SPANIER, E.
Math. Zsitschr. 80, 154—162 (1962)

A formula of Atiyah and Hirzebruch

By
E. SPANIER *

Introduction

In a recent paper [I] Ativad and HirzEBRUCH have proved a formula
(3.2 of [1]) for differentiable manifolds which can be formulated for topo-
logical manifolds, and they ask the question whether the formula is valid
for such manifolds. It is the point of the present note to establish the formula
for topological manifolds and to show how this implies their result. Actually
we generalize their formula somewhat to obtain one for manifolds with
boundary.

We work over a fixed prime field Z, and all homology and cohomology
groups which occur in the note have Z, as coefficient group. 4 will denote
a cohomology automorphism over Z, in the sense of [1]. If X is a topological
manifold (or a space in which there is a Poincaré duality given by cup product),

" then sueh a cohomology automorphism A corresponds to a class Wu (4, X) €
H*(X) (see (1.1) below). The main result, Theorem I, which is stated and
proved in §1, asserts that.in a certain sense Wu (4, X) gives a correction
term for the non-commutativity of 4 with the”Gysin homomorphism f,:
H*(Y)—H*(X) corresponding to a continuous map f of one such space ¥
to another X. R ‘

In §2 we use the diagonal map X —X x X in order to express Wu (4, X)
in terms of cohomology properties of X X X (see Theorem II). This was the
technique originally introduced by Wu [4] to. study characteristic classes,
and our treatment follows closely that of MiLNOR [2]. These results are used in
§3, when X is assumed to have a differentiable structure, to prove Theorem I1I
which asserts that Wu (4, X) is essentially a characteristic class of the
tangent bundle of X. This result was also proved by ATivan-HIRZEBRUCH
(see (17) of §3 of [1]) by a different method and shows that their definition
of Wu (4, X) based on the tangent bundle is the samé as ¢ur definition based
on Poincaré duality. Theorem I and Theorem III together then imply 3.2
of [I]. :

1. The main formula

Let X be a compact topological manifold with boundary X (which may
be empty) and assume X is orientable over Z,. If X is oriented and x€
H*(X, X’), we let x[X] denote the value of x on the homology class of X
modulo X which is the orientation class of X. If xCH*(X, X) and %' € H*(X),
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their cup product x U’ is an element of H*(X, X) and the map of H*(X, X)
H*(X) to Z, defined by xXx'—(xu')[X] is a dual pairing.

If 1is a cohomology automorphism, then because of the above duality
properties of X there exists an element Wu (4, X)€ H*(X) defined by the

condition that for any x€ H*(X, X)
(1.1) (xoWu(d, X)) [X]=(A(0) [X].

Let Y be an oriented compact topological manifold with boundary Y
and let f: (Y, V) —>(X, X) be continuous. Then f induces ring bomomorphisms
f* from H*(X) (or H*(X, X)) to H*(Y) (or HX(Y, Y)) The Gysin homo-
morphism (see [3]) /4 from H*(Y) (or H¥(Y, Y)) to H*X) (or H*(X, X))
is defined using the dual pairings in X and Y by the equation

(1.2) (xotey) [X]=(*ruy) [Y]

for ye H*(Y) and ¥€ H*(X, X) (or yGH*(Y,_I") and x€ H*(X)). Then f,

is not a ring homomorphism but does have the following easily verified

property:

(1.3) IfFroy)=x0ofyy

for x€ H*(X) or H*(X, X), y€ H*(Y) or H*(Y, Y) and the equation holds

in H¥(X, X) unless x€ H*(X) and y€ H*(Y) in which case it holds in H*(X).
TuporeM I. Let f:(Y, Y)—~(X, X) be a continuous map between compact

oriented topological manifolds with boundary. If A is an arbitrary cohomology
uutomor;bhism, then_

Fo(AyoWu (1, Y)) =, yo Wu (A9, X)

where y€ H¥(Y), in which case the equation holds in H*(X), or yE H*(Y, Y),
in which case the equation holds in H*(X, X).
Proor. - We prove both statements, the absolute and relative, at the

same time. Let yCH*(Y) (or H*(Y, Y)) and let x€ H*(X, X) (or H*(X))
be arbitrary. Then because 47 is also a cohomology automorphism,

(xuf*(lquu ALY )) [X]= ((f*xu},y) oWu (43, Y)) [Y]- by (1.2)
= (A2 (f*xoAy)) Y] by (1.1)

— (@ aoy) [Y].
We also have

(vo (s yoWa (1%, X)) [X] = (w0t y) o Wu (A%, X))[X]

(37 (w0t 9)) [X] by (1.1)
(

(

i

i

Arxofyy) [X]

A txuy) Y] by (1.2).
11%

I
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Since the cohomology automorphism 4! commutes with the induced homo-
morphism f*, we see that

(rota(AyoWa s, Y) [X]=(xo (Afyy o Wa (i, X)) [X].
Since #x is arbitrary, it follows from the- duality properties of X that
f* (ﬂ.quu (l—l, Y)) =lf* quu (;’,_1, X) N

which completes the proof.

Formula 3.2 of [1] is Theorem I for the case where X and Y are differen-
tiable manifolds without boundary and Wu(4, X) is defined using the dif-
ferentiable structure of X. In [I] ((17) of §3) it is shown that Wu (4, X)
defined in this way by the dlfferentlable structure satisfies our (1.1) so, using
this fact, Theorem I implies 3.2 of [I]. However, the proof in [1] that the
two definitions of Wu (4, X) in the differentiable case are equal uses 3.2 of
[1], and although only a special case of 3.2 need be applied to deduce this
equality, we prefer to give a different proof of the equality which also is
somewhat more general than the case treated in [I] because it is valid for
manifolds with boundary. The method of proof in [I] uses the imbeddability
-of a manifold in a sphere. Our proof of the equality of the two definitions
of Wu(4, X) uses the original diagonal technique of Wu [2, 4]. This seems
to be natural because the existence of Poincaré duality implies the existence

of a cohomology class UCH*(X xX, X XX) with rather special properties
(see (2.4), (2.5) below).

2. Cohomology properties of X x X
If X, X are as in §1 so that H*{X, X’), H*(X) are dually paired by cup
product, it follews that H*(X x X, XxX ), which is isomorphic to H*(X, X 1®
H*(X) by the Kiinneth formula, and A*(X xX, X xX), which is isomorphic
to H*(X)@H*(X, X’) are dually paired by the map # Xv—(uuv)[X XX]

where if u=73a,®8;, v=2f®u with a,, ;€ H*(X, X) and B:, Bi€ H*(X)
all homogeneous then

v =3 (— 1), ) @ (B,009) € HHX, X) @ HH(X, X)
" (o) [X X X] = 3 (— )50 (o, ) [X] (Bi00f) [X] €2,
We define a homomorphism
h:H*(X x X, X X X) > H*(X),
as in [2], by the equation

h(o®f) =B[X]acH*(X) for «€H*X), BEH*X, X).
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Letting 1€ H°(X) denote the unit class then for € H*(X, X), v€ H*(X x X,
XxX ) we have the formula
(2.1) ((x®1)uv) [XxX]:(xvh(v)) [X]

which is proved for v=a®f by direct verification from the definitions,
whence it follows for arbitrary v because both sides are linear in v.

Let d:(X, X) (X xX, X xX) be the diagonal map (so d(t)={(t t) for
t¢X). It follows from the dual pairings in X and X xX that there is a

unique U€ H*(X x X, XXX) such that for y€ H*(X x X, XXX)
(2.2) » (yoU)[X x X]=(@*y) [X].

The class U will be called the dasic class of X xX. Some of its properties
are summarized in the following.

LemmA (2.3). If U is the basic class of X XX, then
(2.4) r(U)=1,
(2.5) (18x)vU=(x@1) U for x€H*X).
Proor. To prove (2.4) let x€ H*(X, X) be arbitrary. Then
(x0k(U) [X]=((x®1) o U)[X xX] Dby (2.1)
=d*(x®1)[X] by (2.2)
=x[X] because d*(x®@1)=ux.

Since this is true for all ¥€ H*(X, X), it follows by the duality property of
X that A(U)=1.

To prove (2.5) let y€ H*(X x X, X xX). Then
(yo(1©%) LU) [X x X]=d* (yu (1&1)) [X] by (2.2)

=(d*yux)[X] because d*(1®@x)=
Similarly
(yo(x®@1) U U) [X X X]=(d¥yux) [X].
-Hence
(yu(1®x)uU) [XxX]= (yu(x®1)u U) [X xX]
for every yE H*(X X X, XxX ). By the duality property of X x X, this implies
' ex) U= (xe1)uU,

which completes the proof.

LEMMA (2.6). If UcH*(X xX, XXX) satisfies (2.4) and (2.5), then U is
the basic class of X X X.

PRrOOF. Let {a} be a homogeneous base for H*(X), {;} a homogeneous

base for A*(X, X) and define d;;=(8;va;) [X]€Z,. In terms of the above
bases we can write U=Zc,~,—a,~®ﬂf where ¢;;€Z,. If n=dimX we see that
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o, =0, uh(U) because U satisfies (2.4)

=h((e;®1) vU) by definition of &

h((18w,) wU) because U satisfies (2.5) -
(—1)rdimeap (UL (1@w,)) by standard cup product property
- (— q)ndimae 3 c;j(Bjvu) [X]o; by definition of A
=(~—1)rdimos 5 o d e, by definition of 4.
Therefore, 3 c;;d;;=(—1)"%m*,,, so the product of the matrix (c¢;;) by
the matrix (d;;) is the matrix ((—1)*¥™*4,,), and since (d;;) is non-singular
because X has Poincaré duality, the matrix- (c;;) is uniquely characterized
by this property. Since (2.3) shows that the basic class satisfies (2.4) and

(2.5), it follows from the uniqueness property above that if U satisfies (2.4)
and (2.5) then U is the basic class, and this completes the proof.

Our next result expresses Wu (4, X) in terms of the basic class of X xX.
TuEOREM II. Let Uc H¥(X XX, X X X) be the basic class of X xX. For
any cohomology automorphism A we have
Wu(d, X)=A712Ai(U).

*ProOF. As in the proof of (2.6) let {«;} be a homogeneous base for H*(X),
{B,} be a homogeneous base for H*(X, X), and U=c;;a,®f,. We define

s;= (AB8;)[X]. Then
, rA(U) =h(Zc,‘,-loc,«®'/'lﬂ,) 2:6:78iA
Therefore, A1hA(U) =2 ¢;;s;4;. Then

(27) (ﬁkul—lh}'(U)) [X] ZQ;‘%(ﬂku‘x [X] dez ty 1

Let C be the matrix (c,;) and D the matrix (4;,). If # is even or the charac-
‘teristic ¢ of the coefficient field is 2, then it was shown in the proof of (2.6)
that CD=1I. Therefore, DC=1 so (if # is even or g=2)

(Bro Ak A (U)) [X] = s,=(ABy) [X]-
Since this is true for every element f; of the base {8} for H *(X X), it follows
that for any x€ H*(X, X)

(xOARA(D)) [X] = (Ax) [X].

Hence, A12A(U) satisfies (1.1), which characterizes Wu (4, X), so we have
proved the theorem if # is even or g=2.

If n is odd and we enumerate {o;} (and {8;}) so that all even dimensional
o’s {(and B’s) have smaller subscript than all odd dimensional «'s (and f's),

then C= 0 G and D= 0 D for some square matrices C;, C;, D;, D,

H

H

H

2 .
where C; (or D,) corresponds to those ¢;; (or 4;,) for which dima, is even and
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dimp; is odd and C, (or Dy) corresponds to those ¢;; (or d;;) for which dima;

is odd and dimgp; is even.  Then the proof of (2.6) shows that C;D,=1I and
CoDy=~1 so D,C;=I and-D,Cy=—1I, and DC:(_I 0). Therefore
D dyici=(—1)TimAg, . so (2. 7) becomes 0 I

(28)  (BuoAThA(U))[X]=(—A)l+dimfes, — (— q)t+aimbe (30 [X].

If g==2, 4 is a sum of cohomology operations of even'degree (see 1.7
of [1]) so (A8:)[X]=0 unless dimpB, has the same parity as n. Since % is
odd, we see that the only time the right hand side of (2.8) is nonzero is when
dimp, is odd so (2.8) implies '

(BroARA (V) [X]= (2B [X],
and, as before, this implies that A1A1(U)=Wu(4, X), which proves the result
in general. :
3. Differentiable manifolds
Throughout this section we shall assume X is a compact differentiable

manifold with boundary X and that X is oriented over Z,. We shall use
Theorem II to show that Wu (4, X) is closely related to cohomology properties
of the tangent bundle of X.

Let X be provided with a Riemannian metric and let E be the disk
- bundle over X of tangent vectors of length <1 and let E’ be the sphere
bundle contained in E of tangent vectors of length 1. Then E is oriented
over Z, by the orientation of X, and there is a corresponding Thom-Gysin
isomorphism [2, 3]

¢:H*X)~H*E, E)

which has the following properties (see [2] for details). For t€ X let E,, E;
be the fibers of E, E’ over {. Then we have an inclusion mapi,: (E,, Ey) C(E, E').

The orientation class of X modulo X determines a horhology class X, of E,
modulo E;. Then for any € X we have

(3.1) (EF @(1)) [X,]=1.

‘Furthermore, if #:E—X is the bundle projection, then for any x€ H*(X)
we have

(3-2) D(x)=m*(x) L D(1).
The class @(1) determines Wu (4, X) by the following result.
TueoreM III. If A is a cohomology automorphism, then

Wu (4, X) =210 110(1).

Proor. Theorem I is quite similar to Theorem II, and we shall deduce
it from Theorem II. In order to do so it suffices to construct a homomorphism

w HYE, E') ~H*X x X, X x X)
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such that:
(a) u commutes with arbitrary cohomology automorphisms.
(b) hu(1)=
€) 1®x)ou®P(1)=(x@1)vuP1)=u®(x) for xcH*(X).
Certainly if such a homomorphism x exists then (b) and the first part of

(c) show that u@(1) satisfy (2.4) and (2.5) so, by (2.6), w®(1) is the basic
class of X x X. Hence; by Theorem II and (a)

Wu (4, X)=A"hi(u®(1)) = A huid(1).

On the other hand, from the second part of (c), the definition of 4, and (b)
we have

hu®@(x)=h((x01)opn®(1)) =xohuP(1)=
so hu==®73, and AhuiP(1)=2A"1P12P(1), which shows that it suffices
to construct u satisfying (a), (b), (c). :
To construct u we consider separately the two cases when X is empty

and when X is non- empty. If X is empty, E can be identified with a tubular
neighborhood N of the diagonal 4 (X) C X x X in such a way that E’ corresponds
to the boundary of N and & corresponds to p,|N where p: X xX—X is
projection to the first factor. If N°is the interior of IV, then

H*(E,E)~H*(X xX, X xX —NY).
There is an injection

H*(X xX, X xX —N% —-H*(XxX),
and the composite of these is a homomorphism

u H¥(E, B> H¥(X x X)

which has property (a) because it is induced by continuous maps. We shall
omit the proof that has properties (b) and (c). It is similar to the proof
for the case when X is not empty, which we shall give, and details for the

case when X is empty can be found in [2.

, If X is not empty, we shrink X to XX — X. That is, there is a homeo-
morphism g: X —X such that if /: XX, then jg=identity map of X and
= identity map of X. Let E,E' be the bundles over X corresponding

to E, E’ (i.e. E, E’ are induced from E, E’ byj: X CX) and let{:(E, E') - (E, E')

be the bundle map covering j. If @:H*(X)~H*E, E’) is the Thom-Gysin

isomorphism of the induced bundle, it follows from standard naturality pro-
perties that
' Dir=*P.

Let A: H*(X x X, XXX) —H*(X) be the homomorphism defined on &®f
for &€ H*(X), BEH*(X, X) by h(@®f)=F[X]a& Then we have the iso-
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morphism -
(ex1)*:H¥(X xX, X xX) >H*(X x X, X xX),
and the equation
g*h=h(gx1)*
Furthermore, if x€ H*(X), then
(gx1)*(*x01)=g**x01=x@1.
It follows that if we have a homomorphism
j:H*E E)~>H*X xX, X xX)
such that:

(a) & commutes with arbitrary cohomology automorphisms,
(b) 2ED(1)=1,
© (18g*R)uEP()=@E1)uaP(1)=ADEFE) for ZcH*X),

then the composite (g x1)*fi7* is a homomorphism x from H*(E, E’) to
H¥(XxX, X ><X) which satisfies (a), (b), (c). Therefore, it suffices to con-
struct & satisfying (a), (b), (©).

Now E can be imbedded in X x (X — X) in such a way that the diagonal
a(X)  is a deformation retract of E and the projection map of the bundle
E X is equal to $,|E where $,: X x X ->X is projection to the first factor.
Then the inclusion map 5:(E,E')( (X xX, X xX —(E—E')) induces iso-
morphisms

i H* (X x X, X xX —(E—E)) ~HYE, E),
and we have also an inclusion map
(XX X, XxX)(XxX, XxX—(E—FE)).
We define @: H*(E, E') ~H*(X x X, X X X) to be the composite
H*E E) = H*XxX,XxX—(E— E’)) H*(X><X XxX)
Since 7*, ©* both commute with cohomology automorphisms, so does & so (a)
is satisfied.

To prove (b) is satisfied, note that 2% ®(1) is a 0-dimensional cohomology
class of X and that for 1€X if we define f;:(X, X)—>(XxX, X xX) by
()= (¢ for tcX, then hiid(1 } is the cohomology class of the cocyg_le
which assigns to ¢ the element (¥ Z®(1))[X]€Z,. Let F;=f*(E), F;=f*(E)
be the fiber of E, E” over ¢ and let 4;: (Fr, Ff) C(E, E'). Then we have a com-
mutative diagram

HYE E) S H¥ (X x X XxX —(E —F)) & B*X x X, XxX)
7l i i
H*(F;, F) H*(X, X—(F;—F)) - H*X X)

1)
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where the unlabeled maps are injections and, in homology, map the homology

class of X modulo X into X;. It follows from the commutativity of this
diagram and the definition of # that

(# B D)) [X]= (3 B(1)) [X;].

By (3.1) this =1 for every € X so (b) is satisfied.
To prove (c) is satisfied note that by (3.2) and the definition of j, for
€ H*(X) we have

A%m)

(i By 2o B(1)) =i (1% pF 2o B(1)
=pFTui**1P(1) = Ee1)uE d(1),

which proves the second half of (). For the first half of () we have for
€ H¥(X)

I

Ee1) uE D(1) ((?c®1)uz'*‘15(1))=i7"i*‘1(i*(%®1')oc§(1))

=i-
(18g* %) w1 P(1) =i*((18g* F) wi* 1 P(1)) =1*i* (*(1g* 7)uD(1)).

To complete the proof we need only verify that *(Z®1)=1*(1®g*%) in
H*(E). Since d:X—E is a homotopy equivalence, we need only check that
a*i*(1®g*x) and d*i*(x®1) are equal in H*(X). But d**(1®g*%) =
7*g*Z=% and d**(X¥®1) =%, so they are equal, and the proof is complete.
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