
EXACT MORSE FUNCTIONS IN THE CATEGORY TOP 

(IN DIMENSION >5) 
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The results in the categories PL and DIFF similar to those studied in this article are 
well known. The theory of handles developed by Morse, Sma!e, and Wallace in dimensions >5 
cannot be directly extended to the category TOP. Here, one needs a special proof of exis- 
tence of handle decompositions. In dimension >5 it is given in [i] (111.w in dimensions 

i, 2, 3 it follows from the fact that a topological manifold of such dimensions admits 
smoothing. In dimensions 4 and 5 hhere is the following result (cf. [2]): there exists a 
closed orientable TOP manifold of dimension 4 or 5 with w2 = 0 which does not admit handle 
decomposition. 

In the category TOP, a new notion of transversality is required (these are two of them) 
In this article the transversality of microbundles is used; in our case they are simply 

fittings (a submanifold of V is fitted if it has a neighborhood homeomorphic to V • Rn; the 
product structure on the neighborhood given by the homeomorphism under which V • {0} is sent 
to V is called a fitting). In the theorem on TOP microbundle transversality, in fact, di- 
mensional restrictions arise (for details on this matter see [i]). 

It is suggested in [i] how one can prove TOP theorems on the h- (s-)cobordism, but this 
suggestion is relatively easily realized in dimensions >6 (cf. [3]), while in dimension 6 
certain difficulties arise. They are expressed by the following question: let f: S ~ § ~W s 
he a locally flat embedding, and f is homotopic to zero in W, does there exist a locally 
flat disc D 2 in W with ~D 2 = f(S1)? The proof of this lemma allows to extend all results on 
exact Morse functions from the categories PL and DIFF (dimension >5) to the category TOP. 

Unless stated otherwise, all manifolds are assumed to be topological and all mappings 
continuous. 

I. Statements 

Lemma. Let f: S I § 8W n be a locally flat embedding (henceforth abbreviated to l.f.e.), 

n ~2, n # 4. If f is homotopic to zero in W, then there exists an l.f.e, g: (D 2, ~D 2) § 

(W, ~W) with gI~D2 z f. 

In dimension 4 the lemma does not hold as a disc can have self-intersections, even in 
the smooth case, but under the hypotheses of the lemma it is impossible, at the time of this 
writing, to say anything on the finiteness of the set of self-intersections. 

For a definition of topological Morse functions, see [3]. 

THEOREM io On the triad of manifolds (W n, Vo, VI), n~6, a1(W)=~l(Vo) : ~l(Vl) : I there 

exists an exact Morse function with the number of critical points of index I: 

N~ = ~ (H~ (W% Vo; ~ )  + g (tors H~_~ (W ~ , Vo; ~). 

THEOREM 2 (s-Cobordism). The triad of manifolds (W~,Vo, VO n>j6is homeomorphic to 

(VoXI,V o)<{0},V oX{l}) if and only if ~.(W n, V0) :0 and the Whitehead torsion ~(W, Vo) EWh(~I(W)] 

is equal to zero. 

THEOREM 3. On the triad of manifolds (Wn, Vo, VI), n>j@, ~I(W)=] there exists an exact 

Morse function with the number of critical points of index l: No = 1 if Vo = ~; No = 0 if 
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Vo # ~; NI = 0, Nn- I = 0, Nn = 0, if V~ # ~; N n = i, if VI = ~f, and 

N 2 ---- V (zq (W ~, Vo)), 
N3 = t~ (:z~ (W ~, Vo) ) fi- ~t (H 3 (W ~, Vo; Z)) - -  V (Hz (W ~, V.: Q)), 

Nn-3 = ~ (J'['2 ( Wn' V1)) "+" ~ (Hn-3 ( Wn' Vo; Q)) - -  ~ ( Hn-2 ( Wn' Vo; Q)) 2f- ~ (tors H~_4 (W ~, Vo; Z)), 

N~_2 = ~ (u~ (WL V0), 

N;, = ~. (Hx (W n, Vo; Z)) + )~ (tots H~_, (W", Vo; Z), 
4 ~ X ~ n - - 4 .  

To prove Theorems i, 2, 3, the following facts are necessary: the existence of handle 
decompositions (cf. [i]), general positioning [ibidem], elimination of handles of index 0 
and i, rearrangement of handles of different indices [3] (Th. 3.4), cancellation of a pair 
of handles with geometrical index of intersection • [3] (Th. 4.6), the Whitney lemma; addi- 
tion of handles [4] -- the argument is exactly like in the PL case because a locally flat 
interval has a fitting (cf. [5]), and the middle and co-middle spheres have fittings in- 
herited from the handle; and, for Theorem 2, the theory of the simple homotopy type ([i], 
III. 4). In the presence of all these facts, the proofs of Theorems 1-3 become repetitions 
of the corresponding proofs in the smooth or piecewise-linear case. 

In the above list, only elimination of handles of index 1 (index 0 is done exactly like 
in the category PL, cf. [4]) and the Whitney lemma remain unproved, but they easily follow 
from the lemma and from [i], [6]. 

2. Proofs. The proof of the lemma for n = 2 is obvious, for n = 3 it is Den's lemma. 
So let n~ 5, h a homotopy of f to 0, h: D 2 § W and hloo~_~[; C(aW) =im(q), where q: ~W x 

[0, i) § (W, ~W) is a collaring of ~W in W. One can assume that h is an l.f.e, in C(3W), 

i.e., there exists a discD~cD~and h is an l.f.e, on D2~3~and h(D~)~C(OW)=~. This can 

be achieved by the procedure of pushing onto the collaring, the fact that h is an l.f.e, in 

C(3W) follows from f being an l.f.e. 

C o n s i d e r  CI(OW)= q O W X  O, , a f i n i t e  c o v e r i n g  o f  h(D~) by  maps (~i, Ui), i =  1,s, s u c h  
t h a t  : 

i. ~-Ui-+A ~, where A n is the n-dimensional standard simplex. 

2. U~f~OW= ~.  

3. CI (0W) U q071 (A~) ----U ~ h(DZ), A~ is a simplex homotetic to the standard one with the 

homotety center at the baricenter of A n and coefficient y < I; p a matrix on W; d the stan- 

An ~ dard metric on , ~, ~ are such that 

for each i (~ and D do exist since ~i are mappings of compacta and there are finitely many 

of them). 

The proof will be conducted by induction, correcting h from one map to another. The 

base of induction is the neighborhood CI(3W) -- C(3W). 

Suppose that there exists a mapping hk: D 2 § (W, ~W) with the properties: hhl0o,~[, 

h k i s  an 1 . f . e .  i n  a. n e i g h b o r h o o d  V k o f  t h e  c l o s e d  s e t  ~h  = C I ( O W )  U ~?I(A~) , i . e . ,  on 
i=l 

h ~ l ( V k )  ( h e r e a f t e r ,  s u c h  r e m a r k s  w i l l  be  o m i t t e d ) ,  and hk(D2)  ~ U. 

We will show that then there exists hk+ I which is an l.f.e, in Vk+ I and satisfying all 

inductive hypotheses. 
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0 

P u t  E=Y)hNqoF$,(0A~) , E i s  c l o s e d ,  Un(E)~-F~_~(A")NVh, w h e r e  U (E) i s  an n - n e i g h b o r h o o d  
B 

- I ( U  (E))  i s  o p e n  i n  D 2, t h e r e  e x i s t s  a c o m p a c t  p o l y h e d r o n  N s u c h  of the set E in W. Since h k n 
0 

that hk -x (E) c:: N ~ N ~ hF l (U n (E)). 

Then, by the theorem on straightening 1.f.e. (see [i], III, App. B and [7]), there 

exists an isotopy e t : ~ -+ ~ such that ~ ~ [0, I], e0=id, e~o~+IOh~ lis piecewise linear, d (e h (x), et, (x)) ~ 8 

for all t~,t~[0, l] and any given e, and the support of e t lies in the c-neighborhood of ~e+l(N). 

Choose ~ small enough in such a way that: 

1.  U~ (%+1 (N)) ~ %+1 (Uo (E)). 

2. h-FLeF (E) ~ l~ 

Pk 3. ~ . ~ . e  < -@- , 

w h e r e  0 k = P ( h k ( D 2 ) ,  W ~  U) and e t 
o 

the isotopy taken from s by means of ~i which is the 

identity outside Uk+ ~. 

Then p (eloh h (D~), W~U) >-~- p~ , i.e. , eloh h (D 2) ~ U, e t is the identity outside some neigh- 

borhood W\\V k and cpk+loexohh is piecewise-linear in some neighborhood of ~k+l (E), say 

Um (q~k+L (E))  ~ A ~ 

~ de [  

Since  q)k+lohh (h k = e~ohh)is PL on N, t h e r e  e x i s t s  a s e t  o f  2 - s i m p l e x e s  T . ,  l =  1, m, N__ U Ti ,  
1 

such that ~k+iohh is linear on each simplex. 

It is e a s i l y  s e e n  t h a t  h k s a t i s f i e s  a l l  i n d u c t i o n  h y p o t h e s e s  f o r  h k .  

def 
n n - - 1  Let~r-+~, ?r+l~'~r(A~=?An) and Ar =?~A ; Sr=oq)h N q~k+l(A~)(S~+l~S~) It is clear that 

oo 

['] Sr = E , t h e n  t h e r e  e x i s t s  r s u c h  t h a t  S r ~  Un~(E), w h e r e  Un~(E) ~ q0~, (Um (~Pk+l (E))). 

~ - - 1  - -1  o n o n 
We will construct a mapping h*:hk o~k+j (Ar)-+Ar ; to this end, we triangulate hk or%+l(A~) =def 

in such a way that each simplex o in the triangulation of the open set G would satisfy the 
following conditionsz 

1 diam (~) < ph 
" 6 ~ "  

2 .  E i t h e r  (~ N I U T ~ )  --~ ~ o r I ~ T  ~ f o r  s o m e  i ,  

3. There exist LI, Z~CR such that L1.p(a, OG)~diam(o)~)%.p(o, OG ). 

O n 

We define the mapping h*:G-+Ar by the formula: 

i 

x is a vertex of the triangulationof G 

x = ~_~ %ixi, x i are vertices of the simplex (Y ~ x. 
i 

By construction h*[N~k+lo~hlN. 

Bring h* to a general position on in without changing it on N in such a way that 
r 

Ph (where h* is h* brought to a general position). d (h* (x), h~ (x)) < - ~ -  1 
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Put 

(x), x C DZ\\G, 

I ~-$_,h; (x), x c ~, 

(V -' , = �9 ( A ~ + t )  - then hk+~loo~- f since ~FI, (A~) NOW f~; hk+ I is an l.f e. on h~gk+1(Ar)) U Un, (E) U ~-$I ~ 

on the first component by virtue of the fact that h k was changed there by means of the iso- 

tropy e and an isotropy preserves the property of being an l.f.e., on the second component 
t 

for the same reasons, and on the third by construction (an embedding of a two-dimensional 

PL-manifold in a five-dimensional one is an l.f.e, if it is piecewise-linear, cf. [4]). It 

is easy to verify the continuity of hk+ I which can be violated only on ~G, but there hk+ I is 

continuous since diam o § 0 as p(o, ~G) § 0. Furthermore, 

p (h~ (~), h~+~ (~)) ~ p (h~ (~), ~ (x)) + ~ ~ (~), h~+, (~)) ~ ~ + 

~ , p k  ~ �9 P~ P~ Ph 7 + ~ d  (~k+~oG (x), h, (x)) ~< --3-- + ~ (d (~k+,ohh (x), h* (x)) + d (h* (x), h~ (x))) ~ -5-  + ~ + -~-  : -~- Pk. 

2 
Therefore, Pk+l>~Ph, i.e., G+I(D 2) c U . Thus, one can take the above union as Vk+ I and 

complete the induction. 

Thus, h is an l.f.e, in U and coincides with f on the boundary and, since h (D2)~ U 
S S 

by induction, h is the required embedding. 
s 

We will show that the lemma implies the theorem on elimination of handles of index i 
in dimension~5 and the Whitney lemma, in the same dimensions, for topological manifolds. 

The proof of the first fact is similar to the PL-case (cf. [4]), only instead of poly- 
gons e and B one should take fitted embeddings of intervals whose existence follows from 
[5]; instead of the theorem on the general position, for finding a locally flat disc with 
boundary a Y ~, one has to apply the lemma; by virtue of theorems in [6], on the locally flat 
disc there exists a fitting coinciding with the fitting on the boundary. The rest of the 
proof is done like in the piecewise-linear case (cf. [4]) with the appropriate replacement of 
the PL general position by the TOP general position (cf. [i]). To prove the Whitney lemma, 
one should use the argument in [i] (III. 3), where, instead of referring to the techniques 
of Newman, Gluck, and Homma, one should make use of the lemma. In view of the remarks made 
in the beginning of the article, this completes the proof of Theorems i and 2. The proof of 
Theorem 3 is a repetition of the corresponding smooth version (cf. [8]), except that for the 
choice of fitted generators of ~2(W, Vo) and w2(W, VI) we apply the lemma and then a theorem 
from [6]. 
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REPRESENTATION OF AN INFINITELY DIFFERENTIABLE 

FUNCTION AS A SUM OF TWO FUNCTIONS BELONGING 

TO QUASIANALYTIC CLASSES 

V. G. Khryptun and B. S. Sikora UDC 517.5 

In this article a theorem of Mandelbrojt [i] on the representation of an infinitely 
differentiable function of one independent variable as a sum of two functions belonging to 
quasianalytic classes is carried over to a function f(x), x = (x~, x2, ..., x n) of several 
real variables which is infinitely differentiable in an arbitrary closed bounded oriented 
n-dimensional cube D(xo, 26) with center at xo (x~, o o = x2, ..., Xn) and with edge at length 

2~. We prove the following theorem, which improves a result in [2]. 

THEOREM. A function f(x) which is infinitely differentiable in a closed bounded n- 
dimensional cube is the sum of two functions which belong to elementary quasianalytic classes 
of functions. 

A class Cn(Mi(q)} of functions f(x) which are infinitely differentiable in D(xo, 26) and 

which satisfy the inequalities 

I D~[ (x)[ < C*M~ (k~) M 2 (k2) ... M,~ (k.), (1) 

where  k = k 1 n t- k z - j -  ... -}- kn,  D~ = (O/Oxl)kl (O/Ox2) k2 ...  (O/Ox~) k" , t h e  c o n s t a n t  C d e p e n d s  on f (x) , and  

t h e  s e q u e n c e s  M . ( q ) ,  i = 1 ,  2 ,  . . . ,  n ,  q = 0 ,  1 ,  2 ,  . . . ,  o f  p o s i t i v e  n u m b e r s  a r e  t h e  same 
1 

for all functions in the class, is called an elementary quasianalytic class if the sequences 
Mi(q) are logarithmically convex with respect to q and satisfy the conditions 

~4~ (q - -  1) 
~di  (q) = ~-  oo,  i = 1, 2 . . . . .  n.  ( 2 )  

The P p o o f  s p l i t s  i n t o  two p a r t s :  1) we e x p a n d  f ( x )  i n t o  a s e r i e s  o f  C h e b y s h e v  p o l y -  
n o m i a l s  and  o b t a i n  b o u n d s  f o r  t h e  p a r t i a l  d e r i v a t i v e s  o f  t h e  t e r m s  o f  t h e  s e r i e s ;  2) w i t h  
t h e  h e l p  o f  a u x i l i a r y  f u n c t i o n s  and  s e q u e n c e s  c o n s t r u c t e d  i n  [2] (pp .  2 9 5 - 2 9 6 ) ,  we b r e a k  up 
t h e  s e r i e s  r e p r e s e n t i n g  f ( x )  i n t o  a sum o f  two s e r i e s ,  f l ( x )  and  f z ( x ) ,  and show t h a t  f l ( x )  
and  f 2 ( x )  b e l o n g  to  e l e m e n t a r y  q u a s i a n a l y t i c  c l a s s e s  o f  f u n c t i o n s .  

1 .  S e r i e s  o f  C h e b y s h e v  P o l y n o m i a l s .  L e t  e .  be  t h e  u n i t  c o o r d i n a t e  v e c t o r s  i n  n -  
J 

d i m e n s i o n a l  s p a c e ,  l e t  l i be  an edge  o f  t h e  cube  D ( xo ,  26) i s s u i n g  f rom one  o f  t h e  v e r t i c e s ,  

l e t  u.3, i be  t h e  d i r e c t i o n  c o s i n e s  of  ; i ,  l e t  x = ( x l ,  x 2 ,  . . . ,  x n) and t = ( t ~ ,  t 2 ,  . . . ,  t n ) .  

The m a p p i n g  t = v ( x )  z ( v ~ ( x ) ,  v 2 ( x ) ,  . . . ,  V n ( X ) ) ,  w h i c h  maps t h e  cube  D(xo ,  26) o n t o  t h e  

cube  D (0, 2) = {t, - -  l ~ t  i ~  1, i =  1,2 . . . . .  n} i s  d e f i n e d  by t i = v ~ ( x ) ~ [ ( x l - x ? ) u i , l - j -  ... + ( x n - - x ~ ) u l .  n]/6, 

i = 1 ,  2 . . . . .  n ,  and t h e  i n v e r s e  o f  v ,  x = v - ~ ( t ) - - ( v F ' ( t  ), v[ l ( t )  . . . . .  v21(O ) , w h i c h  maps B ( 0 ,  2) 

o n t o  D(xo ,  2 6 ) ,  i s  g i v e n  by  x i = v F l ( t ) - - x ~ + 6 ( t l u , . ~ +  ... +t=u..~), i =  1 , 2 , . . . , n .  L e t  Tk(Y ) = c o s ( k  

a r c c o s y )  by  C h e b y s h e v  p o l y n o m i a l s ,  l e t  v = ( ~ ,  ~2 ,  ' ' - ,  V n ) ,  X = 2 - q ,  w h e r e  q i s  t h e  n u m b e r  

I v a n o - F r a n k o v s k  P e d a g o g i c  I n s t i t u t e .  T r a n s l a t e d  f rom U k r a i n s k i i  M a t e m a t i c h e s k i i  Z h u r n a l ,  
V o l .  35,  No. 6,  N o v e m b e r - D e c e m b e r ,  1983 .  O r i g i n a l  a r t i c l e  s u b m i t t e d  March 9,  1981 .  
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