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(Communicated by Ralph Cohen)

Abstract. In a Seifert-van Kampen situation a path-connected space Z may
be written as the union of two open path-connected subspaces X and Y along
a common path-connected intersection W . The fundamental group of Z is
isomorphic to the colimit of the diagram of fundamental groups of the three
subspaces. In case the maps of fundamental groups are all injective, the fun-
damental group of Z is a classical free product with amalgamation, and the
integral group ring of the fundamental group of Z is also a free product with
amalgamation in the category of rings. In this case relations among the K-
theories of the group rings have been studied. Here we describe a generalization
and stablization of this algebraic fact, where there are no injectivity hypotheses
on the fundamental groups and where we work in the category of S-algebras.
Some of the methods we use are classical and familiar, but the passage to
S-algebras blends classical and new techniques. Our most important applica-
tion is a description of the algebraic K-theory of the space Z in terms of the
algebraic K-theories of the other three spaces and the algebraic K-theory of
spaces Nil-term.

1. Introduction

Consider a situation

W // //

��

��

X
��

��

Y // // Z

(1.1)

where the space Z is given as the union of two open subsets X and Y with inter-
section W . If all spaces are path-connected and are given the basepoint w ∈ W ,
then the Seifert-van Kampen theorem [6, page 114] states that the diagram of
fundamental groups

π1(W,w) //

��

π1(X,w)

��

π1(Y,w) // π1(Z,w)

(1.2)
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is a pushout diagram, or a generalized free product diagram, in the category of
groups. Since the integral group ring functor is left adjoint to the functor which
assigns to a ring with identity its group of invertible elements, passing to integral
group rings yields another generalized free product diagram in the category of
rings with identity. In case the maps leaving π1(W,w) are injective, all maps in the
diagram are injective and the pushout is called a free product along an amalgamated
subgroup. In [8], for example, the algebraic K-theory of the group rings arising in
the injective situation is carefully studied. Generalizing the algebraic K-theory of
rings, Waldhausen defined the algebraic K-theory of topological spaces in [10] and
[9]. Applying the algebraic K-theory of spaces functor to diagram (1.1) yields a
diagram:

A(W ) //

��

A(X)

��

A(Y ) // A(Z)

It is natural to ask how A(Z) is related to the other algebraic K-theories A(W ),
A(X), A(Y ).

In [1, page 125] one of Waldhausen’s definitions for the algebraic K-theory of a
topological space is reformulated as the algebraicK-theory of a “group ring” formed
in the category of S-algebras. Namely, for a pointed connected simplicial set X , the
algebraic K-theory of X may be defined as A(X) = K(S∧|G(X)|+), the K-theory
of the S-algebra associated to the topological group |G(X)| which is the realization
of the Kan loop group G(X) of X . A definition of the functor S ∧− from pointed
spaces to S-modules will be recalled below in Definition 2.4. Also, according to [1],
the category of S-algebras is cocomplete, so there exists a generalized free product
(S∧|G(X)|+)∗S∧|G(W )|+ (S∧|G(Y )|+), or pushout, associated to the three smaller
spaces in the diagram.

In [7] we began the study of the algebraic K-theory of generalized free products
of S-algebras. If certain cofibration conditions on the S-algebra homomorphisms
S∧|G(W )|+ → S∧|G(X)|+ and S∧|G(W )|+ → S∧|G(Y )|+ are satisfied, then we
can calculate the K-theory of the generalized free product in terms of the K-theory
of the other three rings, plus a Nil-term. Indeed, the results follow the pattern of
results obtained in [8] for the K-theory of group rings. In Theorem 1.1 below we
prove that, if the diagram (1.1) is a pushout diagram of reduced simplicial sets,
then an isomorphism of S-algebras

(S ∧ |G(X)|+) ∗S∧|G(W )|+ (S ∧ |G(Y )|+) −→ S ∧ |G(Z)|+
arises from the associated diagram of S-algebras by means of the universal property
of the generalized free product. We can view this result as a stabilization and glob-
alization of the classical fact recalled above, that a Seifert-van Kampen situation
gives rise to a generalized free product diagram in the category of rings. It is a
stabilization in the sense that the sphere spectrum S replaces the integers as the
ring of coefficients, and it is a globalization in the sense that it involves the higher
homotopy groups of the spaces in the diagram, as well as their fundamental groups.
In particular, interesting examples are obtained by letting X and Y be cones on
W , so that Z is the suspension of W .

Moreover, we also show in Theorem 1.1 that the generalized free product diagram
of S-algebras satisfies cellularity conditions that are stronger than the cofibration
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conditions we actually required in [7] to prove the K-theory decomposition results.
Combining these results with the main result of [7] provides a decomposition the-
orem for the algebraic K-theory of the space Z, stated as Corollary 1.2 below.

The next section comprises the proof of Theorem 1.1. The proofs draw on some
standard simplicial homotopy theory, some standard facts about the category of
S-algebras, and some techniques developed in [7] for working on generalized free
products of S-algebras. Our proof of the algebraic part of the result is essentially
calculational; in turn, these calculations enable us to exhibit the cell structures we
require for the application to K-theory.

In section 3 we extend our first result to cover a more usual pushout diagram

W // //

��

X

��

Y // // Z

(1.3)

of reduced simplicial sets in which only the horizontal arrows are cofibrations. We
obtain in Theorem 3.1 that the diagram of S-algebras arising from this situation
induces a homotopy equivalence of S-algebras

(S ∧ |G(X)|+) ∗S∧|G(W )|+ (S ∧ |G(Y )|+) −→ S ∧ |G(Z)|+.

Using this equivalence we explain how the K-theory fibration sequence of Corollary
1.2 generalizes to the more usual situation in Corollary 3.2. We conclude section 3
by explaining how to apply our results for pushout diagrams of reduced simplicial
sets to pushout diagrams of connected pointed Kan sets and topological spaces.

In the following statement we assume that each simplicial set is reduced, which
means that the set of zero-simplices consists of a single element. In particular, a
reduced simplicial set is connected. This hypothesis is technically convenient and
involves no real loss of generality, as we explain at the end of section 3.

Theorem 1.1. Let

W // //

��

��

X
��

��

Y // // Z

be a pushout diagram of reduced simplicial sets, where all simplicial sets are pointed
by the zero-simplex w of W . Then the associated diagram of S-algebras

S ∧ |G(W )|+ //

��

S ∧ |G(X)|+

��

S ∧ |G(Y )|+ // S ∧ |G(Z)|+

induces an isomorphism

(S ∧ |G(X)|+) ∗S∧|G(W )|+ (S ∧ |G(Y )|+) −→ S ∧ |G(Z)|+(1.4)

from the generalized free product defined in [7] to the S-algebra S ∧ |G(Z)|+.
All the S-algebras in the diagram above are cell S-algebras. Moreover, the S-

algebras S ∧ |G(X)|+ and S ∧ |G(Y )|+ are cell S ∧ |G(W )|+-modules.
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In view of the cellularity properties of the maps to S∧|G(X)|+ and S ∧|G(Y )|+
and the isomorphism (1.4), Theorem 1.1 of ([7]) applies and there is a fibration-up-
to-homotopy

K(MVwf , v)→
K(S ∧ |G(W )|+)×K(S ∧ |G(X)|+)×K(S ∧ |G(Y )|+)→ K(S ∧ |G(Z)|+)

where the fiber is the K-theory of the category of split Mayer-Vietoris presenta-
tions of finite cell modules associated to the generalized free product diagram of
S-algebras given in the theorem. If we make the appropriate substitutions, then
we obtain the following corollary.

Corollary 1.2. Given a diagram (1.1) there is a fibration-up-to-homotopy

K(MVwf , v) −→ A(W )×A(X)×A(Y ) −→ A(Z).

2. Main results

In this section we describe the passage from a pushout diagram (1.1) of reduced
simplicial sets to a pushout diagram of simplicial groups and on to a pushout dia-
gram of S-algebras. Not only are we interested in the preservation of the pushout
property at each step, but we also need to know that the end result of all the
constructions has the “correct” homotopy type. One way to ensure this is to see
that the final diagram possesses certain cofibrancy properties. For the passage from
reduced simplicial sets to simplicial groups, the verifications are very easy. We ob-
tain the preservation of the pushout diagram by appealing to the fact that the loop
group functor on reduced simplicial sets is a left adjoint, and we obtain cofibration
conditions of the type we need for the second step by examining the definition of
the loop group functor. For the passage from simplicial groups to S-algebras, the
verifications are more difficult. We choose to handle both verifications by analysing
the composite functor that takes us from simplicial groups to S-algebras. Thus, we
obtain computational proofs that this step preserves pushouts and that the cofibra-
tion conditions on the diagram of S-algebras needed to apply the K-theory results
of [7] are indeed satisfied.

Lemma 2.1. Given a pushout diagram (1.1) of reduced simplicial sets and cofibra-
tions, the diagram

G(W ) // //

��

��

G(X)
��

��

G(Y ) // // G(Z)

(2.1)

is a pushout diagram of simplicial groups. Moreover, in each dimension n all the
homomorphisms are injective, and GnX → GnZ and GnY → GnZ induce an
isomorphism

Gn(X) ∗Gn(W ) Gn(Y ) −→ Gn(Z)

from the free product of Gn(X) and Gn(Y ) amalgamated over Gn(W ) to Gn(Z).
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Proof. For a reduced simplicial set X the definition of the loop group G(X) is found
in [3, page 291]. Moreover, it is proved in [4, Proposition 10.5, page 49] that the
functor G from reduced simplicial sets to simplicial groups is a left adjoint. Since
functors which are left adjoints preserve colimits, the fact that the diagram of sim-
plicial groups is a pushout diagram of simplicial groups is just a specialization of
the fact that a functor which is a left adjoint preserves colimits. Since a cofibra-
tion of simplicial sets is an injection, the injectivity of the homomorphisms follows
from the definition of the loop group. The last statement is the dimensionwise
interpretation of the fact that the diagram of simplicial groups is a pushout.

Remark 2.2. The result is also stated as Theorem 20.1 of [3] with a computational
proof.

Now we need a familiar result [5, Theorem 4.4, page 201] about the free product
of two groups amalgamated along a common subgroup.

Theorem 2.3. Fix a dimension n, and suppose that specific right coset representa-
tive systems UX and UY for Gn(W ) in Gn(X) and Gn(Y ), respectively, have been
chosen. For example, each right coset Gn(W )x ∈ Gn(X)/Gn(W ) −Gn(W ) is as-
signed a unique representative x′ ∈ Gn(W )x, and UX is the set of all representatives
x′. Then to each element z of the generalized free product Gn(X)∗Gn(W )Gn(Y ) we
can associate a unique sequence (w, u1, u2, . . . , ur) such that

1. w is an element of Gn(W ),
2. ui is in UX or in UY , and ui and ui+1 are not both in UX or UY ,
3. z = wu1u2 · · ·ur.
The result has this interpretation: If we say that the word length of z is r when

the product decomposition is as in the theorem, then Gn(X) ∗Gn(W ) Gn(Y ) carries
a filtration by word length and, for r ≥ 1, the quotient of the subset of words of
length r by the words of length r−1 is isomorphic to the disjoint union

Gn(W )× (Gn(X)/Gn(W ))× (Gn(Y )/Gn(W ))× · · · q
Gn(W )× (Gn(Y )/Gn(W ))× (Gn(X)/Gn(W ))× · · · ,

where there are r terms in each of the products to the right of Gn(W ).
Now we take up the passage to the category of S-algebras. First we define the

functor S∧− which plays a role analogous to that of the integral group ring functor
in the passage from groups to algebras.

Definition 2.4. Let (spaces) be the category of pointed compactly generated weak
Hausdorff spaces, and define the functor S∧ : (spaces) −→ (S-modules) on objects
by the formula

S ∧X = S ∧L LΣ∞X

where Σ∞X is the spectrum associated to a suspension prespectrum generated by
X , L is defined by [1, page 17], and S ∧L − is defined as in [1, Lemma II.1.3,
page 32]. Make the obvious extension to define S∧ on morphisms. Since S ∧ − is
a functor which carries a smash product of pointed spaces to a smash product of
S-modules, if G is a topological group, then S ∧G+ will be an S-algebra.

Remark 2.5. Our definition of the functor S ∧ − explicitly incorporates the com-
posite functor S ∧L LΣ∞− in order to ensure that cellular spaces are taken to cell
S-modules. According to [1, page 33] the building blocks for cellular constructions
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are cones attached along the sphere S-modules Sn−1
S ≡ S ∧L LSn−1. The extra

complication is necessary to get around the fact [1, page 39] that the S-module S
does not have the homotopy type of a CW S-module.

Now we reach the main part of the proof of Theorem 1.1. We keep in mind that
we want to prove the algebraic statement that

S ∧ |G(W )|+ //

��

S ∧ |G(X)|+

��

S ∧ |G(Y )|+ // S ∧ |G(Z)|+
is a generalized free product diagram of S-algebras, and the homotopic theoretic
statement that the algebras S ∧ |G(X)|+ and S ∧ |G(Y )|+ are cell S ∧ |G(W )|+-
modules. The computational proof we give for the first statement provides input for
the proof of the second statement. To give a brief outline, structural results from [7]
quoted below in Theorem 2.6 apply to the diagram of simplicial S-algebras obtained
from the diagram (2.1) by applying the functor S∧− : (spaces) −→ (S-modules) in
each dimension. These results permit a computational verification of the assertions
in each simplicial dimension. Then we want to exploit the fact that geometric
realization commutes with the functor S ∧ − from spaces to S-modules. However,
the generalized free product B ∗A C is an algebra under A defined as a colimit of a
certain diagram in the category of A-bimodules, so we must also see that B∗AC can
also be computed in the category of S-modules as a colimit of a different diagram.
These facts allow us to assemble the dimension-wise results into the statements we
want.

To state the precise result, we need the monomial word modules in A-bimodules
M and N , which are the smash products

M ∧A N ∧AM ∧A · · · and N ∧AM ∧A N ∧A · · · .
From [7, Theorem 2.7] and its proof we obtain the following facts about the gener-
alized free product B ∗A C using the construction in the category of A-bimodules.

Theorem 2.6. Let β : A −→ B and γ : A −→ C be a pair of inclusions of S-
algebras that are cell left A-modules relative to A. Then B ∗A C is a cell left
A-module relative to A.

Indeed, there is an expanding sequence of A-submodules

A = F0D ⊂ F1D ⊂ · · · ⊂ FnD ⊂ · · · ⊂ B ∗A C = D

such that, for n ≥ 1, FnD/Fn−1D is the wedge of the two monomial word modules
of length n in B/A and C/A.

Let us write An = S ∧ Gn(W )+, Bn = S ∧ Gn(X)+, Cn = S ∧ Gn(Y )+, and
D′n = S∧Gn(Z)+ for the S-algebras obtained by applying the functor S∧− to each
dimension of the diagram (2.1). We also let Dn = Bn ∗AnCn be the generalized free
product of Bn and Cn over An. We give Dn the filtration described in Theorem 2.6.
For each simplicial dimension n, let D′n be given the filtration by An-submodules
induced from the filtration on the group Gn(Z) recalled above in Theorem 2.3.
Observe that, since S ∧ − is a functor, and since the generalized free product can
also be constructed functorially, we obtain simplicial S-algebras A•, B•, C•, D•,
and D′•. Using these notations we have the following lemma.
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Lemma 2.7. Under the hypotheses of Lemma 2.1 and for any n ≥ 0, An, Bn, Cn,
and Dn are cell S-modules, Bn and Cn are cell left An-modules, and the map of
S-algebras

Bn ∗An Cn = Dn −→ D′n

induced from the S-algebra morphisms Bn → D′n and Cn → D′n is filtration pre-
serving and induces an isomorphism of S-modules on filtration quotients in each
simplicial dimension n. In particular, the map of S-algebras Dn → D′n is an iso-
morphism.

Proof. It is easy to see that An = S ∧ Gn(W )+ = S ∧L LΣ∞Gn(W )+ is a cell S-
module, for example. Each element g ∈ Gn(W ) defines an inclusion S0 → Gn(W )+

taking the basepoint of S0 to + and the nonbasepoint element to g. Consequently,
g induces a morphism of S-modules S ∧ S0 → S ∧Gn(W )+. Assembling these for
all elements of Gn(W ) we obtain an isomorphism

∨
g∈Gn(W ) S ∧ S0

∼=−→ An which
exhibits a one-stage cellular filtration on An.

To see that Bn is a cell left An-algebra, we once again return to the definitions.
Let us write H = Gn(W ) and G = Gn(X) so that the notation is compact. In the
category of spaces we can display the discrete space G+ as a pushout by means of
the diagram

+ // //

��

H+ ∧ (G/H)0
+

��

H+
// // G+

where (G/H)0 denotes the set of cosets {Hg} with the identity coset omitted. As
a space, (G/H)0

+ is just a wedge of 0-dimensional spheres, and on the summand
corresponding to Hg the set H is mapped into G in the obvious way, by h 7→ hg.
Apply the composite functor S ∧− = S ∧L LΣ∞− and note that all these functors
are left adjoints by [1, pages 19 and 32], so that the resulting diagram is a pushout
diagram of S-modules. Also note that, thanks to the behavior of L with respect
to smash products described by [1, page 22], the resulting diagram may be placed
into the final form

+ // //

��

((S ∧L LΣ∞H+) ∧S (S ∧L LΣ∞(G/H)0
+)

��

S ∧L LΣ∞H+
// // S ∧L LΣ∞G+

which displays S ∧G+ as S ∧H+ with a free S ∧H+-module [1, Definition III.1.2]
trivially adjoined. Thus, we obtain that S ∧ Gn(X)+ is a cell left S ∧ Gn(W )+-
module for each n. Exactly the same argument handles the case of S ∧Gn(Y )+.

To conclude the proof, take the results of Theorem 2.3, apply S∧−, and compare
what appears with the conclusion of Theorem 2.6.

Now that we have cell S-module structures in each simplicial dimension, we
have only to assemble them. For this recall that the functor S∧ : (spaces) −→
(S-modules) commutes with geometric realization, according to [1, Proposition
X.1.3, page 181]. We have just used a definition of B ∗A C as a colimit of a certain
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diagram in the category of A-bimodules. We now show how to create a diagram in
the category of S-modules whose colimit also calculates B ∗A C.

To calculate B∗AC as a colimit in the category of S-modules, let T : MS −→MS

be the tensor algebra monad on the category of S-modules [1, page 47], and follow
the recipe given in [1, Proposition II.7.4, page 48] in the case at hand. In detail,
note that by the definition of an S-algebra there are S-module maps TA −→ A,
TB −→ B, and TC −→ C codifying the S-algebra structures on A, B, and C,
respectively. Let

e : T(TB ∪TA TC) −→ T(B ∪A C)

denote the map obtained by applying T to the obvious map induced by the algebra
structures. Denote the canonical maps to the pushout by iA : A −→ B ∪A C,
iB : B −→ B ∪A C, and iC : C −→ B ∪A C and let

α : TB ∪TA TC −→ T(B ∪A C)

be the unique map such that T(B) −→ TB ∪TA TC α−→ T(B ∪A C) agrees with
T(iB) and similarily for A and C. Then define

f : T(TB ∪TA TC) −→ T(B ∪A C)

to be the composite T(TB ∪TA TC)
T(α)−→ T(T(B ∪A C))

µ−→ T(B ∪A C). Finally,
define B qA C by the following coequalizer diagram of S-modules.

T(TB ∪TA TC)
e //

f
// T(B ∪A C) // B qA C.

According to [1, Proposition II.7.4, page 48], the S-module BqAC is an S-algebra,
and, according to the following result [7, Proposition 2.9], it is the generalized free
product S-algebra B ∗A C.

Proposition 2.8. The two diagrams of S-algebras

A
β

//

γ

��

B

��
and

A
β

//

γ

��

B

��

C // B qA C C // B ∗A C
are isomorphic by a map of diagrams respecting the corners A, B and C.

Proof of Theorem 1.1. Recall that we are working with a diagram of reduced sim-
plicial sets

W // //

��

��

X
��

��

Y // // Z

where all the arrows are cofibrations. Then the results of Lemma 2.7 apply and the
map of simplicial S-algebras

D• −→ D′•

is an isomorphism in each dimension. Therefore, the realization is an isomorphism
of S-algebras. To describe the realization of the target of the arrow, we mentioned
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immediately following the proof of Lemma 2.7 that S∧− commutes with geometric
realization. Since D′n = S ∧Gn(Z)+, we have

D′ := |D′•| ∼= S ∧ |G(Z)|+.
To describe the realization on the domain of the arrow above, note that both

geometric realization [1, page 180] and free product construction using the monad T
are coends in the category of S-modules. Applying the general principle that coends
commute, geometric realization and the free product construction commute, so that

D := |D•| ∼= B ∗A C
since Dn := Bn ∗An Cn and where we have written B = |B•|, and so on. Applying
once again the fact [1, Proposition X.1.3, page 181] that realization commutes with
S ∧−, we obtain B ∼= S ∧ |G(X)|+, and similarly for the other terms. This proves
the first statement of Theorem 1.1.

To obtain the cell S-algebra structures on A, B, C, and D, we apply [1, Theorem
X.2.7, page 184], which gives conditions under which geometric realization produces
a cell object. Concerning A = |A•|, we have already verified that each An is a cell
S-module in Lemma 2.7. We also need to confirm that each degeneracy operator is
the inclusion of a subcomplex. But this follows from the fact [4, Proposition 10.2,
page 48] that G(W ) is a free simplicial group in the sense of [4, Definition 5.1, page
43]. The point is that the degeneracies of G(W ) carry generators in one dimension
to generators in another dimension. Finally, we need to confirm that each face
operator An → An−1 is sequentially cellular. But here we have constructed An
and An−1 as cellular objects with one-stage filtrations, so this condition is trivially
satisfied.

For the very last statement in Theorem 1.1, we want to see that B is a cell
A-module. (The argument for C is, of course, similar.) We need to see that there
is a filtration

A = F0B ⊂ · · · ⊂ Fn−1B ⊂ FnB ⊂ · · · ⊂ B
such that FnB is the cofiber of a map Wn−1 → Fn−1B, where Wn−1 is a wedge of
sphere modules A ∧L LΣ∞Sq of varying dimensions.

We have already observed that the cofibration hypothesis W // //X implies
that H = G(W ) → G = G(X) is dimensionwise injective. Then, for each n, Gn is
a free Hn-set. We conclude by [2, Lemma V.2.8] that there is a filtration

∅ = F−1G ⊂ · · · ⊂ Fn−1G ⊂ FnG ⊂ · · · ⊂ G
such that for each n ≥ 0 there is a pushout diagram∐

αH × ∂∆n //

��

��

Fn−1G
��

��∐
αH ×∆n // FnG

in the category of H-sets. (The result follows from an analysis of the pullback
to G of the skeleton filtration of G/H .) As geometric realization of H-sets is
still left adjoint to the singular functor, realization of the diagram above yields a
pushout diagram of |H |-spaces. Now add disjoint basepoints and apply the functor
S ∧ − = S ∧L LΣ∞− from the category of pointed spaces to the category of S-
modules. We have also observed earlier that all the functors in this composite are
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left adjoints, so there results a pushout diagram∨
α(S ∧ |H |+) ∧ Sn−1

S
//

��

��

S ∧ |Fn−1G|+
��

��∨
α(S ∧ |H |+) ∧ CSn−1

S
// S ∧ |FnG|+

in the category of S-modules. Here we have set Sn−1
S ≡ S ∧L LSn−1, using the

abbreviation suggested in [1, page 33] for a standard sphere S-module. But this
diagram is, in fact, a diagram of modules over A = S ∧ |H |+. According to [1,
Theorem III.1.1, page 51] colimits of diagrams of A-modules and A-module maps
are created in the category of S-modules, so the diagram is actually a pushout
diagram of A-modules. Thus we obtain a filtration of B = S ∧ |G|+ that exhibits
B as a cell A-module. This completes the proof of Theorem 1.1.

Remark 2.9. In this section the use of the commutative S-algebra S as the ground
ring has played no special role. In fact, we may substitute an arbitrary commu-
tative S-algebra R for S and work in the categories of R-algebras and R-modules.
However, to obtain an application to K-theory using the results of [7], we would
need to require R to be connective.

3. An extension and concluding remarks

One may also ask what may be achieved if one starts with a standard pushout
diagram of reduced simplicial sets

W // //

g

��

X

��

Y // // Z

(3.1)

in which only the horizontal arrows are cofibrations. As before, the loop group
construction carries the pushout diagram of reduced simplicial sets to a pushout
diagram of simplicial groups, and the issue is, therefore, the passage from simplicial
groups to S-algebras. In the following paragraphs we indicate one way of extending
the results of section 1 to cover this case, obtaining the following result.

Theorem 3.1. The arrow

S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y )|+ −→ S ∧ |G(Z)|+
arising from a standard pushout diagram (3.1) through the universal property of the
generalized free product is a homotopy equivalence of S-algebras.

This result is sufficient to draw a useful conclusion about the algebraic K-theory
of topological spaces, since algebraic K-theory is not sensitive to homotopy equiv-
alences.

Corollary 3.2. Given a diagram (3.1) which displays a pushout of reduced simpli-
cial sets, there is a natural fibration-up-to-homotopy

F −→ A(W )×A(X)×A(Y ) e−→ A(Z),

where F and e are described below.
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Before we prove Theorem 3.1 we sketch the strategy, which aims to exploit the
fact that the category of S-algebras is tensored over the category of topological
spaces. First we replace diagram (3.1) with a homotopy equivalent diagram of the
type discussed in section 2. Adequate input to exploit the existence of tensors in
the category of S-algebras is obtained by observing that the loop group construc-
tion promotes homotopy equivalences to loop homotopy equivalences [4, page 41], a
notion we recall in some detail following the proof of Lemma 3.3 below. (In modern
terminology, Kan [4] is exploiting the fact that certain tensors over simplicial sets
exist in the category of simplicial groups.) This step rests on particular techniques
for working with free simplicial groups developed by Kan [4]. In turn, these tech-
niques exploit the fact that in passing from simplicial sets to their loop groups we
gain two extra niceness properties—the extension condition and freeness.

To improve diagram (3.1), we apply the pointed mapping cylinder construction
to g, obtaining a reduced simplicial set Y ′ and the following diagram:

W //
j1 //

g
  BBBBBBBB Y ′

p

��

Yoo
j2oo

=
~~}}}}}}}}

Y

Then we replace the given diagram with a pushout diagram

W // //

��

j1

��

X
��

��

Y ′ // // Z ′

(3.2)

of the type previously considered. The universal property of the pushout induces
a morphism of diagrams from diagram (3.2) to diagram (3.1) and, in particular,
there is a commutative diagram

Y ′ // //

p

��

Z ′

q

��

Y // // Z

in which both p and q are weak homotopy equivalences. (In the category of pointed
topological spaces, p and q would be homotopy equivalences, of course. In a category
of reduced simplicial sets, which are not necessarily Kan sets, we easily obtain only
that p and q are weak homotopy equivalences.) The morphism of diagrams induces
a commuting diagram

S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y ′)|+
∼= //

id ∗(S∧|G(p)|+)

��

S ∧ |G(Z ′)|+

S∧|G(q)|+
��

S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y )|+ // S ∧ |G(Z)|+

(3.3)

in which the horizontal arrows arise by means of the universal property of the
generalized free product. The upper horizontal arrow is an isomorphism by Theo-
rem 1.1. We are going to prove that p and q induce S-algebra homotopy equivalences
S ∧ |G(Y ′)|+ → S ∧ |G(Y )|+ and S ∧ |G(Z ′)|+ → S ∧ |G(Z)|+ in Lemmas 3.3 and
3.4, and, to complete the proof of Theorem 3.1, we will then show that left-hand
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vertical arrow is also a homotopy equivalence of S-algebras. Granting that we are
able to do all this, we can now explain the proof of the corollary.

Proof of Corollary 3.2. For this proof write A = S ∧ |G(W )|+, B = S ∧ |G(X)|+,
C = S ∧ |G(Y )|+, C′ = S ∧ |G(Y ′)|+, and D = S ∧ |G(Z)|+ for the S-algebras
arising from spaces. Let us also set R = S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y )|+ and
R′ = S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y ′)|+. We can form the following diagram:

K(MVwf , v) // K(A)×K(B)×K(C′) e′′ //

��

K(R′)

��

K(A)×K(B)×K(C) e′ //

��

K(R)

��

K(A)×K(B)×K(C) e // K(D)

According to Theorem 1.1 of [7] the first row is a fibration up to homotopy, where
the map e′′ is induced by the functor from the product of module categories
M(A)f ×M(B)f ×M(C′)f to the module category M(R′)f whose value on a
triple (MA,MB,MC′) is the R′-module ΣMA∧AR′∨MB∧BR′∨MC′ ∧C′R′, where
Σ denotes suspension. Define the maps e′ and e similarly. Since the comparison
diagram (3.3) commutes, easy arguments show that all the squares commute. Al-
gebraic K-theory preserves the homotopy equivalences supplied by Lemma 3.4 and
Theorem 3.1, so the vertical arrows are all homotopy equivalences. Since the upper
row is a fibration-up-to-homotopy, it follows that the lowest row is also a fibration-
up-to-homotopy, and that the fiber of the lower row has the homotopy type of
K(MVwf , v). If we again make appropriate interpretations, we obtain Corollary
3.2, including a description of F .

As the next step in the proof of Theorem 3.1 we observe the following lemma.

Lemma 3.3. The weak homotopy equivalences p : Y ′ −→ Y and q : Z ′ −→ Z
induce loop homotopy equivalences

G(p) : G(Y ′) −→ G(Y ) and G(q) : G(Z ′) −→ G(Z),(3.4)

respectively.

Before we give the proof, we recall that if G(q) is a loop homotopy equivalence
[4, page 41], then the following conditions hold. First, there is a homomorphism
` : G(Z) −→ G(Z ′) and, second, there are loop homotopies between ` ◦ G(q) and
G(q) ◦ ` and the respective identities on G(Z ′) and G(Z). To express the concept
of loop homotopy diagrammatically, let

δ̃ : G(Z)×G(Z)×∆[1] −→ G(Z)×∆[1]×G(Z)×∆[1]

be the composite of the morphism G(Z)×G(Z)×∆[1]→ G(Z)×G(Z)×∆[1]×∆[1]
that is the diagonal on the one-simplex followed by the transposition of the second
and third factors. Then a loop homotopy between G(q)◦` and idG(Z) is a simplicial
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homotopy L : G(Z)×∆[1] −→ G(Z) between these maps such that the diagram

G(Z)×G(Z)×∆[1] δ̃ //

µ×id

��

G(Z)×∆[1]×G(Z)×∆[1]

µ◦(L×L)

��

G(Z)×∆[1]
L

// G(Z)

commutes. Here µ denotes the multiplication on G(Z). Taking geometric realiza-
tions clearly converts the simplicial notion into a topological homotopy with the
property that the morphism at each level t is a homomorphism, that is, into a
topological homotopy through homomorphisms. Thus, loop homotopies are the
simplicial analogues of homotopies through homomorphisms.

Proof of Lemma 3.3. To economize on notation, we discuss the case of q; the ar-
gument for p is the same. Since Z and Z ′ are reduced simplicial sets, and since
q induces isomorphisms on the homotopy groups of the geometric realizations, the
induced homomorphismG(q) : G(Z ′)→ G(Z) also induces isomorphisms on the ho-
motopy groups of the geometric realizations. This is easily seen by comparing the
long exact sequence of homotopy groups [3, page 286] associated with the principal
bundle

G(Z) −→ G(Z)×t Z −→ Z

with the long exact sequence associated with the similar bundle defined for Z ′.
These bundles have weakly contractible total spaces, so applying the five lemma
yields the claim about G(q). In the terminology of Definition 6.4 of [4, page 44] the
homomorphism G(q) is a weak loop homotopy equivalence.

Now we will see that G(q) is actually a loop homotopy equivalence, exploiting
one of Kan’s other results. We observe that G(Z ′) and G(Z) are free c.s.s. groups in
the sense of Definition 5.1 of [4, page 43]. This means that not only are the groups
Gn(Z ′), for instance, free, but also that a degeneracy operator α∗ : Gn(Z ′) −→
Gn′(Z ′) carries a basis element of the first group into a basis element of the second.
That this is true is most easily seen by examining the formulas of [3, page 291].
Then Proposition 6.5 of [4, page 44] applies and we find that G(q) : G(Z ′) −→ G(Z)
is actually a loop homotopy equivalence [4, page 41].

Consider the loop homotopy equivalences (3.4) of the preceding lemma.

Lemma 3.4. The loop homotopy equivalence G(p) : G(Y ′) → G(Y ) induces a ho-
motopy equivalence of S-algebras S ∧ |G(p)| : S ∧ |G(Y ′)|+ −→ S ∧ |G(Y )|+. Simi-
larly, the loop homotopy equivalence G(q) induces another homotopy equivalence of
S-algebras S ∧ |G(q)| : S ∧ |G(Z ′)|+ −→ S ∧ |G(Z)|+.

Proof. The S-module maps S ∧ |G(p)| and S ∧ |G(q)| are clearly maps of S-
algebras, since the algebra structures arise from the group multiplications. If we
let k : G(Y ) −→ G(Y ′) be our choice of a loop homotopy inverse to G(p), then
homotopy inverses to S ∧ |G(q)| and S ∧ |G(p)| are, respectively, the S-algebra
morphisms S ∧ |`| and S ∧ |k|. Moreover, realizing the loop homotopies L and K
between G(q) ◦ ` and G(p) ◦ k and the respective identities, making the standard
identification |∆[1]| = I, and applying the construction S∧− produces homotopies

S ∧ |L| : S ∧ |G(Z)|+ ∧ I+ −→ S ∧ |G(Z)|+
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and, analogously,

S ∧ |K| : S ∧ |G(Y )|+ ∧ I+ −→ S ∧ |G(Y )|+
which are S-algebra morphisms at each stage t. We also have parallel results for
the composites of the morphisms in the reversed order, hence the claim.

To understand the implications for the generalized free product of the existence
of such a nice homotopy equivalence of S-algebras S ∧ |G(p)| : S ∧ |G(Y ′)| −→
S ∧ |G(Y )|, we recall that the category of S-algebras is tensored over the category
of spaces [1, pages 130–134]. Continuing with the identification |∆[1]| = I, we
have the following consequences of Propositions VII.2.10 and VII.2.11 of [1, pages
133–134]. Given any S-algebra A there is another S-algebra A⊗ I, computed as a
certain coend [1, Proposition VII.2.10], together with a map ω : A ∧ I+ −→ A⊗ I
which has the following universal property. Letting it : A −→ A∧I+ denote the map
induced by the inclusion {t} −→ I, if a homotopy h : A∧I+ −→ B has the property
that each composite h ◦ it is a map of S-algebras, then there is a unique map of
S-algebras h̃ : A ⊗ I −→ B such that h̃ ◦ ω = h. In other words, the appropriate
way to view a homotopy h : A∧ I+ −→ B through S-algebra homomorphisms is as
an S-algebra homomorphism h̃ : A⊗ I −→ B.

Proof of Theorem 3.1. Now we will see that the vertical arrows in the comparison
diagram (3.3) are homotopy equivalences of S-algebras. We have already seen the
right-hand vertical arrow is such a homotopy equivalence. Applying the preceding
remark to the induced homotopy S ∧ |K| between (S ∧ |G(p)|) ◦ (S ∧ |k|) and the
identity on S∧|G(Y )|+, the homotopy can be understood as an S-algebra morphism
(S ∧ |G(Y )|+) ⊗ I −→ S ∧ |G(Y )|+. Since both the tensor construction and the
generalized free product construction are coends, the tensor construction and the
generalized free product construction commute with one another. That is,

S ∧ |G(X)|+ ∗S∧|G(W )|+ ((S ∧ |G(Y )|+)⊗ I)
∼= (S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y )|+)⊗ I

and, similarly with Y ′ replacing Y . Putting all these facts and homotopies together,
we see that the left-hand vertical arrow

S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y ′)|+ −→ S ∧ |G(X)|+ ∗S∧|G(W )|+ S ∧ |G(Y )|+
induced from G(p) is also a homotopy equivalence, and it is compatible with the
equivalence S ∧ |G(Z ′)|+ −→ S ∧ |G(Z)|+ induced from G(q). This completes the
proof.

We have chosen to work thus far with pushout diagrams of reduced simplicial
sets. Suppose one wishes to consider diagrams such as (3.1), but where the simpli-
cial sets are only assumed to be connected. There is a functor E1 from connected
pointed simplicial sets to reduced simplicial sets which associates to K the subcom-
plex E1K whose n-simplices are the n-simplices of K which have their vertices at
the basepoint. If K is a Kan set, E1K is also, and E1K → K is a weak homotopy
equivalence, as is easily seen by using [3, Definition 2.6, page 294] as the definition
of the homotopy groups of both complexes. Since the algebraic K-theory of spaces
is insensitive to weak homotopy equivalences, limiting the discussion to reduced
simplicial sets is not a real loss of generality.
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However, even if the restriction to reduced simplicial sets is not a loss of gen-
erality, the restriction may represent a loss of convenience. Therefore, it is worth
pointing out that there is a version of the Kan loop group for pointed connected
simplicial sets that are not necessarily reduced. This can be found in [3], but there
is an alternative description due to Waldhausen [11]. Waldhausen’s description is
functorial, whereas Kan’s original definition depends on a choice of a maximal tree
in the one-skeleton of a simplicial set. Given a pointed connected simplicial set,
Waldhausen constructs a simplicial space of pointed graphs and obtains the loop
group by applying the fundamental group functor dimensionwise. When the con-
struction is applied to a pushout diagram (1.1) of pointed connected simplicial sets
in which all arrows are cofibrations, it is easy to see that each graph associated to
the large space Z is the union of the corresponding graphs associated to the sim-
plicial sets X and Y along a common subgraph which is the corresponding graph
associated to W . Then we see that Lemma 2.1 remains true by dimensionwise ap-
plication of the ordinary Seifert-van Kampen theorem to the diagram of simplicial
graphs.

Before we leave the category of simplicial sets, let us also point out that the
results of this section permit us to remove all explicit cofibration requirements
from the arrows in diagram (3.1) and replace them by the requirement that the
square diagram be homotopy equivalent to a standard cofibration diagram while
the upper left corner space remains the same. The continuity property, or homotopy
invariance property, of the generalized free product we verified in the course of the
proof of Theorem 3.1 again implies a homotopy equivalence from the generalized
free product of the three “smaller” S-algebras to the S-algebra associated to the
“largest” space.

Looking ahead to possible geometric applications, one may start with a diagram
of connected d-dimensional manfolds

K // //

��

��

L
��

��

M // // N

representing a d-manifold N split along a two sided codimension 1 submanifold with
a collar neighborhood K. The singular complex functor ∆ applied to the diagram
produces a diagram of connected simplicial sets

∆(K) // //

��

��

∆(L)
��

��

∆(M) // // ∆(N)

in which the canonical map Z ′ = ∆(M) ∪∆(K) ∆(L)→ ∆(N) is a weak homotopy
equivalence. The algebraic K-theory of spaces is not sensitive to weak homotopy
equivalences, so the study of the algebraic K-theory of the original diagram of
manifolds is reduced to the study of the K-theory of a pushout diagram of Kan sets.
Further, if we select a base vertex in ∆(K) and define W = E1 ∆(K), X = E1 ∆(L),
Y = E1 ∆(M), and Z = E1 Z

′, then we reduce the geometric situation to exactly
the formal situation studied in sections 1 and 2 of this paper.
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