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A topological proof of Grushko’s theorem on free products

By
JoHN R. STALLINGS *

In my thesis [6], there is a proof of Grushko’s theorem [/] about generators
of a free product; this is what I want to describe here. The proof uses simple
topology and a combinatorial argument; it has the advantage that there is no
complicated cancellation procedure. The proof makes it clear that the core
of the argument is of an algorithmic nature, so that it has a certain effectiveness.

The topology in this proof is only a guise for Brandt groupoids, which are
represented as sets of homotopy classes of paths in cell-complexes. HIGGINS
[2] has developed the groupoid technique and used it on the Kurosh subgroup
theorem. In the future I plan to publish a proof of Grushko’s theorem using an
algebraic construction slightly different from the groupoid.

An algebraicization of the proof given here is, though, straight-forward.
Constructions in groupoids, analogous to adding cells to complexes, are cer-
tainly possible. The only topological theorem we need is VAN KAMPEN’s [8]
and in a groupoid-theoretic proof this theorem is totally irrelevant. We also
use the fact that a direct limit of inclusions of CW-complexes is a CW-com-
plex; this corresponds to the easy lemma that a direct limit of groupoids is a
groupoid. Perhaps the study of groupoids alone is logically simpler, but for
me the use of topological models helps with the over-all comprehension.

Besides Grushko’s theorem, we shall here obtain WAGNER’s extension [9]
to infinitely generated groups. We also obtain a very interesting analogous
theorem for free products with amalgamation.

To R. H. Fox and C. D. PAPAKYRIAKOPOULOs I am grateful for their encouragement and
advice while I was writing my thesis.

1. Terminology

The spaces we consider are CW-complexes. By a path in X is meant a map
P: [0, 1] - X, such that P(0) and P(1) are 0-cells of X; P(0) and P(1) are the
left and right end points of P. Paths P and Q are said to be homotopic, if there
is a homotopy between them which leaves fixed the end points. Homotopy
classes of paths in X are called path-classes; each path-class has unique left
and right end points.

If o and B are path-classes in X, and if the right end point of « is the left
end point of B, then a product « g is defined. This gives the set of path-classes
in X the structure of a category; an object is a O-cell of X; a map is a path-class.
Furthermore, given any path-class « there is an inverse path-class a™. Thus
the path-classes in X form a groupoid.
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Each oriented 1-cell in X determines a path-class represented by a path
along that 1-cell. Every path-class in X is a finite product of such path-classes
and their inverses.

The choice of 0-cell in X gives X a base-point. The set of those path-classes
in X, both of whose end points coincide with the base-point, is a group, denoted
7, (X), called the fundamental group of X.

Let J be an index set. A J-ad (X; {A4,}) consists of a complex X and a set
of subcomplexes {4,} indexed over a € J, such that X={J, 4,, and such that
for any a =B, A,nA;=(), 4,. X is supposed to be provided with a basepoint
in (), 4,.

AZ m:1p of J-ads (X; {4,})—=(Y; {B,}) is a map f: X — Y which sends base-
point to base-point, which for all » sends the n-skeleton of X into the n-skeleton
of ¥, and which for all a € J sends 4, into B,.

In a J-ad (X; {4,}), a loop is a path in X, whose end points coincide and lie
in N, 4,. A tie is a path in X, whose end points lie in different components of
Ne 4o

Let us call the elements of J colors. A monochromatic path is one whose
image is contained completely in some one 4,.

Let a map f: (X; {4.}) = (Y; {B,}) be given. A tie P in X is termed binding,
if there exists a such that P[0, 1]= 4, and f P is homotopic in B, to a path in
Ng Bs.

g IfﬁP represents a path-class # in X and f: X — Y is given, then f P represents
a path-class denoted by £, () in Y. The definition that P is a binding tie could
be phrased thus: For some «, there is a path-class 9 in A4,; if f' denotes the
restriction of f to a map 4,— B,, then f, (9)=j, ({), where j is the inclusion
Mg Bs=B, and { is a path-class in (), B;.

2. Construction in case of binding ties

Let f: (X; {4.}) = (Y; {B,}) be a map of J-ads. Let P be a binding tie with
color a; thus P[0, 1]c 4, and f P is homotopic in B, to a path in ), B;.

By 4 we denote an abstract 2-cell, whose boundary is the union of two
1-cells I7 and I, which intersect only in their end points. Identify I with [0, 1],
so that P is a map of I into 4,=X.

By X’, we denote the union of X and 4, identifying ¢ € I with P(¢#) e X.
Then X’ is a CW-complex containing X and two additional cells I, and 4;
and X is a deformation retract of X’; in fact the inclusion X< X" induces an
isomorphism on the groupoids of path-classes.

By A, we denote the union of 4, and 4, attaching 4 to 4, along I by
means of P. For B+a, by 4,, we denote the union of 4, and I3, identifying the
end points of the arc I, with the end points of P. Then (X’; {4}}) is a J-ad
which contains (X; {4,}). What we are interested in is ), 4). This intersection
clearly consists of (), 4, plus the arc I, which joins distinct components of
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Since f P is homotopic in B, to a path in (), B,, there is a map g: 4 — B,
such that g=f P on I3 and g(I;)<(), B,. The map fug: Xud —Y respects
the identification which produced X', and therefore defines a map f": X' — Y.
Clearly ' (4j) = B;. And so f’ is a map of J-ads (X'; {4}}) - (Y; {B,}).

2.1. Lemma. Let f: (X; {4,}) = (Y; {B,}) be a map of J-ads. Then there is
a J-ad (X'; {A}}) containing (X;{A,}), such that X is a deformation retract of
X', and such that each component of (\, A, consists of components of (), A,
joined by arcs. And there is a map of J-ads f': (X';{A.})—(Y; {B,}) which
extends f, such that with respect to f' there are no binding ties.

The proof is by induction on the number of components of (), 4,, if this
number is finite. If the number of such components is one, there is no binding
tie, and so we take f'= f. The inductive step is the construction described
above which reduces the number of components by one, whenever there is a
binding tie; if there is no binding tie, of course, we take f'= f.

If there are infinitely many components in (), 4,, We can still proceed,
eliminating binding ties one by one, in a transfinite induction. When we come
to a limit ordinal, we take the direct limit of the earlier constructions; as we
remarked earlier, CW-complexes have the handy property that they behave
well under direct limit. This process cannot go on indefinitely; for example it
is easy to see that it must terminate at an ordinal number of cardinality at
most that of the set of partitions of the set of components of (), 4,.

2.2. Remark. We are interested mostly in the case that the components of
N A4, are points. Then in the end result, the components of ), 4, will be trees;
they will have trivial fundamental group. And so by VAN KAMPEN’s theorem
[8] the fundamental group of each component of 4, will be a free factor of
the fundamental group of X, conjugated by any path-class whose endpoints
are the base-points of X and of that component of 4;. (We are assuming that
the component of A, belongs to the same component of X as the base point
of X.)

3. The algorithm which finds a binding tie

Let (X; {4,}) be a J-ad. Each loop or tie is homotopic to a product of
paths which run once across single 1-cells. This will be a product of mono-
chromatic paths. By grouping these paths into maximal monochromatic
blocks, our original path P is homotopic to a product Py - P, --- P, of mono-
chromatic paths, such that P; and P, have different colors for all i. Hence
the end points of each P; must belong to (), 4,; for the left end point of P,
and the right end point of P, this happens because P is a tie or loop.

In each component of (), 4, choose a base point, such that among these
base points occur the left end point of P; and the right end point of P,. For
1<i<n, let Q, be a path in ), 4, which joinx the right end point of P; to the
base point in its component. Then the path P is homotopic to

(P1 Q1) * (Ql—lpz Qz) (Q;—ll Pn)'
1%
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Each term here is monochromatic; and if end points of a term are in the same
component of (), 4,, they coincide; hence each term is either a loop or a tie.

So we have proved:

3.1. Lemma. Each tie or loop in a J-ad (X; {4,}) is homotopic to a product
of monochromatic loops and ties Py P, --- P,, whose end points are among a set
of base points, one per component of [\, A,.

Now we come to the combinatorial fact which will imply Grushko’s
theorem.

3.2. Theorem. Let f: (X; {4,}) = (Y; {B.}) be a map of J-ads, where X is
connected. Suppose (\, B, is a single point, so that n{(Y) is naturally the free
product of the set of groups {n,(B,)}. Suppose that the induced map f, : n,(X)—
7y (Y) is onto. Then if (), A, is not connected, there is a binding tie.

Proof. There is a tie Q in X, whose path-class n is such that f, (n)=1, the
trivial element of =, (Y). For there is a tie P whose left end point is the base
point of X. The path-class represented by P will be called 9. Since £ : 74 (X) —
n, (Y) is onto, there is a loop in X, based at the base point, call it L, representing
Aem, (X), such that £, (A)=f,(3). Then P! L is the desired tie Q, since
fe(@ =1

By 3.1., we can suppose @ is a product of monochromatic loops and ties

0=010,...0,.

There is such a tie 0=0, Q, ... Q,, representing =1 4, ... 1, such that
fx (D) =1, such that for all i it is true that Q; and Q, ., have different colors, and
such that for all i if Q, is a loop then f, (n;)= 1. For, if Q; and Q;,, have the same
color, then Q;Q,., is still a monochromatic loop or tie; we then obtain a
representation of Q as a product of fewer terms Q1 Q; ... @;—1(Q; Qi+1) .-+ Qu-
And if Q; is a loop and f, (7,)=1, then Q'=04 @5 ... @;—1 Qy+1 ... @, is a tie,
a product of fewer terms; and if Q' represents »’, then

Fe@=Fsm) fiz) ... fuOiz0) -1+ fu(is) .. ()= Fu(m)=1.

After a finite number of such reductions we obtain the desired Q. The num-
ber » has to remain =1 since the end points of Q are distinct and remain un-
changed by these reductions.

Now we have the equation in ,(¥), 1=Fx ()= "rx01:1)fx(2) .. fs (12)-
The terms £, (n,) and f, (1, +,) lie in different factors 7, (B,) for all i; and n=1.
Therefore some term £, (;)=1; otherwise we would have a reduced word of
length 21 in this free product, representing 1. Now Q; cannot be a loop, for
we have avoided such trivial loops. Hence Q; is a tie; it is monochromatic.
And it is binding since f, (n;)=1; that is, fQ, is nullhomotopic in ¥; but
because n, (Y) is a free product, f Q; must be null-homotopic in the factor B,
into which it is mapped. Q.E.D.
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A similar, but weaker, result is true for free products with amalgamation.

3.3. Theorem. Let f: (X;{A4,})—(Y;{B,}) be a map of J-ads, where X
is connected. Suppose that C=(\, B, has only one O-cell, and that for each
«, n, (C)—n,(B,) is an embedding; so that n,(Y) is naturally isomorphic to the
free product of the set of groups {n,(B,)} with amalgamated subgroup m,(C).
Suppose that the induced map f,: ny(X)—n,(Y) is onto. In addition, suppose
every component of every A, has trivial fundamental group. Then if (), A, is
not connected, there is a binding tie.

Proof. The important extra hypothesis is that each component of each 4,
have trivial fundamental group. This says that each monochromatic loop in X
is null-homotopic; so that by 3.1 if N, 4, is connected, then 7, (X) is trivial.
Thus the hypothesis that ), 4, is not connected is, in any interesting case,
superfluous.

As in the proof of 3.2, we find a tie in X, called Q, such that f Q is homo-
topic to a path in ), B, . First find a tie P starting at the base point, representing
9 in the groupoid of path-classes in X; since (), B, has only one O-cell, f P is
aloop in Y. Because f, is onto there is an element A € m; (X) such that £, (A)=
F« (). Then 971 1 is represented by a tie Q, and £, (37! ) =1.

We can, by 3.1, suppose Q is a product Q; Q, ... Q, of monochromatic
loops and ties. In this expression, remove all the loops since they must, by our
extra hypothesis, be null-homotopic. Amalgamate Q; and Q,,, if they have
the same color; remove any resulting loops; and so on. Finally we find a tie Q
which is a product of monochromatic ties only, @y Q, ... Q,; let n and 5; be the
path-classes which Q and Q, represent; this expression of Q as a product will
have the properties that f, (y)=1 and that f, (17;) and f, (n;+,) will, for all i,
lie in different factors n; (B,). Then we have 1= f*()= fy (1) fx 112) ... f5 (1)
and n>1.

If none of the terms £, (n;) lay in the amalgamating subgroup =, (C), then
from the elementary theory of free products with amalgamation [4], a product
of such terms, where adjacent terms lie in different factors, could not be trivial.
Hence there is i such that £, (n,) belongs to x, (C). That is to say, f @, is homo-
topic in Y to a loop in C=(), B,. But in an free product with amalgamation
such as this, the map =, (B,) - 7, (Y) is an embedding; hence f Q; is homotopic,
in the B, into which it is mapped, to a loop in C. Hence Q; is a binding tie.
Q.E.D.

Note that we cannot get rid of loops Q; for which f (1;) belongs to 7, (C)
unless we have the hypothesis that the components of 4, have trivial fundamen-
tal group. For example, suppose Q=0Q; Q, Q,, where f,(Q,) € n;(C), and
1= fo ()= fx 1) S+ 12) f5 (n3). After deleting Q, we have Q'=0Q, Q3 and

L= fa@unzns-n3inz ' na)=fo ()" fe(13") f4 (n5). This will not
generally belong to m;(C) unless =, (C) is a normal subgroup of 7, (Y). The

case of free products with normal amalgamating subgroup is little different
from the case of plain free products.
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4. The major theorems

4.1. Theorem of GRUSHKO and WAGNER. Let ¢: I' —»*,II, be a homo-
morphism of the free group I" onto the free product of groups {I1,}. Then I is
itself a free product, I' =x», I,, such that ¢(I;)<11,.

Proof. Let B, be a 2-dimensional complex determined by a presentation of
IT,. We identify II, with n,(B,). Let ¥ be the union of the complexes {B,},
identifying all the base points to a single point. Then =, (¥) may be considered
the same as *, IT,.

Let I" have a free basis {y,}, where 1 ranges over some index set. Consider
for a moment a single element y,. Then ¢(y))=a, a, ... a,, where each g,
belongs to one of the groups I1,.

Let S; denote a 1-sphere, divided into n 1-cells, called, starting at a base
point and proceeding around S;, W,, W,, ..., W,. Define f on W, to be a path
in B, such that f|W, represents a;. Then f defines a map from S, into Y.

Let X denote the union of all the S,, identifying all base points together.
The union of all the maps f above defines a map f: X — Y. We identify I" with
7, (X); then ¢ is the same as the map f, : 7, (X) ==, (Y).

To each of the segments W, of S, we associate an index a such that |,
is a loop in B,. Define A, to be the union of all the 0-cells of X, and all such
segments W; to which « is associated. Then (X; {4,}) and (Y¥; {B,}) are J-ads,
for the index set J of the free product #, IT,; and f is a map of J-ads. Finally,
. 4, is just the 0-skeleton of X.

By 2.1, there is a J-ad (X'; {4.}), containing (X; {4,}), with X a deformation
retract of X’, and an extension f’ of f, such that in X” there are no binding ties.
We can still identify ¢ : I'— *, II, with f}: 7, (X") =7, (Y).

By 3.2, (), A; must be connected. By 2.2 then (), 4, is a tree. By VAN
KAMPEN’s theorem [8], 7, (X”) is the free product of the groups =n,(42). To
complete the proof we define I,=m,(4)).

4.2. Remarks. In case I is of finite rank, and if we can effectively determine
whether any element of II, is trivial, and if for each element of *, IT, we can
effectively find a pre-image in I', then this proof and the free product structure
of I' is effective. For, by 3.2, we can discover binding ties by an algorithm,
whenever they exist.

My original version of this proof involved 3-dimensional manifolds and
has been expanded into one of the proofs of Kneser’s Conjecture [5], [7].
In fact, with hindsight we can see that a proof of Grushko’s theorem could
have been derived from the discussion in KNESER’s paper [3].

4.3. Theorem (for amalgamated free products). Let ¢: I' —(*, I1,),. be a homo-
morphism of a free group onto the free product of groups {I1,} with amalgama-
ted subgroup X. Then there is an element x of some free basis of I', and an index
o, such that ¢ (x) € I1,.

Proof. Let C, be a complex with n, (C,)=1I1,. Let D be such that n; (D)=2ZX.
Choosing D to be two-dimensional, we can find maps g,: D — C, inducing the
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inclusions Z<11,. Let B, be the mapping cylinder of g,. These mapping cylin-
ders intersect exactly in D; their union will be called Y. We can identify =, (Y)
with (%, IT,)s.

We realize I as 7, (X), where X is one-dimensional, and find a J-ad (X; {4,})
and a map f: (X; {4,})—(Y; {B,}), inducing ¢, just as in the proof of 4.1.
Again ), 4, will be a discrete set of points.

By 2.1, we can assume there are no binding ties in X, and by 2.2 that all
components of (), 4, have trivial fundamental group. By 3.3 some component
of some A, has non-trivial fundamental group, which by 2.2 is a free factor of
75 (X) conjugated by a path-class.

Let z be an element of a free basis of one of the non-trivial fundamental
groups of components of an 4,. Let p be a path-class in X connecting the base
point of that component to the base point of X. Then p~* z p belongs to a
basis of 7; (X).

Assuming D has only one O-cell, which we can always arrange, f, (p)
belongs to =, (¥). Since f, : n, (X)—n,(Y) is onto, there is gemn, (X) such that
SFx (@)= 1 (p).

Now x=a(p~ !z p)o~! belongs to a basis of n;(X), and f,, (x)=f,(2) €
7, (By), since z belongs to the fundamental group of some component of A,.

4.4. Remark. Of course, I is always the free product of {¢~!(II,)} with
amalgamated subgroup ¢~ '(Z). However, one cannot quite conclude from
4.3 that I is itself an ordinary free product =, I, in such a way that ¢ (I;)<II,.
Here is a simple counterexample.

The free group I' on two symbols {x, y} is the free product of its subgroups
{x,¥*x*y x~2y~2} and {x?, »*} with amalgamated subgroup {x?, y* x* y* x
x~2 y~2}. To see this, let I, be the free group with basis {a, b}, IT, that with
basis {c, d}, Z that with basis {e,f}. Embed X in II, by e—a* and f—b?;
embed X in IT, by e—c and f —>dcdc™ d~1. Then (II, * II,); has a presenta-
tion {a, b, ¢, d: a®=c, b*=dcdc™1d™'}.

The map ¢: I'-(II, » IT,); is given by ¢(x)=a and ¢(»)=c~*d~! bdc.
The inverse map y: (IT; * II,) —» I' is given by ¥/ (@)=x, Y (B)=y> x2 yx~2 y~%;
Y (c)=x?%, Y (d)=y* Then ¢ and ¥ are inverses of each other.

If now I' splits into a free product I * I, with I} contained in {x, y* x* y x
x~2y~%} and I, contained in {x?, y?}, then I} must be trivial since {x?, y*}
contains no basis elements. This would imply I is generated by {x, y* x y x
x~% y~2}, which is ridiculous since y is not generated by those elements.

4.5. Remark. One can derive certain results from 4.3. For example, let
{Xy, ..., x,» denote the smallest normal subgroup of I' containing {x{, ..., X,}.
Then there is a sequence {x;, ...} of elements of I, of length n if I" has rank n,
countable if I" has infinite rank; such that for each k, I'/{x, ..., x) is free
and has a basis one of whose elements is represented by x;.,; and such that
for each k, there is « such that ¢ (x,) € IT,. (I do not know whether this can be
continued transfinitely.)
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To prove this, we find x; by 4.3, mapping into IT,. Then I'/{x,) is a free
group mapping onto (*, IT,),,, where II, and X’ are the images of IT, and ¥
under the map which collapses the normal subgroup generated by ¢(x,).
So by 4.3, we find a basis element y of I'/<x;) which maps into some factor
IIy; we can easily find a representative of y in I', called x,, which maps into
II;. And we continue in this way until the first infinite ordinal w; it then is
not clear (to me) whether I'/{x,, x,, ...) is free.
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