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A GENERALIZATION OF
THE LEVINE-TRISTRAM LINK INVARIANT

LAWRENCE SMOLINSKY

ABSTRACT. Invariants to m-component links are defined and are shown to be
link cobordism invariants under certain conditions. Examples are given.

In knot and link theory there are certain signature invariants which deter-
mine up to torsion a knots cobordism class. These invariants were defined by
Tristram [11], Levine [7] and Milnor [8] and are known as the Levine-Tristram
or p-signatures. This paper investigates a generalization of the Levine-Tristram
signature. The invariant can be viewed as a function which assigns m-roots of
unity, one for each link component, to an integer. This invariant is a cobordism
invariant in the same sense the Levine-Tristram signature is. However, unlike
the Levine-Tristram signature, it is not a weak cobordism invariant. Our ap-
proach is geometric along the lines of O. Ja. Viro’s geometric interpretation of
the Levine-Tristram signature [12]. We discuss the relation of this invariant to
the invariant of boundary links defined by Cappell and Shaneson in [2]. Appli-
cations of this invariant to the computation of Casson-Gordon invariants has
been given in [9 and 10]. The author is grateful to J. Levine for many helpful
discussions and to the referee for pointing out two errors.

Definitions. An m component link of dimension # or an m-link is an ordered
collection of m disjoint smooth oriented submanifolds of §"*> , each of which
is homeomorphic to S”. We assume 7 > 2 and our links will always be ordered.
We will denote a link by (S"+2 ;L,,...,L,) when we wish to emphasize this
point. We also write L = L, UL,u---UL, to denote the link.

Every link bounds an oriented manifold called a Seifert surface. If an m-
link has an m component Seifert surface so that each component is bounded
by exactly one link component then the link is a boundary link.

A link is sliced if it bounds a disjoint union of disks in the (n + 3)-ball. A
link is weakly sliced if it bounds a disk with punctures. An analysis of the ob-
structions for a link to be weakly sliced can be carried out for high dimensional
links following the usual analysis for knots.
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206 LAWRENCE SMOLINSKY

THE LINK INVARIANT

Let .% be either the sphere S™> or the disk D"™* and suppose Vie..owV,

are codimension two submanifolds of . We require the V; to satisfy:

(1) V,nV; =0 for i #j;

(2) v(V,) c & is trivial,

(3) V,nov,=2aV,.
We denote such an ordered set of submanifolds (;V,, ..., V,,) and call this
collection a special m-tuple. H, (&% — (V,U---UV,)) = Z" by Alexander
duality, so let u, be the class of the meridian to V;. Note that an m-link

(S"+2 L,,...,L,) is aspecial m-tuple and here x, is the meridian of L,.
We will discuss finite abelian groups G=2, & - ® Z, but we really w1sh
to consider m-tuples of cyclic groups (Za] Y s ,Z m) The order is important

and we indicate it by the ordering of the summands of G. We also choose
preferred generators for G; let g; be the generator of Z .

Proposition 1. Let (#;V,,...,V,) be a special m-tuple and let G = Z, &

-® Z, be a finite abelian group with one summand of G correspondlng to
one submamfold of . Then there is a canonical G-manifold M that has the
Jfollowing properties:

1) MEM/|G=2.
2) M- n_l(U V) —(U;V,) is a regular covering space with group
G.
-1 . . .
(3) = (V) L V. is a regular covering space with group G/Z o~

i

Remark. Proposition 1 only requires % to be an (n+2)-manifold with H L)
=0 and the V] to satisfy (1), (2) and (3).

Proof. Let 4;: H, (# —UV,) — Z take the linking coefficient of a class in
H/ (¥ —UV,) with the fundamental class of Vj The map (4,,...,4,,):

m
H(¥ —UV,) — Z" is an isomorphism by Alexander duality. Let M be
the covering space which corresponds to the kernel of the composition,

In this composition /4 is the Hurewicz homomorphism and mod is the reduction
of the ith coordinate modulo a;. The covering translations are G and have
canonical generators arising from the meridians u, .

Framings of u(Vj) are given by elements of [VJ.,SI]. If fe [Vj,Sl] is a
framing define p Iz VJ — V(Vj) - Vj by pushing VJ according to the framing
f. Now,

1, ~ 1
[V;,S1 = Hom(H,(V)),H\(S"))
f— 1,
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and Hom(Hl(Vj) ,H, (Sl)) = Hom(H,(V)),Z) since S' is a meridian and is so
oriented. Aj([Sl],[Vj]) =1so0 f (a)= A;(p;.(a),[V;]) . We choose the framing
f so that A(=,ViDeops: H(V,) = Z is zero.

We now examine the induced cover on V% (B2 —0), where 0 is the origin
in B%. The composition,

modo (A, ..., A,): H(V,x (B* - 0)) - G

m
generates the covering. H\(V; x (B2 -0) ~ H((V)® Hl(B2 — 0) and the
induced maps on the summands are given by A ;i H, (32 -0) — Za, C G and
the composition

Hl(Vj) en ,...,,1,_._,1{“,...,,1,,.) AN Zal o ®Za,_, ®Za,+1 @ GBZa,,,'
The last group, the image of the composition, we denote H - The generator of
H, (B2 —0) is a meridian of Vis which does not link with any other V, ie.,
A H, (B2 x0) — Z, is zero. In the second map, H,(V)) — Za/ is zero by the
choice of framing. The induced (possibly disconnected) cover of V% (B2 -0
is therefore a product of the H -cover of VJ and the Za, cover of B2 —0.

We can now extend the cover of V,x (B2 —0) to a G-manifold by extending

the Zaj-cover of B? -0 to the standard Za, branched cover of (32 ,0).

(2, cover of B* — 0) x (H,-cover of V) — (B* —0) x ¥,
n n
(Za, -branched cover of Bz) x (H -cover of Vj) — B*x Vv,

Repeating the process of completing the covers of v(V,) -V, forall i yields
the G-manifold A . From the construction it is easy to see that M satisfies
conditions (1), (2), and (3). O
Remark. n_l(Vj) -V is the covering space with group H; gotten from the
linking numbers with the other components. In particular, if these are zero then
n_'(Vj) =V, x H; is a trivial cover.

The following lemma is well known.

Lemma 2. Let (S";L,,...,L,) bealinkwith n>1 or A(L,,L;) =0 forall
i and j. There exist m disjoint submanifolds in B""* s0 that (B"+3 Vs e
V) is a special m-tuple and C): ;0V,,...,0V )= (s"3 ;Ly,...,L,).

We can now associate G-manifolds to links. Let G = Za. O D Za,,, )

there is one summand to correspond to each component of alink L =L, U---U

L,cC "% Let (B"; V,,...,V,) be aspecial m-tuple and a(B™, V) =
(™2 ,L,). The canonical G-manifold over (B™3; V,,...,V,) isa G-mani-

fold associated to L.
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Denote by [ , ] the inner product of characters foragroup G. If M isa 2k
dimensional G-manifold we write Sign(G, M) for the G-signature of M, see
[1]. Let x be an irreducible character and V.= {veH (M;R)®C: g, (v) =
x(g)(r) forall g € G}. Then

[Sign(G, M), x] = signature(( , >|V1)

where ( , ) is the intersection pairing if k£ is even or i times the intersection
pairing if k is odd. Note that

vV, =

f (w; eigenspace of g,)

'DS

]
—

where w, = x(g;) is an a; th root of unity.

Definition. Suppose L isa 2g—1 dimensional m-linkand G = Z, O ®Z,
has g; as the generator of Z . Let W be a G-manifold assomated to the hnk
L and yx an irreducible character of G. We define

sig(L, x) = [Sign(G, W), x].
This invariant is well defined by

Theorem 3. If M, and M,, are G-manifolds associated to a link then
Sign(G, M) = Sign(G,M,,). Hence the link invariant is independent of the
choice of manifolds which span the link.

The proof of this theorem relies on a lemma and the additivity of the G-
signature.

Additivity Property (Proposition 7.1 in [1]). If X, Y and Z are G-manifolds
with 0X =0Y = Z then

Sign(G, XU, (-Y)) = Sign(G, X) — Sign(G,Y).

Lemma 4. If (qu+2 W,,...,W,) isaspecial m-tupleand My, is its canonical

G-manifold then Sign(G,M,,) =0.

Proof of Theorem 3. If M), and M,, are constructed from (D2q+2;V1 s V)

2 'm
and (D™, ... ,V,:,) respectively then M, U (—M,,) is the G-manifold
over (82, ¥, U(=V]),...,V, U(~V,,)) where M, is the G-manifold over
(SZ‘”I;LI,..., L) = 6(D2"+2;V1,..., v.)=a(D¥? v, ...,V). Note
that v(V,U (-¥})) c $?*? is trivial since the bundle is formed by glueing
v(S¥ ") ¢ v(V) to v(S¥ ) ¢ v(V/) and this glueing is specified by an
element of My—1(0 (2)) which is 0. The lemma and the additivity property
imply Sign(G,MV) = Sign(G,M,,). O

Proof of Lemma 4. We consider (qu+2 ;Wi, ..., W,) as arising via the Thom-
Pontryagin construction from regular values p; € S,.2 and a map f: ¥,
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V7, S?. One can then define a map,

Fimy,,, (\m/ S2) — R(G).

i=1

Suppose y € n2q+2(V;';1 SI.Z) and choose a g: R AN \/S2 so [g]=7 and g

has p; € S,.2 as regular values. We then get a special m-tuple (S2q+2 ; g_l(pl) ,
cee g_l(pm)) and M p the canonical G-manifold over this special m-tuple.
Then we define F by

F(y) = sign(G, M,).

If g, and g, both represent y then there is a homotopy H: DEAREYY g VS2
so that the p, € Sl.2 are regular values, H, = g, and H, = g, . Let M,
be the canonical G-manifold over (Sz"+2 x I ;H_l(pl) s oo s H _l(pm)). Since
OMy =M, U(-M,) we have by additivity, Sign(G,0M) = Sign(G,Mgo) -
Sign(G , M ) OMy is the boundary of a G-manifold and so has zero G-
signature. Therefore F is a well-defined function.

F is a homomorphism. If y, is represented by the map g, with correspond-
ing m-tuple (Sz"+2 ;P ,...,P ) and y, is represented by the map g, with cor-
responding m-tuple (Sz"+2 ;05 ...,0,,) then y +7, is represented by a map
h with corresponding m-tuple (S***#5***;P,uQ,,...,P,UQ, ). The con-
nected sum-is taken by removing disks d1s101nt from the u( .)’s and v(Q,)’s.
M, & $%*2 s a covering space away from |Jv(P ) so 7' (removed disk) is
a union of |G| disksin M ¢, - The same holds true for M, . Now M, = (M, -
|G| disks) U (M ¢, — |G| disks) where the union is taken along the boundary of the
disks. Since Sign(G, |G|disks) = 0, Sign(G, M, - disks) = Sign(G, M,). By
the additivity of the G-signature, Sign(G,M,) = Slgn(G M, )+Slgn(G Mgz).

We now show that F is the zero map. By the Hllton Milnor theorem,
n2q+2(\/ Sz) ~ @j(@ 7z2q+2(S’+1)) where the inner sum is over certain (j — 1)-
iterated Whitehead products [13]. Since 2g + 2 is even, the only summands
we must check are Ty +2(Sz‘”z). They are the only infinite summands and
R(G) has no torsion. If i : N Sl2 VeV S,i VeV an is the inclusion
into the kth spot then the maps, Ty +2(SZ‘”?') = Ty, 2V S2), are given by
B—w(,...,i,)op where w(i,,...,i,) is an iterated Whitehead product
of the i ; ’s with one Whitehead product corresponding to one summand inclu-
sion. Since it is only necessary to check the generators of 7, g +2(Sz‘”z), we

reduced the problem is showing F(w(i,, ...,i,)) = 0. We make the following
claim which we prove shortly.

Claim. The manifolds w(i, ... ,im)_'(p j) are products of spheres.

Since all the manifolds contained in the special m-tuple (Sz"+2 ;N ..., N,)

associated to w(i, ..., i,,) are products of spheres, so are the covering spaces
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of the N f ’s. The various fixed point sets of the canonical G-manifold over

§2a+2 ;N ,...,N ) are covers of the N.’s and so have no signature. In addi-
1 m J g

tion the normal bundles to the fixed point sets are trivial, so by the G-signature
theorem [1], Sign(G,M,)=0.

We now prove the claim. Suppose [f] € =,  (V Sz) and [glenm,  (V Sz)
so that f: (D""',0D™")y — (V§*,%) and g: (D™, 0D™"') = (\VS%,%)
have p as a regular value. We also assume f ' (p) and g_l(p) are a union of
products of spheres, or one or both may be a point.

We write S"t"! as D" x gp™*! Uaprst xapmt oD™! x D™, On each
section the Whitehead product [f,glen,, .., (VS")

(Dn+1 v aDm+1 ,(9Dn+1 x 3Dm+1) ﬂ', (Dn+1 n+1 VS

and
(8Dn+1 % Dm+1 ,8Dn+1 x 8Dm+1) ﬂ’. (Dm+l ,3Dm+1) E» (VSZ,*)
So [f,£]7'(p) = (for,)” (p)U(gom,,) " (p) . Now, (for,)™'(p) = m,"' (f ™' ())
=9oD™" x [ ( ) which is a umon of products of spheres. The same is true
of (gom,) ' (p)=0D""xg7'(p). O
THE LEVINE-TRISTRAM SIGNATURE AND LINK COBORDISM
Let L bea 29 — 1 dimensional m-link and Q = (w,, ... ,®,) an m-tuple

with @, an g;-root of unity. Suppose G = Za.®' ®Z - with g, the preferred
generator of Z o, and x(g) =
Definition. sig, (Q) = sig(L, xs) -

We pause to introduce new notation. If V' is a vectorspace with a G action
we write E, (V) for the eigenspace intersection ﬂ:’=l (w, eigenspace of g;).
If M isa G-manifold then we sometimes write E,(M) for E,(H,(M ;C)) or
E (H"(M;C)).

Lemma$5. Let Q be an m-tuple of roots of unity with w, a primitive a, th root of
unity. Let (D™, V,,...,V,) bea special m-tuple associated to a link ¥
and $(H,(D**™* = (V,U---UV,))) =G by ¢(u) =g If X = D— (U, V)
is the covering space induced by ¢ then

SlgL(Q) = SIgn(< ’ >|EQ(H,,+1(},C)))'

Proof. Note that if w, = 1 for all i then sig,(Q) = 0 and X c D** has
zero intersection matrix. The formula follows in this case.

Let M be the canonical G-manifold over our special m-tuple and consider
the Mayer-Vietoris sequence arising from

L) g
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Now, p~'(w(U,V))) =U,D*x ¥, and p~' (0v(U, ;) =U,S"' x V,. We get the
following equivariant exact sequence:

@ q+1S XV 69 q+1 69Hq+1(X)

q+l @HSXV

and the following exact sequence of eigenspace intersections,

@E H, (S'x7) @E H, (D’xV)®EH,,,

(X)
2 ~
— EqH,, (M) » @ EqH, (S x V).
i

Now, g;: D x I~/l — D*x f//l is rotation in D* and g S x IN/I - 8" x IN/I is
rotation in S’ so if v € EQH*(D2 X IN/,.) or EQH*(Sl X IN/I.) then g, (v) =v
but g, (v) = w,v. Since w, ;é 1 forall i, EQH,,‘(D2 X IN/i) and EQH*(S2 X f//,.)

are zero. Therefore EqGH . +1(X ) = EqH f +1(M) is an equivariant isomorphism

and the intersection s1gnatures are equal. O

Theorem 6. If L is a 49 + 1 dimensional m-link and o,(w) is the Levine-
Tristram signature for w a root of unity then
o,(w) =sig, (0, 0,0, ... ,0).

Proof. Supf)ose w # 1 is a primitive dth root of unity (if @ =1 then the result
is trivial). According to Viro [12] o, (w) may be computed in the following
manner. Take a Seifert surface U for L (possibly connected) and push its
interior into B*** to get U C B**? . Form N, the d-fold branched cyclic
cover of (Bz‘”z, U) and compute sign( , )| (V) = 0, ().

Let (B2qu2 ;V,,...,V,) be aspecial m-tuple for L and let N, be the d-
fold branched cyclic cover, i.e., N, is associated to the map

¢: H(B** —(V,u---uV,)) - Z,

by ¢(u))=1.
We show that sign( , >|E(U(Hq+.(Nu)) = sign( , >|E(U(Hq+.(Nv))‘ If x is the char-

acteron Z,, x(1) = w then

sign({ , Mg, u Hy o = [Sign(Z,,N,), x]
and

sign(( , >|Ew Hyo (M) ) = [Sign(Z,,N), x].
N, = ON,, is the branched cyclic cover of L and

Sign(Z,,N,) — Sign(Z,;, N,,) = Sign(Z,, N, U (—=Ny)).

We wish to see that Sign(Z,, N, U(—~N,,)) is zero. As in Lemma 4, we define a

U
map F: n2q+2(S )= R(Z,;).If ye n2q+2(S2) and p € S? then represent y by
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a map g which has a regular value at p. Let N o denote the d-fold branched
cyclic cover of (S2qu2 , g_l(p)) . Then F(y) =Sign(Z,,N,). By the argument

in Lemma 4, this map is a well-defined homomorphism. Since Ty, +2(SZ) is
torsion, F is zero. Therefore, Sign(Z,, N,U(-N,)) = 0 and we may compute
o,(w) as sign(( , >[Ew(Hq+.(Nu)))'

Let X, be the Z,-covering space of X where y: H, (B -, V) —

l

Z;" =Gby wy)=g,. Xw is the canonical G-manifold over (qu+2 sVis oo

V) with the branched points removed. By Lemma 13,
sign(( , )[EQ(HW(XW))) =sig, (Q) where Q= (w,...,w).

Let G5 Z , be the augmentation map. Since ¢o y = ¢ we get a hierarchy of
covering spaces:
X
7]
x )

G X,
z, [
X =B*? —(UW)
where 0 » K - G5 Z, — 0.
The transfer map, H™ (X 50 L H (X Y :O)F isa Z, equivariant isomor-
phism. Now, glgl._l €K forall i soif ve E, . ’wm)(H*(XW)) and v is fixed

by K then glgi_l(v) = wlwi_lv and so w, = w;. We now have

* K *
H'(x,;0)" =E,,  ,H X,;0),
n

n runs through the dth roots of unity. So E_(H"(X,;C)) £ Ey(H'(X,,;0))
is an isomorphism and the result follows since
IKl{aUB,[X,]) = (p"aUp”B,[X,])
for o, p€ H*'(X,;C). O
We now suppose that each a; is some power of a prime p and proceed to
show that sig, (€2) is then a cobordism invariant. We begin by showing that

sig; (€2) is an eigenspace signature for a cyclic a-fold cover (¢ = maxaq;) of
B***? _\Ju(¥,). This cover depends upon

Q= (e(27tc[ /ay)i 6’(2ncm/a,,,)i)

and is precisely given in the following lemma.
Lemma 7. Let G =Z, ®---®Z, , a; a power of a prime p. Let M be

the canonical G-manifold M — n_l(u V). Denote by r the maximal power to
occur among the a,, i.e., r = max; logp a;, and define r; by p' = ajp" . Suppose

p:G—Z, by p(I] Tjsf) = TZ%%" \where T generates Z, and T, generates
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Z,, . Denote by H the kernel of p, w = ™" and w; = X% — P’ The

projection MM /H induces an isomorphism

E,(M/H)—E,

. r .
wiar't | wicmp'm )

and
. ic ic
S1gL(w1 e, W

m ) = signature( , )|

E,i(Hy(M/H)) *
Proof. The transfer homomorphism yields an equivariant insomorphism

H'(M/H;C) — [H'(M;0)".
If ve E,,H"(M/H;C) then
T;p"(v) = p T v =w "y for all J.
For

.

y is fixed by H and y = p*v for some v in H*(M;C). Now, p*Tv =
I T;’fp*v where 3, bjcjp” = 1 mod p" . Therefore,

- p*T'l) _ szc,'b,pjp*v — (chjbjpj )p*'l) _ wlp*v. 0
J

Theorem 8. Suppose L**~' ¢ S**' is a slice m-link and that w,...,w, are
p"th roots of unity for p a prime.

(@) If ¢ > 1 then sig;(w,, ... ,w,)=0;

(b) If =1 then sig;(w,, ..., w,)<m—1.

Proof. Let (D?'q+2 ;D\, ...,D,) be a special m-tuple associated to L which
is constructed from slicing disks for L. By Lemmas 5 and 7 there is a p"-fold
cyclic cover X of X = D*** —Ju(D,) for which

sig, (W, ,w,, ... ,w,,) = signature( , )lE,,HqH(X;;C)'

By Proposition 1.4 of [4],

dimE, H,, (X;C) <dimH,, (X;Z,)

but H

q+1(X,Zp) =0 when g # 1. If g =1 then Proposition 1.5 of [4] yields

dim E, H, (X ;C) < dim H,(X; Z,) - 1

whichis m—-1. 0O
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BOUNDARY LINKS

In [2], Cappell and Shaneson define a link cobordism invariant on boundry
m-links (qu+1 ,qu“) for which m < g — 1. They compute boundary link
cobordism in terms of the homology surgery obstruction I'-groups. Boundary
link cobordism is

2q+2(Z[F 1-Z) @& mP
Im(L,,, (ZIF™D) ~ "

in the notation of [2]. Here F" is the free group on m letters. The cobordism
invariant is defined via the map

I,,,(ZIZ2™"~ Z)
Im(L,, ,(Z[Z™)

The elements of the I'-group are 3-tuples with one entry being the Z[F™] in-
tersection matrix of an F'-covering space associated to L. This cover is an
F™-cover of a particular special m-tuple associated to L. One constructs the
m-tuple by pushing the interior of a Seifert surface to L into the interior of
B**%_ Since every boundary link is boundary cobordant to a simple link, we
can assume that L is a simple boundary link. Let M(¢,, ... ,?,) be the image
in Z[Z™] of the intersection matrix. Cappell and Shaneson detect an infinite
family of 2-links which are not sliced but whose knot components are sliced by
the map L — signature M(w,w, ... ,w) for @ a prime root of unity and ¢
odd or L — signature iM(w,w, ...,w) if g is even. Under the assumption
that the Seifert surfaces are highly connected, the intersection from on a G
cover is given by the image of

q+l (B~ UV q+1 B_UVi) ®Z[F] Z[G].

The invariant sig, (w,, ...,®,,) is then the signature of M(w,,...,®w,) or
iM(w,,...,w,). Wenow see that signature(M(w,w, ...,w)) is the Levine-
Tristram signature.

On the restricted class of boundary links, the invariant sig, may be inter-
preted via a map

Ty, (ZIF" - Z) —

2q+2(Z[Z 1—2)

Z1Z"] —Fun(T",Z).

2q+2
If N(t,,...,t,) arises from L(Z[Z™]) then f,: T" — Z givenby f,(Q) =

signature N(Q) is a constant function since f, is continuous on
{Qe T"/det N(Q) # 0},

ie.,

signature N(Q) = signature N(1,1,...,1).
If N isa form from I'), +2(Z[Z ] = Z) then s is defined by s(N)(Q) =
signature(N(Q) & —N(1, 1 ,1)). By the above remark s is well defined.
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Also note that s(N): T" — Z is continuous (and therefore constant) on the
components of 7" — {Q e T"/det N(Q) = 0} .

We now give a formula for sig;, when L is a boundary link. If V,U---UV,,
is a boundary type Seifert surface for L, i.e., oV, = L,, then sig, may be
computed in terms of the Seifert matrix. Let S = [4, j] be the Seifert matrix
for JV,. S is a matrix of matrices with 4, being the /, x /; matrix of V,
(see [5] for details). One can form the special m-tuple by pushing the interior
of V; into the interior of B¥*? along isotopies arriving at IA/I The usual G-
cover of B*** — U IA/I can be decomposed into a union of balls: each ball is
qu+2-(path of the isotopies). The intersection pairing can then be computed.
This well-known Mayer-Vietoris argument combined with some matrix algebra
establishes the following formula.

Theorem 9. Suppose L is a 2q — 1 dimensional boundary m-link with Seifert
matrix S as above. Then

sig, (w w ) signature(i(] — W)(—SW_1 - ST) if q is even,
1 Y eens = _
Bt " signature((I — W)(—=SW ™' +8T)) ifq is odd,
where
[w,]
[w,] 0
W = ) , (w]=w]I

i IIXI,’ 4

(w,]
and w; is an a,th root of unity.

Examples. (1) Let K be a knot with g, (w) # 0. Form L a two component
parallel link by taking a parallel push off K of K so L = KUK'. The link
L is weakly sliced since L bounds a cylinder in $"*' and O’L(Sl) = 0. This
example was used in [10]. It demonstrates that sig, is not a weak cobordism
invariant but it relies upon the Levine-Tristram signature of a component.

(2) These examples consist of two component links for which the Levine-
Tristram signature of the link and each component is zero but sig, is nonzero.
Example (2a) is a 4k + 1 dimensional link and example (2b) is a 4k — 1 di-
mensional link.

(a) Consider F = (Z[F*1® Z[F*], ¢, u) where F* = free group (s,?), ¢
is- the bilinear form,

Tlst—tY =@ -t 1
1

1) = - - 1, -
95, 1) 1 t 1s(s—s 1)—(s—s 1)s t
and u(a,b) = at”'s(t —t "a+ab + bt 's(s —s~")b. The triple F is in
I, (Z[F 2] % Z) where & is the augmentation. According to Cappell and
Shaneson, .# can be associated to a boundary link L. The Levine-Tristram

signatures of the components arise from sign¢(1,7) and sign¢(n,1) for n a
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root of unity. However,
—1,3
—(n- 0 1
| |~m=n)" 1 - Ll
o(1,m) | o| and o, 1)=, (n—n"1)
Similarly the Levine-Tristram signature of L is sign¢(n,n) but

sonm = ol

Let w = e*™/® = 1/2+(v/3/2)i . The mixed invariant sign ¢(w, w*) = sign[} 3]
=2 s0 sigL(w,wz) =2.
(b) Consider & = (Z[F*1® Z[F*],$,u) where
-1 —1,2 —1,2 -1
Tls(t—tY = —YsT e -1
, 1) = _ — _ —
o5, 1) 1 tls(s—sT = (s—s s

and p(a,b) = atr™'s(t —t7")%a - ab + bt 's(s — s~ ")?b. The triple .F is in

Ly (ZIF 2] % Z) and is associated to boundary links, say one is L. One
can calculate the signatures as in (a) with the results: sig, (7,1) = sig,(1,7) =

sigL(nz, 17/)6 = 0 are the Levine-Tristram signatures and sigL(w,a)z) = 2 for
/4]
w=e .

THE CLASSICAL DIMENSION

In this section we depart from our previous approach and consider only
branched covers of B* instead of covers of surface complements. From our
perspective the case n = 1 differs from the high dimensional case since the
surfaces inside B* must intersect if the pairwise linking numbers are nonzero.
These intersections change the argument only slightly. The homology
H (B4 -UV,) isstill Z " . An intersection point of ¥, and V. hasa neighbor-
hood of the form (D2 x D* ;D2 x0UO0x D2) . The cover of the complement
(D*~0)x(D*~0) — (D*~0)x(D*-0) givenby (r,e” ,r,e'") — (r,e’ r,e'™")
can be completed to D* x D? by the same formula. We can then complete the
cover of B* - UV, to a branched cover B, — B*. The fixed point set of g

is V; and the fixed point set of gf gf is the finite set of points ¥, N V.. Other
group elements formed from the product of more than three generators do not
have fixed points. In order to see that Sign(G,B,,) is an invariant we choose
another set of surfaces V', construct the branched cover B, and observe that
Sign(G, B, U~-B,,,)) = 0. The G-signature is zero by the G-signature theorem;

the contribution from the isolated fixed points is given by
. r. s
Slgn(gj gj aBV U (_BVf))
1 I nr s
= . — (V. 1=V, nV. t{—)- — .
Since |V,n V)| =|V; nV/| =1k(L,,L;) with multiplicities, the contribution is
zero.
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Versions of this classical link invariant were defined by Cooper [3] and, in
essence, by Gilmer [4]. The author is grateful to P. Gilmer for alerting him
to these works. Cooper constructs Seifert surfaces to the link components with

spe

cial types of intersections, associates a Seifert type of pairing and proceeds

along lines similar to Tristram. Gilmer computes Casson-Gordon invariants of
3-manifolds described by surgery along L. One performs this calculation by

rep

lacing certain link components by cable knots. The Tristram signature of

this altered link is the invariant (see Theorem 3.6 of [4]).
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