ALGEBRAIC AND GEOMETRIC SPLITTINGS OF THE K- AND L-GROUPS
OF POLYNOMIAL EXTENSIONS

Andrew Ranicki

Introduction

This paper is an account of assorted results concerning the
algebraic and geometric splittings of the Whitehead group of a
polynomial extension as a direct sum

Whnxz) = wmm@io(zz{m)@ﬁ(zzm)@f&i\im{n})

and the analogous splittings of the Wall surgery obstruction groups

_l(w)

gLi(an) = LS(meL?
xz) = Ll mer? | (m)

Such a splitting of Wh(nxZ) was first obtained by Bass, Heller and

Swan [2]. {Shaneson t29] obtained such a splitting of

Pedersen and Ranicki [18]

LS (nx2)
g geometrically. Novikov {17] and Ranicki [20] obtained such
Ly{nxZ}

L-theory splittings algebraically.

The main object of this paper is to point out that the gecometric
L-theory splittings of [29] and [18] are not in fact the same as the
algebraic L-theory splittings of [17] and [20] (contrary to the claims
put forward in {18},[20},({23] and [24] that they coincided), and to
express the difference between them in terms of algebra. The splitting

(L (Mx2Z) [L (nxZ) f: 16

maps are the same in algebra

kL (ﬂ)f———?L {nxZ) LL*(ﬂxZ)—~—ﬁL;wl(ﬂ)

and geometry, the split injections being the ones induced functorially

from the split injection of groups €:mM——nxZ . However, the splitting

(Li(n‘xz)_—_._».Li(v) iLE l(n)>————->Lf(r.xzz}
*

h Lp

maps h h
L, {TXZZ) =, () - l(ﬂ)»———%L*(ﬂxZ)

are in general
different in algebia and geometry. In particular, the geometric split
split surjections are not the algebraic split surjections induced
functorially from the split surjection of groups €:mxZ——»T1 !

This may be seen by considering the composite e¢B' of the geometric
split injection
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h s
Loy (M L {1xZ) ;
1

oM ((£,b) M3y 05 ((£,b) x1:M x ST—> X x 51}

1 . p h
B' : Ln_l(ﬂ»——~——9Ln(an),

1

oP((£,0) M ——x) 0D ((£,b) x1:M x ST — 5 x 1)

(denoted B' to distinguish from the algebraic split injection B of [20])
and the algebraic split surjection

e : Li('ﬂxz)——-'—»Li(ﬂ) ;

s s
o*{{g,c):N—-—aY)P————;R[n}@zlnxz]g*(g,c)
€ : Li(an)————~»L:(n);
h h
k. o*((g,c)JQ—~—*Y)h-—>Z{n]QZ[NXZ]c*(g,c)
_ finite
Now €B' need not be zero: if X is a {n-1)~dimensional
{finitely dominated
1 simple
geometric Poincaré complex then Xx S8  is a n-dimensional
homotopy finite

. finite
geometric Poincare complex, the boundary of the
finitely dominated
{(n+l)-dimensional geometric Poincaré pair (X xD2,X xSl}, but not in

simple 1
general the boundary of a pair (W,X x87) with
homotopy finite

ﬂl(W) = nl(x), so that € and B' do not belong to the same direct sum
system.

The geometrically significant splittings of L, (nxZ) obtained
in §¢ are compatible with the geometrically significant variant in §3
of the splitting of Wh(mxZ) due to Bass, Heller and Swan [2 }. In both
K- and L-theory the algebraic and geometric splitting maps differ in
2-torsion only, there being no difference if Whin) = O.

I am grateful to Hans Munkholm for our collaboration on [16]).

It is the considerations of the appendix of [16) which led to the
discovery that the algebraic and geometric L-theory splittings are not
the same.

This is a revised version of a paper first written in 1982 at the
Institute for Advanced Study, Princeton. I should like to thank the
Institute and the National Science Foundation for their support in that
year. Thanks also to the G&ttingen SFB for a visit in June 1985.

Detailed proofs of the results announced here will be found in
Ranicki [26],[27},(28}).
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§1. Absoclute K-theory invariants

The definitions of the Wall finiteness obstruction [XIEEKOLZ{nl(XsL

of a finitely dominated CW complex X and the Whitehead torsion
r(f)eth(nl(x)) of a homotopy equivalence f:X———>Y of finite CW

complexes are too well known to bear repeating here. The reduced
algebraic K-groups ?O’ Wh are not as well-behaved with respect to
products as the absolute K-groups KO’Kl' Accordingly it is necessary

to deal with absolute versions of the invariants. The projective class

of a finitely dominated CW complex X

[X] = (x(X),[%X]) € Ro(Zlny(X)]) = K (Z)QRO(Z[ﬂl(X)L

0]
is well-known, with x(X) € KO(ZH = Z the Euler characteristic.
It is barder to come by an absolute torsion invariant.

Let A be an associative rding with 1 such that the rank of f.qg.
free A-modules is well-defined, e.g. a group ring A = Z{u]. An A-module
chain complex C is finite if it is a bounded positive complex of based

f.g. free A-modules
a 4
co:o... 0 > C *C S c, » Cy o e

in which case the Euler characteristic of C is defined in the usual

manner by
¢ r
X(C) = _2. (=) Trank, (C) € Z .
A finite A-module chain complex C is round if
x{C) = 0O€ =z

The absolute torsion of a chain equivalence f:C———D of round finite

A-module chain complexes is defined in Ranicki [25) to be an element

T(f) € Kl(A)
which 1s a chain homotopy invariant of £ such that
i} if f is an isomorphism t(f) = § (~)r7(f:Cr—~+Dr).
r=0
ii) t(gf) = 1(f) + 1(g) for f:C~D, g:D~——E.

iii) The reduction of 1(f) in R‘l(A) = Ky (&)/{t(-1:A—=>A)] is the
usual reduced torsion invariant of f, defined for a chain equivalence
£:C—>D of finite A-module chain complexes to be the reduction of the
torsion T(C(f)) € Kl(A) of the algebraic mapping cone C(f). Thus for

A = Z[rn} the reduction of 71(f) eKl(ziﬂ]) in the Whitehead group

Whi{r) = K;(Z{r))/{n} is the usual Whitehead torsion of f.

ivy 1(f) = 1(D) -~ 1(C) € K, (a) for contractible finite C,D.
v) In general t(f) # t(Clf)) € Ky (2) and T{fef') ¥ T(f) +T(£f")
{although the differences are at most T{-l:A-—A) €K, (A)).
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vi) The absolute torsion t(f) € Kl(A) of a self chain equivalence
l(A)
defined by Gersten [10] for a self chain equivalence f :C~——C of a

f:C—>D=C agrees with the absolute torsion invariant t(f) €K

finitely dominated A-module chain complex C.

round
A { finite structure on an A-module chain complex C 1is an

round
eguivalence class of pairs (F,¢) with F a { finite A~module chain

complex and ¢:F———C a chain equivalence, subject to the equivalence

relation

_ K, (&)
(F,¢) ~ (F',¢") if (¢’ 1@:?——+Cﬁ~—9?‘) =0 € g L

In the topological applications A = Z[n] , and Rl(A) is replaced
by Wh{m).

Proposition 1.1 A finitely dominated A-module chain complex C admits a

round {absolute
finite structure if and only 1if it has projective
%_ - {reduced
{KO(A)
class {C] = O € , in which case the set of such structures on C
B (A)
O
Kl(A)“
carries an affine structure.
?l(A)~

{]
Let X be a (connected) CW complex with universal cover X and

fundamental group nl(X) = 1. The cellular chain complex C(X) is

5{r) X(r~l)

defined as usual, with C(i)r = B (X ) (ry0) the free

Z[n}-module generated by the r-cells of X. The cell structure of X

determines for each C(?}r a Zin]l-module pbase up to the multiplication

of each element by *g (g€ n}. Thus for a finite CW complex X the

cellular Z[7]-module chain complex C(X) has a canonical finite structure.
A CW complex X is round finite if it is finite, x(X) =0 € Z ,

and there is given a choice of actual base for each C(X)r (r »0) in

the class of bases determined by the cell structure of X.

fabsolute
The ) torsion of a homotopy equivalence £:X-——>Y of
Whitehead

{round finite CW complexes is defined by

N Ky (27 (X))

T(f) = T(f:¢(X) ——C(¥)) €
Wh (1 (X))
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round
A { finite structure on a CW complex X is an eguivalence

round
class of pairs (F,¢;, with F a E finite Cw complex and ¢:F—— X a

homotopy eguivalence, subject to the eguivalence relation

. Ky (Z Iy (X))
(F,6) ~ (F',$') if 1(¢' ¢:F—X—>F') = O €

Whiny (X)) .

The finiteness obstruction theory of Wall [34]) gives:

round
Proposition 1.2 The { finite structures on a finitely dominated

- round
CW complex X are in a natural one-one correspondence with the §

finite structures on the Z(nl(x)]—module chain complex C(i).

[
The mapping torus of a self map f:X—>X 1is defined as usual by

T(E) = Xx [0,1)1/{(x,0) = (£(x),1)|x€X} .

Proposition 1.3 (Ranicki [26]) The mapping torus T(f) of a self map

f:X—> X of a finitely dominated CW complex X has a canonical round
finite structure.
[]
The circle Sl = [(0,1)]/(0=1) has universal cover §l==12 and

1(Sl)=Z.Let z€m +

fundamental group = 1(8 ) = Z denote the generator

such that

z : R—m>R; %X b3 x+1 |

The cznponical round finite structure on the circle

S1 = eOL)el = T(ié.:{pt.}——> {pPt.}) is represented by the bases

Eremgl)r = Z[z,z_l] (r = C,1) with

~1 ~1 ~1 ~0 ~0

g = l-z : C(gl)l = Zlz,z 7] —— C(gl)o = Ziz,z 7} ;e ——>e - ze

’

. . ~ - o 1
corresponding to the lifts eo = {0}, el = [0,1]CR of e ,e .

in particular, Proposition 1.3 applies to the product
X xS1 = T(id.:¥~—>X%), in which case the canonical round finite
structure is a refinement of the finite structure defined geometrically
by Mather [14] and Ferry [8 ], using the homotopy egquivalent finite

CW complex T{fg:Y—>Y) for any domination of X
(Y, f:X——>Y,g:Y¥Y—>X,h:gf =1 X —X )

by a2 finite CW complex Y.
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Given a ring morphism a:A~———>B let
o {A-modules) ——> {B-modules) ; M »———»B@AM
be the functor inducing morphisms in the algebraic K-groups
o, : Ki(A)————*aKi{B) (1=0,1)

which we shall usually abbreviate to a. Gilven a ring automorphism

oA A——m> A let Kl(A,a) be the relative K-group in the exact sequence

l1-a 3 3 l-a
Kl(A)——“-*Kl(A)~"————>Kl(A,a) K {(A) K. (A)
as originally defined by Siebenmann [33] in connection with the
splitting thecrem for Kl(AQ{z,z"l}) recalled in §3 below. By definition

Kl(A,a) is the exotic group of pairs (P,f) with P a f.g. projective

A-module and f € HomA(a,P,P) an isomorphism. The mixed invariant of a
finitely dominated A-module chain complex C and a chain equivalence

f:0,C—>C was defined in Ranicki [26] to be an element
(C,f] € Ky (A, 0)

such that o([C,f]}) = [C] € KO(A), and such that [C,f] = 0O € Kl(A,a) if
and only if C admits a round finite structure (F,¢:F —C) with

o E(a, 0) o F e c F) = 0 € K, (A)

l(
The invariant is a mixture of projective class and torsion, and

indeed for a = 1 : A ——>A

(C,f] = (t(f),[C]) € Ky (A, 1) = K 0

The absolute torsion invariant defined by Gersten [10] for a

A)®K . (A) .

self homotopy eguivalence f:X —>X of a finitely dominated CW complex X

inducing f, = 1 : ™ (X) = 1 ——> 7

T{f) = T(F:C(X)—>C(X)) € Ky (Z{n])

was generalized in Ranicki [26]): the mixed invariant of a self homotopy
equivalence f:X——>X of a finitely dominated CW complex X inducing any
automorphism £, = a : wl(x) = ff e——7 is defined by

(X.£] = [€(X), 0, CX) —C(X)] € Ky (ZIn),0) .

This has image 3 ([X,£]) = [X] e~KO(Z[n]) , and is such that [X,f] = O
if and only if X admits a round finite structure (F,¢:F —X} such that
(6 VEe i F > X > X >F) = 0 € K (Z[r]) .

If X admits a round finite structure {F,¢) then [X,f] = j(1(¢—lf¢))
is the image of (¢ 1£6:F —F) €K (Z(n]) .
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§2. Products in K~-theory

For any rings A,B and automorphism B:B—— B there is defined a
product of algebraic K-groups

R : KO(A)QKl(B,B)—————¢ K, (ABB,1RR) ;

1
[P]@[Q,f:B!Q——tQ]k———a[P@Q,l@f:(l@B)I(PQQ)= PEB,Q-——»P@Q] .
which in the case B = 1 is made up of the products
B : K (A)BK,(B) —> K {ABB) ; [PIR[Q}+——> [PRQ]
B : Ky (A)BK, (B) —— K, (ABB) ; [P]RT(f:Q-— Q) +—>1 (1Bf:PRQ—>PBQ).

The product of a finitely dominated A-module chain complex C and a
finitely dominated B-module chain complex D is a finitely dominated
ARB-module chain complex CRD with projective class

[CBRD] = [CI®(D] € KO(AEB) P

and if f£:8 D——D is a chain eguivalence then the product chain

equivalence 1Bf : C®B,D——>CBD has mixed invariant
[CRD,1Rf] = [C]®[D,f] € Kl(AEB,l&B)
The following product formula is an immediate congseguence.

Proposition 2.1 Let X,F be finitely dominated CW complexes with

nl(X) =7, ﬂl(F) = p, and let £ :F — F be a self homotopy equivalence
inducing the automorphism f, = 8 : 0 - p. The mixed invariant of

the product self homotopy equivalence 1 xf :XxF —s XxF is given by
[XxP,1x£f] = [XIRB[F,f] € Kl(zz{wxo},l%) .

identifying Z{nxp] = Z[n]RZ[p].
[]
In the case §=1: 00— the result of Proposition 2.1 is made up
of the product formula of Gersten [ 9] and Siebenmann [30] for the
projective class

{(XxF] = [X]IR[F] € KO(ZZ{T?XO})

and the product formula of Gersten [10] for torsion
T(Ixf:XxF—3XxF) = [X]BT(f:F—>F) € Kl(Z[ﬂXD]).

If also X is finite the product formula T{lxf) = [XIBT(f) is an
absolute version of the special case e=1:X—X'=X , f_ =1 of the
formula of Kwun and Szczarba [12] for the Whitehead torsion of the
product ex f : XX F w3 X' x F' of homotopy equivalences e : X —3 X',
f:F——>F' of finite CW complexes

Tlexf) = x(X)RT(f) + 1(e)®(F) € Whmxp)
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The product ABB-module chain complex CRBD of a finitely dominated
A-module chain complex C and a round finite B-module chain complex D
was shown in Ranicki [26] to have a canonical round finite structure,
with

T{eRf:CBD ——> C'8D') = [C]@T(f:D—>D"') € K, (ABB)

1
for any chain equivalences e:C—=C',f:D—»D' of such complexes. The
following product structure theorem of [26)] was an immediate
conseguence.

Proposition 2.2 The product X x F of a finitely dominated CW complex X

and a round finite CW complex F has a canonical round finite structure,
with

T{ex F:XxF—m93X'xF') = [X]Bt(f:F—-aF') € K (Z[n](x)xnl(F)}

1
for any homotopy equivalences e:X —=X',f:F—F' of such complexes.
{1
The canonical round finite structure on X xSl = T{id.: X ——>X)
given by Proposition 1.3 coincides with the canonical round finite

structure given by Proposition 2.2.
The product
Ro(Z{n])BK  (Z[p]) ———> K, (Z[nxp])
has a reduced version
Ro(zZ(n])8{tp} —— Wh(rxp) ;
{(PIRT(2g:Z(p)~—2Z[p]) > T(lR2g:P[p] —>P[0])

with {#p} = {il}xoab = ker(Kl(Z[p})———»Wh(C)). we shall make much

use of this reduced version with ¢ = Z , for which {:Z} = Kl(ZZ(Z]) .
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§3. The Whitehead group of a polynomial extension

In the first instance we recall some of the details of the Qdirect
sum decomposition

Wh{nxz) = wmn}eﬁo(zz{n}}@ﬁﬁ(zz[ﬂ)@ﬁ(ﬂ{ﬂ)

obtained by Bass, Heller and Swan [ 2] and Bass {1 ,XI1] for any group

We shall call this the algebraically significant splitting of Wh(nxZ) -
The relevant isomorphism

Wh (X Z2) —————% Wh (1) &K, (2 (r])8NI1(Z [(n])eNil(Z (1))

and its inverse

Bl = (E BT, 5):wh(n) &K, (Z[1])8Ni1l(z (1)) eNi1 (Z (1)) ——> Wh(TxZ)
surjection
involve the split of group rings
injection
e : Zinxz) = 2z, Y 2] ; U oazd—— ¥ ay
j:—co j:—m
3 :z[n]r———>z{n]{z,z°1]; ar——*a (a,ajez[n]).

The split injection —B‘:”RO(Z{M)MWh(an) is the evaluation of the

product }?O(Zz{ﬂ])@Kl(ZZ{?z])——»«»Wh(ﬂxzm {the reduction of

Ko(z[n])EDKl(z[ZZ])-——bKl(Z[anZ])) on the element T (z) €Kl(Z[Z])
B = -B1({z) : Ro(zzm;;h————»wmnxz) ;
[P]!——-—-ﬂ(z:P[z,z—l]M—éP[z,ztl])
If P = im(p) is the image of the projection p = p2 WAL — T b
then

B([P]) = Tpz+l-p:Z(nxz]) —— z[nxzZ]T) € wh(nxZ)

By definition, HI(Z{‘H]) is the exotic K-group of pairs (F,v) with F

a f.qg. free Z!in]-module and veHomZ[n} {F,F) a nilpotent endomorphism.

The split injections E+, Z_ are defined by

— ot
A+ : Nil{(Z{n]))s————3Wh(TxZ) ;

1

(F,Vv)—— 1 (142 .F{z,z-l}-—-—-—)F{z,z"l})
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The precise definitions of the split surjections B,4, need not detain
us here, especially as they are the same for the algebraically and

geometrically significant direct sum decompositions of Wh{nxZ).

The exact seguence

B
€ A N _ o
0 Wh () > Wh(TxZ) ———> KO(Z[n])@Nil(Z[n])@Nil(Z[ﬂ])-*—»O

was interpreted geometrically by Farrell and Hsiang [5],[71]:

if X is a finite n-dimensional geometric Poincard complex with nl(X} =17
and £: M —X xSl is a homotopy eguivalence with Mn+l a compact
(n+l)-dimensional manifold then the Whitehead torsion t(f) € Wh{nxZ)

is such that

T(f) € im(e:W

h(

B

= ker((A+ : wh(NxZ)—————*-KO(Z[W])$ﬁrl(2[ﬂ])®§Y1(ZlW]))
A

if (and for n 35 only if} f is homotopic to a map transverse regular
at ¥Xx {pt.}C Xx Sl with the restriction

g=f] : N = £l (xx({pt.}) — X

also a homotopy eqguivalence. Thus T(f) € coker {e:Wh (n)——Wh{nxZ))

is the codimension 1 splitting obstruction of f along Xx {pt.} cX xSl.
For a finitely presented group 7m every element of Wh(nxZ) is the
Whitehead torsion t(f) for a homotopy equivalence of pairs

(f,9£) : (M, 3IM) ——>(X,3X) xsl with (M,3M) a compact (n+l)-dimensional
manifold with boundary, and (X,3X) a finite n-dimensicnal geometric
Poincaré pair with m,(X) =7, for some ny 5. In this case

1(f) € coker (e:Wh(n)»—> Wh{mxZ}) is the relative codimension 1
splitting obstruction.

The geometrically significant splitting

Wh{mxZ) = Wh(n)@“ﬁo(zz[n])er?i“l(zz[nl)aﬁﬁ(zz[n])

is defined by the isomorphism

BI

By = : Wh(TxZ) ———> Wh(n) @R (Z(n))8Ril(Z[n])eRiT(Z (v ])
by
a_

with inverse
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B{(‘l = (¢ B' B, b_) : Wh(n)@ﬁo(z{n])Gaﬁ(ﬂ(ﬂ])a?m(zl"])—"“h(""z) '
where
B' = -ET(—Z):EO(Z[n])F——?Wh(an) ; [P]y—«-—ﬂ(~z:P[‘z,z-l]~—¢P[z,z-l])
(= 1{-pz+l-p) 1if P = im(p=-p2)} .
€' = g(1-B'B) : Wh(wxZ)— Wh(m) ;

T(£:Plz,2 Y1 —Plz,2 ]) —>T(ef:P—sP) + T(~1:0-—0Q)

with £ an automorphism of the f.g. projective Z[nxZ]-module P[z,z_l]
induced from a f.g. projective Z[n]-module P, and Q a f.g. projective
Z [n]-module such that B(T(f)}) = [Q] e?o(;zm).

Ferry [ 8] defined a geometric injection for any finitely
presented group

B" : Ko(zz[n]b-——» Whinx2Z) ; -1
oS y  Ax-1 1 ¢

(X}t (f= ¢ *(1x-17¢: Y xxst XxST s ),

with [X] € RO(Zﬂﬂ]) the Wall finiteness obstruction of a finitely
dominated CW complex X with nl(X) =7 and T(f) EWh(nxZ) the Whitehead
torsion of the homotopy egquivalence f = Q'l(lx—l}¢:Y——-7Y defined

using the map ~l:Sl———+Sl reflecting the circle in a diameter and

any homotopy equivalence ¢:Y—~—»XXSl from a finite CW complex Y in the
finite structure on Xxs1 given by the mapping torus construction of

Mather [14).

Proposition 3.1 The geometrically significant injection B agrees

with the geometric injection B"

B' = B" : iO(ZZ[ﬂlJ»——~—~awh(an)

Proof: By Proposition 2.2

B"([X]) = [xmr(~1:sl——->sl) € Wh{nxZ) ,

with T(~l:Sl——~>Sl)€ Kl(z{z,z~1]) the absolute torsion. Now —l:sl~-—+51

induces the non-trivial automorphism z+—> z—l of nl(Sl) = <z>,
and the induced chain eguivalence of based f.g. free Z{z,z-l}—module

chain complexes is given by

1 o 1 -1
(-1),¢c(87") : Zlz,z "} ———— Zlz,2 7}
(:ET l ll -z
¢ L ziz, e 22 L@,y

so that
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1 1 - - .
t(-1:st sty = t(eziziz, 2 i ——ziz,2 ) € K (Zlz,z2 '])

Thus
B" = -RT(~z) = B' : io(z[n])»————»wh(nxm
]

Ferry [ 8] characterized im(B") € Wh{nxZ) as the subgroup of the
elem$nts TE€Wh(mxZ) such that (pn)!(w) = 1 for some n 3y 2, with
(pn)‘ : Wh(nxZ) ——Wh(nxZ) the transfer map associated to the n-fold
covering of the circle by itself

1

P, S ——->Sl;z»———>zn

See Ranicki [27] for an explicit algebraic verification that

im{B')C Wh{nxZ) is the subgroup of transfer invariant elements.

The algebraically significant decomposition of Wh{nxZ) also has a
certain measure of geometric significance, in that it is related to the
Bott periodicity theorem in topological K-theory ~ cf. Bass [1 ,XIV].
More recently, Munkholm [15] identified the infinite structure set
A% x IRZ) = ker(e:?o O(Zz[ﬂ})) (X compact, nl(X) = n) of
Siebenmann [32] with the lower algebraic K-groups derived from the

(Z[TxZ) ) ——=> K

algebraically significant splitting of Whi{nxZ) by Bass [1 ,XII] -

to be precise A(X x R°) = (K BNK (ONK ) (Z[7])

-1
Both the injections §,§':?O(Z[n})r—~—>wh(anZ) can be realized
geometrically for a finitely presented group n, as follows. Given a

f.g. projective Z[n]-module P let p = p2 € Hom {z[n}‘,zzin}f) be a

Zir}

projection such that P = im(p). Let K be a finite CW complex such that
nl(K) = 1. Por any integer N3 2 define the finite CW complexes

. . 1 /=N ON+1

X = (KxS* vVs )umd_p(be )

r r
1 N N+1
Ll -
X' = kst v Vehu o o (UetT

r x

such that the inclusions define homotopy eguivalences
KxSl—-)X , KxSl-——-——*X'
Proposition 3.2 The injections B,B' are realized geometrically by

B : KO(Z{“])P’—“}W}')(TTXZ) ; [P]v—-——»(-)NT(KxSl —>X)

B' ¢ R (Z[7]) ——%h (7 x Z) ; (P] — (=) Nt (K x 5T —> X"}

Nevertheless, B' is more geometrically sianificant than B.



333

{Following Siebenmann [21] define a band to be a finite CW complex X
eguipped with a map p:X—-—»Sl such that the pullback infinite cyclic
cover X = p*(R) of X is finitely dominated. For a connected band X the
infinite complex X has two ends e+, ¢ which are contained in finitely
dominated subcomplexes X', X € X such that X'nX is finite and

X*UX = X. The finiteness obstructions are such that

— —+ —_ ~ =

[X] = (X7 + [x]) € KO(Z[TI]) (n = -nl(X)) -
For a manifold band X the finiteness obstructions [3?1] GRO(Z [(n]) are
images of the end obstructions [ei] eio(zz[nl(gi)]) of Siebenmann [30].

For any finitely presented group 7 the surjection B:Wh(nxZ)—=EK _(Z[n])

0]
is realized geometrically by

BIT(£:x—>Y)) = (¥7) - (X'] e Ky(z(n])
with T(f) € Wh(mxZ) the Whitehead torsion of a homotopy equivalence of
bands f:X—=Y with T (X)) = nxz, nl(i) = 1. For the bands used in
Proposition 3.2
X = -X1 = X% = -7 = )Ny,
T + T - + =
[(KxS87) ] = [(KxS87) ] =fKxR ] = [K] = O € KO(Z[TI]) ).

We shall now express the difference between the algebraically and
geometrically significant splittings of Wh(nxZ) using the generator
1(-l:Z—2Z) € Kl(ZZ) (= 22) and the product map

@ = -BT(-1) : K (Z[7))——Wh(m) ; [P)+—> 1(-1:P— P)

If P = im(p) for a projection p=p2 :F——F of a f.g. free
Z[v]}-module F then the automorphism 1-2p:F ——F is such that

W([P]) = 1(1-2p:F ——F) € Wh(m).

Proposition 3.3 The algebraically and geometrically significant

surjections €,¢€' :Wh{wvxZ)—>»Wh(n)
- differ by
injections B,E‘:KO(ZM])»——)wh(nxz)
B - w
e' - ¢ = wB : wh(ﬂxz)-——»xo(Z[n])—"Wh(n)
B' - B = ew s R (ZIn]) —% 5Wh(1)——sWh (1xz2) .
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In particular, the difference between the algebraic and geometric
splittings is 2-torsion only, since 2w = O.

It is tempting to identify the geometrically significant surjection
€' :Wh(mxZ)———>Wh(7m) with the surjection induced functorially by the
split surjection of rings defined by z+——-1

oo . @ .

N ozlmtxz] =zl iz, 2 Y ——— 7z (1] ; X ajz] »——y): aj(-l):’ "

j=-e j=-=

and indeed
e'] = nl @ im((e §>:wnmeﬁo(z:[mp———»wmnxz))

= im{{e B} :wh(ﬂ)$i0(z[n}}>——>wh(ﬂxﬂ))———> Wh(m}

However, in general

e'| #nl : im((a, 3_):NIl(Z[v])@NIL(Z (n]))—s Wh(TxZ))

—Wh ()
so that €' # n : Wh(mnxZ) ———>Wh(m}.

For an automorphism g:nm—sn of & group = Farrell and Hsiang [ 6}
and Siebenmann [33] expressed the Whitehead group of the g-twisted
extension ﬂxam of m by Z= <z> {(gz = za(g) € nxaz for g€ n) as a
natural direct sum

Wh(mx Z) = Wh(m, @) @Nil(Z[7], ) @NIl(Z 7], a 1)

with Wh(m,a) the relative group in the exact sequence

1-a 3 3 l-a
Wh (m) wWh(m) Wh(r,a) —R

(the reduced version of the group Kl(zz{n],o:) discussed at the end of §l)
and ﬁ(zm,aﬂ) the exotic K-group of pairs (F,v} with F a f.g. free
Ziygl-module and v € Homzz"]((ail} F.F} nilpotent. Given a f.g. projective

Z{n]-module P and an isomorphism feHomZ[n] (a,P,P) there is defined a
mixed invariant [P,f) €Wh(n,a) with 3([P,f]) = [P] € io(z[ﬂ]).
As in the untwisted case o = 1 there are defined an algebraically

significant splitting of Wh(nva) , with inverse isomorphisms
B
\a_
] o -1
Wh{nxaz)w Wh{n,o)®Nil(Z{n],a)®NL {Z[r],a 7} ,
(B 3, 3)

and a geometrically significant splitting of Wh(nva) with inverse

isomorphisms
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BG
A+
A- o~ e -1
Wh(nxaz)w Whin,o)®Nil{Zin},0)®Nil(Z{n),0 ) .
(B' A+ b8}
with
B Wh(n,a)y-——»Wh(nxazﬂ : [P,f]k-—>T(zf:Pa[z,z-l]«——#Pa[Z,Z_l])
gl

: Wh(ﬂ,a)y————9Wh(ﬂvaH B (P,f}k———»?(-zf:PQ[z,z-l]———»Pu{z,zdl})

- ey +1
A+ s Nil(ZzZ[n),a” ") »—=>Wh(nx _ZZ) ;
(P,v)r——-»T(l+zilv:PQ[Z,2~l]-‘~—>Pﬂ{zlz_l])

identifying z[nxam] = Z[n]a{z,z_l].The automorphism

’

Q : Whi{%,a) ————3 Wh{n,a) ; [P,f}lt—v [P,~-f]

is such that 92 = 1 and

B' = BR : Wh(m,a)r————3Wh(nx %)
B' = QB : Wh(mx Z)~———»Wh(m,a) .

In the untwisted case g = 1 X 2 is just the product 7 x Z, and there
is defined an isomorphism

n)aﬁo(z[n])—w—-»wh(w,l) ;

’

(1{f:P—>P), {Q])—— [P, £} - [P,1] + [Q,1]

with respect to which

1 w
Q= ( ) : Wh(n)@r?O(zzm)..*—..»Wh(n)eﬁ (Z171)

o 1 0

The algebraically (resp. geometrically) significant splitting of
Wh(nxaz) for o =1 correspends under this isomorphism to the
algebraically (resp. geometrically) significant splitting of Wh(mxZ)
defined previously.

A self homotopy eguivalence f:X—> X of a finitely dominated CW
complex X has a mixed invariant

(X,f] € Wh(n,a)

with o = £, : n = 7, (X) ——> 7, such that 3([X,f]) = [X] € Ky(zinl),
a reduction of the mixed invariant [x,f]GKl(Z[n],a)described at
the end of §1. Let f_l:X———**X be a homotopy inverse, with homotopy
e:f 1fs 1:Xx——>X. The mapping tori of f and ¢! are related by the

homotopy egquivalence
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Ut TOETH) —T(f) ; (x,t)—— (e (x,t),1-t)

inducing the isomorphism of fundamental groups

Up ¢+ T (TUETY)) = 0% ~1Z s (T()) = " Z

g (€ 1) ——>qg , z»——»z-l

The torsion of U with respect to the canonical round finite structures
given by Proposition 1.3 is

W) = rzFic®) 2,2t ——e®) ez M) e Kz fz2 7t
so that:

Proposition 3.4 The geometrically defined split injection is given

geometrically by

B’ : whin,a)r—s Wh(ﬂxaz) : (X,f}r««——>T(U:T(f—l)———7T(f)}

{]
Proposition 3.3 is just the untwisted case a=1 of Proposition 3.4,
with £=1: X—X and

U=1x-1: T(1:X—»X) = XxS'——>7(1) = xxs" ,
-1 Sl = Il'R/ZZ—~—~»Sl ; t——1-t
The exact sequence
l-a €
Wh(m) » Wh(m) ‘Wh(ﬂva)
3B
’5+
- = o o3 -1
— KO(Z[n])@Nll(z[ﬁ],d)®Nll<Z[ﬂ],a
{l-a O 0) €
.._.«.._..____).~ I .
KO(Z[W])*—————*KO(Z[HXOZ])
(¢ = Bj = B'y , 3B = 3B")
has a geometric interpretation in terms of codimension 1 splitting
obstructions for homotopy equivalences £:M"—>X with nl(X) = x Z
(Farrell and Hsiang [5),{71)), as in the untwisted case a = 1.

The obstruction theory of Farrell {4 ] and Siebenmann [33] for
fibering manifolds over Sl can be used to give the injection
E':io(zlﬂ])»—~w+wh(ﬂXZ) a further degree of geometric significance,
as follows.
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Let p:X~—— X be the covering projection of a regular infinite
cyclic cover of a connected space X, with X connected also. Let
g:?-——*? be a generating covering translation, inducing the

automorphism ¢, = a : ﬂl(i) = f ——— 1. The map
T( ) ——=> X ; (X,t}+——>3DpI(X)

is a homotopy eguivalence, inducing an isomorphism of fundamental
aroups vl(T(c)} = nxaE ————»nl(x). If X is a finite CW complex and
X is finitely dominated the canonical (round) finite structure on T(g)

given by Proposition 1.3 can be used to define the fibering obstruction

${X) = 1{T(g)—> X} € Wh(nxQZ)

This is the invariant described (but not defined) by Siebenmann ([31].
1f X is a compact n-manifold with the finite structure determined by a
handlebody decomposition then ¢(X) = 0 if (and for n3 6 only if) X
fibres over Sl in a manner compatible with p, by the theory of
Farrell {4 ) and Siebenmann [33].

Given a finitely dominated CW complex X with ﬂl(X) = 1 let
Y —rX ><Sl be a homotopy eqguivalence from a finite CW complex Y
in the canonical finite structure. Embed Y €SN (N large} with closed
regular neighbourhood an N-dimensional manifeld with boundary (Z,3Z),
and let (Z,3Z) be the infinite cyclic cover of (2,52} classified by
the projection
l{Z} = 7,(82) = 'nl(XxSl) = XY —N 2 .
Thicken up the self homotopy equivalence transposing the Sl—factors

1 1 1 1

I1xT ¢ %Ax5 x8 emme—» X x 8 xS ; (X,5,t)+—>(x,t,5)
to a self homotopy ecuivalence of a pair
(£,3£) : (2,32) x 8* ———>(2,32) x 5"
inducing on the fundamental group the automorphism

TXL XD ————37 x T xZ ; {48, £)—— (X,1,5)

transposing the Z-factors. Thus (f,3f) lifts to a Z-equivariant
homotopy eguivalence

(£,3F) : (Z,32) xS* ———> (2,32) x R .

In particular, this shows that 32 is & finite CW complex with a
finitely dominated infinite cyclic cover 3Z.

Proposition 3.5 The geometrically significant injection is such that

B* : 'Ro(zz{n}>>———->wr1<nxz> i (X ——$(32)



338

§4. Absolute L-theory invariants

The duality involutions on the algebraic K-groups of a ring A

with involution :A——>A;a——a are defined as usual by

* KO(A)———>KO(A) ; [Pl+——>»[P*}] , P* = HomA(P,A)

* . Kl(A)—————éxl(A) 5 T{f:P —>P) t>T (f*: P* —>P*) ,

with reduced versions for ?O{A). ?1(A). We shall only be concerned
with group rings A = Z[7] and the involution g = w{g)g-l (g€ )

determined by a group morphism w: 7

2%, = {#1} , so that there
is also defined a duality involution *:Wh(m)-——Wh({m).

{projective class finitely dominated
The of a n-dimensional
Whitehead torsion finite
geometric Poincare complex X with ﬂl(X) =7
[(X] = [C(X)) € Ky(z[n])

~ -k o~
T(X) = T{CE)" ——>C(X)) € Whim)
satisfies the usual duality formula
.

[X]* = (-} [X] € K (&zZ[n])

o}
T(X)* = (-)71(X) € Whin) .
The torsion of a round finite n-dimensional geometric Poincaré complex X

T——c(®)) € Ky (Zn])

is such that

TX)* = ()" x) € Ky (z(n)) .
The Poincaré duality chain equivalence for the universal cover
§1 = Rof the circle Sl is given by

R o et -1

Cc(S™) r Ziz,z2 7] e———— Zz,z 7]

{Sl} n- i ll -2
1~z ]
c(sh s zlz, 2 ) ————— 7z, ),

so that Sl has torsion

rsh) = 1(st) a—icEh (sl

)

T(-Z:Z[z,z"l]—-w—*zz[z,z—l])
-1
€ Ky (zlz,z 71) .

This is the special case £=1:X= {pt.}—>{pt.} of the following
formula, which is the Poincaré complex version of Propositions 1.3,3.4.
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Proposition 4.1 Let f:X——X be a self homotopy eguivalence of a

finitely dominated n-~dimensional geometric Poincaré complex X inducing
the automorphism f, = «a : nl(X) = 1 ——a T and the Z{n]-module chain
equivalence T : a,C{X) ——C(X). The mapping torus T(f) is an
(n+1)~dimensionai geometric Poincaré complex with canonical round
finite structure, with torsion

UT(E)) = t(-2E:C(R) 2,2 ) ——C(X) [z,27)) € K (@ Ia] (z,270)) .
{1
For £=1: X——>X the formula of Proposition 4.1 gives
T xSY) =tz 0 R [z, 2 Y ——C (R 2,2 )
= xist(sh) = B(1%)) € K (Z(n)(z,2 1))

with (X}EIKO(%IIQ) the projective class and B' the absolute version

B' ¢ Ky(ZIn)p—— K (Zln]lz,2 })) ;

[P] ey T(‘ZZPiZ,Z‘l}~———+P{Z;Z—ll)

(also a split injection) of ﬁ':ﬁo(z[n])>———+Wh(an).

For a finitely presented group n every element x€ ﬁo(zin])is
the finiteness obstruction x = [X] of a finitely dominated CW complex
X with nl(X) = T, by the realization theorem of Wall [34). We need

the version for Poincaré complexes:

Proposition 4.2 (Pedersen and Ranicki {18]) For a finitely presented
group T every element x € ?O(Z[w]) is the finiteness obstruction
x = [X] for a finitely dominated geometric Poincaré pair (X,3X)
with nl(X) = 7.

3
The method of {18] used the obstruction theory of Siebenmann [30].
The construction of Proposition 3.5 gives a more direct method, since
(z,32) is a finitely dominated (N-1l)-dimensional geometric Poincaré
pair with prescribed [Z] € FO(Z[n]). (Moreover, if the evident map

of pairs (e,Se):(Z,BZ)«———?Sl is made transverse regular at pt. € Sl

the inclusion

(M, 5M) = (e,3e) H({pt.}) ——> (2,32)
lifts to a normal map

(f,b) : (M,3IM)~———>(Z,22)

from a compact (N-l)-dimensional manifold with boundary. This gives a
more direct proof of the realization theorem of [18] for the projective

surgery groups Lf(n), except possibly in the low dimensions).
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By the relative version of Proposition 4.1 the product of a
finitely dominated n-dimensional geometric Poincaré pair (X,2X) and
the circle S1 is an (n+l)-dimensional geometric Poincaré pair

(X,3X) xSl = {XxSl,b)(xSl)

with canonical round finite structure, and torsiocon

1 1 -1

T{X x8%,3X x8%) = 1t{~2:C(X) (2,2 -1
1

]—C(X)lz,2 7))

(x1et(sh) = B (%) € Ky (@(n](z,2 1))

it

Combined with Proposition 4.2 this gives:

Proposition 4.3 The geometrically significant injection is such that

B' : KO(E{ﬂ])r-——~>Wh(ﬁxzn ;o [X) e T{X xsl,ax xsl} ,

for any finitely dominated geometric Poincaré pair (X,3%) with nl(XJ =7
(]

In §5 this will be seen to be a special case of the product formula

for the torsion of {(finitely dominated) x {round finite) Poincare

complexes.

Given a *-invariant subgroup SC K (Z[7]) (resp. SEWhin)) let

O
S {n ;0) be the cobordism group of finitely dominated (resp.

symmetric
finite) n-dimensional Poincaré complexes over Z{n]
guadratic

(c,e€Q™(C)) -
with finiteness obstruction (C] € Sg;KO(E[r]) (resp.
(C,veQ (C))
n_*
%T(C,®) = T(y:C ——C)
Whitehead torsion ok € SECWh(mn)).
T(C,¥) = T((1+TWO:C“ e —h

A finitely dominated (resp. fimite) n-dimensional geometric Poincaré

complex X with nl(X) =7 and [X] €S (resp. T{X) €5) has a symmetric
signature invariant
5 n
* =
US(X) (C(X),9) € LS(“)

) PO
with ¢>0= [X) A= C{X)

of such complexes has a quadratic signature invariant

~—— C(X), and a normal map (£,b) :M s X

cS(£,b) € LY (m)

such that (1+T)0§(f,b) = Gg(M} - cg(X). See Ranicki {22],[23) for the

details. In the extreme cases § = {O},RO(ZZ[ﬁ]) (resp. {0} ,wWh(m))
the notation is abbreviated in the usual fashion
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"

E
i

A
{0)eR (Z [n])

{O¥eR,y(zZ (7))

n

341

n n _ .n
Lp(n} g L{O}QWh(n)(“> = Ls(ﬂ)

1

{0}&wWh () -
L2 (m) LLD (m) = L>(n)
n _ .n
{m) LWh(ﬂ){ﬂ) = L {m)
@ = M =

In particular, the simple guadratic L-groups Lf(n) are the original

surgery obstruction groups of
obstruction.

Wall [35], with o>(f,b) the surgery

symmetric .
The torsion of a round finite n-dimensional Poincare
guadratic
(C, ¢
complex over Z[n] is defined by
(C.¥)

T{C, ) = 1¢
T(C,y) =

T (l+T)lj)O:C,‘

and is such that

T(C, )%
T(C)*

Given a *=-invariant subgroup Sé?Kl(Z[n]) define the roundz

(..

¢O:c“‘*——-»c:) € K, (Z(n])

n_*
——C) € ky(zZ[n])

yPric,e)
€ K, (Z[n])
Y

{ symmetric

guadratic
(Lrs
L~group erS ) (nz 0) to be the cobordism group of round finite
symmetric {C,¢)
n-dimensional Poincaré complexes over Z{m] with
guadratic (C,v)
T(C,0)
torsion [ S<:'Xl Z[n}} . See Hambleton, Ranicki and Taylor {11}
T{C, )

for an exposition of round L-~theory. We shall only be concerned with

the round symmetric L-groups L*

n _.n
Lep(m) = LrKl(Zth])

The Rothenberg exact seguence

>Li(n) ,Lg(n)———-—»ﬁ“(z

s here, adopting the terminology

(M), LD (m) =Ll o (m) .

r{tn}
for the quadratic L—-groups

s
2:Wh(ﬂ))—————»Ln_l(n)—~—~9 e

has versions for the symmetric and round symmetric L-groups which fit

together in a commutative braid of exzct sequences
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Wh(n})

/
\

\ /

K=
//’"w"—~—‘\\ﬂ
(m)
Ln—l
\\““mm_ﬁ_—v~“’2’
with the maps 1 (resp. x) defined by the Whitehead torsion (resp. Euler

Ly tmy = Ly (%)

characteristic}. In the case Wh{m) =0 the L-groups are
LY (m) = L*(m)
h s

L;(")

abbreviated to The L-groups of the trivial group 7 = {1} are
L* (m)

given by
Z zZ o]
z V7Y /A 1

Ay =4 %, Man =4 2% ifnz] (mod 4) .

o 0 2
0 0 3

with isomorphisms

k({l}) —Z ; (C,9)——> signature(C,¢)

L —— 2z, 5 (€ o) > deRhan(C,8) = X, (CiZ,) + xy (CiQ)
k({l})———>zz; (C,¢) ———> ¥ (signature(C, o))

4k+1

Ly TN =287, ; (C.0) 7 (X, (CiZ,) Xy (C5D))

(See [11] for details. The F-coefficient semicharacteristic of a

{(2i+l)-dimensional Z-module chain complex C is defined by

I Lo

Xy, (CiF) (—)rrankFHr(C) ez ,

r=0
for any field F).

The torsion of a round finite n-dimensional geometric Poincaré
complex X with g, (X) = « is the torsion of the associated round finite

n-dimensional symmetric Poincare complex over Z{n] (C(X),4)
T(X) = T(CX),8) = Ty = XIn- : C®HT ——C(®) € k(=] .

If Sg;Kl(z[n}) is a *-invariant subgroup such that 1(X) €S the round
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symmetric signature of X is defined by

_ n
ot (X) = (C(X),¢) € LTg(m)

n

rh(11)

In the case § = Kl(z[n}) {resp. {fm} ) this is denoted o;h(X) €L

} n . . _ n
{(resp. o;s(X) €Lrs(n)), and if alsoc Whin) = O by c’;(X) ELr(n).

wWe shall be particularly concerned with the round symmetric
signature of the circle Sl

1

sty = (c(&?

o ). 4) GLi(ZZ) )

*
r
The image of the Z[z,znl]—module chain complex

1 - 1-z -1
C(8) : miz,z ~) ———— 2iz,2 "}

under the morphism of rings with involution

e : Z[Z]) = ziz, 2 Y Z; ozh » 1 - -1
-1 (z =2z 7)
n: Zl&Z = Zlz,z 7) 322 1 2+ » -1
is the Z-module chain complex
~1 o
JE!C(E Yy ¢ B e——— 7
Inecsh cz—2 5z
(’(x%(C;ZZ),x%(C;@)) = (1,1)

with mod2 and rational semicharacteristics

Ll

3 . .
Lixy (DiZ5) 1 x, (D:@)) = (1,0)

so that c;(sl) eLij{ZZ) has images

eorish = a4,

: 1 € Lr({l}) = 22@22

n, oy (87 = (1.0}
The algebraic proof of the splitting theorem for the gquadratic L-groups
Li(nxza) = Li(n)&L};_l(r) discussed in §6 below can be extended to prove

analogous splitting theorems for the symmetric and round symmetric
L~groups

n-1

n. _ .n n-1
Ls{nxz) = LS(‘H)@Lh

n - n
(), Lp (mxZ) = L] (m)@L " (m) .

Thus L] @) = LI((1her’ ({1} = z
need this computation here.

2@22822, , although we do not actually
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§5. Products in L-theory

symmetric .
The product of an m-dimensional Poincare complex over A
guadratic

(C,¢) and an n-dimensional symmetric Poincaré complex over B (D, 8) is

symmetric

an (m+n)-dimensional { Poincaré complex over ABB
guadratic
(C,o)R(D,6) = (CRD, ¢RE) ,

allowing the definition (in Ranicki [22]) of products in L-theory of
the type

MareL” (8) —— L™ M (ame)

n
Lm(A)QL (B)‘————i'Lm+n

(ARB)
We shall only be concerned with the product LmQLn -—éLm+n here, with
A = 2Z[n],B = Z|[p] group rings, so that ARB = Z[nxp].

finitely dominated
The product of a m-dimensional symmetric (resp.
finite
{finitely dominated
quadratic) Poincaré complex over Z[r] (C.,¢) and a :
Lfinite
n-dimensional symmetric Poincaré complex over Z{p] (D,8) is a

finitely dominated
(m+n)-dimensional svmmetric {(resp. guadratic)
finite

projective class
Pcincaré complex over Z[nxp] (C®D,¢®6) with
Whiteneed torsion

[C8D] = [CiB[D] € KO(Z(nxQ])

T(CRO, ¢B6) = 1(C,8)8x(D) + x(C)®T(D,E) € Whirxp}

The following product formulae for geometric Poincaré complexes are
immediate conseguences.

finitely dominated
Proposition 5.1 The product of a m-dimensional
finite

geometric Poincaré complex X with m, (X) =

finitely dominated
l( m and a

finite
n-dimensional geometric Poincaré complex F with ﬂl(F) = 0 is a

finitely dominated
(m+n)-dimensional geometric Poincaréd complex X x F
finite
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projective class
with

Whitehead torsion
[XxF) = [X)BIF) € KO(Z{nxp})

T(XxF) = T(X)Bx(F) + x{(X)B(F) € Whinxp)
scRyzinl) (TeR (ziel)
Given *-invariant subgroups '
S € Wh(m) T € Wh(p)
UCRO(Z[TTXO]) [PRQIEU [P1E€S, [Q]ET
such that for
UgWhi{nxp)

T(f)B1,1B1{g) €U t{f) €5, 1{g) €T

there is defined a product in L-theory

.S n U . -
g : Lm{n}ELT{o)“———'*Lm+n(wxp) 3 (C,)BI(D,8) " {CBD,yRS)

with the following geometric interpretation.

Proposition 5.2 (Ranicki [23]) If (f,b):M—>X is a normal map of

finitely dominated
m-dimensional geometric Poincaré complexes with

finite
M} - [X} engOmm)

nl(X) = 7 and , and if F is a
T(M) ~1(X) €5 €Wh{n)

finitely dominated
n~dimensional geometric Poincaré complex with

finite

[IrleTeR (zle))
wl(F)= o and 4 , then the guadratic signature of the
[ T{F) €T &Wh(p)

finitely dominated
product normal map of {(m+n)-dimensional geometric
finite

Poincaré complexes

(gecy = (£,b) x1 ¢ Mx P =3 X xF
is given by
U S U
oxlg.c) = o*(f,b)ﬂo;(F) € Lm+n(nxo) '

the product of o (£,b) € LS (n) and of(F) € L] (o).
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The methods of Ranicki [26] apply to the products of algebraic
Poincaré complexes, giving the following analogues of Propositions 2.2,
5.2:

Proposition 5.3 1) The product of a finitely dominated m-dimensional

quadratic Poincaré complex over Z[n)] (C,y) and a round {inite
n-dimensional symmetric Poincaré complex over Z[p] (D,8) is an
{m+n)~dimensional quadratic Poincaré complex over Z([nxpl (CBD,y88)

with canonical round finite structure, and torsion
T(CR®D, y®E} = [CIBT(D,8) € K y{(Zlnmxp])

the product of [C] €K . (Z[=]) and T(D,@)GKI(Z{Q]).

O
ii) Given *-invariant subgroups SCEO(Z[TT])I TCK (Z[p)) ., U Wh(mxp)

such that SBT € U there is defined a product in L-theory

. 1S n U
R : L (n)@LrT(p)-—————éLm+n

m (nxp) 5 (C,y)R(D,8) —> (CRD, y&O)

If (£,b):M—>X 1is a normal map of finitely dominated n-dimensional
LX) =7 and [M] - [X]€scK (Z(n]),
and if F is a round finite n-dimensional geometric Poincaré complex
with “I(F):O and T(F}e’fgxl(z[pj)then the product map of

(m+n) -dimensional geometric Poincaré complexes with canonical (rournd)

geometric Poincaré complexes with r

finite structure
{g,c}) = (£,b) x1 : MxF——> XxF

has quadratic signature

U - - S * U
0a(g,c) = 0y (£,0)0% (F) € Lo (7xp)
the product of 0 (f,b) € LS (1) and o*_(F) € L' (p).
* ! m rT T

t]

An n-dimensional geometric Poincaré complex F is round simple

if it is round finite and
T(F) € {xpo} €K {Z[p]) (o = my(F))

so that T(F) = O € Wh{p) and the round simple symmetric sigaature

n . .
O;S(F)Gl%s(o) is defined.

finite
Proposition 5.3 shows in particular that for a round
simple

n-dimensional geometric Poincaré complex F product with the round
n

finite c;h(Eﬁ € Lrh(p) ) )

symmetric signature defines a morphism of

simple or (F) eL] (o)
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- . P h

Eo;h(F) : Lm(n)———-—+Lm+n(nxp)

~Bo* _(F) : LY (1) —— L5, (7xp)
rs S Tm m+n

In the simple case these products define a map of generalized
Rothenberg exact sequences

. P m) ——1P(m) A (2 R (Z 1)) L) () —— ...
- P - - *
@O* Ea*h(F) 81 (F) QOYS(F)
A\
L (mxo)—> ;+n(nxp)—$ﬁm+n(22;\‘ih(ﬂxc))——‘——)L?Hn_l (mxp) —>. ..

with T(F) € {2p} ¢ Kl(Z[D}). The map of exact seguences in the appendix
of Munkholm and Ranicki [16] is the special case F = Sl. Moreover,
the split injection

am+1

B o= —mrsh) : ™z o(ZIn))) ——— Bz wh (1xz) )

2' 27
was identified there with the connecting map § arising from a short

exact sequencc of Z[Z.,]-modules

2}

O——-—-—-)Wh(nxz)—-—-——%wmp!)—————@ﬁ (z[n})———>0 ,

o}
k]

with Wh{p’) the relative Whitehead group in the exact segquence of

transfer maps

~1 =
p1=0 ! -~ pO=O ~
Whi{n} ~—————>Wh{mx2Z) Whip’) KO(Z{W])——-————+KO( ["xZ1)
associated to the trivial Sl-bundle
p = projection
Sl-———~w—+ E = K{(n,1l) x 5l B = K(wm,1)

and Zz acting by duality involutions. The relationship between transfer
maps and duality in algebraic K-theory will be studied in Lick and

Ranicki [13] for any fibration F——E —F 5 B with the fibre F a
finitely dominated n-dimensional geometric Poincaré complex. In particular,
there will be defined a duality involution *:Kl(PE}—M—) Kl(pl') on the

1
relative K-~group Kl(p') in the transfer exact sequence
1

133 !
Ky (Z{n (B} ]) —= K (Z [T {E)])— K, (P7)

1

p
0
'—)KO(Z[“l(B)])_“__)KO(Z[“;L(E)]) '
as well as assorted transfer maps pZ:Lm(nl(B))»v—; Lm-{»n(“l(m} in

algebraic L-theory. If F is round simple and wl(B) acts on F py self
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equivalences F——F with 1 = O € Wh(n,(E)) (e.g. if p is a PL pundle
1

with a round manifold fibre) then there is also defined a transfer

exact segquence

ot
Py !
Wh(m,(B)) — =5 Wh(, (E)) — > Whi{p')

] '
with a duality involution *:Wh{(p ' )——Wh(p ) on the relative
Whitehead group. The connectinag maps ¢ in Tate Zz-cohomology arising

from the short exact sequence of Z[Z.,]-modules

5!
i i

1
O————*coker(?i)—————*Wh(p')—————+ ker(pé)~———>0
and the transfer maps in L-theory together define a morphism of

exact sequences

h ker(ﬁé) ~m ~! h
.l { -
.7————>Lm(n%———+Lm (m) —>H (ZZ,“er\po))————*Lm_l(n)————»...
! ! !
P P $ p
(51 im(B)
Py h cm+n ! , P
. ~1 -
.———»Lm+n (H)——*Lm+n(ﬂ)———+H (Zz,coker(pl)) Lm+n-l (iy—...
(m = 7,(8B), o= ™ (ED)

In the case of the trivial fibration

p = projection
Fe————>F = BxF B

(with the fibre F a round simple Poincaré complex, as before) the
algebraic K-theory transfer maps are zero
1
pi = -R[F}] = 0 : Ki(ZZ(rr])———>Ki<Z{vxo])

(i=0,1p = Trl(F))

-~
so that pi =0. Also, the algebraic L-theory transfer maps are given
by the products with the round symmetric signatures
h

T = - . LP - s :

P Ec;h(F) : Lm(ﬂ) Lm+n(rxp)
[ . .+h s

p = &O;S(%‘) : Lm(T')—> Lm+n(ﬂxo) .

and ¢ is given by product with the torsion T(F) € {#p}¢ Kl(z[o})

§ = -®T(F) : 8™z ;R (zin])) —— A" Nz, ;wh(nxp))
2iKg 2

as in the case F = Sl considered in [16].
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§6. The L-groups of a polynomial extension

There are 4 ways of extending an involution ar—> a on a ring A
to an involution on the Laurent polynomial extension ring A[z,z—l],
sending z to one of z,z—l,—z,~z'l. In each case it is possible to
express L*(A[z,z-l]) (and indeed L*(A[z,z 1})) in terms of L, (A), and
to relate such an expression to splitting theorems for manifolds
- see Chapter 7 of Ranicki {24] for a general account of algebraic
and geometric splitting theorems in L-theory. Only the case

A=z , z=271

is considered here, for which A{z,zhl] = Z[n][zyz_l).

The geometric splittings of the L-groups L, (nxZ) depend on the
Wall [35)]

realization theorem of Shaneson [29] , by which every

Pedersen and Ranicki [18]

Li{n} simple
element of L:(n) (n 35, n finitely presented) is the finite
Lg(n) projective
o5 (f,b)
rel? surgery obstruction oi(f,b) of a normal map
oPif,b)
(f£,b) : (M, IM)— (¥X,3X)

from a compact n-dimensional manifold with boundary (M,dM) to a
simple

finite n-dinensional geometric Poincaré pair {X,34)
finitely dominated
eguipped with a reference map X=———=Ki{7n,1), and such that the
simple

restriction §f = f| : §M——> X is a - homotopy egquivalence.

A morphism of groups
¢ N oe—]]

induces functorially morphisms in the L-groups, given geometrically by
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’

¢, : Litm——1lm ;

(£.b)
a3 (M, oM) > (X, 5X) K{n,1))

q (£,b) ¢
T g (M, M) > (X, X} =K {n,1) ———>K (I, 1)}

(g = s,h,p) .,
and algebraically by

¢, + LI ——13m ; od(f,b)——z (MY,  oi(f,b)

Z[n)

In general ¢, will be written ¢.
The geometric splitting of Shaneson [29]
L¥(nxz) = LS(meL’_ (n)
n n n~-1

was obtained in the form of a spiit exact sequencc

c B

o —> Li(n)—ww———ma'Li(nx Z) ———~————+Lh

N

with ¢ the split injection of L~groups induced functorially from the
split injection of groups e:m»—>7 x Z . The split surjection B was
defined geometrically by

B : L;{nxz)——-———»Lﬁ’l(n) ;
s (£,0) 1 1
05 ((M,3M) 5 (X, 3X) xS ——> K(5,1) x ST = K(1xZ,1))

e — 2 ex) —— k(1010
using the splitting theorem of Farrell and Hsiang [51,[71] to
represent every element of L:(WXZ) as the reld simple surgery
obstruction Gf(f,b) of an n~dimensional normal map
(£,5): (M,dM) ——>(X,¢X) x S* with (X,X) a finite (n-1)-dimensional
geometric Poincaré pair, such that f is transverse regular at
(X,6%) x {pt.} C(X,dX) x Sl with the restriction defining an
(n—-1)-dimensional normal map

(g.c) = (£,0)] & (N,aN) = £ 1((X,3%) x {pt.}) ———> (X,2X)

with 3£:3M~»3X x Sl 2 simple hcmotopy equivalence and 3g:gN—— 3% a
homotopy equivalence. There was also defined in [29]) a splitting map
for B
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= h
B' ¢ Lo (np——3L (nx Z) ;

h (£,b)
Oy ({M M) = (X,3X) —> K(n.,1))

1 (f,by x1

5 05 ((M,3M) x S —————— (x,2%) x '

—— K (n,1) x ST = K(nxZ,1))

(= o?(f,b)@o;(sl) by Proposition 5.3 ii))

Let s':Li(HXZ)———q)Li(ﬁ) be the geometric split surjection determined
by €,B,B', so that there is defined a direct sum system

€ B
s ——— ey & J . T ¢
Ln(‘n)«— Ln(nxz)q._.__-—(d Ln*l(ﬂ)
e’ B'

Although it was claimed in Ranicki (20} that ¢' coincides with the
split surjection induced functorially from the split surjection of
groups g:MxZ—*7n {or equivalently Z[nﬂz,z-"l]——-bzz[n] 7 oz > 1)
it does not do so in general. This may be seen by considering the
composite

_ B! €

R’ : Li_l(n}>—-~——+Li{anH ‘*"“‘ﬁ*Li(ﬂ) ’

which need not be zero. A generic element

oI (£, D) (4, aM) —— (X,3X)) € L:_l(m

is sent by B' to

B' (o0 (£,5)) = 05((g,c) = (£,b) x 11+ (M,2M) x 87— (x,0%) » 5%)
[ Lg(HXZZ) .

Now (g,c) is the boundary of the (n+l)-dimensional normal map
2 1 2 .1

(f,b) x 1<D2'51) (M,2M) x (D7,87) —— (X,3X)} x (D" ,87)
such that the target
(x,3%) x (p2,81) = (xxD%,xx STy L% % D7)
3X x S

is a finite (n+l)-dimensional geometric Poincaré pair with simple
boundary and

1((X,3%) x (D?,s1)) 1

T(X,3X)®y (D%) + x(X)@T(D%,s))

it

T{X,3X) € Wh(m)

(by the relative version of Proposition 5.1). It follows that
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eB'cE(f,b)e L:(ﬂ) is the image of

T((x,3%) x (0%,51)) = 7(X,3%)

e A" Hz swhim)) = A"z, wn ()
under the map ﬁn+l(zz;wh(ﬂ))————»Li(ﬂ) in the Rothenberg exact
sequence

h n+l s h
L) —— Rz Wh () y L2 (T) L ()

The discrepancy between ¢ and €' will be expressed algebraically in

Proposition 6.2 below; it is at most 2-torsion, and is O if wh(w) = 0.

Novikov [17] initiated the development of analogues for algebraic
L-theory of the techniques of Bass, Heller and Swan [2 ] and Bass [1)
for the algebraic K-theory of polynomial extensions. In Ranicki [19],(2Uu]
the pethods of [17) (which neglected 2-torsion) were refined to obtain

for any group 7 algebraic isomorphisms

with inverses

-1 _ -3z s h s

BL = (g B) Ln(ﬂ)$Ln_l(ﬂ)——»Ln(‘an)
-1l == h p h \
8.7 = (2 B) : Lo(merd L (n)——L 1z

by analogy with the isomorphism of [2 )

By ¢ Wh(TxZ) —> ¥h(7) ek (Z[n])eNil(Z[n])eNil(Z(7])

0]
recalled in §3 above. The isomorphisms BL define the algebraically

significant splitting

s _ .S h
L (mxZ) = L°(m)8L__, (7)
Lg(ﬁxz) = L:(ﬂ)&)Lg_l(n)

As already indicated above this does not in general coincide with the
geometric splitting of Li(nxz) due to Shaneson [29], although the
split surjection B:Li(nxz)———*»L:_l(n) of [29] agrees with the

algebraic B of [20].
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Pedersen and Ranicki [18,§4] claimed to be giving a geometric
interpretation of the algebraically significant splitting
LE(HXZ) = Lf(w)@Lg_l(ﬂ). However, the composite
B! €
" P h b
: e —_ »
eB Ln_l(ﬂ) Ln(an) Ln(n)

of the gecmetric split injection

[ h .
B' : Ln_l{n)yﬁﬁLn(ﬂxZZ)

i

6B ((£,b): (M, 8M) —— (X, 3X))

0D ((E,b) x 11 s (M, 00 x ST 5 (x,3%) x 5T

(= oi’(f,b)@c;fsl; by Progosition 5.3 ii))

and the algebraic split surjection E:LZ(WXZ)'————»Lg(ﬂ} need not be
zero: there is defined a finitely dominated null-bordism with
nl(XxDz) = Trl(X) =7

(£,0) x 1 p2 o1/ & (4,3M) x (0?,8%) —— (x,3%) x (D%, 8h)

of the relative (homotopy) finite surgery problem

(£.0) X 11 & (M, 3M) x ST ——(x,3X) xs* ,
with finiteness obstruction
(xxp’] = (x] € Ry(zin))
It follows that EE'DE(f,b)e L:(ﬂ) is the image of
[X]Gﬁn-l(22;§0(2[w])) = ﬁ”*l(z2;ﬁo(z{n})) under the map
§n+l(22;§0{2571)}—~———$L2{ﬂ} in the generalized Rothenberg exact
seguence
N 5 An+l(

s - h p
mep (M) —1H Z, iRy (Z[7])) —> L {n) —— L& (r) —— ...

Thus B' 2and ¢ do not in general belong to the same direct sum system.
In fact ¢ belongs to the algebraically significant direct sum
decomposition of Ln(an) described above, while B' belongs to the
geometrically defined direct sum decomposition

€
L:(n)z—__;:Lg(nxzzu—_(‘——‘»Lg_l {(n)
e’ B!

with B as defined in [18,84) and ¢’ the split surjection determined
by €,B,B'. It is the latter direct sum system which is meant when
referring to "the geometric splitting Lé(nxzn = LS(n)@Lg_l(n) of i181".
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Define the geometrically significant splitting

s . S h
Lo(mxzZ) = LO(m)8L__,(7)
h = D p
Ln(HXZ) = Ln(“)@Ln_l(")

toc be the one given by the algebraic isomorphism

E 1
. . s, s h
BL = ) : Ln\nxz)-_~——+ Ln(ﬂ)eaLn

with inverse

- T s s
8 = (€B') : L (m)8L__, (1) =L (1x2Z)
8t = (F B et | (n) — 1M axz)
n -1 n
where
B' = -go*(st) : LM (m)—LS(ixz)
r " Tn-1 n
B' = "@O*(Sl) : Lp (Tr)r———%Lh(an)
r n-1 n
and
e' = e(1L-B'B) :Li(nx%)—-——»Li(n)
{e' = ¢(1-B'B) : Lﬁ(wx?&}——«»L:(ﬁ) .
L (nxZ) = Li(n)&)Li_l(n)
Proposition 6.1 The geometric splitting h " of
L (nxZ) = Ln(n)(BLi_l(n)

Shaneson [29]
is the geometrically significant splitting

Pedersen and Ranicki [18]

in algebra.

The algebraically significant split injections

§:L§(n)>———>Lf+l(nx2Z)
were defined in Ranicki [20] using the forms

B:LE(W)#——+L2+1(WXEQ
and formations of Ranicki [19]); for example

B . 1P h
B : LZi(ﬁ)>-—~*LZi+l{ﬂxz)-

H

(Q/ V) b——— (MOM, V8-V ; 4, (182)8) O (H LNy 5N, N)

(=)

\

sends a projective non-singular (-3 '-quadratic form over ZI[T] (Q,¥)
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to a free non-singular (-)luquadratic formation over Z(nxz) =Z (1) lz,z "]
with M = Q[z,z-ll the induced f.g. projective Z[nxZ]-module,

A = {(x,x}) EMBM|x €M} T M®M the diagonal lagrangian of (M@M,yd-y), and

o 1

Boimn = (N@N*r(
0 o

)) the (-}l-hyperbolic {(alias hamiltonian) form

on a f.g9. projective Z{nxZ)]~module N such that M&N is a f.g. free
Z {nxZ)-module. The geometrically significant split injections

ﬁ‘:L?(ﬁ}»—-eLf+f(an) ) ‘
- were defined in §10 of Ranicki [22] using

= h
B :Lg(‘n)>——~«-rL*_‘L:L

(nxZ)
algebraic Poincaré complexes. It is easy to translate from complexes
to forms and formations (or the other way round); for example, in

terms of forms and formations

h
~L2.l+l(nxz) ;

(Q, V) o (M&M, ¥B~Y; 4, (182) L)@ (H

B+ . 1P

B : in(n)>~—a
3 « N\ *
(o F NN
making apparent the difference between B and B' in this case.

For any group 7 the exact sequence

O-——)QO(ZZZ;KO(ZZ))-—-———+Lih(n)—-—>Li(ﬂ)'——éO
splits, with the injection
o} B 1 . 1
f (ZyiKo(Z) ) = Byl (T) : 1 Z[T]B,c0%(S7)
split by the rational semicharacteristic
1
Lx(ﬂ)———* Zg i (C,¢)F——->X%(Z®Z[ﬂ]C,®)
By the discussion at the end of Ranicki [22,§10]
Ll(ZZ) = Ll({lﬂ@LO({l}} = Z,8%2 ,
with (0,1) = c*(sl)e Ll(Z) the symmetric signature of SJ. Let

oa(sl)e Li(Z) be the image of o*(Sl)E Ll(z> under the splitting map

L @zi—ilz) , so that c:g(sl) = (1-Te)or(s) and eoaisl} =oerl(i1}).
The algebraically significant injections are defined by

= 1, . /h s
B = moa(s ) = Ln(ﬂ)r———~9Ln+l(ﬂxZ)

B

"

_ i, .,p h
@c;(g } o Ln(ﬁ]*———-9Ln+l{ﬂXZ) .
Now

(sh) - or(sh) = Teorish e L@,
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so that
= = 1 1 — 1 h s
LI = - * e = - .
B B E(Gr(s } Gq(S 3} @se‘_o;(s b Ln(n)——-—yLm’l(an}
= = 1 1 — 1 P b
L = - * - * = - .
B B @(Gr(S } oq(S 1) Eeso;(S } o Ln(n)——yLn+l(nx%)

By analogy with the map of algebraic K-groups defined in §3

w = -B71{-1) : Kozzz[nz)—-—-—mmn)

define maps of algebraic L-groups

- I, . ;h s
w = @EO;(S } s Ln(v)———»Lm_l(n)
w = -Beo*(sY) : LP(m) —1P (n)
r © Tn n+l '
1
where 20;(5 )= (1,1 € L ({1}) = ?22@22. As er(Sl) =1(~1) exlm}:zz?

the various maps w together define a morphism of generalized Rothenberg

exact sequences

0 P AN o h .
L (7 Lo{m) H (Zzz,KC,(ZZ[ﬂJ))-—->Ln_l(r-;-—*...
@ @ w W
an+1l 53
'_"’Lm—l( )——*erl(n)———»H (zzz;wmﬂ)) Ln(n) cen .

Proposition 6.2 The algebraically and geometrically significant split

injections of L~groups differ by

W €

B! - B = = . 8 ™
B B cuw ¢t L (n)-—an+l )>——->Ln+l(hx2)
= = - 8] @ h £ h
B'" - B = ¢w : Ln(ﬂ)————>Ln+l(v)>——~——>Ln+l(er)
The split surjections differ by
B h “ o s
€' - € = wB : Li(nxﬂ)———-——-» Ln_l(n) ————>Ln(ﬂ)
h B Y o.h
€ - & =wB : L (TxZ) .-—-—-»LE L L () .
The L-theory maps w factor as
. +h an R _ an+2 s
w Ln(ﬂ)—-—-——>H (ZZ,Wh(TI)) = H (ZZ,Wh( ) ——”Ln*l(ﬂ)
An+2

ZZ'[TY]) -———'—&Lh

. 1P an
w : Ln(ﬂ)———»H ( n+l(n)

Z,iKy(Z(1])) = (Z,:%

The K-theory map w is the sum of the composites

an L h an-1 - An+l

H (ZZ,KO(Z[TT]))-—>LH_1(TT)——>H (ZZZ,Wh( m)) = (Z hin))
an n+2,., .3 h an+l

H (ZZ, (Z[w))) =H (ZziKO(Z[ﬂ]))—‘3Ln+l(ﬂ)“‘-‘H (ZZ,Wh(ﬂ)) .
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h,s
n

LB P ()

L (n)

Proof: Let (n»0) be the relative cobordism group of

{finite,simple)
n-dimensional quadratic Poincaré pairs
(finitely dominated,finite)
over Z{n] (f:C-——*D,(dw,w)GZQn(f)), sc that there is defined an exact
sequence

s h h,s s
- Ln(ﬂ) »L (3)—>1L (n)-~——*Ln_l(n)——-»—+...
...——+L2(n)—-—+L§(n)——»Lg'h(n)-————»Li‘l(n) —_—

and there are defined isomorphisms

L2 S () —— & (z, W0 (1))
(£:C=—D, (89,)) —> T ((1+T) (84,9} :C(£) " ——D)
L2 0 (n) —— B"(Z, iR (Z 1)) 5 (£:C—D, (8¥,4)) —> (D]

Product with the 2-dimensional symmetric Poincare pair o*(D2,Sl) over Z

defines isomorphismzs of relative L-groups

_ 2 .1, . .h,s h,s

Bo* (D°,57) : L 'T(m)———L_ i3(m)

_ 2 .1, . .p,h p,h
Bo*(D%,87) : LY P(m)———LP D (m)

corresponding to the canonical 2-periodicity isomorphisms of the Tate
Zz-cohomology groups

( B (zs%h (1)) —— 8"z swn (7))
AN 5 an+2 3
A%z, Rz ir))) —— 8" P (z Rz 7))

The boundary of o*(p?,s%) is ecr(sh).

[l
In particular, the algebraic and geometric splitting maps in
L-theory differ in 2-torsion only, since 2w = O (cf. Proposition 3.3).
The splitting maps in the algebraic and deometric splittings of
Wh(txZ) given in §3 and the duality involutions * are such that
Tx = *E : Wh(m) —> Wh(nxZ)

ge*x = *g , g'* = *g' : WYh{wxZ) —> Wh{n)
B* = ~*B : wmmm-—-—»ﬁo(zzm)
B* = -*B s Bt*x = —*B . ﬁo(zln)),___ywh(an)
T,*x = *b_ : Nil(z[n])—> Wh(nxZ)
- +
A,% = *A_ : Wh(nxZ) —> Hil(Z[n})

+
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AN
The involution *:Wh{"xZ) mwyWh (TxZ) interchanges the two Nil summands,
so that they do not appear in the Tate Zz—cohomology groups and there
are defined two splittings

an-1

n(Zz;Wh(n))@H

ﬁ”(zzz;wn(nxz)) = fi

the algebraically significant direct sum decomposition

an et 5 an % L an-1 =
HUA{Z s Whi{T) ) 7T H (Z,;Wh{(nxZ)) &% H (Z ;K (Z[7]))
2 P 2 S 2’70
and the geometrically significant direct sum decomposition
an ot s on —t  srn-l =
H (22§Wh(“))¢9_—_—~——~ HAZ,Whi{nxZ] ) «———<H {Zz:KO(Z[ﬂ}))-
€ B

Proposition 6.3 The Rothenberg exact sequence of a polynomial extension

.—»Li(nxm)m——m:(nxm-——)ﬁ“m Wh(TxZ) ) —L°>

n_l(WXZ)——>...

5
has two splittings as a direct sum of the exact sequences

N .. h . on N s
L7 (m) » L () » H (Z2,Wh(n))————*Ln_l

(M) ——>... ,

h P an—1 L h
.———aLn l(ﬂ)—-—»Ln"l(n)—-qH (Z:,KO(Z[HJ))———+Ln_

(M) ——> ...,

an algebraically and a geometrically significant one.
()
The split injection of exact sequences in the appendix of

Munkholm and Ranicki [16] is the geometrically csignificant injection

h p an—1 oz h
.———»Ln_l(r)-nw——»L L (M) —s8 (zz,xo(z[n]))_%Ln_z(ny___,...

N

.. .——-—>Li(ﬂx22) —-—)-L?\(ﬂxm) ~—>ﬁn(Z2;Wh(NXZ) ) —»Li_l(nxz)—». ..

As for algebraic K-theory {cf. the discussion just after
Proposition 3.3) it is tempting to identify the geometrically

e L% (1xZ) ——n L3 (M)
with the split

significant split surjection

oo
o

E':LH{NXZ}—~*4*Ln(ﬁ}

surjection of L-groups induced functorially by the split surijection of
rings with involution
1

n o: ZZ[N}{ZJ,Z- ] = Z(UXZ] wde Z (W] ; X ajzje———~>‘ E aj{—}.}j
J:—m 3:—:9

and indeed
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e'|(=1) = n}] : im(e:L> (n)— L® (axB)) —> L

s s
n n ()
e l(=1 = n| ¢ inEL) (pr—L) (rxz)) ——1

s
T
:(n)

HBowever, nc;(Sl)={1,0)#C)€ Li({l}) = Z,82, {since the underlying

Z-module chain complex is & ——2-———->Z) and in general

e'f(=0) #n| : im(ﬁ'=—Eo;(sl):L’;,l(n»—»Lﬁcnxzn~—>Li<n)
' - PR "t — _ 1 1P h h
el (=0} #7n] ¢ im(B'= Bo* (57):L]_y (mp——L (wxZ))—>L (7)
so that
e # n i LS (nxZ) —— L (n)
, h h
e £ n o Ln(WXZZ)——-———bLn(n)

For g = s5,h,p the type g total surgery cbstruction groups
5?(X) were defined in Ranicki |21] for any topological space X to
fit into an exact seguence

c4d
*
. q q .
. '"_—>Hn(x’n‘0)’—'—*_')Ln(ﬂl{‘x))Mgn(x)'_*ﬁn-l(x’n‘())—_'"' ,

with IL, an algebraic l~connective Q-spectrum such that

My (Lg) = Ly ({1])

and O? an algebraic version of the Quinn assembly map. If X is a
simple
finite n-dimensional geometric Poincaré complex the

finitely dominated <
s(x) €4 (x)

total surgery obstruction s (X) e%izx> is defined, and is such that

s(x) €42 (x)
X simple
s{X) = O if (and for n 35 only if) (X is - homotopy
X xSl -
n-
equivalent to a compact n- dimensional topological manifcold. For a
(n+l)~-

compact n-dimensional topological manifold M with n »5 the exact sequence
09 o9
N L5 12 —— 39 s H (ML) 13, ()
Hn+lm’&0) Ln+l(“l.{M)) 5n+l{M) n( =0 n'T1

is isomorphic to the type g Sullivan-Wall surgery exact sequence
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69
.. —>mxDY,mx5°;G/TOP, *] — td, () — AATOF )
eq q
> [M,G/TOP] ———+Ln(ﬁl(M))
with 89 the type g surgery obstruction map and %QTOP(M} the type g

topelogical manifold structure set of M.

Proposition 6.4 For any connected space X with n, (X) =7 the commutative
braid of algebraic surgery exact sequences of a polynomial extension

e

an+l

A7z, swn(1xz)) 5§(Xxsl> Hn_lumsl;go)
/Li(mz} /520()(51)\‘
H (XxSTim ) Lhmxz/ 8™z, :wh (1x2Z))
n' Lo 2

an+l . s .
i (zz,m(ﬂ)\ 8n<x>\ Ho_p (XiLg)
. /////7 h //////r
A %“(x\
s )/ \Lh(n)/ o
" e " \—_/ 2’ A
and the braid
. N //—\h /_\
Hn(ZZ;KO(ZZ[n]))\ /Sml(x}\A H o (XiLg)
h P
S 12,00
A / \ 1
. P Gon- .
By (XiLg) LE M 8"z, K (Z ()
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It is appropriate to record here (in the terminology of this
paper) a footnote from the preprint version of Cappell and Shaneson [3]:
"it is mot completely obvious that the maps given in Ranicki [20]) give
a splitting

LS (nxz) = L
n
respected by the surgery map

S

65 : mxs',6/Top) = (Mx D', mx 5% 6/T08, %18 (M, 6/TOP) —— 15| (1x2)

with M a compact n-dimensional topological manifold and = = (M) ."

Ty

Department of Mathematics,
Edinburgh University
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