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THE APPROXIMATION THEOREM
AND THE K-THEORY OF GENERALIZED FREE PRODUCTS

ROLAND SCHWANZL AND ROSS E. STAFFELDT

ABSTRACT. We use methods of abstract algebraic K-theory as developed by
Friedhelm Waldhausen to give a new derivation of the decomposition theorem
for the algebraic K-theory of a generalized free product ring. The result takes
the form of a fibration sequence which relates the algebraic K-theory of such a
ring with the algebraic K-theory of its factors, plus a Nil-term.

1. INTRODUCTION

One of the main results of [8] is a decomposition of the K-theory of a ring
which is a generalized free product in terms of the K-theories of the constituent
rings, and one other object, which is generally called the Nil-term. We recall this
in the fibration square described below in Theorem 4. Underlying the derivation
of the square given in [8] is the construction of a suitable fibration. Besides a
combinatorial analysis of a generalized free product, the construction depends
on an ad hoc development of some parts of abstract algebraic K-theory, later
systematized and generalized in [9]. It is the purpose of this paper to show how
to derive the main theorems of [8] as applications of results and methods of [9].
Using different methods, Pierre Vogel [7] has also reconsidered results of [8].

We first develop language so that essentially the same fibration used in [8]
may be derived from a general fibration theorem (Theorem 1.6.4 of [9, page
354]) developed as part of the overall approach to abstract algebraic K-theory
described in [9]. This is Proposition 2.1 below. Our main contribution is the
description of how the approximation theorem (Theorem 1.6.7 of [9, page 354])
may then be used to interpret terms in the fibration. These results are Theorems
2 and 3 stated at the end of the section. We are able to replace the technical
maneuvering required in the original proofs with arguments that follow a stan-
dard pattern and are more conceptual. The paper also provides an introduction
to a few of the ideas we will use in [5], where we generalize the situation to
the case of simplicial rings. One of the goals of [5] is to set up a framework
which will also allow us to handle decomposition problems in the K-theory of
Aoo-rings (informally, rings-up-to-homotopy), including partial analysis of the
Nil terms. To these ends, several parts of the program in the present paper have
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to be treated differently in [5], with the result that the specialization of those
proofs to the case of ordinary rings does not immediately make the underlying
principles clear.

We will concern ourselves only with the case of a generalized free product of
rings, but it will be clear that the methods also reprove the results for Laurent
extensions and for polynomial extensions which are found in Sections 12 and
13 of [8], respectively.

We start with a diagram

A4>ct p
of discrete rings satisfying the freeness and purity conditions of [8]. That is,
we require for purity that o : C — A4 be injective and that there be a splitting
A = a(C)® A" of C-bimodules. Though the splitting is not part of the data
and only its existence is required, it is convenient to refer to a fixed complement
A" of a(C) in A. The freeness condition we will impose is that 4’ shall be
free as a left C-module. We impose the same conditions on f:C — B.
Let
R=4 *xC B

be the free product as displayed in [8]. As a C-bimodule, then
R=Co®A oB' ®A ®cB &B @cA & A
®cB' @A @B ®cA ®B &,

and the problem is to describe the K-theory of R in terms of the K-theories
of A, B,and C.

In this paper K-theory is defined in terms of the S, construction of [9],
which from a category with cofibrations and weak equivalences produces its
K-theory space. We consider certain categories of simplicial modules over the
rings A, B, C,and R. These categories, whose definitions we recall in Section
2, will be denoted by .#;(A), .#;(B), #;(C), and M¢(R), respectively. Each
of these categories then supports a notion of cofibration, which we also recall
below, and a weak equivalence in each case will be a homotopy equivalence, or,
briefly, an A-map. Then the K-theory of M;(A) with respect to these notions
of cofibration and weak equivalence (generically indicated by the presence of
an s somewhere in the symbol) is defined in [9] as

K(M[(A); h) = QIhS.d;(A)].

According to Theorem 2.3.2 in [9, page 394] the relation with Quillen’s plus
construction definition of K-theory is

Q|hSoM;(A)| ~ Ki)(A) x BGL(A)*,

where K((A) is the subgroup of the usual Grothendieck group of isomorphism
classes of projective modules Ky(A4) generated by the free modules. Therefore,
we will abbreviate
K(A(A); h) = K(4)
and use similar notations for the other rings B, C, and R.
We next describe the auxiliary categories which are essential to the proofs.
First of all, we have the category of Mayer-Vietoris presentations .#ZV , in
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which an object is a sextuple (M, M4, Mp, Mc, 1, k), where M is an object
of .#;(R),and M,, Mg, and M are similarly objects of .#y(A4), #;(B),
and .#Z;(C), respectively. Also, ¢ and x are maps of R-modules such that

0— M-S M@, ReSMz03 R Mc®cR—0
is a fibration sequence of simplicial R-modules and
K(My) C Mc ®c A and k(Mp) C Mc ®c B.

These are the same conditions imposed in [8, page 142], but now taken degree-
wise. We will also find it useful to write x as k¥ =k, — kg, where k,(Mp) =0
and kz(M,4) = 0. A map of Mayer-Vietoris presentations is a quadruple of
maps (f, f4, fB, fc) in the respective module categories, such that the re-
sulting ladder diagram commutes. By means of the forgetful functors to the
respective module categories .#;(A), #;(B), #;(C), and #;(R), one may
define cofibrations in .ZV . We discuss this in more detail in Section 2.

We will be working with two notions of weak equivalence in the category
AV . A map of Mayer-Vietoris presentations (f, f4, fg, fc) is a coarse weak
equivalence if the map f is a homotopy equivalence. The subcategory of these
maps will be denoted by w.ZV , and such a map will be called a w-map for
short. A map of Mayer-Vietoris presentations is a fine weak equivalence, or
a v-map, for short, if the maps f,, fp, and fc are homotopy equivalences.
We denote the subcategory of .ZV where the arrows are the v-equivalences
by v.#V . Notice that it follows from the five lemma that a v-map is also a
w-map, so that v.ZV Cc wAV .

In Section 2, Proposition 2.1, we observe that Theorem 1.6.4 of [9, page 350]
provides the following fibration-up-to-homotopy:

VSe VY — 0SeMV — WS MV,

where .Z V" denotes the subcategory of .ZV consisting of Mayer-Vietoris
presentations in which the R-module is contractible. After taking loop spaces
of the realizations, from left to right these terms are by definition the K-theory
of the category of Mayer-Vietoris presentations of contractible R-modules, the
K-theory of the category of Mayer-Vietoris presentations with respect to the
v-equivalences (the fine equivalences) and the K-theory of the category of
Mayer-Vietoris presentations with respect to the w-equivalences (the coarse
equivalences).
In Section 2 we prove this first interpretative theorem.

Theorem 1. The forgetful functors from AV to the module categories My(A),
M¢(B), and #;(C) induce a homotopy equivalence

Uy VSelV —> hSuM;(A) x hSedl;(B) x hSetl(C).

In Section 4 we make our first use of the approximation theorem and prove
this result.

Theorem 2. The forgetful functor
ug: MV — Ms(R)
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induces a homotopy equivalence
WSe MV — hSeM;(R).
Finally, we define ., the category of split modules. This subcategory of
AV consists of the Mayer-Vietoris presentations
0— 0> M;®4R®Mpo R Mc®cR— 0.

Alternatively, one characterizes objects of this category as Mayer-Vietoris pre-
sentations in which the map x is an isomorphism. This subcategory of .#ZV
inherits all the structures which are on .ZV, but, of course, only the wv-
equivalences are relevant. Obviously it is a subcategory of .Z V" .

In Section 5 we prove our second main result.

Theorem 3. The inclusion functor
i — VY
induces a homotopy equivalence
VS’ — S MV

Following the pattern of manipulations of cartesian squares given in Section
11 of [8, pages 210-218] one arrives at the following theorem on the structure
of K(R).

Theorem 4. There is a homotopy-commutative square

V8o hSeMy x hSeMp
hS.%C hSo%R

which is homotopy cartesian with respect to the simplicial homotopy which to any
object of . associates its structure map « .

In general, after geometric realization one can produce a splitting
[VSe| ~ |hSelc| % |hSeMc| x Nil(C; A", B'),

where the third factor remains obscure in general. In case the ring C is regular
coherent in the sense of [8, page 160], one may also use the techniques of
this paper to prove an analogue of Theorem 11.2 of [8] which identifies the
homotopy type of vS,.” with that of AS,.#c x hS..#:. Then a little more
manipulation leads to the familiar Mayer-Vietoris type sequence of algebraic
K-groups:

o — Ky 1 (R) — Ky (C) — Ky (A) & Ky(B) — Ku(R) — - -

Going beyond what we mention here, the proof of the equivalence of stable
K-theory with topological Hochschild homology which we have outlined in [4]
requires a partial analysis of the Nil-term for certain diagrams of A4..-rings. We
establish a framework for doing this in [5], where, to warm up, we will return to
the result of [8] just mentioned. With these remarks out of the way, we proceed
to collect some background material, and then we move on to the proofs.
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2. Basics

The categories of simplicial modules we use in this paper are defined in Sec-
tion 2.3 of [9]. We start this section with a few amplifications of the ideas
introduced there. Categories of simplicial modules without extra finiteness con-
ditions have also been introduced in Chapter II, Sections 4 and 6, of [3].

Let A be a ring with 1. A right module over A4 is a simplicial abelian
group M , together with a unital and associative action of A4 from the right.
This action may be codified in terms of a homomorphism of abelian groups
M ® A — M where the tensor product is taken degreewise, such that certain di-
agrams commute. The symbol .#(4) denotes the category of right A-modules
and their A-linear maps.

A simplicial set Y gives rise to a module [Y]4 if we let

([Y14)n = [Yn]4,

the free right A-module generated by Y, . We may, occasionally, need to con-
struct left modules in a similar manner. Notice that if X = A7/0A? is a stan-
dard model for the simplicial g-sphere, then [X]A4 is isomorphic to a product of
simplicial Eilenberg-Mac Lane spaces K (4, q) x K(4,0). If ¥ is a simplicial
set with a basepoint *, then one reduces [Y]A4 by dividing out by the submod-
ule [*¥]4 . For example, if we view the sphere above as a pointed simplicial set,
the construction produces a simplicial Eilenberg-Mac Lane space K(4, q) .

To attach an n-cell to an A-module M means to form a pushout of the kind

M — [0A"]4 — [A"]A.

A module N is obtained from M by attaching cells if it can be constructed
from M by means of this process together with taking a direct limit; we also
observe that in this case M — N is a free map in the sense of [3, page 6.3].

We will also be using the following notations. A pair of simplicial sets
(Y, Y') gives rise to a pair of modules denoted by [Y, Y']A. More gener-
ally, if M is any A-module, then we define

Y, YIM=[Y,Y]ZeM,

where Z denotes the integers and where we take the tensor product degreewise.

The category of modules we are interested in is .#;(4), the full subcate-
gory #(A) whose objects are the modules obtainable from the zero module
by attaching finitely many cells. In this category the cofibrations are the free
maps and the weak equivalences are the maps which become homotopy equiv-
alences after realization. However, simplicial abelian groups are Kan sets, so it
would suffice to use simplicial homotopy equivalences. Recall that the crucial
axiom for cofibrations is that a cofibration admits cobase changes. That is, if
c: M — N is a cofibration and f : M — M’ is arbitrary, then the pushout
square

M—5—+ N
f l
M N’
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exists in .#;(A4) and, most importantly, M’ — N’ is also a cofibration. That
this latter condition is satisfied may be verified by induction using the cell at-
tachment characterization of a cofibration.

We make explicit the notion of cylinder functor [9, page 348] admitted by
each of our categories of modules. In the category .#;(A), for instance, the
mapping cylinder of a homomorphism f : M — N is constructed by taking
the following pushout:

MoM=>~[0A1Ze M [ANZ® M
lo f
Ma&N T(f)

where the upper horizontal arrow is the cofibration induced by the inclusion of
simplicial sets Al — Al . We also note that the weak equivalences satisfy the
extension and saturation axioms of [9, page 327], as well as the cylinder axiom
[9, page 349]. :

As mentioned in the introduction, the category .V inherits notions of cofi-
bration and mapping cylinder from the categories .#;(A4), .#;(B), #;(C),
and #;(R). A map

(C,CA,CB,CC):(M,MA,MB,MC,l,K)_’(N,NA,NB,NC,I,K)

is a cofibration if and only if each of the maps ¢, ¢4, cp, and ¢¢ 1is a cofi-
bration in its module category. To see that the cobase-change axiom holds,
let

(f,fA,fB,fC):(M,MA,MB,MC,I,K)%(M,,MQ,M;;,Mév,l,x)

be an arbitrary map of Mayer-Vietoris presentations and define N', N/, Ng,
and N/ via the pushout squares

Cy

M, : N-
f?\
M N

in the appropriate categories. Then the cofibration condition in the axiom is
satisfied, but we need to know that the given maps ¢ and x induce an exact
sequence

0— N - N,®,R& Ny ®5 R > N-®c R — 0.
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For this, consider the following diagram.

1
0 N Ny®4R®DNpRp R
1
1
0 M My®4R® Mg R
1
0 M M\, ®,R®& M} o5 R

Now calculate the colimit iteratively in two ways, and recall that tensoring with
R 1is exact, by our freeness hypothesis, so that tensoring with R then preserves
colimits. Calculating the column colimits first, one finds that one expression
for the colimit of the diagram is (N}, ®4 R® Ny ®p R)/1(N'), and, calculating
the row colimits first, one finds that another expression for the colimit of the
diagram is N ®c R. It follows that

0— N - N,®R®&Np® R N ® R — 0

is exact.

Similarly, we may introduce mapping cylinders on .ZV by pulling them
back from the mapping cylinders on .#y(A4), #;(B), #;(C), and #;(R).
One first observes that

T(f4®4R)=T(f4)®4 R

and so on for the other cases. Then, since we have defined the mapping cylinders
on our module categories in terms of pushouts, we derive from the argument
above that taking mapping cylinders induces a Mayer-Vietoris presentation

(T(N), T(f0), T(fp), T(fc), 1, K)

if (f, f4, f8, fc) is a map of Mayer-Vietoris presentations, and that the cofi-
bration conditions [8, page 348] put on the front and back inclusions are satis-
fied.

Recall that we defined a map (g, g4, &s, &) in #ZV tobea w-equivalence
if g is a weak homotopy equivalence and to be a v-equivalence if the three
maps g4, &g, and gc are all weak homotopy equivalences. Since the weak
homotopy equivalences in the module categories satisfy the extension, satu-
ration, and cylinder axioms, it follows that both the w-equivalences and the
w-equivalences satisfy these three axioms, too. Therefore Theorem 1.6.4 of [9,
page 350] applies to the category .Z V' with these notions of weak equivalence
and we immediately derive the following proposition.

Proposition 2.1. Denote by # V" the subcategory of #V consisting of Mayer-
Vietoris presentations in which the R-module is contractible. Then there is a
fibration-up-to-homotopy

VSeHMVY — VSV — WS MV .

We now prove the first of the identification theorems. It will be seen that
the argument is basically formal and depends on another fundamental result of
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K-theory called the additivity theorem. See [9, page 336] and [1] for proofs and
various formulations of the result and [6] for reductions of some other standard
theorems in K-theory to applications of the additivity theorem.

Theorem 1. The forgetful functors from .#'V to the module categories .#s(A),
M;(B), and M;(C) induce a homotopy equivalence

U i VSe MV — hSel((A) X hSeMy(B) x hSels(C).
Proof. Let
Ug: MV — Ms(A)

denote the functor which selects the module M, from a Mayer-Vietoris pre-
sentation .

0—M-->SM,R®&Mp®3R "> Mc®cR—0,

and define up and uc similarly. Now the functor u#,4 has an obvious section
54 which associates to an 4-module M, the Mayer-Vietoris presentation

0O— M;®4R) > M;®,R®0— 0— 0.

Define a section sz of up similarly.
Define a section s¢ of uc by associating to the C-module M- the Mayer-
Vietoris presentation

0— Mc®cR-2 (Mc®c A)®4R& (Mc®c B)®g R Mc®c R — 0,

where A is the diagonal and A is the skew codiagonal. The composites uc o5y,
ugosy, Uucosg,and u,osg are all trivial, the composite 1,4 o sc is the functor

a: M(C)— My(A)
whose value on M. is M- ®c A, and the composite up o sc is a similar functor
B : Mp(C) — My(B).
It follows that if we write
Sx = (S4)x V(SB)x V (SC)x : hSeM;(A) X hSel;(B) x hSeM(C) — vSo MV,

where V indicates the H-space addition on vS,.ZV induced by the summing
of Mayer-Vietoris presentations, then u, o s, is a self-map of AhS..#;(A) x
hSet(B) x hSe#;(C) which has the matrix representation

Id, 0 o
0 Id. B.
0 0 Id.

and is therefore a self-equivalence. It follows that u, has a right homotopy
inverse.
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To complete the proof, we have to prove that u, has a left homotopy inverse.
This we will do using the additivity theorem. First note that, given a Mayer-
Vietoris presentation

0— M-S My R&Mz®3R - Mc®cR— 0,
the arrow ¢ defines a natural transformation
1:1d — sq4ouy ®Sspoug.

Explicitly, this is represented by the diagram
0 M d M;®4R® My ®p R "+ Mc®c R— 0

1 =

O—>MA®AREBMB®BR—=—>MA®AR€BMB®BR 0 0

Unfortunately, the natural transformation is not a cofibration in the category
AV , but we take mapping cylinders to correct this, obtaining an exact functor
F whose value on our typical Mayer-Vietoris presentation is

0— T() — (A'1Z®M4) ®4 R& ([A'|Z® Mp) ® R — C(Mc)®c R — 0

where C(M¢) = T(M¢c — 0) is the cone on M. Now we have a factorization
of 1 through F,

Id— F = s40uy®spoug,
in which the transformation Id — F is a cofibration, because it is the front
inclusion of a mapping cylinder, and the transformation F — s ou 4 ®sgpoug
is a v-equivalence, because the mapping cylinders for Mayer-Vietoris presenta-
tions satisfy the cylinder axiom. Applying Proposition 1.3.1 of [9, page 330],
which is just an application to the S, construction of the principle that a natu-
ral transformation of functors induces a simplicial homotopy of maps of nerves
of categories, it follows that F and s4 0 uy ® sp o up induce homotopic maps
on vS, 2V :
F,~(sqou ). V(Spoup)..

Now we apply the additivity theorem [9, page 336] to the cofibration sequence

of functors
Id —F— F/Id=F',
obtaining a homotopy
F, ~1d, VF!

of self-maps of vS,.ZV .
One sees that the value of F’ on a Mayer-Vietoris presentation
0—M->M;,ROMp®3 R— Mc®R— 0

is the Mayer-Vietoris presentation

[AI]Z®MA
0= TW/M — ( OZ= M, )

[ANZ ® Mg

4R ( [01Z ® M,

)®3R—>B(MC)®CR—>0,
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where B(M¢) = C(Mc)/Mc is the classifying space, or reduced suspension of
M, , and the modules in the middle are contractible.

Now we want to relate F’ to s¢ o uc . Recall from Section 1 that we have
written the map x in the original Mayer-Vietoris presentation as Kk = Kk, — kg
where x,(M,) C Mc ®c A and kg(Mp) C Mc ®c B. By exactness K, o1 =
kg o1, S0 we may use these two maps to define a natural transformation

Id — scouc.

If we apply F’ to this natural transformation, we obtain a ladder diagram

T(A)/Mc

[A1)Z & M, [AZ & My
( [01Z® M, ) ®aRO ( [01Z® My ) ®5 R

/

[ANZ ® Mc [AMNZ ® M
(W) Rc A®4RD (W) ®c B®p R

B(Mc)®c R

B(Mc) ®c R

0

Applying the five lemma to the ladder, we see that the diagram displays a v-
equivalence of Mayer-Vietoris presentations, so that on the space [vS..Z V| we
have F! ~ (F'oScouc)*.

To summarize what we have learned so far, we have

(sq40uUs)s V (Spoup)s ~ Fu ~1d, VF] ~ Id, V(F' 0 sc o uc)«

Recall that AS..#(C), is a connected H-space with respect to V, and that
suspension induces a homotopy inverse with respect to the H-space operation
[9, page 349]. Therefore, we may shift (F’ o sc o uc). to the other side of the
homotopy, obtaining finally

(sq40uq)s V (Spoup)s V(F osco(—1)ouc). ~Id.

It follows that u, has a left homotopy inverse, as required. O
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Concerning this proof we make two remarks. First, we invite the reader who
likes to play with functors to verify the formula

(F'osc)e ~ (S40a)s V(50 B).

Second, we call attention to the fact that this proof is purely K -theoretical,
making use only of functors built into the definitions of the diagram categories
we are using, mapping cylinders, and the additivity theorem. We will see in [5]
that essentially the same argument proves a parallel result for simplicial rings,
once the appropriate definitions are made.

3. APPROXIMATION THEOREM

Now we recall the approximation theorem (Theorem 1.6.7 on page 354 of
[9]). This theorem gives conditions under which an exact functor between two
categories with cofibrations and weak equivalences induces an equivalence at the
level of the K-theories of the two categories. Roughly speaking, if the functor
passes to an equivalence of homotopy categories, then it induces an equivalence
of the K-theories.

Specifically, let F :. % — % be an exact functor of categories with cofibra-
tions and weak equivalences. One says that F has the approximation property
if it satisfies these two conditions:

App 1: An arrow in % is a weak equivalence if and only if
its image in & is a weak equivalence.

App 2: Given any object 4 in % and any map x : F(4) —
B in &, there exist a cofibration a : 4 — A’ and a weak
equivalence x’' : F(4') — B in % such that the following
triangle commutes:

F(a)
F(4)

F(A4")

B
We may now state the approximation theorem. (Compare [9, page 354].)

Theorem 5. Let &/ and B be categories with cofibrations and weak equiva-
lences. Suppose that the weak equivalences in & and % satisfy the saturation
axiom. Suppose further that &/ has a cylinder functor and that weak equiva-
lences in & satisfy the cylinder axiom. Let F : &/ — % be an exact functor
and suppose that F has the approximation property. Then the induced maps
w — wB and WS — WS are homotopy equivalences.

Before we can get to our applications of the theorem, we state the technical
results which are used to verify the difficult condition App 2. To prove Theorem
2 concerning the forgetful functor ug : #V — .#;(R), we use the following
fact.



3330 ROLAND SCHWANZL AND R. E. STAFFELDT

Proposition 3.1. Given a Mayer-Vietoris presentation pair
0— (M, M) (My, M})®4 R® (Mp, My) ®p R
- (Mc, M{)®c R — 0

and a pair of finite simplicial sets (X, X') together with a pair of maps of
simplicial R-modules

(f, /)X, X'IR — (M, M)
then there is a Mayer-Vietoris presentation

0—R—F;®,ROF33R " Fc®cR— 0

of the free R-module of rank one, where F4, Fg, and F¢ are also free over their
respective rings, and an extension of (f, f') to a pair of maps of Mayer-Vietoris
presentations, as follows.

[X, X']R — [X,XNF404R®[X,X'Fg®R — [X,X'|Fc®cR
! ! l
M,M) = (My,M\)®,R® (Mp, My)@p R -5 (Mc, M¢)®c R

We have omitted the zeroes at the beginning and end of each row in the
preceding diagram to save space. Also, in all our applications f’ will be the
zero map, but a little extra generality does not hurt.

Proof. The result is easily established by induction up the skeleta of the pair,
taking direct sums of Mayer-Vietoris presentations constructed using Lemma
3.3 stated below. Note that this lemma is available only for genuine rings, so it
is at this point a restriction in the range of our results appears. 0O

To state Lemma 3.3, we need to refer the reader to parts of section one of
[8]. First recall the recipe

R=CoAdB oA cB B c A A cB ®cASB cA @B &---

from the introduction and write A4, for the summand which has »n factors and
A’ on the left. Define B, similarly, so that

R=Co (@A;) ) (@B;,) .

If we define 4 = By = C, then we have 4’ ®c B, = 4, and B'®c 4, = B,
for n > 0. Writing 4" =@,., 4, and B” =@, B, , we can put the recipe
in the form B -

R=Co A"®B".
Using the splittings 4 = C & A’ and B = C @ B’ and collecting differently, we
see that we can also write

R=4A®A®cB”" and R=B&B®cA4".

If we now choose 1 as the basis element for C and C-bases for 4’ and B’,
for which we write (C), (A4’), and (B’), respectively, then these choices induce
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C-bases (A4,), (4", (B.),and (B"), respectively. Then a C-basis for R may
be written

(R) =(C)u{d") U (B").

Looking at the description R = A ® A ®c B”, we find a left A4-basis for R,
which we denote T, and which is (C) U (B”) when viewed as a subset of R.
Similarly we find and identify a left B-basis T . In [8] the three sets T4, T3,
and (R) are organized into a directed tree T with a basepoint. The disjoint
union of the A-basis T, and the B-basis T forms the set of vertices and the
C-basis (R) forms the set of edges of 7. Notice that the multiplicative identity
in R appears in three roles: as 1c € (R),as 1,€ T4, and as 1 € Tp. We
have defined the bases in such a way that there are a bijection (4) x T4 — (R),
written (a, x) — a-x on an element of the cartesian product, and a similar
bijection (B) x Tg — (R). Both of these are used in [8] to define incidence
and to give orientation to the edges.

An alternative inductive description of the tree T as a tree filtered by subtrees
follows. Let T, consist of the vertices 1, € T4 and 1g € Tp connected by the
edge 1¢ € (R). We make the arbitrary choice that the edge is oriented from
1, to 1. This then fixes the vertex 1, as the basepoint, or root. Proceeding
inductively, suppose that we have defined an increasing union

T()CT1C"’CT",

so that the extremal vertices of T, are the disjoint union of (4;,) C Tp and
(B.) c T4. We now want to extend 7, by adding and connecting the vertices
(4,,,) and (B, ). To see how to do this, we use the formulas A’ ®¢ B, = 4,
and B’ ®c A, = B, for n >0 given above. For a € (4') and x € (B,) we
connect the vertex x to the vertex ax € (4,,,) by a segment a-x € (R). The
segment is oriented so as to run from x to ax. The following figure illustrates

the inclusions To, Cc 77 C T5.

T, Tp T, Tp T, Tp
blal albl
b2£1\ lb’l'al al.zl ab,
bnay : bi:‘;i a b daj:'-bll © amb;
bl‘a\bl'az a al'l lA lB bl'l b a1~b2 /l;lbz

byay +——byay ol le byl ——= ay-by ——>ayby
bn‘LZ'/ bn-a am L _am-l bn-1 : by GM'bz-\aybz
<+——byam ay-bp —
biam by-am ay-bn aibn
‘:/bn'am am-bn
bzirn/ abn
bnam ambn

In the context of Mayer-Vietoris presentations of ordinary, i.e., not simplicial,
modules we have the following version of Proposition 1.1 of [8].

Proposition 3.2. Let N be the free right R-module on the basis element n. Let
A be a finite subtree of T, containing the basepoint. Then A determines a
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canonical Mayer-Vietoris presentation of N,
0—N-—>N4;®,R&Ng®3 R Ne®c R — 0,

in which the modules N4, Ng, and Nc are also free. We denote this presenta-
tion by (N, n, A). Also, given m € M, there exists a map of (N, n, A) into
the Mayer-Vietoris presentation

0—M-——>M;0,R&Mpe5 R Mc®cR— 0

inducing n — m ifand only if A contains a certain finite tree A(m). The entire
map is uniquely determined by m .

One sees immediately that if one defines a category of such Mayer-Vietoris
presentations (N, n, A) over a fixed Mayer-Vietoris presentation pointed by
m € M, then the category has a terminal object, corresponding to the tree
A(m), and that finite limits in the category may be constructed by taking the
Mayer-Vietoris presentation corresponding to the union of the subtrees of T
occuring in the constituents of a diagram. Using these remarks it is now easy
to prove the following lemma.

Lemma 3.3. Suppose that
0—>M—I>MA®AR€BMB®BR—K->MC®CR——>O

is a given Mayer-Vietoris presentation of ordinary modules and that (N;, n;, A;),
1 < i < p, is a family of Mayer-Vietoris presentations mapping to the given
presentation, with n; — m;. Then there is a single Mayer-Vietoris presentation
of the free module on the generator n, (N, n,A), admitting p maps to the
given presentation, such that the ith map carries n to m,.

Proof. We put A = U‘i’=l A;, a subtree of T, and construct the corresponding

Mayer-Vietoris presentation. By construction A contains A(m;) for each i, so
by Proposition 3.2 the desired maps exist. O

Consequently, there is a standard Mayer-Vietoris presentation of the free
R-module of rank p mapping to the given presentation such that preferred
generators are mapped respectively to the elements m,, ... , m, of M.

In Section 5 we verify App 2 for the inclusion functor i :. % — ZV" using
the following result.

Proposition 3.4. Let
(OsMAaMB5MC) _—)(NyNAa NB’ NC)

be a cofibration of a split module into a Mayer-Vietoris presentation in which N
is contractible. Let n > 0 and let

aa" L M.
i !
A" £, N

be a commutative diagram of szmplzaal maps. Then there is a homotopy of g
relative to the boundary to a map g', a free split (ordinary) module (0, Fy,
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Fg, Fc), and maps of Mayer-Vietoris presentations
[aAn](()’FAaFBaFC) (O,MA,MB,MC)

[A"](0, Fy4, Fg, Fc) (N, N4, Np, Nc)
such that the diagram commutes and g'(A") C Im(F¢ ®¢ R).
Also, if f maps a horn A C OA" to zero, then we may assume that the
restriction to [A)(0, F4, Fg, Fc) of the upper horizontal map in the diagram is
also zero.

The tools for proving the lemma are some simplicial homotopy theory and
the following version of Proposition 1.2 of [8, page 144].

First we recall the based augmented trees *A of [8, page 144]. One way to
think of these objects is to consider the directed graph T — {1¢}, which consists
of two trees. We may define an A-tree to be a finite subtree of T — {1¢} with its
base point at 14. A B-tree is defined similarly. If A is an A4- or a B-tree, then
we call *tA =AU {lc} a based augmented tree, with the extra edge 1c being
called the augmentation segment. We write 4A for a typical based augmented
A-tree and A for a based augmented B-tree.

Proposition 3.5. To any finite based augmented tree *A there is canonically as-
sociated a split module (*A) of the form

0—0—F,®,R®EFp® R — Fc®c R — 0

in which F,, Fg, and F¢ are free. Given a Mayer-Vietoris presentation of
ordinary modules

0—M-5M;@,R&Mp3 R "> Mc®cR—0

and an element m' € M, then there exist finite based augmented trees 4A and
A and a map from the direct sum of the split modules (4A) & (gA) to the given
Mayer-Vietoris presentation such that m' is contained in the image.

Although the argument in [8] for this result is not presented as such, it is
actually an algorithm for constructing from an equation

K(Z My @ X, Zmy®y)=m’

x€Ty y€Tp

based augmented trees 4A and pA and the required map into the Mayer-
Vietoris presentation. By means of this algorithm we are provided with just
enough naturality to produce the simplicial map we are looking for. That all
our basic data is generated by one simplex is essential. To prove that the re-
striction to the horn of the map we construct is trivial also requires an analysis
based on the algorithm. We therefore recommend that the reader review the
proof of Proposition 3.5 in [8] with these points in mind. The reader may also
find it helpful to refer to our picture of part of the tree 7 above while doing
SO.

We also remark that Proposition 3.5 concerns maps into Mayer-Vietoris pre-
sentations, whereas Proposition 1.2 of [8] addresses a more general situation.



3334 ROLAND SCHWANZL AND R. E. STAFFELDT

Proof. [Proof of 3.4.] The case n = 0 of 3.4 is a trivial consequence of the
statement of Proposition 3.5 and no homotopy is required; we explain this in
the course of the proof of Theorem 3.

Now suppose # > 1. First use the isomorphism M, ®4 R® Mg ®p R =
Mc ®c R and the given map of the split module into the Mayer-Vietoris pre-
sentation to produce

fi:0A" — Ny®4R® Np @5 R
lifting the composite map
A" — Mc ®c R — N¢ ®c R.
On the other hand,
0—N-—->N;®,R&Np®g R~ Nc® R—0
is a fibration and A C A" is a trivial cofibration, so we may pick a lifting
Fop:A" — N;®4R® Np®pR

of the map A" — N¢ ®c¢ R extending fi|A. Put fy = Fy|0A". By construc-
tion f; — fo is a map to the fibre N, which is contractible and a Kan set, so
that f; — fp is simplicially null homotopic inside of N by a homotopy which
is zero on A. Translating the homotopy, f; and f; are simplicially fibrewise
homotopic relative to A . Paste the homotopy onto A" to obtain

"U(@A"xA') — Ny®4R®Np®p R
extending Fy and extend this map to
H:A" x A! — Ny®4R®Ng®pR

by the Kan extension property. Let F| = H|A" x 1 and put g’ =x o F;. We
have a commutative diagram

OA"

SN

My®4R® Mg ®p R l Mc ®c R

/\

NA®AR@NB®BR Nc ®c R

and, by construction, g’ is homotopic relative to the boundary to the original
map g. Moreover, if g’|A = g|A is the zero map, then Fj|A is also zero,
since M;®4R® Mg ®p R — Mc ®c R is an isomorphism.

Now we can apply the algorithm described on page 145 of [8] to the 11ft1ng

Fi(a") =()_ nex, Y noy)

x€T, y€Tp
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of g'(g"), o" being the generating simplex of A”. We obtain a split mod-
ule (0, F4, Fg, Fc) and a map to the n-simplices of (N, N4, Np, N¢) with
g'(o") in the image. We must now extend the split module (0, Fy, Fp, F¢)
to a simplicial split module [A”](0, F,4, Fg, F¢), and we must also extend the
map. For this we require the naturality implied by using the proof of Proposi-
tion 3.5 as described in [8] as an algorithm. Now, for any order-preserving map
a:[k] — [n],

a*Fi(0") = (Yo' (n) @ x, )_a'(n)®Y)

lifts a*g’(c™) . Application of naturality to these liftings yields a simplicial map
of Mayer-Vietoris presentations

[A"0, Fy, F, Fo) =P € (0, F4, Fs, Fc) — (N, N4, Ng, N¢)
k a:[k]l—I[n]

with g’(A") in the image. We see that the restriction to [0A"](0, F4, Fg, F¢)
factors through the split module (0, M4, Mg, Mc) by making use of the pre-
ceding diagram.

To conclude, we need to see that if g'(A) = g(A) =0, then [A](0, F4, F3,
Fc) also maps to zero. This actually requires a look at the algorithm it-
self. Recall that we have seen earlier that the hypothesis implies F;(A) = 0,
so that [A]F, and [A]Fp map to zero, by following the algorithm. To see
that [A]Fc maps to zero, let (0, y4, ¥8, yc) be the components of the map
[A1(0, Fy, Fg, Fc) — (N, N4, Np, N¢). Now let s be an edge of one of the
trees 4A or A, and suppose s is extremal, incident with a terminal vertex
x € T4, say. By the definition of the incidence relation in 7" and the orienta-
tion of the tree T, s = 1 ® x . Consequently, by definition of «, x(n,) = ny,
so that

Pc(A-ng) = yc(kA - ny) = k(P4 - ny) = k(0) = 0.

Now suppose that s is no longer an extremal edge, but that we know that
yc(A - ny) = 0 for all edges s’ closer to a terminal vertex. Suppose again
that the terminal vertex is x € T4, and let x be the initial vertex of edges
§; = a; ® x . By the algorithm x(ny) = n; + ) n;, ® a;, so that

0=xy4(A-nx) = (7c ® A)x(A - ny)
=(c®A)A-ns®1+> A-ng @a)
=yc(A-n;) @1+ ZyC(A-nsi) ® a;
=yc(A-n;)®1,

by inductive hypothesis. Of course, similar arguments go through if we have
vertices in T involved. O

In both of the following sections we make use of the following well-known
lemma. A convenient reference is [2, page 369].

Lemma 3.6. Let
002, -C, > Cyy—--—>C—0
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be an exact sequence of modules in which C; is free and finitely generated for
all j. Then Z; is stably-free and finitely generated.

4. COARSE EQUIVALENCES AND R-MODULES

In this section we take up the identification of the K-theory of the Mayer-
Vietoris presentations with respect to the coarse notion of weak equivalences.

Theorem 2. The forgetful functor
UR : MV — ./ff(R)
induces a homotopy equivalence

wSe MV —> hSet/(R).

Proof. All the categorical hypotheses of Theorem 5 (the approximation theorem)
are satisfied by .#V and .#;(R), where we take w-equivalences in .ZV . We
have to verify that ug has the approximation property. Condition App 1 is
obviously satisfied so we must concern ourselves with the factorization condition
App 2.

Here we are given an arbitrary Mayer-Vietoris presentation
0——>M—I>MA®AR€BMB®3R—K—>MC(®CR——>O

and an arbitrary R-map

f:M— N,
and we must construct a cofibration of Mayer-Vietoris presentations

(cy,...): (M, My, Mg, Mc,1,kK) — (M, My, Mg, M(, 1, k)

and a homotopy equivalence

flM — N
so that

floc=f.

If the map
fi i oM — mgN

is not onto, then we may find a constant simplicial R-module F, such that Fj
is free and finitely generated over R, and a map

f°:MeoF — N
such that
f2:no(M & F) — moN

is onto. Put M% =M @ F and let N® = T(f°). Also let g%: M? — NO be
the front inclusion and let p°: N® — N be the back projection. At this point
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we have a commutative square

M—LDMO

120l

N - NO
in which ¢® and g° are cofibrations and p° is a homotopy equivalence. It
remains to extend the Mayer-Vietoris presentation of M to a Mayer-Vietoris
presentation of M°. For this, simply note that F, itself may be presented in
many ways as

0— Fy — (F4)o®4 R® (Fg)o®s R~ (Fc)o®c R — 0

Extend the modules (F4)o, (Fg)o, and (F¢)o to constant simplicial modules
F,, Fg,and F., and the maps ! and k to constant simplicial maps, and put
M)=MaF for ?=A, B,or C,andlet ¢ : M, — M} be the inclusion
of the first summand. Obviously
0— M Mi®Re®M)ep R M2®cR— 0
is a Mayer-Vietoris presentation, and the quadruple (c°, cg, g, cg) is a cofi-
bration of Mayer-Vietoris presentations
(®, ...): (M, My, Mg, M¢, 1, k) — (M®, MY, M3, M2, 1, k).
Now let » > 0 and assume that we have constructed a diagram

/]
M_(’_.Mn

fl % &

N N"

in which f” : M" — N is an n-connected map and where c¢" is part of a
cofibration of Mayer-Vietoris presentations

(", .. )M, My, Mg, Mc,1,K)— (M", M}, Mg, M, 1, k).

We take N" = T(f") to be the mapping cylinder of f”, and we let g" and
p" be the front inclusion and back projection of the mapping cylinder, re-
spectively. We say that f” is n-connected if the pair (N", g"(M")) is n-
connected. This means, in turn, that every component of N” meets a compo-
nent of g"(M") and, for any basepoint in M", the relative homotopy groups
i (N", g"(M")) =0 for 1 < k < n. However, the homotopy groups of a sim-
plicial abelian group relative to an arbitrary basepoint are isomorphic to those
relative to the basepoint zero. Therefore, in this section and in the next, all
homotopy groups are defined with respect to the zero basepoint.
To return to the argument, we have

0— M"£5 N" — N"/M" — 0,

which is a simplicial fibration of R-modules over a connected base N"/M".
Moreover, mi(N"/M") = 0 for 0 < k < n. We find that the R-module
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mae1(N"/M™) is a quotient of a finitely generated stably free R-module by 3.6,
so that finitely many simplicial maps
An+l/8An+l SN Nn/Mn

suffice to represent a set of R-module generators for the group. Consider any
one of these maps as a map of pairs

(An+1 , 8An+l) . (N"/M", 0)

and let A denote the horn of the simplex formed by taking all faces except
do(on41) . By the lifting property for simplicial fibrations we may lift such an
arrow to the diagonal one in the following diagram:

A — {0} C N"

|

Artl ——= N /M™
This procedure transforms a single map into a diagram of maps
(@A™, A) — (M",0)
| |
(An+1 , A) SN (Nn , O)

Since 7, (N"/M™") is finitely generated as an R-module, we may choose a
finitely generated free module F” and construct a diagram of simplicial R-
modules and homomorphisms

(0A™!, A)F* — (M",0)
! !
(A" A)F"  — (N",0).

such that the induced map on relative homotopy groups is surjective. Then the
usual coning-off process displayed in the pushout diagram

[3A"+I]F"/ [A] Fn SN Mn
!

[A"+l] F"/ [A] Fn Y, prt ,

defines the R-module M"*! and a cofibration M" — M"*!  The universal
property of the pushout yields an (n + 1)-connected map f"*! : M"*! — N
which may be factored over its mapping cylinder T(g"*!) = N"*! as before,
so that we now have the commuting diagram '

Cn+l
M——>Mn+1

f\ fn+1 \ g"“

pn+l

N Nn+1

in which the right-hand vertical arrow g"*! : M"*! — N"+! isan (n + 1)-
connected cofibration.
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It remains to extend the Mayer-Vietoris presentation (M", M}, Mg, M},
1, K) to a Mayer-Vietoris presentation of M"*!.  Since maps into Mayer-
Vietoris presentations may be added, it suffices to explain how this works with
F" of rank one. In this case we have a diagram

[0A™'R/[A]R

|

0 M" : Mi®4R® M} ®p R—“>M!®c R——0

which we would like to complete to the following diagram:

0 — [A"™!]R — [A™!|F1®,R&[A™|F} @5 R — [A™!]F2®cR~ 0
0 —~[9A™ ) F" — [0A"™|F" ® 4 R & [0A"'|F} ®5 R — [0A™]F2 @c R~ 0

| | |

0 Mn M:;@AREBMg@BR Mg~®cR———>()

(For simplicity we have omitted the horn [A]R from the diagram, as it just maps
to zero.) To obtain the downward-pointing arrows we just apply Proposition
3.1, and to obtain the upward-pointing arrows we apply the naturality of the
construction [—]M in the space variable. Then the cofibration

(Cn+l9"'):(MaMA5MB’ MCalaK)_—)(Mn+1’M,;l+1’Mg+laMg+l,15K)

is gotten from the pushout construction in the category £V .
Since M and N are finite dimensional, inductively applying the preceding
construction eventually yields a cofibration of Mayer Vietoris presentations

(c®,...): (M, My, Mg, M¢c,1, k) — (M?, M4, M§, M2, 1, k)

and a situation
M _L, Me

A

N N4
as above in which all nondegenerate simplices of M? and N are of dimen-
sion less than or equal to d and f? is d-connected. Therefore 7,(N) = 0
for n > d + 1, and the only nonvanishing homotopy group of N¢/M? is
ny. (N?/M?), arising as a kernel as in Lemma 3.6. From the homotopy se-
quence of the fibration

0— M4 — N — NY/M?— 0
we extract a short exact Se(iuence

0 — mg (N M) — a M4 — 7N — 0.
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By Lemma 3.6 the R-module 7, (N¢/M?) will be stably free, so we may
choose a natural number k£ and an isomorphism

R = (N9 M%) @ RF.
Construct M by taking the pushout

[0A9] RE — M?
l l
(A RE  — 1

where the upper horizontal map is zero. Extend M4 — N¢ to M — Nd
by mapping the newly attached cells to zero. As before, we extend the Mayer-

Vietoris presentation of M? to one of M and consider the revised situation

Mé“’ i

f\ 1 lg"
~d

N—E

The segment of the homotopy sequence is now

Rl

0— ngq (N /M) — 2, — 2N —o0

in which the vertical map is an isomorphism. If we use this isomorphism to
pick a minimal number of generators for nd“(ﬁd /Hd), add (d + 1)-cells
to Hd accordingly, and extend the map to N, then a calculation using the

exact homotopy sequence of the triple (Wd , MA+! —]\Yd) shows that we kill
exactly this last kernel without introducing any homotopy in the next higher
dimension, thereby producing an equivalence M4*! — N. As before, we

extend the Mayer-Vietoris presentation of —ﬂd to one of M9+!_ At this point
the improvement procedure has produced the required data, so we terminate
the construction.

The proof that the forgetful functor ug satisfies App 2 is then complete. By
application of Theorem 5 we conclude that the forgetful functor uz induces a
homotopy equivalence

WSl V —> hSedly(R),

as claimed. O

5. K-THEORY OF SPLIT MODULES

Let % denote the subcategory of Mayer-Vietoris presentations of the trivial
R-module, also known as the category of split modules. One of our standard
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Mayer-Vietoris presentations is in % if and only if the map x is an isomor-
phism. .Z V" is the subcategory of the category of Mayer-Vietoris presenta-
tions in which the R-module M is contractible. We are going to prove the
following theorem.

Theorem 3. The inclusion functor
i:F — AV
induces a homotopy equivalence

VSe” — VS MVY.

Proof. This is also an application of Theorem 35, the approximation theorem.
Once again the condition App 1 is satisfied by definition of the class of weak
equivalences v, so we have to check App 2. In this situation we are given a
map (0, f4, fg, fc) of Mayer-Vietoris presentations

0— 0 — M;®4R®MgR3R — McQcR — 0

l l !
00— N — NA(X)AR@NB@BR — Nc®cR — 0

in which N is contractible, and we seek a cofibration in &,

(0, ca,cp,cc): (0, My, Mg, Mc) — (0, M, Mp, M)
and a v-equivalence

O, f4, f5, f&) 1 (0, M}y, My, M) — (N, Na, Ng, Ne)

such that
(01 an fBa fC) = (05 f/li, f[liy fC,‘)O(O’ Cq,CB, CC)'

This we do stepwise, as before.

Given a finite set of r classes in 7my(Nc) which represent generators of
no(Nc) modulo the image of 7o(Mc), we may represent each class by a map
A — N . Consider the diagram

[A%]CT ®c R
!
0— N —N4,®4R®NgQpR— Nc ®c R — 0.

Applying Proposition 3.4 r times in the case » = 0, taking direct sums, and
then extending the domain to a constant simplicial module, we obtain the fol-
lowing map:

0— 0 — F;,®4R®Fg®R — Fc®cR —0

! ! !
0— N — N, R®Ng®R — Nc® R —0

whose domain is a split module, and such that the given set of classes in 7o(/Nc¢)
is in the image of Fc — Nc.
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If we now add this map to the original one, putting Mg =M,®F;, MY =
Mg & Fg,and M2 = M¢ & Fc, then we obtain a diagram

0— 0 —Mi®,ReoM}®3R— M2®cR —0

! ! !
00— N — N/®4R®Npg®pR— Nc®cR —0,

and we have extended our original map of Mayer-Vietoris presentations to one
for which mo(M2) — mo(Nc) is surjective.
Consequently,

(f2®c R).: mo(M2 ®c R) — mo(Nc ®c R)

is also surjective, and from the contractibility of N it follows that the other
maps fY®4 R and f§ ®gp R also induce surjections on 7y Finally, since R is
free over A and B, the maps

fB:M/?:MAEBFA—»NAanij:Mg=M369FB——»NB

also induce surjections on o . Also, at this stage we can factor (0, 9, /3, f2)
through its mapping cylinder, so that it becomes a cofibration, which is conve-
nient for describing higher relative homotopy groups.

Note that in the preceding paragraph we made application of the freeness
hypothesis on the original diagram of rings and its consequences for the ring
R . At similar points in the rest of the argument we must again make use of the
freeness hypothesis.

Let » > 1 and suppose that we have

O, fu, fo, fo) = (0, f270, 370, f2 )0 (0, i ep~!, ephy,

a factorization of our original map (0, f4, fg, fc) through a cofibration and

an (n — 1)-connected map. Here, saying (0, /7', /77!, f271) is (n - 1)-
connected means that the three maps f§~', f#~!, and f2~' areall (n—1)-
connected. We will also have that (0, 5!, fp=', f2~!) itself is the composi-
tion

O, £ L Y =ad, p g )00, g5 gt gl Y,
where
(0, 857" g5~" 87" (0, M M, M)
— (N, Ni7', Ng~t, NETY
is an (n — 1)-connected cofibration and
(d, py~ " gt g (N, NG NG, NETY) — (N, Nyg, Ng, Ne)

is a fine equivalence. This factorization f = p o g is obtained using the mapping
cylinder construction.

Now we need to improve the connectivity in this situation. Interpreting
homotopy elements of the base of the fibration

0— MZ' — NV — NEYMEY — 0
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as in the proof of Theorem 2, we find again that there are a finitely generated
free C-module Lo and a diagram of simplicial maps

[0A" , A]Lc — M}7!
[A",f\]LC — Ngl—‘,

where A maps to zero, which one may use to improve the connectivity of fC"_1
by adding cells to Mg‘l . But we are required to add cells to the whole Mayer-
Vietoris presentation (0, M;~', Mp~', M}™"), so the argument continues as
follows.

For simplicity of notation fix attention on the submodule of 71,1(Ng‘1 , Mg‘l)
generated by a single element, and fix attention on a single component pointed
by m, so that the starting situation simplifies to a diagram

oAt — ME!
l !
Ar 5 Ng—l

where the horn A is mapped to zero. Apply Proposition 3.4 to change g by a
homotopy relative to A" and to complete the resulting diagram to a diagram
of maps of Mayer-Vietoris presentations

[0A™1(0, F4, Fg, Fc)

0, M2t Mp~t, METY

[An](OaFAaFBaFC) (N’N:_l’Ng_l’Ng_l)’

where [A](0, F4, Fg, Fc) is mapped trivially. Take the pushout of the left-
hand cofibration along the upper arrow in the category ¥ and denote it provi-
sionally by (0, M}, M}, M}). Continuing provisional notations, let (N, N},
NJ, NZ) be the mapping cylinder of

(05 MZ’ Mlg’ Mg‘) - (N’ N,Z_l’ Nlril_l ’ Ng’_l)‘

Observe that the relative homotopy group 7,(N(, M) is a quotient of the old
group m,(N2~', M}*™') by a C-submodule containing that submodule gener-
ated by our chosen element. Since 7,(N2™', M2™') is finitely generated, after
finitely many applications of the procedure we have extended (0, M%~!, M3~!,
Mg") to a split module (0, M}, Mg, M) such that the relative homotopy
group m,(NE, M{) is zero. Consequently,

0=n,(N;F®c R, M{®c R)
> mu(N] @4 R, M} ®4 R) ® 1a(N} ©5 R, M} @5 R)

and we use the freeness of R over B and A to conclude that n,(N, M})
and 7,(NE, MJ) are also now both zero. This ends the explanation of the
inductive step of the improvement procedure.

The finiteness hypothesis on all the modules, together with Lemma 3.6, brings
the procedure to a halt. Applying the inductive step and using the finiteness
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hypothesis, we may assume that the only nonvanishing relative homotopy groups
are in dimension d + 1 and that all of the cells involved in building up the
modules M¢, Mg, MZ, N, NZ, and N¢ are of dimension less than or
equal to d. So we have a relative homotopy group

Ze = nd+1(Ng, Mg) = Kernel(nd(Mg) — nd(Ng)),

and similarly defined 4- and B-modules Z4 and Zz. By Lemma 3.6 each of
these modules is stably free and finitely generated, so we may attach d-cells to
(0, M4, M3, MZ) by trivial maps and extend the map to (N, N4, N&, N¢)
by making it zero on the new cells to make first Z- and then Z, and Zp free
while they remain finitely generated. Assume that this has been done.

The prodedure for killing these last relative homotopy groups is different
from that used in the inductive step, for we are now dealing with kernels. First
we have a diagram

0 0
l N !
Z,234R®Zg 5 R — ZC®CR
l !
ng(M4®4 R)®ny(Mp®pR) — my(Mc®cR)
l !
ny(Ng®4 R)®mg(Np®p R) — my(Nc ®c R)
l !
0 0
with exact columns, by exactness of all tensor products with R . For any choice
of d-simplices zy, ..., z, of Mc satisfying d;z; = 0 for all i and k and
such that the homotopy classes [z(], ... , [z;] provide a C-basis for Z., we

get a map of split modules
[0A9+! /AN, Z4, Zp, Zc) — (0, My, My, Mc).

Besides using the fact that under our freeness hypotheses on 4, B, and C a
map of split modules has a kernel which is also a split module, we need to know
Z4, Zg,and Zc are finitely generated, so that the kernel is indeed in ., but
this has been guaranteed by Lemma 3.6. By the lifting argument found at the
beginning of the proof of Proposition 3.4, there is a choice z{, ..., z, such
that the map just described extends to a diagram

[0At1)(0, Z4, Zp, Z¢) (0, M4, Mg, M2)

[Ad+1](0,ZA,ZB,ZC) (N7 N:415Ng5Ng')5

in which the left-hand vertical arrow is obviously a cofibration. Now take the
pushout of this cofibration along the upper horizontal arrow and denote it by
(0, MA+1 M+t Ma+ly. We also define (N, N9*!, Ng+1 N&+1) to be the
mapping cylinder of the canonical map of the pushout to the lower right corner.
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Clearly m,(N2*', MZ+') =0, so the usual argument provides equalities
(N4, M4 =0 and m (NEHT, Mgt =0.

We have therefore completed the verification of App 2 for the inclusion & —
AV . Then, by Theorem 5

VS0 — VS MV
1s a homotopy equivalence, as desired. O

We conclude by remarking that the obstruction to making everything in this
paper work directly for particular diagrams of simplicial rings is found here in
this section at those points where we want to deduce that a map of A4-modules is
highly connected, say, given that the map tensored up to R is highly connected.
Appropriate modifications of the arguments are discussed in [5].
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