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Let M m be a closed smooth m-dimensional manifold M m =C ~m+g an immersion, 
and ~ , n  ~ M m a finite covering. The composite ~ : 2]~ m ~ M C R m+~ is then also 
an immersion. Wha t  relations are there between ~: M m C ~m+~ and ~ : 2~m C R m+~ ? 
For  example, if io is an embedding, can ~0 be regularly homotopie to an embedding ? 
(For a non-trivial covering ~, ~ can never be an embedding on the nose.) The case 
m----k seems particularly interesting in view of Whitney's  exhaustive s tudy of 
immersions in double dimension. Whitney showed tha t  there is always an embedding 

M m c ~2m, tha t  is, an immersion without double points. For m even, the number  
of double points of a generic representative, counted with appropriate orientations, 
is in fact the only invariant  of the regular homotopy class of an immersion 
~: M m C ~2m. Furthermore,  this is just half the Euler class of the normal bundle 
v ~ M of the immersion. For m odd the only invariant  of the regular homotopy 
class of ~ is the congruence class modulo. 2 of the number of double points of a 
generic representative. For this invariant there is no simple characteristic class inter- 
pretat ion in terms of the normal bundle v ~ M m of ~. 

The requirement tha t  ~ be generic (in order to count the number  of double points) 
is incompatible with questions involving covering spaces. For m even however, the 
Euler  class interpretation allows questions involving covering spaces to be dealt 
with. The situation for m odd is not so straight forward as the theorem of Brown [3] 
shows. 

Our first step is to introduce an invariant for immersions ~0: M m C ~2m+l-g tha t  

is well adapted to the s tudy of immersions of the form ~0 : 21~m ~n M m C R 2m+l-g 
where _~m ~ M m is a covering. The invariant is a homotopy class A (~ )e  ~2m+1 
(ZgK (Z/2, m -k 1 - -  k)), whose introduction is mot ivated by  the work of Dupont  [5]. 
For k = 1 the invariant is complete, tha t  is: 

Proposition. A n  immersion q~: Mm C R~m is regularly homotopic to an embedding 
i l l  A (~) = 0 e ~2m+1 ( 2 K  (Z/2, m)) ~ Z/2. 

Remark. The group 7e2m+l (ZK(Z/2 ,  m)) ~- ~2m ( ~ ' K  (Z/2, m)) is detected by the 
Hurewicz map 

h: ~ 2 m ( ~ Z K ( Z / 2 ,  m)) --> H 2 m ( ~ Z K ( Z / 2 ,  m); Z/2). 
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This leads to a cohomological interpretation o / A  (q~) which will be explained elsewhere. 

We apply the invariant 2 (~) to the study of immersions of the form ~ ~,~ M C ~ m  
where ~ is a finite covering, and we obtain 

Proposition. Let .M ~ M be an odd order covering o / Z / 2  homologyspheres q~: M m 
C ~2m an immersion ~ = ~ o :~: .~; C R TM. Then zl (~) = A (q~). 

~qaturally one can ask for an evaluation of A (~) in some familiar situations. For 
r 

immersions ~: Sm]v:~[CP(m) C ~  TM it is a consequence of [3] that  2 ( ~ ) ~  0 iff 
m ~= 2q --  1. In contrast to Brown's theorem the preceeding proposition shows that  
in the odd order lens space situation 

: S 2k+1 ~% L(~9; 2 ]~ -~- 1) ~ ~4k+2 t h a t  zJ (~) = ~J (~). 

For an odd dimensional g-manifold M m there is always an immersion ~: M u C RSm 
with normal bundle ~ ~ M m isomorphic to the tangent bundle. Using [5] we show 
that  for this immersion class ~, zJ (~) ~-- %~/e (M) rood 2, m ~= 1, 3, 7, where Z~/~ (M) 
is the Kervaire semi-characteristic of M. 

Ich danke den Mitgliedern des GSttinger Topologieoberseminars ftir ihre Geduld 
und Hilfe w~hrend der Zeit, in der ieh mit dieser Arbeit besch~ftigt war. Insbesondere 
mSchte ich Bob Switzer ffir seine hilfreichen Diskussionen danken. 

1. The immersion invariant A(q~)e~2m+I(ZK(Z /2 ,  m)). Let M m be a closed 
smooth m-dimensional manifold and ~: M m C= ~2m an immersion. We denote by 
T ( v  ~ M)  the Thorn space of the normal bundle v ~ M m of the immersion ~. Let  

t: T ( v  ~ M m) --~ K(Z /2 ,  m) 

represent the Z/2 cohomology Thorn class of T ( v ~ M ) .  Fix an embedding 
y~: M m c ~2m+1, and denote by ~ ~ M m the normal bundle of ~fl. According to 
Whitney [10] there is a unique regular homotopy class of immersions M m C ~2m+1. 

Therefore the stabilized immersion M m C R TM c ~2m+I is regularly homotopic to yJ 
and we obtain a well defined homotopy class of bundle isomorphism [5] :r ~ :-~ 

O R ~ M and hence a well defined homotopy equivalence 

T(~): T ( ~ M ) - ~  T ( ~ |  U ~ M ) .  

We define A (~)e  ~2m+1 (2:K(Z/2, m)) to be the homotopy class of the composition 
0 

c T(~) m,  
s2m+~ _~ T(~ ~ M) - ~ ,.  t~' | ~ $ M) -~ %T(~ ~ ~ )  ~ Z K  (Z/2, m) 

where c is the Pontrjagin-Thom map associated to the embedding ~, and 0 is the 
standard identification. According to Wu [11] there is a unique isotopy class of 
embeddings M m c ~2m+1, and therefore z~ (~) does not  depend on the choice of 
the embedding y~. 
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Lemma 1.1. With the notations preceeding: 

1) The homotopy class o/ A (9) depends only on the regular homotopy class o/ 9. 

2) I / 9  is regularly homotopic to an embedding then 

A (9) = 0 e ~2m+1 (•K (Z/2, m)). 

P r o o f .  Suppose that  9', 9 " :  Mm C R 2m are immersions with normal bundles 
�9 ', v"~ M m. A regular homotopy from of' to 9"  induces a bundle isomorphism 
/: v' ~ v" ~ M. By Hirsch's theorem [5] the homotopy class of / does not depend 
on the choice of regular homotopy. A simple diagram chase then yields (1). To 
prove (2), note from (1), we may suppose that  9: Mm C R 2m is already an embed- 
ding, in which case z~ (9) is represented by the suspension of the composite 

$ 2  m c -+ T(~ M) t-~K(Z/2, m) 

which is null homotopic since rr2m(K(Z/2, m)) = O. �9 

R e m a r k .  The homotopy of ~:K(Z/2, m) has been studied in [2] where it is sho~-n 
that  3r2m+I(Z'K(Z/2, m)) ~- Z/2. 

Proposition 1.2. Let m be odd, m =~ 1, 3, 7, and o~: S m C ~2m the Whitney im- 
mersion, that is co has exactly one double point. Then A (r =4= 0 e rr2m+I ( X K  (Z/2, m)). 

P r o o f .  This will follow from (2.1) as soon as one knows that  the normal bundle 
of the Whitney immersion is isomorphic to the tangent bundle of Sm. To see this 
we note the normal bundle ~ ~ S m of the Whitney immersion is stably trivial, as 
one sees from the bundle equation 

~ | IR~+I ~. v |  | IR ~ IR"*m | R], S~. 

From [1] it follows that  (recall m odd, m ~= 1, 3, 7) 

Ker  {zrm (BSO (m)) --> 7rm (BSO)} ~--- Z/2 

with generator T ~ Sm. Thus v ~--- Rm ~ S m or v ~ ~ ~ S m. Moreover, since 

7; (~ ~m ~--- ~Um ~ Sm and 7; O T ~ ~2m ~ S m 

both ~ and ~m occur as normal bundles of immersions S m C R 2m [6]. Since R m 
occurs as the normal bundle of the canonical embedding, and o~ is not regularly 
homotopic to an embedding, it follows that  v ~ ~ ~ Sm. �9 

Suppose given immersions ~ :  M~ __C ~2rn, for i----1, 2. By forming the con- 
nected sum of M1 and M2 along a disk of regular points we obtain an immersion 

�9 9 1 # 9 2 :  M I # M 2 C R 2 m  

called the connected sum of 91 and 92. 

Proposition 1.3. In  the notations preceeding 

A (~1 # ~2) = A (91) + ~1 (92) z ~2m+I ( Z K  (Z/2, m)). 

P r o o f .  Let  p: M1 # M2---> M1v M2 be the map induced by pinching the bound- 
ary of the disk used to join M1 to M2 in forming the connected sum to a point. 
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Then the normal bundle of the immersion ~l @ ~2 is given by  

~ -~  p * ( ~ v  ~2)~ M~ ~# M2. 

The remainder of the proof is a chase ~round the obvious diagram. �9 

Recall tha t  according to Smale [8] the regular homotopy classes of immersions 

S m C Rm+~ are classified by  their Smale invariant ar e ~zm(Vm+~ (~m+~+k)), prov- 
ided m ~= 1 ~ k. Thus (1.2) provides an isomorphism 

A: ~m (Vm+l (Rum+x)) ~--- 7~2m+~ (XK (Z/2, m)). 

I t  would be interesting to know if this isomorphism is induced by  a map of some 
kind. 

Theorem 1.4. Let m =4= 1, 3, 7 be odd and q~ : M m C R2m an immersion. Then  

A (~) = 0 ~ ~2m+1 (ZK(Z/2 ,  m)) 

i l l  q~ is regularly homotopic to an embedding. 

P r o o f .  I t  remains to prove for a non-embedding T: M m C R2m tha t  A(~) ~= 0. 
According to the analysis of Whitney [10], there are exactly two regular homotopy 
classes of immersions in double dimension, one of which contains an embedding 
q~e: M s  c ~2m and on~ of which contains an immersion q~: M m C R2m with a 
single isolated double point. By  change of viewpoint we may  decompose ~ as 
~e 4~ co where co: S m C ~2m is the Whi tney immersion: Then by  (1.3) 

A (~)  ~- A (~e) -~ A (o~) e ~2m+1 (ZK(Z/2 ,  m)) 

and the result follows from (1.1) and (1.2). �9 

R e m a r k .  I t  is clear how to define an analogous invariant  

A (~) e ~2m+l (X~K(Z/2 m + 1 -- k)) 

r 
for immersions M m C_ ~2m+1-~. Those invariants are studied in the Dissertation of 
R. Wiegmann. 

2. ~-Manifolds. Let  M ra be an odd dimensional ~z-manifold with tangent  bundle 
T ~ M m. Being odd dimensional T has a cross-section so v ~ • O ~ ~ Mm, and being 
a u-manifold ~ G T ~ ~m+l ~ M. Thus 

Hence by  Hirsch's theorem [6] there is an immersion ~0: M m C ~2m whose normal 
bundle r satisfies ~ ~ z ~ M ~. 
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Proposition 2.1. Let M m be an odd dimensional ~t.mani]old and q~: M m C= R 2m an 
immersion with normal bundle ~_~ T~ M. Assume m ~ 1 , 3 , 7 .  Then A(cp) ~ 
Z1/2 (M) e 77/2 where [7] 

%1/~(M) :-:- ~, d;lmHn(M; 77/2):mod2 
n ~ 0(2) 

is the rood 2 Kervaire semi-characteristic. 

The proof (2.1) requires a pair of preliminary lemmas and can then be completed 
as in [5; Thin. 3.4]. 

Lemma 2.2. Let j: S m+l c ZK(77/2, m) be the inclusion o/ the bottom cell. For 
m ~ 1 , 3 , 7  

?'. ---- 0: ~2m+l (S re+l) -+ g2m+t (~:K (7]/2, m)). 

Proof .  We make use of the fact that  the non-zero element 

[h] e g2m+l (2:K (7]/2, m)) ~- 7//2 

is detected by Sqm+l in the mapping cone of h. (This fact is either well known or 
mysterious depending on who you ask about it, so a proof is appended.) A routine 
d ia~am chase then shows: I f  j ,  [/] =4= 0 for [f] ~ ~t2m+l (S re+l) then 

Sq m+l =4= 0 : Hm+I(K /; 7]/2) --> H2m+2 (K/;  77/2) 

where K / - ~  S m+l u f e  2m+2, hence by [1] m + 1 ---- 2, 4 or 8. �9 

F a c t .  [h] # 0 e ~2m+1(27K(7]/2, m))~_ 7//2 is detected by Sq m+l in the mapping 
cone of h. 

P roof .  First of all we show that  ~2m+I(ZKG/2,  m)) --~ 7]/2. To this end let 

a: ZK(7]/2, m) -+K(7]/2 m + 1) 

classify the class Z i  ~ 0 ~ H m+z (•K (7]/2, m) ; 7]/2). Let 

] : =  ~ ~ : [2ZK(7]/2, m) -->~K(77/2, m + 1) = K(7]/2, m) 

and denote by L (77/2, m) the fibre of ]. Since / is a loop map the space L (7]/2, m) 
is a loop space and the fibration / principal. The canonical map 

%: K(7]/2, m) ---> ~ z~, K (7]/2, m) 

satisfies 

X* l* (i~) = i,~ 

and hence Z is homotopic to a cross-section. Being principal, it follows that  the 
fibration I is a product fibration, and in particular there is a homotopy equivalence 

(,) ~ Z K  (7]/2, m) ~--- 11(7]/2, m) x K(7]/2, m) . 

Therefore 

(**) ~2m+l (27K (7]/2, m)) ~ zt2m (~ XK (7]/2, m)) ~ g2m (L (7]/2, m)). 

Ardfiv der Mathematik 36 2 9  
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The cohomology of K(I_/2, m) and T2ZK(7]/2, m) are well known, and by con- 
templating (.) one sees that  L(7]/2, m) is 2 m - - 1  connected and//2m(L(7//2, m); 7/) 
~ [ / 2 .  Whence by the Hurewicz theorem it follows that  ~2m(L(7//2, m))~--F/2. 
From (**) it  then follows that  

g2m+z (ZK(~[/2, m)) ~ ~[/2. 

I t  remains to show that  the non-zero element [h] ~ g2m+I(ZK(F/2, m)) is detected 
by Sq  m+l in the mapping cone K h  of h. To this end we give an explicit description 
of h. Let i: S m c K(7]/2, m) be the canonical inclusion representing the non-zero 
element of ~m(K(7]/2, m)) _~_ 2~/2. Let 

]: Sm•  Sm .~• K(7]/2, m) • K(7]/2, m) .~ K(7]/2, m) 

where/~ is the / / . space  structure of K(7]/2, m). Let 

h :---- h(]) :S  2m+1 = S m *Sm -+XK(7]/2, m) 

be the Hopf construction on ]. There is then the following diagram of cofibrations 

h 
S 2m+z = S m * S rn ) Z K  (7]/2, m) -+ K h  

K (Z/2, m) * K (i[/2, m) ~ Z K  (i[/2, m) --> Kh/~ 

where h# is the Hopf construction of/~. The mapping cone K(h/~) of h/~ is the 
projective plane of K(7]/2, m). Thus K(h/~) has the homotopy type of the classifying 
space K(-L/2, m + 1) of K(7]/2, m) through dimension 3m--1 .  In particular ff 
im+I e H m+l (K (h~); Z/2) is the class pulling back to Zim e H ra ( X K  (7]/2, m) ; F/2), 
where ime/ /m(K(7]/2,  m);l_/2) is the fundamental class, then Sqm+Zim+z = 
i i +  1 ~= 0. By naturality applied to the above diagram we see that  

Sq ra+z :4: 0: Hm+l(Kh; 7]/2)-->H~m+2(Kh; Z/2) 

as desired. �9 

Lemma 2.3. Suppose M m is a ~.mani/old, 9): Mm C •2m an immersion with normal 
bundle ~ ~ M, is odd, and m :4: 1, 3, 7. Then/or  any degree one map 

d: $2m+1 _+ I T  (,~ ~ M) 

the composition 

S 2m+1 M) -+ •K(Z/2,  m) 

represents A (q~) e Xsm+z (ZK(Z/2, m)). (//ere t: T (v $ M) --> K(Z/2, m) represents the 
Thorn class.) 

Proof .  First of all note that  v O ~ ~ Rm+l $ M, so that  v is classified by a map 
/: M m --> VI(R re+z) = Sm. That is, there is a m a p / :  M m --> S m so tha t /*zs~  --~ v. 
Therefore the Thorn class t can be factored as follows: 

t: T(~ ~ M) ~ T(~ ~ S'~) 2~ K(Z/2, m), 



Vol. 36, 1981 Invariants for immersions 451 

where u represents the Thorn class of T. Let c: S zm+: - ->ZT(v~ M) be the Pon- 
trjagin-Thom collapse map for an embedding regularly homotopic to the stabilized 

immersion M m C R2m c R 2m+1. Then 

e : -  d - - c :  S ~ m + : ~ Z T ( I , $ S  m) 

falls off the top cell, so there is a factorization 

e T f  ~ "a v '  r r O - 

2ST (v I~ M)-'n-->S m+ : 

where Z T ( ~  M) TM is the 2m skeleton of ZT (v~ .M) .  Thus ( Z t ) . e  is null homo- 
topic by (2.2), whence [2:t- d] = [Z t .  c] = A (~0). II 

P r o o f  o f  2.1. In view of (2.2) it is sufficient to show that  for a conviently con- 
structed degree one map 

d: $2~+: - > 2 : T ( ~  M) 

that  the composite 

S 2m+1 L I t  X T (v ~ M) ---> 2S K (Z/2, m) 

represents g:/2 (M) G Z/2 G ~t2m+: ( X K  (Z/2, m)). This however follows as in [5; Theo- 
rem 3.4] and/or [9; pp. 106--107]. �9 

3. Odd order eoverings and immersions. 

Definition. M ra is called a Z/2 homology sphere ill H~ (M; Z/2) ---- 0 /or  0 < i < m, 
and Hi (M; 77/2) ---- 77/2 /or i = 0, m. 

E x a m p l e .  Lens spaces with odd order fundamental group. 

Theorem 3.1. Let M m be an 2:/2 homology sphere, 2Vim ~n M m an odd order covering 
and q): M C gC2m an immersion. Set ~----: q~.~: ~ C g~2m. Then /or m ~ 1 , 3 , 7  
A (~) = A (q)). In  particular ~ is regularly homotopic to an immersion iff q) is also. 

The following Lemma will be useful. 

Lemma 3.2. Let X be a CW complex such that H .  (X; Z / 2 ) ~  H .  (Sin+:; Z/2) 
m ~ 1 ~ 2, 4, 8. Let i =# 0 ~ H m+: (2:K(Z/2, m); 7//2). Suppose given maps 

S 2m+: s X g--~ Zrg(z /2 ,  m) 

such that g* (i) ~= O. Then [g. ]] = 0 e ~Z2m+: (XK (Z/2, m)). 

29* 
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Proof .  Consider the diagram of cofibrings 

f S 2m+1 ~ X ~" K /  

S2m+ 1 h ZK(Z/2,  m) --~ Kh 

where h :=  g" / and K/, Kh are the mapping cones of / and h respectively. Assume 
[h] & 0. Using naturality and the fact that  h is detected by Sq m+l in H* (Kh; Z/2) 
we see that  

Sqm+l : H,~+I (K/; Z/2) ~ H2.~+~ ( K / ;  Z/2) 
is non-zero. By [1] this is only possible for the excluded values m + 1 = 2, 4, 8 
whence [h] = 0. [] 

P r o o f  of  T h e o r e m  3.1. Let v$ M, ~ = z*v~ 21~ be the normal bundles of the 
immersions ~: M C ~2m and ~: 2~ C •2m respectively. Choose an embedding 
V: M c R 2m+1 whose normal bundle is identified with v @ ~ M. By general 
position the composite 

So 
~-+  M c D ( ~ , ( ~  M), 

where So is the 0-section, is regularly homotopic to an embedding 

~: .~cD(v| RSM). 

The composite embedding 

is regularly homotopie to the stabilization 21~ =C R2m c ~2m+1.80 we obtain inclusions 

D (~ | R $ ~ )  c D (v | o~ $ M) c ~ + ~ .  

Applying the Pontrja~n-Thom construction gives a commutative diagTam 

/ T.~! S~m§ ~"~T(~ | R~ ~1. 

There is also the commutative diagram 

T ( ~  .~) - 
IT~ ~ffK(Z/2, m) 

T(v~ M) t 

and combining these two dia~ams gives the diagram 
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Thus A(~) = 27~-~ = I t - 2 ~ T ~ . ~ ! ' c .  Let  2 : =  I T ~ . ~ ! . c - -  dc where d is the 
order of the covering, the difference being taken in the suspension structure. Let  X 
be the 2m skeleton of I T ( v , ~  M). Since the covering ~ $  M is of odd order d the 
composite 

$2m+1 _~ T(v ~ M) -+ $2m+1 
2 q 

where q is collapse onto the top cell, is null homotopic, so there is a factorization 
by the-Blakers-Massey theorem (see the formulation [4; p. 17] and below) 

2 : S z m + l ~ X c I T ( ~ 4  M).  

Since 3 /  is a ~/2 homology sphere, we have H ,  (X; Z / 2 ) ~  H ,  (Sin+l; Z/2). Con- 
sider 

X .q 
S2m+l ; . ~ ~ ~ I K ( Z / 2 ,  m) 

T ( ) - 

By the lemma [g . / ]  = 0, so by  commutativity l i t .  2] = 0. Thus 

A (~) --  A (~0) = I f -  ~ -- I t .  c 

= I t .  ( I T z t . ~ ! . c - - c )  

= I t .  ( I T z ~ .  :~!. c - -  tic) 

= I t . 2 = 0  

because the group is a Z/2. �9 

Footnote. The composite 

S 2m+l ~ E T ( v  ~ M )  ~ S 2m+l 
q 

is null homotopic. Let  X be the 2m skeleton of IT(vJ~  M). 

Claim.  2 factors through X. First of all there is a homotopy equivalence 

h: X v $2~+1 -+ I T ( v  ~ M).  

To see this note 

~2m+l e --> I T  (~ ,~ M) q-~ S 2m+1 

has degree 1. Let  i: X c I T ( v ~  M) be the inclusion. There is the exact sequence 

i* q* 
�9 "" --+ Hi (X) ~ Hi (ST  (v ,~ M) ~ H~ (S2,.+1) _>... 

r 
cst 

tha t  is split by c, .  Then defining 

h : =  iv  c : X v  S 2m+1 --+IT(v~L M) 

we see h induces a homology isomorphism, so is a homotopy equivalence since 
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eve ry th ing  in sight  is s imply  connected.  Thus  b y  Blakers-Massey 

~ ( 2  T (~ ~ M)) ~ z~ (X) (~ ~ (S 2~§ 

for 

i ~ 3 m .  

(X is m connected,  S 2m+I is 2 m  connected) .  

Hence  q,  [~] ---- 0 ~ )l factors  t h rough  X.  �9 
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