multiplication (on the right)
by t. This homology is generated by m; this becomes the generator of Z[t, t−1], as M generates
the deck group of the Z-covering of W , there is one copy of the 1-handle m for each power of t.
Again the b curve yields the relation: it links m l times, passes round M , and then links m a total
of l+ 1 times, here with coefficient t since it passed round M , before passing back round M to the
original sheet of the covering, completing the loop, and completing the derivation of the claim for
π1(W )/π1(W )(2).

So there’s a commutative diagram:

π1(MK) //

��

Γ1

π1(W )

ρ

88qqqqqqqqqqqqqq
// Z[t±1]
{lt−(l+1)} o Z

OO

Note that m ∈ π1(W )/π1(W )(2) maps to a non-zero element of Γ1. Therefore:

σ̃
(2)
Γ1

(K, ρ) = σ̃
(2)
Γ1

(W 4, ρ)

We will now calculate the right hand side via computation of H2(W ;NΓ). Let Γ′ := im(ρ) ≤ Γ1.
We have 〈m〉 = Z ≤ Γ0.

We need the following crucial Proposition to complete the argument.

Proposition 6.19. Consider a subgroup Γ0 ≤ Γ1. Then there are commutative diagrams

NΓ0 NΓ1 L0(NΓ0) L0(NΓ1)

C R

Q
QQstrΓ0

-

�
��+ trΓ1

Q
QQsσ

(2)
Γ0

-

�
��+ σ

(2)
Γ1

Remark 6.20. The above proposition is fundamental to our calculations. We constructed our
4-manifold in such a way that the matrix of the intersection form over ZΓ1 contains as its entries

56



only linear combinations of powers of a single non-trivial group element m ∈ Γ′ ≤ Γ1. Since our
groups Γ are torsion-free, this gives an inclusion of groups

Z ∼= 〈m〉 ≤ Γ1

to which Proposition 6.19 can be applied. Thus the L2-signature for Γ can be calculated for this
particular Hermitian form as an integral over the circle of certain twisted signatures.

Proof of Proposition 6.19. A homomorphism NΓ0 → NΓ1 is given by completing

a⊗ Id ∈ End(l2Γ0 ⊗CΓ0 CΓ1)

to a bounded operator on l2Γ2 for any a ∈ NΓ1. Since

〈(e0 ⊗ e1)(a⊗ Id), e0 ⊗ e1〉 = 〈(e0)a, e0〉 · 〈e1, e1〉 = 〈(e0)a, e0〉

it follows that the first diagram commutes. For details see Theorem 3.3 of Lück’s book on L2-
homology. This reference also contains the statement that tensoring an NΓ0-module with NΓ1

is a flat functor. To see that the second diagram above commutes just observe that diagonalising
a hermitian matrix over NΓ0 and then tensoring up the ±1-eigenspaces to NΓ1 diagonalises the
induced matrix over NΓ1. Thus the commutativity of the first diagram proves the claim.

By Proposition 6.19, since Γ′ ≤ Γ1, we get a commuting diagram:

L0(NΓ′) //

σ̃
(2)

Γ′ &&MMMMMMMMMMMM
L0(NΓ1)

σ̃
(2)
Γ1

��
R

so just using the using the subgroup Γ′ gives us the correct L2-signature. We now claim that:

H2(W ;NΓ′) ∼= H2(W0(k);N (〈m〉)⊗Z[m±1] NΓ′)

The intersection form on the latter group has the desired signature σ̃(2) for the proof of the lemma.
To see the claim, note that Γ′ ≤ π1(W )/π1(W )(2). Compute the second homology geometrically;

the 2-handles from W0(k) give a basis in the covering space with deck group Γ′. The linking of
the b curve with the m 1-handle means that its attaching circle is not null-homotopic and so it
doesn’t give a generator of H2(W ;NΓ). We can then compute intersection numbers using 〈m〉 ∼= Z,
which then gives us the numbers with m ∈ Γ′, hence the tensoring up as a Hermitian module. Now
Proposition 6.19 applies again; the map L0(NZ)→ L0(NΓ′) is exactly tensoring up. So ultimately:

σ̃
(2)
Γ1

(K, ρK) = σ̃
(2)
Γ1

(W ) = σ̃
(2)
Γ′ (W ) = σ̃

(2)
Z (W0(k)) = σ̃

(2)
Z (k)

Note that about surjectivity of π1
ρ−→ Γ was not essential in our choices: using the image of ρ is

enough.
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Remark 6.21. Note on Proposition 6.19: it is rather remarkable that a signature on a smaller
group extends to a bigger one. This is not usually true for invariants of L-groups. It comes because
the trace function extends from NΓ1 → C to NΓ2 → C.

We should warn the reader that the von Neumann algebra NΓ is not functorial in Γ. This has
to do with the specific choice of the Hilbert-space l2Γ. Proposition 6.19 gives the best possible
functoriality which is valid for all groups. If Γ is amenable, then the equality of the reduced
and maximal C∗-algebras (which are functorial!) implies that the projection Γ → {1} induces a
homomorphism of C∗-algebras ε : C∗Γ→ C. For example, if Γ = Z then this is given by evaluating
a continuous function at 1 ∈ S1. This clearly does not extend to NZ = L∞(S1).

Proofs

Proposition 6.22. Let M be a finitely generated abelian group. Then,

Ext1(M,Z) ∼= Hom(Tor(M),Q/Z).

Proof. We have the exact sequence

0→ Z µ−→ Q ν−→ Q/Z→ 0

Since Q is injective, Ext1(M,Q) = 0 and we get the sequence

0→ Hom(M,Z)
µ∗−→ Hom(M,Q) ν∗−→ Hom(M,Q/Z)→ Ext1(M,Z)→ 0

Now, by the structure theorem for f.g. abelian groups, we can write M = Zn ⊕ Zn1 ⊕ · · · ⊕ Znq .
Then

Hom(M,Z) = Hom(Zn,Z)⊕Hom(Zn1 ,Z)⊕ · · · ⊕Hom(Znq ,Z) = Hom(Zn,Z)

since Hom(A,Z) = 0 for any torsion module A. Similarly, Hom(M,Q) = Hom(Zn,Q).

This gives us

Ext1(M,Z) ∼= Hom(M,Q/Z)/ im ν∗ = Hom(M,Q/Z)/Hom(Zn,Q/Z) ∼= Hom(Tor(M),Q/Z).

Proposition 6.23. There is an isomorphism Φ: TorHn(X)→ Hom(TorHn−1(X),Q/Z).

Proof. For a function f ∈ TorHn(X), we let Φ(f) be the map x 7→ f(y)
s , where x ∈ TorHn−1(X),

and sx = dy for some s 6= 0 ∈ Z and y ∈ Sn(X). Here we use the terminology that the homology
groups are calculated from the chain complex

· · · → Sn+1(X) d−→ Sn(X) d−→ Sn−1(X)→ . . . .
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Our map is clearly a homomorphism. To prove surjectivity, take φ ∈ Hom(TorHn−1(X),Q/Z). We
want to find f ∈ TorHn(X) such that φ(x) = Φ(f)(x) ∀x. So let x ∈ TorHn−1(X) with sx = dy
for some s ∈ Z\ {0} and y ∈ Sn(X). Put f = φ ◦ d. Then f(y) = φ(d(y)) = φ(sx) = sφ(x), and so
φ(x) = f(y)

s = Φ(f)(x) as required.

It remains to prove injectivity. Suppose Φ(f) is the zero map for some f ∈ TorHn(X). This
means that Φ(f)(x) = f(y)

s ≡ 0 for all x ∈ TorHn−1(X), which means that f(y)
s ∈ Z, so s divides

f(y).
Since f ∈ TorHn(X) we can find m ∈ Z and g ∈ Sn−1(X) such that mf = g◦d (i.e. mf ∈ im d∗).

Now
mf(y) = g(d(y)) = g(sx) = sg(x)

so that f(y)
s = g(x)

m ∈ Z for all x. But if m divides g(x) for all x, then we may write g = mg′

for some g′ ∈ Sn−1(X). Then mf = mg′ ◦ d ⇒ f = g′ ◦ d ∈ im d∗, so f is the zero element in
TorHn(X).
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