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Introduction 

This paper is an account of assorted results concerning the 

algebraic and geometric splittings of the Whitehead group of a 

polynomial extension as a direct sum 

Wh (~x~) = Wh (~) ~0 (~ [~ ] ) ~N~(~ [~ ] ) ~Ni'-~(~ [~] ) 

and the analogous splittings of the Wall surgery obstruction groups 

{ L~(~×~) s h 
= L. (~)@L._I(~) 

h h p 
L. (~x~) = L. (z)@L._l (~) 

Such a splitting of Wh(~x~) was first obtained by Bass, Heller and 

Swan [ 2 ]. Shaneson [29] obtained such a splitting of 
Pedersen and Ranicki [18] 

[ L~(~x~) geometrically~ Novikov [17] and Ranicki [20] obtained such 
L~{~×~) 

L-theory splittings algebraically. 

The main object of this paper is to point out that the geometric 

L-theory splittings of [29] and [18] are not in fact the same as the 

algebraic L-theory splittings of [17] and [20] (contrary to the claims 

put forward in [18], [20], [23] and [24] that they coincided), and to 

express the difference between them in terms of algebra. The splitting 

s ), ,,>L~ (~×~) /LS(~xm) > rh 
[L.(~ * > ~*-i (~) 

maps I h ' m are the same in algebra 

and geometry, the split injections being the ones induced functorially 

from the split injection of groups ~:~ ~ ~×~ . However, the splitting 

s {L h >L~ fL~(~x~) ~L.(~) ._i(~)> (~x~) 
are in general 

maps L~(~x~) ~>L.(g)h ' L~_l(~)> >L~(~x~) 

di*fferent in algebra and geometry. In particular, the geometric split 

split surjections are not the algebraic split surjections induced 

functorially from the split surjection of groups c : ~ x ~  >~ [ 

This may be seen by consfdering the composite eB' of the geometric 

split injection 
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I ~. : L h (~)> ~ LS(~x~) ; 
n-i n 
h s ~×x S 1 ) a.((f,b):M, >X)~ ,~ 0.((f,b) xl:M × S 1 

~, : L p (~1> eLh(~x~) 
n-i n ' 

a~((f,b) :M " ~X)1 ~o~((f.b)xl:M xS 1 )X x S I) 

(denoted B' to distinguish from the algebraic split injection B of [20]) 

and the algebraic split surjection 

I e : Ls(~x~)--------~L (~) ; 
n 

S s 
a.((g,c) ~N >Y)~ ~[~]®~[~x~]O.(g,c) 

6 : Lh(~x~) ~Lh(~) ; 
n n 

h h 
a.((g,c) :N ~Y), ~[~]®~[~x~]a.(g,c) 

i f in i t e  
NOW ~B' need not be zero: if X is a (n-1)-dimensional 

(finitely dominated 

~ simple n-dimensional geometric Poincar6 complex then X × S 1 is a ~homotopy finite 

geometric Poincare complex, the boundary of the - 1 finite 
(finitely dominated 

(n+l)-dimensional geometric Poincar6 pair (X x D2,X × SI), but not in 

tsimple 
pair (W,X × S I) with general the boundary of a (homotopy finite 

~I(W) = nl(X) , so that E and B' do not belong to the same direct sum 

system. 

The geometrically significant splittings of L.(~×~) obtained 

in ~6 are compatible with the geometrically significant variant in ~3 

of the splitting of Wh(~x~)due to Bass, Heller and Swan [2 ]. In both 

K- and L-theozy the algebraic and geometric splitting maps differ in 

2-torsion only, there being no difference if wh{~) = O. 

I am grateful to Hans Munkholm for our collaboration on [16]. 

It is the considerations of the appendix of [16] which led to the 

discovery that the algebraic and geometric L-theory splittings are not 

the same. 

This is a revised version of a paper first written in 1982 at the 

Institute for Advanced Study, Princeton. I should like to thank the 

Institute and the National Science Foundation for their support in that 

year. Thanks also to the G~ttingen SFB for a visit in June 1985. 

Detailed proofs of the results announced here will be found in 

Ranicki [26], J27], [28]. 
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§i. Absolute K-theory invariants 

The definitions of the Wall finiteness obstruction [X] £ ~O(~[~i(×)]) 

of a finitely dominated CW complex X and the Whitehead torsion 

T(f) eWh(~l(X) ) of a homotopy equivalence f:X ~Y of finite CW 

complexes are too well known to bear repeating here. The reduced 

algebraic K-groups ~0' Wh are not as well-behaved with respect to 

products as the absolute K-groups Ko,K I. Accordingly it is necessary 

to deal with absolute versions of the invariants. The projective class 

of a finitely dominated CW complex X 

[X] = (k(X),[X]) C KO(~[~I(X) ] = KO(~)¢~O(~[~I(X)]) 

is well-known, with ×(X) C KO(~) = ~ the Euler characteristic. 

It is harder to come by an absolute torsion invariant. 

Let A be an associative r~ng wlth 1 such that the rank of f.g. 

free A-modules is well-defined, e.g. a group ring A = ~[~]. An A-module 

chain complex C is finite if it is a bounded positive complex of based 

f.g. free A-modules 
d d 

C : ... ) O ~C n ~Cn_ 1 ~ ... ~ C 1 ~ C O ~ O ~ .... 

in which case the Euler characteristic of C is defined in the usual 

manner by 
n 

x(C) : ~ {-)rrankA(C r) C ~ + 
r=0 

A finite A-module chain complex C is round if 

x ( C )  = 0 ~ 

The absolute torsion of a chain equivalence f:C >D of round finite 

A-module chain complexes is defined in Ranicki [25] to be an element 

7(f) ~ KI(A) 

which is a chain homotopy invariant of ~ such that 

i) if f is an isomorphism 7(f) = [ (-)r~(f:Cr---~Dr) . 
r=0 

ii) ~(gf) = 7(f) + 7(g) for f:C----eD, g:D ~E. 

iii) The reduction of T(f) in KI(A) = KI(A)/{~(-I:A ~A)} is the 

usual reduced torsion invariant of f, defined for a chain equivalence 

f:C >D of finite A-module chain complexes to be the reduction of the 

torsion T(C(f)) ~ KI(A) of the algebraic mapping cone C(f). Thus for 

A = ~[~] the reduction of y(f) @ KI(~[~]) in the Whitehead group 

Wh(~) = KI(~[~])/ {n} is the usual Whitehead torsion of f. 

fv) T (f) = • (D) - ~ (C) ~ KI(A) for contractible finite C,D. 

v) In general T(f) M T(C(f)) ~ KI(A ) , and T{f@f') ~ ~(f) + T(f') 

{although the differences are at most ~(-I:A ---+A) ~ KI(A))- 
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vi) The absolute torsion T(f) ~ KI(A) of a self chain equivalence 

f:C ~ D = C agrees with the absolute torsion invariant T(f) ~ KI(A) 

defined by Gersten [i0] for a self chain equivalence f : C ~ C of a 

finitely dominated A-module chain complex C. 

I 
round 

A finite structure on an A-module chain complex C is an 

r o u n d  
equivalence class of pairs (F,$) with F a finite A-module chain 

complex and ¢:F ~C a chain equivalence, subject to the equivalence 

relation 

(F,$) - (F',@') if ~({'-I$:F---~C ---~F') = O ~ [ KI(A) 

£~I(A) 

In the topoloqical applications A = ~[~] , and KI(A) is replaced 

by Wh(~). 

Proposition i.i A finitely dominated A-module chain complex C admits a 

~round (absolute 
finite structure if and only if it has ]reduced projective 

mo(i) 
class [C] = O ~ , in which case the set of such structures on C 

Ko(A) 

I KI(A)- 
carries an affine _ structure. 

KI(A) 
[] 

Let X be a (connected) CW complex with universal cover X and 

fundamental group ~I(X) = ~. The cellular chain complex C(X) is 

as usual, with C(X) r = Hr (x(r) ,X([-I)) (r ~ O) defined the free 

[~]-module generated by the r-cells of X. The cell structure of X 

determines for each C(X) a ~[~]-module base up to the multiplication 
r 

of each element by ±g (g ~ ~ ) . Thus for a finite CW complex X the 

cellular ~[~]-module chain complex C(X) has a canonical finite structuse. 

A CW complex X is round finite if it is finite, X(X) = 0 8 ~ , 

and there is given a choice of actual base for each C(~) r (r ~ O) in 

the class of bases determined by the cell structure of X. 

fabsolute 
The ~ torsion of a homotopy equivalence f;X-----~¥ of 

L Whitehead 

I round finite CW complexes is defined by 

T(f) = r(f:C(X) ~C(Y)) e I KI(~[~I(X)]) 

{ 

tWh(~i(X)) 
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I round 
A finite structure on a CW complex X is an equivalence 

r o u n d  
claSS of pairs (F,~', with F a finite CW complex and ~:F ~ X a 

homotopy equivalence, subject to the equivalence relation 

(F,¢) -- (F' ¢') if ~(~-i - IKI(~[~I (X)] , ' :F----~X---~F') = O 

L Wh(~l(X) ) • 

The finiteness obstruction theory of Wall [34] gives: 

round 
Proposition 1.2 The finite structures on a finitely dominated 

CW complex X are in a natural one-one correspondence with the t i round 

L 

finite structures on the ZZ[~l(X)]-module chain complex C(X). 

[] 

The mapping torus of a self map f:X- ;X is defined as usual by 

T(f) = X × [O,l]/{(x,O)= (f(x),l) Ix6 X} 

Proposition 1.3 (Ranicki [26]) The mapping torus T(f) of a self map 

f:X-----~X of a finitely dominated CW complex X has a canonical round 

finite structure. 

[] 

The circle S 1 = [0,i]/(0= i) has universal cover SI= ]R and 

fundamental group ~I (SI) = 2Z. Let z ~ ~i (SI) = 2Z denote the generator 

such that 

z : ]R >]R ; x ~-------->x+l . 

The canonical round finite structure on the circle 

S 1 = eO~2 e I = T(id.:{pt.} ~ {pt.}) is represented by the bases 

~r eC(~ 1 ) = 2Z[z,z -I] (r : 0,i) with 
[ 

(ZI) = - c(gl) = ,z-i ~i -O -O d = l-z : C 1 2Z[z,z i] ~ O 2Z[z ] ; ~e - ze , 

= -i O i 
corresponding to the lifts ~O {O}, e = [O,I] C]R of e ,e . 

In particular, Proposition 1.3 applies to the product 

X × S 1 = T(id.:x ~X) , in which case the canonical round finite 

structure is a refinement of the finite structure defined geometrically 

by Mather [14] and Ferry [ 8 ] , using the homotopy equivalent finite 

CW complex T(fg:Y------~Y) for any domination of X 

(Y , f : X >Y , g : Y >X , h : gf -- I ; X-- ~X ) 

by a finite CW complex Y. 
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Given a ring morphism e:A ~ B let 

~! : (A-modules) ~ (B-modules) ; M , ; B®AM 

be the functor inducing morphisms in the algebraic K-groups 

~ : Ki(A) ~ Ki(B) (i =0,i) , 

which we shall usually abbreviate to ~. Given a ring automorphism 

a:A -~A let KI(A,~) be the relative K-group in the exact sequence 

l-e j 8 l-e 

Kl(A) ~ KI(A) ~ KI(A,~) ~ Ko(A) >Ko(A) , 

as originally defined by Siebenmann [33] in connection with the 

KI(A [z,z-l]) recalled in 53 below. By definition splitting theorem for 

KI(A,e) is the exotic group of pairs (P,f) with P a f.g. projective 

A-module and f C HomA(e!P,P) an isomorphism. The mixed invariant of a 

finitely dominated A-module chain complex C and a chain equivalence 

f:~,C----+C was defined in Ranicki [26] to be an element 

[C,f] ~ Kl(A,e) 

such that e([C,f]) = [C] ~ Ko(A), and such that [C,f] = O £ Kl(A,e) if 

and only if C admits a round finite structure (F,~:F )C) with 

r(~-if(~,~) : e!F ~ ~!C ~ C > F) = 0 6 Kl(A) 

The inva[iant is a mixture of projective class and torsion, and 

indeed for e = 1 : A ,A 

[C,f] = (T(f) , [C]) e KI(A,I) = KI(A)@Ko(A) 

The absolute torsion invariant defined by Gersten [10] for a 

self homotopy equivalence f:X ~X of a finitely dominated CW complex X 

inducing f, = 1 : ~l(X) = n ~. 

T(f) = T(f:C(X) )C(g)) e Kl(Z~[n]) 

was 9eneralized in Ranicki [26]: the mixed invariant of a self homotopy 

equivalence f:X -~X of a finitely dominated CW complex X inducing any 

automorphism f, = 0~ : ~l(X) = n , ~ is defined by 

[X,f] = [C(X),f:e!C(X) ,C(X)] e KI(2Z[~],~) 

This has image 9([X,f]) = [X] ~ KO(2Z[n]) , and is such that [x,f] = 0 

if and only if X admits a round finite structure (F,~:F---wX) such that 

T(~-lf~ : F ~ X ------~X ~F) = O £ KI(YZ.[~]) 

If X admits a round finite structure (F,~) then [X,f] = j(T(~-if#)) 

is the image of T(#-If~:F ~F) eKl(2Z[~]) - 



327 

§2. Products in K-theory 

For any rings A,B and automorphism 8:B ~ B there is defined a 

product of algebraic K-groups 

: Ko(A)~KI(B,B) ~ KI(A®B,I~B) ; 

[P]®[Q,f:B!Q--~Q], ~ [P®Q,I®f: (i~8} ! (P~Q) = P®~!Q ~P®Q] , 

which in the case B = 1 is made up of the products 

® : Ko(A)~Ko(B)-------~Ko(A®B) ; [P]®[Q]I ~[P®Q] 

® : Ko(A)®KI(B)------+ KI(A®B) ; [P]®~(f:Q--+Q)! ~T(I~f:P®Q---~P~Q). 

The product of a finitely dominated A-module chain complex C and a 

finitely dominated B-module chain complex D is a finitely dominated 

A®B-module chain complex C~D with projective class 

[C®D] = [C]®[D] C Ko(A®B) , 

and if f:B!D ~D is a chain equivalence then the product chain 

equivalence l®f : C®8!D ~C®D has mixed invariant 

[C®D,I~f] = [C]®[D,f] C KI(A®B,I~B) 

The following product formula is an immediate consequence. 

Proposition 2.1 Let X,F be finitely dominated CW complexes with 

~l(X) = 7, ~l(F) = 0, and let f : F. ~ F be a self homotopy equivalence 

inducing the automorphism f, = B : 0----+p. The mixed invariant of 

the product self homotopy equivalence 1 × f : X × F .... ~ X × F is given by 

[X × r,1 × f] = [X]®[F,f] e KI{~[~×p] ,I~B) , 

identifying ~[~×p] = ~[w]~[D]. 

[] 

In the case ~ = 1 : D---~p the result of Proposition 2.1 is made up 

of the product formula of Gersten [ 9] and Siebenmann [30] for the 

projective class 

[x ×r] = [X]®[F] e KO(~[~×~]) 

and the product formula of Gersten [i0] for torsion 

T(I × f:X × F ~X × F) = [X]®T(f:F---*F) e Kl(~[~xp]) . 

If also X is finite the product formula T(I x f) = [X]~T(f) is an 

absolute version of the special case e = 1 : X ..... ~X' = X , f, =i of the 

formula of Kwun and Szczarba [12] for the whitehead torsion of the 

product e × f : X × F ............. ~ X' × F' of homotopy equivalences e : X }X', 

f : F > F' of finite CW complexes 

T(e × f) = x(X)®T(f) + ~(e)~x(F) e Wh(~xp) 
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The product A~B-module chain complex C®D of a finitely dominated 

A-module chain complex C and a round finite B-module chain complex D 

was shown in Ranicki [26] to have a canonical round finite structure, 

with 

~(e®f:C®D ~ C'~D') = [C]~(f:D ........ ~D') ~ KI(A®B) 

for any chain equivalences e:C ~C',f:D ~ D' of such complexes. The 

following product structure theorem of [26] was an immediate 

consequence. 

Proposition 2.2 The product X × F of a finitely dominated CW complex X 

and a round finite CW complex F has a canonical round finite structure, 

with 

~(e × f:X × F ~X' × F') [X]®T(f:F ~F') e KI(~ [~3 (X)× ~I(F)]) 

for any homotopy equivalences e:X >X',f:F ~ F' of such complexes. 

[) 

The canonical round finite structure on X x S 1 = T(id.:X >X) 

given by Proposition 1.3 coincides with the canonical round finite 

structure given by Proposition 2.2. 

The product 

KO(~[~])®KI(~[p]) > Kl(~[~xp]) 

has a reduced version 

~O(~[~])®{±p} ~ wh(~xp) ; 

[P]®T(±g:~[p] ~ [~]) , ~T(I®~g:P[p] ~ P[P]) 

with {±p} = {±l}×p ab = ke[(Kl(~[p]) ~Wh(p)) . ~e shall make much 

use of this reduced version with p = ~ , for which {±~} = KI(~[~]) . 



329 

53. The White.head group of a polynomial extension 

Im the first instance we recall some of the details of the direct 

sum decomposition 

Wh(~x2Z) = Wh(~)SKo(2Z[~])SNiI(~[~])SNiI(~Z[~]) 

obtained by Bass, Heller and Swan [ 2 ] and Bass [ i ,XII] for any group 

We shall call this the algebraically significant splitting of Wh(~xgZ.).. 

The relevant isomorphism 

a n d  i t s  i n v e r s e  

8K 1 (~)@Ko "-'-" = (c B A+ A_) : Wh (2Z[~])eNiI(ZZ[~])@Nil(~[~]) ~ Wh(~×2Z) 

I s u r j e c t i o n  

involve the split (injection of group rings 

ajzJ, , ~ a, I c : 7Z[~x~] = Z~[~] [z,z-I]-------~Z[~] ; J=-~ L 3 

: 7z[~]~ }2Z[~] [z,z -I] ; a, ,'a (a,ajeZ~[~]} . 

The split in~ection B:Ko(~Z[~]b ;Wh(~×ZZ) is the evaluation of the 

product Ko(2Z[~])®KI(~[Z~]) ..... ~Wh(~×2Z) (the reduction of 

Ko(~Z[~])~KI(~[2Z]) ~KI(~Z[~×~Z])) on the element 7 (z) £ KI(ZZ[ZZ]) 

= -®~ (z) : Ko(Z~[~]b ~Wh(~×ZZ) ; 

[P], ~? (z:P[z,z -I] .... ~p[z,z-l]) 

If P = ira(p) is the image of the projection p = p2 : 2Z[~]r ~ZZ[~]r 

then 

B([P]) = ~ (pz+l-p:Z~[~xZZ] r ~ 2Z[~×ZZ] r) ~ Wh(~x2Z) 

By definition, Nil(Tz[~]) is the exotic K-group of pairs (F,~) with F 

a f.Q. free ~Z[~]-modu]e and ~£ HOm2Z[~ ] (F,F)a nilpotent endom~)rphism. 

The split injections A-+, A_ are defined by 

A-± : N'~(2Z[~])~ ..... ,Wh(~x~Z) ; 

(F,~)~ *T (l+z-+iv:F[z,z -I] ~.F[z,z-I]) . 
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The precise definitions of the split surjections B,A± need not detain 

us here, especially as they are the same for the algebraically and 

geometrically significant direct sum decompositions of Wh(~). 

The exact sequence 

c 
~ Wh ( ~ ) .... ) Wh (~X~) 

B 

I::l 
was interpreted geometrically Dy Farrell and Hsiang [5 ], [ 7 ] : 

if X is a finite n-dimensional geom~tric Poin~ar~_ complex with Zl(X) = 

and f : M ~X x S 1 is a homotopy eq0ivalence with H n+l a compact 

(n+l)-dimensional manifold then the Whitehead torsion T(f)eWh(~×ZZ) 

is such that 

T(f) e im([:Wh(~)~------~Wh(~x2Z)) 

(i:l 0 = ker( : Wh(~x2Z) ,~ ZZ[~])eN'~I(ZZ[~I)SNi~'~I(TZ[n])) 

if (and for n >45 only if) f is homotoplc to a map transverse regular 

at X x {pt.}C X x S 1 with the restriction 

g = fl : Nn = f-l(x × {pt.}) > X 

also a homotopy equivalence. Thus T(f)ecoker(~:wh(~)~ ,Wh(#x2Z)) 

is the codimension 1 splitting obstruction of f along X × {pt.} cX x S I. 

For a finitely presented group n every element of Wh(~×ZZ) is the 

Whitehead torsion T(f) for a homotopy equivalence of pairs 

(f,~f) : (M,~M) >(X,dX) × S 1 with (M,~M) a compact (n+l)-dimensional 

manifold with boundary, and (X,~X) a finite n-dimensional geometric 

Poincar@ pair with ~l(X)=7, for some n>z 5. In this case 

T(f) e coker(~:Wh(~)~ ~Wh(~×2Z)) is the relative codimension 1 

splitting obstruction. 

The geometrically significant splitting 

Wh(~×Z~) = Wh(~)eKo(ZZ[#])@~I(2Z[7])SN~(2Z[#]) 

is defined by the isomorphism 

g, 
8~ = : Wh (~×2Z) ~ Wh (~) @Ko(ZZ [~ ] ) @NIl (2Z [n ] ) 8N~ (2Z [z ] ) 

with inverse 
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8~ -I = (¢ B' A+ A_) : Wh(~)@Ko(~Z[~])@Ni"~(ZZ[~])@Ni'-'~(2Z[~]] ,Wh(~×2~) , 

where 

B' = -~ (-z) : ~O(~[~])> 

£' = ¢(I-B'B) : Wh(~x~) 

x(f:P[z,z -I] 

~Wh(~×~) ; [P]~ ~(-z:P[z,z-l]----~P[z,z-l]) 

(= ~(-pz+l-p) if P = im(p= p2)) , 

>7 Wh(~) ; 

~P[z,z-l]) )%(£f:P---~P) + T(-I:Q--~Q) 

-i 
with f an automorphism of the f.g. projective ~[~×~]-module P[z,z ] 

induced from a f.g. projective ~[~]-module P, and Q a f.g, projective 

[~]-module such that B(T(f)) = [Q] ~ KO(~[~]) - 

Ferry [ 8 ] defined a geometric injection for any finitely 

presented group 

B" : ~0(~[~]b , Wh(~x~) ; -i 
~-i ¢ l Ix-i 1 ¢ 

IX], ~(f= (I×-i)¢ : Y >XxS ~- ~ ~ X×S -------~Y) , 

with [X] C KO(~[~]) the Wall finiteness obstruction of a finitely 

dominated CW complex X with HI(X) = ~ and x(f) ¢ Wh(~x~) the Whitehead 

torsion of the homotopy equivalence f = ~-l(ix-l)¢:Y >Y defined 

using the map -I:S 1 > S 1 reflecting the circle in a diameter and 

any homotopy equivalence ¢:Y ~XxS 1 from a finite CW complex Y in the 

finite structure on X×S 1 given by the mapping torus construction of 

Mather [14]. 

Proposition 3.1 The geometrically significant injection B' agrees 

with the geometric injection B" 

B' = ~" : ~0(~[~1)~- ~Wh(~×~) 

Proof: By Proposition 2.2 

B"([X]) = [X]~(-I:S 1 } S I) £ Wh(~x~) , 

with 7(-I:S 1 ~ S I) ~ Kl(~[z,z-l]) the absolute torsion. Now -I:SI---+S 1 

induces the non-trivial automorphism z, > z -I of ~I(S I) = <z>, 

and the induced chain equivalence of based f.g. free ~[z,z-l]-module 

chain complexes is given by 

l_z -I 
(-l),C(~ I) : ~[z,z -I] ~ ~Z[z,z -I] 

(-i) 1 -z 

c(~l) : 2Z[z,z-l] l-z ) 2Z[z,z-l] , 

s o  t h a t  
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T(-I:S 1 ~S I) = T(-z:ZZ[z,z -I] ~ZZ[z,z-I]) ~ KI(ZZ[z,z-I]) . 

Thus 

B" = -~(-z) = B' : ~0(~[~]), ~Wh(~×Z~) . 

[] 

Ferry [ 8 ] characterized im(B') c_Wh(zxZZ) as the subgroup of the 

elements T@Wh(nxZZ)such that (pn) " (~) = 7 for some n >. 2, with 
I 

(pn) " : Wh(~×~) ~ Wh(~×Tz) the transfer map associated to the n-fold 

covering of the circle by itself 

Pn : S1 sl n 

See Ranicki [27] for an explicit algebraic verification that 

im(B')c Wh(~x2Z) is the subgroup of transfer invariant elements. 

The algebraically significant decomposition of Wh(~xZg) also has a 

certain measure of geometric significance, in that it is related to the 

Bott periodicity theorem in topological K-theory - cf. Bass [ i ,XIV]. 

More recently, Munkholm [15] identified the infinite structure set 

-~(X x ]R 2) = ker(E:Ko(2Z[~xTz]) ...... +Ko(2Z[~])) (X compact, ~I(X) = ~) of 

Siebenmann [32] with the lower algebraic K-groups derived from the 

algebraically significant splitting of Wh(~xZZ) by Bass [ 1 ,XII] - 

to be precise ,~(X × IR 2) = (K_I(~NKo(gNKo) (ZZ[~I) • 

Both the injections B,B':Ko(2Z[#])} >Wh(nxZg) can be realized 

geometrically for a finitely presented group n, as follows. Given a 

2 (2Z[~]r,ZZ[I:] r) be a f.g. projective 2Z[~]-module P let p = p C Homzz[~ ] 

projection such that P = im(p) . Let K be a finite CW complex such that 

~l(K) = ~. For any integer N>/ 2 define the finite CW complexes 

X (Kx S 1 vbIS N) 'J z+l ([jeN+l' = 

r P -P r 

X' = (K x S 1 V ~/S N) </_pz+l_p(~jeN+i)r ' 
r 

such that the inclusions define homotopy equivalences 

K×S 1 )X , K×S 1 ~X' 

Proposition 3;2 The injections B,B' are realized geometrically by 

: Ko(2Z[~] ~ > Wh(~ × ZZ) ; [P], -~(-)NT(K × S I ..... ~X) 

B' : K0(Z~[n] > ~Wh(,~ × ~Z) ; [P] ~ , (-)NT(K × S ± ) X') 

[] 

Nevertheless, B' Is more geometrically sianificant than B. 
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(Following Siebenmann [31] define a band to be a finite CW complex X 

equipped with a map p:X ~S 1 such that the pullback infinite cyclic 

cover ~ = p* (JR) of X is finitely dominated. For a connected band X the 
+ 

infinite complex X has two ends E , 6 which are contained in finitely 

dominated subcomplexes X+ X c X such that X+ , n X- is finite and 

.X+uX- = X. The finiteness obstructions are such that 

Ix] = [x+] ÷ [x-] e ~0(2z[~]) (~ = ~l(X)) . 
--+ 

For a manifold band X the finiteness obstructions [X-] ~Ko(Z~[~]) are 

images of the end obstructions [c +-] 8Ko(2Z[~I(C-+)]) of Siebenmann [30]. 

For any finitely presented group ~ the surjection B:Wh(~x2Z) ~Ko(~Z[~]) 

is realized geometrically by 

B(~(f:X ~Y)) = [Y+]- [X+] ~ Ko(ZZ[~]) , 

with z(f) ~Wh(~x2Z) the Whitehead torsion of a homotopy equivalence of 

bands f:X )Y with ~l(X) = ~×2Z , ~I(X) = ~. For the bands used in 

Proposition 3.2 

[~] =-[X-] = IX'+] =-[X' ] = (_)Nip] , 

[(K x SI) +] = [(K x SI) -] = (K x ]R +] = [K] = O ~ Ko(2Z[z]) ). 

We shall now express the difference between the algebraically and 

geometrically significant splittings of Wh(~x2Z) using the generator 

T(-I:2Z. ~2Z) 8 KI(2Z) (= 2Z2) and the product map 

0~ = -®T(-I) : Ko(2Z[~]) ~ Wh(~) ; [p]L ~ 1(-I:P ~ P) . 

If P = im(p) for a projection p p2 = : F >F of a f.g. free 

2Z[~]-module F then the automorphism I-2p:F ~F is such that 

~([m]) = 7(l-2p:F ~F) ~ Wh(~) . 

Proposition 3.3 The algebraically and geometrically significant 

surjections ~,~':wh(~×2Z) ~>Wh(~) differ by 

injections B,B':Ko(2Z[~])~ ) Wh(~x2Z) 

B w 

g ~w Ko(2Z[~] ) ~ ~Wh (~)~ -~ ~Wh (~xZZ) 
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In particular, the difference between the algebraic and geometric 

splittings is 2-torsion only, since 2~ = O. 

It is tempting to identify the geometrically significant surjection 

[':Wh(~×~) ~Wh(~) with the surjection induced functorially by the 

split surjection of rings defined by z, ~-i 

]z ] q : ~[~×~] = mrs] [Z,Z -1] ~ ~[~] ; ~ a , ~ ~ a.(-l) j ., 
j=_~ j=_~ 3 

and indeed 

e'I = DI : im((£ B) :Wh(~)@Ko(~[~])~ ~Wh(~x~)) 

= im((e B'):Wh(~)@Ko(~[~])) ~Wh(~×~))- : Wh(~) 

However, in general 

~'[ / nl : im((A+ & ) :Nil(~[~])~Nil(~[~])~ ........... 

SO that e' ~ ~ : Wh(n×~) ~Wh(~) . 

> Wh(~xTZ) ) 

>Wh(~) 

For an automorphism <~:~---+~ of a group ~ Farrell and Hsiang [6 ] 

and Siebenmann [33] expressed the Whitehead group of the e-twisted 

extension ~xe2Z of ~ by ~ = <z> (gz = zS(g) e nxcLZ~ for g~ ~) as a 

natural direct sum 

Wh(~x ZZ) = Wh(r~,e)@Ni'-~l(2Z[~],e)@Ni'-~(Z~[~],a -I) 

with Wh(~,e) the relative group in the exact sequence 

i-~ j ~ i-~ 
Wh(~) > Wh(~) ---~Wh(~,~) >Ro{2Z[~]) .... ) KO{TZ[~]) 

(the reduced version of the group KI(ZZ[~],e) discussed at the end of ~i) 

and N]~(Z~[~],@ +I) the exotic K-group of pairs (F,v) with F a f.g. free 

2Z[~]-module and v ~ Hom~{~] ((@±i) !F,F) nilpotent. Given a f.g. projective 

~.[~]-module P and an isomorphism f 8 Hom2z[~ ] (eBp,P) there is defined a 

mixed invariant [P,f] ~Wh(~,@) with ~([P,f]) = [P] ~ Ko(TZ.[~]). 

As in the untwisted case e = i there are defined an algebraically 

significant splitting of Wh(~x ZK) , with inverse isomorphisms 

~+ 
\~_/ 

Wh(~x ?Z)~. ~ Wh(~,~)~Nil(~[~] ,~)~)NiI(Z~[~], , 

(B ~+ ~_) 

and a geometrically significant splitting of Wh(~xa?z) with inverse 

isomorphisms 
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with 

I B' ) 
Wh(~× 2Z) - -~ Wh(~,{~)(BNi"-~I(2Z[~] ,(~J~Ni"~l(~[~] ,a -1) 

(B' ~+ ~_) 

: Wh(~,~)} %Wh(~x ~Z) ; [P,f]~-'---~(zf:P [z,z -!] '~Pa[z,z-I]) 

B' : Wh(~,~)y-------~Wh(~x ]~) ; [P,f]~ ~.T(-zf:P [z,z -l] ~P [z,z-l]) 

+I A÷ : NiI(2Z[~],~- )) ~Wh(~x ZZ) ; 
- *I -i -I] 

(P,v), >~(l+z- ~:P [Z,Z ] -*P~[z,z ) , 

identifying Zg[~xeZZ] = Zg[~]~[z,z-l]. The automorphism 

: Wh(r~,e) . .~ Wh(~,~) ; [P,f]~- ..... } [P,-f] 

is such that ~2 = 1 and 

B' = B9 : Wh(~,a)> ............ )Wh(~×~ZZ) 

B' = ~B : Wh(~×a~Z) .... bWh(~,~) 

In the untwisted case s = 1 ~x 2Z is ]ust the product ~ ×.2Z, and there 

is defined an isomorphism 

Wh (~)S~o(2Z [~] ) ..... ~ Wh(.~,l) ; 

(~(f:p ~p),[Q])~ ~[P,f] - [P,l] + [Q,I] 

with respect to which 

( i w) CKO (Zz )¢Ko (ZZ = : Wh(~) [~]) ...... ,Wh(~ l~]) 
0 1 

The algebraically (resp. geometrically) significant splitting of 

Wh(~×aZZ) for ~ = 1 corresponds under this isomorphism to the 

algebraically (resp. geometrically) significant splitting of Wh(~x~Z) 

defined previously. 

A self homotopy equivalence f:X ~X of a finitely dominated CW 

complex X has a mixed invariant 

IX,f] e Wh(~,e) 

with ~ = f, : ~ = Zl(X) } ~, such that B([X,f]) = IX] ~ Ko(2Z'~n]), 

a reduction of the mixed invariant [X,f] ~ K I(ZZ[~] ,e) described at 

the end of §I. Let f-l:x '~X be a homotopy inverse, with homotopy 

e:f-lf_ - I:X------~X. The mapping tori of f and f-i are related by the 

homotopy equivalence 
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U : T(f -I) ,T(f) ; (x,t)" ~ (e(x,t),l-t) 

inducing the isomorphism of fundamental groups 

-i) = = 2Z ; U, : ~l(T(f ) n × (-i 2Z ~ ~l(T(f)) ~× 

-i 
g (e ~) ~-----+g , z ~ ~ z 

The torsion of U with respect to the canonical round finite structures 

given by Proposition 1.3 is 

T(U) = T(-z~:C(X)a[Z,Z-I] ----+C(X)a[z,z-I]) e KI(2Z[~]~[Z,Z-I]) , 

so that: 

Proposition 3.4 The geometrically defined split injection is given 

geometrically by 

B' : Wh(~,~)~ > Wh(~xeZZ) ; [X,f]~ > ~(U:T(f -I) ~T(f)) 

[] 

Proposition 3.3 is just the untwisted case e= 1 of Proposition 3.4, 

with f = 1 : X } X and 

U = i x -i : T(I:X--~X) = X × S I- ~ T(1) = X x S I , 

-i : S 1 = ]R/ZZ ~ S 1 ; t ~ > l-t . 

The exact sequence 

i-~ -6 
Wh(~) -~ Wh(~) >Wh(~x ~Z) 

KO "~ ~ -i > (ZZ [~] )~Nil (~. In] ,~)eNil (~z [~] ,e ) 

(i-~ O O) 

..... ~ ~o(~[~]) >~O(ZZ[~×~]) 
(-£ = Bj = B'j , ~B = ~B') 

The obstruction theory of Farrell [ 4 ] and Siebenmann [33] for 

fibering manifolds over S 1 can be used to give the injection 

B':Ko(~[n]), ~ )Wh(nx~) a further degree of geometric significance, 

as follows. 

has a geometric interpretation in terms of codimension 1 splitting 

obstructions for homotopy equivalences f:M n ~X with ~I(X) = ~xa~ 

(Farrell and Hsiang [ 5 ], [ 7 ]) , as in the untwisted case e = i. 
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Let p:X .... ,X be the covering projection of a regular infinite 

cyclic cover of a connected space X, with X connected also. Let 

~:X ~X be a generating covering translation, inducing the 

automorphism ~, = s : ~I(X) = ~ ~ ~. The map 

T(~) ) X ; (x,t)~ )p(x) 

is a homotopy equivalence, inducing an isomorphism of fundamental 

groups ~l(T(~)) = ~x ~ ~l(X) . If X is a finite CW complex and 

is finitely dominated the canonical (round) finite structure on T(~) 

given by Proposition 1.3 can be used to define the fibering obstruction 

¢(X) = 7(T(~) ) X) e Wh(~xe~) 

This is the invaria~t described (but not defined) by Siebenmann [31]. 

If X is a compact n-manifold with the finite structure determined by a 

hand!ebody decomposition then ¢(X) = 0 if (and for n > 6 only if) X 

fibres over S I in a manner compatible with p, by the theory of 

Farrell [4 ] and Siebenmann [33]. 

Given a finitely dominated CW complex X with Zl(X) : ~ let 

Y ~X × S 1 be a homotopy equivalence from a finite CW complex Y 

in the canonical finite structure. Embed Y CS N (N large) with closed 

regular neighbourhood an N-dimensional manifold with boundary (Z,~Z) , 

and let (Z,~Z) be the infinite cyclic cover of (Z,~Z) classified by 

the projection 

HI(Z ) = ~I(~Z) = ~I(X x S I) = ~x~ - ~ ~ . 

Thicken up the self homotopy equivalence transposing the sl-factors 

1 x T : X x S ] S 1 ~ X x S 1 S I × ; (x,s,t) I > (x,t,s) 

to a self bomotopy equivalence of a pair 

(f,~f) : (Z,~Z) ~ S 1 >(Z,%Z) x S 1 

inducing on the fundamental group the automorphism 

v x ~ x ~ ~ ~ x ~ x ~ ; (x~s,t)~ ~ (x,t,s) 

transposing the Z-factors. Thus (f,~f) lifts to a ~-equivariant 

homotopy equivalence 

(f,~f) : (Z,~Z) x S 1 > (Z,~Z) x ~ . 

In particular, this shows that ZZ is a finite CW complex with a 

finitely dominated infinite cyclic cover ~Z. 

Proposition 3.5 The geometrically significant injection is such that 

B' : ~O(~[~])~ >Wh(~x~) ; {xj~ ~¢(~Z) 

I] 
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C (S l) i-* 
! 

IS 1] 

c (~l) 

so that S 1 has torsion 

§4. Absolute L-theory invariants 

The duality involutions on the algebraic K-groups of a ring A 

with involution--:A ~A;a, ,a are defined as usual by 

* : Ko(A) >Ko(A) ; [P]! ~[P*] , P* = HomA(P,A) 

* : KI(A) >KI(A) ; T(f:P ..... ~P)l >T(f*:P* ~P*) , 

with reduced versions for Ko(A), KI(A). We shall only be concerned 

with group rings A = ZZ[~I and the involution g = w(g)g -I (ge~) 

determined by a group morphism w : ~ ~ZZ 2 = {+_i} , so that there 

is also defined a duality involution *:Wh(~) ,Wh(~) . 

projective class ifinitely dominated 
The of a n-dimensional 

LWhitehead torsion finite 

geometric Poincare complex X with ~l(X) = 

I [x] = [c(~)] e Ko(~[~]) 

T(X) = T(C(X) n-*- >C(X)) e wh(~) 

satisfies the usual duality formula 

[x]* = (-)nix] e KO(~[~]) 

T(X)* = (-)nT(x) e Wh(n) 

The torsion of a round finite n-dimensional geometric Poincar$ complex X 

T(X) = T(C(X) n-* -~C(~) ) e K I(ZZ[n]) 

is such that 

T(X)* = (-)nT(x) e KI(ZZ[~]) . 

The Poincar4 duality chain equivalence for the universal cover 

~I = JR of the circle S 1 is given by 

l_z -I 
: Z~[z,z -I] ,~ ZZ[z,z -I] 

1 -  z 

2Z[z,z -I ] 2Z [Z,Z i] , 

T(S I) = T([S I] n-:c(~l) I-* ~c(~l)) 

= T(-z:2Z[z,z -I] -~2Z[z,z-I]) 

e KI(ZZ[z,z-I] ) 

This is the special case f = 1 : X = {pt.} ){pt.} of the following 

formula, which is the Poincar6 complex version of Propositions 1.3,3.4. 
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Proposition 4.1 Let f:X )X be a self homotopy equivalence of a 

finitely dominated n-dimensional geometric Poincare complex X inducing 

the automorphism f, = e : ~i (X) = ~ ~ ~ and the ~[~]-module chain 

equivalence f : a,C(X)- ~C(~). The mapping torus T(f) is an 

(n+l)-dimensional geometric Poincar6 complex with canonical round 

finite structure, with torsion 

~(T(f)) = T(-zf:C(X) e[z,z -I] ~C(X) a[z,z-l]) e Kl(~[~]a [z,z-l]) . 

[] 

For f = 1 : X ~ X the formula of Proposition 4.1 gives 

~(X ×S I) = ~(-z:C{~)[z,z -I] ~C(~)[z,z-l]) 

= [X]®7(S I) = B' ([X]) ~ KI(~[~] [z,z-l]) 

with IX] £ KO(~[~+]) the projective class and B' the absolute version 

B' : Ko(~[z]); ~ ml(~[~] [z,z-l]) ; 

[P]I } T(-z:P[z,z -I] >p[z,z-l]) 

(also a ~plit injection) of B':Ko(~[~])~ ~ Wh(~x~). 

For a finitely presented group ~ every element x £ KO(~[~]) is 

the finiteness obstruction x = IX] of a finitely dominated CW complex 

X with ~I(X) = z, by the realization theorem of Wall [34]. We need 

the version for Poincare complexes: 

Proposition 4.~ (Pedersen and Ranicki [18]) For a finitely presented 

group ~ every element x ~ KO(~ [~]) is the finiteness obstruction 

x = [X] for a finitely dominated geometric Poincar6 pair (X,~X) 

with ~I(X) = ~. 

[] 

The method of {18] used the obstruction theory of Siebenmann [30]. 

The construction of Proposition 3.5 gives a more direct method, since 

(Z,~Z) is a finitely dominated (N-l)-dimensional geometric Poincar6 

pair with prescribed [Z] ~ Ko(~[z]) . (Moreover, if the evident map 

of pairs (e,}e) :(Z,~Z) ~S 1 is made transverse regular at pt. 8 S 1 

the inclusion 

(M,OM) = (e,$e) 

lifts to a normal map 

(f,b) : (M,3M) 

-I 
({pt.]) } (Z,~Z) 

~(Z,3Z) 

from a compact (N-l)-dimensional manifold with boundary. This gives a 

more direct proof of the realization theorem of [18] for the projective 

surgery groups L~(~), except pdssibly in the low dimensions). 
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By the relative version of Proposition 4.1 the product of a 

finitely dominated n-dimensional geometric Poincare pair (X,~X) and 

the circle S 1 is an (n+l)-dimensional geometric Poincare pair 

(X,~X) x S I = (X x sl,~x x S I) 

with canonical round finite structure, and torsion 

T(XxS 1,3xxs I) = <{-z:C(~)[z,z -I] 

= [x]®~(s l) = ~'([x] 

Combined with Proposition 4.2 this gives: 

Proposition 4.3 The geometrically significant 

>, C(~)[z,z-1]) 

e KI{2Z[~] [z,z-l]) 

njection is such that 

: ~O(~[~])~ >Wh(~x~) ; [x]~ ><(X x Sl,~x × S l) , 

for any finitely dominated geometric Poincare pair (X,~X) with ~I(X) = T 

[] 

In §5 this will be seen to be a special case of the product formula 

for the torsion of (finitely dominated) x (round finite) Poincare 

complexes. 

Given a *-invariant subgroup S~ KO (~[~]) (resp. S g Wh(~)) let 

I:!i: 
finite) 

(n ~O) be the cobordism group of finitely dominated (resp. 

Isymmetric 
n-dimensional C quadratic Poincare complexes over ~[~] 

(C,$e Qn(C)) ~ 
with finiteness obstruction [C] e S ~Ko(~[~]) (resp. 

(C,~ Qn(C)) 

{i(C,$) = ~(~o:C n-* ~c) 
Whitehead torsion £ Sg Wh(~)) . 

(C,~) T((I+T)~o:C n-* > C) 

A finitely dominated (resp. finite) n-dimensional geometric Poincare 

complex X with Zl(X) = ~ and [X] ~ S (resp. T(X} ~ S) has a symmetric 

signatu[e invariant 

n 
o~(X) = {C(X),~) e LS(~) 

with ¢O [X] m : C(X) n-* . . . .  ~C(X) , and a normal map (f,b) :M ~X 

of such complexes has a ~uadratic @ignature invariant 

L~(~) c,(f,b) 

such that (l+T)O S ,(f,b) = O~(M) - o~(X) . See Ranicki [22],[29] for the 

details. In the extreme cases S = {O},Ko(~[~]) (resp. {O},Wh(~)) 

the notation is abbreviated in the usual fashion 
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LKO (2Z Ln i n n [7]) (~] = (7) (~) = Ls(~) p L{ O}-_CWh (7) 

LKo (]Z ' [7]) (~)= Lp(~ ) L {O}c~Wh(~) (7) = LS(~) 
n n n 

n n n 
L{O}C.~o(ZZ[~] ) (7) = Lwh(z ) (z) = Lh(7) 

L{ O}C KO (Z~ [11] ) ~"h L h (11) 
n (7) = L~ (7) (7) = n 

s In particular, the simple quadratic L-groups L.(~) are the original 

surgery obstruction groups of Wall [35], with aS(f,b) the surgery 

obstruction. 

The torsion of a round finite n-di.~ensional 

complex over 2Z[~] I (C,¢) 

L (C,~) 

{ ~(C,¢ 
~(C,~ 

and is such that 

I 
symmetric 

quadratic 

is defined by 

= ~(¢o:C n-* ~C) ~ K I(2Z[7]) 

= T((I+T)~o:Cn-* ~ C) ~- K](2Z[~]) 

I(C,¢ * = (-)n~(c,¢) 

(C,¢)* (-)n~(c,~) 

Poincar$ 

e KI(ZZ [~] ) 

define the round! symmetric 

quadratic 
Given a *-invariant subgroup S_CKI(2~[~] 

L-group) (n>/O) to be the cobordism group of round finite 
L rS (~) 

t n 
symmetric i (C,~) 

n-dimensional Poincar6 complexes over 2Z[7] with 
quadratic (C,~) 

ii (C,,) torsion £ S _CKI(2Z[z]) . See Hambleton, Ranicki and Taylor [ii] 
(C,9) 

for an exposition of round L-theory. We shall only be concerned with 

the round symmetric L-groups LrS here, adopting the terminology 

n L n L n, (7) = L n (7) Lrs(Z) = (z) 
rn rKI(2Z[~]) ' r{±7} " 

The Rothenberg exact sequence for the quadratic L-groups 

... ,LSn(~.) , Lh(~) ,Hn(Tz2;Wh(~)) >LS_I(~) , ... 

has versions for the symmetric and round symmetric L-groups which fit 

together in a commutative braid of ex_~ct sequences 
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"r 

L n /rh\ 
L n (n) L n 
rs h (~) 

Ln(~) 
s 

I 

Hn(~z2;Wh(~)) ~ Ln-l(~) 

with the maps 7 (resp. X) 

Y 
Ln-l(~) 

rs 

(zz2 ;Ko(zz) / LrTIC   

defined by the Whitehead torsion (resp. Euler 

characteristic). In the case Wh(~) = O the L-groups are 

I L*(~) 
r 

L*(~) 
abbreviated to The L-groups of the trivial group ~ = {i} are 

given by 

Ln({l}) = ~2 

with isomorphisms 

L4k({I}) 

L4k+l({l}) 

h4k({1}) 
r 

L4k+l({l}) 
r 

Ln({l}) 
2Z2OZZ 2 

if n - (mod 4) 
0 

0 

~ZZ ; (C,#)~ ~ signature(C,¢) 

]l ~ 2 ; ( C , ~ ) ~ ~deRham(C,¢) = x½(C;TZ 2 ) + x½(C;Q) 

>~ ; (C,¢) ~ ~ ½(signature(C,¢)) 

• '2Z2$2Z 2 ; (C,¢)~ ~(x½(C;ZZ2),x½(C;~)) 

(See Ill] for details. The F-coefficient semicharacteristic of a 

(2i+l)-dimensional Z~-module chain complex C is defined by 

i 
X½(C;F) = [ (-) rrankFHr (C) e 2Z , 

r=O 

for any field F). 

The torsion of a round finite n-dimensional geometric Poincare 

complex X with ~l(X) = ~ is the torsion of the associated round finite 

n-dimensional symmetric Poincare complex over 2Z[~] (C(X),4p) 

~(X) = T(C(X),~) = ~(~O = [x] n- : C(X) n-* ~C(X)) ~ KI(ZZ[~]) 

If SC_KI(ZZ[~]) is a *-invariant subgroup such that T (X)G S the round 
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symmetric signature of X is defined by 

n 
0rs(X) = (C(~),~) e LrS(~) 

n 
In the case S = KI(2Z[~]) (resp. {+~]_ ~ ) this is denoted O*rh(X) ~ Lrh(~) 

r *(X) ~ Ln(~). (resp. O;S(X) ~L s(~)), and if also Wh(~) = 0 by o r r 

We shall be particularly concerned with the round symmetric 

s~gnature of the circle S 1 

*(S I) = (c(gl),~) ~ LIr(~Z) . o r 

The imaoe of the 2Z[z,z-l]-module chain complex 

l-z 
C(g l) : 2z[z,z -l] ~ 2Z[z,z -1] 

under the morphism of rings with involution 

[? : ~[2Z] = 2Z[z,z -I], ,~Z ; z, ~i (z = z_l ) 

: ~Z[~Z] = ZZ,z,z -I] ~2Z ; zl ~-i 

is the 2Z-module chain complex 
0 

J e!C(~ I) ~ 2Z . . . . .  ZZ 

~tn:C(Z 1 ) : 
2 

~(×½(C;ZZ2),x½(C;@)) = (i,i) 
with mod2 and rational semicharacteristics 

~L(x½(D;ZZ2) ,x½(D;@)) = (i,O) 

so that o;(S I) £Ll(2Z)r has images 

I~!0r{S I) = (l,1) 
L I({I}) = ZZ2e2Z 2 . 

tnl0r(S I) (i,O) r 

The algebraic proof of the splitting theorem for the quadratic L-groups 

Ls(~×2Z) = Ls(~)~LB n n n _l(r~) discussed in §6 below can be extended to prove 

analogous splitting theorems for the symmetric and round symmetric 

L-groups 

n n-i , Lrs(Z×2Z ) = L n {zl(~Lh-l(~ ) Ln(z×~Z) = Ls(~)@L h (z) rs 

Thus LI(~z)= LI({I})~LO({I}) = ZZ2@ZZ2@Z~, although we do not actually 
r 

need this computation here. 
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55. Products in L-theory 

~ s y m m e t r i c  
The product of an m-dimensional Poincare complex over A 

[quadratic 

(C,¢) and an n-dimensional symmetric Poincar6 complex over B (D,8) is 

symmetric 
an (m+n)-dimensional Poincar~ complex over A~B 

[quadratic 

(C,¢)®(D,e) : (C®D,~e) , 

allowing the definition (in Ranicki [22]) of products in L-theory of 

the type 

Lm(A)®Ln(B) __>Lm÷n(A®B) 

Lm(A)®Ln(B ) ~ Lm+n(A®B) 

We shall only be concerned with the product L ~Ln ------>L here, with 
m m+D 

A = ~[~], B = ~[p] group rings, so that A®B = ~[[xp]. 

I f i n i t e l y  d o m i n a t e d  
The product of a ~finite m-dimensional symmetric (reap. 

quadratic) Poincar6 complex over ~[~] (C,¢) and a !finitely 
dominated 

finite 

n-dimensional symmetric Poincar~ complex over ~[p] (D,e) is a 

finitely dominated (m+n)-dimensional symmetric (reap. quadratic) 

finite 

Pcincar6 complex over ~[~xp] (C®D,¢~e) with I pr°jective 
class 

<Whitehead torsion 

I [C®D] = [C]®[D] e KO(~[~×p]) 

T(C~O,¢®6) = T(C,%)®x(D ) + x(C)~T(D,6) @ Wh(vxp) 

The following product formulae for geometric Poincar6 complexes are 

immediate consequences. 

f f i n i t e l y  d o m i n a t e d  
Proposition 5.1 The product of a m-dimensional 

finite 

geometric Poincar6 complex X with ~I(X) = ~ and a I finitely 
dominated 

t finite 

n-dimensional geometric Poincare complex F with ~I(F) = P is a 

Ifinitely geometric complex X × F 
dominated 

(re+n) -d inlensional Poincar6 
finite 
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with 
projective class 

Whitehead torsion 

i iX ~ F] = [X]®[F] £ Ko(~l~xp]) 

~(X × F) ~(X)®x(F) + x(X)®~(F) Wh (~xp) 

[ ]  

¢ Wh (p) 

[P] e S, [Q] e T 

~(f) e S, ~(g) eT 

~I(F) = p and 

f i n i t e l y  d o m i n a t e d  

product normal map of [finite 

Poincar6 complexes 

(g,e) = (f,b) x 1 ; ~ x F -----~ X x F 

is given by 

U S(f,b)®o~(F) e L U (~xp) o.(g,c) = O. m+n 

*(F) ~ n(0). the product of 0~(f,b) ~ L (~) and 0 T L T 

[IF] 8T~_K0(~[O]) 
{ 
[~(F} ~ T_CWh(0) 

, then the quadratic signature of the 

(m+n)-dimensional geometric 

I] 

Given *-invarJant subgroups 
[SgWh(~) 

s u c h  t h a t  f o r  
~Wh(~×p) [T(f)®l,l®~(g) ~ U 

there is defined a product in L-theory 

® : h~(z)®LSfp) ~m Um+n(~×p) ; (C,~)~(D,8)' ~ (C®D,~®8) 

with the following geometric interpretation. 

Proposition 5.2 (Ranicki [23]) If (f~b) :M ~ X is a normal map of 

IfJnitely m-dimensional geometric Poincare complexes with 
dominated 

finite 

{ [M]- IX] eS~o(m[~]) 
~l(X) = ~ and , and if F is a 

(N) - ~{X) e S @wh(~) 

I finitely n-dimensional geometric complex 
dominated 

Poincar6 with 
finite 
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The methods of Ranicki [26] apply to the products of algebraic 

Poincare complexes, giving the following analogues of Propositions 2.2, 

5.2: 

Proposition 5.3 i) The product of a finitely dominated m-d~mensional 

quadratic Poincar6 complex over ~[7] (C,$) and a round finite 

n-dimensional symmetric Poincar~ complex over ~[p] (D,e) is an 

(m+n)-dimensional quadratic Poincar~ complex over ~[~×p] (C~D,$®@) 

with canonical round finite structure, and torsion 

T(C®D,~®0} = [C]~T(D,0) e Kl(~[~xp]) 

the product of [C] e Ko(~[n]) and T(D,O) ~ Kl(~[p]) • 

ii) Given *-invariant subgroups S ~Ko(~[7]), TqKl(~[p]) , U~Wh(~xP) 

such that S®T¢ U there is defined a product in L-theory 

® : nS(~)®L~m T (p) >L~+n(ZX p) ; (C,~)®(D,O)~ > (C~D,o®O) 

If (f,b) :M >X is a normal map of finitely dominated n-dimensional 

geometric Poincare complexes with ml(X) = ~ and [H] - [X] ~S~Ko(~[n]), 

and if F is a round finite n-dimensional geometric Poincare complex 

with ~I(F) = p and T(F) e T ~Kl(~[p]) then the product map of 

(m+n)-dimensional geometric Poincare complexes with canonical (round) 

finite structure 

(g,c) = (f,b) × 1 : M x F ~ X x F 

has quadratic signature 

U = o s ®O~T L U (~xp) O. (g,C) . (f,b) (F) e m+n 

s ~ n t he  p r o d u c t  of  o . ( f , b ) ~ L  (7) and O*rT(F)~LrT(P) .  
[] 

An n - d i m e n s i o n a l  g e o m e t r i c  P o i n c a r ~  complex F i s  roun,d,, simple, 

i f  i t  i s  round f i n i t e  and 

r(F) ~ {±p} ~KI(~[P]) (P = ~I(F)) , 

so that Y(F) = O £ Wh(p) and the round simple symmetric signature 

o* (F) eL n (P) is defined. 
rs rs 

f f i n i t e  
Proposition 5.3 shows in particular that for a round tS imple 

n-dimensional geometric Poincar~ complex F product with the round 
n 

finite 1 * (F) eLrh(P) 
°rh defines a morphism of symmetric signature Ln 

simple (O~s(F) e rs(P) 
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< -®a~h(F ) ; LP(z) ~L h (~xp) 
m m + n  

-~°rs(F) : Lh(~)m ~LS" m+n(~XP) 

In the simple case these products define a map of generalized 

Rothenberg exact sequences 

S ('rxO) >Lh+n ( ' n x O ) m  ^m+n • .. >Lm+ n >H (2Z~;Wh(Tx~)). >LmS~n_l(~×p)---~.. • 

with T(F)~ {-+D] c. KI(ZZ[P]). The map of exact sequences in the appendix 

of Munkholm and Ranicki [16] is the special case F = S I. Moreover, 

the split injection 

~, = -®T(S I) : Hm(2Z2;Ko(~[~])) ; Hm+l(]~2;Wh(~x2Z)) 

was identified there with the connecting map 6 arising from a short 

exact sequenc.- of 2Z[~2]-modules 

T 

O > Wh(~×~) >Wh(p') > KO(ZZ[~]) ....... >O , 

with Wh(p:) the relative Whitehead group in the exact sequence of 

transfer maps 

~! ~: 
Pl = O Po = O 

Wh(~). )Wh(~x2Z) . ~Wh(p !) . ~ KO(~[~]) ~.Ko(2Z[~xZZ]) 

associated to the trivial sl-bundle 

p = projection 

S 1 ; E = K(~,I) x S 1 > B = K(,~,I) 

and 7z 2 acting by duality involutions. The relationship between transfer 

maps and duality in algebraic K-theory will be studied in L~ck and 

Ranicki [13] for any fibration F >E P ~ B with the fibre F a 

finitely dominated n-dimensional geometric Poincar6 complex. In particular, 
! 

there will be defined a duality involution *:KI(P') ...... -~KI(P~) on the 
I 

relative K-group KI(P') in £he transfer exact sequence 
T 

KI(2Z{~I(B)] ) Pi > KI(ZZ[~I(E)] ) ~ Kl(P !) 
I 

P0 
>' Ko(2Z[~I{B) ]) > Ko(2Z[~I(E) ]) , 

as we!l as assorted transfer maps p!:Lm(~I(B)) ..... ~ Lm+n(~l(E)) in 

alqobraic L-theory. If F is round simple and Zl(B) acts on F by self 
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equivalences F 

with a round manifold fibre) then there is also defined a transfer 

exact sequence 

~F with T = 0 £ Wh(~I(E)) (e.g. if p is a PL Dundle 

i 
> Wh(p') 

~! 
PO 

--+K 0(2Z[7 I(B)]) >Ko(2Z[7 I(E)]) 

Pl 
Wh(~l(B)) > Wh(,~l (E)) 

p[ with a duality involution *:Wh( ) ~Wh(p') on the relative 

Whitehead group. The connectina maps ~ in Tate ~2-cohomology arising 

from the short exact sequence of ~[~2]-modules 

O * coker(pi) ~ Wh(p') > ker(p~) > 0 

and the transfer maps in L-theory together define a morphism of 

exact sequences 

>Hm(zz2;ker(PO) ~Lh_l(7) 

ira(> i) 
~Hm+n(zg2;coker (~i))--+Lm+n_ I (E) 

(n = 71(B) , E = ~I(E)) 

i 
k e r  (~0) 

.... ~Lh(~) ~L (~) 
m m 

P P 

i 

im(#i) __+Lhm+n 
... ~ Lm+ n (E) (F.) 

In the case of the trivial fibration 

p = projection 
F ~E = BxF ~ B 

(with the fibre F a round simple Poincare complex, as before) the 

algebraic K-theory transfer maps are zero 

= -®[F] : 0 : Ki(~[,~]) ~ Ki(2Z[~x4)]) Pi 

(i = O,i 0 = ~I(F)) 

so that Pi =o. Also, the algebraic L-theory transfer maps are given 

by the products with the round symmetric signatures 

i 
P" = -®Crh(F) : LmP(~) > Lhm+n(ZXP) 

P! = -®O~s(F). : Lh(~)m ~LSm+n(~×0) , 

and 6 is given by product with the torsion T(F)~ {-+p} C_ KI(TZ[p]) 

6 = -®T(F) : Hm-(2Z2;Ko(ZZ[#])) ~ Hm+n(zz2;Wh(7×p)) 

as in the case F = S 1 considered in [16]. 

)... 
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§6. The L-groups of a polynomial extension 

There are 4 ways of extending an involution a~ +a on a ring A 

to an involution on the Laurent polynomial extension ring A[z,z-l], 
-i -i 

sending z to one of z,z ,-z,-z In each case it is possible to 

express L.(A[z,z-l]) (and indeed L*(A[z,z-l])) in terms of L.(A), and 

to relate such an expression to splitting theorems for manifolds 

- see Chapter 7 of Ranicki [24] for a general account of algebraic 

and geometric splitting theorems in L-theory. Only the case 

A = ~[~] , ~ = z -I 

is considered here, for which A[z,z -I] = ~[~] [z,z-l]. 

The geometric splittings of the L-groups L.(~×~) depend on the 

I Wall [35] 

realization theorem of ~ Shaneson [29] , by which every 
! 
<Pedersen and Ranicki [18] 

I 
LS(~) 

n 

L h (~) 
n 

L p (-~) 
n 

element of 

rel~ surgery obstruction 

simple 

(n ~5, ~ finitely presented) is the finite 

projective 

t 
o , I f , b )  

a~(f,b) of a normal map 

0~(f,b) 

(f,b) : (M,~M) ~ (X,SX) 

from a compact n-dimensional manifold with boundary (M,~M) to a 

f simple 
finite n-dimensional geometric Poincar6 pair <X,~X) 

finitely dominated 
k 

equipped with a reference map X ....... ,K(~,I), and such that the 

restriction Zf = fl : ~M ...... ~'~X is a 

simple 

homotopy equivalence. 

A morphism of groups 

induces functorially morphisms in the L-groups, given geometrically by 
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¢, : Lq(*) ~ Lq(H) ; 
• n n 

(f,b) 
a~((M,~M) ~ (X,~X) ~K(~,I)) 

(f,b) 
a~((M,~M) ) (X,~X) ' K(~,I) 

¢ 
*K(]],I)) 

and algebraically by 

(q = s,h,p) , 

¢, : Lq(~) ~ Lq(]]) ; (]q(f,b)~ 
n n 

In general %~ will be written ¢. 

~2Z [~] ®2Z [~] a*q(f ,b) 

The geometric splitting of Shaneson [29] 

was obtained in the form of a split exact sequencc 

[ B 
O ; L:(~) ~ LS(~ x ~} ~L h (7)- > O 

n n-I 

with ~ the split injection of L-groups induced functorially from the 

split injection of groups ~:~> ~ z ~ . The split surjection B was 

defined geometrically by 

B : LS(~ × ~) ~L h 
n n-i (~) ; 

s (f,b) 
a, ((M,~M) ) (X,dX) × S 1 ~ K(~,l) x S 1 = K(~×2Z,I)) 

~ ah (g,c} 
,((N,~N) ~ (X,oX) > K([,I)) 

using the splitting theorem of Farrell and Hsiang [ 5 ] , [ 7 ] to 

represent every element of LS(~x2Z) as the rel~ simple surgery 
n 

s 
obstruction o,(f,b) of an n-dimensional normal map 

(f,b) : (M,~M) >(X,~X) x S 1 with (X,~X) a finite (n-l)-dimensional 

geometric Poincare pair, such that f is transverse regular at 

(X,%X) x {pt.} C(X,dX) × S 1 with the restriction defining an 

(n-l)-dimensional normal map 

(g,c) = (f,b) I - (N,~N) = f-I((x,~x) x {pt.}) ~ (X,~X) 

with ~f:ZM' ~X× S 1 a simple hcmotopy equivalence and ~g:~N ~X a 

homotopy equivalence. There was also defined in [29] a splitting map 

for B 
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L h 
: n-I (~)~ 

h 
0, ((M,%M) 

>LS(~ x 2Z) ; 
n 

(f,b) 
~' (X,~X) } K(~,I)) 

S sl (f,b) × 1 
) O.((M,ZM) x ...... (X,~X) × S 1 

>K(~,I) × S 1 = K(wx2Z,l)) 

( = 0~(f,b)~a;(S I) by Proposition 5.3 ii)) 

''LS(zx~) )~ L:(z) be the geometric split surjection determined Let e " n 

by ~,B,B', so that there is defined a direct sum system 

~ B 
LS(~)~< * LS(~ x ZZ)~ "~Lh n i(~) 
n n - 

Although it was claimed in Ranicki [20] that E' coincides with the 

split surjection induced functorially from the split surjection of 

groups e:~x~ )~ (or equivalently ~[~l[z,z -I] ~[~] ; z ~ ~i) 

it does not do so ~n general. This may be seen by considering the 

composite 

£B' : L~_l(~)~-- - - - - - - - -~LS(~x~)n ~LS(~)n ' 

which need not be zero. A gene~ic element 

h (7) 0.((f b) : (M 8M) . (X,3X)) C L h 
' ' n-i 

is sent by B' to 

B' (o~(f,b)) = o~((g,c) = (f,b) x iS1 : (M,~M) ~ S 1 ~ (X,~X) × S I) 

C L h (~ x ~) • 
n 

Now (g,c) is the boundary of the (n+l)-dimensional normal map 

(f,b) x I(D2,SI ) : (M 

such that the target 

(X,~X) x (D 2,S 1 

is a finite (n+l)-dimens 

boundary and 

~((X,~X) x (D2,S 1 

3M) × (D 2 , S I) (X,~X) × (D2,S I) 

= (X x D2'X x slk] ~X x S I~X x D2) 

ional geometric Poincare pair with simple 

) = T(X,~X)®x(D 2) + x(X)ST(D2,S I) 

= T(X,3X) e Wh(~) 

(by the relative verslon of Proposition 5.1). It follows that 
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¢~='a,h'#,~. b) ~ LS(~)n is the image of 

T((X,~X) x (D2,SI)) = T(X,}X) 

~n-l(2z2;Wh(~)) = ~n+l(Tz 2 

under fhe map ~n+l(2z2;Wh(~)) ~ LS(~) 
n 

sequence 

... ~Lhn+l(~) ,-~n+l(Tz2;Wh(~)) > LS(~) ) Lh(~) 
n n 

:Wh(~)) 

in the Rothenberg exact 

) .... 

The discrepancy between ~ and ¢' will be expressed algebraically in 

Proposition 6.2 below; it is at most 2-torsion, and is 0 if Wh(~)= O. 

Novikov [17] initiated the development of analogues for algebraic 

L-theory of the techniques of Bass, Heller and Swan [2 ] and Bass [ i ] 

for the algebraic K-theory of polynomial extensions. In Ranicki [19],[20] 

the methods of [17] (which neglected 2-torsion) were refined to obtain 

for any group n algebraic isomorphisms 

I L = 

I BL = 

: (~×Tz) ~ LS(r~)$L _ 1 ( 7 )  
B n n 

L h : (~xZg) ~ (~)$L _i(~) 
B n n 

with inverses 

~ , l  = 

B) : Ls(~)$Lh_I(~) ~LS(~×2Z) 
n n 

(~ B) : Lh(v.)$LP_l(~)n ~Lh(~×~)n 

by analogy with the isomorphism of [2 ] 

8 K : Wh(~×2Z) • Wh(~)$Ko(2Z[~])(gNi'-~(TZ[~.])$Ni'-'~-(77[~]) 

recalled in §3 above. The isomorphisms ~L define the algebraically 

significant splitting 

As already indicated above this does not in general coincide with the 

geometric splitting of LS(~xZZ) due to Shaneson [29], although the 
n 

B:LS(zxZZ) split sur jection )>L n n _i(~) of [29] agrees with the 

algebraic B of [20]. 
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Pedersen and Ranicki [18,~4] claimed to be giving a geometric 

interpretation of the algebraically significant splitting 

h = h p (z) However the composite L, (~×2Z)L, (w)@L,_ 1 . 

£B' : L p (~)~ ." Lh(~xZZ) ~Lh(~) 
n-i n n 

of the geometric split injection 

B' : L p n_l(W)> : > Lh (wx~) ; n 

a~((f,b): (M,DM) }(X,~X)) 

h , ~o.((f,b) × isl : (M,~M) x S I . )(X,~X) x S I) 

(= o~(f,b)®o~(S I) by Proposition 5.3 ii)) 

and the alaebraic, split surjection [:L~(~x~) ~Lh(~)n need not be 

zero: there is defined a finitely dominated null-bordism with 

~l(X x D 2) = ~l(X) = 

(f,b) x I(D2,SI ) : (M,~M) × (D2,S I) ~ (X,~X) x (D2,S I) 

of the relative (homotopy) finite surgery problem 

(f,b) x isl : (M,~M) × S I, ~ (X,~X) x S 1 

with finiteness obstruction 

IX x m 2] = IX] ~ K0(~[7]) 

It follows that cB'q~(f,b)~ Lh(~) is the image of 

[X] e Hn-I(~2;K0!~[~]) 

Hn÷I(~2;Ko(~[~])} 

sequence 

... ~P (~) 
~n+l 

Hn+I(2z2;Ko(2Z[~])) under the map 

~Lh('~) in  t h e  g e n e r a l i z e d  R o : h e n b e r g  e x a c t  n 

~Hn~I(zz2;K0 (zZ[~])) "~Lh(~)n ~ LP(~)n ) . . . .  

Thus {' and e de not in general belong to the same direct sum system. 

In fact ~ belongs to the algebraically significant direct sum 

decomposition of Lh(~x~) described above, while B' belongs to the 
n 

geometrically defined direct sum decomposition 

B 
Lh(~----------~Lh(~x~)~ ~>L p ~ (~ 

n ~ n-~ 

with B as defined in [18 ,§4] and ~' the split surjectlon determined 

by -£,B,B'. It is the latter direct sum system which is meant when 
h h 

to "the geometric splitting L.(~xZZ)= L,(~)@LP_I(~)_ of 118]". referring 
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Define the geometrically significant splitting 

to be the one given by the algebraic isomorphism 

~L' = : LS(~×2Z)n > LS(~)OLn -i (~) 

() e 

B~ = : Lh(zxZZ) - ~Lh(n)OLPn_ 1 (z) 
B n 

with inverse 

where 

and 

8L -I = (£ B') : LS(~)~Lh ) " n n -i (~ ~LS (~xZg) 

B~ -I = (C B') : mh(n)ehn p i(~) .... >mh(nxZ~) 
n - n 

{ B' = -~o*(S I) : L n r h-l(~); >LS (zxZg} 

~, = -®Or(S I) : L p ~(n)> .~Lh(~×ZZ) 
n-± n 

[ ~' = £(I-B'B) : LS(~×~) ,~LS(~) 
n n 

£' = ~ (I-B'B) : Lh(~x~)n >~L~(z) 

Proposition 6.1 The geometric splitting Lh 
-- L~(~×=) n(~)ee~_l(~) 

I Shaneson [29] is the geometrically significant splitting 
Pedersen and Ranicki [18] 

in algebra. 

of 

[] 

The algebraically significant split injections 

h were defined in Ranicki [20] using the forms 
B:LP(~)~ ~ L.+l(~X2Z) 

and formations of Ranicki [19] ; for example 

B : LPi(~)>--------+Lhi+l(~X2Z) ; 

(Q,~) ~, ~ (M@M,~@-J2 ;A, (l@z) A)@ (H (_) i (N) ;N,N) 

sends a projective non-singular (-)l-quadratic form over ~[~] (Q,~) 
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tO a free non-singular (-)i-quadratic formation over 2Z[~×Tz] =2Z[~] [z,z -I] 

w{th M = Q[z,z -I] the induced f.g. projective ZZ[~×2Z]-module, 

& = {(x,x) ~M(gMIxdM} CM@M the diagonal lagrangian of (M@M,~@-~), and 

H(_)i(N) = (N~N*,~ O io1)the (-)i-hyperbolic (alias hamiltonian)form 
kO 

on a f.g. projective ZZ[~×ZZ]-module N such that M@N is a f.g. free 

7z[~×~Z]-module. The geometrically significant split in3ections 
[~, h s 

:L, (~)~ )L,+I (~×2Z) 
~,:Lp(~) ; h were defined in ~i0 of Ranicki [22] using 

~L,+ I (~ ×2Z) 

algebraic Poincare complexes. It is easy to translate from complexes 

to forms and formations (or the other way round); for example, in 

terms of forms and formations 

~. : LPi(~)> ' , h L2i+l (~×2Z) ; 

(Q,%)k--------+ (M@M,9@-~;A, (I(gz)A)(9(H(_)i(N) ;N,N*) , 

making apparent the difference between B and B' in th~s case. 

For any group ~ the exact sequence 

O > HO(zz2;Ko(~))- 

splits, with the injection 

~O(zz2;Ko(2Z) } = 2Z2~ 

) Llrh(~) > LI(~) ~ 0 

;L I 
rh(~) ; I , 

. {S 1 

Now 

°*(Sl)r - °~ (SI) = ~E°r (SI) £ LI(2z) ' r  

split by the rational semicharacteristic 

Ll(~)r )) 2Z 2 ; (C,¢)~ ~ X½(2Z®2z[~]C;~) 

By the discussion at the end of Ranicki [22,§i0] 

LI(2z) = LI({I))~LO({I}) = 2Z2(92Z , 

with (O,I) = 0*(S I) C LI(zz) the symmetric signature of S ] . Let 

o* (S I) C L l(Tz) be the image of o* (S I) C L I(2Z) under the splitting map 
q r 

LI(2z)> ~LI(2z) so that o*(S I) = (I-~)~*(S I) and ~o*(S I) =OC LI({I}}. 
r ' q r q r 

The algebraically significant injections are defined by 

n+l 
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so that 

- = l) = 

By analogy with the map of algebraic K-groups defined in §3 

=-®T(-l) : KO(TZ[~]) 

define maps of algebraic L-groups 

co = -®~Or(Sl) : Lh(~) 
n 

~m =-®eo*(S 1) : LP(~) 
r n 

~Wh (~) 

~LS+I (~) 

}Lhn+l (~) , 

where ¢Or(S I) = (i,i) ~ Ll({l})r = ZZ2(~ZZ2" As ~=(S I) = ~(-i) eKI(ZZ)= ZZ 2 

the various maps co t o g e t h e r  d e f i n e  a m o r p h i s m  o f  g e n e r a l i z e d  R o t h e n b e r g  

exact sequences 

.... >L h (~) ~ L p (~) 
n n 

~L h (~) ~.. > Hn(~2;Ko(ZZ hi)) " n-i "" 

" ~ H n + l ( 2 z 2  ; W h ( ~ ) )  ' LS(~)n .... > . . . .  

Proposition 6,2 The algebraically and geometrically signiflcant split 

injections of L-groups differ by 

- co 

{ B' -B = ¢co : L (z) 

B '  - B = 7~ : LP(~) ~) 

The split surjections differ by 

L s 
n+l (~)} 

Lh+l(~)> 

£ 
• LS+I (r  x2Z) 

L h n+l (~x2Z) 

m 
¢ '  - e = eJB : LS(nxZZ) ;.~ L h I n n-i (~ >LSn (~ 

B co 
¢' - ¢ = COB : Lh(wxZ~) >>'L p (~ >Lh(~) 

n -1 n 

The L-theory maps ~ factor as 

I w : Lh(~) >Hn(Zz2;Wh(~) = Hn+2(ZZ2;Wh(~)) "L s 
n n+l (~) 

co LP(~ln ~fin(z~2;.Ko(Z~[~])) =Hn+2(~Z2;Y'o(Z~I~I)I-------~Lh+I(~) 

The K-theory map co is the sum of the composites 

~n(2z2;~o(2Z[~]) ) ~ L h ~n-i ~n+l n_l (~) ~ ,  (2Z2;Wh (~)) = (ZZ2;Wh(~)) 

Hn(z~2;Ko(2Z[~])) = Hn+2(ZZ2;Ko(2Z[~])) ~Lh+l(~) ~n+l(2z2;Wh(~) ) . 
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I L~'S(~) Proof: Let (n ~ O) be the relative cobordism group of 

I ( f i n i t e , s i m p l e )  n - d i m e n s i o n a l  q u a d r a t i c  P o i n c a r ~  p a i r s  

( f i n i t e l y  d o m i n a t e d , f i n i t e )  

o v e r  ~ [ ~ ]  ( f : C  , D , ( 6 5 , ~ )  e Q n ( f ) ) ,  so  t h a t  t h e r e  i s  d e f i n e d  an  e x a c t  

sequence 

L s L h 
n 

L h L p (~) ~ (~1 
n n 

~Lh'S(~) 
n 

~L p ' h  ~) 
n 

~L s 
n_l(~)= .~ ... 

; L h 
n_l(~) ~ . .. 

and there are defined isomorphisms 

Lh'S(~)-------eHn(~2~Wh(~)) ; n 

(f:C----~D,(6~,@))~ ~ ((I+T) (6¢,~)o:C(f)n-* }D) 

L~'h(~) ~ Hn{~2;Ko(~Z[~]) ) ; {f:C--~D, (6,,*)1} > [D] 

Product with the 2-dimensional symmetric Poincare pair 0*(D2,S I) over 

defines isomorphisms of relative L-groups 

{ -®o*(D2,SI) : Lh'S(~) ' L~;~(~) 
n 

-~o*(D2,S I) ; LP'h(~) ~,LP'~(~) 
n n+Z ' 

corresponding to the canonica] 2-periodicity isomorphisms of the Tate 

~2-cohomology groups 

(~n(~2;Wh(~)) ~n+2(~2;Wh(~)) 

I Hn(~2;Ko(~[~])) ~ Hn+m(~2~Ko(~[~])) 

The boundary of ~*(D2,S I) is EC*(SI) . 
r 

In particular, the algebraic and geometric splitt'ing maps in 

L-theory differ in 2-torsion only, since 2~ = O (cf. Proposition 3.3). 

The splitting maps in the algebraic and geometric splittings of 

Wh(Tx~) given in ~3 and the duality involutions * are such that 

~* = *-6 : Wh(~) '~ Wh(~x2Z) 

~* = *~ , ~'* = *c' : Wh(~×2Z) ~ Wh(~) 

B* =-*B : Wh(~x2Z) ;Zo(ZZ[~]) 

= Nil(TAil]) ~ Wh(~×2Z) ZJ *Z : 
- 
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The. involution *:Wh(~x~) ............. ~Wh(zx~) interchanges the two Nil summands, 

so that they do not appear in the Tare ~2-cohomology groups and there 

are def-ined two splittings 

Hn(~2;Wh(~x~)) = ~n(~2;Wh(~))o~n-l(~2;Ko(~[~]) ) , 

the algebraically significant direct sum decomposition 

Hn(ZZ2;Wh(~))~ ...'Z > Hn(zz2;Wh(~xZZ)) 4 ,~n-i (ZZ2 ;~o(2Z [~ ] ) ) 

and the geometrically significant direct sum decomposition 

n{2z2;w h 5 ~ ~n-i {2Z2 ;~o(ZZ [~ ] ) ) (~))~ { , _> Hn(zg2;Wh{~×ZZ)) ( < 

Proposition 6.3 The Rothenberg exact sequence of a polynomial extension 

... ~LS(~x2Z) ~Lh(~xZZ) ~Hn(Tz2;Wh(~x?z)) ~L s l(~XTz) ~" ... 
n n 

has two splittings as a direct sum of the exact sequences 

• • m ~.LS (~) ~Lh(~) ' ~ Hn(zz2;Wh(z)) ~L s (7) > 
n n-l "'" ' 

,Lhn i<~) ~P ,(~) ,~n-i(=2;~O(=I~])) ,L~ a(~) , . 
- n - I  - ' 

an algebraically and a geometrically significant one. 

[] 

The split injection of exact sequences in the appendix of 

Munkholm and Ranicki [16] is the geometrically significant injection 

... ;, Lhn_l  ( ~ )  ~L p n_l (~) 

. . .  >LS(~×=) , Lh(~×Zg) 

>Hn-i (2Z2 ;Ko (ZZ [~ ] ) ) --~Chn_2 ([) ) ... 

~ ~n (ZZ2;Wh (~xZZ)) ~L s n_l (z x 7z)---~ .... 

As for algebraic K-theory (cf. the discussion 3ust after 

Proposition 3~3) it is tempting to identify the geometrically 

{e 
':LS(~×~) ~LS(~) 

significant split surjection n n with the split 
e' Lh(~×~) ~Lh(~) 

n n 

surjection of L-groups induced functorially by the split surjection of 

rings with involution 

[z,z -1] ~_ ajz3~ S_=aj n : ~[~] = ~[nx~] ~>.~[~] ; ) (-i) j 
J J 

and indeed 
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¢'[ (=l) = nl : im(~:L (~); >LS(~x2Z) : n 
¢'I(=l) = ql : im(~:Lh(~) ~ ~Lh(~ x2Z) 

n n 

However, q o ; ( S  l )  = (1 ,O)  ~ 0  e L l r ( { 1 } )  = ~2~2~  2 

2 Zg-module chain complex is ~ >2Z) and in general 

IE'I(=o) "~-nl : 

so that 

..... ~ L s (~) 
n 

..~ Lh (~) 
n 

since the underlying 

= .L h (~ b---~ LS (~ x~ ) ) im(B' -;D°r (SI)" n-i 

-L p (~ p---~Lh (~x2Z)) im(B' =-~°r (SI)" n-i 

[' ~ q : LS(~×ZZ) ~LS(~) 
n n 

Lh(gX~)n ~,L~(n) e' ~ ~ : 

~LS(~) 

h 
> Ln (I~) 

For q = s,h,p the type q total surgery obstruction groups 

~(X) were defined in Ranicki [21] for any topological space X to 

fit into an exact sequence 

oq 

. . .  )Hn(X;~_O) * ........ >L~{~I(X)) ~ ~(X) ' Hn_I<X;IL O) 

with -~-~0 an algebraic 1-connective fl-spectrum such that 

~.(~0 ) = L,({I}) 

and o~ an algebraic version of the Quinn assembly map. If X is a 

I simple 

finite 

finitely dominated 

n-dimensional geometric Poincar6 complex the 

S(x) s(x) ~ ~ n  

total surgery obstruction s(X) ~h(x) is defined, and is such that 
n 

s(×) e ~ nP(X) 

s(X) = 0 if (and for n >,5 only if) X is - homotopy 

XxS 1 

f equivalent to a compact n- dimensional topological manifold. For a 

(n+l) - 

compact n-dimensional topological manifold M with n >5 the exact sequence 

°q q °q , Lq(Zl (M)) " " " ---~Hn+l (M;---~O) ~*Lq+l (~I(M)) > ~n+l (M) .... ~ Hn (M:ILO) n 

is isomorphic to the type q Sullivan-Wall surgery exact sequence 
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~q 
... ~ [MxDI,MxSO;G/TOP,, ] ~ L q ~qTOP n+l(~l(M))--~ (M) 

8q 
) [M,G/TOP] ........ ) Lq(z (M)) n 1 

with 8 q the type q surgery obstruction map and ~qTOP(M) the type q 

topological manifold structure set of M. 

Proposition 6.4 For any connected space X with ~I(X) = n the commutative 

braid of algebraic surgery exact sequences of a polynomial extension 

~n+l(~2;Wh(zx~)) 6:(X x S l) Hn_ I(X x S1; _~O ) 

LS(~×~) ~h(X × S l) 
n n 

• Hn(X x SI;~o ) Lh(~xZS"; Hn(~2;Wh(~x~)) 
-- n 

has a geometrically significant splitting as a direct sum of the braid 

in+I(ZKz;W h(I) ) ~S(x) 

<I×l  / 

H n (X ; ~ 0 )  n 

Hn_I(X;__~ O) 

and the braid 

~n(zK2;~O(Z~[~ ]) ) ~n-l(X) Hn_ 2(x;_~_O) 

LI-I(~) ~Pn-I (X} 

/\. 
Hn-I(X;ILo)-- LPn-l'(~ Hn-I(z{2;Ko(Z~[~])) 

[] 
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It is appropriate to record here (in the terminology of this 

paper) a footnote from the preprint version of Cappell and Shaneson [3 ]: 

"it is not completely obvious that the maps given in Ranicki [20] give 

a splitting 

LS(~×~)n = Ls(~)~L~-I ( ~ ) n  

respected by the surgery map 

e s : [M × SI,G/TOP] = [M× D I,M × sO;G/TOP,*]e[M,G/TOP] ...... ~L sn+l(~×~) 

with M a compact n-dimensional topological manifold and ~ = ~I(M)." 

Department of Mathematics, 

Edinburgh University 

REFERENCES 

[i] H.Bass Algebraic K-theory Benjamin (1968) 

[21 , A.Heller and R.G.Swan 

The Whitehead group of a polynomial extension 

Publ. Math. I.H.E.S. 22, 61 - 79 (1964) 

[3] S.Cappell and J.Shaneson 

Pseudo free actions I., 

Proceedings 1978 Arhus Algebraic Topology Conference, 

Springer Lecture Notes 763, 395- 447 (1979.) 

[4] F.T.Farrell 

The obstruction to fibering a manifold ove[ the circle 

Indiana Univ. J. 21, 315 - 346 (1971) 

Proc, I.C.M. Nice 1970, Vol.2, 69 - 72 (1971) 

[5~ and W.C.Hsiang 

A geometric interpretation of the K~nneth formula for 

algebraic K-theory 

Bull. A.M.S. 74, 548 - 553 (1968) 

[6] A formula for KIR [T] 

Proc. Symp. Pure Maths. A.M.S. 17, 192- 218 (1970) 

[7] Manifolds with Zl = G× T (]-- 

Amer. J. Math. 95, 813- 845 (1973) 



362 

[8] S.Ferry A simple-homotopyapp~oach to the finiteness obstruction 

Proc. 1981 Dubrovnik Shape Theory Conference 

Springer Lecture Notes 870, 73 - 81 (1981) 

[9] S.Gersten A product formula for Wall's obstruction 

Am. J. Math. 88, 337 - 346 (1966) 

[i0] The torsion of a self e~uivalence 

Topology 6, 411 - 414 (1967) 

[ll]I.Hambleton, A.Ranicki and L.Taylor 

Round L-theory, to appear in J.Pure and Appl.Algebra 

[12]K.Kwun and R.Szczarba 

Product and sum theorems for Whitehead torsion 

Ann. of Maths. 82, 183- 190 (1965) 

[13]W.L~ok and A.Ranicki 

Transfer maps and duality to appear 

[14]M.Mather Counting homotopy types of manifolds 

Topology 4, 93 - 94 (1965) 

[15]H.J.Munkholm 

Proper simple h0motopy theory versus simple homotopy 

theory controlled over ~2 to appear 

[16] H.J.Munkholm and A.Ranicki 

The projective class group transfer induced by an 

sl-bundle 

Proc. 1981 Ontario Topology Conference, 

Canadian Math. Soc. Proc. 2, Vol.2, 461- 484 (1982) 

[17] S.Novikov The algebraic construction and properties of hermitian 

analogues of K-theory for rings with involution, from 

the point of view of the hamiltonian formalism~ Sqme 

applications to differential topology and the theory 

of characteristic classes 

Izv. Akad. Nauk SSSR, set. mat. 34, 253-288, 478-500 (197U) 

[18] E. Pedersen and A.Ranicki 

Projective surgerji_~heory Topology 19, 239- 254 (1980) 

[19] A.Ranicki Algebraic L-theor_~ I. Foundations 

Proc. Lond. Math. Soc. (3) 27, i01 - 125 (1973) 

[20] II. Laurent extensions ibid., 126- 158 (1973) 

[21] The total surgery obstruction 

Proc. 1978 Arhus Topology Conference, Springer Lecture 

Notes 763, 275- 316 (1979) 

[22] The algebraic theqry of surgery I. Foundations 

Proc. Lond. Math. Soc. (3) 40, 87 - 192 (1980) 

[23] If. Applications to topology ibid., 193- 287 (1980) 



363 

[24] Exact sequences in the algebraic theory of surger Z 

Mathematical Notes 26, Princeton (1981) 

[25] The algebraic theory of torsion I. Foundations 

Proc. 1983 Rutgers Topology Conference, Springer 

Lecture Notes 1126, 199- 237 (1985) 

[26] II. Products , to appear in J. of K-theory 

[27] III. Lower KTtheory preprint (1984) 

[28] Splitting theorems in the algebraic theory of surgery 

to appear 

[29] J.Shaneson 

Wall's surgery groups for G x 

Ann. of Maths. 90, 296- 334 (1969) 

[30] L.Siebenmann 

The obstruction to finding a boundary for an open 

manifold of dimension greater than five 

Princeton Ph.D. thesis (1965) 

A torsion invariant for bands 

Notices A.M.S. 68T-G7, 811 (1968) 

Infinite simple homotopy types 

Indag. Math. 32, 479 - 495 (1970) 

A total Whitehead torsion obstruction to f ibering over 

the circle Comm. Math. Helv. 45, 1 -48 (1970) 

[34] C.T.C.Wall 

Finiteness condition s .for CW comple..xes 

I. Ann. of Maths. 81, 56- 69 (1965) 

II. Proc. Roy. Soc. A295, 129 - 139 (1966) 

[35] Surg_ery on compact manifolds Academic Press (1970) 

[31] 

[32] 

[33] 


