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Abstract

In this note we introduce a general class of finite ramified coverings n.X^X.
Examples of ramified covers in our sense include: finite covering spaces, branched
covering spaces and the orbit map Y | Y/G where G is a finite group and Y an arbi-
trary (r-space. For any rf-fold ramified covering n:X^X we construct a transfer
homomorphism

n^.H^X;!) ^ H*(X;Z),
with the expected property that

nm.7ri:Hm{

is multiplication by d. As a consequence we obtain a simple proof of the Conner con-
jecture; viz. the orbit space of an arbitrary finite group action on a Q-acyclic space is
again Q acyclic.

1. Ramified coverings

Fix a natural number deM and a topological space Y. Introduce the following
notations:

Pd(Y): = Yx...x Y,

SPd(Y):=Pd(Y)/2d,
where S d is the symmetric group on d elements acting on [d]: = {I,..., d} via permu-
tations and on Pd( Y) via permutation of the coordinates. The space SPd( Y) is called
the d-iold symmetric product of Y (2). There is the projection map

p: UPd( Y) -> SPd( Y) = P*( Y) x s d [1]

which serves as the generic example of a d-iold ramified covering. Specifically we
introduce:

Definition. A surjective finite to one map n: X 4- X is called a d-fold ramified covering
iff there is a map

/i:X-*N,
called the multiplicity map (N.B. fi is part of the structure) sueh that

(1) VzeX £ fi(x) = d,

(2) the map
f.:X-+8P*(X)

given by sending x into ?r~1(a;), where each XBTT~1(X) occurs/i(x) times, is continuous.
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PROPOSITION 1 • 1. For any space Y and deNthe mapp: UPd( Y) | SPd( Y)isa d-fold
ramified covering.

Before taking up the proof we need to make explicit the multiplicity map

/i:UPd(Y)-+N.

To this end we regard Pd(Y) as the space of functions

The symmetric group Sd acts on Pd(Y) via

o-y(j) = y(o-l(j)):VyePd(Y),

UPd( Y) is the orbit space of Pd( Y) x [d] under the diagonal action. To each point
(y,j) ePd{ Y) x [d] we associate the subset

Note that A{o~- (y,j)) = o~A(y,j) so that |.4(y,j)| depends only on the orbit of (y,j) in
UPd( Y) = Pd( Y) x xd[d] and thus we may define the multiplicity function /t by

where | | denotes cardinality. This defines

completing the requisite structure for a ramified cover.
Proof o/(l-l). We begin by analysing the map p: UPd( Y) j SPd( Y).
If [y] GSPd( Y) = Pd( Y)fZd is represented by ye Pd( Y), then we claim

{[2/> 1]>.... [y,d]} c UPd(Y).

To see this suppose (y',j'), (y",j")ePd{Y) x [d] represent the same point in UPd{Y).
Then there exists creSd such that

3' = <rtt")

In particular the elements of P'Hiy]) are representable by some {y,j)ePd(Y) x [d].
Therefore unravelling the definitions we see that the sets

define a partition n[y] of [d] and hence

S /»([»'./])= S \A\=d,

as required of the multiplicity function.
The preceding analysis shows that the map

fp:SPd(Y)^SPd(UPd(Y)),
arises as follows. Let

l:Pd{Y)-+Pd(UPd{Y)),
be denned by

Then I is Sd equivariant and so induces a continuous map on quotient spaces, which
upon unravelling the definitions is seen to hefp, so/p is continuous. |
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PROPOSITION 1-2. If (X ^nX,fi) is a d-fold ramified covering then there is a cartesian
square

*• UPd(X)

SPd(X)

Proof. To define/let xeX and set x = TT(X). Choose an arrangement of the points
of TT~1(X) counted according to multiplicity so that all fi(x) copies of x occur at the
beginning; say for example

Define

(*)

(x,...,x,x',...)

fi{x)

:=[(x,...,x,x',...),l]eUPd(X),

where the square brackets denote equivalence class. To see that this is well defined
let S , ^ ^ 2 d as the isotropy group of le[d]. Then for any o-e'Ld_1 and (xv ...,xd)
belonging to Pd(X) we have

in UPd(X). Thus

does not depend
defined, and makes the diagram

, 1],

[(x,..., x, x',...), 1] e UP*(X),

does not depend on the choice of the ordering of (x',...) and sof(x)e UPd(X) is well

UPd(X)

SPd(X)

commute.
To establish the continuity of/iegardPd(J?) as the function space X[d]. The evalua-

tion map

p.:UPd(t)->l.

is Sd equivariant and so defines
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The composite <p defined by the commutative square

X x spd<x) UPd(X) x UPd(X)

proj.

X*- UPd(X)

is closed since/is continuous. Moreover the map

f : l - > I x s M j f > UPd(l): i/r(

is inverse to q> so 97 is bijective and hence a homeomorphistn. Thus

X

UPd(X)

SPd(X)

establishes the continuity of/and the cartesian nature of the square. |

PROPOSITION 1-3. Suppose (f |" F,/t) is a d-fold ramified covering and
a continuous map. Then the pullback n^.X \ X is a ramified covering.

Proof. To begin note
V X : = X x T f IX: n^x, y): = x.

We define

Then for any xeXwe have

2
xen~\x)

as required. To obtain the continuity of

consider the inclusion X <=-+ X x Y. This induces an inclusion

Y is
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There is the commutative diagram

A T -

489

X •*• SPd(X)

(1./)

XxY -+XxSPd(?)

SPd(X x

where D is induced by the diagonal X =-> Pd(X). Since the composition Z)-(l xf„)'(!,/)
is continuous and SPd(X) «̂ > SPd(X x ?) has the subspace topology it follows that
/„ is continuous. |

By combining the preceding results we obtain

COROLLARY 1-4. TT: X I" X is a d-fold ramified covering iff there is a cartesian square

- UPd(X)

PROPOSITION 1-5. Let G be a finite group and Y a G-space. Then the orbit map

n:Y-+Y/G,

admits the structure of ad:= \G\ fold ramified covering.

Proof. Choose an ordering glt..., gd of the elements of G. There are the continuous
maps

/ : Y -* UP"( Y) | /(*/) = [9ly,..., gdy, i\

f: Y/G->SP"(Y)\f[y] = [glV, ...,gdy},
and the square

f - UPd(Y)

~SPd(Y)

commutes. To see it is cartesian note that we can reinterpret Y as follows. A point y
of Y is the pointed G-orbit n~1n(y) with basepoint y. But by definition this is

(Y/G)xspd(r)UP«(Y).



490 LARRY SMITH

N.B. Since the group G is finite the orbit map n: Y -> Y/G is clopen. For if A is
open then it~hr{A) = \Jg^ogAis& union of open sets in Y, so open, whereas if A is
closed the finiteness of the union implies n-1n(A) is closed. This assures the continuity
of/and/. |

Remark 1. A 2-fold ramified covering TT:X\X is nothing but an involution
T-.1-+X.

To see this note that by (1-5) an involution defines a ramified double covering. On
the other hand switching the points in each fibre of a ramified double covering X \" X
defines an involution on X.

Remark 2. By (1-1) the quotient map p:UPd(Y)jrSPd(Y) is a rf-fold ramified
covering. Note that for any keN the ik-fold diagonal map Afc: Y ->• Pk(Y) induces a
cartesian square:

4 UPd( Y) - UPkd( Y)

SPd(Y) •SPkd(Y)

so that UPd( Y) \SPd( Y) may be regarded as a kd-iold ramified covering. Since
p: UPd( Y) \ SPd{ Y) is the ' universal example' of a d-fold ramified covering, this says
that by ' multiplying' all multiplicities by k we can regard any rf-fold covering as a
kd-fold ramified covering.

One can also examine the converse, namely when can one suitably redefine the
multiplicity function of a kd-fold ramified cover so as to obtain a d-fold ramified
covering. In this connection we have the useful:

Observation. Suppose given the diagram of solid arrows

X — VPd(X) • UPkd{X)

X * SPd{X) • SPkd(l)

defining X | X as a id-fold ramified covering. If the dotted arrows exist as functions,
then they are continuous.

Proof. SPd(l) <^SPkd(X)&ndUPd(X) ^ UPkd{X) have the subspace topology. |
This implies:

COROLLARY 1-6. Let Gx Y -> Y be an action of a finite group G. Ifd'eN is such that
d' | [G; Gy] for all yeY, where Gy is the isotropy group of y, then it is possible to define
multiplicities so as to make the orbit map Y -> Y/G into a d'-fold ramified covering. \
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For completeness we note:

PROPOSITION 1-7. If X j " X is a finite covering then assigning the multiplicity 1 to
every point of X makes it a ramified covering.

Proof. Only the continuity of/ff is at stake. But this is a local question, so it suffices
to look at the situation

where d is the number of sheets. However in this case continuity is clear. |
In the usual definition of a branched covering (4) one can compute the multiplicity

of points from 'local data'. This suggests that for a d-fold ramified cover X | X one
introduce the set

Xd:={xeX\\n-i(x)\=d}.
N.B. I t can well happen that Xd = 0. A d-fold ramified cover is called nice iff

Xd c l i s a dense subset. In this case we see that

is determined by its restriction to Xd. So to compute the multiplicity of a point xeX
we choose a net of points xxeX converging to n(x). Thenf,,(x^)eSPd(X) converges
to/ff(7r(a;)) which is a d-tuple of points of X containing x exactly /i(x) times.

The following theorem of Chernowski(l) shows that the above discussion applies
in the manifold situation.

THEOREM. / / a finite group G acts effectively on a smooth manifold Mn such that
Mn/G is again a manifold, then the branching set B <= Mn/G has codimension < n - 2.
In particular the set Mn/G — B = {Mn/G)d\ d:= \G\ is open and dense.

2. Transfer for ramified coverings: applications

Let n: X | X be a d-fold ramified covering. Then there is the map

Consider the composite
*„: X —^> SPd(X)^-> SP°°(X)

where i is the standard inclusion induced by a choice of basepoint xeX. By the theorem
of Dold and Thom (2) there is a weak homotopy equivalence

where K(A „,) denotes the Eilenberg-Mac Lane space for the graded abelian group A „,.
Thus the based homotopy class of n^ defines an element

and composing with the universal coefficient map

B*iX;SiiX-;Z)}
I

Horn (Bt{X;Z),Bt(X; 1)),
gives a map

Wll:#,(X;Z)->#»(*;Z),
which we call the transfer homomorphism for the ramified covering n: X \ X.
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PROPOSITION 2-1. The transfer construction is natural with respect to pull backs and
compositions of ramified coverings. |

PROPOSITION 2-2. If X \" X is a d-fold ramified covering then

is multiplication by d.

Proof. One simply notes that

X - SPd{X) •

SPd(X) •

commutes, where Ad is the d-fold diagonal map. The composition

&P=°(TT) • i •/„: X -> 8P»(X)
represents, by definition,

whereas

under the universal coefficient map goes to multiplication by d: 0*(X; I) -> 3*(X; Z),
which completes the proof. |

Remark 1. The above construction defines an integral homology transfer, and
hence by tensoring a rational homology transfer. To define a transfer for homology
with finite coefficients Z/n we replace the map

i:SPd(X) c->
with the map

in:SPd(X) > ]im{SPd(X)

A moment's reflection shows that

which leads to a transfer for Z/n homology.

Remark 2. If G is a group acting on X and X such that the ramified covering map
n: X | X is a G-map, then

nn:8ili(X;I)->8*{X;Z),
is a Z((?)-module homomorphism. This follows by simply noting that the map

fn:X-+SP*(X),
is Cr-equivariant.

COROLLARY 2-3. If X ^"X is a d-fold ramified cover and X is Q, resp. Z/n acyclic,
then X is Q acyclic, resp. Z/n acyclic provided deZ/n*.
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Proof. One has
S^X; k) -> 8*(X; k) -+ H+(X; k)

multiplication by d

where k is either Q or Z/n. But 3*(X; k) = 0, and the result follows. |

COROLLARY 2-4. (Conner Conjecture for finite groups): If a finite group G acts on a
rationally acyclic manifold M, then M/G is rationally acyclic. \

In a similar vein we have:

PROPOSITION 2-4. Let G be a finite group acting on the space Y with orbit map n:
Y-> Y/G structured as ad:= \G\ fold ramified covering. Then

is given by
7T,,.fl*(«)= S

Proof. The composite

Y -U- Y/G - ^ > SPd( Y)
is given by

regarded as an unordered d-tuple with repeats. Since

Y -* Y/G -• SPd( Y) -+ flfP»( Y)

represents n^.n* the result follows. |

COROLLARY 2-5. Let G be a finite group acting on a space Y with orbit map n: Y-> Y/G
structured as a d := \G\ fold ramified covering. Let k = Q or TL/n where (n, d) = 1. Then

n,:8.{Y;k)<>-+8^Y/G;k),
is an isomorphism.

Proof. By (2-2) n^n^.S^YfG;k) t> is multiplication by d while by (2-4) n^n^:
H( Y; k)G 2> is also multiplication by d. Since dek* the result follows. |
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