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ON THE LOCALISATION SEQUENCE IN XK-THEORY
VICTOR SNAITH'

ABSTRACT. A description of the boundary map in Quillen’s localisation sequence is
given in terms of classifying spaces of categories. Using this description the low
dimensional part of the localisation sequence for a Dedekind domain is shown to
coincide with the algebraically defined Bass-Tate sequence.

0. Introduction. Let R be a ring with unit and § ¢ R a multiplicative set of
central, nonzero divisors. Let R be the localised ring. If H is the exact category of
finitely generated R-modules, M, having projective dimension < 1 and Mg =0
there is a localisation sequence [G-Q] (¢ > 0)

9 b
> K, ((Rs) > K(H) > K(R) > K,(Rg) > . . ...

The proof consists of utilising Quillen’s Theorem B [Q, §1] to realise a and b by
means of a categorical quasi-fibration. This gives nice categorical descriptions of a
and b but not of 3. Using the techniques of [G-Q], [Q] it is shown (in §1.5) how to
realise d and a by means of a categorical quasi-fibration. In §2 we apply this to
compute d when R is a Dedekind domain with quotient field Rg.

1. Let R be a ring, S C R is a multiplicative set of central nonzero divisors and
H is the category of finitely generated R-modules, M, of projective dimension < 1
such that Mg = 0.

Let G denote the following category. Its objects are surjections L —> M @ B
with L, B € P(R), the category of finitely generated projective R-modules, and
M e H. An arrow (L' 5> M’'® B’)—> (L -> M ©® B) is represented by an
equivalence class of diagrams

N

L' —M ®&B

I f

L' — M, ® B,

] o ]

L —> M®B

in which [] denotes a pullback square and in which the vertical arrows are direct
sums of arrows from H and P(R). Two such diagrams are equivalent if they are
isomorphic by an isomorphism which is the identity on M @ B and M’ @D B'.
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360 VICTOR SNAITH

Composition of two morphisms is accomplished by a pullback construction analo-
gous to the composition in Quillen’s Q-category [Q, §2].

The category, G, was introduced in [G-Q, p. 230] and there the following is
shown.

1.1. LeMMA. The functor h: (L —> M @ B) > M induces a homotopy equivalence
h: G QH.

Now consider the functor g: G — QPR given by g(L —-> M @® B) = (B). This
functor is fibred [G-Q). That is, the functor I': g~'(B) > B/g, (L > M @ B) =
(L -> M @ B, 1), has an adjoint, y. Therefore [Q, §1] I': g~ '(B)—> B/g is a
homotopy equivalence.

Let us fix B € P(R) and consider g ~!(B). It has objects (L —-> M @ B), and a
morphism (L' —> M’ & B) — (L —-> M & B) is an equivalence class of diagrams
as in the category G with the additional restriction that the endomorphisms of B in
the diagram should be the identity.

Define a second category & ~'(B) whose objects are pairs (L —-> M @ B, B—>
L) in which the first entry is an object of G, and the composition B>~ L —-> M &
B is the inclusion of the second summand. Morphisms are equivalence classes of
commutative diagrams of the following form.

L/?\

||/AJ;;\ ,TQ@IB
[ e
— T

L, M, ®B

M®B

Composition of morphisms is defined as in G and g~'(B).

1.2. PROPOSITION. The functor f: §~'(B) — g~ '(B) which forgets the morphism
B> L is a homotopy equivalence.

ProoF. Fix an object (L, —> M, @ B) in g~ 'B and choose a morphism B> L,
so that B>~ L, -> M, ® B is the inclusion of B. We will now show that
f/(Ly > M, ® B) is contractible. For an object of this category is represented by
a diagram of the following form.

L——> M®B

i T

L—>> M ®B

l 16691

L, —— M, ®B
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Hence the pullback square gives a natural morphism B>— L from B> L, and
B c M’ @& B. This gives a functor a: (f/L,—>M,® B)—>(1/L,—> M, ® B)
where 1: g ~'(B) — g ~!(B) is the identity functor. However forgetting B>—> L gives
a left inverse to a. Thus B(f/L, —-> M, ® B) must be contractible since it is a
factorin B(1/L, > M, ® B), and 1/L, - M, @ B has a final object.

Let I = Iso P(R) the category of finitely generated projective R-modules and the
isomorphisms. I acts on g ~'(0) by

n 0+7
A+(L 3 M)=(40L > M)

The category <{I,g~'(0)> has the same objects as g~'(0), and a morphism
(L > M) —> (L' —> M’) is an isomorphism class of diagrams of the following
form

Here A € P(R) and an isomorphism of diagrams of the above type is required on
A @ L to be the direct sum of an isomorphism on 4 and one on L.

1.3. PrOPOSITION. <{I, g~ '(0)) is contractible.

PrROOF. Direct sum makes {7, g~!(0)) into an H-space, which is contractible by
the proof of [G-Q, p. 227] as follows. The H-space is connected because
(L; > M) (i = 1, 2), maps to (L, ® L, ->> M, ® M,) by the inclusion of the ith
factor. Therefore we have only to show 7,(B<{I, g~ '(0)), 0) = 0 (i > 1). However
multiplication by two on these (abelian) homotopy groups is induced by the
functor F: (L > M) —> (L & L —-> M & M). The inclusion of the first summand
gives a natural transformation from a: 1 — F so that BF =~ 1. Hence 2x = x for
x € w(B{I, g~'(0)>, 0) and the group must be zero.

1.4. THEOREM. The square
%70 5 I°'%G

2 lg
* - QP(R)

is homotopy cartesian, where i(A, L —-> M) = (A, L - M).
PrOOF. By [Q, §1, Theorem 8] we must show that a morphism 0 “ B’—'iB

induces base change homotopy equivalences

I-.=1(0 1"“‘1—1 -1 g 1_"3‘1—1 -1 g
g7 (0) - I"g"(B) - I7 g (B)

when I ~'a*, 1 ~'8* are induced by a*, B*.
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By §1.2 we may replace g ~!(0) etc. by § ~!(0). Also there are equivalences

§710) 527 (B)5£70)
given by j,(L >> M) = (L ® B ->> M ® B) and

B
. L
fz( {/ = (coker j ——> M'").
\'—»neos

With this identification B*: §~'(B) — g~ !(B’) becomes the identity on §~'(0)
because B* is pullback by 8.

o

B>l —smep

i o e
B

>’-].—>L —> M®B

Furthermore a* is given by sending (L > M @ B)to (L > M ® B’ = M)
which becomes the action of B’ on g ~'(0). However by Proposition 1.3 and [G-Q,
p. 223] multiplication by B’ on I ~'§~1(0) =~ I ~'g~'(0) is a homotopy equivalence.

1.5. COROLLARY. There is a commutative diagram (q > 0)

7'«1+1(BI”18~1(0)) —l—’ Ty +1(BOH)

| |

- — K, Rg K, (H) — K (R) K,(Rg)— -

in which the row is the localisation sequence [G-Q, p. 233] and i is induced by the
Sfunctor i(A, L > M) = (M).

Proor. From the derivation of the localisation sequence [G-Q, pp. 229-233] we
see that the equivalences I ~'G ~ I "'QH ~ QH transform the functor g of §1.4
into the map inducing K, (H) — K (R). Hence Theorem 1.4 extends to the left the
(quasi-) fibration sequence BOQH — BQP(R) — BQP(R;) and the result follows
from the uniqueness, up to homotopy, of this extension.

1.6. REMARK. Observe that Theorem 1.4 amounts to the assertion that
BI ~'g71(0) equals (K,R/(im(K,H))) X BGLRy'.

2. Throughout this section set R = 4, a Dedekind domain, with quotient field
F = Rg. In this case devissage applied to K, H transforms the localisation sequence
into the form

9
... >KABSKFS @ K_(A/P)SK_A—>....
P A
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Therefore we have K, F = F* and K(A4/P) = Z(P), a copy of the integers. These
identifications yield a homomorphism
aF—-> @ Z(P). 2.1)
Piper A
We will apply §§1.4-1.5 to prove the following result (asserted by Quillen [Q, §7,
Remark 5.17]). This result did not appear in [G-Q] as originally promised in [Q,
ibid.].

2.2. THEOREM. The homomorphism of (2.1) is given by 9(x) = Zvp(x) where
x € F* and vp is the P-adic valuation.

ProOF. Firstly set J = Iso P(F). Now let us give a functor f: I ~'g~1(0) - J ~J
which is a homotopy equivalence on base-point components (both equal to
BGLF*). Having done this we will be able to use the description given in [G-Q, p.
224] of the loop in 7;(BGLF*) = F* corresponding to x € A C F and thereby
evaluate 9(x).

Assigning (Ker 7 < L) to (#: L —-> M) gives an equivalence of categories with
I-action between g~'(0) and the category, £, of admissible layers in P(4). The
functor h(L, < L,) = L, ® F is a homotopy equivalence of categories with I-ac-
tion, h: £ — J. This is because (L ® ,F)/h equals the category of A-lattices which
is called X(L ® , F) in [Q, §7, Remark 5.17] and is shown there to be contractible.
Hence I ~'g~!(0) - I ~'J is a homotopy equivalence.

Now consider 7 ~'J — J ~YJ induced by I — J. This induces a homology isomor-
phism on base-point components of the classifying spaces, by [G-Q, p. 222].
However direct sum makes BI ~'J and BJ ~'J into H-spaces (similarly base-point
components) and so the map on base-point components is a homotopy equiva-
lence.

Set f equal to the composite I “g~}(0) > I~/ > J V.

Now let x € 4. In g~ '(0) we have two morphisms

j: A—0 and i: TI—»O
I
u————»A/xA A—»0
[ x|
A — A/xA A— AlxA

resulting in a loop (l,,i !¢ j) € m(BI " 'g~1(0); (4,4 —> 0)). The functor f
takes this loop to the loop which is shown in [Q, §2, Theorem 1] to determine
[A/xA) € KeH = @ p,__ 4 Ko(A/P). By definition of the last (devissage) iso-
morphism [Q, §5, Corollary 1] 4/xA corresponds to Zvp(x) as required.
2.3. RemMaRk. The formula of §2.2 agrees with that of [M, p. 123] for the
algebraically defined coboundary in the localisation sequence of Bass and Tate.
Recall that the algebraically defined coboundary [M, p. 133]

3:K,F> @ (4/P)*= @ K, (4/P) (24)
P <paxid PpaxA
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is given by the tame symbol. If x, y € F* have Steinberg symbol {x, y} € K,F the
P-coordinate of 9{x, y} is given by [M, §11.5]

ax, ) = (~ 150y 9o, @5)

2.6. THEOREM. The homomorphism of (2.4) is equal to the tame symbol whose
P-coordinate is given by (2.5).

ProoF. Recall that K, F is generated by Steinberg symbols {x, y} (x,y € F*)
and that {, }: K, F ® K,F — K,F is equal to the topologically defined K-theory
product given by Loday [L, §2.2.3]. Furthermore the localisation sequence derived
in [G-Q, p. 233] is a sequence of left K, 4-modules under Loday’s product.

Also by naturality of the localisation sequence we can reduce to the local case.
In this case let » be the valuation associated to the maximal ideal. Let x, y € F*
satisfy »(x) = n, »(y) = m. Choose z € F* so that »(z) = 1. We may write x =
z"a,y = z"bwitha,b € A*.

We will write K, F additively and K,(4 / P) multiplicatively.

Since 0 = {z, 1 — z} the bilinearity and skew-symmetry of the symbol yields
0={z,z7'} + {z,1 — z} + {2z, —1}. Therefore {z,z} = {z, —1) and {2z, z} =
{—1,z}7' = (—1y®) ! = —1, by the K;4-module structure and Theorem 2.2.

Similarly we compute in general that

3(x.y) = 3(mn{z,z) + {a,y) — {b,x))
= (=1)™a"Mp "

which is the expression given in (2.5).
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