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Introduction 

In a recent paper [1] ATIYAH and  HIRZEBRUCH have proved a formula 
(3.2 of '  [1]) for differentiable manifolds which can be formulated for topo- 
logical manifolds, and they ask the question whether the formula is valid 
for such manifolds. I t  is the point of the present note to establish the formula 
for topological manifolds and to show how this implies their result. Actually 
we generalize their formula somewhat to obtain one for manifolds with 
boundary. 

We work over a fixed prime field Zq and all homology and cohomology 
groups which occur in the note have Zq as coefficient group. 2 will denote 
a cohomology automorphism over Zq in the sense of [1]. If X is a topological 
manifold (or a space in which there is a Poincar6 duality given by cup product), 
then sueh a cohomology automorphism 2 corresponds to a class Wu (2, X) E 
H*(X) (see (IA) below). The main result, Theorem I, which is stated and 
proved in w asserts t h a t  in a certain sense Wu (2 "1, X) gives a correction 
term for the non-commutativity of 2 with the 'Gysin  homomorphism / . :  
H*(Y)--.H*(X) corresponding to a continuous map / of one such space Y 
to another X. 

In w we use the diagonal map X-+X• in order to express Wu(2, X) 
in terms of cohomology properties o / X  • X (see Theorem n). This was the 
technique originally introduced by Wo [4] t o  study characteristic classes, 
and our treatment follows closely that  of MILNOR [2]. These results are used m 
w 3, when X is assumed to have a differentiable structure, to prove Theorem I n  
which asserts that  Wu(2, X) is essentially a characteristic class of the 
tangent bundle of X. This result was also proved by ATIYAH-HIRZEBI~UCH 
(see (17) of w of [1]) by a different method and shows that  their definition 
of Wu (2, X) based on the tangent bundle is the sam6 as our definition based 
on Poincar6 duality. Theorem I and Theorem II I  together then imply 3.2 
of [13. 

1. The main formula 

Let X be a compact topological manifold with boundary X (which may 
be empty) and assume X is orien.table over Zq. If X is oriented and x E 
H*(X, )~), we let x[X] denote the value of x o n t h e  homology class of X 
modulo X which is the orientation class of X. If xCH*(X, X) and x'EH*(X), 
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their cup product x~x' is an-element of H*(X~ 2), and the map of H*(X, 2~) • 
H*(X) to Zq defined by x• is a dual pairing. 

If ~ is a cohomology automorphism, then because of the above duality 
properties of X there exists an element Wu(~, X)CH*(X) defined by the 
condition that for any x C H*(X, J() 

(1.t) f f , W u  (~, x ) )  Ix]  = (~ (~)) Ix ] .  

Let Y be an oriented compact topological manifold with boundary 
andle t / :  (~/, Y) --~(X, ~7) be continuous. Then / induces ring homomorphisms 
/* from H*(X) (or H*(X, ~7)) to H*(Y) (or H*(Y, 3)). The Gysin homo- 
morphism (see [8~) [,  from H*(Y) (or H*(Y, ~')) to H*(X) (or H*(X, 2)) 
is defined using the dual pairings in X and Y by the equation 

(t.2) ( x ~ / ,  y) Ex] = (1" x ~ y )  [Y] 

for yEH*(Y) and xEH*(X, J() (or yEH*(Y, Y) and xEH*(X)). Then / ,  
is not a ring homomorphism but does ha~;e the following easily verified 
property: 

(1.3) 1,(/* ~ ~ y) = ~ ~ / ,  y 

for xEH*(X) or H*(X, X), yEH*(Y) or H*(Y, Y) and the equation holds 
in H*(X, X) unless xCH*(X) and yCH*(Y) in which case it holds in H*(X). 

THEOREM I. Let/: (Y, Y)---~(X, J() be a continuous map between compact 
oriented topological mani/olds with boundary. I / 2  is an arbitrary cohomology 
automorphism, then 

/, (~ y ~ W u  (~-~, Y)) = ~ / ,  y ~ Wu (~-~, x )  

where yEH*(Y), in which case the equation holds in H*(X), or yE H*(Y, Y), 
in which case the equation holds in H*(X, J(). 

PRooF.. We prove both statements, the absolute and relative, at the 
same time. Let yCH*(Y) (or H*(Y, ~')) and let xEH*(X,)Q (or H*(X)) 
be arbitrary. Then because 2-1 is also a cohomology automorphism, 

(x~/ , (~y~Wu (~-~, Y))) [X]=(ff*xw~y)wWu(2 -~, Y)) [Y]_ by (t.2) 

= (~-~ (1" ~ y ) )  EY] by (1.t) 

= (~-:1, x ~  y) [Y]. 
We also have 

(x ~ (2/, y ~W~ (Z -~, X))) [X~ = ((x ~ / ,  y) ~Wu (~-:, X)) IX~ 

= (~-~ (x ~,~/, y)) [XJ by (t.t) 

= (~-~x~l ,  y) [x j  

= (/* z-~x~y) VYI by (~.2). 
1t'* 
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Since the cohomology automorphism 2 -x commutes with the induced homo- 
morphism ]*, we see that  

(x~l,(~.y ,..,Wu (~.-L Y))) [X] = (x,.., (~.l, y'.--'Wu (~.-", X))) IX] .  

Since x is arbitrary, it follows from the duality properties of X that 

l ,  (2Y wWu (~-:, Y)) = ~ / ,  y wWu (~-', X), 

which completes .the proof. 

Formula 3.2 of [1] is Theorem I for the ease where X and Y are differen- 
tiable manifolds without boundary and Wu (2, X) is defined using the dif- 
ferentiable structure of X. In [1] ((t7) of  w it is shown that Wu(~t, X) 
defined in this way by  the differentiable structure satisfies our (1.t) so, using 
this fact, Theorem I implies 3.2 of [11. However, the proof in [11 that the 
two definitions of Wu (,~, X) in the differentiable case are equal uses 3.2 of 
[1], and although only a special case of 3.2 need be applied to deduce this 
equality, we prefer to give a different proof of the equality which also is 
somewhat more general than the case treated in [1] because it is valid for 
manifolds with boundary. The method of proof in [1] uses the imbeddability 
of a manifold in a sphere. Our proof of the equality of the two definitions 

: of Wu (2, X) uses the original diagonal technique of Wt~ [2, 4]. This seems 
to be natural because the existence of Poincar6 duality implies the existence 

of a cohomology class U EH*(X • X • with rather special properties 
(see (2.4), (2.5) below). 

2. Cohomology properties of X • X 

If X, Js are as in w so that  H*(X, f(), H*(X) are dually paired by cup 

product, it follows that H*(X • X, i t  • X), which is isomorphic to H*(X, it)| 
H*(X) by the Ktinneth formula, and H*(X •  X •  which is isomorphic 
to H*(X)| ~(), are dually paired by the map u xv-+(u~v)[X• 

" " "~'-H*tX it) and fli,fl~EH*(X) where if u=~,o~i| v=~,fl~@~ i with ~i, ~i~ ~ , 
all homogeneous then 

and 
[ x / x ]  = y. ( -  [X] 0 i 4) IX] CZ . 

We define a homomorphism 

h : n . ( x  xx ,  x xit) 

as in [2], by  the equation 

for  EH*(X, it). 
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Letting t E H ~ (X) denote the unit class then for x E H* (X, 2~), v E H*(X • X, 

2~ •  we have the formula 

(2.t) ((x| ray) IX xX]-~ (xwh(v)) IX] 

which is proved for v=~|  by direct verification from the definitions, 
whence it follows for arbitrary v because both sides are linear in v. 

Let d: (X, 2~) -+ (Z x X, 2( X X) be the diagonal map (so d (t) ----- (t, t) for 
t CX). It follows from the dual pairings in X and X •  that there is a 

unique UEH*(XxX,  X x X )  such that for yEH*(XxX,  X•  

(2.2) (y • U) ~X X X] = (d* y) IX 1 . 

The class U will be called the basic class of X•  Some of its properties 
are summarized in the' following. 

LEMMA (2.3). I] U is the basic class o] X xX,  then 

(2.4) h(U) = t ,  

(2.5) (l |174 /or xEH*(X). 

PROOF. To prove (2.4) let xCH*(X, 2() be arbitrary. Then 

(xwh(U)) [X 1 = ((x|  U) [32 xX]  by (2.1) 

=d*(x |  IX 1 by (2.2) 

=x[X~J because d*(x| 

Since this is true for all x C H*(X, )(), it follows by the duality property of 
X that h(U)= t. 

To prove (2.5) let yEH*(X• X• Then 

(y~ (I| U) IX •  = d* (y~ (l| [X~ by (2.2) 

=(d*y~x) IX l because d*( l |  
Similarly 

(y ~ (x| 1) ~ U) IX x Xi = (d* y u x) [X]. 
Hence 

(y~ (t |  U) IX xX]  = (y~ (x|  U) E x •  

for every y C H* (X • X, X • X). By the duality property of X • X, t, his implies 

which completes the proof. 
LEMMA (2.6). / ]  UEH*(X•215  satis]ies (2.4) and (2.5), then U is 

the basic class o] X • 
PROOF. Let {.~,} be a homogeneous base for H*(X), {,8]} a homogeneous 

base for H*(X, X), and define dii= ~Si~o~i) [X~ CZq, In terms of the above 
bases we can wri.te U=~,cii~i| where c~iCZ ~. If n = d i m X  we see that 
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ak=0c~h(U)  because U satisfies (2.4) 

=h ( (~k |  by definition of h 

= h ( ( t |  because U satisfies (2.5) 

~--- (-- l)ndim~'h (V~  ('t| } b y  standard cup product property 

(-- t ) ~ a ~  c~j(flj~k) ~X]~ i by  definition of h 

~---- (-- l)ndim~k Z ciidikor i by definition of d~k. 

Therefore, ~, - ,1 -- / ~ a i m ~  ~ii'*ik--~--W ~ik, SO the product of the matrix (cij) by 
the matrix (dik) is the matrix ((-- l)*ai~*6ik), and since (djk) is non-singular 
because X has Poincar6 duality, the matr ix  (Cii) is tmiquely characterized 
by  this property. Since (2.3) shows that the basic class satisfies (2.4) and 
(2.5), it follows from the uniqueness property above that if U satisfies (2.4) 
and (2.5) then U is the basic class, and this completes the proof. 

Our next result expresses Wu (2, X) in terms of the basic class of X •  

THEOREM II. Let UCH*(X•  X •  be the basic class o / X •  For 
any cohomology automorphism ~ we have 

Wu (~, X) = ~ -~h ~ (U). 

�9 PROOF. As in the proof of (2.6) let {~i} be a homogeneous base for H*(X), 
{fli} be a homogeneous base for H*(X, X), and U=Zcii~i| We define 
s i--= (2fli) IX]. Then 

Therefore, ~-lh~ (U) = ~, cijsio~ ~. Then 

(2.7) (flk~2-~h,~(U)) IX] = ~,c, isi(flkvo~i)IX] = Y, dk,c,is i. 

Let C be the matrix (c,i) and D the matrix (dii). If n is even or the charac- 
teristic q of the coefficient field is 2, then it was shown in the proof of (2.6) 
that CD=I.  Therefore, D C = I  so (if n is even or q=2)  

 .-lh (U)) IX]  = s ;=  EX]. 

Since this is true for every element fir of the base {flj} for H*(X, 2~), it follows 
that for any xEH*(X, X) 

(,,,,.., ;t- h,Z (U)) IX]  = (it x) IX ] .  

Hence, ~-~h;~(U) satisfies (t.1), which characterizes Wu(~, X), so we have 
proved the theorem if n is even or q-----2. 

If n is odd and we enumerate {ai} (and {fl~.}) so that all even  dimensional 
e's (and fl's) have smaller subscript than all odd dimensional e's (and fl's), (o (o 
then C-~ C~ D~ for some square matrices C~, C~, D~, D e 

where C~ (or D~) corresponds to those c~i (or di i)for  which dimei is even and 
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dimfli is odd and C, (o} D,) corresponds to those c O. (or dji ) for which dimr162 
is odd and dimfli is even.  Then the proof of (2.6)shows that C1D2=I and 

C2D(=--I so D2CI=I and~DxC~=--I, and D C : ( - - ~  ~).  Therefore 
E dkicil=('~t)l+dimflt~k] SO (2.7) becomes 

(2.8) (flkk.J 2-~ih2 (V)) IX] = (-- t)1+dimfik Sk ~-- ( "  t)l+dimfl' (~flk) IX]. 

If :q~2 ,  2 is a sum of cohomology operations of even'degree (see 1.7 
of [1]) so (2fl~)IX] = 0  unless dimfl~ has the same parity as n. Since n is 
odd, we see that the only time the right hand side of (2.8) is nonzero is when 
dimflk is odd so (2.8) implies 

( ~ , 2 - 1 h 2  (V)) IX] = (2&)IX],  

and, as before, this implies that 2 -1 h 2 ( U ) =  Wu (2, X), which proves the result 
in general. 

3. Differentiable manifolds 

Throughout this section we shall assume X is a compact differentiable 

manifold with boundary )~ and that X is oriented over Zq. We shall use 
Theorem II to show that Wu (2, X) is closely related to cohomology properties 
of the tangent bundle of X. 

Let X be: provided with a Riemannian metric and let E be the disk 
bundle over X of tangent vectors of length <= t and let E '  be the sphere 
bundle contained in E of tangent vectors of length t. Then E is oriented 
over Zq by  the orientation of X, and the~re is a corresponding Thom-Gysin 
isomorphism [2, 3] 

# :H*(X)  ~H*(E, E') 

which has the  following properties (see [2] for details). For tEX let E,, E; 
be the fibers of E, E' over t. Thenwe have an inclusion map i~: (Et, E~) ( (E, E'). 
The orientation class of X modulo )~ determines a homology class X~ of E t 
modulo E~. Then for any t C X we have 

(3.t) (i* ~0)) [X,] = ~. 

Furthermore,  if ~:E-->X is the bundle projection, then for any xEH*(X) 
we have 

(3.2) = r  

The class r determines Wu(2, X) by  the following result. 
THEOREM III. I] 2 is a cohomology automorphism, then 

Wu(2, X)=2-~  ~ -~2 r  

PROOF. Theorem III  is quite similar to Theorem II, and we shall deduce 
it from Theorem II: In or~ter to do So it suffices to construct a homomorphism 

[~:H*(E, E')-->H*(X • X x J Q  
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such that :  
(a) /z commutes with arbitrary cohomology automorphis.ms. 

(b) h~(t)----- t .  
(c) for xEH*(X). 

Certainly if such a homomorphism /~ exists then (b) and the first part of 
(c) show that/~q)(l)  satisfy (2.4) and (2.5) so, by (2.6), /~q)(t) is the basic 
class of X •  Hence, by Theorem II and (a) 

Wu (4, X)=~- lh~  (~ ~(t))  = ~.-lh~ ~ ~ 0 ) -  

On the other hand, from the second part of (c), the definition of h, and (b) 
we have 

r : h  ((x|  : x,.h  x 

so h # : #  -1, and ~-lh/~q)(t)=~-lq')-l)~qg(1), which shows that  it suffices 
to construct/~ satisfying (a), (b), (c). 

To construct # we consider separately the two cases when P~ is empty 

and when X is non-empty. If X is empty, E can be identified with a tubular 
neighborhood N of the diagonal d (X) ~ X • X in such a way that  E'  corresponds 
to the boundary of N a n d  ~ corresponds to p~l N where p l :X•  is 
projection to the first factor. If N O is the interior of N, then 

H*(E, E') ~ H*(X x X, X • X - -  NO) . 

There is an injection 

H*(X xX,  X xX--N~ xX) ,  

and the composite of these is a homomorphism 

# :n*(E ,  E') -+H*(X xX) 

which has property (a) because it is induced by continuous maps. We shall 
omit the proof that  # has properties (b) and (c). I t  is similar to the proof 

for 'the case when X is not empty, which we shall give, and details for the 

case when X is empty can be found in i2]. 
If X is not empty, we shrink X to X" ~ X ~ X. That is, there is a homeo- 

morphism g:X-+X such that  if i :X ' (X ,  then ig~ iden t i ty  map of X and 
gj-----identity map of X. Let E, E' be the bundles over ,Y corresponding 
to E, E' (i.e. E, E'  are induced from E, E~ by i : X  ~ (X)  and let ]: (E, E') ~ (E, E') 
b e t h e  bundle map covering 1'- If ~ : H * ( X ) m H * ( E , E ' )  is the Thom-Gysin 
isomorphism of the induced bundle, it follows from standard naturality pro- 
perties that  

Let h:H*(XxX, X •  be the homomorphism defined on ~| 

for ~EH*(X), flCH*(X, rX) by h(~| Then we have the iso- 
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morphism 

(g x O*:H*(X • X x2)-+H*(X xX, Xx2), 
and the equation 

g*h~h(gxt)*. 
Furthermore, if x EH*(X), then 

(g xl)* 6*x|174 =x |  
It  follows that if we have a homomorphism 

/2:H*(E, E') -+H* (.~ xX,  .,~ XAT) 
such that : 

(~) t7 commutes with arbitrary cohomology automorphisms, 

(b) h / 2 # ( t ) =  t, 

(c) ( t | 174  for .~EH*(X), 

then the composite (gxt)*/27* is a homomorphism ff from H*(E, E') to 
H*(XxX, XX2~) which satisfies (a), (b), (c). Therefore, it suffices to con- 
struct/2 satisfying (~), (b), (~). 

Now E can be imbedded in X • ( X -  32) in such a way that the diagonal 
d(X') is a deformation retract of E" and the projection map of the bundle 
E - + X  is equal to pl[E where p~:x x X--~X is projection to the first factor. 
Then the inclusion map i:(E, E') ( (X xX, X x X - -  (E --E')) induces iso- 
morphisms 

i*:H*(X• • ~_.H*(F., E'), 
and we have also an inclusion map 

r (Xx x,  X x2)  < (X xx ,  Y: x x -  (E --E')). 

We define/~:H*(E, ~") -+H*(.Y x X, X" x J~) to be the composite 

H*(E; E ' ) " - '  H*(X xX,  X" x X  - (e  - -E ' ) ) - - ,  H*(X" xX,  X xX) .  

Since i* , /~  both commute with cohomology automorphisms, so does/7 so (a) 
is satisfied. 

To prove (b) is satisfied, note that h/~ ~5(t) is a 0-dimensional cohomology 
class of X and that for tffX" if we define /r:(X,X):+(XxX, Xx)2) by 
/r (t) = (i, t) for tEX, then h,g#(l) is the cohomology class of the cocycle 
which assigns to i the element (/*/7 ~(1)) IX] C Zq. Let F r = E x (E), F} =/~* (J~') 
be the fiber of E, E' over { and let i r: (F r, F~) ( (E, E'). Theft we have a com- 
mutative diagram 

H*(E, E') ~ H * ( X x X , X x X - -  (E --E')) --* H*(XxX, X'• 
,r+ ~t, ~,J, 

�9 ' ~  H , ( x , 2  <,- ~')) -+ H (~-, F;-) ~ --  --  H*(X, 2 )  
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where the unlabeled maps are injections and, in homology, map the homology 

class of X modulo X" into Xr.  I t  follows from the commutati:city of this 
diagram and the definition of fi tha t  

(/*~ ~(t)) ix] = (i* ~(,)) [x~l. 

By (3.1) this = t  for every tCX so (b) is satisfied. 
To prove (~) is satisfied note that  by (3.2) and the definition of fi, for 

�9 E H*(X) we have 

~(~)  =~ ((~,1E), ~ r = ~, i,-l(i, p. ~ ~(~)) 

which proves the second half of (~). For the first half of (6) we  have for 
~ H* (.~) 

(4 | ~)~a a~(l) = i*(O ~g* ~)~i,-1 ~(t)) =/-* i*-~ (i*O | x)~ r 

To compiete the proof we need only verify that  i*(Y~|174 in 
H*(E). Since d:X--~E is a homotopy equivalence, We need only check that  
d*i*(t@g*~) and d*i*(~@l) are equal in H*(X). But d*.i*(~| 
] * g * ~ = ~  and d*i*(~@~)=~, so they are equal, and the proof is complete. 
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