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A VIETORIS MAPPING THEOREM FOR HOMOTOFPY
STEPHEN SMALE

Let X and ¥ be compact metric spaces and let a map f: X— ¥
be onto. The Vietoris Mapping Theorem as proved by Vietoris [8]
states that if for all 0=r=x—1 and zall y€ ¥, H,(f(v)) =0 (aug-
mented Vietoris homology mod two) then the induced homomor-
phism fu: H,(X)—H.(¥) is an isomorphism onto for »£z—1 and
onto for r =#. Begle [1; 2] has generalized this theorem to nonmetric
spaces and more general coefficient groups. Simple examples show
that an analogous theorem does not hold directly for homaotopy.
However by imposing strong local connectedness conditions, results
can be obtained. That is the idea of this paper. We prove:

MAIN THEOREM. Let f: X— Y be proper and onto where X and V are
O-connected, locally compact, separable metric spaces, X is L.C*, and for
each yE Y, f~y) is LC and (n—1)-connected. Then

(A) Vis LC» and

(B) the induced homomorphism f3: w (X)—m. (V) is an isomorphism
onto for all 0 =r Zn—1 and onto for r =n.,

We recall that a map is called proper if the inverse image of a com-
pact set is compact. Clearly any map between compact Hausdorff
spaces is proper. A space X is said to be s-connected if x.(X)=0 for
0=r=n. As above we often suppress the base point of a homotopy
group.

Part (A) of the Main Theorem is a homotopy analogue of a theorem
of Wilder [9, p. 31]. The proof of the Main Theorem can be pieced
together from Theorems 8 and 9 of §2 and Theorem 11 of §3. These
theorems taken together in fact say a little more than the Main
Theorem. It should be mentioned that the Vietoris Mapping Theorem
has been generalized using proper maps of noncompact spaces; for
example see [10].

1. It will be assumed that all spaces are locally compact, separa-
ble, and metric. A proof of the following may be found in [7].

LeEmMa 1. Let f: X—Y be proper and onto. Suppose yo&= Y and U
is an open set of X containing f~1(ys). Then there exists a neighborhood
V of vo suck that f~{(V)C U.
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The following theorem may be found in [5, p. 82] where the terms
are defined.

TueEorREM 1. If X is compact and LC*», then given any €0, there
exists n=9"(X, €) >0 such that every dense partial realization of mesh
<n of a finite complex of dimension Zn+1 can be extended to a full
realization of mesh <e.

H f and g are two maps of a compact space X into a space ¥, by
2{f, g) we will mean max {d(f(x), g(x))| x&EX}. The next theorem is
a special case of one which may be found in [6, p. 48].

THEOREM 2. Given a compact set F in an LC* space X and >0,
there extists an n=n"(e, F) with the following property: If K is a poly-
hedron of dimension =n, and if fu, fr map K info F satisfying d(fo,f1)
<1, there exists o homotopy fi: K—X between fo and fi such that for
each xE K the curve f(x) has diameter <e,

We will use the same symbol to denote a polyhedron and one of its
underlying complexes. If K is a complex, K* will, as usual, mean the
rth skeleton of K. If XV, the symbol 7.(X/¥) denotes the image
of 7.(X) in =,(¥) under the homomorphism induced by inclusion.
We say that X is semi-r=LCif for every x € X there exists a neighber-
hood V of x such that =, (V/X)=0. Obviously if X is r=LC it is
semi-r=LC.

THEOREM 3. Given a compact set Fin a semi-n=LC, LC ' space X,
there exists an n=n"(F) with the following properiy: If K is a poly-
hedron of dimension Zn, and if fo, fi map K into F satisfying d(fs, f1)
<n, there exists a homoatopy fi: K—X between fo and f1.

Proor. By the local compactness of X, choose a>0 so that
Cl (U{F, a))=F' is compact. Since X is semi-#=LC we can find ¢
with 0 <e<a so that if V is a neighborhood in F’ of diameter <e
then m.{ V/X)=0. It will be shown that gs=%""(¢/3, F") of Theorem
2 may be taken as the 3*(¥) demanded by our theorem.

Let fo, fi and K be as given with d(fs, fi) <na. Take a subdivision
Sd of K so fine that if ¢ ©.5d then max diameter (fo(a), fi{o)) <e¢/3.
The choice of 7o yields a homotopy k,: Sd*'—X between f, and f,
restricted to Sd*—1 with k(%) having diameter < /3 for each x &= Sd»1.
Since e<ey, 1,(Sd" 1) (C F’ for each tE1.

If ¢n = Sd, the maps fo, f;, and k. define in an ohvious fashion a map
Hof A=0*X0Ua"X1Ui5* X into F’. From the choice of 9o and Sd
it follows that the diameter of H(4) <e. Then by the choice of e,



606 STEPHEN SMALE [June

H may be extended to ¢* X I. Thus is obtained our desired homotopy

fe qed.
By 8" is meant the #-sphere.

THEOREM 4. Let X be LC™ and contain a compact LC" subset M
and an open set PO M. Then there exists an open set Q= Q*(P, M) such
that POQDO M, with the following property: If g: S*—Q is given, then
there is a homotapy gi: S"—P of g with z:1(S*)C M.

Proor. Choose >0 so that Cl (U(AM, &)) = F’ is compact and con-
tained in P. Let no=5"(a, F') be given by Theorem 2. Let 9, =#""1(M,
10/3) be given by Theorem 1. It will be shown that @=U(M, n/3)
may be taken as the Q of our theorem.

Let g: S»—Q be given. Take a subdivision Sd of S* so fine that for
g€ 8d, the diameter of g(a) is less than 4,/3. A map g: Sd—M is con-
structed as follows. If » is a vertex of Sd let g(v) be a point of M ata
distance less than ,/3 from g(»). This defines a dense partial realiza-
tion of S» in M which is easily shown to have mesh less than #,. The
choice of 1, vields a full realization g of S* into M with mesh less
than 94/3. It is easily checked that for every x €.5», d(g(x), g(x)) <%o.
Then by the choice of 3, we obtain our desired homotopy between g
and g. q.e.d.

THEOREM §. Let X be LC*! and semi-n-LC and let M be o compact
LO»1 subset of X. Then there exists a Q=0 M) containing M with
this property: For every map g: S*—(Q there is a homotopy g,: S*—X of
g with g,(S") C M.

Theorem 35 is proved in the same way as the proceeding one only
this time using Theorem 3 instead of Theorem 2.

2. TuEOREM 6. Let f: X—V be proper and onio. Suppose X is
LO1, and for each y2 ¥, F~1(y) is LCv? and (n—1)-connected. Let be
gtven

(1) n>0,

(2) a subcomplex L of an n-dimensional (or less) complex K,

(3) amap g: KV,

(4) a map g: L—X such that fg=g .

Then there exists an extension G of § to K such that d(fG, g) <n.

Proor. We use induction on #. The theorem is trivially true for
n=0 (we interpret LC-! and (—-1) -connected to mean no cond1t1on
is implied).

Now suppose the theorem is true for #=%k—1. We will show that
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then it is true for n=4%. Let g, L, K, g, and # be given as in (1), (2),
(3), and (4) (with n=2). Choose 8, 0 <8 <5, so that Cl (U{(g(K), 8))
=B is compact.

For each yEB, a system {y, Uy, Py, Fy, Oy, V3) is defined as fol-
lows: U, is a neighborhood of ¥ of diameter less than 8, P,=F"(1U,),
and F,=f"1(y). As defined in Theorem 4, Q, is *"YP,, F,). Finally
V. is a neighborhood of v with f~1(V,)CQ, as given by Lemma 1.

Let § be the Lebesgue number of the covering { V,|yE€B} of B.
Take a subdivision Sd of K so fine that for every simplex ¢ of X,
g{a) has diameter less than §/3.

The induction hypothesis can be applied to yield an extension (still
denoted by ) of g to L\JSd*! such that d(g’, f3) <8/3 where g’ de-
notes g restricted to L\ Sgd*1, '

If a*is a k-simplex of .Sd which is not in L, then from the last two
sentences it fallows that the diameter of f§(s%) is less than 8. Then
some V, of { V| yE B} contains fg(a%). Let the corresponding system
as defined above be denoted by (ya, Uy, Po, Fo, Ca, Vo).

By the choice of V,, B(a*)(C Q. Then by the choice of (Jy, there is
a homotopy go: 08— P, of 2 (g denotes g restricted to o*) such that
£1(a*) C Fo. Since m—1(Fo) =0, &1 can be extended to ¢*. Then g can
he extended to a map g{:a*—P,. From the choice of P, it follows
easily that d{fg!, g) <n (g« denotes g restricted to ¢*). The desired
extension is ohtained by repeating the above process on each k-
simplex of Sd.

THEOREM 7. Let f: X— Y be proper and onto where X is LC"* and
semi-(n—1)-LC. Suppose for each y€V, f~'(y) is LC2, (n—2)-
connected and w,.1(f'(y)/X) =0. Let be given

(1) a subcomplex L of an n-dimensional complex K,

{2) amap g: K-V, and

(3) a map g: L—X such that fg=g1.

Then there exists an extension of § fo all of K.

The proof of Theorem 7 is very similar to that of the preceding
theorem except that Theorem 5 is used in place of Theorem 4. It
will not be given,

TueorEM 8. Let f: (X, x)—=(Y, ya) be proper and onto where X is
LC** and semi-(n—1)=LC. Supposs for each yE ¥, f~{y) is LC3,
(n—=2)-connected, and m,(f(y)/X)=0. Then the induced homo-
morphism fe: T (X, xe)—mass( Y, ) is one-to-one.

Proor. Let g: (I», p)—=(X, x,) represent an element of 1,1 (X, xq)
such that fg: (I, £)—(Y, o) can be extended to I~ It is sufficient
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to show that g can be extended to I*. Theorem 7 says that this in-
deed can be done. q.e.d.

TureoreM 9. Let f: (X, x0)—(V, o) be proper and onto where X and
Y are LCvY and Y is also semi-n-LC. Suppose for all y€ Y, fy)
is LC ' and (n—1)-connected. Then the induced homomorphism
fe: mulX, xo)—=ma( Y, 1) s onto.

PRroOF. Let g: (S*, p)—(Y, yo) represent an element of m.(¥, yo).
Choose a>0 so that Cl (I/{g(S"), «)}=F is compact. Choose by
Theorem 3 no=#*(F) with 5, <a. Theorem 6 yields a map z: (5", p) .
—(X, %) with d(g, fz} <n. By the choice of 50, g and f7 are homotopic
in ¥, This proves Theorem 9.

3. TueoreM 10. Let f: X =V be proper and onto and suppose for
each yG ¥, f1(y) is O-connected and O-LC. Let X be LC. Then ¥ s
L. .

Proor. That ¥ is 0-LC is well-known. Let p& ¥ and W, a neigh-
borhood of p be given. Let P=f"YW) and F=f"'(p). Choose by
Theorem 4, Q=Q%P, F). From the construction of Q and the fact
that Fis 0-connected it follows that we may assume ( is 0-connected.
By Lemma 1 let V be a neighborhood of p with f~1(V}CQ. To prove
the theorem it is sufficient to show m(V/W)=1. Let g: §'—>V be
given,

For each t€S! and e>0 we define a system (W(, ¢), P{t, €,
F{t, €), O, €}, V{t, €)) similar to the one used in the proof of Theorem
6 and in the preceding paragraph. Let W{¢, €) = U(g(t}, ¢/2), P(, ¢)
=f-YW(t, €)), and F(t, &) =f~{g(t)). Then Q(¢, ¢) is chosen by Theo-
rem 4 equal to Q'(P{¢, €), F{¢, €)). As in the previous paragraph we
will assume Q{t, €} to be 0-connected. Choose V{2, €}, a neighborhood
of g{2), by Lemma 1 so that f~{V(¢, €))CQ(, ¢).

Take & >0 so that U{g(S), ) C V. Define U, to be the collection
{V{t, &)|tESt}. Take a subdivision Sd; of S* so fine that for each
cE 8dy, g{o) is contained in an element of V1 say V.. Denote the cor-
responding systemn as defined above by (W., P, F,, Q. V,). Note
that by the choice of &, W, and V, are contained in V and Q.CQ for
each o €.54,.

We now define a map g:: Sdy—Q with the property gi{e) CQ, for
each ¢ €.54,. If v is a vertex of Sdy let fi{z) be an arbitrary point of
F~1(g(#)). Then if ¢ is a 1-simplex of Sdy, by the choice of V., g:(¢) C ..
Extend g to all of ¢ by the O-connectedness of Q.. This defines .
Let gy =f71. It is seen readily that d(g, g1) <e.
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By the choice of @, §: is homotopic in P to a map of 5! into F,
This implies that g, is homotopic in W to p.

Choose & such that 0 < e <min {d(CV., g(a))[aEde where CV,
is the complement of V,in Y. Let Sd; be a subdivision of Sd, so fine
that for every ¢ &.Sd,, g(0) is contained in some element, say V,, of
V= { V({, &2} t&S}. Denote the corresponding system by (W,, P,,
F., Q., V.) as before.

A map fi: Sd;—Q is defined as follows. If » is a vertex of Sd,, let
ga(v) = 1(v). The rest of the definition of 2, is analogous to that of 5
using Sdp and elements of U, instead of Sd; and Ui Then for each
o= 8dy, B2(0) C Q.. Let ga=f2,. Then d{g,, g) <e.

We will now construct a homotopy &1: St X J— V between g and go.
Let &84y, 026 8d; and ¢ a1 From the choice of e, it follows that
Wiy C Vey. Then Qv C Qs since QeyCf(Wa) Cf(Ve) C Qey. This imn-
plies Z:(o0) CQs. Let A= X0Ua: X1Uai X TCar XTI and define
By A—>Q,, by hu(e, 0)=3,(0), Bi(t, 1) =5:(2) and for 1€y, (L, v) =5 ()
= Z:(). By the choice of Q.,, A is homotopic in P,, to a map of 4 into
F,,. This implies that & =f% can be extended to ¢1 X7 in W,,. This
yields the homotopy % between g and g, with the property that for
each (¢, 9)EESIXI, d(lt, ), g()) < e

Continuing as above one obtains for each natural number ¢ a map
g S'>V and a homotopy hi: S XTIV, with k¢, 0) =g.8), k¢, 1)
=g¢{t), and for all {¢, 2) €S XTI, d{hi(t, v), g(t)) <e; where we may
assume that the ¢; converge to zero.

A homotopy H: S!XT—V between g1(£) and g{t) is defined as fol-
lows:

H(t, o) = (L, ) 0=v=1/2

S | 28— 1
H(t,ﬂ)=kk(£,2"ﬂ—-2"—2)Téﬂé py 1 E=12,3,.44,
H{, 1) = g().

From the facts in the previous paragraph it is easily checked that
. H is well-defined and continuous. As we have already shown that g
is homotopic to p in W, this proves Theorem 10,

For homology in the rest of the paper we will use augmented Cech
theory with compact carriers over the integers. The following theorem
is the goal of this section. It generalizes Theorem 10,

TaeEOREM 11. Let f: X— YV be proper and onto. Suppose for each
y&Y, f~Uy) is (n—1)-connected and LC*'. Let X be LC™. Then Y is
LCm.
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Proor. First, an argument that ¥ is le® will be roughly sketched.
For the case of field coefficients this would follow from a theorem of
Wilder [9].

By alocal theorem of Hurewicz [4], since X is L it is Ie*. For each
y& ¥, f(y) is (n—1)-connected. Then by the Hurewicz Theorem,
the augmented singular homolagy groups of f~1(y) vanish up through
dimension #—1. By a theorem in [5], since f~'(y) is LC** this im-
plies that the Cech homology groups H,(f~'(y)) vanish for 0 ¢ < n —1.
Thus f is (# —1)-monotone over the integers in the sense of Wilder [9].

Let p& ¥ and U, a neighborhood of p, be given. Let F=f-1(p) and
P=f-1{U). By an easily proved homology analogue of Theorem 4
one chooses QD F so that an r-cycle (7 fixed less than #+1) on Q is
homologous in P to one in F. Choose a neighborhood V of p so that
FUAVICO by Lemma 1. '

Let 2. be an r-cycle of V. By the Begle-Vietoris theory [1; 2; 3]
using the fact that X is l¢®, one can find an r-cycle w, of @ so that
f(w,) is homologous to 5,. By the choice of Q this implies that 2, is’
homologous to zero in U. Thus YVis Ic»,

By Theorem 10 YV is LCY. Then by the previously mentioned
theorem of Hurewicz in [4] it follows that Vis LC™ q.ed.
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