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THE CLASSIFICATION OF IMMERSIONS OF SPHERES 

IN EUCLIDEAN SPACES 


BY STEPHENSMALE 

(Received October 25, 1957) 

Introduction 

This paper continues the theory of [6] and [7]. See these papers for 
further information on the problem as  well as Chern [I]. See also [8] for 
a partial summary of the results in this paper. For the most part, how- 
ever, we do not depend on our previous results. 

An immersion of one differentiable manifold (all manifolds will be of 
class C-) M k  in a second Vn,n > k, is a regular map (a C' map with 
Jacobian of rank k) of M h  into Vn. A homotopy f, : M+ Vn is a regular 
homotop?j if a t  each stage i t  is regular and the induced homotopy of the 
tangent bundle is continuous. We are concerned with the problem of 
classifying immersions with respect to regular homotopy. Except for a 
few comments, we restrict ourselves to where M 5 s  the k-sphere Shand 
V" is euclidean n-space En. Then we are able to provide a solution to this 
classification problem, a t  least in terms of homotopy groups of Stiefel 
manifolds. The result may be stated as follows. 

Let V, ,be the Stiefel manifold of all k-frames of En (not necessarily 
orthonormal frames) and F,(Sh) the bundle of all Ic-frames of S k  Then 
an immersion off  : Sk-+ Eninduces a map f, : Fh(Sk)-+ Vn,x En. Let 
x, e F,(S" and U,e V,,, x En be fixed. We shall say an immersion 
f : S+ Enis a based immersion if f,(x,) = y,. A based regz~lar homotom 
is a regular homotopy which a t  each stage is a based immersion. For any 
two based immersions f and g, an invariant n ( f ,  g) e i-r,(Vn,,) is defined 
as follows. Given based immersions f ,  g : Sk-+ E n ,  by a small regular 
homotopy of g ,  f and g can be made to agree on a neighborhood U of q(x,,) 
which is diffeomorphic to a closed k-disk. Here q : Fk(Sk)-+ Skis the 
bundle projection. The space D = (Sk-interior U) is a topological k-disk 
so we can assume there is a fixed field of k-frames defined over it. From 
this field f and g induce maps f, and g, of D into Vn ,which agree on the 
boundary of D. Consider D as a hemisphere of the k-sphere Sk and 
reflect g, to the opposite hemisphere to  obtain a map of Skinto V, ,. 
The homotopy class of this map is denoted by n ( f ,  g) e n-,(V,,,). 

THEOREMA. Iff and g a re  C" based immersions of Ski n  En they a re  
based regularly homotopic if and only if a(f ,  g) = 0. Furthermore, let 
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328 STEPHEN SMALE 

a,E i-rk(Vn ,) and let a based C" immersion f :Sk Enbe given. Then  there -t 

erists a basad immersion g :Sk-+ En such that Q(f ,  g) = a,. Thzss there 
i s  a 1-1 correspondence betzceen elements of nk(Vn,,)and based regular 
homotopy classes of immersions of Skin En. 

If n > lc + 1,  a(f ,  8 )  can be defined for non-based immersions and 
Theorem A is true omitting the word based wherever i t  occurs. Theorem 
A is a direct generalization of Theorem A of [7] where k = 2. The case 
of Theorem A for k = 1 is included in my thesis [6]. See these papers 
for implications of Theorem A when Ic = 1, or 2. Many of the groups 
i-rk(V7,,) have been computed. See Paechter [5]. Since rk(l/, ,<)= 0 for 
n 2 2k + 1,Theorem A implies the following. 

THEOREMB. TWOC" immersions of Skin En are regzslarly homotopic 
zchen 7z 2 2k + 1. 

Whitney in [9, p. 2201 posed the question : Are two immersions of a 
manifold Mh in E'" regularly homotopic if they have the same intersection 
number I ,  ? We assume in this and the next two paragraphs that  the 
immersions are nice enough to define an intersection number. (Whitney 
[9] defines I ,  to be number of self-intersections of an immersion f : Mk-+ 
E" counted properly when f(Mk) intersects itself only in isolated points. 
I ,  is an integer if k is even and an integer mod 2 if k is odd, k > 1). We 
can obtain from Theorem A the following. 

THEOREMC. TZCOC" immersions of Ski n  EL',I?>1,  are regularly 
homotopic i f  and only i f  they have the same intersection number I,. 

If k is even, then according to  131, Wk(f )= 21, where w,( f )  is the k"' 
normal Stiefel-Whitney class with integer coefficients of the immersion f. 
Thus in this case Wk( f )  characterizes the  regular homotopy class off .  

The based regular homotopy classes of based immersions of Skin Ek+' 
correspond to the elements of i?,(R,+,) where R, is the rotation group on 
E"(since R,+, = V,,,,,). To study further the situation of immersions of 
S 5 n  Ehl recall Milnor's notion [4] of normal degree. I f f  :M+ EE" is 
an immersion of closed oriented manifold let 7:Mk-+ Shbe the map 
obtained by translating the unit normal vector a t  a point of f(Mk) in Ek+' 
to the origin. The normal degree N, off is the degree off .  

Milnor [4] asks the question : for what Ic can Skbe immersed in Ek+l 
with normal degree zero ? He proved that  for this to be true Skmust be 
parallelizable and he proved that  S3could be immersed in Ei with 
normal degree zero. 

THEOREMD. There exists a n  immersion of Ski n  Ek+'zcith normal 
degree zero i f  Ski s  parallelixable. 
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The question of regular extensions is closely related to that  of regular 
homotopy. In particular, we are interested in the following problem : 
Suppose f :Sk-I-+ En is an immersion where S k - I  is the boundary of the 
k-disk Dk. When can f be extended to an immersion of Dk ? From H. 
Whitney's work one obtains an affirmative answer whenever n 2 2k. 
The following theorems give an answer to this question under the restric- 
tion n > k. 

THEOREME. If n > k a n  immersion f :Sbl -+Encan be extended to a n  
immersion of Dh if and only if a(f ,  e) = 0 where e :Sbl-+EhcEn is the 
standard zsnit sphere in  a k-plane of En 

In a certain sense the  results of this paper are local in nature. M. 
Hirsch using these results together with obstruction theory has proved 
theorems on the regular homotopy classification of manifolds instead of 
spheres. He also obtains some sufficient conditions for manifolds to be 
immersible in euclidean space. For example, he proves every closed 3-
manifold can be immersed in E' [ Z ] .  

The above results suggest the following questions : 
( 1) One problem is to replace En in Theorem A by an arbitrary n-

manifold Mn. I believe one would get  a classification of immersions of 
Skin Mn in terms of xh(Fk(Mn)) where Fk(Mn) is the bundle of k-frames 
over Mn. I don't think this will be very difficult to prove, following the 
proofs in this paper. 

( 2 ) Find explicit representatives of regularhomotopy classes. Whitney 
has essentially done this for the case n = 2k. What regular homotopy 
classes have an imbedding for a representative ? 

( 3 ) Develop an analogous theory for imbeddings. Presumably this 
will be quite hard. However, even partial results in this direction would 
be interesting. 

1. The covering homotopy theorem 

A triple (El  p, B) consists of topological spaces E and B with a map 
p from E into B. A tripIe has the CHP if i t  has the covering homotopy 
property in the sense of Serre. 

Let Dh be the unit k-disk in Ek(k >= 1)with generalized polar coordi- 
nates. That is to say, points of Dk will be pairs (t, x) where t is the dis- 
tance from the origin 0 of Ekand x is a, point of the boundary D'" of Dk. 

Let E,,, = E be the set of all C" immersions of Dh  in En ,  n > k. The 
set E is given the C1 topology,' i.e., is metrized by 

1 Added in proof: Assume all function spaces have the CZ topology instead of the C1 
topology. 
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~ ( f l  s )  = max (P(f(y), s(?-J))? ~ ( d f , ( Y ) , d g v ( Y ) ) I ~ c ~ ~ ,  Dil \ Y \  I!?Y C = 
where f,g e E ,  j5 is the metric on E",E" being considered as its own 
tangent vector space, and Dk is the tangent space of DL a t  y e DL. 

Let B, = B be the set of all pairs (g, g') where g is a Cmimmersion of 
D~in Emand gf is a Cmcross-section in the bundle of transversal vectors 
of g(Ljh). Thus gf is a C- map of ghinto En- 0 such that  gl(x) does not 
lie in @(,, the tangent plane of .q(hh) a t  g(x). The set B is given the 
following metric. For (g, gf), (h, h') e B let 

where p is as above and p, is defined as p above except that  y is only 
allowed to range over 5,. 

A map n : E -+ B is defined as follows. For h e E let n(h) = (g, g') 
where g is the restriction of h to 5h:and gl(x) = h,(l,  x) (the subscript t 
means differentiation with respect to t). The goal of this section is to 
prove that  (Elx,  B) is a fiber space in the sense of Serre. 

THEOREM1.1. The triple (Elr,B) hccs the CHP. 
PROOF. Some of the constructions in this proof are straightforward 

generalizations of those of [7]. This proof is essentially independent, 
however, and somewhat more detail is given here than in [7]. 

In the article La  classijkation des irmmersio?zs, Seminaire Bourbaki, 
December 1957, R. Thom has an  interesting exposition of the proof of 
1.1. 

A rough account of our proof is a s  follows. 
We are given a homotopy h,O : P -+ B,  hence h:(p) for each p and v is an 

immersion of a sphere h,(p) with a transversal vector field h:(p). Fur-
thermore, h:(p) for each p is covered, i.e., h,(p) is the boundary of an 
immersed disk h(p) e E and h:(p) is a transversal field induced by the 
immersion of the disk. The problem is to follow the homotopy h:(p) by 
an  immersion of a disk Z,(p). 

In  our construction of h,(p), Equation (17), the factors a(t) ,  jS(t), and 
M(v) are introduced mainly so that  various boundary conditions are met 
and the regularity of is preserved. 

The first and last terms of (17) roughly speaking are used t o  take care 
of the transversal field part of the homotopy. In  particular, the trans- 
formation Q,(p) is the principle element here. This part of the covering 
homotopy could be taken care of directly by an isotopy of A". The latter, 
in fact, is what Thom does. 

The second term of (17), a(t)[h,(p)(x) - h,(p)(x)], is just what makes 
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the immersion of the disk h,(p) project onto the immersion of the sphere 
h,(p). However, in general the introduction of this term will cause the 
map of Dkto have critical points or points where the Jacobian has rank 
< Ir. To counteract this, the term ,i(t)M(v)z~(v, p, x) is added. The effect 
of this term is, roughly, to blow up the immersion whenever i t  might 
have become critical. 

The above construction is used in [6], but in simpler form. The reader 
might see the idea of this proof by looking, therefore, a t  that  paper also. 

Let h\ : P -+B be a given homotopy where P is a cube (recall that  it is 
sufficient to prove the CHP for cubes) and let h : P -t E cover h!. ' We 
will construct a covering homotopy z,: P -t E. 

We write h!(p) = (h,(p), h:(p)) (recall the definition of B). 
Let ~ , ( v ,p, x) be the distance from h:(p)(x) to the tangent plane of 

hu(p)(Dh)a t  x and let E, = min (E,(v, p, X) [ v ,  p, x). Let 

E~ = min :[yvh,(p)(x)[[ 	 1 V I = 11x, v, 11, V e DE, 

and take E = (1110) min {E,, E,, 1:. The symbol y,h,(p)(x) means the 
derivative of h,(p) with respect to V a t  x. 

We define a linear transformation of E n ,  Q,(p)(x) for p e P ,  x e D'"and 
sufficiently small v (we clarify this later) as follows. Let V,(p)(x) be the 
2-plane of Enspanned by the vectors h:(p)(x) and h:(p)(x), if i t  exists, and 
let a,(p)(x) be the angle from the first to the second of these vectors. Let 
Q:(p) : Dh+Rn (the rotation group) be the rotation of En which takes 
V,(p)(x) through the angle a,(p)(x) and leaves the orthogonal complement 
fixed (if V,(p)(x) does not exist then Q,*(p)(x) is to be the identity rotation 
e). Finally, define Q,(p) : hh-t GL(n, R) to be the rotation Q,*(p) multi- 
plied by the scalar 1 h:(p)(x) [ / [h:(p)(x)1. We will consider Q,(p)(x) as  act- 
ing on Emon the right. I t  is immediate that  Q,(p) is C mwith respect to 
x and that  

( 1 )  	 hXp)(x)Q,(p)(x)= h:(p)(x) . 
See [7] for the following. 

LEMMA1.2. Let n > Ir 1,G,,, t h ~  Grassman manifold of oriented k-
planes in  En and Sn-'the unit vectors of En.Let a map w : Q -+ G,,, ba 
given which is homotopic to a constant zchere Q is some polyhedron. Then 
there is a map ZL : Q -t Sn-Isuch that for all q e Q, z~(q) is  ~zormal to the 
plane zc(q), 

Note that  if u! is C - we may assume that  ZL is also. 
Now apply 1.2 taking for Q, I x P x hhand for w(v, p, x) the plane 

spanned by h:(p)(x) and the tangent plane of h,(p)(x). Because (h,(p),hi(p)) 
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is in the image of 7r : E -,B, one can show w is homotopic to a constant. 
Thus one obtains a map u : I x P x D*+ SSn. 

Choose6>0so that for 1 v - v ~ ( ~ 6 a n d a l l p ~ ~ , x e ~ a n d~ e a , l v l = l ,  
the following conditions are satisfied. 
( 2 ) The angle between h:(p)(x) and h:,(p) is less than 180" (this insures 
that Q,(p)(x) is well-defined). 

(If quantity on right of inequality of (5) is undefined, omit (5)). 
I t  is clear that such a choice for 6 may be made and that our choice of 

6 depends only on h,(p) and not z(p). I t  is easy to check that (3) implies 

We choose now to, 112 < to< 1, so that for all t e [to,11, v 5 6, p e P, 
V e D:and I V I = 1, the following conditions hold. 

(See Lemma 5.1 of [6]), 

(If quantity on right of inequality of (9) is undefined, omit (9)). It is 
clear such a choice for to may be made. Set t, = to+ (1/3)(1 - to). 

Real Cmfunctions on I,  a(t)  and P(t) are defined satisfying the follow- 
ing conditions : 

(10) a(t) = 0 ost s t , .  
(11) a(1) = 1 al(l)  = 0 . 
(12) I a(t) 1 5 1 I aJ(t)I < 2/(1 - to) . 
(13) P(t>= 0 o s t  5 6 , .  

(14) P(1) = p'(1) = 0 
(15) I P'(t) I > 10 l a'(t) l t , $ t  S l .  
(16) 1 P(t) 1 s20 . 
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Primes in this case denote the derivatives. As in [qwe leave to the 
reader the task of constructing such functions. 

Let 

Then for v (= 6 the desired covering homotopy G(p)is defined as fol-
lows. 

z v ( ~ )( t ,  = P(P)( t J  - %(PI ('9 Ce + a(t)( & U ( P )  ( x )-
(17) + a ( t )  ChU(p)(x) - h,(p)(x)l+ P(t)M(v)u(v,P ,  x )  + %(PI  ( 1 , s ) . 
We write down the following derivatives for reference. 

h,,(p)( t ,X I  = Z,(P)( t ,4Ce + a ( t )  (Q,(P) (4- 41 
(18) + [@P) ( t ,2)-Go(1, x)lal(t)  (QU(P) (4- e) 

+ a ' ( t ) [ h : h , ( ~ ) ( ~ )h o ( ~ ) ( ~ ) l+ P1(t)M(v) -- u (v,P,  X )  

For V e DE 

~ v h , ( ~ ) ( t ,= X )  v&(P)(~,Ce + a ( t ) ( Q v ( ~ ) ( ~ )0112) [ ~ v L ( t ,  - ~ 1 1  -
+ G(P)( t ,2) - ( X IX ( P ) ( ~ ,X ) I ~ ( ~ ) V ~ Q , ( P )

(19) + a(t)Cvvh,(p)(x)- vvh,(P)(x)l+ P(t)M(v)v,u(v, P ,  x )  

+ vv@p)( l ,$1 . 

We will prove that &(p) has the following properties. 


-

h,'(P) (1,  4 = h:(P) (4. 


&(p) is regular . 
First we show how 20-24 imply Theorem 1.1. Properties (20)and (24) 

yield that the homotopy zg: P -+ E is well-defined, (21)says that h, is a 
homotopy of % and (22), (23) imply that E,, covers h". Thus it only re- 
mains to prove (20-24). 

Property (20) follows from the fact that all the functions used to de- 
fine &(p)are C" in x (17). 

One can check (21)immediately frdm (17). 
Onecan obtain (22) from (17) noting (l l) ,(14) and that ho(p)(x)= 

7 6 i ~ ) ( l J  $1. 
Property (23) follows from (18) using (11)) ( I ) ,  (14) and the fact 

ht(~)(lJ2) = h:(P)(4. 
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To prove the regularity of &(p) it  is sufficient to show y ,h , (g) ( t ,x ) f  0 
where V E Dh,,,. Then V can be written V = V,+ V, where I.', is the 
projection of V into ~ j :and V , is the projection of V into the vector space 

orthogonal to D!in D:,,,,. Then 

(25) t v h , ( p ) ( t ,x)= pth,t(p)(t, x )  + p , ~ w & ( ~ )( t ,2) 

where W is V,  normalized and p,,  p, are appropriate scalars. Either 
p, f 0 or p, f 0.  

LEMMA1.3. There i s  a vector b' of En, I b' I < E (see beginning of proof 
of 1.1 for definition of E )  such that 

PROOF. From (12), (3 ' )  and ( 8 )it  follows that  

By (12)and (9 )  

I [%P) ( t 1 x )- h ( p )  (1 ,  x ) l a ( t ) v ,  &,(PI ( x )I < &I10. 
By (12)and ( 4 )  

I 4 6 )  [vwh,(p) ( x )  - vwho(p) ( x ) l  l < El10 

and finally by (16)and (5) 

Then by (19)and these four inequalities we have 1.3. 

LEMMA1.4. There exist vectors in Em,b, Z, scalars A ,  A' where I b I < E ,  

A > 10 a' and I iiI = 1,  and u = u (v,p, x )  such that 

PROOF. We can easily obtain from (18), 

where ZL is a unit vector. 
Then from (12), (3') and (7)i t  follows that  

I [ h t (p ) ( l1  h , ( ~ ) ( t ,  - Ix )  - x)I [e + a ( t ) ( Q , ( ~ ) ( x )  e)I < 2~110. 
By (12) and (3') 
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I h t (p ) ( l ,  x)a(t)[Qv(p)(x)  - el I < 4 0  

and by (12), (6 )  and (3') we have 

I a ' ( t )c ~ ( P )  h (p )  (1 ,  s>ICQ,(p) ( x )  - el I < 4~110.( t ,  x )  -

By (15) and noting that  h:(p)(x)= h , (p ) ( l ,  x )  and Q,(p)(x)= e the above 
inequalities yield 1.4. 

LEMMA1.5. Let a,  b, u, C, a' and b' be vectors i n  E n ,  A,  A' scalars with 
the following properties 

I b I ,  I b' I < (lllO)P(a, sa') all real s 

I b' I < (1110) 1 a' I ,  I ZL 1 = 1,  I u I = I, A > l0Ar  

and u normal to both a and a'. Then a + b + AZL+ A'G and a' + b' are 
linearly independent. 

PROOF. If the lemma is false then there is a scalar v such that  


v(a + b + AZL+ 1 ' E )  = a' + b' 

or 

(26) Av(u + ( l r / A ) E )= a' + br + v(a + b) . 
Since I (A1 / l )GI < (1110)1 u 1 ,  ZL  + (Ar/A)Uhas angle less than 25" from 

Z L  and thus since u is normal to a and a' the term on the left of Equation 
26 is a t  an angle of greater than 65" from the a - a' plane (the case 
1= 0 offers no difficulty). On the other hand a + b has an angle less 
than 25" from a ,  and a' + b' has an angle less than 25" from a'. This 
implies that  the term on the right of Equation 26 has an angle from the 
a - a' plane less than 50". Thus Equation 26 is false, and hence 1.5 is 
proved. 

From the last three lemmas we are now able to prove the regularity of 
h,(p). By (25) it  is sufficient to show that h,,(p) ( t ,  x )  and y,h,(p) ( t ,  x )  are 
linearly independent. This fact follows from 1.5 making the substitutions 
from 1.3 and 1.4, a = h,(p) (1 ,  x ) ,  and a' = y,,h,(p) (1 ,  x). One also uses the 
definitions of e and u to check the hypotheses of 1.5. Thus we have 
proved (24). 

The above construction may be repeated if 6 < 1 using h8(p)in place of 
h. This yields a covering homotopy for v 2 26. Iteration yields a cover- 
ing homotopy h, for all v € I. This proves 1.1. 

2. The weak homotopy equivalence theorem 

Let f ,  : DL-+E n  be a Cmimmersion, n > k. Denote by I'=I',,,(f,) the 
space with the C' topology of all C - immersions f of Dk in E n  such that  
f agrees with f ,  on bkand d f  with dS, on the restriction of the tangent 
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bundle of Dk to D\ Let x = (x,,  ..., x,) be rectangular coordinates on 
E k  2 Dk and if J :  Dk -+ E n  is an immersion denote by f ,&(x)the deriva-
tive of f ( x )  along the curve x,. Let f, :Dk -+ V. , (the Stiefel manifold) 
be the mapf,(x) = (f z , (x) ,  ...,f,,(z)) and r' = r : , , , ( x ) the space with the 
compact open topology of all maps of Dk into V.,, which agree withf, on 
@. Let be the map Q(p) (x )= (f x J x ) ,  . ,fz,(x)).  The proof of the 
following theorem is the goal of this section. 

THEOREM2.1. I f f ,  : Dk-+En i s  the standard immersion of Skin a k+ 1 
plane of E n  then : l',,,( f,) -+ l",,,(f,)i s  a weak homotopy equivalence. 

4 map f :  X-+ Y is a weak homotopy equivalence if its restriction to 
each arcwise connected component of X induces an isomorphism of homo-
topy groups and it induces a 1-1 correspondence between arcwise con-
nected components of X and Y. 

One could probably prove 2.1 without much trouble even iff , :  Dk-+En 
is an arbitrary immersion. 

Let x ,  be the South pole of b+'.Then impose a coordinate system 

X = (XI,..., X,),  X E Dk+l- x-, on h k + l - x ,  such that  r(X)  = (zf~:)'~'= 1 
is the equator Q of bk+".From now until the end of this section we 
identify x and 2, xi and X i  ; identify Dk with the upper hemisphere of 

of 6''and bkwith Q. Let 

A = {( t ,x )  e Dk+'( t  <= 112, r ( x )  >= 1 or x = z-) 

and let g, : Dk++'-+ E n  be the standard inclusion into a k + 1plane of E n .  
A subspace B = B,+,,.(y,)  of B,,,, .(g,) is defined as follows. An ele-

ment ( y ,g') of B belongs to B if g restricted to Ljk+'l n A is y,, and g' 

restricted to bk+ln A is g,, (the derivative of g, with respect to t ) .  
Let A' = ( ( t ,z )  e Dk+"I x f x,) and define 5, :A' --+ V,,,+lby G(Y)  = 

(gozl(y),...,g,x,(y>,g,+(y)),y e A'. 
Let B r  = B:++',,(g,)be the space with the compact open topology of all 

maps of D, fl A' into V,,,,, which agree with g, on D"" n A' n A. 
A map U' :B -+ B' is defined by 

. u ( g ,  g r ) (x )= (gx,(x),.. ,gz,(x), gr(x)),( g ,  E B, x E A' n @+I. 
Let f ,  :Dk -+E n  be the restriction of g,. 

THEOREM2.2. I f  @ : I?,,,( f,) -+ r: , , ( f , )  is  a z~teakhomotopy equivalence, 
then U' : B,+l,n(g,)-+ BL+,,.(go) i s  also a z~teakhomotopy equivalence ( n  >k ) .  

PROOFOF 2.2. Let r ' q e  the subspace of l7 = r,,,(f,) of those immer-
sions which have all derivatives (of all orders) agreeing with the 
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derivatives of f o  on D k .  The restriction of @ to 1'" will still be denoted 
by @. 

L E M M A2.3. T h e  inclusion i : I'" -+ I' i s  a weak homotopy eqziivalence. 
The proof of this lemma is not difficult and will be left to the reader. 

The idea of the proof is that  any compact subset S of I' can be deformed 
so that elements of Sagree with go on a neighborhood of the boundary of 
Dk.  

Define maps p :B+ I?" and p' :B' +I" as follows. For ( g ,  g') e B 
let p ( g ,  g') be g restricted to D k  = upper hemisphere of @ + I .  For 

f B ' , f :  @" n A'+Vn, ,+l , f (y)=(f l (y) ,  ... , f , ( y ) , f k + l ( ~ ) )let p ' ( . f ) ( x )  = 
(f l ( x ) ,  . .,f , (x) )  for x E D k .  I t  is easily checked that  the p is well-
defined, continuous and that  the following diagram commutes. 

We claim that  
( 1 ) (2,p,  I?") has the C H P ,  
( 2 ) (B',p', I?') has the C H P ,  and 
( 3 ) TPrestricted to a fiber is a homeomorphism between corresponding 
fibers. 

PROOFOF (1). Let h, :P+ I'" be a given homotopy and :P-+Bcover 
hUwhere P is a polyhedron. We will construct a covering homotopy 

Q:P-+B.  
Let q, : V,,,,, + V,,, be defined by dropping the last vector of a frame 

and q, : V,,, -+ G,,, be the map which sends a k-frame into the oriented 
k-plane it spans. Then q = q,q, has the C H P .  

Define hf  : P x D k  +G,,, so that  h:(b, x )  is the tangent plane of h,(b) 
a t  x translated to the origin. Let h" : P x Dk-+ V,,,,, be the map 

h*(b, x )  = (h,,(b)(x), ...,h,,(b)(x>, h ' (b ) (x ) ) ,  x c D k  

where %(b) ( x )= (h (b )( x ) ,h'(b)(x)) .  Then since hO covers h, it  follows that  
q?i*= h f .  By the C H P  of (V,,,,,, q ,  G,,,) we obtain a covering homotopy 
%:: P x D k  -+ V,,,,, from h* and hz. 

Define :P -,B as follows. Let 

R ( b ) ( z )  = (h,(b)(x),  Z t b ) ( x ) )  
where 
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Now it can be checked that  hi(b)(x) is well-defined and is the desired 
covering homotopy. This proves (1). One proves (2) the same way. 

Lastly, (3) can be seen as follows. If g e l'*,g : Dk-,En is regular, 
and then p-](g) is the space of all g' :D" Ensuch that  for each x e Dk, 
g1(x) is transversal to the tangent plane of g a t  x and gr obeys a boundary 
condition. The fiber over @(g) e I" is the same while the restriction of 
TV is a homeomorphism between these fibers. To finish the proof of 2.2 
we note that  '-V maps the exact homotopy sequence of (B, p, r")into the 
exact homotopy sequence of (B', p', I"). By the five lemma the theorem 
follows using (3) above, the given condition on (D and 2.3. This proves 
2.2. 

Let g, : Dk-,En be the standard inclusion of D q n t o  a k-plane of En, 
and f, be as in 2.2. 

LEMMA2.4. If @ : l',, ,(g,)-,r:,,(~,) is a z~teak homotopy equivalence then 
so is  @ : r, n(f")+ l': n(x) .  

The proof of this lemma offers no trouble and we leave the proof of i t  
to the reader. One can use for example a diffeomorphism of En. 

THEOREM2.5. If T : -,B;,,(g,) is  a weak homotopy equivalence 
then so is @ : l',,,(g,) --+ rL,,(y,). 

Before we prove 2.5 we note that  2.1 follows from 2.2, 2.4 and 2.5 by 
induction on k keeping n fixed. The first step, that  T : B1,n(g,)+~:,n(g,) 
is a weak homotopy equivalence, is trivially checked. In fact, roughly 
speaking, my thesis [6] contains the second step and [7] is the third step 
in this induction. 

PROOFOF 2.5. An outline of the proof is contained in the following 
diagram. The spaces and maps will be defined as the proof proceeds. 

I x r #  A 1.8 R ]e# 
Z '$ A!

zt(B') +- nt (E', 8'')* T ~ - ~ ( F ' )  

Let 2, be a (k-1)-frame of SL-'=D+hose base point is a x,, the south 
pole of Sk-'. The g,,(x,) is a (k - 1)-frame say y, of En(with base point) 
and g,,(x,) is a vector say jj, transversal to the plane of yo. Let B, be the 
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subspace of B of elements (f, f ') where f,(xo) = yo and f '(x,) = Yo. Let 
E, = T;-'(B,) c E. Then by 1.1 
( 4 ) (E,, n,B,) has the CHP. 

(We sometimes denote the restriction of a map by the same symbol as the 

original map). 


We let E be the subspace of E,,of immersions f : Dk-+ Emwhich agree 

with g, on A. Note that  2c B,,and let 5 : E-t be the restriction of 
T;. Let F= F-'E(g,). Then we will prove 

( 5 ) For all i, E, : E,(E, F )  -+ ;r,(B,E(g,)) is an isomorphism onto. 
For the proof of (5) consider 

- .iE -E,, 

where j and j' are inclusions. Then it is sufficient for (5) to show for all 
i 2 0  

( 6 ) j, : ;r,(E, F )  -+ ;.;,(E,,F)is 1-1onto, 

( 7 ) T;$ :zi(EU, F )  --+ ni(Bu) is 1-1 onto, and 
( 8 ) j: :T;,(B)-+ rI(BO)is 1-1onto. 
The truth of (7) follows from (4). 

By the exact homotopy sequence of the pairs (E, F )  and (E,, F )  for (6) 
it is sufficient to show T;,(E,) = T;,(E)= 0 for a11 i 2 0. 

Let g :Sj --+ Ebe given. I t  is sufficient to show that g is homotopic to 
a point. For every e > 0 there is a differentiable strong deformation re- 
traction H, of Dk into N, where N, is diffeomorphic to Dk, N , 3 A  and for 
every y e N,, d(y, A) < e. Then for each such E, there is a homotopy g, 
of g defined by g,(p)(y) = g(p)(H,(y)), p e S and y e Dk. On the other 
hand, for each E > 0 we have the homotopy h, : SJ-+ Ebetween g, and 
the fixed map f,,defined by h,(p)(y) = (1 - t)g,(p)(y) + tf,(y). We leave 
it to the reader to show that h,(p) will be regular (hence h, will be well- 
defined) if i has been chosen small enough. Thus g is homotopic to a 
point. This proves z j (E)  = 0. 

In a similar fashion one proves ;r,(E,) = 0. 

PROOFOF (8). We wish to show i : -+ B, is a weak homotopy 
equivalence. Let f :P -+ B, where P is a polyhedron. I t  is sufficient for 
the proof to show there is a homotopy FA:P --+ B, such that  (a) F, =f ,  
(b) if f(p) e B then FA(p) =f(p), and (c) F3(p) e B. 
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The homotopy FAis defined in stages with some of the details omitted. 
First, it  can be shown that  there is a neighborhood N of x, and a homo- 
topy FA: P-,B,, 0 1A 11 satisfying (a) and (b) and such that  F,(p) 
agrees with g, on AT. 

There is a number e > 0 such that  if g c B, and satisfies p,(g, g,) < i 
where 

p*(g, gU)=max{P(g(y), gu(~)), P (v ,~(Y) ,~rgo(1/))I Y c iknA, vci: I V I= l )  

then G,(y) = Ag(y)+(l - 2)g,(y) is regular with 0 Ii,51, and y e D,n A. 
Furthermore, if E is small enough one can use the map G, to define a 
homotopy H, e B, where 0 5  A 51such that  H,=g, H,=g, and if g=g,, 
H,=H,. To define H, from G, one uses a ribbon around the equator of D'". 
Everything in this paragraph is valid on a compact set of such g all 
satisfying p,(g, go) < E .  

Taking E as in the last paragraph one can define F, : P -. B, 15 i,12 
such that  Fl(p) is the previously defined Fl(p), ,o,(F,(p), go) < e, and if 
Fl(p) E B,F,(p) = Fl(p). Here F is taken as a stretching of Enmoving 
Fl(p) except in a neighborhood of x,. Also F A ,  15A 52 involves a simple 
re-parameterization of Dl.Finally, FAfor 2 1  A 5 3 is defined directly by 
the H, of the last paragraph. This proves (8). 

Let A and A' be as before and using the fixed map go, define another 
fixed map go : A' -, V,,, by 

?u(Y)= (goZl(Y),. . . , ~O~, - , (Y> ,  y E A'.gt(Y)) , 

Let E:,,(ij,) = E' be the space with the compact open topology of all 
maps of A' into V,,, which agree with gUon A n A'. Let BL,,(g,) = B' be 
the space with the compact open topology of all maps of Dk n A' into 
V,,, which agree with g,on Lj" n A' nA. Define ;r' : E'+ B' by restrict- 
ing a map to Dkn A'. Let Fk,,(g,) = F' = ;.;'-'(rt(?,)) . 
( 9 ) The triple (E', r', B') has the CHP. 

To prove (9), let h, : P -+B' be a given homotopy where P is a polyhed- 
ron and let x:P -t E' cover h,. A covering homotopy h,: P-. E' is 
defined by 

and if r + 1 



ON IMMERSIONS O F  S P H E R E S  

where 

and 

I t  can be checked without much trouble that  this is a good covering homo- 
topy. We show now, 
(10) 7T$(E1)= 0, i 2 0 

PROOF.Let H, be a strong deformation retraction of Dk into A ,  i.e., a 
homotopy H, : Dk+Dk such that  H, is the  identity, Hl(x) c A for x E Dk 
and if x E A, H ( x )  = x for all t. Then define a homotopy H, : E' -2 E' 
by H,( f )(x)=f (H,(x)). I t  is easily checked that  Zcis a strong deforma- 
tion retraction of E' into the point X H ~of E'. 

A map cp :E+ E' is defined as follows. 

~ ( g )  g,(y))  , g c E, y e A'.(y)= (gzl(y),. .., gZk-,(y), 

Then the following diagram commutes. 

Let cp :F +F' be the restriction of cp. 
I t  is easy to check that  cp is continuous and that  diagrams A and B a t  

the beginning of the proof of 2.5 commute. Then we have 
(11) F ,  :ni-l ( F )  -t T ; ~ - ~ ( F ' )is 1- 1 onto. 

For (11) first note that  cp, : zi (E,F )  -t zd (EP ,F ' )  is an isomorphism 
onto since F.;, Then A and A' are  isomorphisms is, by (5), and ;r' is by (9). 
onto because ;r,(E)= 0 (proof of (6)) and n,(Er)=O by (10). This proves 
(11). 
(12) There are maps a, : F -2 I? and a, : F'+ 1'' which are  weak homo- 
topy equivalences and such that  the following diagram commutes. 
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onto the plane it spans. Then we have the following commutative dia- 
gram. 

Here the vertical maps are Hurewicz maps ;f and g are immersions of Sk 
in E i k ;  ;S, g : Sk+ G-, ,are induced by f ,  g by translating tangent planes 
to the origin of EZk.Then -6and df,, are induced by f, 

Suppose now I, = Ig. We wish to prove that  f and g are regularly 
homotopic. For this we use the result from [3] which says that  for an 
immersion f :Mk+ELk (with M k  compact oriented and I, defined) m,(f )= 
21f where w,(f )  is the kthStiefel-Whitney class with integer coefficients 
of the normal sphere-bundle over Mk .  Thus in our case W,( f )  = ~ , ( g ) .  
But by [3] this implies t h a t f ,  = 2,. 

I t  is easily checked that  p&( f ,  g) =f,(S,) -g,(S,) where S, is a gener- 
ator of x,(Sk). Then by the previous diagram h,p,R( f ,  g) =Z(h,(S,)) -
-
g,(h,(S,))=O since& =?,. Then by the diagram p,h,Cl( f ,  g)=O. By [3] p, 
is 1-1and since h, is 1-1 this implies a (  f ,  g) = 0. Thus f and g are 
regularly homotopic by Theorem A. This proves Theorem C. 

Theorem D is proved as follows. Let p : V,,,,, -+Gk+,,,= Sksend a k- 
frame into the k-plane it spans. Since p is a fiber map, we have the 
following exact sequence. 

P# A
X , ( V , + ~ , ~ )-4xk(Sb) n,-,(Fiber = R,) .-3 

The map h is zero since Skis parallelizable. Hence p, is onto. Therefore 
by Theorem A, there exist immersions f ,  g Sk-,Ek+Isuch that  p,a( f ,  g) 

is a generator of x,(Sk). Since p,Cl(f, g) = f,(S,) - &(AS,) either f or g has 
even normal degree, and there exists an immersion of Skin Ek+lwith 
normal degree zero [4]. This proves Theorem D. 

Lastly we prove Theorem E. If Cl( f ,  e) = 0 then f is regularly homo- 
topic to e. Furthermore, this regular homotopy can be covered by a 
transversal vector field f '  by the argument of Theorem 2.2 (1). By 1.1, 
(f ,  f r )  is in the image of x ; hence the desired extension exists. 

Conversely, in order that  f have an extension it must lie in the image 
of x (with some f r ) .  But it follows from the proof of 2.5, Statement 6 
that E is arcwise connected. This implies Cl( f ,  e) = 0. 
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Addenda 

Here we note that  the solution of another problem posed by Milnor 
follows from our work. On page 284 of [4] he asks : 

Let n be a dimension for which S" is not parallelizable. Can some 
parallelizable n-manifold be immersed in E"+l with odd degree ? Can 
some (necessarily parallelizable) n-manifold be immersed in En+'both 
with odd and with even degree ? 

The answer to the first and hence to the second question is seen to be 
no, as follows. 

As in the proof of Theorem D, Section 3, consider the homomorphism 
p# : xn(Vm+,,J-,xn(Sw). I t  is sufficient to consider the case of n odd with 
S" not parallelizable. By Theorem A, the image of p, consists of even 
elements of x,(Sm) since only odd degrees of immersions of S" in Em+' 
are possible [4]. Now if M" is parallelizable and f:M" -,En+'is an im- 
mersion, then f induces a map F: M"+V,+,,, with pF = f. Then fmust 
have even normal degree, proving our assertion. 
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