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A CLASSIFICATION OF IMMERSIONS OF THE 

TWO-SPHERE 


BY 


STEPHEN SMALE 

An immersion of one C1 differentiable manifold in another is a regular 
map (a C1 map whose Jacobian is of maximum rank) of the first into the 
second. A homotopy of an immersion is called regular if a t  each stage it is 
regular and if the induced homotopy of the tangent bundle is continuous. 
Little is known about the general problem of classification of immersions 
under regular homotopy. Whitney [5] has shown that  two immersions of a 
k-dimensional manifold in an n-dimensional manifold, n 2 2 k + 2 ,  are regu- 
larly homotopic if and only if they are homotopic. The Whitney-Graustein 
Theorem [4] classifies immersions of the circle S1in the plane E2. In  my 
thesis [3]  this theorem is extended to the case where E 2  is replaced by any 
C2 manifold Mn, n >  1. As far as I know, these are the only known results. 
In  this paper we give a classification of immersions of the 2-sphere S2in 
Euclidean n-space En,n > 2 ,  with respect to regular homotopy. 

Let Vn,, be the Stiefel manifold of all 2-frames in En.I f f  and g are two 
immersions of S2in En,  an invariant QCf, g) En2(Vn,2) is defined. 

THEOREM S2in  En,they are regularly A. Iff and g are C2 immersions of 
homotopic if and only if Q(f, g) = O .  Furthermore let Q0Ewz(Vn,2) and let a C2 
immersion f :  S2-+Enbe given. Then there exists a n  immersion g: S2-+Ensuch 
that Q(f, g) =Qo. Thus there is  a 1-1 correspondence between elements of wz( Vn,2) 
and regular homotopy classes of immersions of S2in En. 

Since wz(V3,2) =0,  Theorem A implies: 

THEOREMB. Any two C2 immersions of S2in  E3are regularly homotopic. 

That  this should be so, is not obvious. For example, i t  is not trivial to see 
that  a reflection of the unit sphere in E3 is regularly homotopic to the identity 
on the unit sphere. 

Since =Z, there are an infinite number of regular homotopy classes 
of S2in E4.In  fact we are able to obtain using results of [I] ,  

THEOREMC. Given yEH2(S2) ,y even, then there is an  immersion of S2in  
E4such that the characteristic class of the normal bundle is y. Furthermore, any 
two such C2 immersions are regularly homotopic. There is no immersion of S2 
i n  E4with odd normal class. 

In [2] it is proved for say S2in E 4  that  the normal class of the immersion 
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is twice the algebraic intersection number of Whitney. Hence two C2 im- 
mersions of S2in E4(for which the algebraic intersection number is defined) 
are regularly homotopic if and only if they have the same algebraic inter- 
section number. This answers a special case of a question of Whitney [6, 
p. 2201. 

Finally one can immediately obtain from Theorem A tha t  two immersions 
of S2in En,  n > 4 ,  are always regularly homotopic. 

M.  Hirsch, using the theory of this paper, has obtained a regular homo- 
topy classification for closed 2-manifolds in En,n>2 .  

A slight extension of the methods in this paper yields a generalization of 
Theorem A to the case where En is replaced by any C2 manifold Mn, n>2 .  
We state the results as follows. 

If M is a C1 manifold, F2(M) denotes the bundle of 2-frames of M. Let 
N be a C2 manifold of dimension greater than two, let xoEF2(S2) and let 
yoEF2(N) .  An immersion f:  S2+N is said to be based a t  yo if f*(xo) =yo where 
f*: F2(S2)+F2(N) is induced by f. A regular homotopy is based a t  yo if 
every stage of it is. If f and g are two immersions of S2in N based a t  yo, 
then an invariant Q(f, g)EnZ(F2(N), yo) is defined. 

THEOREXD. Iffand g are as above, then they are regularly homotopic, with 
the homotopy based at yo, if and only if Q(f, g) = 0. Furthermore, let QO 
EnZ(F2(N), yo) and let a C2 immersion f :  S2--tN based at yo be given. Then there 
exists an  immersion g: S2+N based at yo such that QCf, g) =Qo. Thus there is a 
1-1 correspondence between elements of n2(F2(N), y 0) and regular homotopy 
classes of C2 immersions of S2in N based at yo. 

The  methods used in this paper are extensions of methods of [3]. I t  is to 
be hoped that  these methods can be used to solve further questions on regular 
homotopy classes of immersions. 

$1 is on fiber spaces in the sense of Serre. In  $2 a triple (E l  p, B) of func- 
tion spaces is defined and shown to have the covering homotopy property 
(Theorem 2.1). T o  generalize 2.1 would be a big step in obtaining regular 
homotopy classification of higher dimensional spheres. In  $3 Theorem 2.1 is 
applied to compute the homotopy groups of the fiber I?, of (E,  n ,  B) (or a t  
least to reduce the computation to a topological problem). Finding the 0th 
homotopy group of I?, is roughly the solution of the local problem in the 
theory of 2-dimensional regular homotopy. In $4, using the knowledge of 
no(I'e), the main theorems stated in the Introduction (except Theorem D)  
are proved. 

1. A triple (E,  p, B) consists of topological spaces E and B with a map 
p from E into B (note p is not necessarily onto). A triple has the CHP if it 
has the covering homotopy property in the sense of Serre. In that  case we 
call (El  p, B) or sometimes just E a jiber space. The  following was proved in 
[31. 
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THEOREM1.1. Suppose the triple (E,  p, B) has the CHP locally; that is, 
for each point x E B ,  there exists a neighborhood V of x such that (P-'(V), 9, V) 
has the CHP.Then (E,  p, B) has the CHP. 

A homomorphism (h, h') from a fiber space (E, p, B) into a fiber space 
(E', p', B') is a pair of maps h: E+Ef and h': B-+B' such that  the following 
diagram commutes. 

h 
E --t E' 

If B and B' are the same space and h' the identity we will speak of h as a 
homomorphism. 

A map f :  X+ Y is a weak homotopy equivalence if (1) its restriction to each 
arcwise connected component of X induces an isomorphism of homotopy 
groups and (2) it induces a 1-1 correspondence between the arcwise connected 
components of X and Y. 

LEMMA 1.2. If (E,  9, B) is a jiber space then p(E) co~zsists of a set of arc-
wise connected components of B. 

This follows immediately from the CHP. 

LEMMA1.3. Let (h, h') be a homomorphism from ajiber space (E, p, B) to a 
jiber space (E', p', B') such that h and h' are both weak homotopy equivalences. 
Let xoEB, yo =h'(xo), F=p-l(x0) and F' =p'-'(yo). Then the restriction of h to 
F, h:  F+F' is a weak homotopy equivalence between F and F'. 

This lemma is an immediate consequence of 1.2, the exact homotopy se- 
quence of a fiber space and the 5-lemma. 

2. Let D be the disk in the plane E2,D = { ( x ,  y) 1 x 2 + y 2 g  1 ] and D 
= ( (x, y) I x2+y2= 11.  However, unless specifying otherwise, we will refer to 
the points of D with polar coordinates (r, 8) and use 8 as the coordinate for 
D. The points of Euclidean n-space E n  will be considered to be vectors from 
some fixed origin. 

A space E is defined as the set of all regular maps of D into En (we always 
assume n>2)  which satisfy the following condition. If f E E  then the first 
derivatives o f f  on the boundary of D ,  D are C1 functions of the boundary 
variable 8. The  topology defined by the following metric is imposed on E. 

Here d' is the ordinary metric on Enand f,(p), f,(p), etc., denote the obvious 
partial derivatives. In general we will call such a topology on a function 
space, the C1 uniform topology. 
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Let Vn,z be the Stiefel manifold of 2-frames (not necessarily orthonormal, 
but ordered, and independent pairs) in En.Let V= Vn,zXEn be all 2-frames 
a t  all points of E". Let q be the projection of a frame onto its base point, 
q: V--+En, and ql, 9 .2 ,  the projections of a frame into its first and second vector 
respectively. 

Let B' be the space of maps of D into V with the compact open topology. 
Let B be the subsyace of B' satisfying the condition: If f E B ,  then 

(1) qf(0) =3(0) is regular, 
(2) 3'm =qzf(0)7 and 
(3) f is C1. 

A map n :  E--+B is defined as follows. If fEE,  

(1) qr(f)(B) =f( l ,  01, 
(2) ¶l~(f)(O)=fr(l, 01, 
(3) ¶zr(f)(6) =fe(l, 8). 
The subscripts r and 0 as here always denote the respective partial de- 

rivatives. From the definitions of the spaces, E and B, it follows that  n is 
well defined and continuous. The purpose of this section is to prove the fol- 
lowing theorem. 

THEOREM2.1. The triple (E, n ,  B) has the CHP 

Let g E B  be given. We choose a neighborhood U of g in B as follows: Let 
A be the minimum angle in radians between qlg(B) and qzg(0) as 19 ranges over 
D. Let L be the minimum of the magnitudes of qlg(B) and qzg(0) as 0 ranges 
over D. Choose U such that  for h E  U, 

(1) the angle between qih(0) and qig(0) is <A/100, and 
(2) 1 qih(0) -qig(o) 1 <AL/100 

for i =1, 2 and BED. By the topology of B, U can be chosen as above. 
By 1.1. i t  is sufficient for the proof of 2.1 to show that  ( r l ( U ) ,  n ,  U) has 

the CHP. Let h,: P-+U be a given homotopy, P a polyhedron, and 6: P + E  
a covering of ha. We will construct a covering homotopy h,: P+E. We may 
assume that  P is a cube (see, e.g. 1131). 

A linear transformation of En, Q,(p)(B) is defined as follows. First, let 
V,(p)(B) be the plane defined by qlho(p)(B) and qlh,(p)(B) (if it exists) and 
a,(p)(B) the angle from the first to the second of these vectors. Then Q:(p) (0) 
is to be the rotation of Enwhich takes V,(p)(B) through the angle a,(p)(B) 
and leaves the orthogonal complement fixed (if V,(p)(B) does not exist then 
Q:(p)(B) is the identity e). Finally Q,(P)(B) is Q:(p)(B) multiplied by the 
scalar 1 q1hv(p) (6) 1 / I  qlho(p) (8) I . Note that  [qlho(~)(6) ]Q,(P) (6) =qlh,(p) (6) 
where Q,(p)(B) is to be considered as acting on the right. Also Q,(p)(B) is C1 
with respect to 6 and continuous with respect to v and p. 

LEMMA2.2. Let n >k>1, Gn,k be the Grassman manifold of oriented k-planes 
in  Enand Sn-I the unit vectors of En.Let a map w : Q-+Gn,k be given which is 
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homotopic to a constant where Q i s  some polyhedron. Then  there i s  a  m a p  
u: Q+Sn-I such that for all q E Q ,  u ( q )  i s  perpendicular to the plane w ( q ) .  

The proof may be adapted from the proof of 4.1 of [3] substituting 
V n , k + l  for Vn,2  in the proof. 

Let u :  P X I X  D+S~-1 be given by 2.2, taking for w: P X I X  D-+G,,~ the 
map which sends (9 , v ,  8)  into the plane of E n  spanned by qlh,(p)(B) and 
qzh,(p)(B). Because h o ( p )is covered by h ,  one can prove that  w is homotopic 
to a constant map. 

Now choose 6 >0 so that  if I v  -vll 5 6 then 

where T=max  ( u ~ ( p ,v ,  B ) / ~ E P ,  v E I ,  B E D ) .  

Choose r o ,  0  5 r o  <1 ,  such that  for P E P ,  B E D  and r  2 r o ,  


( 1 )  1 J A P ) ( ~ , ~ )< ( A / l O o )  1 hT (p ) (1 ,  0) 1 ,~ T ( P ) ( Y , ~ )  - 1 
( 2 )  / he(P)(r, 0) - h e ( p ) ( l ,0 )  1 < ( A / 1 0 0 ) 1 h e ( p ) ( l ,  0) / , and 

where N=max  ( / Q,,o(p)(B)I I P E P ,  v E I ,  B E D ) .  That  ro can be chosen satis- 
fying (3) follows from the definition of the derivative i , ( p ) ( l ,  0 ) .  

Let rl =ro+(1 -ro) /200 and choose a C2 real function on I = [0, I ] ,  a ( r ) ,  
satisfying a ( r )=0 for r 5 rl ,  a ( 1 )  =1 ,  a l ( l )=0 ,  1 a ( r )1 5 1,  and such that  
/ a l ( r )1 <102/100(1 -ro). Let P(r) be a real C2function on I with P(r) = O  for 
r  5 r 0 ,  P(1)  = P 1 ( l )  = O ,  I 1 and P1(r)>100a f ( r )  for r 1 5 r 6  1. The~ ( r )5 2 0 0  
proofs that functions a ( r )  and P(r)  exist as above are not difficult and will be 
omitted. 

Let 


M(v)  = max ( 1 qh,(p)(O) - q1zo(p)(o)I 1 p E P, 0 E D } .  


Let 


where e is the identity transformation. 
The covering homotopy i,:P+E is defined as follows for v 6  6. 

The following derivatives are easily computed. 
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Pr = h v r ( ~ ) ( r ,  6)QV(p)(r,  k ( p ) ( l ,6)]QV,(p)(r,6 )6) = h r ( ~ ) ( r ,  6) + [k (p) ( r ,  6) -

+ f f f ( r )[qhv(P)(~)- qho(p)(f')l+ Of(r)M(v)u(p,v ,  01, 


P O= k v e ( ~ ) ( r ,6) = [hs(p)(r,6 )  - As(p)(l ,  e)]Q,(p)(r, 6 )  


[h(p)(" ,e)- 0)lQve(P)(r,0 )  + a(r )  [qzhv(p)(0) qzh~(p) (0 )]h ( ~ ) ( l ,  -
+ P ( r ) M ( v ) ~ e ( p ,v ,  6 )  + hs(p) ( l ,O ) ,  

-

Qvr(p)(r,6 )  = af(r)[QV(p)(0)- el, 

-

Qvs(P)(r, 6) = a(r)Qve(p)(0). 


Then i t  can be checked that  Lo($) has the following properties. 
(1) i % ( p )is C1. 
( 2 )  i , ( p )  has derivatives with respect to 8 and r ,  C1with respect to 8 on D. 
(3) ho(p?(r, 8) = L ( p ) ( r ,  8).  
( 4 )  h v ( ~ ) ( l ,6)  =qh"(P)(e).  
( 5 )  L v r ( ~ )(1 ,  8) =qlhv(P) (8)- 
We will show 
( 6 )  E D ( # )  is regular. 
To show ( 6 )  it is sufficient to show that  the derivatives P ,  and P 8  are 

independent. From the various choices made it can be checked that  P ,  is 
"close)) to h , (p ) ( l ,  8)+/3'(r)M(v)u(p, v ,  8) while P Ois "close)) to h e ( p ) ( l ,  8).  
From this statement it follows that  P ,  and P Oare independent. 

From ( I ) ,  ( 2 )  and ( 6 )  it follows that  k,(p) is really in E ,  from ( 3 )  that  
k ,  is a homotopy of k and from ( 4 )  and (5) that  k ,  covers h,. For 6 5 v 5 26 
define h, as before using h6 instead of h. Iteration yields a covering homotopy 
k,  for all v E I.This proves 2.1. 

3. Let x o E  V ,  and let Bo be the subspace of B with the further condition 
that  for f E B o ,  f ( 0 )  =xo (see the previous section for notation). Let E o  = r - l ( R o )  
and let the restriction of T to Eo still be denoted by T .  Then from 2.1 we 
have the theorem. 

THEOREM3.1. The triple ( E o ,  T ,  B o )  has the CHP.  

Let E' be the space of all maps of pairs ( D , Po) into ( V ,  xo) with the com- 
pact open topology where $ 0  is the point of D, ( r ,  8) = ( 1 ,  0 ) .  Let B /  be the 
subspace of B' (B'  as in $2)  with the condition if f E B /  then f ( 0 )  = x o .  A 
map T ' :  Ef-+B; is defined by restriction to D ,  i.e., if f E E f ,  ( ~ f ) ( 8 )  f (1 ,  8).  = 

LEMMA3.2. The triple ( E ' ,  T ' ,  B /  ) has the C H P  and E' i s  contractible. 

Proof. Let h,: P+B/ be a given homotopy and k :  P-+Ef cover ho where 
P is some finite polyhedron. A covering homotopy h,: P-+Ef is defined as 
follows : 
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I t  remains to show that  E' is contractible. Let ht:  D+D be a strong de- 
formation of D into the point #OED. Then define H,: Ef+E' by 

Ht( f ) (p )= f (ht(p)) ,  f E E f , p  E D. 

I t  is easily seen that  Ht  contracts E' into the constant map f a :  D+xO. This 
proves 3.2. 

L E ~ I ~ I A3.3. The homotopy groups of E o  vanish, i.e., .irk(Eo) =0,  k 2 0 .  

Proof. Let f :  S Q E o  be given, k 2 0 .  We will show that  f is homotopic to 
a constant map. Let A be the angle between the two vectors of the frame 
xoE V and let L be the minimum of their magnitudes. Then there exists a 
neighborhood U of $0 of D such that for q and q' of Sk we have 

( 1 )  I f r ( q )  (r,8 )  - f r ( q f )  (r,6 )  I < AL/100, 

( 2 )  1 f s ( q )  ( r ,@- f s ( q f )  ( 7 7 8 )  I < AL/100 

for all (r ,0) EU. The existence of such a U implies that  there is a homotopy 
H,: Sk+Eo, -1 5 ~ 5 0 ,  with H - ~ ( q )=f(q)  and such that  ( 1 )  and ( 2 )  above 
are satisfied with H a  replacing f and (r , 0) ranging over D. Let qoESk and 
e= Ho(q0) EEo. Then define H,: Sk+Eo, 0 5 v s  1 by 

Hv(q)= (1- v)Ho(q)+ ve. 

I t  follows from the choice of U that  H,(q) is regular. Then i t  is easily seen 
that H,(p) is well defined and that  Hl(q) =e. Thus f is homotopic to a con- 
stant and hence 3.3 is proved. 

Let F' be the space of maps of I%,= into V starting a t  xo, and let [o, 2 ~ ]  
p': P+V be the map which sends a path onto its end point. I t  is well-known 
that  (F',  p', V )  has the CHP and that  F' is contractible. Note also that  the 
fiber p'-l(x0) is the space B J .  

Denote by F the subspace of Ff which satisfies conditions (1)-(3) of B in 
$2.  Let p' restricted to F be denoted by p. Then Bo=p-'(xo). 

L E ~ ~ M A3.4. The triple ( F ,  p ,  V )  has the CHP. 

Proof. Let h,: P+V be a given homotopy where P is a cube and let 
h:  P+F be a covering of ha. We will construct a covering homotopy h,: P+F. 

Let 4 :  V+T be the map of V into T ,  the bundle of nontrivial tangent 
vectors of En, which is defined by dropping the first of the pair of vectors 
from each frame. Clearly V becomes a fiber bundle over T this way. 

Let R be the space of regular curves of En starting with point and deriva- 
tive 4(xo) and with the C1 uniform topology. Let T :  R-T be defined by 
~ ( f )= ( f ' ( l ) ,  f (1) ) .  Then (R,T ,  T )  has the CHP. For a detailed description 
of this theory, see [3] .In this paper, a regular curve differs slightly from 
those of [ 3 ] ,but the transition in the theory from one definition to the 
other may be made without trouble. If g,: P+T is the composition 4h,, the 
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above remarks imply that  there is a homotopy 2,: P+R such that  ( 1 )  
rg, =g, and ( 2 )  go =+L. 

Define a map H :  P X 1 2 ,  X  I-T by H(p , 0 ,  v )  = (Eve($)( B ) ,  g , (p) (0))and let 
X be the bundle induced by H with respect to the bundle V over T .  Let 
g :  X+ V be the corresponding bundle map. Since P X 1 2 ,  X I  is contractible 
X 	will be trivial. 

Let A =P ~ f 2 ,x IUP x 12, x 0 and define as follows a cross-section 
s: A 3 X  thinking of X C V X P X 1 2 T X I .  

Now we can extend s to a cross-section, still denoted by s, of P X I2, X  I  
into X so i t  is C1with respect to 0. Let h,(p)(e) =qs(p, 0 ,  v ) .  I t  can be easily 
checked that  A, is our desired covering homotopy. 

LEMMA3.5. The homotopy groups m ( F )  vanish, k 2 0. 

The proof of 3.5 is not difficult and will not be given. The method is a 
slight extension of the proof of 6.2 of [3]. 

A map 4 :Eo-+Ef is defined by the following equations. For fEEo, let 

Here obviously we are using rectangular coordinates for the disk D. The 
difficulty of using polar coordinates to define such a map 4 are apparent. 

We define a map #o:  Bo+Bi in such a way that  the following diagram 
commutes. 

4
Eo- Ef 

We define first a map #: F 3 F f  as follows. For f E F  let 

q#(f = f (01, 

q l$( f )( 0 )  = cos 0qlf (0 )  - sin e q 2 f ( o ) ,  

q2$(f)(0)= sin 0q1f ( 0 )  + cos 0q2 f (0 ) .  

The map # is based on formulae for transformation from coordinates (r, 8 )  
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to coordinates ( x ,y ) .  In fact, ( 5 )  and ( 6 )  come from the following equations 
for the boundary of an immersion g:  D-+En. 

g~ = COS Bg, - sin ego, 


g, = sin Og, + cos ego. 


The map + o :  Bo-+BJ is the restriction of +. I t  can be checked now that  ( 3 )  

commutes. 

LEMMA3.6. T h e  m a p  Bo-+Bo' i s  a weak homotopy equivalence. 

Consider the diagram, 

Here e is the identity. I t  can be easily checked that  ( 7 )  commutes in spite 
of the fact that + is not the ordinary inclusion. Then by 1.3, 3.4 and 3.5, 

Bo-+Bo' is a weak homotopy equivalence. 
Let c E B o ,  I',=.rr-'(c), and .rrf-'(d) =Qd, where d=+o(c).  Let 40:re-+&be 

the restriction of 4. Then from 1.3, 3.1, 3.2,  3.3 and 3.6 me obtain: 

THEOREM i s  a weak homotopy equivalence. 3.7. T h e  m a p  40: 

From the exact homotopy sequences of the triples ( E ' ,  T ' ,  Bo') and 
( F ' ,  p ,  V )  (using 3.2) we obtain: 

Combining 3.7 and 3.8 we have 

THEOREM = I n  particular .rro(I',) =nz(Vn, 2 ) .3.9. .rrk(I',) 7rk+2(Vnr2) .  

The last statement may be interpreted as giving the regular homotopy 
classes with fixed boundary conditions of a disk in En .  

4 .  Let f and g be two C2 immersioils of S 2  in En .  We can assume without 
loss of generality that  they agree on a closed neighborhood U of a point say 
z o E S 2 .  An invariant is defined follows. The space Q ( f ,  ~ ) E T ~ ( V , , ~ )  as 
D =S2-int U is a topological disk, so we can assume there is a fixed field of 
2-frames defined over it. From this field f and g induce maps of D into Vn,2 
which agree on the boundary D of D. Then by "reflecting" g we obtain a 
map of the 2-sphere S2into Vm,2.The homotopy class of this map clearly does 
not depend on the choices made. We denote this class by Q ( f ,  g)E.rr2(Vn,,) 
(we can ignore the base point of T ~ ( V ~ , ~ )because either V,,2 is simply con- 
nected or nz(Vn,2)=0). 
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Theorem A of the Introduction is an immediate consequence of the pre- 
ceding paragraph and 3.9. 

Let Gn,2be the Grassman manifold of oriented 2-planes in En. An immer- 
sion f :  S2-+En induces the tangential map T f :  S2--tGn,2 by translating a tan- 
gent plane a t  a point of f (S2)to the origin of En. We denote by T f  the homo- 
topy class of TI ,thus T f is an element of .ir2(Gn,z).Let p :  Vn,2-+Gn,2be the map 
which sends a frame into the plane it spans, and pii: 7r2(Vn,2)+n2(Gn,2)the 
induced homomorphism. 

The  next lemma follows from the definition of Q ( f ,  g ) .  

LEMMA4.1. I f f  and g are two immersions of S2  in  En, then p f Q ( f ,  g )  =T f  -
-T g .  

We now prove Theorem C of the Introduction. Let f and g be two immer- 
sions of S2 in E4. Let p*: H2(V4,2)+H2(G4,2) and Tf*, To*: H2(S2)+H2(G4,2) 
be the homomorphisms induced by p ,  T,, and T ,  respectively. Suppose that  
S2is oriented and that  s is the fundamental class of H2(S2).Then by 4.1 and 
the Hurewicz theorem, p,a( f ,  g )  =Tf*(s)-T,*(s), where a( f ,  g )  EH2(V4,2) 
corresponds to Q ( f ,  g )  under the Hurewicz isomorphism. Let W ( f )and v(g) 
be the normal classes belonging to H2(S2)defined by the immersions f and g 
evaluated on s. Then by Chern-Spanier [ I ] ,  

where 4 is a certain element of H2(G4,2).Thus 

and since p* is 1-1,  Q ( f ,  g )  = O  if and only if W ( f )=W ( g ) .Then Theorem 
C follows from Theorem A. 

Lastly we note an easy consequence of Theorem 2.1. 

THEOREM4.2. A regular map of D into En, n>2, can always be extended 
to a regular map of D into En. 
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