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ABSTRACT. We define matrix representations of Artin groups over a 2-variable

Laurent-polynomial ring and show that in the rank 2 case, the representations

are faithful. In the special case of Artin's braid group, our representation is a

version of the Burau representation and our faithfulness theorem is a general-

ization of the well-known fact that the Burau representation of B¡ is faithful.

In [4], Brieskorn and Saito coined the phrase "Artin groups" to denote a certain

class of groups, defined by generators and relations, which stand in relationship to

arbitrary Coxeter groups much as Artin's braid group Bn [1] stands in relationship

to the symmetric group Sn. One of the nice features of Coxeter groups is that they

have "standard" representations [6] as groups of matrices over the real numbers

preserving a suitably defined bilinear form and that, moreover, these representations

are faithful (see [3]). Our purpose here is to show the existence of analogous matrix

representations of Artin groups over Laurent-polynomial rings preserving similarly

defined sequilinear forms. Unfortunately, except in the simplest cases, the question

of faithfulness of these Artin group representations remains open.

In §1, we define Artin groups G m (by representation), a Hermitian form J, and

unitary reflections for each given generator of G m ', these are defined using a given

Coxeter matrix M. In §2, we show that the reflections associated to generators

of G m define a matrix representation of G m (Theorem 1) and that when the pre-

sentation of G m involves 2 generators, this representation is faithful (Theorem 2).

We note that in the special case of the braid groups our representation is a version

of the Burau representation ([5] or see [2]). The results below are first, a general-

ization to arbitrary Artin groups of the author's observation [10] that the Burau

representation of Bn is unitary and second, a generalization to arbitrary rank 2

Artin groups of the well-known fact (see [9 or 2] ) that the Burau representation of

B3 is faithful.

1. Definitions. Let n be a positive integer. A (rank n) Coxeter matrix M

will be an n x n symmetric matrix M = [m(i,j)\ each of whose entries m(i,j) is a

positive integer or oo such that m(i,j) = 1 if and only if i = j. Out of a Coxeter

matrix M, we shall build some presentations and some forms.

To define the presentations, let X = {ii,..., xn} be a finite set. For m a positive

integer, define the symbol (xy)m by the formula

,x \m = Í (xv)k      Hrn = 2k,

^Xy)      ' \ (xy)kx    ifm = 2k+l.
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Let M be an n x n Coxeter matrix. G m will denote the abstract group defined

by generators X = {xi,... ,xn} and relations all (xiXj)m^1'3^ = {xjXi)m^1'^ for

1 < ¿ < y < n. Throughout, the case m(i,j) = oo will stand for "no relation". G m

is the Artin group determined by M. Wm will denote Gm modulo the addition

relations all x\ = 1. Note that in the presence of the relations x2 = 1, the defining

relations of Gm take the form (xíXj)"1^1'^ = 1. Wm is called the Coxeter group

determined by M. For the basic properties of Coxeter groups, see [3 or 6]. For a

study of Artin groups and their relationship to Coxeter groups, see [4].

We define a symmetric bilinear form Jx associated to Wm and a Hermitian form

J associated to Gm- To motivate the definitions of J, we begin by recalling the

(well-known- see [3]) definition of Ji = Ji(M): Jj is the nxn matrix [cl3] where

Cij = —2 cos(tt/m(i,j)). Here, we adopt the convention that 7r/oo = 0 so that if

m(i,j) = oo then c%3 = —2. Note that each clt = 2. Let V denote an n-dimensional

vector space over R with basis {ei,... ,e„}. Identify each v eV with the column

vector consisting of the coordinates of v with respect to the basis {ei,..., e„} of V.

With this convention, if v G V, let v' denote the transpose of v and, for u,v eV,

define {u,v)i = u'Jiv. Thus, Ji defines a symmetric bilinear form on V. We use

Ji to define a matrix representation pi of Wm on V: if v G V and x¿ G X define

(pi(xí))(v) =v - (e¿,v)ie¿.

It is well known (again see [3]) that pi is a faithful linear representation of Wm-

To define J, let A denote the Laurent-polynomial ring R[s,s-1,t,i_1], where s

and t are indeterminates over R. Define J = J(M) to be the nxn matrix [o,j]

over A, where

-2scos(7r/m(z,j')),    i < j,

1 + st, i = j,

- 2tcos(n/m(i,j)),     i > j.

Note that Jt may be obtained from J by substituting s = t = 1.

To define analogues of the representation pi of Wm defined above, we introduce

an analogue of complex conjugation in the Laurent-polynomial ring A: if x e R

then, as usual, x = x; also, s = s-1 and t = t~1, extended to A additively and

multiplicatively. Note that if complex numbers of norm 1 are substituted for s and

t then we recover ordinary complex conjugation.

We extend the definition of conjugation to matrices entrywise and, if A is a

matrix over A, we define A* = A . For example, note that J* = s~1t~1J.

Let V denote a free A-module with basis {ei,...,e„} and, as above, identify

each v e V with its column vector of coordinates. If u, v G V define (u, v) = u*Jv.

Finally, we define p: if v G V and xx G X define

(p(Xi))(v) = v - (ei,v)ei.

We shall see below that p provides a matrix representation of the Artin group Gm-

Note that (p(xt))(v — s~1t~1 (et,v)et) = v. It follows that each p(xt) acts invert-

ibly on V.  In fact, each p(xi) is a pseudo-reflection in the sense of [3].  Also, for

each Xi G X and each u,v eV. we have

(p(Xi)(u),p(xi)(v)) = (u,v).

Combining this observation with Theorem 1 below, we conclude that p is a repre-

sentation of G m in a group of unitary matrices.
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2. Theorems. In this section, we show that the function p defined (on gener-

ators) above extends to a representation of the Artin groups G m and that when

n = 2, this representation is faithful. (The second result includes the fact that the

Burau representation of B3 is faithful—see [9 or 2].)

To prove that p defines a representation of G m , we need to show that p respects

the defining relations of Gm- An important observation is the following

Lemma, det J / 0.

PROOF. In det J, the coefficients of (st)n is 1, so det J ^ 0.        G

In particular, (—, —) is nondegenerate: if u G V satisfies (u, v) — 0 for all v eV,

then u = 0.

At this point, it is convenient to introduce the field-of-quotients F of A. F is a

rational function field over R. Extend the definition of conjugation to F. Letting

Vp denote the F- vector space V ®\ F, extend (—, — ) to Vf and also view pasa

linear transformation on Vp. Note that since (—, —) is nondegenerate, if tt G Vf

satisfies u / 0, then u1- — {v G Vf|(u, v) = 0} is an (n— l)-dimensional subspace of

Vf- Also note that p(e¿) is the identity on ef. Given i,j satisfying 1 < i < j < n,

let Vij denote the subspace of Vf spanned by e¿ and e3, and let VA = ef C\ej-. We

need the following

Lemma. Vi}-nvA = {0}.

PROOF. Let v = ü¿e¿ + v3e3 e Vtj where V{,Vj G A. If v G Vtf, then (e¿, v) =

(e3,v) = 0 which leads to the following system of linear equations:

Vi(\ + st) — 2vjScos(ir/m) = 0,

-2vtt cos(tt / m) + v3(l + st) = 0,

where m denotes m(i,j). Since the determinant of the coefficient matrix is ^ 0 in

A, the only solution is u¿ = v3 = 0, so v = 0, as required.        D

Noting that the defining relations of G m each involve exactly two generators, in

order to show that p respects the defining relations of Gm, it suffices to show that

each (xiX3)m^'3^ = (x?z,)m^'-7' holds under p on the subspace V? of Vf-

Let a denote the matrix of Xi and b the matrix of x3 with respect to the basis

ei,e3 of Vij. Writing m for m(i,j), it follows that

_ /'-st    2scos(7r/m)\ ._/ 1 0   \

a~\0 1 /'        °~\2tcos(ir/m)    -st J '

Thus it suffices to prove

LEMMA.   The matrices a and b above satisfy (ab)m = {ba)m.

PROOF. Adjoin a square root q of st~l to F and let

-(;■ :)■

It is easy to check that R2 = I and b = RaR. It follows that (ab)m = (ba)m if and

only if (aR)m = (Ra)m. Clearly, s~lq(aR) and s~1q(Ra) have determinant 1 and

trace 2 cos(7r/m). It follows that (s~1q(aR))m = (s~1q(Ra))m = —I, as required.

D

Thus we have the following theorem.
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THEOREM 1.   The function p extends to a representation o}Gm in GLn(A).

PROOF. Each relation (x,Xj)m(íj) = (xjXi)™^ holds under p on Vi3 by the

lemma and therefore on all of Vf since Xi and x3 are each the identity on VA.        D

Except in the two-generator case, we do not know if the representation p is

faithful. Here is the proof in the two-generator case. Let A and B, respectively,

denote the matrices obtained by substituting s — 1 and t = — 1 in a and b above.

LEMMA. The matrix group generated by A and B has presentation (AB)m =

(BA)m and

(AB)m = 1        (m even),

(AB)2m = 1        (m odd).

PROOF. View A and B as linear fractional transformations acting on the up-

per half-plane. Using the fact that the matrix AB has determinant 1 and trace

2 cos(?r(l - (2/m))), it follows that AB satisfies (AB)m = (-l)mI. Thus, it suf-

fices to prove that the group of linear fractional transformations generated by A

and B has defining relations (AB)m = (BA)m and (AB)m = 1.

We prove this last fact by exhibiting the group generated by A and Basa

subgroup of finite index in a suitable triangle group. Let Ri,R2 and R% be trans-

formations of the upper half-plane defined by

Ri = reflection in the imaginary axis x = 0,

R2 = reflection in the axis x = cos(w/m),

R3 = reflection in the unit circle.

Then Ri,R2 and R3 generate a (2, m, 00) triangle group with presentation (see [7]):

R1 = R2 = R3 = (R1R3)   = (R2R3)m = 1.

Noting that Ri(z) = —z, R2(z) = —z + 2 cos(ir/m) and Rs(z) — 1/z, it follows

that, as linear fractional transformations, A = R2Ri and B = R¡RiR2R3. It can

be checked that the subgroup of the triangle group generated by A and B is normal

and has index 2 when m is odd and index 4 when m is even. A routine application

of the Reidemeister-Schreier algorithm produces the required presentation of the

group generated by A and B.       O

THEOREM 2. The group of matrices generated by a and b has presentation

(ab)m = (ba)m.

PROOF. By the Lemma, the substitution produces a group with a presentation

consisting of the desired relation together with a further relation c = 1 where

c — (ab)m when m is even and c = (ab)2m when m is odd. In either case, c

is a central element in the group defined by (ab)m = (ba)m. It follows that any

additional relation between a and b must be a nonzero power of c. But any nonzero

power of c has determinant a nonzero power of —st and is therefore not the identity.

Thus the matrix group generated by a and b has presentation {ab)m = (ba)m, as

desired.        D
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3. Remarks. The (reduced) Burau representation of Bn (see [2]) may be

obtained by substituting s = 1 in the representation p of Bn that arises above.

In fact, the representation p itself is equivalent to the Burau representation: it

is possible to conjugate the image of p by a diagonal matrix that, in each p(x¿),

"moves the i's above the diagonal" and "leaves the s's alone". The matrices that

result have the property that their entries depend only on the product st. A

similar conjugation is possible whenever the Coxeter graph Y m of M is a forest

(r^ has vertices X and an edge connecting Xi and x3 provided m(i,j) > 3). In

these cases, the representations p of G m is conjugate to a representation over the

Laurent-polynomial ring R[sí,(sí)_1] Ç A. In the case of Bn, the representation

that results is the Burau representation.

In general, the question of the faithfulness of p remains open. The only known

cases seem to be those that follow easily from Theorem 2: G m is a direct product of

rank 1 or 2 Artin groups (equivalently, F m is a disjoint union of vertices and pairs

of vertices connected by an edge). Much effort has been devoted (unsuccessfully) to

trying to determine whether or not the Burau representation of B4 is faithful. One

other case that might be worth investigating is M defined by each m(i,j) = 00, so

that G m is a free group.
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