ALGEBRAIC AND GEOMETRIC SPLITTINGS OF THE K- AND L-GROUPS OF POLYNOMIAL EXTENSIONS

Andrew Ranicki

Introduction

This paper is an account of assorted results concerning the algebraic and geometric splittings of the Whitehead group of a polynomial extension as a direct sum

 $Wh(\pi \times \mathbb{Z}) = Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z} \{\pi\}) \oplus \widetilde{Nil}(\mathbb{Z} \{\pi\}) \oplus \widetilde{Nil}(\mathbb{Z} \{\pi\})$

and the analogous splittings of the Wall surgery obstruction groups

$$\begin{cases} L_{\star}^{S}(\pi \times \mathbb{Z}) &= L_{\star}^{S}(\pi) \oplus L_{\star-1}^{h}(\pi) \\ L_{\star}^{h}(\pi \times \mathbb{Z}) &= L_{\star}^{h}(\pi) \oplus L_{\star-1}^{p}(\pi) \end{cases}$$

Such a splitting of $Wh\left(\pi\times\mathbb{Z}\right)$ was first obtained by Bass, Heller and

Swan [2]. Swan [2]. Shaneson [29] obtained such a splitting of Pedersen and Ranicki [18] $\begin{pmatrix}
L_{\star}^{S}(\pi \times \mathbb{Z}) \\
L_{\star}^{h}(\pi \times \mathbb{Z})
\end{pmatrix}$ geometrically. Novikov [17] and Ranicki [20] obtained such such by the second such obtained such by the second such a second such by the second such by the second such by the second such a second such a

L-theory splittings algebraically.

The main object of this paper is to point out that the geometric L-theory splittings of [29] and [18] are not in fact the same as the algebraic L-theory splittings of [17] and [20] (contrary to the claims put forward in [18], [20], [23] and [24] that they coincided), and to express the difference between them in terms of algebra. The splitting

 $\begin{array}{c} \text{maps} \begin{cases} L_{\star}^{S}(\pi) &\longrightarrow L_{\star}^{S}(\pi \times \mathbb{Z}) \\ L_{\star}^{h}(\pi) &\longrightarrow L_{\star}^{h}(\pi \times \mathbb{Z}) \end{cases} \begin{pmatrix} L_{\star}^{S}(\pi \times \mathbb{Z}) &\longrightarrow L_{\star-1}^{h}(\pi) \\ L_{\star}^{h}(\pi \times \mathbb{Z}) &\longrightarrow L_{\star-1}^{p}(\pi) \end{cases} \text{ are the same in algebra} \end{cases}$

and geometry, the split injections being the ones induced functorially

from the split injection of groups $\varepsilon:\pi \to \pi \times \mathbb{Z}$. However, the splitting maps $\begin{cases} L_{\star}^{s}(\pi \times \mathbb{Z}) \longrightarrow L_{\star}^{s}(\pi) & L_{\star-1}^{h}(\pi) \to L_{\star}^{s}(\pi \times \mathbb{Z}) \\ L_{\star}^{h}(\pi \times \mathbb{Z}) \longrightarrow L_{\star}^{h}(\pi) & L_{\star-1}^{h}(\pi) \to L_{\star}^{h}(\pi \times \mathbb{Z}) \end{cases}$ are in general

different in algebra and geometry. In particular, the geometric split split surjections are not the algebraic split surjections induced functorially from the split surjection of groups $\varepsilon: \pi \times \mathbb{Z} \longrightarrow \pi$! This may be seen by considering the composite $\epsilon \overline{B}$ ' of the geometric split injection

$$\begin{cases} \overline{B}' : L_{n-1}^{h}(\pi) \longrightarrow L_{n}^{s}(\pi \times \mathbb{Z}) ; \\ \sigma_{\star}^{h}((f,b):M \longrightarrow X) \longmapsto \sigma_{\star}^{s}((f,b)\times I:M \times S^{1} \longrightarrow X \times S^{1}) \\ \overline{B}' : L_{n-1}^{p}(\pi) \longrightarrow L_{n}^{h}(\pi \times \mathbb{Z}) , \\ \sigma_{\star}^{p}((f,b):M \longrightarrow X) \longmapsto \sigma_{\star}^{h}((f,b)\times I:M \times S^{1} \longrightarrow X \times S^{1}) \end{cases}$$

(denoted \overline{B} ' to distinguish from the algebraic split injection \overline{B} of [20]) and the algebraic split surjection

$$\left\{ \begin{array}{l} \varepsilon : L_{n}^{S}(\pi \times \mathbb{Z}) \xrightarrow{} L_{n}^{S}(\pi) ; \\ \sigma_{\star}^{S}((g,c):\mathbb{N} \longrightarrow \mathbb{Y}) \xrightarrow{} \mathbb{Z}[\pi] \otimes_{\mathbb{Z}}[\pi \times \mathbb{Z}] \sigma_{\star}^{S}(g,c) \\ \varepsilon : L_{n}^{h}(\pi \times \mathbb{Z}) \xrightarrow{} L_{n}^{h}(\pi) ; \\ \sigma_{\star}^{h}((g,c):\mathbb{N} \longrightarrow \mathbb{Y}) \xrightarrow{} \mathbb{Z}[\pi] \otimes_{\mathbb{Z}}[\pi \times \mathbb{Z}] \sigma_{\star}^{h}(g,c) \end{array} \right.$$

Now \overline{cB}' need not be zero: if X is a finite (n-1)-dimensional finitely dominated geometric Poincaré complex then $X \times S^1$ is a homotopy finite for $A \times S^1$

geometric Poincaré complex, the boundary of the { finite { finite } { finite

 $(finitely dominated (n+1)-dimensional geometric Poincaré pair <math>(X \times D^2, X \times S^1)$, but not in general the boundary of a $\begin{cases} simple \\ homotopy finite \end{cases}$ pair $(W, X \times S^1)$ with

 $\pi_1(W) = \pi_1(X)$, so that ε and \overline{B}' do not belong to the same direct sum system.

The geometrically significant splittings of $L_{\star}(\pi \times \mathbb{Z})$ obtained in §6 are compatible with the geometrically significant variant in §3 of the splitting of Wh($\pi \times \mathbb{Z}$) due to Bass, Heller and Swan [2]. In both K- and L-theory the algebraic and geometric splitting maps differ in 2-torsion only, there being no difference if Wh(π) = 0.

I am grateful to Hans Munkholm for our collaboration on [16]. It is the considerations of the appendix of [16] which led to the discovery that the algebraic and geometric L-theory splittings are not the same.

This is a revised version of a paper first written in 1982 at the Institute for Advanced Study, Princeton. I should like to thank the Institute and the National Science Foundation for their support in that year. Thanks also to the Göttingen SFB for a visit in June 1985.

Detailed proofs of the results announced here will be found in Ranicki [26], [27], [28].

§1. Absolute K-theory invariants

The definitions of the <u>Wall finiteness obstruction</u> $[X] \in \tilde{K}_{O}(\mathbb{Z}[\pi_{1}(X)])$ of a finitely dominated CW complex X and the <u>Whitehead torsion</u> $\tau(f) \in Wh(\pi_{1}(X))$ of a homotopy equivalence $f:X \longrightarrow Y$ of finite CW complexes are too well known to bear repeating here. The reduced algebraic K-groups \tilde{K}_{O} , Wh are not as well-behaved with respect to products as the absolute K-groups K_{O}, K_{1} . Accordingly it is necessary to deal with absolute versions of the invariants. The <u>projective class</u> of a finitely dominated CW complex X

$$[X] = (\chi(X), [X]) \in K_{O}(\mathbb{Z}[\pi_{1}(X)]) = K_{O}(\mathbb{Z}) \oplus \widetilde{K}_{O}(\mathbb{Z}[\pi_{1}(X)])$$

is well-known, with $\chi(X)\in K_{\bigcup}(\mathbb{Z})=\mathbb{Z}$ the Euler characteristic. It is harder to come by an absolute torsion invariant.

Let A be an associative ring with 1 such that the rank of f.g. free A-modules is well-defined, e.g. a group ring $A = \mathbb{Z}[\pi]$. An A-module chain complex C is <u>finite</u> if it is a bounded positive complex of based f.g. free A-modules

 $C : \dots \longrightarrow 0 \longrightarrow C_n \xrightarrow{d} C_{n-1} \longrightarrow \dots \longrightarrow C_1 \xrightarrow{d} C_0 \longrightarrow 0 \longrightarrow \dots,$ in which case the Euler characteristic of C is defined in the usual

manner by

$$\chi(C) = \sum_{r=0}^{n} (-)^{r} \operatorname{rank}_{A}(C_{r}) \in \mathbb{Z}$$
.

A finite A-module chain complex C is round if

$$\chi(C) = O \in \mathbb{Z}$$
.

The <u>absolute torsion</u> of a chain equivalence $f:C \longrightarrow D$ of round finite A-module chain complexes is defined in Ranicki [25] to be an element

$$\tau(f) \in K_1(A)$$

which is a chain homotopy invariant of f such that

i) if f is an isomorphism
$$\tau(f) = \sum_{r} (-)^{r} \tau(f:C_{r} \rightarrow D_{r})$$
.

ii) $\tau(gf) = \tau(f) + \tau(g)$ for $f: C \longrightarrow D$, $g: D \longrightarrow E$.

iii) The reduction of $\tau(f)$ in $\tilde{K}_1(A) = K_1(A)/\{\tau(-1:A \longrightarrow A)\}$ is the usual reduced torsion invariant of f, defined for a chain equivalence $f:C \longrightarrow D$ of finite A-module chain complexes to be the reduction of the torsion $\tau(C(f)) \in K_1(A)$ of the algebraic mapping cone C(f). Thus for $A = \mathbb{Z}[\pi]$ the reduction of $\tau(f) \in K_1(\mathbb{Z}[\pi])$ in the Whitehead group $Wh(\pi) = \tilde{K}_1(\mathbb{Z}[\pi])/\{\pi\}$ is the usual Whitehead torsion of f.

iv) $\tau(f) = \tau(D) - \tau(C) \in K_1(A)$ for contractible finite C,D.

v) In general $\tau(f) \neq \tau(C(f)) \in K_1(A)$, and $\tau(f \oplus f') \neq \tau(f) + \tau(f')$ (although the differences are at most $\tau(-1:A \longrightarrow A) \in K_1(A)$). vi) The absolute torsion $\tau(f) \in K_1(A)$ of a self chain equivalence $f: C \longrightarrow D = C$ agrees with the absolute torsion invariant $\tau(f) \in K_1(A)$ defined by Gersten [10] for a self chain equivalence $f: C \longrightarrow C$ of a finitely dominated A-module chain complex C.

A $\begin{cases} \underline{round} \\ \underline{-} & \underline{finite \ structure} \ on \ an \ A-module \ chain \ complex \ C \ is \ an equivalence \ class \ of \ pairs (F, \phi) \ with \ F \ a \begin{cases} round \\ \underline{-} & finite \ A-module \ chain \$

complex and $\varphi \colon F \longrightarrow C$ a chain equivalence, subject to the equivalence relation

$$(\mathbf{F}, \phi) \sim (\mathbf{F}', \phi') \text{ if } \tau(\phi'^{-1}\phi; \mathbf{F} \longrightarrow \mathbf{C} \longrightarrow \mathbf{F}') = \mathbf{O} \in \begin{cases} \mathbf{K}_{1}(\mathbf{A}) \\ \widetilde{\mathbf{K}}_{1}(\mathbf{A}) \end{cases}$$

In the topological applications A = $Z\!\left[\,\pi\,\right]$, and $\widetilde{K}_{1}^{}\left(A\right)$ is replaced by $Wh\left(\pi\right)$.

Let X be a (connected) CW complex with universal cover \tilde{X} and fundamental group $\pi_1(X) = \pi$. The cellular chain complex $C(\tilde{X})$ is defined as usual, with $C(\tilde{X})_r = H_r(\tilde{X}^{(r)}, \tilde{X}^{(r-1)})$ ($r \ge 0$) the free $\mathbb{Z}[\pi]$ -module generated by the r-cells of X. The cell structure of X determines for each $C(\tilde{X})_r$ a $\mathbb{Z}[\pi]$ -module base up to the multiplication of each element by $\pm g(g \in \pi)$. Thus for a finite CW complex X the cellular $\mathbb{Z}[\pi]$ -module chain complex $C(\tilde{X})$ has a canonical finite structure.

[]

A CW complex X is <u>round finite</u> if it is finite, $\chi(X) = 0 \in \mathbb{Z}$, and there is given a choice of actual base for each $C(\tilde{X})_r$ $(r \ge 0)$ in the class of bases determined by the cell structure of X.

 $\begin{array}{l} \text{The} \begin{cases} \frac{absolute}{Whitehead} & \underline{torsion} \text{ of a homotopy equivalence } f:X \longrightarrow Y \text{ of} \\ \\ \begin{cases} \text{round} \\ - & \\ \\ \tau(f) &= \tau(\widetilde{f}:C(\widetilde{X}) \longrightarrow C(\widetilde{Y})) \in \begin{cases} K_1(\mathbb{Z}[\pi_1(X)]) \\ Wh(\pi_1(X)) \end{cases} \end{cases}$

$$(\mathbf{F}, \phi) \sim (\mathbf{F}', \phi') \text{ if } \tau(\phi'^{-1}\phi; \mathbf{F} \longrightarrow X \longrightarrow \mathbf{F}') = O \in \begin{cases} K_1(\mathbb{Z}[\pi_1(X)]) \\ Wh(\pi_1(X)) \end{cases}.$$

The mapping torus of a self map $f:X \longrightarrow X$ is defined as usual by T(f) = X × [0,1]/{(x,0) = (f(x),1) | x \in X}.

[]

<u>Proposition 1.3</u> (Ranicki [26]) The mapping torus T(f) of a self map $f:X \longrightarrow X$ of a finitely dominated CW complex X has a canonical round finite structure.

The circle $S^1 = [0,1]/(0=1)$ has universal cover $\tilde{S}^1 = \mathbb{R}$ and fundamental group $\pi_1(S^1) = \mathbb{Z}$. Let $z \in \pi_1(S^1) = \mathbb{Z}$ denote the generator such that

$$z : \mathbb{R} \longrightarrow \mathbb{R} ; x \longmapsto x+1$$

The canonical round finite structure on the circle $S^1 = e^0 \cup e^1 = T(id.: \{pt.\} \longrightarrow \{pt.\})$ is represented by the bases $\tilde{e}^r \in C(\tilde{S}^1)_r = \mathbb{Z}[z, z^{-1}]$ (r = 0,1) with

$$d = 1-z : C(\tilde{S}^{1})_{1} = \mathbb{Z}[z, z^{-1}] \longrightarrow C(\tilde{S}^{1})_{0} = \mathbb{Z}[z, z^{-1}]; \tilde{e}^{1} \longmapsto \tilde{e}^{0} - z\tilde{e}^{0},$$

corresponding to the lifts $\tilde{e}^0 = \{0\}, \tilde{e}^1 = [0,1] \subset \mathbb{R}$ of e^0, e^1 . In particular, Proposition 1.3 applies to the product

 $X \times S^1 = T(id.:X \longrightarrow X)$, in which case the canonical round finite structure is a refinement of the finite structure defined geometrically by Mather [14] and Ferry [8], using the homotopy equivalent finite CW complex $T(fg:Y \longrightarrow Y)$ for any domination of X

$$(Y, f: X \longrightarrow Y, g: Y \longrightarrow X, h: gf \approx 1: X \longrightarrow X)$$

by a finite CW complex Y.

Given a ring morphism $\alpha: A \longrightarrow B$ let

 $\alpha_{!}$: (A-modules) \longrightarrow (B-modules) ; $M \longleftrightarrow BO_{A}^{M}$ be the functor inducing morphisms in the algebraic K-groups

$$\alpha_i : K_i(A) \longrightarrow K_i(B) \quad (i = 0, 1) ,$$

which we shall usually abbreviate to α . Given a ring automorphism $\alpha: A \longrightarrow A$ let $K_1(A, \alpha)$ be the relative K-group in the exact sequence

$$K_1(A) \xrightarrow{1-\alpha} K_1(A) \xrightarrow{j} K_1(A,\alpha) \xrightarrow{\partial} K_0(A) \xrightarrow{1-\alpha} K_0(A)$$

as originally defined by Siebenmann [33] in connection with the splitting theorem for $K_1(A_{\alpha}[z,z^{-1}])$ recalled in §3 below. By definition $K_1(A,\alpha)$ is the exotic group of pairs (P,f) with P a f.g. projective A-module and $f \in \operatorname{Hom}_A(\alpha_1 P, P)$ an isomorphism. The <u>mixed invariant</u> of a finitely dominated A-module chain complex C and a chain equivalence $f:\alpha_1 C \longrightarrow C$ was defined in Ranicki [26] to be an element

$$[C,f] \in K_1(A,\alpha)$$

such that $o([C,f]) = [C] \in K_{O}(A)$, and such that $[C,f] = O \in K_{1}(A,\alpha)$ if and only if C admits a round finite structure $(F,\phi:F \longrightarrow C)$ with

$$\tau(\phi^{-1}f(\alpha_{1}\phi) : \alpha_{1}F \longrightarrow \alpha_{1}C \longrightarrow C \longrightarrow F) = O \in K_{1}(A) .$$

The invariant is a mixture of projective class and torsion, and

indeed for $\alpha = 1 : A \longrightarrow A$

$$[C, f] = (\tau(f), [C]) \in K_1(A, 1) = K_1(A) \oplus K_0(A)$$

The absolute torsion invariant defined by Gersten [10] for a self homotopy equivalence $f:X \longrightarrow X$ of a finitely dominated CW complex X inducing $f_* = 1 : \pi_1(X) = \pi \longrightarrow \pi$

$$\tau(f) = \tau(\tilde{f}: C(\tilde{X}) \longrightarrow C(\tilde{X})) \in K_{\tau}(\mathbb{Z}[\pi])$$

was generalized in Ranicki [26]: the <u>mixed invariant</u> of a self homotopy equivalence $f:X \longrightarrow X$ of a finitely dominated CW complex X inducing any automorphism $f_* = \alpha$: $\pi_1(X) = \pi \longrightarrow \pi$ is defined by

 $[X,f] = [C(\widetilde{X}), \widetilde{f}:\alpha_{1}C(\widetilde{X}) \longrightarrow C(\widetilde{X})] \in K_{1}(\mathbb{Z}[\pi], \alpha) \quad .$

This has image $\Im([X,f]) = [X] \in K_0(\mathbb{Z}[\pi])$, and is such that [X,f] = 0 if and only if X admits a round finite structure $(F,\phi:F \longrightarrow X)$ such that

$$\tau(\phi^{-1}f\phi : F \longrightarrow X \longrightarrow X \longrightarrow F) = O \in K_{1}(\mathbb{Z}[\pi])$$

If X admits a round finite structure (F,ϕ) then $[X,f] = j(\tau(\phi^{-1}f\phi))$ is the image of $\tau(\phi^{-1}f\phi:F \longrightarrow F) \in K_1(\mathbb{Z}[\pi])$.

§2. Products in K-theory

For any rings A,B and automorphism $\beta:B\longrightarrow B$ there is defined a product of algebraic K-groups

$$[P] \otimes [Q, f: \beta_{!}Q \longrightarrow Q] \longmapsto [P \otimes Q, 1 \otimes f: (1 \otimes \beta_{!}(P \otimes Q) = P \otimes \beta_{!}Q \longrightarrow P \otimes Q] ,$$

which in the case $\beta = 1$ is made up of the products

The product of a finitely dominated A-module chain complex C and a finitely dominated B-module chain complex D is a finitely dominated A&B-module chain complex C&D with projective class

 $[C \boxtimes D] = [C] \boxtimes [D] \in K_{O}(A \otimes B)$,

and if $f:\beta_1D \longrightarrow D$ is a chain equivalence then the product chain equivalence $l \boxtimes f: C \boxtimes \beta_1 D \longrightarrow C \boxtimes D$ has mixed invariant

$$[C \otimes D, 1 \otimes f] = [C] \otimes [D, f] \in K_{2}(A \otimes B, 1 \otimes \beta)$$

The following product formula is an immediate consequence.

<u>Proposition 2.1</u> Let X,F be finitely dominated CW complexes with $\pi_1(X) = \pi, \pi_1(F) = \rho$, and let $f: F \longrightarrow F$ be a self homotopy equivalence inducing the automorphism $f_* = \beta : \rho \longrightarrow \rho$. The mixed invariant of the product self homotopy equivalence $1 \times f: X \times F \longrightarrow X \times F$ is given by

$$[X \times F, 1 \times f] = [X] \otimes [F, f] \in K_1(\mathbb{Z}[\pi \times \rho], 1 \otimes \beta)$$

[]

identifying $\mathbb{Z}[\pi \times \rho] = \mathbb{Z}[\pi] \otimes \mathbb{Z}[\rho]$.

In the case $\beta = 1 : \rho \rightarrow \rho$ the result of Proposition 2.1 is made up of the product formula of Gersten [9] and Siebenmann [30] for the projective class

 $[X \times F] = [X] \boxtimes [F] \in K_{O} (\mathbb{Z} [\pi \times \rho])$

and the product formula of Gersten [10] for torsion

$$t(1 \times f: X \times F \longrightarrow X \times F) = [X] \otimes t(f: F \longrightarrow F) \in K_1(\mathbb{Z}[\pi \times \rho]).$$

If also X is finite the product formula $\tau(1 \times f) = [X] \boxtimes \tau(f)$ is an absolute version of the special case $e = 1 : X \longrightarrow X' = X$, $f_* = 1$ of the formula of Kwun and Szczarba [12] for the Whitehead torsion of the product $e \times f : X \times F \longrightarrow X' \times F'$ of homotopy equivalences $e : X \longrightarrow X'$, $f : F \longrightarrow F'$ of finite CW complexes

 $\tau(e \times f) = \chi(X) \otimes \tau(f) + \tau(e) \otimes \chi(F) \in Wh(\pi \times \rho)$

The product A&B-module chain complex C&D of a finitely dominated A-module chain complex C and a round finite B-module chain complex D was shown in Ranicki [26] to have a canonical round finite structure, with

 $\tau \left(e @ f: C @ D \longrightarrow C' @ D' \right) = [C] @ \tau \left(f: D \longrightarrow D' \right) \in K_1 (A @ B)$

for any chain equivalences $e: C \longrightarrow C', f: D \longrightarrow D'$ of such complexes. The following product structure theorem of [26] was an immediate consequence.

<u>Proposition 2.2</u> The product $X \times F$ of a finitely dominated CW complex X and a round finite CW complex F has a canonical round finite structure, with

 $\tau (e \times f: X \times F \longrightarrow X' \times F') = [X] \otimes \tau (f: F \longrightarrow F') \in K_1(\mathbb{Z} [\pi_1(X) \times \pi_1(F)])$ for any homotopy equivalences $e: X \longrightarrow X', f: F \longrightarrow F'$ of such complexes.

The canonical round finite structure on $X \times S^1 = T(id.:X \longrightarrow X)$ given by Proposition 1.3 coincides with the canonical round finite structure given by Proposition 2.2.

The product

 $\mathsf{K}_{\mathsf{O}}\left(\mathsf{ZZ}\left[\boldsymbol{\pi}\right]\right)\otimes\mathsf{K}_{\mathsf{I}}\left(\mathsf{ZZ}\left[\boldsymbol{\rho}\right]\right) \xrightarrow{} \mathsf{K}_{\mathsf{I}}\left(\mathsf{ZZ}\left[\boldsymbol{\pi}\times\boldsymbol{\rho}\right]\right)$

has a reduced version

 $\widetilde{K}_{C}\left(\mathbb{Z}\!\mathbb{Z}\left[\pi\right]\right)\otimes\{\pm\rho\}\longrightarrow \mathsf{Wh}\left(\pi\times\rho\right)\ ;$

()

with $\{\pm\rho\} = \{\pm1\} \times \rho^{ab} = \ker(K_1(\mathbb{Z}[\rho]) \longrightarrow Wh(\rho))$. We shall make much use of this reduced version with $\rho = \mathbb{Z}$, for which $\{\pm\mathbb{Z}\} = K_1(\mathbb{Z}[\mathbb{Z}])$.

§3. The Whitehead group of a polynomial extension

In the first instance we recall some of the details of the direct sum decomposition

 $Wh(\pi \times ZZ) = Wh(\pi) \oplus \widetilde{K}_{O}(ZZ[\pi]) \oplus \widetilde{Nil}(ZZ[\pi]) \oplus \widetilde{Nil}(ZZ[\pi])$

obtained by Bass, Heller and Swan [2] and Bass [1,XII] for any group We shall call this the algebraically significant splitting of $Wh(\pi \times ZZ)$. The relevant isomorphism

$$\beta_{K} = \begin{pmatrix} \varepsilon \\ B \\ \Delta_{+} \\ \Delta_{-} \end{pmatrix} : Wh(\pi \times ZZ) \longrightarrow Wh(\pi) \oplus \widetilde{K}_{O}(ZZ \{\pi\}) \oplus \widetilde{Nil}(ZZ [\pi]) \oplus \widetilde{Nil}(ZZ [\pi]) \oplus \widetilde{Nil}(ZZ [\pi])$$

and its inverse

 $\beta_{K}^{-1} = (\overline{\epsilon} \ \overline{B} \ \overline{\Delta}_{+} \ \overline{\Delta}_{-}) : Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z} [\pi]) \oplus \widetilde{Nil}(\mathbb{Z} [\pi]) \oplus \widetilde{Nil}(\mathbb{Z} [\pi]) \longrightarrow Wh(\pi \times \mathbb{Z})$ involve the split $\begin{cases} surjection \\ injection \end{cases}$

$$\langle \varepsilon : \mathbb{Z} [\pi \times \mathbb{Z}] = \mathbb{Z} [\pi] [z, z^{-1}] \longrightarrow \mathbb{Z} [\pi] ; \sum_{j=-\infty}^{\infty} a_j z^j \longmapsto \sum_{j=-\infty}^{\infty} a_j z^{-j} \longmapsto z^{-1}$$

 $\begin{cases} \overline{\epsilon} : \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi] [z, z^{-1}]; a \longmapsto a \qquad (a, a_j \in \mathbb{Z}[\pi]) . \\ \text{The split injection } \overline{B}: \widetilde{K}_O(\mathbb{Z}[\pi]) \longrightarrow Wh(\pi \times \mathbb{Z}) \text{ is the evaluation of the product } \widetilde{K}_O(\mathbb{Z}[\pi]) \otimes K_1(\mathbb{Z}[\mathbb{Z}]) \longrightarrow Wh(\pi \times \mathbb{Z}) \text{ (the reduction of } K_O(\mathbb{Z}[\pi]) \otimes K_1(\mathbb{Z}[\mathbb{Z}]) \longrightarrow K_1(\mathbb{Z}[\pi \times \mathbb{Z}]) \text{ on the element } \tau(z) \in K_1(\mathbb{Z}[\mathbb{Z}]) \end{cases}$

$$\overline{B} = - \boxtimes \tau (z) : \widetilde{K}_{O}(\mathbb{Z} [\pi]) \longrightarrow \widetilde{Wh} (\pi \times \mathbb{Z}) ;$$

$$[P] \longmapsto \tau (z: P[z, z^{-1}] \longrightarrow P[z, z^{-1}]$$

If P = im(p) is the image of the projection p = p^2 : $\mathbb{Z}[\pi]^r \longrightarrow \mathbb{Z}[\pi]^r$ then

$$\overline{B}\left(\left[P\right]\right) = \tau \left(p_{2} + 1 - p_{2} : \mathbb{Z}\left[\pi \times \mathbb{Z}\right]^{r} \longrightarrow \mathbb{Z}\left[\pi \times \mathbb{Z}\right]^{r}\right) \in Wh\left(\pi \times \mathbb{Z}\right) .$$

By definition, $\widetilde{Nil}(\mathbb{Z}[\pi])$ is the exotic K-group of pairs (F,v) with F a f.q. free $\mathbb{Z}[\pi]$ -module and $v \in \operatorname{Hom}_{\mathbb{Z}[\pi]}(F,F)$ a nilpotent endomorphism. The split injections $\overline{\Delta}_+$, $\overline{\Delta}_-$ are defined by

 $\overline{\Delta}_{\pm} : \widetilde{\text{Nil}}(\mathbb{Z}[\pi]) \longrightarrow Wh(\pi \times \mathbb{Z}) ;$ $(F, \vee) \longmapsto \tau (1 + z^{\pm 1} \vee : F[z, z^{-1}] \longrightarrow F[z, z^{-1}]) .$

The precise definitions of the split surjections $B_{,\Delta}{}_{\pm}$ need not detain us here, especially as they are the same for the algebraically and geometrically significant direct sum decompositions of Wh($\pi \times \mathbb{Z}$).

The exact sequence

$$\begin{array}{c}
B\\
\Delta_{+}\\
\Delta_{-}\\
\end{array}$$

$$O \longrightarrow Wh(\pi) \longrightarrow Wh(\pi \times \mathbb{Z}) \longrightarrow \widetilde{K}_{O}(\mathbb{Z}[\pi]) \oplus \widetilde{Nil}(\mathbb{Z}[\pi]) \oplus \widetilde{Nil}(\mathbb{Z}[\pi]) \longrightarrow O$$

was interpreted geometrically by Farrell and Hsiang [5],[7]: if X is a finite n-dimensional geometric Poincaré complex with $\pi_1(X) = \pi$ and f: M $\longrightarrow X \times S^1$ is a homotopy equivalence with M^{n+1} a compact (n+1)-dimensional manifold then the Whitehead torsion $\tau(f) \in Wh(\pi \times \mathbb{Z})$ is such that

$$\begin{aligned} \mathbf{f} &\in \operatorname{im}(\overline{\epsilon}: \operatorname{Wh}(\pi) \longrightarrow \operatorname{Wh}(\pi \times \mathbb{Z})) \\ &= \operatorname{ker}(\begin{pmatrix} \mathsf{B} \\ \Delta_+ \\ \Delta_- \end{pmatrix} : \operatorname{Wh}(\pi \times \mathbb{Z}) \longrightarrow \widetilde{\mathsf{K}}_{\mathsf{O}}(\mathbb{Z}[\pi]) \oplus \widetilde{\operatorname{Nil}}(\mathbb{Z}[\pi]) \oplus \widetilde{\operatorname{Nil}}(\mathbb{Z}[\pi]) \oplus \widetilde{\operatorname{Nil}}(\mathbb{Z}[\pi])) \end{aligned}$$

if (and for n > 5 only if) f is homotopic to a map transverse regular at $X \times \{pt.\} \subset X \times S^1$ with the restriction

$$g = f | : N^n = f^{-1}(X \times \{pt\}) \longrightarrow X$$

also a homotopy equivalence. Thus $\tau(f) \in \operatorname{coker}(\overline{\epsilon}:Wh(\pi) \longrightarrow Wh(\pi \times \mathbb{Z}))$ is the codimension 1 splitting obstruction of f along $X \times \{pt.\} \subset X \times S^1$. For a finitely presented group π every element of $Wh(\pi \times \mathbb{Z})$ is the Whitehead torsion $\tau(f)$ for a homotopy equivalence of pairs $(f, \partial f) : (M, \partial M) \longrightarrow (X, \partial X) \times S^1$ with $(M, \partial M)$ a compact (n+1)-dimensional manifold with boundary, and $(X, \partial X)$ a finite n-dimensional geometric Poincaré pair with $\pi_1(X) = \pi$, for some $n \ge 5$. In this case $\tau(f) \in \operatorname{coker}(\overline{\epsilon}:Wh(\pi) \longrightarrow Wh(\pi \times \mathbb{Z}))$ is the relative codimension 1 splitting obstruction.

The geometrically significant splitting

$$Wh(\pi \times ZZ) = Wh(\pi) \oplus \widetilde{K}_{\Omega}(ZZ[\pi]) \oplus \widetilde{Nil}(ZZ[\pi]) \oplus \widetilde{Nil}(ZZ[\pi])$$

is defined by the isomorphism

$$\beta_{K}^{\prime} = \begin{pmatrix} \varepsilon^{\prime} \\ \overline{B}^{\prime} \\ \\ \Delta_{+} \\ \Delta_{-} \end{pmatrix}^{\prime} : Wh(\pi \times \mathbb{Z}) \longrightarrow Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z} [\pi]) \oplus \widetilde{Nil}(\mathbb{Z} [\pi]) \oplus \widetilde{Nil}(\mathbb{Z} [\pi])$$

with inverse

$$\beta_{K}^{*-1} = (\overline{\epsilon} \ \overline{B}' \ \overline{\Delta}_{+} \ \overline{\Delta}_{-}) : Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z}[\pi]) \oplus \widetilde{Nil}(\mathbb{Z}[\pi]) \oplus \widetilde{Nil}(\mathbb{Z}[\pi]) \longrightarrow Wh(\pi \times \mathbb{Z}) ,$$

where

$$\widetilde{B}' = -\otimes\tau(-z): \widetilde{K}_{O}(\mathbb{Z}[\pi]) \longrightarrow Wh(\pi \times \mathbb{Z}); [P] \longmapsto \tau(-z:P[z,z^{-1}]) \longrightarrow P[z,z^{-1}])$$
$$(=\tau(-pz+l-p) \text{ if } P = im(p=p^{2})),$$

$$\varepsilon' = \varepsilon (1 - \overline{B}'B) : Wh (\pi \times Z) \longrightarrow Wh (\pi) ;$$

$$\tau (f: \mathbb{P}[z, z^{-1}] \longrightarrow \mathbb{P}[z, z^{-1}]) \longrightarrow \tau (\varepsilon f: \mathbb{P} \longrightarrow \mathbb{P}) + \tau (-1: Q \longrightarrow Q)$$

with f an automorphism of the f.g. projective $\mathbb{Z}[\pi \times \mathbb{Z}]$ -module $\mathbb{P}[z, z^{-1}]$ induced from a f.g. projective $\mathbb{Z}[\pi]$ -module P, and Q a f.g. projective $\mathbb{Z}[\pi]$ -module such that $\mathbb{B}(\tau(f)) = [Q] \in \widetilde{K}_{\Omega}(\mathbb{Z}[\pi])$.

Ferry [8] defined a geometric injection for any finitely
presented group

with $[X] \in \widetilde{K}_{O}(\mathbb{Z}\{\pi\})$ the Wall finiteness obstruction of a finitely dominated CW complex X with $\pi_{1}(X) = \pi$ and $\tau(f) \in Wh(\pi \times \mathbb{Z})$ the Whitehead torsion of the homotopy equivalence $f = \phi^{-1}(1 \times -1)\phi: Y \longrightarrow Y$ defined using the map $-1:S^{1} \longrightarrow S^{1}$ reflecting the circle in a diameter and any homotopy equivalence $\phi: Y \longrightarrow X \times S^{1}$ from a finite CW complex Y in the finite structure on $X \times S^{1}$ given by the mapping torus construction of Mather [14].

<u>Proposition 3.1</u> The geometrically significant injection \overline{B} ' agrees with the geometric injection \overline{B} "

 $\widetilde{\mathsf{B}}^{\,\prime} \;=\; \widetilde{\mathsf{B}}^{\,\prime} \;\;:\; \widetilde{\mathsf{K}}_{\,\bigcap} \left(\mathbb{Z} \left[\,\pi \right] \, \right) \xrightarrow{} \hspace{1.5cm} \mathbb{W}h \left(\,\pi \times \mathbb{Z} \, \right) \hspace{1.5cm} .$

Proof: By Proposition 2.2

 $\overline{B}^{"}\left(\left[X\right]\right) \;=\; \left[X\right] \boxtimes \tau \left(-1:S^{1} \longrightarrow S^{1}\right) \;\in\; \mathsf{Wh}\left(\pi \times \mathbb{Z}\right) \quad,$

with $\tau(-1:S^1 \longrightarrow S^1) \in K_1(\mathbb{Z}[z,z^{-1}])$ the absolute torsion. Now $-1:S^1 \longrightarrow S^1$ induces the non-trivial automorphism $z \longmapsto z^{-1}$ of $\pi_1(S^1) = \langle z \rangle$, and the induced chain equivalence of based f.g. free $\mathbb{Z}[z,z^{-1}]$ -module chain complexes is given by

so that

$$\tau(-1:S^{1} \longrightarrow S^{1}) = \tau(-z:\mathbb{Z}[z,z^{-1}] \longrightarrow \mathbb{Z}[z,z^{-1}]) \in K_{1}(\mathbb{Z}[z,z^{-1}])$$

Thus

$$\overline{B}^{"} = - \mathfrak{D} \tau (-z) = \overline{B}^{'} : \widetilde{K}_{O}(\mathbb{Z} [\pi]) \longrightarrow Wh(\pi \times \mathbb{Z})$$

Ferry [8] characterized $\operatorname{im}(\overline{B}^n) \subseteq \operatorname{Wh}(\pi \times \mathbb{Z})$ as the subgroup of the elements $\tau \in \operatorname{Wh}(\pi \times \mathbb{Z})$ such that $(p_n)^{\frac{1}{2}}(\tau) = \tau$ for some $n \ge 2$, with $(p_n)^{\frac{1}{2}} : \operatorname{Wh}(\pi \times \mathbb{Z}) \longrightarrow \operatorname{Wh}(\pi \times \mathbb{Z})$ the transfer map associated to the n-fold covering of the circle by itself

$$p_n : s^1 \longrightarrow s^1 ; z \longmapsto z^n$$

See Ranicki [27] for an explicit algebraic verification that $im(\overline{B}') \subseteq Wh(\pi \times \mathbb{Z})$ is the subgroup of transfer invariant elements.

The algebraically significant decomposition of Wh($\pi \times \mathbb{Z}$) also has a certain measure of geometric significance, in that it is related to the Bott periodicity theorem in topological K-theory - cf. Bass [1,XIV]. More recently, Munkholm [15] identified the infinite structure set $\frac{1}{3}(X \times \mathbb{R}^2) = \ker(\varepsilon:\widetilde{K}_0(\mathbb{Z}[\pi \times \mathbb{Z}]) \longrightarrow \widetilde{K}_0(\mathbb{Z}[\pi]))$ (X compact, $\pi_1(X) = \pi$) of Siebenmann [32] with the lower algebraic K-groups derived from the algebraically significant splitting of Wh($\pi \times \mathbb{Z}$) by Bass [1,XII] - to be precise $\frac{1}{3}(X \times \mathbb{R}^2) = (K_{-1} \oplus NK_0)(\mathbb{Z}[\pi])$.

Both the injections $\overline{B}, \overline{B}': \widetilde{K}_{O}(\mathbb{Z} [\pi]) \longrightarrow Wh(\pi \times \mathbb{Z})$ can be realized geometrically for a finitely presented group π , as follows. Given a f.g. projective $\mathbb{Z}[\pi]$ -module P let $p = p^{2} \in \operatorname{Hom}_{\mathbb{Z} [\pi]}(\mathbb{Z} [\pi]^{r}, \mathbb{Z} [\pi]^{r})$ be a projection such that $P = \operatorname{im}(p)$. Let K be a finite CW complex such that $\pi_{1}(K) = \pi$. For any integer N $\geqslant 2$ define the finite CW complexes

$$X = (K \times S^{1} \vee \bigvee S^{N}) \cup_{pz+1-p} (\bigcup_{r} e^{N+1})$$
$$X' = (K \times S^{1} \vee \bigvee S^{N}) \cup_{-pz+1-p} (\bigcup_{r} e^{N+1})$$

such that the inclusions define homotopy equivalences

$$\kappa \times s^1 \longrightarrow x$$
 , $\kappa \times s^1 \longrightarrow x'$.

Proposition 3.2 The injections $\overline{B}, \overline{B}'$ are realized geometrically by

$$\begin{split} \overline{B} &: \widetilde{K}_{O}(\mathbb{Z}[\pi]) \longmapsto Wh(\pi \times \mathbb{Z}) ; [P] \longmapsto (-)^{N} \tau(K \times S^{1} \longrightarrow X) \\ \overline{B}' &: \widetilde{K}_{O}(\mathbb{Z}[\pi]) \longmapsto Wh(\pi \times \mathbb{Z}) ; [P] \longmapsto (-)^{N} \tau(K \times S^{1} \longrightarrow X') . \end{split}$$

Nevertheless, \overline{B} ' is more geometrically significant than \overline{B} .

[]

(Following Siebenmann [31] define a <u>band</u> to be a finite CW complex X equipped with a map $p:X \longrightarrow S^1$ such that the pullback infinite cyclic cover $\overline{X} = p^*(\mathbb{R})$ of X is finitely dominated. For a connected band X the infinite complex \overline{X} has two ends ε^+ , ε^- which are contained in finitely dominated subcomplexes \overline{X}^+ , $\overline{X}^- \subset \overline{X}$ such that $\overline{X}^+ \cap \overline{X}^-$ is finite and $\overline{X}^+ \cup \overline{X}^- = \overline{X}$. The finiteness obstructions are such that

$$[\overline{X}] = [\overline{X}^+] + [\overline{X}^-] \in \widetilde{K}_{\Omega}(2\mathbb{Z}[\pi]) \quad (\pi = \pi_1(\overline{X})) .$$

For a manifold band X the finiteness obstructions $[\overline{X}^{\pm}] \in \widetilde{K}_{O}(\mathbb{Z}[\pi])$ are images of the end obstructions $[\varepsilon^{\pm}] \in \widetilde{K}_{O}(\mathbb{Z}[\pi_{1}(\varepsilon^{\pm})])$ of Siebenmann [30]. For any finitely presented group π the surjection $B:Wh(\pi \times \mathbb{Z}) \longrightarrow \widetilde{K}_{O}(\mathbb{Z}[\pi])$ is realized geometrically by

$$B(\tau(f:X \longrightarrow Y)) = \{\overline{Y}^+\} - [\overline{X}^+] \in \widetilde{K}_O(\mathbb{Z}[\pi])$$

with $\tau(f) \in Wh(\pi \times \mathbb{Z})$ the Whitehead torsion of a homotopy equivalence of bands $f: X \longrightarrow Y$ with $\pi_1(X) = \pi \times \mathbb{Z}$, $\pi_1(\overline{X}) = \pi$. For the bands used in Proposition 3.2

$$\begin{split} & [\overline{X}^+] = -[\overline{X}^-] = [\overline{X}^{++}] = -[\overline{X}^{+-}] = (-)^{N} [P] , \\ & [\overline{(K \times S^{1})^{+}}] = [(\overline{K \times S^{1}})^{-}] = \{K \times \mathbb{R}^{+}\} = [K] = 0 \in \widetilde{K}_{O}(\mathbb{Z}[\pi])). \end{split}$$

We shall now express the difference between the algebraically and geometrically significant splittings of $Wh(\pi \times \mathbb{Z})$ using the generator $\tau(-1:\mathbb{Z}\longrightarrow\mathbb{Z}) \in K_1(\mathbb{Z})$ (= \mathbb{Z}_2) and the product map

$$\label{eq:stars} \begin{split} \omega &= - \boxtimes \tau \, (-1) \; : \; \widetilde{K}_{O}(\mathbb{Z} \, [\, \pi \,] \,) &\longrightarrow \, \mathbb{W}h \, (\pi) \; ; \; [P] \longmapsto \tau \, (-1 \colon P \longrightarrow P) \; . \\ \text{If } P &= \; \text{im} \, (p) \; \text{for a projection } p = p^2 \colon F \longrightarrow F \; \text{of a f.g. free} \\ \mathbb{Z} \, [\, \pi \,] \text{-module F then the automorphism } 1 - 2p \colon F \longrightarrow F \; \text{is such that} \end{split}$$

$$\boldsymbol{\omega}([P]) = \tau(1-2p:F \longrightarrow F) \in Wh(\pi).$$

Proposition 3.3 The algebraically and geometrically significant

$$\begin{cases} \text{surjections } \varepsilon, \varepsilon' : Wh(\pi \times Z) \longrightarrow Wh(\pi) \\ \text{injections } \overline{B}, \overline{B}' : \widetilde{K}_{O}(ZZ[\pi]) \longrightarrow Wh(\pi \times Z) \\ \end{cases} \\ \begin{cases} \varepsilon' - \varepsilon = \omega B : Wh(\pi \times Z) \longrightarrow \widetilde{K}_{O}(Z[\pi]) \longrightarrow Wh(\pi) \\ \overline{B}' - \overline{B} = \overline{\varepsilon}\omega : \widetilde{K}_{O}(Z[\pi]) \longrightarrow Wh(\pi) \longrightarrow \widetilde{\varepsilon} \longrightarrow Wh(\pi \times Z) \end{cases} . \end{cases}$$

In particular, the difference between the algebraic and geometric splittings is 2-torsion only, since $2\omega = 0$.

It is tempting to identify the geometrically significant surjection $\varepsilon':Wh(\pi \times ZZ) \longrightarrow Wh(\pi)$ with the surjection induced functorially by the split surjection of rings defined by $z \longmapsto -1$

$$n : \mathbb{Z}[\pi \times \mathbb{Z}] = \mathbb{Z}[\pi][z, z^{-1}] \xrightarrow{} \mathbb{Z}[\pi]; \qquad \sum_{j=-\infty}^{\infty} a_j z^j \xrightarrow{} \sum_{j=-\infty}^{\infty} a_j (-1)^j,$$

and indeed

$$\begin{split} \varepsilon' &| = \eta &| : \operatorname{im}((\overline{\varepsilon} \ \overline{B}) : Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z} [\pi]) \longrightarrow Wh(\pi \times \mathbb{Z})) \\ &= \operatorname{im}((\overline{\varepsilon} \ \overline{B}') : Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z} [\pi]) \longrightarrow Wh(\pi \times \mathbb{Z})) \longrightarrow Wh(\pi) \end{split}$$
However, in general

$$\begin{split} \epsilon' \mid \neq n \mid : & \operatorname{im}((\overline{\Delta}_{+}, \overline{\Delta}_{-}): \widetilde{\operatorname{Nil}}(\mathbb{ZZ}[\pi]) \oplus \widetilde{\operatorname{Nil}}(\mathbb{ZZ}[\pi]) \rightarrowtail Wh(\pi \times \mathbb{Z})) \\ & \longrightarrow Wh(\pi) \end{split}$$

so that $\varepsilon' \neq n : Wh(\pi \times ZZ) \longrightarrow Wh(\pi)$.

For an automorphism $\alpha:\pi\longrightarrow\pi$ of a group π Farrell and Hsiang [6] and Siebenmann [33] expressed the Whitehead group of the α -twisted extension $\pi \times_{\alpha} \mathbb{Z}$ of π by $\mathbb{Z} = \langle z \rangle$ (gz = $z\alpha(g) \in \pi \times_{\alpha} \mathbb{Z}$ for $g \in \pi$) as a natural direct sum

$$Wh(\pi \times_{\alpha} ZZ) = Wh(\pi, \alpha) \oplus \widetilde{Nil}(ZZ[\pi], \alpha) \oplus \widetilde{Nil}(ZZ[\pi], \alpha^{-1})$$

with $Wh(\pi, \alpha)$ the relative group in the exact sequence

 $\begin{array}{ccc} & 1-\alpha & j \\ Wh(\pi) & & \longrightarrow \end{array} & Wh(\pi) & & \longrightarrow \end{array} & \widetilde{K}_{O}(ZZ[\pi]) & & 1-\alpha \\ & & & & & & \\ \end{array} & \widetilde{K}_{O}(ZZ[\pi]) & & & & & \\ \end{array}$

(the reduced version of the group $K_1(\mathbb{Z}[\pi], \alpha)$ discussed at the end of §1) and $\widetilde{\operatorname{Nil}}(\mathbb{Z}[\pi], \alpha^{\pm 1})$ the exotic K-group of pairs (F, ν) with F a f.g. free $\mathbb{Z}[\pi]$ -module and $\nu \in \operatorname{Hom}_{\mathbb{Z}[\pi]}((\alpha^{\pm 1}), F, F)$ nilpotent. Given a f.g. projective $\mathbb{Z}[\pi]$ -module P and an isomorphism $f \in \operatorname{Hom}_{\mathbb{Z}[\pi]}(\alpha, P, P)$ there is defined a mixed invariant $[P, f] \in \operatorname{Wh}(\pi, \alpha)$ with $\mathfrak{d}([P, f]) = [P] \in \widetilde{K}_0(\mathbb{Z}[\pi])$. As in the untwisted case $\alpha = 1$ there are defined an <u>algebraically</u> <u>significant</u> splitting of $\operatorname{Wh}(\pi \times_{\alpha} \mathbb{Z})$, with inverse isomorphisms

$$\begin{pmatrix} B \\ \Delta_{+} \\ \Delta_{-} \end{pmatrix}$$

$$Wh(\pi \times_{\alpha} \mathbb{Z}) \xrightarrow{} Wh(\pi, \alpha) \oplus \widetilde{Nil}(\mathbb{Z}[\pi], \alpha) \oplus \widetilde{Nil}(\mathbb{Z}[\pi], \alpha^{-1})$$

$$(\overline{B} \quad \overline{\Delta_{+}} \quad \overline{\Delta_{-}})$$

and a geometrically significant splitting of Wh($\pi \times_{\alpha} \mathbb{Z}$) with inverse isomorphisms

$$Wh(\pi \times_{\alpha} \mathbb{Z}) \xrightarrow{\left(\overrightarrow{B}' \ \overrightarrow{\Delta}_{+}\right)} Wh(\pi, \alpha) \oplus \widetilde{Nil}(\mathbb{Z}[\pi], \alpha) \oplus \widetilde{Nil}(\mathbb{Z}[\pi], \alpha^{-1}) ,$$

with

$$\widetilde{B} : Wh(\pi, \alpha) \longrightarrow Wh(\pi \times_{\alpha} \mathbb{Z}) ; [P, f] \longmapsto \tau(zf: P_{\alpha}[z, z^{-1}] \longrightarrow P_{\alpha}[z, z^{-1}])$$

$$\widetilde{B}' : Wh(\pi, \alpha) \longrightarrow Wh(\pi \times_{\alpha} \mathbb{Z}) ; [P, f] \longmapsto \tau(-zf: P_{\alpha}[z, z^{-1}] \longrightarrow P_{\alpha}[z, z^{-1}])$$

$$\widetilde{\Delta}_{\pm} : \widetilde{Nil}(\mathbb{Z}[\pi], \alpha^{\pm 1}) \longrightarrow Wh(\pi \times_{\alpha} \mathbb{Z}) ;$$

$$(P, v) \longmapsto \tau(1 + z^{\pm 1}v: P_{\alpha}[z, z^{-1}] \longrightarrow P_{\alpha}[z, z^{-1}]) ,$$
identifying $\mathbb{Z}[\pi \times_{\alpha} \mathbb{Z}] = \mathbb{Z}[\pi]_{\alpha}[z, z^{-1}].$ The automorphism
$$\Omega : Wh(\pi, \alpha) \longrightarrow Wh(\pi, \alpha) ; [P, f] \longmapsto [P, -f]$$

is such that $\Omega^2 = 1$ and

 $\overline{B}' = \overline{B}\Omega : Wh(\pi, \alpha) \rightarrowtail Wh(\pi \times_{\alpha} \mathbb{Z})$

$$B' = \Omega B : Wh(\pi \times_{\alpha} ZZ) \longrightarrow Wh(\pi, \alpha)$$
.

In the untwisted case α = 1 $\pi \times_{\alpha} \mathbb{Z}$ is just the product $\pi \times \mathbb{Z}$, and there is defined an isomorphism

$$\begin{split} \mathsf{Wh}(\pi) \oplus \widetilde{\mathsf{K}}_{\mathsf{Q}}(\mathbb{Z}[\pi]) & \longrightarrow \mathsf{Wh}(\pi, 1) \quad ; \\ & (\tau(f: \mathbb{P} \longrightarrow \mathbb{P}), [\mathbb{Q}]) \longmapsto [\mathbb{P}, f] - [\mathbb{P}, 1] + [\mathbb{Q}, 1] \end{split}$$

with respect to which

$$\Omega = \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} : Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z}[\pi]) \longrightarrow Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z}[\pi])$$

The algebraically (resp. geometrically) significant splitting of Wh($\pi \times_{\alpha} \mathbb{Z}$) for α = 1 corresponds under this isomorphism to the algebraically (resp. geometrically) significant splitting of Wh($\pi \times \mathbb{Z}$) defined previously.

A self homotopy equivalence $f: X \longrightarrow X$ of a finitely dominated CW complex X has a mixed invariant

$$[X,f] \in Wh(\pi,\alpha)$$

with $\alpha = f_* : \pi = \pi_1(X) \longrightarrow \pi$, such that $\partial([X,f]) = [X] \in \widetilde{K}_0(\mathbb{Z}[\pi])$, a reduction of the mixed invariant $[X,f] \in K_1(\mathbb{Z}[\pi],\alpha)$ described at the end of §1. Let $f^{-1}: X \longrightarrow X$ be a homotopy inverse, with homotopy $e: f^{-1}f \approx 1: X \longrightarrow X$. The mapping tori of f and f^{-1} are related by the homotopy equivalence

$$U : T(f^{-1}) \longrightarrow T(f) ; (x,t) \longmapsto (e(x,t), l-t)$$

inducing the isomorphism of fundamental groups

$$U_{\star} : \pi_{1}(T(f^{-1})) = \pi \times_{\alpha} - 1 \mathbb{Z} \longrightarrow \pi_{1}(T(f)) = \pi \times_{\alpha} \mathbb{Z} ;$$
$$g(\in \pi) \longmapsto g, z \longmapsto z^{-1} .$$

The torsion of U with respect to the canonical round finite structures given by Proposition 1.3 is

$$\tau(\mathbf{U}) = \tau(-z\tilde{f}:C(\tilde{\mathbf{X}})_{\alpha}[z,z^{-1}] \longrightarrow C(\tilde{\mathbf{X}})_{\alpha}[z,z^{-1}]) \in K_{1}(\mathbb{Z}[\pi]_{\alpha}[z,z^{-1}]) ,$$

so that:

<u>Proposition 3.4</u> The geometrically defined split injection is given geometrically by

$$\overline{B}' : Wh(\pi, \alpha) \longrightarrow Wh(\pi \times_{\alpha} \mathbb{Z}) ; [X, f] \longmapsto \tau(U:T(f^{-1}) \longrightarrow T(f)) .$$

Proposition 3.3 is just the untwisted case $\alpha = 1$ of Proposition 3.4, with $f = 1 : X \longrightarrow X$ and

$$U = 1 \times -1 : T(1:X \longrightarrow X) = X \times S^{1} \longrightarrow T(1) = X \times S^{1} ,$$

-1 : S¹ = $\mathbb{R}/\mathbb{Z} \longrightarrow S^{1}$; t \longmapsto 1-t .

The exact sequence

$$\begin{split} & \text{Wh}(\pi) \xrightarrow{1-\alpha} \text{Wh}(\pi) \xrightarrow{\overline{\epsilon}} \text{Wh}(\pi \times_{\alpha} \mathbb{Z}) \\ & \xrightarrow{\left(\begin{array}{c} \partial B \\ \Delta_{+} \\ \Delta_{-} \end{array}\right)} \\ & \xrightarrow{\left(\begin{array}{c} 1-\alpha \end{array}\right)} \widetilde{K}_{O}(\mathbb{Z}\left[\pi\right]) \oplus \widetilde{\text{Nil}}(\mathbb{Z}\left[\pi\right], \alpha) \oplus \widetilde{\text{Nil}}(\mathbb{Z}\left[\pi\right], \alpha^{-1}) \\ & \xrightarrow{\left(\begin{array}{c} 1-\alpha \end{array}\right)} \widetilde{K}_{O}(\mathbb{Z}\left[\pi\right]) \bigoplus \widetilde{K}_{O}(\mathbb{Z}\left[\pi\right], \alpha^{-1}) \\ & \xrightarrow{\left(\begin{array}{c} 1-\alpha \end{array}\right)} \widetilde{K}_{O}(\mathbb{Z}\left[\pi\right]) \longrightarrow \widetilde{K}_{O}(\mathbb{Z}\left[\pi \times_{\alpha} \mathbb{Z}\right]) \\ & \xrightarrow{\left(\overline{\epsilon} \ = \ \overline{B} \ B^{-1}) \end{split}} \end{split}$$

has a geometric interpretation in terms of codimension 1 splitting obstructions for homotopy equivalences $f:M^n \longrightarrow X$ with $\pi_1(X) = \pi \times_{\alpha} \mathbb{Z}$ (Farrell and Hsiang [5],[7]), as in the untwisted case $\alpha = 1$.

The obstruction theory of Farrell [4] and Siebenmann [33] for fibering manifolds over S^1 can be used to give the injection $\overline{B}^{!}: \widetilde{K}_{O}(\mathbb{Z}[\pi]) \longrightarrow Wh(\pi \times \mathbb{Z})$ a further degree of geometric significance, as follows.

Let $p: \overline{X} \longrightarrow X$ be the covering projection of a regular infinite cyclic cover of a connected space X, with \overline{X} connected also. Let $\zeta: \overline{X} \longrightarrow \overline{X}$ be a generating covering translation, inducing the automorphism $\zeta_{\star} = \alpha : \pi_1(\overline{X}) = \pi \longrightarrow \pi$. The map

$$T(\zeta) \longrightarrow X \; ; \; (x,t) \longmapsto p(x)$$

is a homotopy equivalence, inducing an isomorphism of fundamental groups $\pi_1(T(\zeta)) = \pi \times_{\alpha} \mathbb{Z} \longrightarrow \pi_1(X)$. If X is a finite CW complex and \overline{X} is finitely dominated the canonical (round) finite structure on $T(\zeta)$ given by Proposition 1.3 can be used to define the <u>fibering obstruction</u>

$$\Phi(X) = \tau(T(\zeta) \longrightarrow X) \in Wh(\pi \times ZZ)$$

This is the invariant described (but not defined) by Siebenmann [31]. If X is a compact n-manifold with the finite structure determined by a handlebody decomposition then $\Phi(X) = 0$ if (and for $n \ge 6$ only if) X fibres over S^1 in a manner compatible with p, by the theory of Farrell [4] and Siebenmann [33].

Given a finitely dominated CW complex X with $\pi_1(X) = \pi$ let $Y \longrightarrow X \times S^1$ be a homotopy equivalence from a finite CW complex Y in the canonical finite structure. Embed $Y \subset S^N$ (N large) with closed regular neighbourhood an N-dimensional manifold with boundary (2,32), and let $(\overline{2}, \overline{32})$ be the infinite cyclic cover of (2,32) classified by the projection

$$\pi_{1}(\mathbb{Z}) = \pi_{1}(\partial\mathbb{Z}) = \pi_{1}(X \times S^{1}) = \pi \times \mathbb{Z} \xrightarrow{} \mathbb{Z} .$$

Thicken up the self homotopy equivalence transposing the S^1 -factors

$$1 \times T : X \times S^{\perp} \times S^{\perp} \xrightarrow{} X \times S^{\perp} \times S^{\perp} \times S^{\perp} ; (x, s, t) \xrightarrow{} (x, t, s)$$

to a self homotopy equivalence of a pair

$$(f, \partial f)$$
 : $(2, \partial Z) \times S^{\perp} \longrightarrow (2, \partial Z) \times S^{\perp}$

inducing on the fundamental group the automorphism

 $\pi \times \mathbb{Z} \times \mathbb{Z} \xrightarrow{} \pi \times \mathbb{Z} \times \mathbb{Z} ; (x,s,t) \longmapsto (x,t,s)$

transposing the \mathbb{Z} -factors. Thus $(f, \partial f)$ lifts to a \mathbb{Z} -equivariant homotopy equivalence

 $(\overline{\mathsf{f}}\,,\overline{\mathfrak{d}}\overline{\mathsf{f}})\ :\ (\overline{\mathtt{Z}}\,,\overline{\mathfrak{d}}\overline{\mathtt{Z}})\,\times\,\mathtt{S}^{1} \longrightarrow (\mathtt{Z}\,,\mathfrak{d}\mathtt{Z})\,\times\,\mathbb{R}\ .$

In particular, this shows that ∂Z is a finite CW complex with a finitely dominated infinite cyclic cover $\overline{\partial Z}$.

Proposition 3.5 The geometrically significant injection is such that

$$\mathsf{B}^{*} : \mathsf{K}_{O}(\mathsf{ZZ}[\pi]) \longrightarrow \mathsf{Wh}(\pi \times \mathsf{ZZ}) ; [X] \longmapsto \Phi(\mathfrak{dZ}) .$$

§4. Absolute L-theory invariants

The duality involutions on the algebraic K-groups of a ring A with involution $\overline{}:A \longrightarrow A; a \longmapsto \overline{a}$ are defined as usual by

* : $K_{O}(A) \longrightarrow K_{O}(A)$; $[P] \longmapsto [P*]$, $P* = Hom_{A}(P,A)$

* :
$$K_1(A) \longrightarrow K_1(A)$$
 ; $\tau(f:P \longrightarrow P) \longmapsto \tau(f^*:P^* \longrightarrow P^*)$,

with reduced versions for $\tilde{K}_{0}(A)$, $\tilde{K}_{1}(A)$. We shall only be concerned with group rings $A = \mathbb{Z}[\pi]$ and the involution $\overline{g} = w(g)g^{-1}(g \in \pi)$ determined by a group morphism $w: \pi \longrightarrow \mathbb{Z}_{2} = \{ \pm 1 \}$, so that there is also defined a duality involution $*:Wh(\pi) \longrightarrow Wh(\pi)$.

The $\begin{cases} projective class \\ Whitehead torsion \\ geometric Poincaré complex X with <math>\pi_1(X) = \pi \end{cases}$ finite

$$\begin{cases} [X] = [C(\tilde{X})] \in K_{O}(\mathbb{Z}[\pi]) \\ \tau(X) = \tau(C(\tilde{X})^{n-*} \longrightarrow C(\tilde{X})) \in Wh(\pi) \end{cases}$$

satisfies the usual duality formula

$$\left\{ \begin{array}{l} [X]^{\,*} \;=\; (-)^{\,n} \, [X] \;\in\; K^{\,}_{O} \, (\mathbb{Z} \, [\,\pi\,]\,) \\ \tau \, (X)^{\,*} \;=\; (-)^{\,n} \tau \, (X) \;\in\; \mathrm{Wh} \, (\pi) \end{array} \right. .$$

The torsion of a round finite n-dimensional geometric Poincaré complex X

$$\tau (X) = \tau (C(\widetilde{X})^{n-*} \longrightarrow C(\widetilde{X})) \in K_{1}(ZZ[\pi])$$

is such that

$$\tau(X)^* = (-)^n \tau(X) \in K_1(ZZ[\pi]).$$

The Poincaré duality chain equivalence for the universal cover \tilde{s}^1 = R of the circle s^1 is given by

so that S¹ has torsion

$$\begin{aligned} \tau(S^{1}) &= \tau([S^{1}] \cap -: C(\widetilde{S}^{1})^{1-*} \longrightarrow C(\widetilde{S}^{1})) \\ &= \tau(-z: \mathbb{Z}[z, z^{-1}] \longrightarrow \mathbb{Z}[z, z^{-1}]) \\ &\in K_{1}(\mathbb{Z}[z, z^{-1}]) \end{aligned}$$

This is the special case $f = 1 : X = \{pt.\} \longrightarrow \{pt.\}$ of the following formula, which is the Poincaré complex version of Propositions 1.3,3.4.

<u>Proposition 4.1</u> Let $f:X \longrightarrow X$ be a self homotopy equivalence of a finitely dominated n-dimensional geometric Poincaré complex X inducing the automorphism $f_{\star} = \alpha : \pi_1(X) = \pi \longrightarrow \pi$ and the $\mathbb{Z}[\pi]$ -module chain equivalence $\tilde{f}: \alpha_1 C(\tilde{X}) \longrightarrow C(\tilde{X})$. The mapping torus T(f) is an (n+1)-dimensional geometric Poincaré complex with canonical round finite structure, with torsion

$$\tau(T(f)) = \tau(-z\tilde{f}:C(\tilde{X})_{\alpha}[z,z^{-1}] \longrightarrow C(\tilde{X})_{\alpha}[z,z^{-1}]) \in K_{1}(\mathbb{Z}[\pi]_{\alpha}[z,z^{-1}]) .$$
[]

For $f = 1 : X \longrightarrow X$ the formula of Proposition 4.1 gives $\tau(X \times S^{1}) = \tau(-z:C(\widetilde{X})[z,z^{-1}] \longrightarrow C(\widetilde{X})[z,z^{-1}])$ $= [X] \otimes \tau(S^{1}) = \overline{B}'([X]) \in K_{1}(Z[\pi][z,z^{-1}])$

with [X] $\in K_{O}(\mathbb{Z}[\pi])$ the projective class and \overline{B} ' the absolute version

$$\overline{B}' : K_{O}(\mathbb{Z}[\pi]) \longrightarrow K_{1}(\mathbb{Z}[\pi][z, z^{-1}]);$$

$$[P] \longmapsto \tau(-z: P[z, z^{-1}]) \longrightarrow P[z, z^{-1}])$$

(also a split injection) of $\overline{B}': \widetilde{K}_{O}(\mathbb{Z}[\pi]) \xrightarrow{} Wh(\pi \times \mathbb{Z})$.

For a finitely presented group π every element $x \in \widetilde{K}_{O}(\mathbb{Z}[\pi])$ is the finiteness obstruction x = [X] of a finitely dominated CW complex X with $\pi_1(X) = \pi$, by the realization theorem of Wall [34]. We need the version for Poincaré complexes: <u>Proposition 4.2</u> (Pedersen and Ranicki [18]) For a finitely presented group π every element $x \in \widetilde{K}_{O}(\mathbb{Z}[\pi])$ is the finiteness obstruction

x = [X] for a finitely dominated geometric Poincaré pair $(X, \partial X)$ with $\pi_1(X) = \pi$.

The method of [18] used the obstruction theory of Siebenmann [30]. The construction of Proposition 3.5 gives a more direct method, since $(\overline{Z},\overline{\partial Z})$ is a finitely dominated (N-1)-dimensional geometric Poincaré pair with prescribed $[\overline{Z}] \in \widetilde{K}_{O}(\mathbb{Z}[\pi])$. (Moreover, if the evident map of pairs (e, ∂ e): (Z, ∂ Z) $\longrightarrow S^{1}$ is made transverse regular at pt. $\in S^{1}$ the inclusion

[]

 $(M, \partial M) = (e, \partial e)^{-1}(\{pt.\}) \longrightarrow (Z, \partial Z)$

lifts to a normal map

 $(f,b) : (M, \Im M) \longrightarrow (\overline{Z}, \overline{\partial Z})$

from a compact (N-1)-dimensional manifold with boundary. This gives a more direct proof of the realization theorem of [18] for the projective surgery groups $L^p_{\star}(\pi)$, except possibly in the low dimensions).

By the relative version of Proposition 4.1 the product of a finitely dominated n-dimensional geometric Poincaré pair (X, 7X) and the circle S¹ is an (n+1)-dimensional geometric Poincaré pair $(X, \partial X) \times S^{1} = (X \times S^{1}, \partial X \times S^{1})$ with canonical round finite structure, and torsion $\tau (\mathbf{X} \times \mathbf{S}^{1}, \partial \mathbf{X} \times \mathbf{S}^{1}) = \tau (-\mathbf{z} : \mathbf{C} (\widetilde{\mathbf{X}}) [\mathbf{z}, \mathbf{z}^{-1}] \longrightarrow \mathbf{C} (\widetilde{\mathbf{X}}) [\mathbf{z}, \mathbf{z}^{-1}])$ = $[X] \otimes \tau(S^{1}) = \vec{B}'([X]) \in K_{1}(\mathbb{Z}[\pi][z,z^{-1}])$. Combined with Proposition 4.2 this gives: Proposition 4.3 The geometrically significant injection is such that $\overline{B}^{\,\prime} \ : \ \widetilde{K}_{O}^{\,}(\mathbb{Z}^{\,}[\pi]) \xrightarrow{} Wh^{\,}(\pi \times \mathbb{Z}^{\,}) \ ; \ [X] \xrightarrow{} \tau^{\,}(X \times S^{\,}, \partial X \times S^{\,}) \ ,$ for any finitely dominated geometric Poincaré pair (X, ∂ X) with $\pi_1(X) = \tau$ In §5 this will be seen to be a special case of the product formula for the torsion of (finitely dominated) × (round finite) Poincaré complexes. Given a *-invariant subgroup $S \subseteq \widetilde{K}_{\bigcap}(\mathbb{Z}[\pi])$ (resp. $S \subseteq Wh(\pi)$) let $\begin{cases} L_{S}^{n}(\pi) \\ S \\ L_{L}^{n}(\pi) \end{cases}$ be the cobordism group of finitely dominated (resp. finite) n-dimensional $\begin{cases} symmetric \\ Poincaré complexes over Z(\pi) \\ quadratic \end{cases}$ $\begin{cases} (C, \phi \in Q^{n}(C)) \\ & \text{with finiteness obstruction } [C] \in S \subseteq \widetilde{K}_{O}(\mathbb{Z}[\pi]) \text{ (resp.} \\ (C, \psi \in Q_{n}(C)) \end{cases}$ Whitehead torsion $\begin{cases} \tau(C,\phi) = \tau(\phi_{O}:C^{n-*} \longrightarrow C) \\ \tau(C,\psi) = \tau((1+T)\psi_{O}:C^{n-*} \longrightarrow C) \end{cases} \in S \subseteq Wh(\pi)).$ A finitely dominated (resp. finite) n-dimensional geometric Poincaré

complex X with $\pi_1(X) = \pi$ and [X] $\in S$ (resp. $\tau(X) \in S$) has a <u>symmetric</u> <u>signature</u> invariant

$$\sigma_{\Xi}^{\star}(X) = (C(\widetilde{X}), \phi) \in L_{\Xi}^{\Pi}(\pi)$$

with $\phi_0 = [X]_0 - : C(\tilde{X})^{n-*} \longrightarrow C(\tilde{X})$, and a normal map $(f,b):M \longrightarrow X$ of such complexes has a <u>quadratic signature</u> invariant

 $\sigma^{S}_{\star}(f,b) \in L^{S}_{n}(\pi)$

such that $(1+T)\sigma_*^S(f,b) = \sigma_S^*(M) - \sigma_S^*(X)$. See Ranicki [22],[23] for the details. In the extreme cases $S = \{O\}, \tilde{K}_O(\mathbb{Z}[\pi])$ (resp. $\{O\}, Wh(\pi)$) the notation is abbreviated in the usual fashion

$$\begin{cases} L_{\tilde{K}_{O}}^{n}(\mathbb{Z}[\pi])^{(\pi)} = L_{p}^{n}(\pi) \\ L_{n}^{n}(\mathbb{Z}[\pi])^{(\pi)} = L_{p}^{n}(\pi) \\ L_{n}^{(O) \subseteq \tilde{W}_{O}}(\mathbb{Z}[\pi])^{(\pi)} = L_{n}^{p}(\pi) \end{cases} \begin{pmatrix} L_{O}^{1} \subseteq W_{h}(\pi)^{(\pi)} = L_{n}^{n}(\pi) \\ L_{n}^{(O) \subseteq \tilde{W}_{O}}(\pi)^{(\pi)} = L_{wh}^{n}(\pi)^{(\pi)} = L_{h}^{n}(\pi) \\ \begin{pmatrix} 0 \subseteq \tilde{K}_{O}(\mathbb{Z}[\pi])^{(\pi)} \\ L_{n}^{(O) \subseteq \tilde{K}_{O}}(\mathbb{Z}[\pi])^{(\pi)} = L_{wh}^{N}(\pi)^{(\pi)} = L_{h}^{n}(\pi) \\ \end{pmatrix}$$

In particular, the simple quadratic L-groups $L^{S}_{\star}(\pi)$ are the original surgery obstruction groups of Wall [35], with $\sigma_{\star}^{S}(f,b)$ the surgery obstruction.

The torsion of a round finite n-dimensional

$$\begin{cases}
\text{symmetric} \\
\text{quadratic}
\end{cases}$$
Poincaré
$$(C, \phi)$$
is defined by
$$\begin{cases}
\tau(C, \phi) = \tau(\phi_0; C^{n-*} \longrightarrow C) \in K_1(\mathbb{Z}[\pi]) \\
\tau(C, \psi) = \tau((1+T)\psi_0; C^{n-*} \longrightarrow C) \in K_1(\mathbb{Z}[\pi])
\end{cases}$$

and is such that

$$\begin{cases} \tau (C, \phi) \star = (-)^{n} \tau (C, \phi) \\ \tau (C, \psi) \star = (-)^{n} \tau (C, \psi) \end{cases} \in K_{1}(\mathbb{Z}[\pi]) \end{cases}$$

Given a *-invariant subgroup $S \subseteq K_1(\mathbb{Z}[\pi])$ define the <u>round</u> $\begin{cases} \underline{symmetric} \\ \underline{quadratic} \end{cases}$ Given a *-invariant subgroup $\int_{L}^{n} L_{rS}^{n}(\pi) = \int_{L}^{n} L_{rS}^{n}(\pi) = \int_{L}^{n} (\pi) = 0$ to be the cobordism group of round finite n-dimensional $\begin{cases} symmetric \\ quadratic \end{cases}$ Poincaré complexes over $\mathbb{Z}[\pi] = \begin{cases} (C,\phi) \\ (C,\psi) \end{cases}$ with $(C,\psi) = 0$

torsion $\begin{cases} \tau(C,\phi) \\ \in S \subseteq K_1(\mathbb{Z}[\pi]) \end{cases}$ See Hambleton, Ranicki and Taylor [11] $\tau(C,\psi) \end{cases}$

for an exposition of round L-theory. We shall only be concerned with the round symmetric L-groups L_{rS}^{\star} here, adopting the terminology

$$L_{rh}^{n}(\pi) = L_{rK_{1}}^{n}(ZZ[\pi])(\pi)$$
, $L_{rs}^{n}(\pi) = L_{r\{\pm\pi\}}^{n}(\pi)$.

The Rothenberg exact sequence for the quadratic L-groups

$$\dots \longrightarrow L_{n}^{s}(\pi) \longrightarrow L_{n}^{h}(\pi) \longrightarrow \hat{H}^{n}(\mathbb{Z}_{2}; Wh(\pi)) \longrightarrow L_{n-1}^{s}(\pi) \longrightarrow \dots$$

has versions for the symmetric and round symmetric L-groups which fit together in a commutative braid of exect sequences

with the maps τ (resp. χ) defined by the Whitehead torsion (resp. Euler characteristic). In the case Wh(π) = 0 the L-groups $\begin{cases} L_{rn}^{\star}(\pi) = L_{rs}^{\star}(\pi) \\ L_{h}^{\star}(\pi) = L_{s}^{\star}(\pi) \\ L_{h}^{\star}(\pi) = L_{s}^{\star}(\pi) \end{cases}$ are dispersive to $\begin{cases} L_{rn}^{\star}(\pi) \\ L_{rn}^{\star}(\pi) \\ L_{rn}^{\star}(\pi) \end{cases}$. The L-groups of the trivial group $\pi = \{1\}$ are given by

with isomorphisms

$$\begin{split} & L^{4k}\left(\{1\}\right) \longrightarrow \mathbb{Z} ; \quad (\mathbb{C}, \phi) \longmapsto \text{signature}\left(\mathbb{C}, \phi\right) \\ & L^{4k+1}\left(\{1\}\right) \longrightarrow \mathbb{Z}_{2} ; \quad (\mathbb{C}, \phi) \longmapsto \text{deRham}\left(\mathbb{C}, \phi\right) = \chi_{\frac{1}{2}}(\mathbb{C}; \mathbb{Z}_{2}) + \chi_{\frac{1}{2}}(\mathbb{C}; \Phi) \\ & L_{r}^{4k}\left(\{1\}\right) \longrightarrow \mathbb{Z} ; \quad (\mathbb{C}, \phi) \longmapsto \frac{1}{2}(\text{signature}\left(\mathbb{C}, \phi\right)) \\ & L_{r}^{4k+1}\left(\{1\}\right) \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} ; \quad (\mathbb{C}, \phi) \longmapsto (\chi_{\frac{1}{2}}(\mathbb{C}; \mathbb{Z}_{2}), \chi_{\frac{1}{2}}(\mathbb{C}; \Phi)) \quad . \end{split}$$

(See [11] for details. The F-coefficient semicharacteristic of a (2i+1)-dimensional ZZ-module chain complex C is defined by

$$\chi_{\frac{1}{2}}(C;F) = \sum_{r=0}^{1} (-)^{r} \operatorname{rank}_{F} H_{r}(C) \in \mathbb{Z}$$
,

for any field F).

The torsion of a round finite n-dimensional geometric Poincaré complex X with $\pi_1(X) = \pi$ is the torsion of the associated round finite n-dimensional symmetric Poincaré complex over $\mathbb{Z}[\pi](C(\widetilde{X}),\phi)$

$$\begin{aligned} \tau(X) &= \tau(C(\widetilde{X}), \phi) = \tau(\phi_0 = [X] n - : C(\widetilde{X})^{n-*} \longrightarrow C(\widetilde{X})) \in K_1(\mathbb{Z}[\pi]) &. \end{aligned}$$

If $S \subseteq K_1(\mathbb{Z}[\pi])$ is a *-invariant subgroup such that $\tau(X) \in S$ the round

342

symmetric signature of X is defined by

$$\sigma_{rS}^{\star}(X) = (C(\widetilde{X}), \phi) \in L_{rS}^{n}(\pi)$$

In the case $S = K_1(\mathbb{ZZ}[\pi])$ (resp. $\{\pm \pi\}$) this is denoted $\sigma_{rh}^*(X) \in L_{rh}^n(\pi)$ (resp. $\sigma_{rs}^*(X) \in L_{rs}^n(\pi)$), and if also $Wh(\pi) = 0$ by $\sigma_r^*(X) \in L_r^n(\pi)$.

We shall be particularly concerned with the round symmetric signature of the circle $\ensuremath{\mathsf{S}}^1$

$$\sigma_r^{\star}(S^1) = (C(\tilde{S}^1), \phi) \in L_r^1(\mathbb{Z}) .$$

The image of the $\mathbb{Z}[z,z^{-1}]$ -module chain complex

$$C(\tilde{S}^1) : \mathbb{Z}[z, z^{-1}] \xrightarrow{1-z} \mathbb{Z}[z, z^{-1}]$$

under the morphism of rings with involution

$$\begin{cases} \varepsilon : \mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[z, z^{-1}] \longrightarrow \mathbb{Z} ; z \longmapsto 1 \\ \eta : \mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[z, z^{-1}] \longrightarrow \mathbb{Z} ; z \longmapsto -1 \end{cases} \quad (\overline{z} = z^{-1})$$

is the Z-module chain complex

$$\begin{cases} \varepsilon_1 C(\tilde{S}^1) & : \ \mathbb{Z} \xrightarrow{O} \mathbb{Z} \\ \eta_1 C(\tilde{S}^1) & : \ \mathbb{Z} \xrightarrow{Q} \mathbb{Z} \end{cases}$$

with mod2 and rational semicharacteristics $\begin{cases} (\chi_{\frac{1}{2}}(C;\mathbb{Z}_{2}),\chi_{\frac{1}{2}}(C;\mathbb{Q})) = (1,1) \\ (\chi_{\frac{1}{2}}(D;\mathbb{Z}_{2}),\chi_{\frac{1}{2}}(D;\mathbb{Q})) = (1,0) \end{cases}$

so that $\sigma_r^{\star}(S^1) \in L_r^1(\mathbb{Z})$ has images

$$\begin{cases} \varepsilon_{!}\sigma_{r}^{\star}(s^{1}) = (1,1) \\ \eta_{!}\sigma_{r}^{\star}(s^{1}) = (1,0) \end{cases} \in L_{r}^{1}(\{1\}) = \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} &.$$

The algebraic proof of the splitting theorem for the quadratic L-groups $L_n^S(\pi \times ZZ) = L_n^S(\pi) \oplus L_{n-1}^h(\pi)$ discussed in §6 below can be extended to prove analogous splitting theorems for the symmetric and round symmetric L-groups

$$L_{s}^{n}(\pi \times \mathbb{Z}) = L_{s}^{n}(\pi) \oplus L_{h}^{n-1}(\pi) \quad , \quad L_{rs}^{n}(\pi \times \mathbb{Z}) = L_{rs}^{n}(\pi) \oplus L_{h}^{n-1}(\pi) \quad .$$

Thus $L_r^1(\mathbb{Z}) = L_r^1(\{1\}) \oplus L^O(\{1\}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}$, although we do not actually need this computation here.

§5. Products in L-theory

The product of an m-dimensional guadratic
Symmetric
Poincaré complex over A (C, ϕ) and an n-dimensional symmetric Poincaré complex over B (D, θ) is an (m+n)-dimensional { Symmetric Poincaré complex over AØB quadratic $(C, \phi) \otimes (D, \theta) = (C \otimes D, \phi \otimes \theta)$, allowing the definition (in Ranicki [22]) of products in L-theory of the type $\left\{ \begin{array}{l} L^{m}(A) \otimes L^{n}(B) & \longrightarrow & L^{m+n}(A \otimes B) \\ \\ L_{m}(A) \otimes L^{n}(B) & \longrightarrow & L_{m+n}(A \otimes B) \end{array} \right. ,$ We shall only be concerned with the product $L_m \otimes L^n \longrightarrow L_{m+n}$ here, with A = $\mathbb{Z}[\pi]$, B = $\mathbb{Z}[\rho]$ group rings, so that A&B = $\mathbb{Z}[\pi \times \rho]$. $A = \mathbb{Z}[\pi], B = \mathbb{Z}[p] \text{ group rings, so }$ The product of a $\begin{cases} \text{finitely dominated} \\ \text{finite} \end{cases}$ quadratic) Poincaré complex over $\mathbb{Z}[\pi]$ (C,¢) and a $\begin{cases} \text{finitely dominated} \\ \text{finite} \end{cases}$ n-dimensional symmetric Poincaré complex over $\mathbb{Z}[\rho]$ (D, θ) is a (finitely dominated (m+n)-dimensional symmetric (resp. quadratic) finite $\begin{cases} C \otimes D \} = \{C\} \otimes \{D\} \in K_O(\mathbb{Z} \{\pi \times p\}) \\ \tau(C \otimes D, \varphi \otimes \theta) = \tau(C, \varphi) \otimes \chi(D) + \chi(C) \otimes \tau(D, \theta) \in Wh(\pi \times p) \end{cases}$ The following product formulae for geometric Poincaré complexes are immediate consequences. <u>Proposition 5.1</u> The product of a finitely dominated m-dimensional finite geometric Poincaré complex X with $\pi_1(X) = \pi$ and a finite finite n-dimensional geometric Poincaré complex F with $\pi_1(F) = \rho$ is a (finitely dominated (m+n)-dimensional geometric Poincaré complex X × F finite

with { projective class { Whitehead torsion $\left\{ \begin{array}{ll} [X\times F] \ = \ [X]\boxtimes[F] \ \in \ K_{O}\left(\mathbb{Z}\left[\pi\times\rho\right]\right) \\ \tau\left(X\times F\right) \ = \ \tau(X)\boxtimes_{\chi}(F) \ + \ \chi(X)\boxtimes_{\tau}(F) \ \in \ Wh\left(\pi\times\rho\right) \end{array} \right. .$ [] $\begin{array}{c} \mbox{Given } \star \mbox{-invariant subgroups} \begin{cases} S \subseteq \widetilde{K}_O(\mathbb{Z} \{\pi\}) \\ S \subseteq Wh(\pi) \end{cases}, \begin{cases} T \subseteq \widetilde{K}_O(\mathbb{Z} \{\rho\}) \\ T \subseteq Wh(\rho) \end{cases}, \\ \begin{cases} U \subseteq \widetilde{K}_O(\mathbb{Z} [\pi \times \rho]) \\ such that \\ U \subseteq Wh(\pi \times \rho) \end{cases}, such that \begin{cases} [P \& Q] \in U \\ \tau(f) \& I, I \& \tau(g) \in U \end{cases}, for \begin{cases} [P] \in S, \ [Q] \in T \\ \tau(f) \in S, \ \tau(g) \in T \end{cases} \end{cases}$ there is defined a product in L-theory $\boxtimes : L^{S}_{\mathfrak{m}}(\pi) \boxtimes L^{n}_{\mathfrak{T}}(\rho) \xrightarrow{} L^{U}_{\mathfrak{m}+\mathfrak{n}}(\pi \times \rho) \; ; \; (C, \psi) \boxtimes (D, \theta) \xrightarrow{} (C \boxtimes D, \psi \boxtimes \theta)$ with the following geometric interpretation. <u>Proposition 5.2</u> (Ranicki [23]) If $(f,b):M \longrightarrow X$ is a normal map of {
 finitely dominated
 m-dimensional geometric Poincaré complexes with
 finite $\pi_{1}(X) = \pi \text{ and } \begin{cases} [M] - [X] \in S \subseteq \widetilde{K}_{O}(\mathbb{Z} [\pi]) \\ & , \text{ and if } F \text{ is a} \\ \tau(M) - \tau(X) \in S \subseteq Wh(\pi) \end{cases}$ product normal map of finitely dominated
(m+n)-dimensional geometric Poincaré complexes $(q,c) = (f,b) \times l : M \times F \longrightarrow X \times F$ is given by $\sigma^{\mathrm{U}}_{\star}(\mathsf{g},\mathsf{c}) = \sigma^{\mathrm{S}}_{\star}(\mathsf{f},\mathsf{b}) \boxtimes \sigma^{\star}_{\mathrm{T}}(\mathsf{F}) \in \mathrm{L}^{\mathrm{U}}_{\mathsf{m}+\mathsf{n}}(\pi \times \rho) \ ,$

the product of $\sigma^S_\star(f,b)\in L^S_m(\pi)$ and $\sigma^\star_T(F)\in L^n_T(\varrho)$.

[]

345

The methods of Ranicki [26] apply to the products of algebraic Poincaré complexes, giving the following analogues of Propositions 2.2, 5.2:

<u>Proposition 5.3</u> i) The product of a finitely dominated m-dimensional quadratic Poincaré complex over $\mathbb{Z}[\pi]$ (C, ψ) and a round finite n-dimensional symmetric Poincaré complex over $\mathbb{Z}[\rho]$ (D, θ) is an (m+n)-dimensional quadratic Poincaré complex over $\mathbb{Z}[\pi \times \rho]$ (COD, ψ O θ) with canonical round finite structure, and torsion

$$\tau (C \otimes D, \psi \otimes \theta) = [C] \otimes \tau (D, \theta) \in K_{1} (ZZ [\pi \times \rho])$$

the product of $[C] \in K_{O}(\mathbb{Z}[\pi])$ and $\tau(D,\theta) \in K_{1}(\mathbb{Z}[\rho])$. ii) Given *-invariant subgroups $S \in \widetilde{K}_{O}(\mathbb{Z}[\pi])$, $T \subseteq K_{1}(\mathbb{Z}[\rho])$, $U \subseteq Wh(\pi \times \rho)$ such that $S\otimes T \subseteq U$ there is defined a product in L-theory

$$\otimes : L^{S}_{\mathfrak{m}}(\pi) \otimes L^{\mathfrak{n}}_{r_{\mathbf{T}}}(\rho) \xrightarrow{} L^{U}_{\mathfrak{m}+\mathfrak{n}}(\pi \times \rho) \; ; \; (C,\psi) \otimes (D,\theta) \xrightarrow{} (C \otimes D,\psi \otimes \theta) \; .$$

If $(f,b): M \longrightarrow X$ is a normal map of finitely dominated n-dimensional geometric Poincaré complexes with $\pi_1(X) = \pi$ and $\{M\} - [X] \in S \subseteq \widetilde{K}_O(\mathbb{Z}[\pi])$, and if F is a round finite n-dimensional geometric Poincaré complex with $\pi_1(F) = \rho$ and $\tau(F) \in T \subseteq K_1(\mathbb{Z}[\rho])$ then the product map of (m+n)-dimensional geometric Poincaré complexes with canonical (round) finite structure

 $(g,c) = (f,b) \times l : M \times F \xrightarrow{} X \times F$ has quadratic signature

$$\sigma_{\star}^{U}(g,c) = \sigma_{\star}^{S}(f,b) \otimes \sigma_{rT}^{\star}(F) \in L_{m+n}^{U}(\pi \times \rho)$$

the product of $\sigma^S_{\star}(f,b) \in L^S_m(\pi)$ and $\sigma^{\star}_{rT}(F) \in L^n_{rT}(\rho)$.

An n-dimensional geometric Poincaré complex F is <u>round simple</u> if it is round finite and

$$\tau(\mathbf{F}) \in \{\pm \rho\} \subseteq K_{1}(\mathbb{Z}[\rho]) \quad (\rho = \pi_{1}(\mathbf{F})),$$

[]

so that $\tau(F) = 0 \in Wh(\rho)$ and the round simple symmetric signature $\sigma_{rs}^{*}(F) \in L_{rs}^{n}(\rho)$ is defined.

Proposition 5.3 shows in particular that for a round finite n-dimensional geometric Poincaré complex F product with the round finite symmetric signature simple $\begin{cases} \sigma_{rh}^{\star}(F) \in L_{rh}^{n}(\rho) \\ \sigma_{rs}^{\star}(F) \in L_{rs}^{n}(\rho) \end{cases}$ defines a morphism of $\sigma_{rs}^{\star}(F) \in L_{rs}^{n}(\rho)$

$$\begin{cases} - \bigotimes \sigma_{rh}^{\star}(F) : L_{m}^{p}(\pi) \longrightarrow L_{m+n}^{h}(\pi \times \rho) \\ - \bigotimes \sigma_{rs}^{\star}(F) : L_{m}^{h}(\pi) \longrightarrow L_{m+n}^{s}(\pi \times \rho) \end{cases}$$

In the simple case these products define a map of generalized Rothenberg exact sequences

with $\tau(F) \in \{\pm \rho\} \subseteq K_1(\mathbb{Z}[\rho])$. The map of exact sequences in the appendix of Munkholm and Ranicki [16] is the special case $F = S^1$. Moreover, the split injection

$$\overline{B}' = - \otimes \tau (S^{1}) : \widehat{H}^{m} (\mathbb{Z}_{2}; \widetilde{K}_{O} (\mathbb{Z}[\pi])) \longrightarrow \widehat{H}^{m+1} (\mathbb{Z}_{2}; Wh (\pi \times \mathbb{Z}))$$

was identified there with the connecting map δ arising from a short exact sequence of $\mathbb{Z}\,[\mathbb{Z}_2]\,\text{-modules}$

$$0 \longrightarrow Wh(\pi \times \mathbb{Z}) \longrightarrow Wh(p^{!}) \longrightarrow \widetilde{K}_{O}(\mathbb{Z}[\pi]) \longrightarrow 0$$

with $Wh(p^{I})$ the relative Whitehead group in the exact sequence of transfer maps

$$\widetilde{p}_{1}^{!} = 0$$

$$Wh(\pi) \xrightarrow{\widetilde{p}_{1}^{!} = 0} Wh(\pi \times \mathbb{Z}) \xrightarrow{Wh(p^{!})} \widetilde{K}_{0}(\mathbb{Z}[\pi]) \xrightarrow{\widetilde{p}_{0}^{!} = 0} \widetilde{K}_{0}(\mathbb{Z}[\pi \times \mathbb{Z}])$$

associated to the trivial S¹-bundle

$$p = projection$$

 $S^{1} \longrightarrow E = K(\pi, 1) \times S^{1} \longrightarrow B = K(\pi, 1)$

and \mathbb{Z}_2 acting by duality involutions. The relationship between transfer maps and duality in algebraic K-theory will be studied in Lück and Ranicki [13] for any fibration $F \longrightarrow E \xrightarrow{p} B$ with the fibre F a finitely dominated n-dimensional geometric Poincaré complex. In particular, there will be defined a duality involution $*:K_1(p^1) \longrightarrow K_1(p^1)$ on the relative K-group $K_1(p^1)$ in the transfer exact sequence

$$\begin{split} \kappa_{1}(\mathbb{Z}\left[\pi_{1}(\mathbb{B})\right]) & \xrightarrow{p_{1}^{i}} \kappa_{1}(\mathbb{Z}\left[\pi_{1}(\mathbb{E})\right]) \longrightarrow \kappa_{1}(p^{1}) \\ & \longrightarrow \kappa_{0}(\mathbb{Z}\left[\pi_{1}(\mathbb{B})\right]) \xrightarrow{p_{0}^{1}} \kappa_{0}(\mathbb{Z}\left[\pi_{1}(\mathbb{E})\right]) \ , \end{split}$$

as well as assorted transfer maps $p^{!}:L_{m}(\pi_{1}(B)) \longrightarrow L_{m+n}(\pi_{1}(E))$ in algebraic L-theory. If F is round simple and $\pi_{1}(B)$ acts on F by self

equivalences $F \longrightarrow F$ with $\tau = 0 \in Wh(\pi_1(E))$ (e.g. if p is a PL bundle with a round manifold fibre) then there is also defined a transfer exact sequence

$$Wh(\pi_{1}(B)) \xrightarrow{\widetilde{p}_{1}^{i}} Wh(\pi_{1}(E)) \longrightarrow Wh(p^{!})$$
$$\xrightarrow{\widetilde{K}_{0}(\mathbb{Z}[\pi_{1}(B)])} \xrightarrow{\widetilde{p}_{0}^{i}} \widetilde{K}_{0}(\mathbb{Z}[\pi_{1}(E)])$$

with a duality involution $*:Wh(p^!) \longrightarrow Wh(p^!)$ on the relative Whitehead group. The connecting maps δ in Tate \mathbb{Z}_2 -cohomology arising from the short exact sequence of $\mathbb{Z}[\mathbb{Z}_2]$ -modules

$$0 \longrightarrow \operatorname{coker}(\tilde{p}_{1}^{!}) \longrightarrow \operatorname{Wh}(p^{!}) \longrightarrow \ker(\tilde{p}_{0}^{!}) \longrightarrow 0$$

and the transfer maps in L-theory together define a morphism of exact sequences

r

$$\cdots \xrightarrow{} L_{m}^{h}(\pi) \xrightarrow{} L_{m}^{ker(\widetilde{p}_{0}^{i})}(\pi) \xrightarrow{} \widehat{H}^{m}(\mathbb{Z}_{2}; ker(\widetilde{p}_{0}^{i})) \xrightarrow{} L_{m-1}^{h}(\pi) \xrightarrow{} \cdots \xrightarrow{} L_{m-1}^{h}(\pi) \xrightarrow{} \cdots \xrightarrow{} L_{m}^{h}(\pi) \xrightarrow{} p^{i} \xrightarrow{$$

In the case of the trivial fibration

$$F \longrightarrow E = B \times F \longrightarrow E$$

(with the fibre F a round simple Poincaré complex, as before) the algebraic K-theory transfer maps are zero

$$p_{i}^{!} = -\bigotimes[F] = O : K_{i}(\mathbb{Z} \{\pi\}) \longrightarrow K_{i}(\mathbb{Z} \{\pi \times \boldsymbol{\rho}\})$$
$$(i = O, 1 \ \rho = \pi_{1}(F))$$

so that $\tilde{p}_1^! = 0$. Also, the algebraic L-theory transfer maps are given by the products with the round symmetric signatures

$$p^{!} = -\bigotimes \sigma_{rh}^{\star}(F) : L_{m}^{p}(\pi) \longrightarrow L_{m+n}^{h}(\pi \times \rho)$$
$$p^{!} = -\bigotimes \sigma_{rs}^{\star}(F) : L_{m}^{h}(\pi) \longrightarrow L_{m+n}^{s}(\pi \times \rho)$$

and δ is given by product with the torsion $\tau(F) \in \{\pm \rho\} \subseteq K_1(\mathbb{Z}[\rho])$

$$\delta = -\otimes \tau(F) : \hat{H}^{m}(\mathbb{Z}_{2}; \tilde{K}_{O}(\mathbb{Z}[\pi])) \longrightarrow \hat{H}^{m+n}(\mathbb{Z}_{2}; Wh(\pi \times \rho))$$

as in the case $F = S^{1}$ considered in [16].

§6. The L-groups of a polynomial extension

There are 4 ways of extending an involution $a \rightarrow \overline{a}$ on a ring A to an involution on the Laurent polynomial extension ring $A[z,z^{-1}]$, sending z to one of $z, z^{-1}, -z, -z^{-1}$. In each case it is possible to express $L_{+}(A[z,z^{-1}])$ (and indeed $L^{*}(A[z,z^{-1}])$) in terms of $L_{+}(A)$, and to relate such an expression to splitting theorems for manifolds - see Chapter 7 of Ranicki [24] for a general account of algebraic and geometric splitting theorems in L-theory. Only the case $A = ZZ[\pi]$, $\bar{z} = z^{-1}$ is considered here, for which $A[z, z^{-1}] = \mathbb{Z}[\pi][z, z^{-1}]$. The geometric splittings of the L-groups $L_{\star}\left(\pi\times ZZ\right)$ depend on the realization theorem of $\begin{cases}
\text{Wall [35]} \\
\text{Shaneson [29]} , \text{ by which every} \\
\text{Pedersen and Ranicki [18]} \\
\text{element of} \\
\begin{cases}
L_n^S(\pi) \\
L_n^h(\pi) & (n \geqslant 5, \pi \text{ finitely presented}) \text{ is the } \\
L_n^p(\pi) \\
\text{rel3 surgery obstruction} \\
\begin{cases}
\sigma_{\star}^S(f,b) \\
\sigma_{\star}^h(f,b) & \text{of a normal map} \\
\sigma_{\star}^P(f,b)
\end{cases}
\end{cases}$ (f,b) : $(M,\partial M) \longrightarrow (X,\partial X)$ from a compact n-dimensional manifold with boundary (M, M) to a n-dimensional geometric Poincaré pair (X,&X) finite finitely dominated equipped with a reference map $X \longrightarrow K(\pi, 1)$, and such that the restriction $\partial f = f | : \partial M \longrightarrow \partial X$ is a - homotopy equivalence. A morphism of groups $\phi : \pi \longrightarrow \Pi$

induces functorially morphisms in the L-groups, given geometrically by

$$\begin{split} \phi_{I} &: L_{n}^{q}(\pi) \longrightarrow L_{n}^{q}(\Pi) ; \\ \sigma_{\star}^{q}((M, \sigma M) \xrightarrow{(f, b)} (X, \partial X) \longrightarrow K(\pi, 1)) \\ & \longmapsto \sigma_{\star}^{q}((M, \partial M) \xrightarrow{(f, b)} (X, \partial X) \longrightarrow K(\pi, 1) \xrightarrow{\phi} K(\Pi, 1)) \\ & (q = s, h, p) , \end{split}$$

and algebraically by

$$\label{eq:phi} \varphi_! \; : \; \operatorname{L}^q_n(\pi) \longrightarrow \operatorname{L}^q_n(\Pi) \; \; ; \; \; \sigma^q_\star(f,b) \longmapsto \mathbb{Z}[\Pi] \otimes_{\mathbb{Z}[\pi]} \sigma^q_\star(f,b) \; \; .$$

In general φ_1 will be written φ_2

The geometric splitting of Shaneson [29]

$$\mathbf{L}_{n}^{s}(\boldsymbol{\pi}\times\boldsymbol{\mathbb{Z}}) = \mathbf{L}_{n}^{s}(\boldsymbol{\pi}) \oplus \mathbf{L}_{n-1}^{h}(\boldsymbol{\pi})$$

was obtained in the form of a split exact sequence

$$0 \longrightarrow L_n^{\mathbf{S}}(\pi) \xrightarrow{\overline{\mathbf{c}}} L_n^{\mathbf{S}}(\pi \times \mathbb{Z}) \xrightarrow{\mathbf{B}} L_{n-1}^{\mathbf{h}}(\pi) \longrightarrow 0$$

with $\overline{\epsilon}$ the split injection of L-groups induced functorially from the split injection of groups $\overline{\epsilon}:\pi \rightarrowtail \pi \times \mathbb{Z}$. The split surjection B was defined geometrically by

$$B : L_{n}^{S}(\pi \times \mathbb{Z}) \longrightarrow L_{n-1}^{h}(\pi) ;$$

$$\sigma_{\star}^{S}((M, \partial M) \xrightarrow{(f,b)} (X, \partial X) \times S^{1} \longrightarrow K(\pi, 1) \times S^{1} = K(\pi \times \mathbb{Z}, 1))$$

$$\longmapsto \sigma_{\star}^{h}((N, \partial N) \xrightarrow{(g,c)} (X, oX) \longrightarrow K(\pi, 1))$$

using the splitting theorem of Farrell and Hsiang [5],[7] to represent every element of $L_n^S(\pi \times \mathbb{Z})$ as the reld simple surgery obstruction $\sigma_*^S(f,b)$ of an n-dimensional normal map $(f,b):(M,\partial M) \xrightarrow{} (X, \sigma X) \times S^1$ with $(X, \sigma X)$ a finite (n-1)-dimensional geometric Poincaré pair, such that f is transverse regular at $(X,\partial X) \times \{pt.\} \subset (X, \sigma X) \times S^1$ with the restriction defining an (n-1)-dimensional normal map

 $(g,c) = (f,b) | : (N,\partial N) = f^{-1}((X,\partial X) \times \{pt.\}) \longrightarrow (X,\partial X)$ with $\partial f:\partial M \longrightarrow \partial X \times S^1$ a simple homotopy equivalence and $\partial g:\partial N \longrightarrow \partial X$ a homotopy equivalence. There was also defined in [29] a splitting map for B

$$\overline{B}^{*} : L_{n-1}^{h}(\pi) \longrightarrow L_{n}^{s}(\pi \times \mathbb{Z}) ;$$

$$\sigma_{\star}^{h}((M,\partial M) \xrightarrow{(f,b)} (X,\partial X) \xrightarrow{K(\pi,1)} K(\pi,1))$$

$$\longmapsto \sigma_{\star}^{s}((M,\partial M) \times S^{1} \xrightarrow{(f,b) \times 1} (X,\partial X) \times S^{1}$$

$$\longrightarrow K(\pi,1) \times S^{1} = K(\pi \times \mathbb{Z},1))$$

$$(= \sigma_{\star}^{h}(f,b) \otimes \sigma_{r}^{\star}(S^{1})$$
 by Proposition 5.3 ii))

Let $\varepsilon': L_n^S(\pi \times \mathbb{Z}) \longrightarrow L_n^S(\pi)$ be the geometric split surjection determined by $\overline{\varepsilon}, \overline{B}, \overline{B}'$, so that there is defined a direct sum system

$$L_{n}^{s}(\pi) \xleftarrow{\varepsilon} L_{n}^{s}(\pi \times \mathbb{Z}) \xleftarrow{B} L_{n-1}^{h}(\pi)$$

Although it was claimed in Ranicki [20] that ε ' coincides with the split surjection induced functorially from the split surjection of groups $\varepsilon:\pi\times\mathbb{Z}\longrightarrow\pi$ (or equivalently $\mathbb{Z}[\pi][z,z^{-1}]\longrightarrow\mathbb{Z}[\pi]$; $z\longmapsto 1$) it does not do so in general. This may be seen by considering the composite

$$\varepsilon \overline{B}' : L_{n-1}^{h}(\pi) \xrightarrow{\overline{B}'} L_{n}^{S}(\pi \times \mathbb{Z}) \xrightarrow{\varepsilon} L_{n}^{S}(\pi) ,$$

which need not be zero. A generic element

$$\sigma^{h}_{\star}((f,b):(M,\partial M) \longrightarrow (X,\partial X)) \in L^{h}_{n-1}(\pi)$$

is sent by \overline{B} ' to

$$\begin{split} \bar{\mathsf{B}}^{*}(\sigma^{h}_{\star}(\mathsf{f},\mathsf{b})) &= \sigma^{\mathsf{S}}_{\star}((\mathsf{g},\mathsf{c}) = (\mathsf{f},\mathsf{b}) \times \mathbf{1}_{\mathsf{S}} \mathbf{1} : (\mathsf{M},\partial\mathsf{M}) \times \mathsf{S}^{\mathsf{1}} \xrightarrow{} (\mathsf{X},\partial\mathsf{X}) \times \mathsf{S}^{\mathsf{1}}) \\ & \in \operatorname{L}^{h}_{n}(\pi \times \mathbb{Z}) \ . \end{split}$$

Now (g,c) is the boundary of the (n+1)-dimensional normal map

$$(f,b) \times 1_{(D^2,S^1)} : (M,\partial M) \times (D^2,S^1) \longrightarrow (X,\partial X) \times (D^2,S^1)$$

such that the target

$$(X, \partial X) \times (D^2, S^1) = (X \times D^2, X \times S^1 \bigcup_{\partial X \times S^1} \partial X \times D^2)$$

is a finite (n+l)-dimensional geometric Poincaré pair with simple boundary and

$$\begin{aligned} \tau\left((X,\partial X)\times(D^2,S^1)\right) &= \tau\left(X,\partial X\right) \bigotimes_{\chi}(D^2) + \chi(X) \bigotimes_{\tau}(D^2,S^1) \\ &= \tau\left(X,\partial X\right) \in \mathsf{Wh}\left(\pi\right) \end{aligned}$$

(by the relative version of Proposition 5.1). It follows that

 $\varepsilon \overline{B}' \sigma^{h}_{\star}(f,b) \in L^{S}_{p}(\pi)$ is the image of

$$\begin{aligned} \tau\left((X,\partial X)\times(D^{2},S^{1})\right) &= \tau\left(X,\partial X\right) \\ &\in \hat{H}^{n-1}(\mathbb{Z}_{2};\mathsf{Wh}\left(\pi\right)) &= \hat{H}^{n+1}(\mathbb{Z}_{2};\mathsf{Wh}\left(\pi\right)) \end{aligned}$$

under the map $\hat{H}^{n+1}(\mathbb{Z}_2; Wh(\pi)) \longrightarrow L_n^s(\pi)$ in the Rothenberg exact sequence

$$\dots \longrightarrow L_{n+1}^{h}(\pi) \longrightarrow \hat{R}^{n+1}(\mathbb{Z}_{2}; Wh(\pi)) \longrightarrow L_{n}^{s}(\pi) \longrightarrow L_{n}^{h}(\pi) \longrightarrow \dots$$

The discrepancy between ε and ε' will be expressed algebraically in Proposition 6.2 below; it is at most 2-torsion, and is 0 if $Wh(\pi) = 0$.

Novikov [17] initiated the development of analogues for algebraic L-theory of the techniques of Bass, Heller and Swan [2] and Bass [1] for the algebraic K-theory of polynomial extensions. In Ranicki [19],[20] the methods of [17] (which neglected 2-torsion) were refined to obtain for any group π algebraic isomorphisms

$$\begin{cases} \beta_{L} = \begin{pmatrix} \varepsilon \\ B \end{pmatrix} : L_{n}^{S}(\pi \times \mathbb{Z}) \longrightarrow L_{n}^{S}(\pi) \oplus L_{n-1}^{h}(\pi) \\ \beta_{L} = \begin{pmatrix} \varepsilon \\ B \end{pmatrix} : L_{n}^{h}(\pi \times \mathbb{Z}) \longrightarrow L_{n}^{h}(\pi) \oplus L_{n-1}^{p}(\pi) \end{cases}$$

with inverses

$$\begin{cases} \beta_{L}^{-1} = (\overline{\epsilon} \ \overline{E}) : L_{n}^{s}(\pi) \oplus L_{n-1}^{h}(\pi) \longrightarrow L_{n}^{s}(\pi \times \mathbb{Z}) \\ \beta_{L}^{-1} = (\overline{\epsilon} \ \overline{E}) : L_{n}^{h}(\pi) \oplus L_{n-1}^{p}(\pi) \longrightarrow L_{n}^{h}(\pi \times \mathbb{Z}) \end{cases}$$

by analogy with the isomorphism of [2]

$$\beta_{K} : Wh(\pi \times \mathbb{Z}) \longrightarrow Wh(\pi) \oplus \widetilde{K}_{O}(\mathbb{Z}[\pi]) \oplus \widetilde{Nil}(\mathbb{Z}[\pi]) \oplus \widetilde{Nil}(\mathbb{Z}[\pi])$$

recalled in §3 above. The isomorphisms $\beta_{\rm L}$ define the algebraically significant splitting

$$\begin{cases} L_{n}^{s}(\pi \times \mathbb{Z}) = L_{n}^{s}(\pi) \oplus L_{n-1}^{h}(\pi) \\ L_{n}^{h}(\pi \times \mathbb{Z}) = L_{n}^{h}(\pi) \oplus L_{n-1}^{p}(\pi) \end{cases}$$

As already indicated above this does not in general coincide with the geometric splitting of $L_n^S(\pi \times \mathbb{Z})$ due to Shaneson [29], although the split surjection $B:L_n^S(\pi \times \mathbb{Z}) \xrightarrow{} L_{n-1}^h(\pi)$ of [29] agrees with the algebraic B of [20].

Pedersen and Ranicki [18,§4] claimed to be giving a geometric interpretation of the algebraically significant splitting $L_{\star}^{h}(\pi \times \mathbb{Z}) = L_{\star}^{h}(\pi) \oplus L_{\star-1}^{p}(\pi)$. However, the composite

$$\varepsilon \overline{B}' : L_{n-1}^{p}(\pi) \xrightarrow{\overline{B}'} L_{n}^{h}(\pi \times \mathbb{Z}) \xrightarrow{\varepsilon} L_{n}^{h}(\pi \times \mathbb{Z})$$

of the geometric split injection

$$\begin{split} \overline{B}^{\,\prime} &: \ L_{n-1}^{p}(\pi) \xrightarrow{} L_{n}^{h}(\pi \times \mathbb{Z}) ; \\ \sigma^{p}_{\star}((f,b):(M,\partial M) \xrightarrow{} (X,\partial X)) \\ & \longleftarrow \sigma^{h}_{\star}((f,b) \times 1_{S}1:(M,\partial M) \times S^{1} \xrightarrow{} (X,\partial X) \times S^{1}) \\ & (= \ \sigma^{p}_{\star}(f,b) \otimes \sigma^{\star}_{r}(S^{1}) \text{ by Proposition 5.3 ii}) \end{split}$$

and the algebraic split surjection $\epsilon: L_n^h(\pi \times \mathbb{Z}) \xrightarrow{h} L_n^h(\pi)$ need not be zero: there is defined a finitely dominated null-bordism with $\pi_1(X \times D^2) = \pi_1(X) = \pi$

$$(f,b) \times 1_{(D^2,S^1)} : (M, \partial M) \times (D^2,S^1) \longrightarrow (X, \partial X) \times (D^2,S^1)$$

of the relative (homotopy) finite surgery problem

$$(f,b) \times l_{s}l : (M, \partial M) \times s^{1} \longrightarrow (X, \partial X) \times s^{1}$$

with finiteness obstruction

$$[X \times D^{2}] = [X] \in \widetilde{K}_{O}(\mathbb{Z}[\pi])$$

It follows that $\varepsilon \overline{B}^{*} \sigma_{\star}^{p}(f,b) \in L_{n}^{h}(\pi)$ is the image of $[X] \in \hat{H}^{n-1}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}[\pi])) = \hat{H}^{n+1}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}[\pi]))$ under the map $\hat{H}^{n+1}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}[\tau])) \xrightarrow{} L_{n}^{h}(\pi)$ in the generalized Rothenberg exact sequence

$$\dots \longrightarrow L_{n+1}^{p}(\pi) \longrightarrow \hat{H}^{n+1}(\mathbb{Z}_{2}; \tilde{K}_{O}(\mathbb{Z}[\pi])) \longrightarrow L_{n}^{h}(\pi) \longrightarrow L_{n}^{p}(\pi) \longrightarrow \dots$$

Thus \overline{B} ' and ε do not in general belong to the same direct sum system. In fact ε belongs to the algebraically significant direct sum decomposition of $L_n^b(\pi \times \mathbb{Z})$ described above, while \overline{B} ' belongs to the geometrically defined direct sum decomposition

$$L_{n}^{h}(\pi) \xrightarrow{\overline{\epsilon}} L_{n}^{h}(\pi \times \mathbb{Z}) \xrightarrow{B} L_{n-1}^{p}(\pi)$$

with B as defined in [18,§4] and ε' the split surjection determined by $\overline{\varepsilon}, B, \overline{B}'$. It is the latter direct sum system which is meant when referring to "the geometric splitting $L^h_*(\pi \times ZZ) = L^h_*(\pi) \oplus L^p_{*-1}(\pi)$ of [18]". Define the geometrically significant splitting

$$\left\{ \begin{array}{l} \mathbf{L}_{n}^{\mathsf{S}}\left(\boldsymbol{\pi}\times\mathbf{Z}\right) \;=\; \mathbf{L}_{n}^{\mathsf{S}}\left(\boldsymbol{\pi}\right) \oplus \mathbf{L}_{n-1}^{\mathsf{h}}\left(\boldsymbol{\pi}\right) \\ \mathbf{L}_{n}^{\mathsf{h}}\left(\boldsymbol{\pi}\times\mathbf{Z}\right) \;=\; \mathbf{L}_{n}^{\mathsf{h}}\left(\boldsymbol{\pi}\right) \oplus \mathbf{L}_{n-1}^{\mathsf{p}}\left(\boldsymbol{\pi}\right) \end{array} \right.$$

to be the one given by the algebraic isomorphism

$$\begin{cases} \beta'_{L} = \begin{pmatrix} \epsilon \\ B \end{pmatrix} : L_{n}^{S}(\pi \times \mathbb{Z}) \longrightarrow L_{n}^{S}(\pi) \oplus L_{n-1}^{h}(\pi) \\ \beta'_{L} = \begin{pmatrix} \epsilon \\ B \end{pmatrix} : L_{n}^{h}(\pi \times \mathbb{Z}) \longrightarrow L_{n}^{h}(\pi) \oplus L_{n-1}^{p}(\pi) \end{cases}$$

with inverse

$$\left\{ \begin{array}{l} \beta_{\rm L}^{\,,-1} \;=\; (\overline{\epsilon}\; \overline{\rm B}^{\,\prime}) \;:\; {\rm L}_{n}^{\rm S}(\pi) \oplus {\rm L}_{n-1}^{\rm h}(\pi) \xrightarrow{} {\rm L}_{n}^{\rm S}(\pi \times {\mathbb Z}) \\ \beta_{\rm L}^{\,,-1} \;=\; (\overline{\epsilon}\; \overline{\rm B}^{\,\prime}) \;:\; {\rm L}_{n}^{\rm h}(\pi) \oplus {\rm L}_{n-1}^{\rm p}(\pi) \xrightarrow{} {\rm L}_{n}^{\rm h}(\pi \times {\mathbb Z}) \end{array} \right. ,$$

where

$$\begin{bmatrix} \overline{B}' &= - \bigotimes \sigma_r^{\star}(S^1) &: L_{n-1}^h(\pi) \longrightarrow L_n^s(\pi \times \mathbb{Z}) \\ \\ \hline B' &= - \bigotimes \sigma_r^{\star}(S^1) &: L_{n-1}^p(\pi) \longrightarrow L_n^h(\pi \times \mathbb{Z}) \end{bmatrix}$$

and

$$\begin{cases} \varepsilon' = \varepsilon (1 - \overline{B}'B) : L_n^S(\pi \times \mathbb{Z}) \longrightarrow L_n^S(\pi) \\ \varepsilon' = \varepsilon (1 - \overline{B}'B) : L_n^h(\pi \times \mathbb{Z}) \longrightarrow L_n^h(\pi) \end{cases}$$

<u>Proposition 6.1</u> The geometric splitting $\begin{cases} L_n^S(\pi \times \mathbb{Z}) = L_n^S(\pi) \oplus L_{n-1}^h(\pi) \\ L_n^h(\pi \times \mathbb{Z}) = L_n^h(\pi) \oplus L_{n-1}^p(\pi) \end{cases}$ of (Shaneson [29]

in algebra.

[]

The algebraically significant split injections $\begin{cases}
\overline{B}: L_{\star}^{h}(\pi) \longrightarrow L_{\star+1}^{s}(\pi \times \mathbb{Z}) \\
\overline{B}: L_{\star}^{p}(\pi) \longrightarrow L_{\star+1}^{h}(\pi \times \mathbb{Z})
\end{cases}$ were defined in Ranicki [20] using the forms and formations of Ranicki [19]; for example $\overline{B}: L_{2i}^{p}(\pi) \longrightarrow L_{2i+1}^{h}(\pi \times \mathbb{Z});$

 $(Q, \psi) \longmapsto (M \oplus M, \psi \oplus -\psi; \Delta, (1 \oplus z) \Delta) \oplus (H_{(-)} i(N); N, N)$

sends a projective non-síngular (-) i -quadratic form over $\mathbb{Z}\left[\pi\right]$ (Q, ψ)

to a free non-singular (-)ⁱ-quadratic formation over $\mathbb{Z}[\pi \times \mathbb{Z}] = \mathbb{Z}[\pi][z,z^{-1}]$ with $M = \mathbb{Q}[z,z^{-1}]$ the induced f.g. projective $\mathbb{Z}[\pi \times \mathbb{Z}]$ -module, $\Delta = \{(\mathbf{x},\mathbf{x}) \in M \oplus M \mid \mathbf{x} \in M\} \subseteq M \oplus M$ the diagonal lagrangian of $(M \oplus M, \psi \oplus -\psi)$, and $H_{(-)}i(N) = (N \oplus N^{\star}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix})$ the (-)ⁱ-hyperbolic (alias hamiltonian) form on a f.g. projective $\mathbb{Z}[\pi \times \mathbb{Z}]$ -module N such that $M \oplus N$ is a f.g. free $\mathbb{Z}[\pi \times \mathbb{Z}]$ -module. The geometrically significant split injections $\left\{ \begin{array}{c} \mathbb{B}^{i}: L_{\star}^{h}(\pi) \longrightarrow L_{\star+1}^{i}(\pi \times \mathbb{Z}) \\ \mathbb{B}^{i}: L_{\star}^{p}(\pi) \longrightarrow L_{\star+1}^{h}(\pi \times \mathbb{Z}) \end{array} \right\}$ were defined in §10 of Ranicki [22] using

algebraic Poincaré complexes. It is easy to translate from complexes to forms and formations (or the other way round); for example, in terms of forms and formations

$$\overline{B}' : L_{2i}^{p}(\pi) \longrightarrow L_{2i+1}^{h}(\pi \times \mathbb{Z}) ;$$

$$(Q, \Psi) \longmapsto (M \oplus M, \Psi \oplus -\Psi; \Delta, (l \oplus z) \Delta) \oplus (H_{(-)}i(N); N, N^{*}) .$$

making apparent the difference between \overline{B} and \overline{B} ' in this case.

For any group π the exact sequence

$$0 \longrightarrow \widehat{H}^{O}(\mathbb{Z}_{2}; \mathbb{K}_{O}(\mathbb{Z})) \longrightarrow L^{1}_{rh}(\pi) \longrightarrow L^{1}_{h}(\pi) \longrightarrow C$$

splits, with the injection

$$\hat{H}^{O}(\mathbb{Z}_{2}; K_{O}(\mathbb{Z})) = \mathbb{Z}_{2} \xrightarrow{} L_{rh}^{1}(\pi) ; 1 \xrightarrow{} \mathbb{Z}[\pi] \otimes_{\mathbb{Z}} \varepsilon_{r}^{\star}(S^{1})$$

split by the rational semicharacteristic

$$L^{1}_{r}(\pi) \xrightarrow{} \mathbb{Z}_{2}; \quad (C, \phi) \xleftarrow{} \chi_{\frac{1}{2}}(\mathbb{Z} \boxtimes_{\mathbb{Z} Z} [\pi]^{C}; \mathfrak{Q}) \quad .$$

By the discussion at the end of Ranicki [22,§10]

$$L^{1}(\mathbb{Z}) = L^{1}(\{1\}) \oplus L^{O}(\{1\}) = \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$$

with $(0,1) = \sigma^*(S^1) \in L^1(\mathbb{Z})$ the symmetric signature of S^1 . Let $\sigma^*_q(S^1) \in L^1_r(\mathbb{Z})$ be the image of $\sigma^*(S^1) \in L^1(\mathbb{Z})$ under the splitting map $L^1(\mathbb{Z}) \longrightarrow L^1_r(\mathbb{Z})$, so that $\sigma^*_q(S^1) = (1 - \overline{\varepsilon}\varepsilon)\sigma^*_r(S^1)$ and $\varepsilon\sigma^*_q(S^1) = 0 \in L^1_r(\{1\})$. The algebraically significant injections are defined by

$$\begin{cases} \overline{B} = - \Re \sigma_{q}^{\star}(S^{1}) : L_{n}^{h}(\pi) \rightarrow L_{n+1}^{s}(\pi \times \mathbb{Z}) \\ \overline{B} = - \Re \sigma_{q}^{\star}(S^{1}) : L_{n}^{p}(\pi) \rightarrow L_{n+1}^{h}(\pi \times \mathbb{Z}) \end{cases}$$

Now

$$\sigma_r^{\star}(S^1) - \sigma_q^{\star}(S^1) = \overline{\varepsilon}\varepsilon\sigma_r^{\star}(S^1) \in L_r^1(\mathbb{Z})$$
,

so that

$$\begin{cases} \overline{B}' - \overline{B} = - \bigotimes (\sigma_r^{\star}(S^1) - \sigma_q^{\star}(S^1)) = -\bigotimes \overline{\epsilon} \varepsilon \sigma_r^{\star}(S^1) : L_n^h(\pi) \longrightarrow L_{n+1}^s(\pi \times \mathbb{Z}) \\ \overline{B}' - \overline{B} = -\bigotimes (\sigma_r^{\star}(S^1) - \sigma_q^{\star}(S^1)) = -\bigotimes \overline{\epsilon} \varepsilon \sigma_r^{\star}(S^1) : L_n^p(\pi) \longrightarrow L_{n+1}^h(\pi \times \mathbb{Z}) \end{cases}$$

By analogy with the map of algebraic K-groups defined in §3

$$\omega = - \boxtimes \tau (-1) : \widetilde{K}_{O}(\mathbb{Z}[\pi]) \longrightarrow Wh(\pi)$$

define maps of algebraic L-groups

$$\begin{cases} \omega = -\bigotimes \varepsilon \sigma_{r}^{\star}(S^{1}) : L_{n}^{h}(\pi) \xrightarrow{} L_{n+1}^{s}(\pi) \\ \omega = -\bigotimes \varepsilon \sigma_{r}^{\star}(S^{1}) : L_{n}^{p}(\pi) \xrightarrow{} L_{n+1}^{h}(\pi) \end{cases}$$

where $\varepsilon \sigma_r^*(S^1) = (1,1) \in L_r^1(\{1\}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. As $\varepsilon \tau(S^1) = \tau(-1) \in K_1(\mathbb{Z}) = \mathbb{Z}_2$ the various maps ω together define a morphism of generalized Rothenberg exact sequences

<u>Proposition 6.2</u> The algebraically and geometrically significant split injections of L-groups differ by

$$\left\{ \begin{array}{ccc} \overline{B}^{\,\prime} & - \ \overline{B} = \ \overline{\epsilon} \omega & : & L_{n}^{h}(\pi) \xrightarrow{\omega} L_{n+1}^{s}(\pi) \xrightarrow{\varepsilon} L_{n+1}^{s}(\pi \times \mathbb{Z}) \\ \overline{B}^{\,\prime} & - \ \overline{B} = \ \overline{\epsilon} \omega & : & L_{n}^{p}(\pi) \xrightarrow{\omega} L_{n+1}^{h}(\pi) \xrightarrow{\varepsilon} L_{n+1}^{h}(\pi \times \mathbb{Z}) \end{array} \right.$$

The split surjections differ by

$$\begin{cases} \epsilon' - \epsilon = \omega B : L_{n}^{S}(\pi \times \mathbb{Z}) \xrightarrow{B} L_{n-1}^{h}(\pi) \xrightarrow{\omega} L_{n}^{S}(\pi) \\ \epsilon' - \epsilon = \omega B : L_{n}^{h}(\pi \times \mathbb{Z}) \xrightarrow{B} L_{n-1}^{p}(\pi) \xrightarrow{\omega} L_{n}^{h}(\pi) \end{cases}$$

The L-theory maps ω factor as

$$\begin{cases} \omega : L_{n}^{h}(\pi) \xrightarrow{} \widehat{H}^{n}(\mathbb{Z}_{2}; Wh(\pi)) = \widehat{H}^{n+2}(\mathbb{Z}_{2}; Wh(\pi)) \xrightarrow{} L_{n+1}^{s}(\pi) \\ \omega : L_{n}^{p}(\pi) \xrightarrow{} \widehat{H}^{n}(\mathbb{Z}_{2}; \widetilde{K}_{O}(\mathbb{Z}[\pi])) = \widehat{H}^{n+2}(\mathbb{Z}_{2}; \widetilde{K}_{O}(\mathbb{Z}[\pi])) \xrightarrow{} L_{n+1}^{h}(\pi) . \end{cases}$$
The K-theory map ω is the sum of the composites

$$\begin{split} &\hat{H}^{n}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}\left[\pi\right])) \xrightarrow{} L_{n-1}^{h}(\pi) \xrightarrow{} \hat{H}^{n-1}(\mathbb{Z}_{2}; \mathsf{Wh}(\pi)) = \hat{H}^{n+1}(\mathbb{Z}_{2}; \mathsf{Wh}(\pi)) \\ &\hat{H}^{n}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}\left[\pi\right])) = H^{n+2}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}\left[\pi\right])) \xrightarrow{} L_{n+1}^{h}(\pi) \xrightarrow{} \hat{H}^{n+1}(\mathbb{Z}_{2}; \mathsf{Wh}(\pi)) . \end{split}$$

$$\underline{\operatorname{Proof}}: \operatorname{Let} \begin{cases} \operatorname{L}_{n}^{h,s}(\pi) \\ \operatorname{L}_{n}^{p,h}(\pi) \end{cases} & (n \geqslant 0) \text{ be the relative cobordism group of} \\ \begin{cases} (\text{finite,simple}) \\ (\text{finitely dominated,finite}) \end{cases} & n-\text{dimensional quadratic Poincaré pairs} \\ \text{over } \mathbb{Z}[\pi] (f: \mathbb{C} \longrightarrow \mathbb{D}, (\delta \psi, \psi) \in \mathbb{Q}_{n}(f)), \text{ so that there is defined an exact sequence} \end{cases}$$

$$\cdots \longrightarrow L_{n}^{s}(\pi) \longrightarrow L_{n}^{h}(\pi) \longrightarrow L_{n}^{h,s}(\pi) \longrightarrow L_{n-1}^{s}(\pi) \longrightarrow \cdots$$
$$\cdots \longrightarrow L_{n}^{h}(\pi) \longrightarrow L_{n}^{p,h}(\pi) \longrightarrow L_{n-1}^{h}(\pi) \longrightarrow \cdots$$

and there are defined isomorphisms

$$\begin{cases} L_{n}^{h,s}(\pi) \longrightarrow \hat{H}^{n}(\mathbb{Z}_{2}; Wh(\pi)); \\ (f: C \longrightarrow D, (\delta \Psi, \Psi)) \longmapsto \tau((1+T)(\delta \Psi, \Psi)_{O}: C(f)^{n-*} \longrightarrow D) \\ L_{n}^{p,h}(\pi) \longrightarrow \hat{H}^{n}(\mathbb{Z}_{2}; \tilde{K}_{O}(\mathbb{Z}[\pi])); (f: C \longrightarrow D, (\delta \Psi, \Psi)) \longmapsto [D]. \end{cases}$$

Product with the 2-dimensional symmetric Poincaré pair $\sigma^*(D^2, S^1)$ over Z defines isomorphisms of relative L-groups

$$\begin{cases} - \boxtimes \sigma^{\star} (D^{2}, S^{1}) : L_{n}^{h, s} (\pi) \xrightarrow{} L_{n+2}^{h, s} (\pi) \\ - \boxtimes \sigma^{\star} (D^{2}, S^{1}) : L_{n}^{p, h} (\pi) \xrightarrow{} L_{n+2}^{p, h} (\pi) \end{cases}$$

corresponding to the canonical 2-periodicity isomorphisms of the Tate $\mathbb{Z}_2\text{-}\mathsf{cohomology}$ groups

$$\begin{cases} \hat{H}^{n}(\mathbb{Z}_{2}; \tilde{W}h(\pi)) \longrightarrow \hat{H}^{n+2}(\mathbb{Z}_{2}; Wh(\pi)) \\\\ \hat{H}^{n}(\mathbb{Z}_{2}; \hat{K}_{O}(\mathbb{Z}[\pi])) \longrightarrow \hat{H}^{n+2}(\mathbb{Z}_{2}; \tilde{K}_{O}(\mathbb{Z}[\pi])) \end{cases} . \end{cases}$$

The boundary of $c^{*}(D^{2}, S^{1})$ is $cc^{*}_{r}(S^{1})$.

[]

In particular, the algebraic and geometric splitting maps in

L-theory differ in 2-torsion only, since $2\omega = 0$ (cf. Proposition 3.3).

The splitting maps in the algebraic and geometric splittings of Wh($\pi\times Z\!Z$) given in §3 and the duality involutions * are such that

$$\begin{split} \overline{\epsilon}^{\star} &= \ast \overline{\epsilon} : Wh(\pi) \xrightarrow{\longrightarrow} Wh(\pi \times ZZ) \\ \epsilon^{\star} &= \ast \epsilon , \epsilon'^{\star} &= \ast \epsilon' : Wh(\pi \times ZZ) \xrightarrow{\longrightarrow} Wh(\pi) \\ B^{\star} &= -\ast B : Wh(\pi \times ZZ) \xrightarrow{\longrightarrow} \widetilde{K}_{O}(ZZ[\pi]) \\ \overline{B}^{\star} &= -\ast \overline{B} , \overline{B}^{\star}^{\star} &= -\ast \overline{B}' : \widetilde{K}_{O}(ZZ[\pi]) \xrightarrow{\longrightarrow} Wh(\pi \times ZZ) \\ \overline{L}_{\pm}^{\star} &= \ast \overline{L}_{\pm} : \widetilde{Nil}(ZZ[\pi]) \xrightarrow{\longrightarrow} Wh(\pi \times ZZ) \\ \Delta_{\pm}^{\star} &= \ast \Delta_{\pm} : Wh(\pi \times ZZ) \xrightarrow{\longrightarrow} \widetilde{Nil}(ZZ[\pi]) . \end{split}$$

The involution $*:Wh(\pi \times \mathbb{Z}) \longrightarrow Wh(\pi \times \mathbb{Z})$ interchanges the two \widetilde{Nil} summands, so that they do not appear in the Tate \mathbb{Z}_2 -cohomology groups and there are defined two splittings

$$\hat{H}^{n}(\mathbb{Z}_{2}; \mathbb{W}h(\pi \times \mathbb{Z})) = \hat{H}^{n}(\mathbb{Z}_{2}; \mathbb{W}h(\pi)) \oplus \hat{H}^{n-1}(\mathbb{Z}_{2}; \tilde{K}_{0}(\mathbb{Z}[\pi]))$$

the algebraically significant direct sum decomposition

$$\hat{H}^{n}(\mathbb{Z}_{2}; Wh(\pi)) \xrightarrow{\tilde{\epsilon}} \hat{H}^{n}(\mathbb{Z}_{2}; Wh(\pi \times \mathbb{Z})) \xleftarrow{B} \hat{H}^{n-1}(\mathbb{Z}_{2}; \tilde{K}_{O}(\mathbb{Z}[\pi]))$$

and the geometrically significant direct sum decomposition

$$\widehat{H}^{n}(\mathbb{Z}_{2}; \mathbb{W}h(\pi)) \xrightarrow{\overline{\epsilon}} \widehat{H}^{n}(\mathbb{Z}_{2}; \mathbb{W}h(\pi \times \mathbb{Z})) \xleftarrow{B}{\overline{B'}} \widehat{H}^{n-1}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}[\pi])).$$

Proposition 6.3 The Rothenberg exact sequence of a polynomial extension

$$\dots \longrightarrow L_n^{\mathbf{S}}(\pi \times \mathbb{Z}) \longrightarrow L_n^{\mathbf{h}}(\pi \times \mathbb{Z}) \longrightarrow \widehat{H}^n(\mathbb{Z}_2; \mathbb{W}h(\pi \times \mathbb{Z})) \longrightarrow L_{n-1}^{\mathbf{S}}(\pi \times \mathbb{Z}) \longrightarrow \dots$$

has two splittings as a direct sum of the exact sequences

$$\cdots \longrightarrow L_{n}^{s}(\pi) \longrightarrow L_{n}^{h}(\pi) \longrightarrow \widehat{H}^{n}(\mathbb{Z}_{2}; \mathbb{W}h(\pi)) \longrightarrow L_{n-1}^{s}(\pi) \longrightarrow \cdots,$$

$$\cdots \longrightarrow L_{n-1}^{h}(\pi) \longrightarrow L_{n-1}^{p}(\pi) \longrightarrow \widehat{H}^{n-1}(\mathbb{Z}_{2}; \widetilde{K}_{0}(\mathbb{Z}[\pi])) \longrightarrow L_{n-2}^{h}(\pi) \longrightarrow \cdots,$$

an algebraically and a geometrically significant one.

The split injection of exact sequences in the appendix of Munkholm and Ranicki [16] is the geometrically significant injection

$$\cdots \longrightarrow L_{n-1}^{h}(\pi) \longrightarrow L_{n-1}^{p}(\pi) \longrightarrow \widehat{\mathbb{B}}^{n-1}(\mathbb{Z}_{2}; \widetilde{\mathbb{K}}_{O}(\mathbb{Z}[\pi])) \rightarrow L_{n-2}^{h}(\pi) \longrightarrow \cdots$$

$$\int_{\mathbb{Z}}^{n} \int_{\mathbb{Z}}^{n} \int_{\mathbb{Z}}^{$$

[]

As for algebraic K-theory (cf. the discussion just after Proposition 3.3) it is tempting to identify the geometrically significant split surjection $\begin{cases} \varepsilon': L_n^S(\pi \times \mathbb{Z}) & \longrightarrow L_n^S(\pi) \\ \varepsilon': L_n^h(\pi \times \mathbb{Z}) & \longrightarrow L_n^h(\pi) \end{cases}$ with the split

surjection of L-groups induced functorially by the split surjection of rings with involution

$$n : \mathbb{Z}[\pi] \{z, z^{-1}\} = \mathbb{Z}[\pi \times \mathbb{Z}] \xrightarrow{\longrightarrow} \mathbb{Z}[\pi] ; \qquad \sum_{j=-\infty}^{\infty} a_j z^j \xrightarrow{\longrightarrow} \sum_{j=-\infty}^{\infty} j^{(-1)^j}$$

and indeed

$$\begin{cases} \varepsilon' \mid (=1) = \eta \mid : im(\overline{\varepsilon}:L_n^{\mathsf{S}}(\pi) \longrightarrow L_n^{\mathsf{S}}(\pi \times \mathbb{Z})) \longrightarrow L_n^{\mathsf{S}}(\pi) \\ \varepsilon' \mid (=1) = \eta \mid : im(\overline{\varepsilon}:L_n^{\mathsf{h}}(\pi) \longrightarrow L_n^{\mathsf{h}}(\pi \times \mathbb{Z})) \longrightarrow L_n^{\mathsf{h}}(\pi) \end{cases}$$

However, $\operatorname{no}_r^{\star}(S^1) = (1,0) \neq 0 \in \operatorname{L}_r^1(\{1\}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ (since the underlying \mathbb{Z} -module chain complex is $\mathbb{Z} \xrightarrow{2} \mathbb{Z}$) and in general

$$\begin{cases} \varepsilon' \mid (=0) \neq \eta \mid : \operatorname{im}(\overline{B}' = -\mathfrak{B}\sigma_r^{\star}(S^1) : L_{n-1}^{h}(\pi) \longrightarrow L_{n}^{s}(\pi \times \mathbb{Z})) \longrightarrow L_{n}^{s}(\pi) \\ \varepsilon' \mid (=0) \neq \eta \mid : \operatorname{im}(\overline{B}' = -\mathfrak{B}\sigma_r^{\star}(S^1) : L_{n-1}^{p}(\pi) \longrightarrow L_{n}^{h}(\pi \times \mathbb{Z})) \longrightarrow L_{n}^{h}(\pi) \end{cases}$$

so that

$$\begin{cases} \varepsilon' \neq \eta : L_n^{\mathsf{S}}(\pi \times \mathbb{Z}) \longrightarrow L_n^{\mathsf{S}}(\pi) \\ \varepsilon' \neq \eta : L_n^{\mathsf{h}}(\pi \times \mathbb{Z}) \longrightarrow L_n^{\mathsf{h}}(\pi) \end{cases}$$

For q = s,h,p the type q total surgery obstruction groups $\hat{S}^{\mathbf{q}}_{\star}(X)$ were defined in Ranicki [21] for any topological space X to fit into an exact sequence

$$\cdots \longrightarrow H_{n}(X;\underline{\mathbb{H}}_{O}) \xrightarrow{\sigma^{q}} L_{n}^{q}(\pi_{1}(X)) \longrightarrow \mathscr{G}_{n}^{q}(X) \longrightarrow H_{n-1}(X;\underline{\mathbb{H}}_{O}) \longrightarrow \cdots,$$

with $\underline{\mathbb{IL}}_{\Omega}$ an algebraic 1-connective $\Omega\text{-spectrum}$ such that

$$\pi_{\star}(\underline{\mathbb{IL}}_{O}) = L_{\star}(\{1\})$$

$$\dots \longrightarrow [M \times D^{1}, M \times S^{0}; G/TOP, \star] \xrightarrow{6^{q}} L_{n+1}^{q} (\pi_{1}(M)) \longrightarrow \overset{QTOP}{\longrightarrow} (M)$$

$$\longrightarrow [M, G/TOP] \xrightarrow{6^{q}} L_{n}^{q} (\pi_{1}(M))$$

with $\theta^{\mathbf{q}}$ the type q surgery obstruction map and $\delta^{\mathbf{q}_{\perp}\cup\mathbf{r}}(\mathbf{M})$ the type q topological manifold structure set of M.

<u>Proposition 6.4</u> For any connected space X with $\pi_1(X) \approx \pi$ the commutative braid of algebraic surgery exact sequences of a polynomial extension

has a geometrically significant splitting as a direct sum of the braid

It is appropriate to record here (in the terminology of this paper) a footnote from the preprint version of Cappell and Shaneson [3]: "it is not completely obvious that the maps given in Ranicki [20] give a splitting

$$L_{n}^{s}(\pi \times \mathbb{Z}) = L_{n}^{s}(\pi) \oplus L_{n-1}^{h}(\pi)$$

respected by the surgery map

 $\theta^{S} : [M \times S^{1}, G/TOP] = [M \times D^{1}, M \times S^{O}; G/TOP, \star] \oplus [M, G/TOP] \longrightarrow L_{n+1}^{S}(\pi \times \mathbb{Z})$ with M a compact n-dimensional topological manifold and $\pi = \pi_{1}(M)$."

Department of Mathematics, Edinburgh University

REFERENCES

[1]	H.Bass	<u>Algebraic K-theory</u> Benjamin (1968)
[2]	, A.I	Heller and R.G.Swan
		The Whitehead group of a polynomial extension
		Publ. Math. I.H.E.S. 22, 61-79 (1964)
[3]	S.Cappell	and J.Shaneson
		Pseudo free actions I.,
		Proceedings 1978 Arhus Algebraic Topology Conference,
		Springer Lecture Notes 763, 395-447 (1979)
[4]	F.T.Farrel	1
		The obstruction to fibering a manifold over the circle
		Indiana Univ. J. 21, 315 - 346 (1971)
		Proc. I.C.M. Nice 1970, Vol.2, 69 - 72 (1971)
[5]		and W.C.Hsiang
		A geometric interpretation of the Künneth formula for
		algebraic K-theory
		Bull. A.M.S. 74, 548 - 553 (1968)
[6]		A formula for K ₁ R _o [T]
		Proc. Symp. Pure Maths. A.M.S. 17, 192-218 (1970)
[7]		Manifolds with $\pi_1 = G \times_{CT} T$
		Amer. J. Math. 95, 813-845 (1973)

[8] S.Ferry	A simple-homotopy approach to the finiteness obstruction
	Proc. 1961 Dubrownik Snape Theory Conference
	Springer Lecture Notes 870, 73-81 (1981)
[9] S.Gersten	A product formula for Wall's Obstruction
	Am. J. Math. 88, 337 - 346 (1966)
[10]	The torsion of a self equivalence
	Topology 6, 411 - 414 (1967)
[11]I.Hambletor	n, A.Ranicki and L.Taylor
	Round L-theory, to appear in J.Pure and Appl.Algebra
[12]K.Kwun and	R.Szczarba
	Product and sum theorems for Whitehead torsion
	Ann. of Maths. 82, 183-190 (1965)
[13]W.Lück and	A.Ranicki
	Transfer maps and duality to appear
[14]M.Mather	Counting homotopy types of manifolds
	Topology 4, 93 - 94 (1965)
[15]H.J.Munkho]	lm
	Proper simple homotopy theory versus simple homotopy
	theory controlled over \mathbb{R}^2 to appear
[16] H.J.Munkho	and A.Ranicki
[The projective class group transfer induced by an
	S ¹ -bundle
	Proc. 1981 Optario Topology Conference,
	Capadian Math. Soc. $Proc. 2$ Vol. 2, 461 – 484 (1982)
(17) S Novikov	The algebraic construction and properties of hermitian
(17) S.NOVIKOV	and properties of Methodry for rings with involution from
	the point of view of the hemiltonian formalism. Some
	the point of view of the hamiltonian formalism. Some
	applications to differential topology and the theory
	OI Characteristic classes
	Izv. Akad. Nauk SSSR, ser. mat. 34, 253-288, 478-500 (1970)
[18] E.Pederser	n and A.Ranicki
	Projective surgery theory Topology 19, 239-254 (1980)
[19] A.Ranicki	Algebraic L-theory I. Foundations
	Proc. Lond. Math. Soc. (3) 27, 101-125 (1973)
[20]	<u>II. Laurent extensions</u> ibid., 126-158 (1973)
[21]	The total surgery obstruction
	Proc. 1978 Arhus Topology Conference, Springer Lecture
	Notes 763, 275 - 316 (1979)
[22]	The algebraic theory of surgery I. Foundations
	Proc. Lond. Math. Soc. (3) 40, 87-192 (1980)
[23]	II. Applications to topology ibid., 193-287 (1980)

[24]		Exact sequences in the algebraic theory of surgery
		Mathematical Notes 26, Princeton (1981)
[25]		The algebraic theory of torsion I. Foundations
		Proc. 1983 Rutgers Topology Conference, Springer
		Lecture Notes 1126, 199-237 (1985)
[26]		II. Products, to appear in J. of K-theory
[27]		III. Lower K-theory preprint (1984)
[28]		Splitting theorems in the algebraic theory of surgery
		to appear
[29]	J.Shaneso:	1
		Wall's surgery groups for $G \times \mathbb{Z}$
		Ann. of Maths. 90, 296-334 (1969)
[30]	L.Siebenma	ann
		The obstruction to finding a boundary for an open
		manifold of dimension greater than five
		Princeton Ph.D. thesis (1965)
[31]		A torsion invariant for bands
		Notices A.M.S. 68T-G7, 811 (1968)
[32]		Infinite simple homotopy types
		Indag. Math. 32, 479 - 495 (1970)
[33]		A total Whitehead torsion obstruction to fibering over
		<u>the circle</u> Comm. Math. Helv. 45, 1-48 (1970)
[34]	C.T.C.Wall	L
		Finiteness conditions for CW complexes
		I. Ann. of Maths. 81, 56-69 (1965)
		II. Proc. Roy. Soc. A295, 129 - 139 (1966)

Surgery on compact manifolds Academic Press (1970)

[35]