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Invariants for immersions with applications to covering spaces

By

LARRY SMmITH

Let M™ be a closed smooth m-dimensional manifold Mm é Rm+% an immersion,
and Mm = Mm a finite covering. The composite p: M™ = M C R™+% is then also
an immersion. What relations are there between ¢: M™ C R7+% and g: Mm C Rm+k ?
For example, if ¢ is an embedding, can @ be regularly homotopic to an embedding ?
(For a non-trivial covering 7, @ can never be an embedding on the nose.) The case
m = k seems particularly interesting in view of Whitney’s exhaustive study of
immersions in double dimension. Whitney showed that there is always an embedding

Mm g R2m, that is, an immersion without double points. For m even, the number
of double points of a generic representative, counted with appropriate orientations,
is in fact the only invariant of the regular homotopy class of an immersion
@: Mm C R2m, Furthermore, this is just half the Euler class of the normal bundle
y| M of the immersion. For m odd the only invariant of the regular homotopy
class of ¢ is the congruence class modulo. 2 of the number of double points of a
generic representative. For this invariant there is no simple characteristic class inter-
pretation in terms of the normal bundle y | M™ of ¢.

The requirement that ¢ be generic (in order to count the number of double points)
is incompatible with questions involving covering spaces. For m even however, the
Euler class interpretation allows questions involving covering spaces to be dealt
with. The situation for m odd is not so straight forward as the theorem of Brown [3]
shows.

Our first step is to introduce an invariant for immersions g: M™ C R2m+1-% that

is well adapted to the study of immersions of the form ¢: Mm |* Mm C_E R2m+1-k
where M™ |, M™ is a covering. The invariant is a homotopy class 4 () € oam+1
(ZX¥K(Z)2, m + 1 — k)), whose introduction is motivated by the work of Dupont [5].
For k = 1 the invariant is complete, that is:

Proposition. An immersion @: Mm C R2m is regularly homotopic fo an embedding
iff A(@) = 0enmem+1(ZK(Z[2,m)) =~ Z[2.

Remark. The group mom+1(ZK (%2, m)) == mom (R XK (Z/2,m)) is detected by the
Hurewicz map
b mom(QEK(Z)2,m)) = Hom (QEK(Z]2,m); Z[2).
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This leads to a cohomological interpretation of A(p) which will be explained elsewhere.

. P
We apply the invariant 4(g) to the study of immersions of the form M |= M C R?m,
where 7z is a finite covering, and we obtain

Proposition. Let M | M be an odd order covering of Z|2 homologyspheres ¢: Mm
C R2™ qn immersion ¢ = @ om: M CR2m. Then A(p) = A(p).

Naturally one can ask for an evaluation of 4(¢) in some familiar situations. For

14
immersions @: Sm "R P(m)C R2™ it is a consequence of [3] that A(@) =0 iff
m == 22 — 1. In contrast to Brown’s theorem the preceeding proposition shows that
in the odd order lens space situation

L4
@: 82+ 7 L(p; 2k + 1) CR*%+2 that A(3) = A(g).

For an odd dimensional s-manifold M™ there is always an immersion ¢: Y™ C R2m
with normal bundle » | M™ isomorphic to the tangent bundle. Using [5] we show
that for this immersion class @, 4 (@) == y1/2(M) mod 2, m == 1, 3, 7, wheie y1/2(HM)
is the Kervaire semi-characteristic of M.

Ich danke den Mitgliedern des Géttinger Topologieoberseminars fiir ihre Geduld
und Hilfe wihrend der Zeit, in der ich mit dieser Arbeit beschéaftigt war. Insbesondere
méchte ich Bob Switzer fiir seine hilfreichen Diskussionen danken.

1. The immersion invariant A(p)e moms1 (XK (Z/2, m)). Let M™ be a closed
smooth sm-dimensional manifold and @: Mm C R2m an immersion. We denote by
T(v| M) the Thom space of the normal bundle v M™ of the immersion ¢. Let

t: T(v] Mm)—~ K(Z/2,m)

represent the Z/2 cohomology Thom class of 7'(v] M). Fix an embedding
w: Mmc R2m+l and denote by ») M™ the normal bundle of y. According to
Whitney [10] there is a unique regular homotopy class of immersions Y™ C R3m+1,

L4
Therefore the stabilized immersion Mm C R2m ¢ R2m+1 is regularly homotopic to y
and we obtain a well defined homotopy class of bundle isomorphism [5] a: % =
y@ R} M and hence a well defined homotopy equivalence

T@: TOlM)—>Tv@R| M).
We define A(@) € ntam+1 (X K(Z/2, m)) to be the homotopy class of the composition

o

Semt1 Sy | My ES T @R M) > ET(v | M) 2 ZK(Z/2,m)
where ¢ is the Pontrjagin-Thom map associated to the embedding v, and @ is the
standard identification. According to Wu [11] there is a unique isotopy class of
embeddings M™ c R2m+1 and therefore A(g) does not depend on the choice of
the embedding- y.
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Lemma 1.1. With the notations preceeding:

1) The homotopy class of A{p) depends only on the regular homotopy class of @.
2) If ¢ is regularly homotopic to an embedding then
Ap) =0 mom1 (K (Z]2,m)).

Proof. Suppose that ¢', ¢': M™ C R?m are immersions with normal bundles
v, v"| Mm. A regular homotopy from ¢ to ¢ induces a bundle isomorphism
f: v =2+ | M. By Hirsch’s theorem [5] the homotopy class of f does not depend
on the choice of regular homotopy. A simple diagram chase then yields (1). To
prove (2), note from (1), we may suppose that ¢: M=™ C R?m is already an embed-
ding, in which case /() is represented by the suspension of the composite

s2m % T (y | M) S K (Z/2, m)
which is null homotopic since man (K(Z/2, m)) = 0. =

Remark. The homotopy of 2K (Z/2, m) has been studied in {2] where it is shown
that mame1 (2 K (Z/2,m)) =< Z/2.

Proposition 1.2. Let m be odd, m == 1,3,7, and w: 8™ C R2™ the Whitney im-
mersion, that is o has exactly one double point. Then A(w) == 0 € om+1( 2 K (Z/2, m)).

Proof. This will follow from (2.1) as soon as one knows that the normal bundle
of the Whitney iramersion is isomorphic to the tangent bundle of S™. To see this
we note the normal bundle » | 8™ of the Whitney immersion is stably trivial, as
one sees from the bundle equation

vERL 2y DTERxREmPR| 87,

From [1] it follows that (recall m odd, m =1, 3,7)
Ker {7t (BSO(m)) — 7t; (BSO)} =< Z/2

with generator 7 S™. Thus vy ~ R® | 8™ or v ~ v 8. Moreover, since
TR = R2m | 8™ and @7 R2m|Sm

both 7 and R™ occur as normal bundles of immersions 87 C R2m [6]. Since R™

occurs as the normal bundle of the canonical embedding, and « is not regularly
homotopic to an embedding, it follows that v~ 7| Sm. m

Suppose given immersions ¢;: M? C R2™, for ¢ = 1, 2. By forming the con-
nected sum of M, and M along a disk of regular points we obtain an immersion

g1 ¥ @2 My # Mo ( R2m

called the connected sum of ¢; and ;.

Proposition 1.3. In the notations preceeding
A1 F @2) = A(p1) + A(p2) € mom+1 (LK (22, m))

Proof. Let p: My % Mg — Myv Mz be the map induced by pinching the bound-
ary of the disk used to join M; to My in forming the connected sum to a point.
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Then the normal bundle of the immersion @1 % @2 is given by
vgp*(vlvvgle # Ms.
The remainder of the proof is a chase around the obvious diagram. g

Recall that according to Smale [8] the regular homotopy classes of immersions

?
8m C Rm+% are classified by their Smale invariant o € 774 (V41 (RM+14HE)), prov-
ided m == 1 == k. Thus (1.2) provides an isomorphism

Az 7w (Vi1 (REH)) o 7am+1 (2K (22, m)) .

It would be interesting to know if this isomorphism is induced by a map of some
kind.

Theorem 1.4. Let m == 1, 3,7 be odd and ¢: Mm C R2™ an immersion. Then
A(p) =0 mom11 (XK (Z[2, m))

tff @ is regularly homotopic to an embedding.

Proof. It remains to prove for a non-embedding ¢: M™ C R2™ that A(gp) =+ 0.
According to the analysis of Whitney [10], there are exactly two regular homotopy
classes of immersions in double dimension, one of which contains an embedding
@e: Mm c R2”, and one of which contains an immersion @;: Mm C R2m with a

single isolated double point. By change of viewpoint we may decompose ¢; as
@e # w Where w: 8™ C R2m is the Whitney immersion. Then by (1.3)

Agi) = A{ge) + d(w) e mam+1(ZK(Z[2, m))

and the result follows from (1.1) and (1.2). m
Remark. It is clear how to define an analogous invariant
@) emamt1 (ZEK (L2 m - 1 — k)

@
for immersions Mm C R2m+1-%  Those invariants are studied in the Dissertation of
R. Wiegmann.

2, w-Manifolds. Let ™ be an odd dimensional z-manifold with tangent bundle
7| M™. Being odd dimensional 7 has a cross-section so 7 2~ R @ 7} M™, and being
a s-manifold R@ 7 =~ R»+1 | M. Thus

TOTxTARDTTOAR . @ R™ = R2m | Ym.

Hence by Hirsch’s theorem [6] there is an immersion @: M™ C R2™ whose normal
bundle v satisfies » >~ 7| Mm™.
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Proposition 2.1. Let M™ be an odd dimensional s-manifold and @: M™ C R2m an
tmmersion with normal bundle vzt M. Assume m ==1,3,7. Then A(p) =
x172(M) € Z]2 where [T]

qiz(M):= > d&imH,(M;Z[2): mod 2
n=0(2)

28 the mod 2 Kervaire semi-characteristic.

The proof (2.1) requires a pair of preliminary lemmas and can then be completed
as in [5; Thm. 3.4].

Lemma 2.2. Let j: Sm+tlc YK(Z[2,m) be the inclusion of the botiom cell. For
m==1,3,7

7-* =0: T2m+1 (Sm+1) —> Tam+1 (2K(Z/2, m)) .
Proof. We make use of the fact that the non-zero element
k] € mom+1 (T K(Z/2, m)) == Z/2

is detected by Sqm+! in the mapping cone of k. (This fact is either well known or
mysterious depending on who you ask about it, so a proof is appended.) A routine
diagram chase then shows: If j, [f] == 0 for [f] € mom+1(S™*1) then

Sqm+l &= 0 : Hm+1(K f; Z[2) — H2m+2(K f; Z/2)
where Kf = Sm+l Ure2m+2 hence by [1]m+1=2,40r 8. m

Fact. [A] =0emen+1 (ZK(Z[2,m)) == Z/2 is detected by S¢m+! in the mapping
cone of k.

Proof. First of all we show that mapm1 (ZK (Z/2, m)) =2 Z/2. To this end let
o: ZK(Z/2,m)—K{(Z]2m +1)
classify the class 2% 3= 0e Hm+ (L K (Z/2, m); Z|2). Let
[ =00:QXK(Z/2,m)—QK(Z[2,m + 1) = K(Z/2,m)
and denote by L(Z/2, m) the fibre of f. Since f is a loop map the space L(Z/2, m)
is a loop space and the fibration f principal. The canonical map
y: K22, m)y > QXK (Z2,m)
satisfies
1 *(om) = im
and hence y is homotopic to a cross-section. Being principal, it follows that the
fibration f is a product fibration, and in particular there is a homotopy equivalence

(*) QIK(Z/2, m) = L(Z/2, m) X K(Z/2,m).
Therefore
(k) Tom+1 (Z K (22, m)) o2 mom (R ZK(Z[2, m)) o2 7am (L(Z[2, m)).
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The cobomology of K(Z/2, m) and 2XK(Z/2, m) are well known, and by con-
templating (%) one sees that L(Z/2, m) is 2m — 1 connected and Hap (L(Z[2, m); Z)
o~ Z/2. Whence by the Hurewicz theorem it follows that me,, (L(Z/2, m)) =~ Z/2.
From (**) it then follows that

om+1 (Z K (Z[2,m)) = Z/2.
It remains to show that the non-zero element [h] & 7ap41 (2 K(Z/2, m)) is detected
by S¢m+1 in the mapping cone Kk of . To this end we give an explicit description

of h. Let ¢: Smc K(Z/2, m) be the canonical inclusion representing the non-zero
element of 71, (K(Z/2, m)) == Z/2. Let

j: Smx §m 5 K (2)2,m) x K(Zj2, m) 2> K ()2, m)
where y is the H-space structure of K(Z/2, m). Let
hi=h(j): 82m+l = §m g Sm . YK (72, m)
be the Hopf construction on j. There is then the following diagram of cofibrations

Szml — §my gm " S (7/2,m) > Kh
yixi . I Vo

K (Z/2,m) % K (22, m) -> ZK (Z/2, m) > Khp
where hyu is the Hopf construction of y. The mapping cone K(hu) of hu is the
projective plane of K (Z/2, m). Thus K (hu) has the homotopy type of the classifying
space K(Z/2,m + 1) of K(Z/2,m) through dimension 3m—1. In particular if
im+1 € HP+L(K (hy); Z/2) is the class pulling back to Zip € H™(ZK(Z/2, m); Z/2),
where i, c H?(K(Z/2,m); Z/2) is the fundamental class, then Sgm+l{,.; =
i2,+1 == 0. By naturality applied to the above diagram we see that

Sgm+l = 0: Hm+l(Kh; Z/2) ~ H2m+2(Kh; Z/2)

as desired. m

Lemma 2.3. Suppose M™ is a m-manifold, o: M™ C R2™ an immersion with normal
bundle v| M, is odd, and m =1, 3,7. Then for any degree one map

d: §2m+l o ST (v | M)
the composition
sz & 31 | EL SR (Z)2, m)

represents A(@) € mom+1(EK(Z[2, m)). (Here t: T(v| M) — K(Z[2, m) represents the
Thom class.)

Proof. First of all note that » @ R o R®+1| M, so that v is classified by a map
f: Mm — V3 (Rm+1) = 8m. That is, there is a map f: M™ — 8™ so that f¥rgm =2 ».
Therefore the Thom class ¢ can be factored as follows:

t: T M) L D] 8m) S K22, m),
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where u represents the Thom class of 7. Let ¢: 82m+l — X7 (v | M) be the Pon-
trjagin-Thom collapse map for an embedding regularly homotopic to the stabilized
L4
immersion Mm C R2m c R2m+1, Then
e:=d —c: §2m+l » YT (y | Sm)

falls off the top cell, so there is a factorization

S2mel SS ST (v | M)y T (1) Sm)->X K (4[2,m)

S e

ST (] My thgm
where X T (v M)2™ is the 2m skeleton of 27T (v| M). Thus (X¢) - e is null homo-
topic by (2.2), whence [Xt-d]=[2t-cl=4d(¢p). m

Proof of 2.1. In view of (2.2) it is sufficient to show that for a conviently con-
structed degree one map

d: 82m+l > 3T (7| M)
that the composite
sem1 & 7 (v | M) S SK (L2, m)

represents y1/2 (M) € Z|2 € mopms1 (2 K (Z/2, m)). This however follows as in [5; Theo-
rem 3.4] and/or [9; pp. 106—107]. =m

3. 0dd order coverings and immersions.

Definition. M™ is called a Z[2 homology sphere iff Hi(M;Z/2) = 0 for 0 << i << m,
and Hy(M; Z[2) = Z[2 for i =0, m.

Example. Lens spaces with odd order fundamental group.

Theorem 3.1. Let M™ be an Z/2 homology sphere, Mm | = M™ an odd order covering
and @: M CR®™ an immersion. Set p =:q@-7n: M CR2™. Then for m == 1,3,7
A(@) = A(p). In particular ¢ is regularly homotopic to an immersion iff ¢ is also.

The following Lemma will be useful.

Lemma 3.2. Let X be a CW complex such that Hy(X; Z/2) =~ H, (Sm+1; Z/2)
m-+ 1248 Let i =0 H"1(ZK(Z[2,m); Z|2). Suppose given maps

seme1l, x & SR (72, m)
such that g* (i) == 0. Then [g-f] = 0 € napm+1(X K (Z/2, m)).
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Proof. Consider the diagram of cofibrings
l.x Kf

L VE
§em+1 5 XK ()2, m) — Kh

S2m+1

where b := ¢ - f and Kf, Kk are the mapping cones of f and & respectively. Assume
[R] == 0. Using naturality and the fact that & is detected by Sgm+1 in H*(Kh; Z/2)
we see that

Sqm+l: Hm+l(Kf; T)2) — H2m+2(Kf; Z2)

is non-zero. By [1] this is only possible for the excluded values m 4- 1 =2,4,8
whence [A]=0. =

Proof of Theorem 3.1. Let »| M, # = a*» | M be the normal bundles of the
immersions @: M CR?™ and ¢: M C R®m respectively. Choose an embedding
p: M c R2m+1 whose normal bundle is identified with » @ R| M. By general
position the composite

k23 Sl)
T S>McDv@R| M),
where Sp is the O-section, is regularly homotopic to an embedding
p: McD»@R| M).
The composite embedding
M cDy@R| M)cRem+l

is regularly homotopic to the stabilization 17 __& R2m c R2m+l. So we obtain inclusions
DFOR|,M)cDy @R} M)cRem+1.
Applying the Pontrjagin-Thom construction gives a commutative diagram
: »TFOR| M)
S2m+1 a!
SSTHLOR|M).
There is also the commutative diagram
T M) g

AN
| P

T M)

K(Z[2,m)
and combining these two diagrams gives the diagram

Sam+1 wT =ra o 3XK(Z[2,m).

KZT(WM)
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Thus 4(¢)=21-=2t-ZTn-nl-c. Let A:=2Tx-n!-c—dc where d is the
order of the covering, the difference being taken in the suspension structure. Let X
be the 2m skeleton of X7 (v} M). Since the covering M | M is of odd order d the
composite

S2m+1 _;) T(,, \L M) _? S2m+1

where ¢ is collapse onto the top cell, is null homotopie, so there is a factorization
by the Blakers-Massey theorem (see the formulation [4; p. 17] and below)

A gma L x e xre| ).
Since M is a Z/2 homology sphere, we have H, (X; Z/2) o~ H, (Sm+1; Z/2). Con-
sider

S2m TS K (Z)2,m)

+1 2 X
\ZT(vJ,.M)/

By the lemma [g - f] = 0, so by commutativity [2¢- 1] = 0. Thus
Alg) —d(p)=2t-E—Zt-¢
=2t-(XTn-al-c—oc)
=2t (ZTx-n!-c—dc)
=2t-1=0

because the group is a Z/2. =
Footnote. The composite
Sem+l — 2T (v | M) e S2m+1
is null homotopic. Let X be the 2m skeleton of T (v} M).
Claim. A factors through X. First of all there is a homotopy equivalence
h: Xv 82w+l > 3T (y| M).
To see this note
Sem+1 5 T (y |, M) > Seml
has degree 1. Let ¢: X c X7 (»| M) be the inclusion. There is the exact sequence

s Hy(X) S H(ZT (| M) S Hy(82m41) o5 -
xJ
that is split by ¢,. Then defining
hi=ive: Xv82mil > I (v ]| M)

we see b induces a homology isomorphism, so is a homotopy equivalence since
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everything in sight is simply connected. Thus by Blakers-Massey
(T (v | M) = 7i(X) @ 75 (82m+1)

for
1< 3m.

(X is m connected, 827+ js 2m connected).
Hence g, [A] =0 = A factors through X. =
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