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REGULAR CURVES ON RIEMANNIAN MANIFOLDS()

BY
STEPHEN SMALE

Introduction. A regular curve on a Riemannian manifold is a curve with
a continuously turning nontrivial tangent vector.(?) A regular homotopy is
a homotopy which at every stage is a regular curve, keeps end points and
directions fixed and such that the tangent vector moves continuously with
the homotopy. A regular curve is closed if its initial point and tangent coin-
cides with its end point and tangent. In 1937 Hassler Whitney [17] classified
the closed regular curves in the plane according to equivalence under regular
homotopy. The main goal of this work is to extend this result to regular
curves on Riemannian manifolds.

THEOREM A. Let xo be a point of the unit tangent bundle T of a Riemannian
manifold M. Then there is a 1-1 correspondence between the set o of classes
(under regular homotopy) of regular curves on M which start and end at the
point and direction determined by x, and mi(T, xo).

This correspondence may be described as follows. If f&m let f be a repre-
sentative of f and let &f at ¢ be the vector of T whose base point is f(f) and
whose direction is defined by f(¢), the derivative of f at ¢. Then ¢f is a curve
on T which represents an element of m1(T, x,). The correspondence of Theo-
rem A is that induced by .

If f is a closed regular curve in the plane then its rotation number v(f)
is the total angle which f/(f) turns as ¢ traverses I. The Whitney-Graustein
Theorem says that two closed regular curves on the plane are regularly
homotopic if and only if they have the same rotation number. Using the fact
that the unit tangent bundle of the plane is E2 X S?, this theorem follows from
Theorem A.

Let x, be a point of the unit tangent bundle T of a Riemannian manifold
M. The space of all regular curves on M starting at the point and direction
determined by x, is denoted by E. A map 7 from E onto T is defined by send-
ing a curve into the tangent of its endpoint at its endpoint. The following can
be considered as the fundamental theorem of this work.

THEOREM B. The triple (E, w, T) has the covering homotopy property for
polyhedra.

Presented to the Society, August 24, 1956; received by the editors September 29, 1956.

(Y) The material in this paper is essentially a dissertation submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the University of Michigan, 1956.

(?) These definitions will be made precise in the body of the work. Also, theorems stated
will be proved later.
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Let I be the fiber over x, of (E, m, T) and let Q be the ordinary loop space
of T at x,.

TuEOREM C. The map & is a weak homotopy equivalence between I' and Q.

Theorem B is used to obtain Theorem C and, in turn, Theorem A follows
from Theorem C.

If f is a regular curve on M, ¢f is a curve, as we shall say, a lifted curve,
on T=T(M). Clearly, not all curves on T are lifted curves. In particular,
every lifted curve must be an integral curve of a certain 1-form w, on T. If
the integral curves of w, were exactly the lifted curves, Theorems A, B, and
C could be proved by proving theorems on integral curves. Unfortunately,
however, wo admits as integral curves some non-lifted curves. Nevertheless,
these considerations raise questions concerning the loop space of integral
curves of wpon T.

THEOREM D. Let w be a 1-form of Class A on a three dimensional manifold M
such that w \dws~0 on M and let xo& M. Denote by Q. the loop space at xo of
piecewise regular curves on M which are integral curves of w and by Q the ordinary
loop space of M at xo. Then the inclusion i: Q,—Q is a weak homotopy equiva-
lence.

I would like to express my appreciation to my adviser, Professor Raoul
Bott, for the encouragement and advice which he gave throughout the
preparation of this thesis. I would also like to thank Professor Hans Samelson
for reading the manuscript and for suggesting several corrections.

1. Fiber spaces. A triple (E, p, B) will consist of two arcwise connected
spaces E, B and a map p from E into B. A triple will be said to have the CHP
if it has the covering homotopy property for polyhedrons [11].

If g is a map from a space X into a space Y, then the restriction of g to
a subset 4 of X will be denoted by g4 or sometimes just g. P will always
denote a polyhedron. The set {¢real|a <t <b} is denoted by [a, b]. A cube I*
is the Cartesian product of & copies of I, the closed unit interval.

The following proposition is well-known. It is a special case of a theorem
proved in [6, p. 136].

PropOSITION 1.1. Let (E, p, B) be a triple which has the covering homotopy
property for cubes. Then it also has the CHP.

LEMMA 1.2. Let a triple (E, p, B) have the CHP. Let o be a simplex of some
dimension n and let g: ¢ X I—B be given. Suppose o is the (pointset) boundary
of 5, A= XI\Ja X0Co XI and f: A—E covers g\a. Then there exists an exten-
ston F of f to all of o X I covering g.

The proof is immediate. There is a homeomorphism from o XI onto
I*X I which sends 4 homeomorphically onto I*X0. Then the application of
the CHP yields the desired map F.
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The statement of the following theorem is quite similar to what Hurewicz
calls the Uniformization Theorem in [5]. It will be found useful in proving the
CHP for a triple whose base space is a manifold.

ProposITION 1.3. Suppose a triple (E, p, B) has the CHP locally; that is,
for each point x & B, there exists a neighborhood V of x such that (p~(V), p, V)
has the CHP. Then (E, p, B) has the CHP.

Proof. Let H: P XI—B be a given homotopy and k: P X0—E a covering
of Hipxo. We will define a covering homotopy H:PXI—E. For each
yEH(PXI) let V, be a neighborhood of y so that (p~1(V,), p, V,) has the
CHP. Assume P X I has been given some definite metric. Denote by & the
Lebesgue number of the covering { U,=H-Y(V,)|yEH(P XI)} of PXI. Put
I,=[0, 8/3]. It is sufficient to define H on P X I, for then iteration will yield
a full covering homotopy.

Take a simplicial complex K such that | K| =P. Let Sd(K) be a subdivi-
sion of K such that the diameter of any simplex of Sd(KX) is less than §/3,
and let Sd(K)" be the r-skeleton of Sd(K). If v is a vertex of Sd(X) the choice
of I, yields that H(vXI,) is contained in some neighborhood V where
(p~Y(V), p, V) has the CHP. This fact immediately gives a definition of H on

Sd(K)°[ X Io. Proceeding by induction suppose H has been defined on

Sd(K)"ll X Iy, and ¢7 is an r-simplex of Sd(X). From the choices of Sd(K)
and I, it follows that o X I, has diameter less than 8. Then H(¢" X I,) is con-
tained in some V such that (p~!(V), p, V) has the CHP. Already H has been
defined on ¢7 X I)\UJo" X 0. Then application of Lemma 1.2 yields H on o7 X I,.
In this manner H is defined on all of ]Sd(K)'I X Iy and then by induction on
all of |Sd(K)| X Io. This proves 1.3.

2. Regular curves. By a manifold we shall mean a connected Riemannian
manifold of class 3 and dimension greater than 1. There are no assumptions
such as completeness or compactness. If M is a manifold, Ty(M) or often
just T will be the space (or bundle) of all tangent vectors of M. By T'(M)
or T is meant the sub-bundle of T, which consists of the unit tangent vectors
of M.

As usual, a curve on a space is a map of I into thespace. Let M be a mani-
fold and let f be a curve on M whose derivative [1, p. 46] exists at the value
to&1. This derivative is an element v(¢,) of Mj,, the tangent vector space
of M at f(¢9). By convention in this work the derivative f'(¢,) of f at ¢, will be
the pair (f(to), v(80)). Thus, f'(¢,) will be an element of T4(M). By the magni-
tude of f’(¢y) or [ Vil (to)[ we mean the magnitude of v(Z).

A parametrized regular curve on a manifold M is a curve f on M such that
f'(t) exists, is continuous and has positive magnitude for each t&I. Two
parametrized regular curves f and g will be called equivalent if there exists a
homeomorphism % of I onto itself such that for all ¢&1I, #'(¢) exists, is con-
tinuous and positive, and f(¢) =g(k(¢)). It is an easy matter to check that this
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is a true equivalence. A regular curve is an equivalence class of parametrized
regular curves.

The arc-length of a regular curve g, defined in the usual way, exists, and
is independent of its representative. It will be denoted by L(g). Implicit use
of the following proposition will be made throughout this work.

ProrposiTION 2.1. If g is a regular curve on a manifold then there exists a
unique representative of g still denoted by g such that I g (t)I =L(g) for all tE1.
L(g) is the only possible constant value here.

The proof for the plane is in [17]. The same proof holds for the general
case of a manifold. The representative of a regular curve given by 2.1 will be
called distinguished. A distinguished representative is just a parametrization
proportional to arc-length. Unless we note otherwise, a regular curve will be
identified with its distinguished representative.

Let M be a manifold and x, a fixed point of T(M). We denote by E(M)
or sometimes simply E, the space of regular curves on M whose normalized
initial tangents are x,; in other words,

. g'(0)
E(M) = {gisaregular curve on M |——— = xo -
£
Let d: ToX To—R* be any metric on T, (R* is the space of non-negative
real numbers). Then for f and gEE, let

d(f, g) = max {d[f'(t), ¢®]| t € I}~

From the fact that d is a metric, it follows easily that d is a metric on E.
We will suppose E to have the topology induced by d.

Let f; be a sequence of points of E converging to a point f of E. Then for
each t&1, f;(t) converges to f/(¢). If a sequence x, of points of T, converges to
%o then from the topology of T, it follows that the base points of x, in M
converge to the base point of x,. Thus f;(f) converges to f(¢) for each tE1.

The map m: E-T of Theorem B may be defined by =(f) =f(1)/|f'(1)].
To speak of (E, w, T) as a triple, E must be arcwise connected. This is proved
later (Lemma 6.2).

3. The reduction of the proof of Theorem B to 3.1 and 3.2. The proof of
Theorem B depends essentially on Propositions 3.1 and 3.2.

ProPoSITION 3.1. Let M be a manifold and p: E(M)—M be the map p(g)
=g(1). Then (E, 3, M) has the CHP.

Suppose M is a manifold. Let my: Ty(M)—M be the map which sends a
tangent vector into its base point. A homotopy f,: P—T (M) will be called
vertical if for all p€P and vEI, mif,(p) =mifo(p). A homotopy f,: P—>X
(X any space) is said to be stationary on a subpolyhedron A4 of P if f,(p)
=fo(p) for all p€4 and vE1. '
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PROPOSITION 3.2. Let M be a manifold and f,: P—T (M) be a given vertical
homotopy with f: P—>E(M) covering fo. Then there exists a covering homotopy
fo: P—E. Furthermore if f, is stationary on a subpolyhedron A of P then fo will
also be.

Propositions 3.1 and 3.2 will be proved in the following sections. Now
we will show how Theorem B follows from 3.1 and 3.2.

LEMMA 3.3. Let P be a polyhedron and A be a subpolyhedron which is a
strong deformation retract [2] of P. Let g and k be maps of P into a space X
which agree on A. Then there exists a homotopy H: P XI—X between g and h
which is stationary on A.

Proof. Since 4 is a strong deformation retract of P there is a homotopy
K: PXI—P such that K(p,0)=p, K(p,1)EA4,and if pE 4, K(p,t)=p. The
desired homotopy H: P XI—X may be defined as follows:

H(p, t) = gK(p, 2t) 0st=1/2,
H(p, t) = kK (p, 2 — 2t) 1/2=t=<1.
The k-sphere is denoted by .S*.

LEMMA 3.4. Let P and A be as above with P contractible, and M be an n
dimensional manifold. Let F: P— M be given and g: P—»T=T(M), h: P—T be
two covering maps of F which agree on A. Then there exists a homotopy h,: P—T
between g and h such that h, is stationary on A and for each v<1I, h, covers F.

Proof. Let E’ be the induced bundle F-1(T) [13, p. 47].

-2

Jq1 Jn
F
P— M
By definition:
E = {(p,) € P X T| F(p) = m(H}.
q2(P’ t) =1, QI(p, t) = p.

Since P is contractible, E’ is a product P XS*! [13, p. 53] with ¢ being
the projection of E’ onto P. Let n’: E’—S"~1 be the other projection.

Define g: PoE'CPXT by g(p)=(p, g(p)) and let g*: P—>S*! be the
composition 7’g. Similarly, define % and £* from k.

Apply the previous lemma to obtain a homotopy k& : P—S™! between
g* and k* which is stationary on A. Define k,: P—E’'=PXS"! by h,(p)
=(p, k¥(p)) and h,: P—T by h,=g:h,. It can be quickly checked that &,
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satisfies the lemma. q.e.d.

To prove Theorem B it is sufficient by Proposition 1.1 to show that
(E, m, T) has the covering homotopy property for cubes. Suppose, then, we
are given a homotopy f,: P—T and a map f: P—E covering f, where P is a
cube. We will construct a covering homotopy f,: P—E.

Application of Proposition 3.1 yields a covering map /&: P X I—E of m.f,
such that &(p, 0)=f(p). Lemma 3.4 then yields a homotopy H,: PXI—T
such that (1) Hy(p, v) =mhk(p, v), (2) Hi(p, v)=£f.(p), (3) H.(p, v) covers
m1f»(p) for each €1, and (4) H, is stationary on P X0. By (3) H, is a vertical
homotopy so Proposition 3.2 applies to yield a homotopy H,: P XI—E of £
which covers H,. k

We assert that H,(p, v) can be taken as the desired covering homotopy
fo(p). From Hy(p, v) =f,(p) it follows that H,(v, p) covers f,(p). Since H, is
stationary on P X0, H, is also. Then H,(p, 0) =H(p, 0) =k(p, 0) =f(p) or
H,(p, v) is a homotopy of f(p). This shows that Theorem B follows from
Propositions 3.1 and 3.2.

4. Proof of Proposition 3.1. We will need two lemmas. By v Lw it is meant
that the vectors v and w are perpendicular.

LeMMA 4.1. Let n>1 and S*! be the unit vectors of Euclidean n-space E*
considered as a vector space. Suppose P is a cube and a map w: P—>S*1 is
given. Then there exists a map u: P—S™! such that for all pC P, u(p) Lw(p).

This lemma is not true for a general polyhedron. In particular, if P =S"—!
and w is the identity, the existence of such a map » implies the existence of a
unit vector field on S*~1. It is well known that this is impossible for odd #.

Proof of 4.1. Let V,. be the Stiefel manifold [13, p. 33] of ordered
orthogonal unit 2-frames in E*. With a projection p; sending a 2-frame into
its first vector, V,, becomes an (n—2)-sphere bundle over S*~'. Let E’ be
the induced bundle w=1(V,,).

E,l)l n,2
*

| w [P
P — S

Since P is contractible E’ is a product. Let s: P—E’ be any cross-section, and
let po: V,,»—S"1send a 2-frame into its second vector. Then the composition
u = pofs has the desired property. q.e.d.

LLEMMA 4.2. Given yo, 0<y0=1/2, there exists a real continuous differenti-
able function 3(y) defined on I such that (1) 8(0)=p(1)=0, (2) B’(0) =0, and
(3) for yo=y=1,8'(y) 24.

Proof. Consider the function:
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r(y) =0 0=y =9/2,
8

r(y) = — - (1 = yo)y + r(1 — 30 ¥/2 £y = yo,
0

r(y) =4y — 4 y<y=1

Note that r(y) could be taken as B(y) except for the fact that it has corners
at y=190/2 and y =7y,. By “rounding off the corners” of 7(y) the desired func-
tion can be obtained.

In order to prove 3.1 it is sufficient by Proposition 1.3 to show that
(F~Y(Uy), §, Us) has the CHP where Uy is a coordinate neighborhood of M.
Since U, is homeomorphic to E* we can identify the two spaces under this
homeomorphism. Thus Uy=E*C M. T4(U,) is a product space E* X E* where
the first factor comes from the base point and the second from the direction
and magnitude of a vector. We identify each of the two factors of T4(U,) with
a single E™ whose elements we consider as vectors. If S*! is the space of unit
Vectlorls of E», T(U,) =E"XS"*1. The magnitude of a vector v of E" is writ-
ten |v|.

For convenience the following new convention is used in this section and
the next. The derivative of a regular curve at a point of U, will not carry the
base point. That is, it is now the projection of the old derivative onto the
second factor of To(U,). This is possible since most of the analysis in these
sections is concerned with T4(U,) and U,.

By Proposition 1.1 it is enough to show that (5~1(U,), §, Us) has the cover-
ing homotopy property for cubes. Let k,: P— U, be a given homotopy with
h: P—p=1(U,) covering ko where P is a cube. We will construct a covering
homotopy k,: P—p~1(U,).

Choose J with 0 <J <1 such that for all pEP and tE [J, 1], k(p)(t) E U.
Then choose Jo with J < J,<1 so that for all pEP and t& [Jo, 1],

_ B (p)
LR — R(p)(1)| < l—%ﬁl— :

The following choices are motivated by the need to insure the regularity
of the covering homotopy curves we are constructing. Let

K = max {| h(p) — ho(p)| |vE I, p € P}.
If K=0, y,=1/2. Otherwise let
. {1 | F)D) | ( = Jo)
Yo = min ’?J

P;.
o
The compactness of P yields that y,>0.

Taking y, as above, let 8(y) be the function given by Lemma 4.2.

By taking w(p) =K' (p)(1)/| #'($)(1)|, Lemma 4.1 yields a map u: P—S—!
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such that »(p) L&' (p)(1).

We define the desired covering homotopy 4,: P—p~1(U,) as follows. For
0=t=Jy set k,(p)(t) =h(p)(t). For Jo<t=1 let s=s(t)=(t—Jo)/(1—Jo);
then set

Fo(0)(®) = E(p)(2) + s?[h(p) — ho($)] + B(s) | ho(p) — ho(p) | u(p).

Here h(p) is to be taken distinguished (see §2), but %.(p), in general
will not be. Note that for = J, all the terms used to define %,(p) lie in U, and
hence the additions make sense.

The following properties of &, can be readily checked:

(1) k.(p)(¢) is continuous in v, p, and .

() h(2) (1) k().

(3) ha®)=k(p).

The derivative of k,(p)(¢) for ¢=J, can be computed to be:

k() () = F(@)(0) + 5'25[he(p) = ho(9)] + 5'8'(5) | ho(p) — ho(p) | u(p).

Then it can be seen:

(4) h,(p) is differentiable.

(5) &I (p)(0)/| k! (p)(0)| =x0o. The derivative meant here is in the sense of
§2.

The following requires proof:

(6) h,(p) is a regular curve.

For this it is sufficient to show that &,/ (p)(t) %0 for ¢t=J,. For such ¢ we
can write &, (p)(t) =A1+A: where

AL =B @) + B ()| ka(p) — ho(p) | u(p)
and
Az = 25's[hy(p) — ho(p)].

We will divide the proof into two parts.
Cask L. s=y,: We claim | 44| = (9/10)| ' (p)(1)].
For a certain number A,

Ay = F()(1) + Au(p) — (K (p)(1) — K(p)(¥))
and then by the triangle inequality
| s 2 [F®W) + dup)| — [FD)W) = F®)@)] -
By the choice of J, we obtain

i 1. '
| 41| = | #(p)(Q) + u(p) | -5 | B @p)(1) ] .

Finally, since «(p) L ()(1) we have | 4, = (9/10)| ¥ (p)(1)| as claimed.
On the other hand, by the choice of y, (since s<7y,)
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| 45| < 50/3)| F)Q)| (1 —To) = A/3) | FH)A)]| .

From the triangle inequality it follows that &, (p)(£) 0.
CaskE II. s=y,: We use a lemma.

LEMMA 4.3. Let a, b, and c be vectors in E™ such that |b| <(1/10)|a| and
¢La. Let v be a scalar, v>4. Then the inequality |a+b-+uvc| > | 3¢| holds.

Proof. Since
la+b40c| = |a+vc| — |01
it is sufficient to show
la+wc|2z (|3c] + |a])e
or using the fact that cla
lal2+ o>z 9lc|+6|a] [c] + |o]
Since v=4 it is sufficient to show
lalrz —7]c|2+6]o]c| + [2]"
This is easily checked considering separately the two cases
lc|] =|&| and le| > |8].
It follows from 4.3 that
| 41| 2 35| hu(p) — mo(p) | taking K (p)(1) = o,
B(p)(1) =k (p) () =b, s'|h,(p) —ho(p)|u=c, and B'(s) =v. By the choice of
Jo, | 8] <1/10|a| and since s=yo, vZ4.

On the other hand |4,| £25’|h,(p) —ho(p)|. Then by the triangle in-
equality %/ (p)(£) 0. This finishes the proof of (6).

Properties (1), (4), (5) and (6) imply that 4,(p) is really an element of E,
(2) says that &, covers h, and (3) that &, is a homotopy of k. Therefore we
have proved 3.1.

5. Proof of Proposition 3.2. Let U, be a coordinate neighborhood on M,
and let V=T(U,). By the argument used to prove Proposition 1.3, it is suffi-
cient to prove 3.2 for the case where {fv(p)IvEI, pEP} C V. The notation
and conventions of the last section will be continued.

Let my: To(Usy) = ErX E»—E" be the projection onto the second factor.
Then m(T(Uo)) CS* 1. The angle between two vectors of S*~! is a continuous
function of the vectors. This fact, together with the compactness of P,
justifies the following choice. Pick >0 such that for all p€ P and Iv—v’l <e,
the angle (measured in radians) between msf,(p) and m,f,(p) is less than 1/10.

For v <e let a,(p) be the oriented angle from m,fs(p) to msf,(p). By our

choice of €, a,(p) <1/10.
For v<e, and tE1, we will define Q,(p, t) to be the following rotation of
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Er; thatis, we are defining a map Q,: P XI—R, where R, is the rotation group
of E». If mafo(p) =mofu(p) let Qu(p, t) =e, the identity rotation. Otherwise let
Q.(p, t) rotate V, the unique plane determined by msfs(p) and maf.(p), through
the angle fa,(p) and leave V4, the orthogonal complement of V, fixed.

That Q,(p, t) is continuous in v, p, and ¢ and has a continuous first deriva-
tive in ¢, Q.+ (p, t), is easily seen. Later, in fact, we will have occasion to com-
pute this derivative.

Choose J, 0= J <1, such that

Feo)o|pE P te 1,11} CU..

LEMMA 5.1. There exists a Jo with J<Jo<1 such that for all pEP and
te [JOy 1]y
o -7 _ 4 .
= s — || .
=1 | =3 Teo]

Proof. It follows from the definition that
Fr @) — F(#) (1)
t—1

so by the compactness of P there exists a Jo with J £J,<1 such that for
te [JO, 1]’

F®Qa) = lim

- 7 1 _ 1,
TROZTOD 3w s+ 7@l

Then by the triangle inequality

J)(0) = f(p)(1) <4
t—1 =3

| 7)) | .

Also clearly for Jy<t=1,

o)W — 7)) | _ |7 — ) (1)
Jo—1 B t—1 '

These last two inequalities yield the lemma.
Choose Jy by 5.1 and such that also

7)) = ()@ | < (1/10) min { | f(p)(1)]| | » € P}

holds for all pEP and ¢t&[J,, 1]. Then for v<g, , is defined as follows.
For 0=t=Jy set 1.(p) (1) =f(p) (8).
For Jo=t =1 let s=s(t)=(¢—Jo)/(1—J,); then set

100 = T@)0) — J0) (D102, e + (52 — 0L, 0] + FB)(1).

Here Q.(p, 5), Q. (p, 0) and e are to be considered as transformations acting
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on the right. The curve f(p) is taken distinguished, but in general, f,(p) will
not be.

The following properties of the covering homotopy can be quickly
checked.

(1) f.(p)(@) is continuous in v, p, and ¢.

(2) 12(2) =] (®).

(3) f.(p) is stationary on a subpolyhedron 4 of P if f,(p) is.

The first derivative of f,(p) can be computed as follows for ¢ = J,:

(D)@ = F D) B0, e + (s2 — )04 (p, 0)]
+ ) (&) — @YWL (B, 9)[e + (s2 — )QJ (p, 0)]
+ Qu(p, 5)(2s — 1)QJ (p, 0)}.

Using this it can be further checked that:
(4) f.(p)(@) is differentiable.
(5) 7! (»)(0)/|FS (#)(0)| == in the sense of §2.
(6) F, (&)(1)/|F) #)(1)| =f.(p) again in the sense of §2.
The following requires proof:
(7) The curve f,(p) () is regular.
For the proof of (7) we will use:

LEMMA 5.2. Let 0=t=<1. Then (a) the transformation Q) (p, t) reduces the
magnitude of a vector to less than 1/10 of its original magnitude and (b) the
transformation e+ (t2—t)Q, (p, 0) does not change the magnitude of a vector by
a factor of more than 1/10.

Proof. For given p and v let coordinates x;, - « - , x* of E* be chosen so that
V (from the definition Q,(p, t)) is the x; —x; plane and the direction of myfo(p)
coincides with the x; axis. Then with this system suitably oriented Q.(p, f)
can be represented in the matrix form,
cos [ta(p)] —sin [tan(p)]0 - - -0
sin [tas(p)]  cos [tas(p)]O - - -0
0 0 1

0 0 0---1
Then Q) (p, t) will be of the form,

sin [tas(p)] cos [tan($)] 0 - - - 0
—cos [tan(p)] sin [tas(p)] 0 0

—a(p) 0 o o o
0 0 0 0
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If B1, Bz, - - -, Bn are the components of a vector 8 in the above system
then

180/ (2, 0| = | en(®)| [B)* + 82 = | au(p) | | 8.

This yields (a) since Ia,,(p)] <1/10. (b) follows from (a) and 5.2 is proved.
To prove (7) it is clearly sufficient to show that f! (p)(t) %0 for ¢t = J,.
Let 7/ (p) () =A:+A; where

A1 = JB) OO, $)[e + (52 — )07 (2, p)]
and
4y = [f(p)(t> — i)
Jo—1

Jtort, 9t + < ~ 9016, 01

+0.(p, 5)(2s — 1)QJ (p, 0)}.

From Lemma 5.2(b) and the fact that Q,(p, s) does not change the mag-
nitude of a vector, it follows that | 4| = (9/10)|7()(#)|. Then by the choice
of Jo, | 41| Z(8/10)|7'(p)(1)|.

On the other hand, by Lemma 5.2 one easily obtains

I®® -7 |
Jo—1

Then from the choice of Jy (see 5.1) it follows that |A4,| <(4/10)|7 ®)1)].
By the triangle inequality the inequalities on |A1| and lAzI yield f./ (p)(t) %0
and hence (7).

Properties (1), (4), (5) and (7) imply that f,(p) really belongs to E, (2)
says that f, is a homotopy of f and (6) that f, covers f,. Lastly, (3) is the sta-
tionary property demanded by 3.2. Thus f, is a satisfactory covering homo-
topy for v=e.

The above construction may be repeated if e<1 using f.(p) instead of
f(p) and using a new value for J, if necessary. This yields a covering homo-
topy for v=<2e. Iteration yields a full f, and the proposition is proved.

6. On the topology of the fiber I'. We recall some definitions and theorems
of [11]. Let X be a space and x,EX. The path space of X written E.(X) or
sometimes E., is the space of all curves (or paths) on X which start at x,,
with the compact open topology. Define p: E.,—X by sending a path onto its
endpoint, i.e., let p(f) =f(1). The loop space of X at x,, p~1(x,) is denoted by
Q(X) or Q. It is shown in [11, pp. 479-481] that (E,,, p, X) has the CHP and
that E,, is contractible.

Using the notation of the previous sections let M be a manifold, T'= T'(M),
E=E(M) and T'=T(M)=n"'(x,). Define a map ¢: E—-E,(T) by ¢(g)(?)
=g'(t)/| &' (t)| for gEE. It can be seen that ¢ is continuous as follows. Let
E’ be the set E.(T) endowed with the metric topology

a*(f, g) = max {d[f(1), e®)]| ¢ € I}.

| 4:] < 3/10
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Then ¢ can be factored through E’ by maps ¢1: E—E’ and ¢.: E'—E,,
where ¢, is the identity. It is well known that the metric topology and the
compact open topology are equivalent on E,, See for example [4, p. 55].
Hence ¢ is continuous. From the topology of E it follows that ¢, is con-
tinuous. Thus ¢ is continuous. Let ¢ be ¢ restricted to I'. Then ¢(I") CQ. This
map is the same as @ of the Introduction.

A map between two spaces is a weak homotopy equivalence [after 10, p.
299] if it induces an isomorphism of the homotopy groups of the spaces. The
following theorem is well-known. A proof can be found in [14, p. 113].

THEOREM 6.1. A weak homotopy equivalence induces isomorphisms of the
singular homology groups of the spaces involved.

Theorem C and 6.1 yield that ¢ induces isomorphisms of the singular
homology groups of I' and Q. This is of interest because a certain amount of
attention has been given to the problem of determining the singular homology
of loop spaces. For example see [11] and [15].

The proof of Theorem C requires the following lemma.

LEMMA 6.2. If M is a manifold the space E(M) is homotopically trivial.

Proof. Consider first the case where M is Euclidean n-space E*. Assume
m%o to be the origin of a coordinate system of E* and let myxo =&, where
is the projection of T'=E"XS"! onto S"*.

For some k=0 let f: S*—E be given. To prove the lemma for E* it is suffi-
cient to show that f is homotopic to a constant. Since S* is compact we can
choose J>0 close enough to 0 so that for all p&S* and ¢tE [0, J],

7@ = F®O| < | )0 .

Then for vE [0, 1/2] let £,(p) (¢) =F(p) (¢ —2(1 — J)vt). The curve f(p) is to
be distinguished, but f,(p) will not be, in general. This homotopy merely con-
tracts f(p) into a curve whose tangent is fairly close to a constant.

Define e(f) as the fixed path of E given by #i. Then for v& [1/2, 1] define

SO = 2 = 20f12(p) () + (20 = De(®).

where fi/2(p)(¢) is the nondistinguished curve given by the previous homotopy.

It can be checked that f,(p) is really contained in E, that fo(p) =f(p) and
that fi(p) =e. It is the selection of J that yields the necessary regularity of
fo(p) forv=1/2. :

We have proved the lemma for M = E". The proof for a general M goes
as follows. As before, let f: S.—E. Now for v<1/2 let f,(p) be a “shortening”
of f(p) so that for all pES*, fi2(p) lies in a certain coordinate neighborhood
about x,. For v&[1/2, 1] the homotopy is the same as the total homotopy
for En. q.e.d. ' '

Theorem C is proved as follows.
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From the definition of ¢ it follows easily that ¢ commutes with the identity
of T,i.e., pp=m or
()

E— E.,

1
T—T

commutes. Then, ¢ induces a homomorphism of the homotopy sequence of
E into that of E.,. We have the following commutative diagram with the
horizontal sequences exact.

c—> Wk(P)—-') Tk(E) b 4 1rk(T) b d
L& Lo L1
-+ = m((1) = mu(Bay) > (D) > - - -

From m(E) =m(Ez,) =0 for all & (using 6.2), it follows that s is an iso-
morphism for all 2. This proves Theorem C.

7. Classes of regular curves on a manifold. Two regular curves on a
manifold M are said to be regularly homotopic if they are homotopic and the
homotopy g.,: I—M can be chosen such that for each v&1, g, is a regular
curve, g,/ (0)=g¢ (0), g/ (1) =gd (1), and g/ (¢) depends continuously on v. A
regular curve g on M will be called closed if g’(0) =g’(1). It will be said to be
at a point yo of T if g’(0)/ | g (O)I =1v,. Two closed regular curves on M are
freely regularly homotopic if they are homotopic and the homotopy g,: - M
can be chosen so that for each vE€1I, g, is a regular closed curve. Regular
homotopy (free regular homotopy) is an equivalence relation and a class
(free class) of regular curves on M will mean an equivalence class with respect
to this relation.

M. Morse has investigated the behavior of locally simple sensed closed
curves (or L-S-curves) under L-S-deformations. For definitions and discus-
sion see [7; 8; 9]. In these articles he classified L-S-curves on closed 2-mani-
folds and E? into equivalence classes under L-S deformations. He has noted
the similarity between this study and the classification of closed regular
curves with free regular homotopies playing the role of L-S-deformations.
The results of this section are parallel to Morse’s.

From the definition of regular homotopy it follows that if M is a manifold
two curves of I'(M) are regularly hdmotopic if and only if they lie in the same
arcwise connected component of T, i.e., in the same element of 1ro(I‘) Using
this fact Theorem A is the case n=0 of the following:

THEOREM 7.1. If M is a manifold, there exists an isomorphism q from

Ta(T(M)) to T (T(M)).
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Proof. Let ¢#: m,(T(M))—m.(2(T)) be the isomorphism of Theorem C,
and s: 7(Q(T))—=mn1(T) be the Hurewicz isomorphism [16, p. 210]. The
composition of these two maps g=s@# gives the isomorphism demanded by
the theorem. The rest of this section will be devoted to special cases of Theo-
rem A.

THEOREM 7.2. Let the dimension of a manifold M be greater than 2 and
20ET(M). Then two regular closed curves on M at x, are regularly homotopic if
and only if they are homotopic with fixed end points.

As we shall see, this theorem is far from true for 2-manifolds.

Proof of 7.2. The “only if” part is immediate from the definition of regular
homotopy.

Consider the exact homotopy sequence of 7. Then

71(S"1) = 13(T) —> 1y (M) — mo(S™1)

is exact. Since m1(S"1) =mo(S"1) =0 for n>2, myy: m(T) =m(M). With this,
Theorem A yields that myg: (') ~m1(M). Moreover, from the definitions
of m; and ¢ we can consider 7y, to be just the map induced by sending a curve
into itself. Then 7.2 follows immediately from the definitions of 7o(I") and
1l'1(M).

Regular curve classes on some 2-manifolds will now be investigated.

(a) The plane. The following definition is due to Whitney [17]: If fis a
regular closed curve in E?, its rotation number y(f) is the total angle which
mof’(t) turns as ¢ traverses I. The function

O = 7of O/ | maf ()|
is a map of I into the unit circle. ¥(f) is 27 times the degree of this map.

THEOREM 7.3 (WHITNEY-GRAUSTEIN). Two regular closed curves on the
plane are freely regularly homotopic if and only if they have the same rotation
number. ’

Proof. Because a translation of a regular closed curve in the plane is a
free regular homotopy and preserves its rotation number it is sufficient to
consider curves of I'(E?). '

Consider the isomorphisms

wo(T) > () —b 74(SY)

where m; is the projection of T=E2XS! onto S. Let f be the element of T’
represented by e?*i* in complex coordinates such that the base point x, of T’
is the vector 2mi whose base point is the complex number 1. If k€T, % will
be the element of mo(I') containing k. Then myq(f) will be a generator of
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m1(S?) say e. If g is any element of T', 73,q(g) will be of the form me. From the
definition of rotation number it follows that m is the rotation number of g.
Since g is an isomorphism onto, this proves 7.3.

For the case of L-S-curves in the plane see [7].

(b) The 2-sphere S2. It is known that m(T(S?)) is cyclic of order 2; for
example see [13]. Hence, by Theorem A we can put regular closed curves
of S% at a point %, into two classes under regular homotopy equivalence. For
the case of L-S-curves on S?, see [8].

(c) The torus T2 From the exact homotopy sequence of the tangent bun-
dle T°(T?), it can be deduced that m(7T(T?)) is Z+Z+Z (Z is the infinite cyc-
lic group). Then similar remarks to those of (b) apply.

(d) The projective plane P2 1t can be proved that m(T(P?)) is cycle of
order four. Hence, there are four classes of regular closed curves at a point
xo on P2. For the case of L-S-curves see [9].

REMARK. By taking I' as a fiber over a different point of T one can obtain
results similar to those of Sections 6 and 7 for nonclosed curves.

8. Regular curves perpendicular to a submanifold. Let N be a regularly
imbedded submanifold of a manifold M and let T be the unit tangent mani-
fold of M. Let V be the normal bundle of N with respect to M; that is, V' is
the subspace of T which consists of all vectors which have their base points in
N and are normal to N. Let x, be a point of V and Q be the loop space of T
at xo. Denote by Qv the subspace of E.,(T) which consists of the paths ending
in V.

Let I'y be the subspace of E(M) of curves whose final tangent is in V; i.e.,
I'v=n"1(V) where 7 is the map of Theorem B. Let 7 restricted to I'y be still
denoted by . Then we have:

THEOREM 8.1. The triple (U'n, w, V) has the CHP.

Proof. This theorem is an easy consequence of Theorem B. In fact, let the
homotopy h,: P—V be given with k: P—T'y covering ko. Theorem B yields
a covering homotopy %,: P—E. But since %, covers k, we have that ,(p) ET'y
for all v€I and pEP and so k,: P—Ty. This proves 8.1.

Similarly, (Qv, p, V) has the CHP. Let ¢ be the map ¢ of §6 restricted to
T'y. Then

PN*) QV

1,
V—"V

commutes so ¢ induces a homomorphlsm of the exact sequence of I'y into
that of Q. We have
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co oo m(D) > m(Ty) 5> m(V) — - - -
L & s L1

e o () & (W) > m(V)—> - - -

By Theorem C, &# is an isomorphism onto and, of course, 1# is the identity
isomorphism. From this and the “Five” Lemma [2, p. 16], it follows that
&+ is also an isomorphism onto. We have proved:

THEOREM 8.2. The map ¢: I'x—Qy defined above is a weak homotopy equiva-
lence. Hence, by Theorem 6.1 it induces an isomorphism between the singular
homology groups of T'x and Qy.

9. Integral curves of a 1-form. Let 7(M) be the unit tangent bundle of a
2-manifold M and w: T(M)—M the projection. If dr is the differential of =
and &€ M,,, the tangent space of M at m, then dmg,, (v) spans a two dimen-
sional subspace containing the vertical. Hence there exists a 1-form w0
on T'(M) annihilating this distribution of planes. If f is a regular curve on M
then ¢(f) (see the Introduction and Section 6) is an integral curve of wo. One
might hope to get a characterization of regular curves this way. Unfortu-
nately, however, w, admits integral curves which are not the images under ¢
of regular curves. A curve lying in a single fiber of T°(M) is such an example.
Thus it is not sufficient for the study of regular curves on a 2-manifold M
to study integral curves of w, on T(M). However, there is still the question
as to what can be said about integral curves of wo. This section was written
as an attempt to answer this question.

Throughout the rest of §9 we will assume that M is a given manifold of
dimension three. It seems very likely that the theory here generalizes to
manifolds of higher dimension. However, because the treatment of 3-mani-
folds is so much simpler, we confine ourselves to this case.

A kind of curve essentially the same as the “stuckweise glatt” curves of
[12] is considered here. A curve f on M is called a parametrized piecewise regu-
lar curve if there exist real numbers ¢; for 2=0, 1, - - - -, B with £,=0, =1,
and #; <ty such that for each ¢ <k, f restricted to [t;, t:41] is either constant
or regular in the sense that I f (t)l #0 for tE [t;, tiy1]. We say that such a
curve is distinguished if its parameter is proportional to arc-length [12]. By
changing the parameter one can associate to each parametrized piecewise
regular curve a unique distinguished parametrized piecewise regular curve
[see 12]. Two parametrized piecewise regular curves will be called equivalent
if their associated distinguished curves are the same. A piecewise regular curve
is an equivalence class of parametrized piecewise regular curves. Each such
curve will have a unique distinguished representative. Oftentimes we will
identify a piecewise regular curve with its distinguished representative.

As will be shown by an example at the end of the section, the theorems
here hold only if some restriction is placed on the 1-forms.
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Let go be a fixed point of M, and let w be a 1-form on M such that w Adw0
on M. Denote by E, the space of all piecewise regular curves on M which
start at go and are integral curves of w. Let E, be a metric space under the
metric

d(f, §) = max {d(f(t), g®)) | ¢t € 1}

where d is any fixed metric on M. Define a map p: E,—M by p(g) =g(1). Let
#71(qo) be denoted by Q..

THEOREM 9.1. The triple (E., p, M) has the CHP.

Roughly speaking, Theorem 9.1 is proved as follows. First, by a classical
theorem, there are local coordinates (x, ¥, z) about a point of M such that in
them w assumes an especially simple form. Here the fact that wAd,#0 is
used. By Proposition 1.3 we reduce the proof, in a sense, to this local situa-
tion. Then the local coordinates thus obtained are used to write down ex-
plicitly the desired covering homotopy equations.

We break the definition of the covering homotopy curves into four parts
according to values of the parameter ¢. In general, this curve will turn out to
have a corner at t=1/4, t=1/2, and ¢t =3/4. The first part of the constructed
curve is merely a reparametrization of the given covering curve. Then the
construction is such that at ¢=1/2, the z coordinate of the covering homotopy
has moved to a position over the z-coordinate of the given homotopy. At
t=3/4 the x-coordinate has undergone a similar motion, and finally, at ¢=1,
the y-coordinate of the covering homotopy projects into the y-coordinate of
the given homotopy in M.

Proof of 9.1. Let ¢& M. Take a coordinate neighborhood U of ¢ with
coordinates (x, ¥, 2). In U we can write w=Pdx+Qdy+ Rdz where P, Q, and
R are differentiable functions of x, y and z. Then

w A\ dw= (PP + QQ + RR)dx N\ dy N\ dz
in U where ,
PI=R1/_Q2) Q' = P.— R, R = Q. — P,

Hence PP'4+QQ'+RR’#0 in U since w Adw>0. Then by a classical result
of the theory of differential equations (see for example [3, p. 58]) there exist
differentiable functions %, v and w of «, y, and z defined in a neighborhood of
g such that w=du+vdw. Furthermore 07w Adw=du/\dv/\dw so that u, v
and w form a coordinate system in a neighborhood say V of ¢q. By 1.3 it is
sufficient to prove the CHP for the triple (p~1(V), p, V). For convenience we
will change the coordinates %, v, and w into x, ¥, and z respectively. So now x,
¥, and z are coordinates of V such that w=dx+ydz.

Let h,: P—V be a given homotopy with k: P—p~1(V) covering ky. We
will construct a covering homotopy %,: P—p~1(V). To describe these maps
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in the coordinate system (x, v, z) we use the following notation:

hv(?) = (xv(l’): yv(?): ZV(P))’
ho(p)(8) = (%:(9)(2), 3o(£) (D), Z:(p)(2))-

Then: for 0=5¢ <1/4 let
I (p) () = h(p)(40)
for 1/4 =t <1/2 let s=s(t) =4t—1 and let

Z(p) (1) = xo(p) — [2.(p) — 20(p) ]y0(p)s,
Fu(£)(8) = yo(p),
Z2(p) (1) = 20(p) + [2(p) — 20(p)]s

for 1/2 <t £3/4 let s=s(¢) =4¢t—2. Then let

2.(p) = %0(p) — Y0(p)[2:(p) — 20(p)],
E(p)(t) = (3655 — 45s* — 20s® 4 30s2) |xo(p) — Zu(p) ]
+ 60| 2.(p) — £.(8) [V290(p)(s* — 5) + Zo(p),
5.(0) (1) = Sg | #:(p) — &:(8) [V2(s? — 5) + 30(p),
Sg = sign of #,(p) — %u(p),
Z,(p)(t) = — 60| 2(p) — Fo(p) |V/2(s® — ) + 2(p)

for 3/4<t<1 let s=s(t)=4¢t—3 and

() (1) = %(p),
Fo(B)(®) = [y:() — 9o(p)]s + 30(9),
Z,(p)(8) = 2z.(p)-

In order to be sure that these equations define a satisfactory covering
homotopy it must be checked that (1) 4,(p) is a curve in E, (for each p and
v), (2) k,(p) is a homotopy of A(p) or ko(p) =k(p), and (3) kv(p) covers hv(p)
or };v(p)(l) =h’v(p)' _ ~

We will check (1) first. It is easy to note that £,(p)(0) =go. Also, k,(p)(?)
is clearly continuous and piecewise regular between the values t=0, 1/4, 1/2,
3/4, and 1. It is necessary to check that %,(p)(¢) is well-defined at t=1/4, 1/2,
and 3/4 since at each of these values %,(p) (£) is defined in two different ways.
By substituting these values of ¢ into the appropriate equations it can be
seen that where the definitions overlap they agree. To complete the proof of
(1) it needs to be shown that 4,(p)(¢) satisfies w=0 or, in other words,

a5, (2)(0) a(p) () = 0 _

yy + 3.(2)(1) P

0
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identically for all v, p, and ¢. This is trivial for £<1/4. For 1/4<¢=<1 to prove
that this differential equation is satisfied it is sufficient to make three com-
putations, one for 1/4<¢<1/2, one for 1/2<t<3/4 and one for 3/4<t<1.
These are not difficult and will be left for the reader.

To show (2) we set v=0, getting

ho(p) (1) = k(p)(42) 0=t=1/4,
%o(p)(8) = x0(p),
Fo(2) () = yo(p) 1/42t =1,

20(p)(2) = 20(p).

This is a parametrized piecewise regular curve whose associated distin-
guished curve is exactly the given curve &(p){¢).

It is trivially checked that (3) holds. q.e.d.

The space E, is contractible to a point. The deformation accomplishing
this is D: E,XI—E, defined by D(f, v) =f(st). Define a map i: E,—E, (M)
(see §6) by letting #(f) be the distinguished representative of f. Then 7 is
continuous by the argument used to show that ¢ was continuous in §6. Let
i be 1 restricted to Q, where Q,=p"1(g,) CE,. The argument used in §6 to
show that ¢: I'=Q(T) was a weak homotopy equivalence may now be used
to show that #: Q,—Q(M) is also a weak homotopy equivalence. This proves
Theorem D.

The following example shows how Theorems 9.1 and D fail for a form
wo which is completely integrable. Let M =E3 and wo=xdx+ydy-+zdz in a
given Cartesian coordinate system (x, ¥, 2) of E3. Take for go any point at
distance d>0 from the origin of E3. Then any integral curve of w, starting
at go stays on the surface of the 2-sphere x24y2+22=d2. Clearly, the conclu-
sions of Theorems 9.1 and D fail in this case. Actually, Theorem 9.1 is false
for any 1-form which is completely integrable at a certain point ¢o&E?. For
then short curves at go must lie on a surface of E3 and the covering homotopy
property cannot possibly hold.
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