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THE GOLDEN AGE OF IMMERSION THEORY
IN TOPOLOGY: 1959–1973.

A MATHEMATICAL SURVEY FROM A HISTORICAL
PERSPECTIVE

DAVID SPRING

Abstract. We review the history of modern immersion-theoretic topology
during the period 1959–1973, beginning with the work of S. Smale followed by
the important contributions from the Leningrad school of topology, including
the work of M. Gromov. We discuss the development of the major geometrical
ideas in immersion-theoretic topology during this period. Historical remarks
are included and technical concepts are introduced informally.

1. Brief overview

In this article1 I briefly review selected contributions to immersion-theoretic
topology during the early “golden” period, from about 1959 to 1973, during which
time the subject received its initial important developments from leading topolo-
gists in many countries. Modern immersion-theoretic topology began with the work
of Stephen Smale ([51]), ([52]) on the classification of immersions of the sphere Sn

into Euclidean space Rq, n ≥ 2, q ≥ n+1. During approximately the next 15 years
the methods introduced by Smale were generalized in various ways to analyse and
solve an astonishing variety of geometrical and topological problems. In particular,
at Leningrad University during the late 1960s and early 1970s, M. Gromov and
Y. Eliashberg developed geometrical methods for solving general partial differential
relations in jet spaces where, informally, a partial differential relation of order r,
r ≥ 1, is a set of equations (closed relations) or inequalities (open relations) on the
partial derivatives of order ≤ r of a function. For example the immersion relation
above studied by Smale is an open 1st order partial differential relation: the func-
tion f : Sn → Rq is an immersion if in local coordinates x = (x1, . . . , xn) at each
point of Sn the first order partial derivatives ∂xif(x) ∈ Rq are linearly independent,
hence the Jacobian matrix for Df(x) has maximal rank (= n), which is an open
condition on the 1st partial derivatives. Immersion-theoretic topology is a name
given to the geometrical methods and to the body of topological results that have
been developed over the past 40 years to study the existence and classification, up
to homotopy, of global solutions to partial differential relations. There does not
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appear to be in the literature a general history of immersion-theoretic topology.
Though not comprehensive, I highlight topics and issues that reflect my particular
interest over a period of many years in solving what is known as the h-principle (cf.
§3) for partial differential relations that occur in various topological contexts.

As indicated above, modern immersion-theoretic topology began with the pio-
neering work of Smale ([51]) on the classification of immersions of the 2-sphere in
Rq, q ≥ 3, followed by his generalization Smale ([52]) to the classification of immer-
sions of the n-sphere in Rq, q ≥ n+1 ≥ 3. Smale is a co-recipient of the 1966 Fields
Medal, for which his pioneering work in immersion theory was included in the cita-
tion. For a detailed, comprehensive review of Smale’s contributions to differential
topology, cf. Hirsch ([29]). Important earlier works include Whitney ([62]), who
proved that all smooth n-manifolds can be immersed into R2n−1, n ≥ 2, and John
Nash ([40]), who solved the C1-isometric immersion problem. Nash proved that an
abstract continuous Riemannian metric on a smooth manifold Mn can be realized
concretely as the induced metric on the manifold obtained through a suitable im-
mersion of class C1 of the manifold into Rq, q ≥ n + 2. Some refinements were
introduced by Kuiper ([32]), who improved these results to q ≥ n+1. The geometri-
cal methods introduced in Nash ([40]) were seen as a curiosity in topological circles
of the time until the work of Gromov ([19]) on convex integration theory for which,
according to Gromov, [40] was a precursor (cf. Spring ([53]) for further historical
remarks). John Nash is a co-recipient of the 1994 Nobel Prize in economics, based
on his innovative work in non-cooperative game theory. Recently the life of John
Nash was the subject of the Hollywood film A Beautiful Mind, released in 2001.
Misha Gromov has received many awards, including the Wolf Prize (1993) and the
Kyoto Prize (2002) for his contributions to mathematics.

During the late 1960s the story of immersion-theoretic topology shifts to the
topology seminar of V. Rokhlin at Leningrad University (now St. Petersburg).
Rokhlin is known for his work in ergodic theory and also for his work in the topol-
ogy of 4-manifolds, in particular for the development of what is known today as the
Rokhlin invariant. Rokhlin was interested in the new results on immersion theory
that were developed by Smale and other researchers in the West. One of his promis-
ing pupils during the mid 1960s was Misha Gromov, whose thesis would generalize
Smale’s theory of immersions to corresponding weak homotopy equivalence results
in the context of very general open relations defined in higher order jet spaces.
Towards the end of the 1960s, another promising student, Yasha Eliashberg, began
attending Rokhlin’s seminar while he was still an undergraduate student (appar-
ently this was not uncommon in Russian circles). Eliashberg and Gromov became
friends and they exchanged important ideas about immersion-theoretic topology;
this collaboration led to their first joint papers together, on the topic of the removal
of singularities, discussed briefly below. Eliashberg’s thesis ([7]) on the surgery of
singularities was another major advance in this topic as it applies to the simplifica-
tion of singularities of maps. Shortly afterwards, Gromov published his first paper
on convex integration theory ([19]), which took the subject to another conceptual
level with applications to diverse new problems in topology and also non-linear
partial differential equations. These mathematical developments, from Smale ([52])
to Gromov ([19]), serve as natural milestones that enclose the Golden Age of Im-
mersion Theory, the title of this paper. I should add that the subject of immersion-
theoretic topology did not come to a close in 1973. Indeed, there have been new
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results and new perspectives on immersion-theoretic topology in recent years that
I will mention briefly throughout this paper and also in a final postscript.

Historically, I mention also that around 1974 Gromov managed to leave Russia
for a position at SUNY Stony Brook. In the early 1980s he moved to Paris, France,
and in 1982 he became a permanent member of the Institut des Hautes Études
Scientifiques (I.H.É.S.). After a series of professional hardships Eliashberg also
managed to leave Russia in the late 1980s, later settling at Stanford University.
Both Gromov and Eliashberg have remained at the forefront of modern topology,
in particular symplectic and contact topology, for the past 10-15 years. Their close
collaboration dates back to Rokhlin’s seminar in Leningrad.

2. Smale’s theory

A smooth map between manifolds, f : Nn → W q, q ≥ n, is an immersion if the
map f is of maximal rank (= n) at each point of Nn. Locally, in suitable curvilinear
coordinates near each point of Nn this means that f is modeled on the inclusion map
i : Rn → Rq, whereas globally there is no restriction on the self intersections set of
f . For example a figure 8 in the plane is an immersed circle (with one double point).
An immersion f : Nn → W q is an embedding if in addition f : Nn → f(Nn) ⊂ W q

is a homeomorphism onto its image. Two immersions f, g : Nn → W q are regularly
homotopic if there is a smooth homotopy of immersions connecting f , g : a smooth
map F : Nn × [0, 1] → W q, F0 = f , F1 = g, such that for each t ∈ [0, 1], the map
Ft : Nn → W q is an immersion. Thus the tangent map dFt : T (Nn) → T (W q) is
smooth in the variable t ∈ [0, 1] ; in particular, the tangent planes to the immersion
Ft : Nn → W q vary continuously in the variable t ∈ [0, 1], an important point when
studying examples. The classification problem consists of classifying algebraically,
usually in terms of homotopy invariants, immersions of Nn into W q, up to regular
homotopy. The first case of interest is the one-dimensional case: immersions of
the circle S1 into the plane R2 were classified much earlier by Whitney ([61]) in
terms of the winding number ∈ Z of the unit tangent vector to the immersed
circle. Of central importance to the proof of this theorem is the fact that one can
integrate an appropriate homotopy of tangent vectors to obtain a regular homotopy
of immersions of S1. This in turn is related to the classical fact that smooth
vector fields can be integrated to obtain integral curves. Attempts to generalize
this technique to integrate a smooth homotopy of tangent n-planes to construct a
regular homotopy immersions of a manifold Nn of dimension n ≥ 2 must fail since
it is well-known that one cannot always integrate, even locally, a smooth family of
n-planes to obtain an integral n-dimensional surface, i.e., whose tangent n-planes
are in the given family of n-planes. There are integrability conditions that must
be satisfied in case n ≥ 2. A totally new idea was required in higher dimensions
that would finesse these integrability constraints. This new idea was proposed by
Smale.

Smale’s solution was based on a bundle theoretic approach that included an
important geometrical ingredient. He proved what is known as the Covering Ho-
motopy Theorem (CHT) for immersions, which for convenience is formulated as
follows: Given an immersion of an n-disk f : Dn → Rq, q ≥ n + 1, and a regular
homotopy of immersions Ft : A → Rq, where A ≡ Sn−1 × [0, ε] ⊂ Dn is a collar
neighbourhood of the boundary sphere Sn−1, such that F0 = f along A, then there
is a regular homotopy of immersions Gt : Dn → Rq such that Gt = Ft : B → Rq,
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t ∈ [0, 1], where B ⊂ A is a smaller collar neighbourhood of Sn−1, and such that
G0 is the given immersion f : Dn → Rq. Smale’s construction of the homotopy
extension of immersions Gt, t ∈ [0, 1], introduces suitable twistings in the nor-
mal directions (q ≥ n + 1) that were explained by Smale ([52]) in strictly analytic
terms. In order to prove homotopy classification results Smale ([52]) requires also
that the constructed regular homotopy of immersions Gt be continuous in the data
(f, Ft). Smale therefore formulated his CHT as a Serre fibration, equivalent to
the following parametric CHT: Let Z be an auxiliary compact manifold. Given a
continuous parametrized family of immersions f(z) : Dn → Rq, z ∈ Z, and a con-
tinuous parametrized regular homotopy of immersions Ft(z) : A → Rq such that
F0(z) = f(z) along the collar A for all z ∈ Z, there is a continuous parametrized
regular homotopy of immersions Gt(z) : Dn → Rq such that for all (z, t) ∈ Z×[0, 1],
G0(z) = f(z); Gt(z) = Ft(z) along a smaller collar neighbourhood B ⊂ A of Sn−1.
Employing the parametric CHT and standard bundle theoretic arguments, Smale
([52]) proves that the immersions of Sn into Rq, q ≥ n+1, are classified up to regu-
lar homotopy by the homotopy group πn(Vq,n), where Vq,n is the Stiefel manifold of
all n-frames in Rq, a space already familiar to homotopy theorists. An interesting
consequence of Smale’s theory is that the immersions of the 2-sphere S2 into R3

are classified by the group π2(V3,2) = π2(SO(3)) = 0. Hence any two immersions
of S2 into R3 are regularly homotopic through immersions. This particular result
caused a minor sensation in topological circles, and eventually also in the wider
mathematical community, because it meant that the standard inclusion of S2 ⊂ R3

could be connected through a regular homotopy of immersions to the embedding
of S2 obtained by reflecting S2 through a 2-plane passing through the centre of the
sphere. This was known as an “eversion” of the sphere, or more simply, turning the
sphere inside out. At that time no explicit geometrical construction of an eversion
of S2 was known to Smale or to anyone else. Indeed, over the next few decades
several eversions were found which became the subject of separate mathematical
papers, an art exhibit that displayed the eversion through a sequence of wire mesh
immersed spheres (due to C. Pugh at Berkeley), a movie, and later the subject of
an amazing video, ([36]), which visually explains Bill Thurston’s method of “cor-
rugations” for everting the sphere. This video presents a particularly convincing
visual proof of the eversion theorem.

It is essential for Smale’s CHT that q ≥ n+1. Indeed, the CHT does not extend
to the equidimensional case q = n, i.e., the case of immersions of Dn into Rn.
Hence the extra dimensions, q ≥ n + 1, provide enough room to prove the CHT,
an important insight. To illustrate the problem in the equidimensional case, in the
above notation, let f : D2 → R2 be the inclusion map and let Ft : A → R2 be a
regular homotopy of immersions of the collar neighbourhood A = S1 × [0, ε] ⊂ D2

such that F0 is the inclusion and the immersion Ft, t ∈ [0, 1], is obtained by a
“finger move” in R2 which slides a given point p ∈ S1 along the line joining p,−p
so that F1(p) = −2p; outside of a neighbourhood of p the immersion Ft, t ∈ [0, 1],
is the inclusion map, independent of t (the image F1(S1) has two double points
near −p and resembles a “double figure 8”. Cf. Figure 1). Elementary arguments
prove that in fact the immersion F1 : S1 → R2 does not extend to an immersion
G1 : D2 → R2, so the CHT fails in case q = n = 2. Similar arguments apply in all
cases q = n ≥ 1. The question of classifying immersions of S1 into R2 that extend
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Figure 1. The immersion F1 : S1 → R2 with two double points
A, B. The immersion F1 does not extend to an immersion (a map
of rank 2 at each point) G1 : D2 → R2. Indeed, the image G1(D2)
would be confined to the compact region bounded by the immersed
circle F1(S1), which is impossible near the double points A, B.

to immersions of the disk D2, and in how many inequivalent ways, was solved by
S. Blank (cf. Poénaru ([49])).

Smale’s theorem on immersions of spheres was quickly generalized by M. Hirsch
([27]) to the classification of immersions of manifolds Nn into W q, q ≥ n+1, based
essentially on Smale’s CHT. Attention soon turned to proving classification results
for smooth maps f : Nn → W q that satisfied other interesting geometrical and ana-
lytical properties. A key problem for each application was the proof of an analogous
CHT in each of the new settings. This ad hoc approach to the CHT was followed
throughout the 1960s. Important results here include: the classification of submer-
sions of open manifolds, i.e., smooth maps f : Nn → W q, n ≥ q, of maximal rank
q, where Nn is open : each connected component of Nn\∂Nn is non-compact (∂Nn

is the boundary of Nn, possibly empty), due to A. Phillips ([42]); the classification
of maps of rank ≥ k, known as k-mersions, k < q, due to S. Feit ([14]); the classi-
fication of non-degenerate immersed circles in R3, due to E. A. Feldman ([13]); an
analogous immersion theory that applies to classify piecewise-linear (PL) immer-
sions of combinatorial manifolds, due to Haefliger and Poénaru ([24]); and Poénaru’s
folding theorem ([48]). An important methodological feature throughout this pe-
riod is the formulation of results in terms of conditions on tangent bundle maps,
Df : T (Nn) → T (W q) associated to a smooth map f : Nn → W q. This was both a
strength and a limitation. A strength because it allowed for easy, geometrical for-
mulations; a limitation because it was not suitable for generalizations to the classifi-
cation of maps f : Nn → W q that satisfied very general conditions on the rth order
derivatives of f , for all r ≥ 1. The bundle map formulation is a workable alternative
in most cases only when r = 1. For example, let Imm(Nn, W q) ⊂ C∞(Nn, W q) be
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the open subspace, in the C1 compact-open topology, of immersions of Nn into W q.
Let also Mono(T (Nn), T (W q)) ⊂ Hom(T (Nn), T (W q)) be the subspace of tangent
bundle homomorphisms consisting of bundle monomorphisms, i.e., which have max-
imal rank n at each point. Then Hirsch ([27]) proves that in case q ≥ n + 1, the
derivative map D : Imm(Nn, W q) → Mono(T (Nn), T (W q)), f �→ Df , is a weak
homotopy equivalence, where in general a map g : X → Y is a weak homotopy
equivalence if the induced map g∗ : π0(X) → π0(Y ) is a set bijection on the set of
arc components and g∗ : πi(X) → πi(Y ) is an isomorphism of homotopy groups for
all i ≥ 1. In particular, (i) at the π0 level, the existence of a bundle monomorphism
α : T (Nn) → T (W q) implies the existence of an immersion f : Nn → W q such
that Df, α are homotopic through bundle monomorphisms; (ii) at the π1 level, if
f, g are immersions such that Df, Dg are homotopic through bundle monomor-
phisms, then the immersions f, g are regularly homotopic. In this way the a priori
hard calculation of πi(Imm(Nn, W q)) is reduced to the easier algebraic calculation
of πi(Mono(T (Nn), T (W q)). Although higher order non-degeneracy conditions on
maps f : Nn → W q can be formulated in terms of the symmetric tensor product of
a tangent bundle (cf. E. A. Feldman ([12])), the most general formulation of prob-
lems involving arbitrary open and closed conditions on higher order derivatives of
f : Nn → W q requires the language of jet spaces, discussed below.

Historically, René Thom ([56]) provided an influential early exposition in the
Bourbaki Seminar of Smale’s immersion theory of spheres, based in part on Thom’s
personal discussions during 1956 with Smale at the University of Chicago, where
Thom was then visiting and where Smale had accepted his first position after com-
pleting his thesis under the direction of Raoul Bott at Ann Arbor, Michigan. Thom
([56]) proves a general form of the CHT for immersions : the restriction of the space
of immersions of a manifold to the space of immersions of a submanifold satisfies a
corresponding covering homotopy theorem, provided that the immersion of the am-
bient manifold is in “good position”. Thom’s constructions, based on good position,
provided a more conceptual proof of Smale’s CHT above. Thom’s good position
arguments were developed in courses on immersion theory delivered by Haefliger at
Columbia University, and independently by Poénaru at Harvard. Poénaru’s unpub-
lished Harvard course notes of 1964 served also as an inspiration for the theory of
submersions of open manifolds developed in Phillips ([42]). In particular, Phillips
adapts the good position arguments, due originally to Thom in the immersion case,
to prove a covering homotopy theorem in the context of submersions of manifolds,
a key step in the classification theory of submersions of open manifolds.

Of historical interest also is a refinement of the PL immersion theory of Hae-
fliger and Poénaru ([24]) made by Lees ([35]) in the topological category, where
Lees proves a corresponding immersion theorem for topological manifolds. Lees’
immersion theorem was then employed by Lashof and Rothenberg ([33]) to prove
in particular that a compact, simply connected topological manifold Mm without
boundary of dimension m ≥ 5 admits a PL manifold structure if the cohomology
group H4(Mm;Z2) = 0. Thus topological immersion theory contributed to solving,
in part, the classical problem of classifying PL manifold structures on a topologi-
cal manifold up to PL homeomorphism, completely solved previously only in the
low-dimensional cases m ≤ 3. A complete solution to the classification problem for
PL structures on topological manifolds in the above dimension range (in particular,
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no assumption on π1(Mm)), finally was obtained by Kirby and Siebenmann ([31]),
based in particular on Kirby ([30]). Only the dimension 4 case remained unsolved.

3. Jet spaces

The following informal presentation of jet spaces is sufficient for our purposes.
For a detailed account of jet space bundles in immersion-theoretic topology, cf.
Eliashberg and Mishachev ([11]), Gromov ([20]), Spring ([54]). The original for-
mulation of jet spaces is due to C. Ehresmann ([5]), with later seminal work in jet
spaces due to R. Thom. Given an rth order system of P.D.E.s, one can replace all
the derivatives of order k, 1 ≤ k ≤ r, of the unknown functions by new independent
variables, resulting in systems of equations in these new variables. Thus consider
the system of rth order P.D.E.s,

(1) F (x, ∂αf(x)) = 0 ∈ Rp, |α| ≤ r, x ∈ U,

in the unknown Cr-function f : U → Rq, where U ⊂ Rn is open and, with respect
to coordinates (u1, . . . , un) ∈ Rn, the differential operator

∂α =
∂|α|

∂r1
u1 ◦ ∂r2

u2 ◦ · · · ◦ ∂rn
un

α = (r1, . . . , rn),

where |α| = r1 + r2 + · · · + rn; ∂0f = f if |α| = 0. Associated to (1) is the system
of equations F (x, pα)|α|≤r = 0, where the variables pα ∈ Rq replace the partial
derivatives ∂αf(x) ∈ Rq in the equation (1). Let U ⊂ Rn, V ⊂ Rq be open
subsets. In terms of the above variables we define the rth order jet space

Jr(U, V ) = {(x, y, pα)1≤|α|≤r | x ∈ U, y ∈ V }.
Thus Jr(U, V ) = U × V × ∏Rq, where the factors Rq correspond bijectively
to the differential operators ∂α, 1 ≤ |α| ≤ r. In particular there is a product
bundle Jr(U, V ) → U ×V , (x, y, pα) �→ (x, y), fiber Jr

a,b(U, V ) = (a, b)×∏Rq over
(a, b) ∈ U × V (a ∈ U is a “source” point; b ∈ V is a “target” point). Employing
Taylor’s theorem, each point w ∈ Jr(U, V ) is of the form of an r-jet extension :
w = jrf(x) = (x, f(x), ∂αf(x))1≤|α|≤r for some smooth function f defined near
x ∈ U , f(x) ∈ V . From this perspective we view F : Jr(U,Rq) → Rp. A solution to
(1) is a Cr-function f : U → Rq whose r-jet extension jrf(x) = (x, ∂αf(x))|α|≤r ∈
F−1(0) ⊂ Jr(U,Rq), for all x ∈ U .

Gromov ([16]) treats in particular open subsets Ω ⊂ Jr
0,0(Rn,Rq), r ≥ 1, of

interest in topology and geometry. For example Ωk ⊂ J1
0,0(R

n,Rq) =
∏n

1 Rq

is the open set defined by the condition that the q × n matrix, whose columns
are the vectors pi ∈ Rq, has rank ≥ k, where pi corresponds to the derivative
∂/∂ui, 1 ≤ i ≤ n, in coordinates (u1, . . . , un) ∈ Rn. In case n = k ≤ q, Ωn

defines the immersion relation; in case n ≥ k = q, Ωq defines the submersion
relation. A related example, derived from Nash’s later work on smooth isometric
immersions, is as follows. In terms of the jet space variables pi above and also
the jet space variables pjk ∈ Rq that correspond to the 2nd partial derivatives
∂2/∂uj∂uk, 1 ≤ j, k ≤ n, the condition that all the vectors pi, pjk ∈ Rq, 1 ≤
i, j, k ≤ n, are linearly independent defines an open subset, the free map relation
Ωfree ⊂ J2

0,0(Rn,Rq), q ≥ n + n(n + 1)/2. Because manifolds are locally Euclidean,
associated to smooth manifolds Nn, W q there is an r-jet space Jr(Nn, W q) which
is a smooth manifold with charts of the form Jr(U, V ), where U ⊂ Rn, V ⊂ Rq are
open. The projection pr : Jr(Nn, W q) → Nn × W q, (x, y, pα)1≤|α|≤r �→ (x, y) is a
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fiber bundle, fibers of the form Jr
0,0(R

n,Rq). Thus associated to an open set Ω ⊂
Jr

0,0(R
n,Rq) that is invariant under local changes of coordinates there is a subfiber

bundle pr : E(Ω) → Nn × W q, fiber Ω. In particular the composed projection
pr : R = E(Ω) → Nn × W q → Nn is a fiber bundle, fiber W q × Ω. For example,
Rk ⊂ J1(Nn, W q) → Nn corresponds to the open set Ωk above; in particular
Rn ⊂ J1(Nn, W q) → Nn is the immersion relation. Rfree ⊂ J2(Nn, W q) → Nn

is the free map relation corresponding to Ωfree. In this context one is interested in
Cr-maps f : Nn → W q whose r-jet extension jrf : Nn → Jr(Nn, W q), locally of
the form jrf(x) = (x, f(x), ∂αf(x))1≤|α|≤r , satisfies jrf(x) ∈ R for all x ∈ Nn;
i.e., the map f solves the relation R.

Somewhat more generally, one considers a smooth fiber bundle p : X → Nn,
fiber a manifold W q. Thus locally near each point of the base manifold Nn, the
map p is smoothly equivalent to a product bundle, fiber W q. An example is the
cotangent bundle T ∗(Nn) → Nn, fiber Rn, whose sections are the differential
1-forms on Nn. There is an associated r-jet space bundle pr : X(r) → Nn whose
points are r-jet extensions of local sections of the bundle X → Nn. Since local
sections of the bundle are maps to the fiber W q, then over a chart U ⊂ Nn, a
point w ∈ X(r) is of the form w = jrf(x) where f ∈ Cr(U, W q), x ∈ U . X(r) is a
smooth manifold whose charts are of the form Jr(U, V ), where U ⊂ Rn, V ⊂ Rq

are open. In the special case of the product bundle, X = Nn × W q → Nn; then
X(r) = Jr(Nn, W q). Associated to an open set Ω ⊂ Jr

0,0(R
n,Rq) that is invariant

under local changes of coordinates there is a subfiber bundle pr : R = R(Ω) → Nn,
fiber W q × Ω.

Following Gromov ([20]), an rth order (partial) differential relation is a subspace
R of an rth order jet space X(r). For example, the system (1) of P.D.E.s defines
a closed differential relation R = F−1(0) ⊂ Jr(U,Rq). A formal solution to a
differential relation R consists of a continuous section of the jet space bundle pr :
X(r) → Nn with values in the differential relation R: a continuous map g : Nn →
X(r) that is locally of the form g(x) = (x, f(x), pα(x))1≤|α|≤r ∈ R, where f ∈
C0(U, W q), U ⊂ Nn, is a chart. In general the jet space variables of a formal
solution are far from being the partial derivatives of a function; i.e., we do not
assume pα(x) = ∂αf(x) for all |α| ≤ r. In particular, a formal solution to the
immersion relation consists of a section g : Nn → Rn ⊂ J1(Nn, W q), locally of the
form g(x) = (x, f(x), pi(x))1≤i≤n, such that the corresponding vectors pi(x) ∈ Rq,
1 ≤ i ≤ n, are linearly independent. The existence of a formal solution to an
open differential relation is a trivial matter locally, while global existence often
can be settled by the methods of algebraic topology. The existence of a formal
solution to a differential relation is therefore a weak necessary topological condition
for solving a differential relation, since in general a formal solution satisfies no
integrability conditions on the jet space variables that correspond to higher order
partial derivatives.

A formal solution g : Nn → R is holonomic if g is a global r-jet extension :
g = jrf for a Cr-section f : Nn → X ; locally near each x ∈ Nn, pα(x) = ∂αf(x),
for all |α| ≤ r. Thus a holonomic solution is indeed a solution to the given differen-
tial relation R. For example, a holonomic solution to the free map relation is a 2-jet
extension j2f : Nn → Rfree ⊂ J2(Nn, W q), for some C2-map f : Nn → W q. Thus
locally at each point x ∈ Nn, the derivatives ∂f

∂xi
(x), ∂2f

∂xj∂xk
(x), 1 ≤ i, j, k ≤ n, are
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linearly independent vectors in Rq. Following Gromov, a differential relation sat-
isfies the h-principle (homotopy principle, coined by Gromov ([20]) if every formal
solution is homotopic through formal solutions to a holonomic solution. There is
also a parametric h-principle in case of parametrized families of formal solutions.
All of the classical problems and results in immersion-theoretic topology developed
by Smale and later researchers can be reformulated in terms of solutions to the
h-principle and also to the parametric h-principle in various jet bundle contexts.
The surprising discovery of all this research is that the existence of a formal solu-
tion, a seemingly weak topological condition involving no integrability conditions,
is in fact sufficient for the existence of holonomic solutions in the very broad con-
texts in which the h-principle was proved to hold. This unexpected insight of
immersion-theoretic topology constitutes one of its major achievements.

Around the time of Smale’s classification of immersions of spheres in Euclidean
space, it was clear to René Thom in France that Smale’s work should be recast
in terms of jet spaces. Indeed, Thom had worked on the theory of singularities
of maps for several years, in which the language of jet spaces was natural. Thom
([57]) was the first to propose a general jet space formulation of the problems to
be studied in immersion-theoretic topology. Interestingly, Thom states his classi-
fication results in terms of certain homology equivalences rather than in terms of
weak homotopy equivalences that were employed in the immersion case by Smale
([52]) and in other special cases discussed above by later researchers. However,
Thom was unable to prove significant results (cf. Smale’s review in MR22:12537)
because, with hindsight, he did not have available to him the relevant geometrical
tools. These geometrical and analytical tools, in the jet space context, would be-
gin to appear a decade later in the work of Gromov and Eliashberg at Leningrad.
However the jet space formulation of problems in immersion-theoretic topology gen-
erally was not employed by topologists in the U.S. who were working in this area.
To these topologists the jet space formulation seemed unnecessary and it obscured
the tangent bundle formulation which seemed more natural. Thus it was primarily
the European school of topologists, including Thom, Poénaru, and Haefliger, who
were receptive to the importance of jet spaces for studying general problems in
immersion-theoretic topology. This would prove to be important for the develop-
ments that would soon take place in Rokhlin’s seminar in Leningrad.

4. The Leningrad school

As a graduate student under the direction of V. Rokhlin, Misha Gromov un-
dertook to reexamine the foundations of Smale’s immersion theory and the related
papers by Phillips ([42]) and others on this topic, in order to formulate an in-
dependent view of the whole subject. In a first paper, Gromov ([15]) considers
smooth maps f of a manifold Mm, equipped with a foliation F (cf. §5 for folia-
tions), to a manifold Nn equipped with a subbundle ξ, such that on each leaf L
of F , the tangent map df : T (L) → T (Nn)/ξ is injective on each fiber. In case
dimF < codim ξ = n−dim ξ, Gromov proves an appropriate weak homotopy equiv-
alence result, which recovers as a special case the Smale-Hirsch theory of immersions
of manifolds, for which F = T (M), ξ = 0, and n ≥ m + 1. There soon followed
Gromov’s thesis ([16]), the striking feature of which is Gromov’s reformulation of
the entire subject in the language of sheaves, with applications to the context of jet
spaces. As explained above, this application to jet spaces was closer to the point

http://www.ams.org/mathscinet-getitem?mr=22:12537
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of view of the French school, especially the work of R. Thom, rather than the U.S.
school of topology. Gromov told me that he had learned about jet spaces from
R. Palais ([41], Ch. IV), a book about the Atiyah-Singer index theorem. The key
advance made by Gromov’s thesis ([16]) was to prove a universal version of Smale’s
CHT in a very general sheaf-theoretic setting that applied, in a special case, to
the context of suitable open differential relations R ⊂ X(r) in jet space bundles
such that pr : R → Nn is a subfiber bundle, where Nn is an open manifold. In
particular the theory in [16] applies to subbundles pr : R = R(Ω) → Nn associated
to an open subset Ω ⊂ Jr

0,0(R
n,Rq) as discussed above. For suitable choices of Ω

one obtains the immersion relation, the submersion relation, the exact symplectic
form relation, and many other classical relations. Gromov also requires an addi-
tional “naturality” condition, satisfied in all examples of interest, that allows one to
lift diffeomorphisms of the base manifold Nn to fiber preserving diffeomorphisms
of the fiber bundle X → Nn, and hence to fiber preserving diffeomorphisms of
the jet bundle pr : X(r) → Nn. The relation R ⊂ X(r) is natural if these lifted
diffeomorphisms leave R invariant. These lifts are employed primarily to ensure
that the required twisting constructions in Gromov’s universal CHT, analogous to
those used by Smale in the immersion case, leave invariant these open differential
relations R. With these innovations, he followed the Smale program in terms of
towers of bundles to prove homotopy classification theorems. In somewhat more
technical terms, Gromov proved the following. Let i : H → F be the inclusion
map of the space of holonomic solutions into the space of formal solutions, in the
compact-open topology, with respect to a given partial differential relation R. If
pr : R → Nn is a subfiber bundle where the base manifold Nn is open and the
differential relation R ⊂ X(r) is both open and satisfies the above naturality con-
dition, then Gromov ([16]) proves that the inclusion map i is a weak homotopy
equivalence. The h-principle follows from the bijection i∗ : π0(H) → π0(F). The
parametrized h-principle follows from the vanishing of the relative homotopy groups
πi(F ,H) = 0, for all i ≥ 1. Gromov ([16]) recovered as special cases most of the
results that had been obtained to date and much more, including existence on open
manifolds of exact symplectic forms, contact structures, foliations, and the some-
what surprising result that on an open manifold there exists a Riemannian metric
(not complete in general) for which the sectional curvature is always > 0 (or al-
ways < 0). These curvature results due to Gromov were refined analytically much
later by Lohkamp ([38], [39]), who proved that every manifold (compact or not)
Mn, n ≥ 3, admits a complete Riemannian metric with negative Ricci curvature.
Furthermore the differential relation r(g) < α, α ∈ R (Ricci curvature < α), on
the 2-jet bundle of germs of metrics on Mn satisfies the h-principle.

Gromov’s thesis ([16]) provides an explicit analytic algorithm for proving his uni-
versal sheaf-theoretic CHT, based on his beautiful and surprisingly simple picture of
the whole process of the CHT. Although his picture was not published, it has been
communicated informally in topological circles ever since (3 decades!). Gromov’s
universal CHT incorporates the relevant geometrical features of the CHT proved in
the immersion case by Smale ([52]) and in the submersion case by Phillips ([42]).
Gromov’s thesis was brought to the West by Tony Phillips, who met with Gromov
in Leningrad around 1970. The essentials of Gromov’s thesis were published in the
West as a set of expository notes by Haefliger ([26]), and also Poénaru ([50]), who
provided some pictorial details. An interesting refinement to Gromov’s CHT was
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proved by Phillips ([45]), who classifies maps f : V n → W q of constant rank k,
where V n is an open manifold that admits a proper Morse function with no critical
points of index > k. This result does not follow from Gromov ([16]), since the
differential relation that corresponds to maps of constant rank is a closed condi-
tion, not an open condition as required in Gromov ([16]). For this purpose Phillips
proves a “weak micro-covering homotopy lemma” that generalizes Gromov’s CHT
in the special case of maps of constant rank (independently, using different methods,
Gromov ([18]) proved a similar result for maps of constant rank).

We comment here on the historical evolution towards employing open base man-
ifolds Nn in Gromov ([16]). Note that an immersion of S1 into R2 extends in the
normal directions to an immersion (= submersion) of an open annulus S1 × (−ε, ε)
into R2. Conversely, a submersion of the annulus S1 × (−1, 1) into R2 restricts
to an immersion of S1 = S1 × {0} into R2. More generally, it was pointed out in
Phillips ([42]) that the Hirsch ([27]) classification of immersions of Nn into W q,
q ≥ n + 1, can be recovered from Phillips ([42]) applied to the submersions of an
open q-dimensional manifold U q into W q, where U q is a neighbourhood of Nn in a
suitable normal (q−n)-bundle over Nn. Secondly, employing elementary topologi-
cal arguments, an open manifold Nn is diffeomorphic to a small neighbourhood of
a subcomplex K of Nn, dimK ≤ n − 1 (called a spine of the open manifold Nn),
in a suitable triangulation of Nn. In particular, each simplex of K has a normal
bundle of dimension ≥ 1 in Nn. Thus if Nn = S1 × (−1, 1), let K = S1 × {0}.
Poénaru ([47]) and Hirsch ([27]) took advantage of these normal directions to sim-
plices in K to prove some refinements to immersion theory in the case of open
manifolds. For example these authors prove that an open manifold Nn can be
immersed in Rn if T (Nn) is a trivial n-plane bundle. Phillips ([42]) uses a similar
idea, but he replaces triangulations with suitable handlebody decompositions of an
open manifold Nn that have handles only of dimension ≤ n − 1. Thus if Nn is
open, it is sufficient to prove the appropriate CHT in a small neighbourhood of
K. In particular, the suitable twistings required by the CHT can take place in
the normal directions to these simplices of dimension ≤ n − 1 in K and hence are
internal constructions in Nn, not ambient constructions in W q. These ideas were
incorporated in Gromov ([16]), whose proof of a universal CHT employs suitable
twistings within the open base manifold Nn in normal directions to simplices in a
spine K. By contrast, if Nn is closed (compact without boundary), then a lower-
dimensional spine K ⊂ Nn does not exist. Hence the CHT will apply over simplices
(or handles) of dimension ≤ n− 1, but, for lack of normal directions, will generally
not apply over the top-dimensional n-simplices (or n-handles) of Nn, which in turn
traces back to the failure of Smale’s CHT in the equidimensional case q = n (cf.
§2). Thus open manifolds are natural domains for covering homotopy proofs of the
h-principle. Nevertheless if Nn is closed, then the h-principle is provable for open
relations R that admit “microextensions”, i.e., that extend locally to suitable open
relations over Nn×Rm, for some m ≥ 1 (thereby obtaining extra normal directions
to apply an adapted CHT). Cf. Gromov ([20], §2.2.4) for the general theory with
applications (including Feit’s k-mersion theory for closed manifolds), introduced as
“micro-majorization” in Gromov ([17], §6.1.7; §6.2.6); also du Plessis ([46]).

The Leningrad school of immersion-theoretic topology gave rise to three general
methods for solving differential relations in jet spaces: (i) the covering homotopy
method discussed above in Gromov’s thesis, also known as the method of continuous
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sheaves; (ii) the method of removal of singularities due to Gromov and Eliashberg
([21]), which was their first collaborative work; (iii) the method of convex inte-
gration due to Gromov ([19]). These general methods are not linearly related in
the sense that successive methods subsumed the previous methods. Each method
had its own distinct foundation, based on an independent geometrical or analyti-
cal insight. Consequently each method has a range of applications to problems in
topology that are best suited to its particular insight. For example, the method
of removal of singularities uniquely applies also to the complex analytic and alge-
braic setting; cf. Gromov and Eliashberg ([22], [23]). Convex integration theory,
discussed below, applies to solve closed differential relations in jet spaces, including
certain general classes of underdetermined non-linear systems of partial differential
equations. On the other hand many classical results in immersion-theoretic topol-
ogy, such as the classifications of immersions, are provable by all three methods.
The book Adachi ([1]) provides an exposition of Gromov ([16], [19]).

Another important contribution to immersion-theoretic topology from the Lenin-
grad school at that time was the thesis of Yasha Eliashberg ([7]) on the surgery
of singularities of maps. Eliashberg was well-acquainted with the main results and
methods of immersion-theoretic topology from the West and also with Gromov’s
recent innovations. Eliashberg turned his attention to simplifying the singularities
(the locus of points where the rank is not maximal) of maps f : Nn → W q, n ≥ q,
Nn compact, as much as homotopy theory would allow. For example a smooth
map f : Nn → Rq, n ≥ q, where Nn is compact without boundary, must have
singularities. Indeed, if f had maximal rank (= q) at each point, then, by the
implicit function theorem, the image of f is an open set in Rq, which is impossible
since Nn is compact. Thus in cases where singularities cannot be avoided, the
problem was to determine the simplest forms of these singularities, up to a pointwise
small perturbation. For this task, the jet space formulation was essential, and the
results of the French school of singularity theory, which in turn was inspired by
the fundamental results of H. Whitney ([63]) on generic singularities of mappings
into the plane, played an important role. Eliashberg ([6] in the case n = q), ([7]
in the case n ≥ q ≥ 2) proved that, subject to mild bundle hypotheses, up to
pointwise small perturbations, one could arrange that maps had only the simplest
of singularities: fold singularities that occurred along prescribed submanifolds in
Nn. Explicitly, a smooth map f : Nn → W q, n ≥ q, has a fold singularity of index
s at x ∈ Nn if near x the map f is equivalent to the map

π : Rn = Rq−1 × Rn−q+1 → Rq = Rq−1 × R,

given by the formula

(y, x1, . . . , xn−q+1) �→
(

y,−
s∑
1

x2
i +

n−q+1∑
s+1

x2
j

)
,

where y ∈ Rq−1. In case q = 1 the y-term disappears and we recover the classical
quadratic Morse singularities of index s at the origin in Rn. In this model the
singularities of π occur along the submanifold Rq−1 ≡ Rq−1 × {0} ⊂ Rn, at which
points the map π has rank q − 1 and has quadratic Morse singularities in the
normal directions {y} × Rn−q+1, y ∈ Rq−1. Subject to mild bundle hypotheses
Eliashberg ([7]) proved that up to a C0-small perturbation, i.e., a pointwise small
perturbation, one may assume that the map f is a submersion (maximal rank = q)
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on Nn \ ⋃k
1 Vi, where Vi is a prescribed (q − 1)-submanifold of Nn, q ≥ 2, and

such that along each Vi the map f locally has the form of a fold singularity as
above, 1 ≤ i ≤ k. Previous results of this type, in particular eliminating cusp
singularities, were obtained by Levine ([37]) in the special case q = 2. These
results on the topological simplification of singularities were in marked contrast to
the results on generic singularities obtained by Thom and by the Arnold school of
singularity theory in Moscow. Thus Arnold was interested in determining the form
of generic singularities in different contexts, up to C∞-small perturbations, which
led to his intricate local classifications of singularities. Eliashberg showed that if
you relax the perturbations to be only C0-small, then fold singularities are sufficient
for topological purposes. These results formed the basis of his more recent work, in
collaboration with Kolya Mishachev, that simplifies singularities of parametrized
families of maps to have only fold and cusp singularities of prescribed type, called
wrinkled singularities; cf. Eliashberg and Mishachev ([8], [9]); also Spring ([55]).

We conclude our survey of the contributions to immersion-theoretic topology
from the Leningrad school with the article Gromov ([19]) on convex integration
theory. Gromov’s thesis ([16]) had clarified, in a general sheaf-theoretic formulation,
the Smale CHT and its role in immersion-theoretic topology. Gromov now began
thinking about how to exploit the geometrical and algebraic structure of jet spaces
themselves, from a topological point of view, in order to formulate constructions in
a jet space context that would lead to a proof of the h-principle. In this respect he
was moving into uncharted territory and he was way ahead of his time. Although
his 1973 paper dealt only with the h-principle in the case of differential relations in
the space of 1-jets, it was clear that Gromov had further applications in mind in the
general context of spaces of r-jets for all r ≥ 1. There were several striking features
of his 1973 paper. First, he introduced a new analytical approximation lemma (the
one-dimensional lemma) which replaced the use of Smale’s CHT. Thus Gromov had
discovered a new proof procedure for proving the h-principle that circumvented both
Smale’s CHT and also the tower of bundles approach initiated by Smale that was
based on the CHT. Furthermore this proof procedure worked whether or not the
base manifold was compact or was an open manifold, the latter being a necessary
hypothesis in his thesis. Second, the method of convex integration applied for the
first time to solve certain classes of closed differential relations in jet spaces. In
particular, Gromov introduced a convergence procedure that solved certain classes
of non-linear systems of P.D.E.s that satisfied some mild local convexity properties.
The solution of the h-principle for general closed differential relations in jet spaces
had long remained an unsolved puzzle. Hence Gromov ([19]) was a major advance
in immersion-theoretic topology with respect to the solution of closed differential
relations.

The basic content of Gromov’s one-dimensional lemma is as follows. Let A ⊂ Rq

be open and connected, and let f ∈ C1([0, 1],Rq), q ≥ 2, such that for all t ∈ [0, 1],
f ′(t) ∈ Conv(A), the convex hull of A in Rq. Let also ε > 0. There exists g ∈
C1([0, 1],Rq) such that for all t ∈ [0, 1]: (i) |g(t)−f(t)| ≤ ε; (ii) g′(t) ∈ A. Thus the
map f whose derivative f ′ has values in Conv(A) is replaced by a C0-approximation
g whose derivatives g′(t), t ∈ [0, 1], take their values in A. In general A could be
a thin open set with a large convex hull. For applications of immersion-theoretic
topology to rth order jet spaces there is also a Cr-version of the one-dimensional
lemma for all r ≥ 1. Let f ∈ Cr(In,Rq), In = [0, 1]n, such that, with respect to
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coordinates x = (u1, . . . , un−1, un = t) ∈ Rn, ∂rf
∂tr (x) ∈ Conv(A) for all x ∈ In.

Let ε > 0. There exists g ∈ Cr(In,Rq) such that for all x ∈ In: (i) ∂rg
∂tr (x) ∈ A;

(ii) |∂α(f − g)(x)| ≤ ε for all derivatives ∂α such that |α| ≤ r and ∂α 	= ∂r/∂tr.
In particular g is a Cr−1-small approximation to f . These Cr−1-approximation
results for r ≥ 2 were a vast improvement over the Smale theory, as developed in
Gromov’s thesis ([16]), which was only a C0-approximation theory in general, even
in the context of differential relations in rth order jet spaces, r > 1. To illustrate,
let f : Nn → W q be an immersion whose 1-jet extension j1f : Nn → J1(Nn, W q)
can itself be extended to a formal solution of the free map relation. Thus there
is a formal solution g : Nn → Rfree ⊂ J2(Nn, W q) such that locally at each
x = (x1, . . . , xn) ∈ Nn,

g(x) = (j1f(x), pjk(x)) = (x, f(x), ∂xif(x), pjk(x)) ∈ Rfree, 1 ≤ i, j, k ≤ n,

where the vectors ∂xif(x), pjk(x) ∈ Rq, 1 ≤ i, j, k ≤ n, are linearly independent.
In the extra dimensional case q > n + n(n + 1)/2, convex integration theory proves
a C1-dense h-principle: the formal solution g is homotopic through formal solu-
tions of Rfree to a holonomic solution j2h : Nn → Rfree such that in addition the
immersions f, h are C1-close. This C1-approximation result is beyond the scope of
the CHT method of Gromov ([16]) but does overlap with results proved earlier by
the method of removal of singularities in Gromov and Eliashberg ([21]). Strictly
speaking Gromov’s approximation lemma, in the context of Cr-functions for all
r ≥ 1, was published much later in his tome on the whole of immersion-theoretic
topology up to that point, Gromov ([20]). In addition Gromov ([19]) states that he
can reprove the Nash C1-isometric immersion theorem by the methods of convex
integration. Indeed, according to Gromov, the Nash twisting process in normal di-
rections (which serves locally to stretch successive first order partial derivatives) is a
kind of one-dimensional lemma. In this sense the Nash paper ([40]) is an important
precursor to convex integration theory.

The results of convex integration theory included many of the results of his
thesis, and also many new results, especially results on the h-principle applied to
embeddings : the perturbations to yield a holonomic solution had to proceed by
isotopies of embeddings rather than through regular homotopies of immersions.
These latter results were explicated only much later in his book Gromov ([20],
§2.4.5(C′)); also Spring ([54], §8.4.4), Eliashberg and Mishachev ([11], §4.4-§4.6).

5. Foliations

One of the more interesting applications of immersion-theoretic topology during
this period was the classification of foliations on open manifolds. A smooth foliation
of dimension p on a manifold Nn, 0 ≤ p ≤ n, consists of a decomposition of Nn

into a disjoint union of connected subsets (Lα)α∈A (known as the “leaves” of the
foliation) such that in local coordinates (x1, x2, . . . , xn) in a suitable smooth chart U
at each point of Nn the intersection of the leaves with U is determined by the “slice”
condition: xj = cj , p + 1 ≤ j ≤ n, where (cp+1, . . . , cn) ∈ Rn−p. Thus in these
coordinates a leaf Lα meets U in a possibly infinite number of parallel p-dimensional
affine subspaces (cf. Lawson ([34]) for a fuller discussion with examples). Thus a
product manifold P p × Qq determines a foliation of dimension p whose leaves are
the slices P p × {x}, x ∈ Qq. Note that the family of tangent p-planes to all of
the leaves Lα defines an integrable p-dimensional subbundle of T (Nn). The basic
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problem studied was the following form of the h-principle. Let E ⊂ T (Nn) be a
p-dimensional subbundle: a family of tangent p-planes {Ex ⊂ Tx(Nn) | x ∈ Nn}
that depends continuously on x ∈ Nn. The h-principle requires the existence of a
homotopy of p-dimensional subbundles of T (Nn) that connects E to an integrable
p-dimensional subbundle, i.e., to a foliation of Nn. In case Nn is an open manifold,
the immersion-theoretic techniques introduced by Gromov ([16]), Phillips ([43], [44])
solved this h-principle in important special cases, with a comprehensive formulation
provided by Haefliger ([25]). Employing more refined geometrical techniques, the
h-principle for foliations on closed manifolds was solved by Thurston ([58]) for
codimensions > 1 and Thurston ([59]) for codimension 1 foliations. In particular,
(n− 1)-dimensional foliations exist on a closed n-dimensional manifold if the Euler
characteristic is zero. Thurston is a co-recipient of the Fields Medal in 1982, for
which his work above on foliations is included in the citation.

6. Postscript

Throughout the history of immersion-theoretical topology there has been a con-
stant struggle to clarify the geometrical constructions that enable one to prove
the h-principle in increasingly general contexts, with the widest possible scope of
applications to topology and geometry. The original Smale CHT was clarified in
Gromov’s thesis ([16]). The general exposition of immersion-theoretic topology,
Gromov ([20], Chs. 2.2, 2.4), further refines and generalizes the covering homo-
topy methods of Gromov ([16]) and also the convex integration theory in Gromov
([19]). More recently Eliashberg and Mishachev ([10]), ([11]) have proved a holo-
nomic approximation theorem that captures the main ingredients of some previous
geometrical constructions and that appears to put the main geometrical ideas ini-
tiated by Smale ([52]), later generalized by Gromov ([16]) and also Gromov ([20],
Ch. 2.2), into a definitive form. In other directions, Bierstone ([2]) proved an equi-
variant version of the main jet space results in Gromov’s thesis ([16]), with re-
cent improvements by Datta and Mukherjee ([4]). Ralph Cohen ([3]) proved the
long-standing conjecture that every n-dimensional manifold can be immersed in
R2n−α(n), where α(n) is the number of ones in the binary expansion of n (this
upper bound is best possible). Employing spectral sequence techniques Vassiliev
([60], Ch. III) proved that if Mm is a closed manifold, then the inclusion of the
space of holonomic solutions i : H → F induces a cohomology ring isomorphism
in the case of open differential relations R = Jk(Mm,Rn) \ Σ, where the “singu-
larity set” Σ ⊂ Jk(Mm,Rn) is an invariantly defined, semialgebraic, closed subset
of codimension ≥ m + 2. In the case of manifolds that have additional structure,
e.g. symplectic or contact structure, the h-principle can be proved for immersions
and embeddings that preserve that structure up to homotopy; cf. Gromov ([20],
§3.4), Eliashberg and Mishachev ([11], Ch. 12). From this perspective, one can
appreciate the long and fruitful history of immersion-theoretic topology initiated
by Steve Smale over 40 years ago.
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