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1 BACKGROUND AND SIGNIFICANCE OF
THREE-DIMENSIONAL MANIFOLDS

I.A Introduction

The study of three-dimensional manifolds has often interacted with a

certain stream of group theory, which is concerned with free groups, free

products, finite presentations of groups, and simUar combinatorial mat­

ters.

Thus, Kneser's fundamental paper [4] had latent implications toward

Grushko's Theorem [8]; one of the sections of that paper dealt with the

theorem that, if a manifold's fundamental group is a fre.e product, then the

manifold exhibits this geometrically, being divided into two regions by a

sphere with appropriate properties. Kneser's proof is fraught with geo­

metric hazards, but one of the steps, consisting of modifying the I-skele­

ton of the manifold and dividing it up, contains obscurely something like

Grushko's ,Theorem: that a set of ~enerators of a free product can be

modified in a certain st"mple way so as to be the union of sets of genera­

tors of the factors.

Similarly, in the sequence of theorems by PapakyriakopoUlos, the Loop

~eorem [14], Def1:n's Lemma, and the ~here ~eorem [15], there are

implicit facts about group theory, which form the \~tn. subject of these
If.''

chapt~rs. "
)

Philosophically speaking, the depth and beauty of 3~manifold theory is,

it seems to me, mainly due to the fact that its theorems have offshoots that

eventually blossom in a different subject, namely group theory. Thus I
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In the case at hand, the condition 1T2(M, B) * 0 is equivalent to the con­

dition that Mhave more than one end. The ends of Mare determinable

in an algebraic way from 111(M) and lead to the notion of the ends of an

abstract, finitely generated group. Therefore, the natural conjecture is

the following:

1.A.6 A finitely generated group G with more than one end is either

infinite cyclic or a nontrivial free product or something analogous with

finite amalgamated subgroup.

This we shall state precisely and prove and thereby completely charac­

terize, in a sense, finitely generated groups with more than one end.

1.B Precise Statements of Quoted Theorems

By a 3-manifold, we mean a Hausdorff space such that every point has

a neighborhood homeomorphic either to 3-dimensional Euclidean space or

to a closed half-space thereof. However, we always deal with the polyhe­

dral context, involving the underlying space of a simplicial complex K

whose vertices have as links either 2-spheres or 2-cells; our techniques

are always polyhedral (such as general position and cut-and-paste). These

two pictures are more or less equivalent for metrizable 3-manifolds,

thanks to papers of Moise [13] and Blng [19].

The precise statement of the Sphere Th~rem of Papakyriakopoulos

[15] as refined by Whitehead [17] and Epstein [22] is:

1.B.l Sphere Theorem: Let M be a 3-manifold and let A be a

7f1(M)-submodule of 7f2(M) such that 1l2(M) - A '* ~. Then there is X eM,

such that X is homeomorphic to the 2-sphere or to the real projective plane

and such that X has a neighborhood in M homeomorphic to X x (-1,+1)

and such that the fundamental element of 1T2(X) represents an element of

1T
2
(M) - A.

The precise statement of the Loop Theorem and Dehn's Lemma, as

proved by Papakyrlakopoulos [14, 15] and refined by Shapiro and Whitehead

[18] and Stallings [20] is:
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I.B.2 Loop Theorem-Dehn's Lemma: Let M be a 3-manifold with

boundary component B; let N be a normal subgroup of 111(B) such that

(111(~) - N) n (kernel 111(B) -. 111(M» ¢ ~.

Then there is a 2-celI D c M whose boundary is contained in B and there

represents an element of 111(B) - N.

A result important for our discussion is Kneser's Conjecture, a theorem

proved by Kneser [4], using the unfortunately inaccurate techniques of Dahn

[2], involving the notion of free product of groups. It is, as refined by

stallings [23] thus:

I.B.3 Kneser's Conjecture: Let M be a compact, connected 3-manifold

with empty boundary; let <p: 111(M) - A * B be a ~omomorphism of 111(M)

onto a free product such that, whenever T is a 2-stded 2-manifold in M

and 111(T) -. 111(M) is injective and tp(111(T» II {I}, then T is a 2-sphere.
I •

(This condition is always met if <; is an isomorphism or if 1r1(M) does not

contain any nontrivial groups 1r1(T) for T a closed 2-mantfold.) Then it

is possible to write M -= MA U MB , where MAn MB is a 2-sphere and

~(111(MA» =A, </>(11" 1(~» =B.

It was at a stage in the proof of this result, for" an isomorphism, that

Kneser foresaw Grushko's Theorem. In fact, the result as stated above im­

plies Grushko's theorem if we take M to be a 3-sphere with handles so

that 1C1(M) is a free group.

A subset A 01. ~ topological space X is said to be blcollared if there Is

an open subset of X homeomorphic to A x (-1, +1), containing A as A x O.

A result related to Kneser's Conjecture, and from which the sphere theorem

can be derived eventually, states:

I.B.4 Let M be a compact 3-mantfold, <; : M -. X a continuous func­

tion, where X contains a bicollared subset A. Assume ".: 111(M)"- 1T1(X)

.1s injective and that 112(X - A x (-t ~ +i), A x {-i, +!}) II 0 for all possible

choices of base point. Then tp 1s homotopic ~o f : M -+X such that f-1(A)

is a bicollared 2-manifold contained in M for every component T
i

of which

the homomorphism f.: 1r1(T1) - 111(A) is injective.
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The Theorem of Waldhausen referred to is a bit too complicated to

state here; given in reference [26], it has the consequence of classifying

certain 3-manifolds by their fundamental groups alone (by means of a cer­

tain hypothesis getting around the all-important Poincare Conjecture [1]).

We now say some words about group theory, reserving the details for

chapter 3.

The free product A * B of two groups A and B is the "coproduct" in

the category of groups and homomorphisms, of A and B. It is classically

described in terms of reduced words in A U B. With this description,

free products were first considered by Schreier and Artin around 1925 and

immediately generalized by Schreier [3] to the notion of free product with

amalgamation. Such amalgamated free products arise topologically as the

fundamental groups of the unions of pairs of spaces, according to the

theorem of Seifert [5] and van Kampen [7].

A theorem on free products which is of special interest to us is

Grushko's Theorem [8] (see also Neumann [9]), which in the form f9r in­

finitely generated groups is due to Wagner [16] (there is a topological

proof by stallings [24]). It states:

1.B.5 G~hko-WagnerTheorem: If F is a free group (i.e., a free

product of infinite-cyclic groups) and f/l : F - * A a homomorphisma a
onto a free product, then F can be written as a free product F a: * Fa a
such that q>(Fa > II Aa •

Our work on ends of groups has led us to a generalization of the notion

of free product with amalgamation which we discuss in some detail in

chapter 3.

We first consider "pregroups." A pregroup is an algebraic system in

which multiplication is not always defined but which is otherwise very like

a group; there is a unit element, an inverse to each element, and associa­

tivity when possible; there is also a peculiar property that, whenever

WX, xy, and yz are defined, then at least one of the triple products wxy

or xyz is defined.
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Pregroups have universal groups in which the word problem is solvable

in a manner similar to that existing in free products with amalgamation.

The universal group U{P} is defined as being in a certain sense the largest

group that. could be generated by the pregroup P. There is an equivalence

relation on the reduced words in P which is generated by the example (x,y)

is equivalent to (xa, a-1y) when the products involved are defined. The

theorem is that every element of U(P} is represented by a unique equiv­

alence class of reduced words.

A particular instance of the universal group of a pregroup is the free

product with amalgamation.

We were led to consider pregroups by examining van der Waerden's

proof of the associative law for free products defined,in terms of reduced

words [11]. Pregroups contain what seem to be the minimal assumptions

necessary for this argument to work.

Pregroups are of use in classifying another sort of combinatorial group­

theoretic situation, that of bipolar structures. Originally we defined bipolar

structures for the case of torsion-free groups [27], but it seems wise to

rewrite the concept so as to take care of periodic elements.

A bipolar structure on a group G occurs when G can be expressed as a

free product of two groups A and B with finite amalgamated subgroup F.

In this case, the elements of G - F fall into four classes, depending on

whether their equivalence class of reduced words in A U B begins or ends

in A or B. We can axiomatize the situation roughly as follows: We have a

finite subgroup F and four subsets, denoted EE, EE*, E*E, E*E* which make

a partition of G such that if X and Y stand for E or E* and we have the

convention that E** :& E , then, if g € XY and a € F , we have ga € XY; and .

if g € XY and h € Y* Z , then gh € XZ; and finally, given any g € G , there

. is a bound to the lengths of expressions g =glg2· · · gn' where" gi E: XiXi+1*
For the general case, we have to allow also the possibility of another set of

the partition, S, where F U S is a subgroup in which F has index one or

- two, and such that for g € XY and a € S we have ga € XY*.
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The structure of a group with a bipolar structure can be analyzed by

noting that it is the universal group of its pregroup consisting of F U S U

{the indecomposable elements}. Here, an indecomposable element is an

element of XY which cannot be expressed as the product of an element of

XZ and an element of Z*Y. We can then see that the pregroup involved is

one of three types, which are themselves easUy understood as giving rise

to a free product with amalgamation on a finite subgroup or else to the

similar situation in which the group G Is generated by a subgroup A and

one additional element x and the relations derived from some embedding

of a finite subgroup F of A into A again; these relations are of the form

xfx-1 =</J(f).

We call the bipolar structure nontrivial if there exists an element of

EE*. Our main group-theoretic re~lt can now be stated:

I.B.6 Every finitely generated group with more than one end has a non­

trivial bipo~ structure and so can be described as a nontrivial fr~e prod­

uct with finite amalgamated subgroup or as the other type of group. Con­

versely, any group with nontrivial bipolar structure has two or infinitely

many ends.

We now say some words about graphs.

If r is a locally finite graph (i.'e., a, I-dimensional complex), we can

look at certain cohomology groups with the simplest c~lcientgroup Z2'

The ordinary (infinite) cochains contain as subcochain complex the finite

cochains; the quotient complex c*(r) Is where "end" phenomena are seen.° eIn particular, H (r) is the "group of ends," whose rank, as Z2-module, is
e 0

the "number of ends" of r. It can be seen that H (r) in fact inherits a° eBoolean algebra structure from that of C (r), which is that of the algebra

of all subsets of vertices of r. The "spa~e of ends" is then classically

the maximal ideal space of the Boolean algebra HO(r).e

If G is a finitely generated group, generated by T sa {t1 , · · · , tn},

then we define the graph r of this situation to have vertices G such that

g and ttg are connected by an edge (ti , g) . If we define A as a G-module
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to consist of all subsets of G modulo all finite subsets (addition being sym-
o 0metric difference), then we have the fact that H (r) ~ H (G;A) , this lattere

being interpreted as in the theory of cohomology of groups. Thus the ends

of r are independent of T and will be called the ends of G.

If r is a connected, locally finite graph with more than one end, then

there exist O-cochains Q with finite coboundary l>Q, such that neither Q

nor the complement Q* is finite. Among such Q there are those whose

coboundary has the smallest number of elements; these wUI be called nar­

row O-cocbains. The narrow cochains satisfy some nice lattice-theoretic

properties; in particular there Is, given any vertex v, a smallest narrow

O-cochatn conta1n1ng v. For such a smallest narrow O-cochain, Q, the

following fact holds:

I.B.7 If X 1s any narrow cochain, then at least one of the O-cochains

Q nx, Q n X*, Q* n X, Q* n X* is finite.

This is a crucial graph-theoretic result, wh1.ch has implications in group

theor,y thus. We suppose that r is the graph of a group G with respect to

some finite generating set; G acts on the right on r, and~ Qg is narrow

whenever Q is; we apply the above result when X =Qg. We find then that,

given such a Q, there are six possibilities for which ones of the sets

Qg nQ, Qg n Q*, Q*g nQ, Q*g n Q* are finite. When the second and

third of these sets ~e fintte, we say g E: F. When the first and fourth are

finite, we say g E: S. When only the first set is finite, we say g € EE .

When only the second set is finite we say g € EE*. If the 'UUrd is the only

finite set, we say g E: E*E. If the fourth is the only ftntte set, we say

g E: E*E*.

It turns out that, 11 G has more than two ends, this partition of G is a

nontrivtal bipolar structure. If G has exactly two ends, then the structure

of G has been discussed by various people, and in particular it is clear

from their work that such a G has a nontrivial bipolar structure.

By means of these results, we prove a conjecture of Ellenberg ~d

Ganea [29].
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I.B.8 Any finitely generated group G having cohomological dimension

1 is a free group.

This has lately been improved by Swan [28], who shows how to eliminate

the hypothesis "finitely generated."

We also derive a result conjectured by Serre [30], which has in turn

been proved for infinitely generated groups by Swan:

1.B.9 If a finitely generated group G has no nontrivial element of finite

order and contains a free subgroup of finite index, then G is a free group

itself.

This is the most significant result of our work since it involves only

simple group-theoretic concepts and yet entails delicate combinatorial

facts. The structure of a group G hP~ing a free subgroup of finite index

is not yet in any completed formulation if we allow the group to have tor­

sion elements.

. .:" .
• i •• ; f·
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2.A The Loop Theorem and Dehn's Lemma.

Here we summarize the paper listed in the references as [20].

12.A.l If V is a compact 3-manifold, and H (V;Z2) s: 0 (which is equiv-

alent to: V has no connected 2-sheeted covering space), then every com­

ponent of av is a 2-sphere.
~y. 1

Proof: From Poincare duality, H2(V,aV;Z2) ~ H (V;Z2) -= O. Fr<?m
1the universal coefficient theorem H1(V;Z2) is dual to H (V;Z2) and hence

O. From the exact homology sequence, Ht (aV;Z2) =0, from which the

lemma. follows. .

2.A.2 Let V be a compact 3-manifold, Be aV a 2-mantfold, N a

proper normal subgroup of 111(B); suppose V has no connected 2-sheeted

covering space. Then there is a 2-cell a c V , with aa c B not represent­

ing an element of N.

Proof: Since 111(B) is generated by nonsingular loops on B, at least

one of them does not represent an element of N; such a loop will, by 2.A.l,

bound a 2-cell a c av.

2.A.3 Let f : a -.. K be a simplicial map, where a Is a I-connected

finite complex, and K =f(a). Suppose we have a sequence of connected

covering spaces:

~ with

11
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and inclusions
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so that f1+1 is a lifting of f
i

(Figure 2.1). Then for n sufficiently large,

the situation is stable, that is, p Is a homeomorphism.
n

Fig. 2.1

Proof: We can triangulate the whole situation so that Pi' Li+1 , ~+1'

f i+1 are all simplicial. Define the complexity of f1 to be the number of

simplexes of a minus the number of simplexes of ~; this number is al­

ways nonnegative, and a nontrivial Pi always makes the complexity of

fi+1 less than that of f i ·

2.A:4 Let p : V' -+ V be a 2-sheeted covering space of compact 3-mani­

folds, and let B' C 8V', B c 8V be 2-manifolds, such that p(B') C B. Let
-1

N be a normal subgroup of 'IT1(B), N' =(P I B)* (N) which is normal in

'IT1(B'). Let ~I be a 2-cell in V' , with 8A' c B' , representing an element

of 111~B') not in N'. Then there exists a 2-cell a in V, with a~ c B,

representing an element of 1C1(B) not in N.

Proof: We smooth out pl~' so that the singularities of p(a') are only

double curves; this is possible since pi t/ is an immersion which is at most

two-to-one. The singular curves are then of four sorts. Pictured in Figure

2.2 are the inverse images on N , with points mapping to the same point of

p(~) labeled the same.
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00

ct__=b
a a

Fig. 2.2

13

ct--D
In each of these cases we can change N and pI11' by means of a "cut"

so as to retain the properties (a) p(8N) represents an element of 7(1(B)

not In· N and (b) the singularities of peN) are double curves. The num­

ber of double curves will be definitely reduced by this modification. In

this way we eventually get a nonslngular 11.

2.A.5 Lpop Theorem-Debn's Lemma: Let M be a 3-manifold, B a 2­

manifold C 8 M, N a normal subgroup of 'IT1(B), such that

(1T1(B) - N) nker (1T1(B) -. 1T1(M» ¢ _.

Then there exists a 2-cell 6 C M such that 86 C B, and 86 represents

an element of 1T1(8) not in N.

Proof: We start with a map f :·A ... M with f(811) representing an ele­

ment of. 'IT1(B) - N.· We make f simpl1e~ and let V be a regular neighbor­

hood of f(~) in M. We then construct a tower of 2-sheeted coverings of

.f(l1) and hence of V: Vo =v , fO=f , BO=B n Vo' NO ={a E 1T1(BO) ,

mapping to N in 1TI (B)}. Let Pi : Wi~l -"'1 be a 2-sheeted covering of 'Vi;
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fi+1 is a_l~ting of fi ; '1+1 is a regular neighborhood .Of fi+1(d); Bi+1 =

'1+1 nPi (Bi); Ni+1 ={a € 1f1(B-1+1) mapping to Nt 1D 1T1(Bi )}·

The tower must terminate, by 2.A.3. At the highest story of the tower,

by 2.A.2, a nice, nonsingular 2-cell can be found. By means of 2.A.4, the

nonstngular 2-cell with good properties can be made to descend through

the tower until it gets to the ground floor, which is the conclusion to be

proved.

2.B Kneser's Lemma and Other Applications

Let T be a 2-sided (i.e., bicollared) compact 2-manifold in a 3-mani­

fold M. Suppose that 4 is a 2-cell in M such that 4 n T =a4 is not con­

tractible on T. We can adjust it so that a is contained in the interior of

M and then find a subset of M homeomorphic to a x (-1, +1), containing

4 as 4 x 0, whose intersection with T is 84X (-1,+1). Let

T' = [T - (84 x (-i-,+i-»] U [4X {-!,+!}].

Then T' Is called the reduction of T along 4; it is the result of a spherical

modification of T along a (or surgery of T along aa, performed within

M). To any compact 2-mantfold T we can assign a complexity:

2
E(2 - X('!i» ,

X(1{) being the Euler characteristic of ~ summed over all components 'It
Of T. It is easily proved that the complexity of T' is less than that of T,

and hence the "reduction" terminology is valid.

2.B.l Kneser's Lemma: Let T be a compact 2-sided 2-manifold in the

3-manifold M. Then, after a finite series of reductions at 2-cells 4, we

obtain a 2-sided T' which cannot be further reduced. In this case, if Ti is

any component of T' , the ho~omorphism 111(Ti) -.. 1T1(M) is injective.

Proof: Let f : a4 -.. T! be a map representing an element in the kernel
-- 1

of 111(Ti) -.. 1T1(M) · Then f extends to a map f : A -.. M; using the 2-sided­
-1ness of T' , we can get f (T') to consist of a finite number of simple
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closed curves in the interior of ~, together with aa. Let C be an inner-
-1 -1most curve in f (T'), bounding a 2-cell D on a, with D n f (T') =C;

then f(C) C Tj some component of T'. If flC were not contractible on Tj'
then the Loop Theorem and Dehn's Lemma could be applied to M split

along T' to find a 2-cell along which T' could be reduced. Since, there­

fore, fl C is contractible on T~ we can redefine f to map D into T~ and to
J J

agree with f on ~ - D. Then we can move the resulting map slightly to
-1 -1

get a new map g with g (T/) =f (T/) - C.

Repeating the argument, then, we finally get a map of a into Ti' when
-1aa has become the innermo~ curve in f (T') , ~endlng the origlnal

f Jaa. Thus an arbitrary elem~nt in kernel 1T1(Tf ).... 1T1(M) is itself trivial.

The following useful consequence of Kneser's Lemma is also to be found,

or something similar to it, in a forthcoming paper by Feustel.

2.B.2 Let X be a topological space containing a btcollared subset A,
f"l>oJ

such that if X denotes X split along A, and AI' A2 the two copies of A

in X, then for all base points, 1T2(X' Al U~) ,. O. Let f : M - X be a

continuous function, where M is a compact 3-mantfold. Then f is homo'"
-1topic to g : M - X, such that g (A) is a reduced 2-sided 2-manifold T

in M, and g is compatible with the bicollarings of T and A. In this situa­

tion, if f*: 1I1(M) .... 1T.1(X) is injective and if Ti is any component of T,

then g*: 111(Tt ) .... 1I1(A) is injective.

-1
Proof: The map f can be smoothed out so that f (A) is a btcollared
-- -1

2-manifold. We apply a reduction to f (A) along a 2-cell a; this reduc-

tion can be gQtten via a homotopy of f, using the hypothesis 1T2(X ,Al UA
2
) =

o and using homotopy extension properties of subpolyhedra of M. Thus we
-1 . .

can get g (A), where g is homotopic-to f, to be a btcollared 2-manifold

T .to which no further reductions apply.

Ktieser's Lemma then implies that 111(Tt) -'1T1(M) is injective. Thus

it follows that, if 'If1(1'4) .... 1T 1(X) is injective, since we can factor

, 1T1(Ti) -+ 'If1(X) through 111(A), then 111(Ti) .... 1T1(A) must be injective too.
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2.B.3 Kneser's Conjecture: Let M be a compact, conjected 3-mani­

fold, with aM c ~ ; let ., : 1T1(M) ... A * B be a homomorphism onto a free

product such that, whenever T is a 2-sided 2-manifold in M, if

1Tt (T) - 111(M) is injective and ;(111(T» ={I}, then T is a 2-sphere.

Then it is possible to write M =M
A

UM
B

where M
A

n M
B

is a 2-sphere

and <P(w1(MA» =A, ep(111(MB» • B.

Proof: We concoct aspherical spaces KA and ~ having fundamental

groups A and B and join them along a line segment with middle point p.

The resulting space X contains bicollared subset {p}, and there is a map

f : M ... X inducing the given homomorphism ep : 1C1(M) - A * ·B ~ 1T1(X) •

We now apply 2.B.2 to the situation, being careful, if we wish, that the

reductions and homotoptes avoid moving the base point of M. We get then

f homotopic to g, where g-1(p) is a reduced 2-manifold T which, because

of~ hypotheses, has to consist of 2-spheres.

Now we use the hypothesis that q, is onto, to do I-dimensional surgery

on T. If T has more than one component, there Is some path A in M

whose endpoints lie on different cOIn:ponents of T; g(A) represents some

element of A * B, and so, if 'Y is a loop in M based at the initial point of

A, mapping into [g(A)]-l in A * B (such 'Y exists sinte " is onto), the

path 'YA • IJ has g(P) a contractible loop in X, and IJ joins distinct compo­

nents of T. By smoothing it, IJ can be written as a product of paths:

IJ I: ata 2 · • • an' where only the endpoints of a i lie on T. Each g(a1)

represents either an element of A or of B. We can reduce the length n

of IJ by (1) gluing together a i and a
i
+1 if both map into A or both into B,

(2) omitting a i if it has both endpoints on the same component of T and

has g(at) contractible. Since IJ has endpoints on dUferent components of

T , the expression for IJ never reduces to length o. Finally, when the ex­

pression for IJ can no longer be reduced, we have either g(P) •

g(a1) · · · g(an) is a reduced word in A * B, which is impossible since

g(p.) =1 and n ~ 1 , or else some g(Clt ) is contractible in X. This a
i

must join distinct components of T and map into X - {p} except at the

endpoints.
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Now we approximate a i by a nonstnguIar path which stays away from

the base point of M; we use the fact that g(Ci
i
) is contractible in X split

along {p} and homotopy extension in M to get a function g' : M - X ,
-1 -1homotopic to g, such that g' (P) consists of g (P) except that two

-1
components of g (P) have been joined by a tube. This process reduces

-1
the number of components of g (P) so that eventually we get h : M ..... X

-1homotopic to g and hence to f, such that h (p) is the connected sum of
-1

all the components 01 g (P) and hence is a 2-sphere.
-1

We now write M
A

and M
B

as h of the two halves of X and read off

the conclusion of the theorem.



3 COMBINATORIAL GROUP THEORY

3.A A Generalization of the Notion of Amalgamated Free Product
of Groups (Pregroups and Their Universal Groups)

In [25], we studied what happens in the situation where a group G (has a

subset P such that each element of G is representable uniquely by a re­

duced word in P. It happens that such a G is very similar to a free prod­

uct.

What happens when the representation by a reduced word is unique only

modulo the kind of equivalence that comes up in the theory of amalgamated

free products? In this section, we determine the internal structure of the

subset P (which we call "pregroups") and prove, following the method of

van der Waerden, that its universal group has the desired property. Many

interesting examples can be found; they all seem somewhat like amalga­

mated free products; but there is no simple way of forming all of them out

of ordinary amalgamated products. Baer [32] would describe a pregroup as

an "add" satisfying his Postulates I-vn-and Associative Law T.

3.A.I Definition and statement of the Theorem

3.A.l.1 Definition A pregroup consists of:

(a) A set P.

(b) An element of P, denoted by 1.

(c) A function P -. P, denoted by x ...... x~1 •

(d) A subset D of P x P.

(e) A function D -. P, denoted by (x, y) .... xy •

Such that the five following axioms are true:

(1) For all x € P we have (l,x), (x,l) € D and 1x =xl =x.

(2) For all x E P we have (x,x-1), (x-1,x) € D and xx-I =x-lx =1.

18
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(3) For all x,y € P, if (x,y) € D, then (y-1, x-I) € D and

( )-1 -1-1
xy =y x .

(4) For all x,y,z € P, if (x,y), (y,z) € D, then: (x,yz) E: D if and

only if (xy,z) € D, in which case x(yz) =(xy)z.

(5) For all w,x,y,z € P, 1£ (w,x), (x,y), (y,z) € D, then either

(w,xy) E D or (xy,z) € D.

We shall often say that xy is defined, instead of (x,y) € D.

3.A.I.2 Definition Let P be a pregroup. A word in P is an n-tuple,

for some n ~ I, of elements of P, thus: (xl"'" xn). The number n .

is called the length of the word. It is possible to reduce the word

(xl' · · · ,xn), if, for some i, we have xtxi+1 defined; then

(xl' · · · , xi_I' xixi +1 ' xi +2 ' • · · ,xn)

is called one of its reductions. The word is said to be reduced if no reduc­

tion exists; i.e., for all t we have (xi' xi +1) I D. Every word of length one

is reduced.

If (Xl' · · • ,x ), (a1 , · · · , a -1) are words and (where aO • a 11 1)
n -1 -1 n n

the products xiai , ai_Ix!, ai _ 1xia i are all defined, then we define the in-

terleaving of the first by the second to be:

(Xl' · · · ,xn) * (at' · · • , an_I) =(y1 ' · · · , yn)

-1
where Yt m ai_Ixiat .

We shall prove:

(1) If X is reduced and the interleaving X * A is defined, then X * A

is reduced.

(2) The relation on reduced words X ~ X * A is an equivalence relation.

For a € P and·X =(xl' . . . ,x ) a reduced word, define ~ (X) thus:n a
Ifax1 is not defined,

A (X) =(a, Xl ' • . . ,x ).a n
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Ifax1 is defined but (ax!)xa not defined,

Aa(X) =(ax1 ' x2 ' • • • ,xn).

If both ax! and (ax!)x2 are defined,

Aa(X) =«3X1)x2' xS' • • · , xn).

(S) If X is reduced, so Is Aa(X) •

(4) If X is reduced and ab is defined, then

where ~ is defined in (2).

(5) The function A induces a function on the set of equivalence classesa
of reduced words.

(6) The pregroup P can be incorporated into a universal group U(P}

such that each element g € U(P) can be written as a product

where (xl' · · · ,Xn) is a reduced word in P, and two such reduced words

for the same g are ~ equivalent.

Theorem (6) is' the main one; the others are lemmas for it, after the

proof of van der Waerden [11] for a like result in the context of free prod­

ucts. It has the corollary that every pregroup is contained faithfully in

its universal group_

There are many examples of pregroups, of which one gives the free

product with amalgamation, another gives what we shall call ~;. And

there are others more peculiar. Before giving such examples, we shall

prove the theorem.

3.A.2 Lemmas (1) (2) (3)

In this section and the next, let P be a fixed pregroup.

-1 -1S.A.2.1 (x ) =x.
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Proof: Apply axioms (4), (2), and (1) to the product xx~1(x-1)-1 .

3.A.2.2 If ax is defined, then a-l(ax) is defined, and a-1(ax) =x.

Dually, if xa is defined, so is (xa)a-1 , and (xa)a-1 =x.

Proof: By axiom (2), we have a-la is defined and =1. Thus, by axioms
--. -1 -1

(4) and (1), we have a (ax) defined and = ·(a a)x =x. The dual case is

proved similarly.

3.A.2.3 If xa and a-ly are defined, then: xy is defined if and only

if (xa) (a-ly) is defined, in which case xy =(xa) (a-ly).

. -1
Proof: Apply axiom (4) and 3.A.2.2 to the product of x,a,(a y).

3.A.2.4 If xa and a-ly are defined, then (x,y,z) is a reduced word

if and only if (xa,a-ly,z) Is reduced. Dually, (z,x,y) is reduced if and only

if (z;xa,a-Iy) is reduced.

Proof: We must show that if (x,y,z) is reduced, then (a-ly)z is not de-
-- -1 { -I}cfined. Suppose that (a y)z is defined and consider x,a,a y,z. Then,

by axiom (5) (and 3.A.2.2 and 3.A.2.1, to prove that a(a-1y) is defined),

either x(a(a-ly) is defined or (a(a-ly»z is defined. Since a(a-ly) =y ,

in both cases (x,y,z) Is not reduced. Thus, (a-ly)z is not defined if .(x,y,z)

is reduced; by 3.A.2.3, we have (xa) (a-ly) also not defined; and so

(xa,a-ly,z) is reduced.

The converse and the dual are proved in the same way.

It can be shown that axioms (1) through (4) with 3.A.2.4 imply axiom (5).

Thus, since axioms (1) through (4) are reasonable and natural and we want

to define equivalence classes of reduced words by using '3.A.2.4, we must

have axiom (5) for our investigation.
-1 .

3..A.2.5 If (x,y) is a reduced word and if xa,a y,yb are defined,

then (a-ly)b is defined.

-1
~: If not, by 3.A.2.3 we have (xa, a y, b) reduced. Thus, by 3.A.2.4,

we have (x,y,b) reduced, in contradiction to having yb defined.
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-1 -1 -13.A.2.6 If (x,y) is a reduced word and if xa, a y, (~)b,b (a y)

are defined, then ab is defined.

Proof: By 3.A.2.3 twice, «xa)b) (b-1(a-ly» is not defined. Apply axiom
-{--I -1 -1 }

(5) to x ,xa,b,b (a y); the consecutive products are defined by

3.A.2.2; the product of the last triple is not defined. Thus by axiom (5) the

product of the first triple is defined. By axiom (4) we have x-l«xa)b) =
(x-1(xa»b =ab, by 3.A.2.2, is defined.

3.A.2.7 Lemma (1): Let X =(Xl' ... ,x ) be a reduced word and
n -1

A =(a1 t • • • t an_I) ~tord. Let aO=an • 1. Suppose xiai and ai_ 1xi
are defined. Then (ai _ 1xt)ai is defined, and Y =X * A s:: (xtal ,
-1 -1

a1 x 28.a'· · · , an_ 1xn) is reduced.

Proof: Apply 3.A.2.4 and 3.A.2.5 to subwords of X; 3.A.2.5 shows that

(a;:lxi)ai is defined. By virtue of axiom (4)t we can omit the parentheses.

Theorem 3.A.2.4 shows that X * A is reduced.

3.A.2.8 Definition By R or R (P), we denote the set of reduced

words in P of length n. By Jl-l t w~ denote the set of all words of P of
n-l

length n - 1. If A =(ai' · · · , an_I) and B =(bI , · · • , bn_ 1) € p ,

and if albi is defined for all i, then we denote by AB the word (a
1
b

1
' •.• ,

a Ib 1)·n- n-

3.A.2.9 If X € R ,A, B € yt-l , and if X * A and (X * A) * B can
n

be defined, then AB can be defined, and then

(X * A) * B c X * (AB).

Proof: Apply 3.A.2.6 to subwords of X. This shows that AB can be de­

fined. Axioms (4) and (3) show that (X * A) * B =X * (AB).

3.A.2.10 Definition The relation R1 on R is defined thus:
n

(xl' · · · ,Xn) ~ (y1 ' · · · , yn)
-11-1

if and only if there exists (a1 ' · . · , an_I) € .I:' such that each xiai and
-1 -1

ai_lxt are defined, and Yi =a
1
_ 1xtat . I.e., X ~ Y if and only if there

exists A such that Y = X * A.
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3.A.2.tl Lemma (2): The relation ~ is an equivalence relation on

R.

Proof: If I =(1 , •.. , 1), then X = X * I, so X ~ X. If A = (at' .... ,
-1 -1 -1a 1)' let A =(at , .... , a 1); then, Y =X * A if and only if X •n- n--1

Y * A ; thus, if X ~ Y, then Y ~ X. If Y =X * A and Z =Y * B, then

by 3.A.2.9, AB is definable and Z =X * (AB); thus, if X ~ Y and Y RS Z,

thenX~Z.

3.A.2.12 Definition By R or R{P) we denote the union of all R ,
n

for n =1,2, .. . . . For each a € P and each X € R, we define a word

A (X) as follows: Leta

X =(Xl' x2, Xs' · · .. )·

(1) If (a,x
1
) is reduced, then

Aa(X) =(a, xl' x2 ' · ... ).

(2) Ifax
1

is defined but (ax
1
,x

2
) reduced, then

~a(X) =(axl , x2' x g , • .,.).

(3) Ifax
1

and (axt )x2 are defined, then

~a(X) =«axl )x2' x3 ' · · .. ).

In case (2) we include, as a degenerate case, the possibility that ax
1

is

defined and that X has length one.

3.A.2.13 Lemma (3): If X is reduced, then Aa(X) is reduced.

. Proof: This is obvious in cases (1) and (2). In case (3), where ax1 '

(ax1)x2 is defined, but x l x2 and xrS are not defined, we must prove that

{ -I -1 }
«ax1)x2)xS Is not defined. Consider xl' Xl a , (ax1)x2' x3 and apply

axiom (5) to it; this is possible if ({8Xt )x2)x3 is defined; but axiom (5) im­

plies then that either x tx2 or x2x3 is defined, in contradiction to having

~ X reduced.
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3.A.3 Lemma (4)

Here we prove
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3.A.3.1 Lemma (4): If X Is reduced and ab is defined, then

Aab(X) ~ Aa(~(X».

The proof consists in looking at the various cases. Let X =(xl' . . . ,

xn)·

Case I bxl is not defined. Then,

Ab(X) II (b, xl ' · · · ,xn).

Subcase 11 (ab)xl is not defined. To apply Aa , we find ourselves in

case 3.A.2.12(2); thus

Aa(Ab(X» =(ab, xl ' · · • ,xn) • Aab(X).

Subcase 12 (ab)xl is defined. Then, to apply Aa to Ab(X), we are in

case 3.A.2.12(3); thus

'Aa(~(X» =«ab)xl' x2' · II • ,xn). It follows from 3.A.2.13 that

«ab)xl)xa 1s not defined; so, to apply Aab to X, we are in case 3.A.2.12(2);

thus

Case 2 bxl Is defined but (bxl )x2 is not defined. Then,

~(X) =(bx1, x2 ' • • • , xn).

Subcase 21 a(bx1) is not defined. Then, (a, bx1) is reduced; thus
-1(ab, b (bx1» =(ab,x1) is reduced by 3.A.2.3. In this case,

Aa(~(X» • (a, bxl , x2 ' • • • ,Xn).

Aab(X) =(ab, xl' x2 , · · · ,xn)·

Thus, 'Aab(X) II (Aa(Ab(X») * (b, 1, ... , 1).

Subcase 22 a(bx1) is defined. Then, also is (ab)xl defined and =a(bx
l
)

... :......



Combinatorial Group Theory

If (abx1)x2 is not defined, then

Aab(X) =Aa(Ab(X» = (abx1, xa' · · · ,Xn)·

If (abx1)xa is defined, then

Aab(X) =Aa(~(X» =«abxt )xa' x3 ' · • · , xn) ·

Case 3 bx1 and (bxl )x2 are defined. Then,

~(X) =«bxl )x2' x3 ' • • • ,xn).

25

Subcase 31 a(bx1) is not defined. This subcase never occurs because,

if it did, then (ab)xl would be not defined, and '

Aab(x1 , · · · ,xn) =(ab, xl' · · · , xn) ~ (a, bx1, xa' · · · ,xn)·

Thus, using 3.A.2.4, (bx1)x2 would not be defined, in contradiction to the

assumption for case 3.

Subcase 3
2

a(bx1) is def~ed. Then (ab)xl Is defined and' =a(bxt ).

Subsubcase 321 (abxt)xa 1s not defined. Then a«bxt )x2) is not defined.

Thus:

Aab(X) =(abxt , x2 , · · · ,xn)·

Aa(~(X» =(a, (bx1Pt2' x3 ' • • • , Xn).

And eo

Subsubcase 322 (abx1)x2 is defined. Then (a(bxt»xa =a«bx1)x2) is

defined, and

Aab(X) =«abx1)x2' x 3 ' · · · , Xn)·

Hence «abx1)x2)xS is not defined; and so

Aa(~(X» =«abx1)x2' xs ' · · · ,xn) =Aab(X).

This exhausts all the possible cases, and so proves 3.A.S.I.
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3.A.4 Lemma (5) and the main theorem

For a pregroup P, we have R(P} , the set of all reduced words in P,

on which we have the equivalence relation ~ .. By R(P) , we denote the set

of ~ -equivalence classes.

3.A.4.1 Lemma (5): For all a E: P, the function A : R(P) .... R{P)
""'-I ""'-I a

induces a function, also denoted A : R(P) .... R(P) ..a

Proof: We must show that, if Y =X * B, then A (X) ~ A (Y). Let X •
-- a a

(Xl' • · · ,xn) and B =(b1 , • • • ,"bn_ 1). There are three cases as fol-

lows:

(1) ax1 is not defined. Let B' =(1, b1 ' · • • , bn_ 1). In this case,

Aa(Y) =(Aa(X» * B' •

(2) ax1 is defined but (axI )x2 not defined. In this ~se,

Aa(Y) =(Aa(X» * B.

(3) aJt1 and (axt )x2 are both defined. Let

B" =(b2 ,· · · ,bn_1)·

In this case,

A (Y) =(A (X» * B".a a

In each case, the word A (X) is determined; the expression on the right­
a

hand side of these formulas determines'a reduced word, the examination of

which determines A
a

(Y) • For example, in the most difficult case, case (3),

Aa(X) =«ax1)x2' xs ' · · · ,xn)·

The triple product (8X1)x2b2 is defined by the dual of 3.A.2.5 since (X2'XS)

is reduced, x2b2 and biix3 is defined, and (axi)x2 is defined. Similarly,

ax
l
b

1
is defined. Hence,

-1
(axl b1)b1 x2b2 • (ayl)Y2

is defined by 3.A.2.3, and so we have:
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-1 -1
Aa(X) * BII

II «ax1)x2b2' b2 x3b3 ,. · · , bn_ 1Xn)

-1 -1=«ax1b1)b1 x2b2 ,· • • , bn_ 1xn)
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3.A.4.2 Definition Let P, Q be two pregroups. A function

ep : p .... Q is called a morphism of pregroups if, for all x, y € P such that

xy is defined, we have ~(x)ep(y) defined, and ep(xy) II ~(x)ep(y).

The class of pregroups with their morphtsms constitutes a category of

groups and homomorphisms. There exists, by abstract nonsense (the Ad­

joint Functor Theorem), a functor coadjoint to the functor of inclusion.

This gives the universal gr(JUp U(P) of a pregroup, i.e., U(P) is a group,

and there Is a specific morphism L : p.... U(p) , such ~t, for every group

G ~ every morphism ep : p.... G, there exists a U1l:ique homomorphism

VI : U(P) .... G such that ep =VI 0 L.

3.A.4.3 Let S be the group of permutations of R(P), 'Then A is a

morphism of Pinto S.

, Proof: Sinee ~l is the identity function of R(P) into itself, aDd

AX 0 Ax-l == Ax-l 0 AX =Al ' by 3.A. 3.1, every AX belongs to S. Thus,

3.A.3.1 may be interpreted as saying that i\ is a morphism.

3.A.4.4 By the Wltversal property, A extends uniquely to a homo­

morphism, also denoted i\, of U(P) into S. We denote the value of i\ on

g € U(P) , by i\ : R(P) .... R(P}., g
Since L(P) generates U(P), each g € U(P) can be written as g "

L(xi )t(x2) · · · L(Xn), where (xl' x2 ' · · · ,xn) Is a word in P. After ap­

plying reductions to this word, we obtain a reduced word (Xl' · · • , xn:)

such that

g =L(X1)L(X2) • • · L(Xn)·

We denote by A, the word (1) of length one. We have the formula:

i\ ([A]) =: A (A ( ••• (A ([A]» ...» =[(Xl' x2 ' ••• ,X )].
g Xl x2 xn n
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Here, [.] denotes the ~-equivalenceclass. Each application of a

here is in the case 3.A.2.12(1).

In this manner, g determines by itself the class of reduced words which

represent g. Thus:

3.A.4.5 Theorem: If P is a pregroup, then each element g € U(P) ,

the universal group of P, can be represented as a product xlx2 · • · xn of

a reduced word in P, (xl' . . . ,xn). Two such reduced words represent

the same element of U{P) , if an only if they are ~ equivalent. (Here we

have identified x € P with L(X) € U(P} to simplify the notation.)

Proof: We have just proved the "only if." The "if" is the trivial
-.- -1 -1

computatIon that, if g =x1x2 • · · xn ' then g == (xl a1) (at x2a2)· · · (an_1xn).

3.A.4.6 Corollary: A pregroup P is contained faithfully in its uni­

versal group U(P}.

This means that the specific morphism L ': P -. U(P) is injective. This

follows from the theorem, since no word of length one 1s equivalent to any

other word.

3.A.5. Examples

3.A.5.1 The most standard example of a pregroup is ~de of three

groups A, B, C and of two monomorphisms cf': c ....A, VI: C~B. Identify

;(C) with 1/1(C); then A nB =C. Let P =A UB. The 1 and the inverse are'

obvious; the product is defined for two elements x, y if and only if the two

belong to one or the other of A or B. The axioms (1) through (4) are clear­

ly satisfied. For axiom (5), it breaks into simple cases easy to verify. The

universal group is the free product with amalgamation A *C B.

3.A.5.2 Here is a similar case but more general. A tree of groups

consists of:

(a) A set I, partially ordered by <, with least element, such that for
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all i, j, k € I, if i S k and j S k, then either i :S j or j :S i .

(Such an ordered set is a sort of abstract tree.)

(b) A class of groups {Gi} indexed by i E: I.

(c) For all i, j € I, if i < j , a monomorphism <Pij : Gt - Gj •

This structure is to satisfy the condition that, for all i, j, k € I, if

i<J<k, then

29

We can construct, as above, the union P of all {Gi}, identifying x € Gi
with fIli.(X) E G.• The reader can verify that, by virtue of the properties of

. J J
the tree, with the obvious operations, P is a pregroup. The universal

groups of such pregroups include all ordinary free pr~ctswith amalgama­

tion with many factors.

3.A.5.3 Consider a free amalgamated product A *c B. Let P be the

subset of all elements that can be written bab' , for some b, b' E B, a E A;

thus, P contains A and B and somewhat more. Say that the product xy of

two elements x, yEP is defined, when xy € P. Using the structure (by re­

duced words ~ A U B, etc.) of A *c B, we can prove that P is a pregroup.

The universal group of P is again A *c Bj but the structures of A *c B by

words in P is different from that by words in A U B.

3.A.5.4 Consider a group G with subgroup H. Let P be the set G,

but define multiplication of x and y if and only if at least one of {x, y, xy}

belongs to H. This is a pregroup, and its universal group Is· not too like a

free amalgamated product.

3.A.5.5 Let G be a group, H a subgroup, and fIl : H -.. G a mono­

morphism. Construct four sets in 1-to-1 correspondence with G:

-1 -1G, x G, Gx, x Gx'-

Identify h E H c G, with x-1;(h)x E: x-IGx . Define multiplication between
-1 -1 ' -1

G and G, G and Gx, x G and G, x G and Gx, Gx and x G, Ox and
. -1 -1 -1 -1 -1 -1x Gx, x Gx and x G, x Ox and x Gx, by cancellation of xx and

multiplication in G. By the formulas:
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-1 -1hx =x q,(h) , and xh =;(h)x ,

which follows from identification of H with x -l«/>(H)x , multiplication is

defined in all cases when one factor belOngs to H. This monstrosity is a

pregroup, whose universal group we shall call GH~ ep •

3.B Bipolar Structures and Finite Amalgamated Subgroups

We now consider a kind of combinatorial group-theoretic structure

which is more specialized than that considered in the preceding section.

It is a generalization of the situation of a free product with finite amalga­

mated subgroup.

3.B.1 A bipolar structure on a group G is a partition of G into six

disjoint sets, termed

F,S,EE,EE*,E*E,E*E*

satisfying the axioms below. We let X, Y , Z be symbols standing for the

letters E or E* and suppose that, U X • E or E*, then X* II E* or E,

respectively.

Axioms:

1. F is a finite subgroup of G.

2. F U S is a subgroup of G in which F has index 1 or 2.

3. If f € F, g € XY , then gf € XY •

4. If s € S, g € XY , then gs E XY* •
-15. If g € XY , then g E XY •

6. If g € XY, h € Y*Z, then gh € XZ.

7. If g E G, there exists N(g) such that whenever gl' • • • ,g € G. n
and there exist XO' Xl ' • • • 'Xn such that gi € Xi-lXi' and g •

gtg2 • • • gn' then n S N(g).
8. EE* :f: ~.

Axioms 7 and 8 are to some extent optional in that much can be proved

without them. Axiom 7 implies that G is generated by "irreducible" ele­

ments, while axiom 8 implies a sort of nontriviality.
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The elements of F are, so to speak, the stabilizers of the structure,

while those of S, which may be empty, are the involutions.
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3.B.2 An element pEG is said to be irreducible, if either p € F US,

or p E XY, such that p cannot be written p =gh for g E XZ, h E Z*Y.

That is, an element p is irreducible if axiom 7 holds with N(P) =1.

3.B.2.1 Every element of G is a product of finitely many irreducible

elements.

This follows from axioms 7 and 6.

3.B.2.2 If g E XY , P E YZ, and p 1s irreducible, then either

gp E F US, or gp E XW for some W.

Proof: The other possibility is gp E X*W. By axiom 5, g-1 EYX.
-- -1

Then, from the definition, since p =(g ) (gp) , it cannot be irreducible.

3.B.2.3 Dually, if g EXY, P E ZX, and p is irreducible, then

pg € WY for some W or pg E F US.

3.B.2.4 If p E XV, q E YZ are both irreducible, then pq is in

F U S U XZ and is irreducible. If pq E F US, then pq E F when X =Z,

and pq E S when X =Z*.

Proof: If pq E F , then, by axioms 5 and 3, q ~ p-1(pq) E 'YX, and

so X == Z. All the other parts of this proposition have been proved in

3.B.2.2 and 3.B.2.3 ~cept for the irreducibUity of pq. If pq is not ir­

reducible, then it belongs to XZ and pq • gh, for g E XW, h E W* Z for
: -1

some g, h; and W. We then have p = g(hq ), and, by axiom 5 and

3.B.2.3, we have hq-1 E W*U for some U or hq-1 E F US. It cannot

happen that hq-1 E W*U since p is irreducible. If hq E F, then axiom 3

applied to p == g(hq-1) and axioms 1, 3, and 5 applied to q =[h-l(hq-1)]-1,

show that p E XW and q E W* Z, contradictory to p E XY, q E YZ. On the
-1 .

other hand, if hq € S, then we apply axioms 1, 4, and 5 to the same prod-

ucts to see p E XW* and·q E WZ, which is again a contradiction. Hence

pq must be irreducible.

3.B.2.5 If p E XV and q E F US, p being irreducible, then pq is ir­

reducible.

The proof is very similar to that of 3.B.2.4.
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-1
3.B.2.6 If P is irreducible, then so is P •

3.B.2.7 If a, b, c, ab, bc are irreducible, then abe is irreducible

unless b € F U S.•

Proof: If b E XY , then ab E F U S or ab E ZY , by 3.B.2.4 and 3.B.2.5.

If ab € F US, then abe is irreducible, by 3.B.2.5 and 3.B.2.6. If ab E ZY,

then if c E F US, then abc is irreducible by 3.B.2.5; while, if c (F U S,

then since bc is irreducible, we must have c ~ YW , in which case we ap­

ply 3.B.2.4, having ab E ZY to show abc is irreducible.

3.B.2.8 If a, b, c, d, ab, be, cd are irreducible, then either abc or

bed is irreducible.

For, by 3.B.2.7, otherwise both b and c belong to F US, so that

be E F US, and then by 3.B.2.5 and 3.B.2.6, both abc and bcd are irreducible.

3.B.3.1 Let P consist of the irreducible elements of G. Let D con­

sist of those ordered pairs (a, b) E P X P , for which the product in G,

ab E P. Then P with 1, inverse, and multiplication as in G, but restricted

only to D, 1s a pregroup.

Proof: This follows easily from the fact that G is a group and from

propositions 3.B.2.6 and 3.B.2.8.

We can now speak of reduced words in the pregroup P; it turns out that

a word (PI' · •• ,Pn) is reduced if and only if, when n > 1, there exist

Xo' • · · , Xn ' such that Pi E XT-lXi.

3.B.3.2 Let (PI' • · · , Pn) and (Ql' · • · , Clm) be two reduced ~ords

in P such that

Then m =n and there exist Co • 1 , c1 , . • . , c 1 E F US, c =1 such
-1 n- n

that, for all i, CIt • ci _ 1PtCt ·

Proof: We assume n S m and prove the proposition by ~ductionon

n.
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If n =1, we must have m =1, since PI =qlq2· • , <1m is irreducible;

it also follows that PI =ql •

For n 2: 2, if we have PtP2 • • • Pn-IPn =qlqa· • , <1m =g , then
g E XY for some X and Y , and so Pn E UY , <1m E VY for some U and V,

-1 -1and so q p E VU or F US, and a P is irreducible, by 3,B.2.4. If
-1 m n am n -1

~Pn E VU , then (ql' qa' • • · , ~-1 ,qmPn ) is still a reduced word

since <1m-I € WV*; then we have

-1
PtPa, • • Pn-l =qtq2 • • • CIm-l(<lmPn ),

and so by induction, n - 1 =m, in contradiction to the assumption n Sm.
-1 -1

Therefore, ~Pn E F US; then the word (Ql' qa' • • • , <1m-I(<lmPn »
is reduced; and so, by induction, n - 1 =m - 1, and there are Co =1,

c1 ' C2 ' • • • , cn-l E F US, such that
-1 .<It =ci _ 1Ptcl for 1 < n - 1

-1 -1
~-1(~Pn ) =cn-#n-l •

By defining c 1 =(0 P-1)-1 =P a-I, we complete the inductive step.n- ~ n n~

3.B.3.3 G is the universal group of the pregroup P of the irreducible

elements in Its bipolar structure.

, This follows from 3.B.3.a and 3.B.2.1

3.8.4 Define, when we have a Pipolar structure on a group G,

G1 • F U {irreducible elements of EE}

G2 =F U {irreducible elements of E*E*}

3.B.4.1 G
1

and Ga are subgrollps of G •

.This follows from axioms 1, 3, 5, and from 3.B.2.4 and the observation
-1 0

that, if x, y € EE , then xy is not an element of S; otherwise y :I X (xy)

would belong to EE* , by axioms 5 and 4.

3.B.4,2 If S * ~,then G ={F U S} *F Gt ,
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Proof: Let s E S. Then the irreducible elements of the bipolar

structure consist of

G
1

c F U EE

Gts c S U EE*

sGl c S U E*E

sGl s =G2 c F U E*E*.

G1 c F U EE

Comparing this with the example 3.A.5.3, we see that the pregroup of ir­

reducible elements is isom~rph1cwith the pregroup of this example, where

A is G1 and B is F US. Hence the universal group is the free product

with amalgamation.

3.B.4.3 If S I; ~ and there is no irreducible element of EE* , then

G =G1 *F G2 ·

Proof: In this case, the pregroup of irreducible elements is simply

G1 U G2 , and thus we are essentially in the situation of example 3.A.5.1.

3.B.4.4 If S =~, and there Is an irreducible element t E EE* , then
-1 -1

tFt c G1 , and, if ; : F - G
1

is defined to be the function f - tft ,

then G i:: G1 F~ ; •

Proof: If f E F, then tf is an irreducible element of EE* by axiom
-- -1

3 and 3.B.2.5, and hence, by 3.B.2.4, (tf)t is an irreducible element of

EE or an element of F and hence in G1 . We can build up the entire pre­

group of irreducible elemen~ out of t and G1; if x E E*E, for example,
-1then tx E G

1
c F U EE, and so x =t (tx); the irreducible elements then

consist of:

t-1G C E*E
1

t-1G t =G c F UE*E*1 2

-1 -1These four sets are all disjoint, eXcept that G1 nt G1t =F =t (~(F»t.

Comparing with example 3.A.5.5, we see that this pregroup is exactly

isomorphic to the one described there, and hence the universal group G

can be named as we named it there, G1 F~'
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3.B.5 If G has a bipolar structure satisfying axiom 8, the nontriviality

axiom, then G can be written in one of two forms:

where F is a finite subgroup of G and where in the first case, F, is

properly contained in both A and B.

Proof: This is a summary of 3.B.4. If, say, F = B in the first case,

then G =A, and,going back to 3.B.4.2 and 3.B.4.4 we see that G would

consist only of F U S or F U EE, in both of which cases EE* =1', con­

tradicting axiom 8.

3.B.6 Topological Remark

Let K
A

and ~ be complexes having fundamental groups A and B and

intersecting in a connected subcomplex having fundamental group F =A n B.

Then, by Seifert's [5] or van Kampen's [7] Theorems, the fundamental group

of KA U~ is A *F B.

If KA contains two isomorphic subcomplexes ~, KF with fundamental

groups F and q,(F) and we attach to KA the cylinder ~ x [0,1], identify­

ing ~ with ~ x 0 and ~ with ~ xl, we obtain a complex with funda­

mental group AF~cjJ. This too follows from the Seifert-van Kampen Theo­

rem.

~us the combinatorial situation of bipolar structure is somewhat paral­

leled by a topological situation. The topological picture is very useful to the

intuition. The exact picture of the case when S * ~ is a bit complicated

and involves the attachment of the mapping cylinder of a connected two­

sheeted covering space to another space. It might be an interesting re­

search project to investigate what kinds of ident~icationspaces have funda­

mental groups with natural structures similar to bipolar structures.



4 THE THEORY OF ENDS

4.A Ends of Groups

The subject can be approached either from a combinatorial or a topolog­

ical point of view. Here we choose the former.

4.A.l Let G denote a group. By A or A(G) is meant the Boolean al­

gebra of all subsets of G. Then A + B denotes the symmetric difference of

A and B; AB dellotes the intersection. (There 1s some chance of confusion

here between intersection and the set of all products ab in G. In this sec­

tion AB always means intersection.) Further, 1 denotes G, the unit ele­

ment of A, and 0 denotes ,,; A* =1 + A .. G\A 1s the notation for comple­

mentation. On A there are compatible left and right actions of G as

automorphisms of A •

4.A.2 For g E G, let Vg(A) =A + gA. For this simple operation we

can write several rules:

vg(A + B) =\(A) + \(B~

Vg(AB) =Vg(A)B + (gA)Vg(B)

Vg(l).. Vg(O) II; 0

Vg(Ah) =Vg(A)h

V (hA) .. h V . 1 (A)
g h- gh

V leA) '= g-lV (A)
- gg.

Vgh(A) =Vg(A) + gVh(A)

vg(A) II 0 for all g .~. A = 0 or A II 1

36
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4.A.3 Let F denote the subset of A consisting of all finite subsets of

O. F is an ideal in A , closed under left- and right-G operators and

closed under V for all g.
g

Let Q(G) denote the set of all those A E G, V (A) E F. It follows from
g

the properties of Vg that Q i$ a subalgebra of A , containing F and that

Q is closed under left- and right-G operators.

Let E(G) denote Q(G)/F. Then E is a Boolean algebra with right G

operators; the induced left-G action on E 1s 4'lvial; and in fact E is Just

the subgroup of AIF left fixed by left-G action.

The structure theorem for Boolean algebras states that the maximal

ideal space E of E Is a O-dimensional compact Hausdorff space and that

E can be identified with the class of elopen sets of E. The space E Is

called the space of ends of G; the number of ends is then (identifying all

infinite numbers) the rank of E as vector space over GF(2).

4..A.4 Let T be any set generating G. It follows from the properties

listed in 4.A.2, that Q(G) can be defined only in terms of T. That Is

Q(G) ={A EA I for all t E T, Vt(A) E F}

The graph of G with respect to T, r(G, T), consists of two sets,

r 0 =G and .r 1 =T x G, and two functions v1 ' v2 : r 1 -+ r 2' def~ed by

v
1
(t,g) =g, v

2
(t,g) =tg. Then T generates G if and only if r Is con-

ne~ted. There is a right action of G on the, graph r. ~\ .
We can look at mod 2 cochatns on r. The O-dimensional cochains can

be identified with- A(G). Given such a O-cochain A, its coboundary has the

val~e oil an edge (t, g) equal to 0 if g and tg lie both in A or both in A*

and has the value equal to 1 If g and tg lie in different sets A and A*.

~s

:. OA"= {(t,g) I g € v _l(A)}.
I t
. .

~ This shows that when T 1s a finite set, then A E Q(G) if and only if oA Is

finite.
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4.A.5 At this point we could say a word about locally finite graphs r
in general. By Q(r) is meant the set of those O-cochains A whose co­

boundary ()A is finite; and by E(r) is meant the Boolean algebra

Q(r)/(fintte O-cochains); and by an end of r is meant a maximal ideal in

E(r).

Thus, in the case of the graph of a group with respect to some finite

generating set, we can identify the ends of the group and the ends of the

graph.

4.A.6 We now list more or less classical theorems alx>ut the ends of

groups, ci. [6], [10]. Here we use the abstract definition, not including

any assumption on finite generation unless explicitly stated. We shall then

indicate proofs.

4.A.6.1 If N Is a finite normal subgroup of G, then E(G) F:1 E{G/N).

4.A.6.2 If H is a subgroup of finite index in G, then E(G) ~ E(H).

4.A.6.3 If G contains a finitely generated, infinite, normal sub-

group H of infinite index in G, then E(G) ~ Z2' (i.e., G has one end).

4.A.6.4 If there is A € E(G) , A :i: 0 and A :i: 1 , and there are infintte­

ly many g € G such that Ag =A and G is finitely generated, then G has

two ends.

4.A.6.5 If G is a finitely generated group with two ~nds, then there

Is a finite normal subgroup N such that G/N is either infinite cyclic or

isomorphic to Za * Z2. (= the infinite dih~dral group).

4.A.6.6 If G is a free product with finite amalgamated subgroup, .

G =A *F B, where F is a proper subgroup of both A and B, and of index

~ 3 in B, then G has infinitely many ends. Also if G II AF~ep ,where F

is a proper finite subgroup of A, then G bas infinitely many ends.

4.A.7 Proofs

Proof of 4.A.6.1 N a finite normal subgroup of G implies E(G) ~

E(G/N).

Let q, : G ... G/N be the quotient homomorphism. For A C GIN, define

f(A) =q,-l(A) C G. Then f induces maps A(G/N) ... A(G), F(G/N) - F(G),
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Q(G/N} - Q(G), and E(G/N) - E(G). Let H be a set of coset representa­

tiyes of GIN in G, containing 1 € N. Define, for BeG, s(B) =ep(B nH);

i defines maps on all levels, in particular from E(G)"" E(G/N). The one

Point which may not be obvious is that if V (B) is finite for all g € G, then
i g

\';h(ep(B n H» is finite for all h € G/N. .

To see this, let B' =ep -l(tj)(B»; thus B' is a union of casets of N. If we

k\now that V (B') is finlte for all g, then it is easy to see ~h(ep(B' nH» is
I g

finite for all h. Now,

B' + B =ep-1(cp(B»\ B

= U {nB}\B
n€N

c U {nB} \n {nB}
nEN nEN

= U {(B + nB)}
n€N

= U {(V B)}
n€N n

This latter Is a finite set. In this computation, we used the identity, valid

, in any Boolean algebra,

k . k k
U (A + Bt ) = A U U {Bi}\A n101 {Bi }.1=1 t=1

I •

\
TIlls means now that B' differs from B by a finite set, and so B' € Q(G)

jf • € Q(G).
-1ving now s from E(G) to E(G/N) , we see that sf, i.e., A -. tj) (A) -.

I/l(Hn l/l-l(A», is the identity map and that, for sets of the form B' as above,
-1fs, .e., B' - ep(H nB') -. ep (ep(H n B'», Is the identity. Hence, on the

E ltivel, where every element of E(G) is representable by B' , f and s are

inv~ses of each other. .
\

Proof of 4.A. 6.2 H C G, [G : H] < 00 , implies E(G) ~ E(H) •
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Lemma: This is true under the additional hypothesis that H is a normal

subgroup of G.

Let A c G; the map f : A(G) -+ A(~) , defined by f(A) • A n H induces

map~ on all levels, in particular from E(G) to E(H). Let {gl' · • · , gn}

be representatives of the cosets Hg with gl II 1; for B c H, define s(B) =
glBU. · · U gnB C G. Clearly s induces a map A(H) -+ A(G) such that

f(s(B» = B; it remains to be proved that s induces a map on the E level

and that, for A € Q(G) , sf(A) + A is finite; this will show that on E ~ s

and f are inverses of each other.

Let B € Q(H) so that, for all h € H, Vh(B) is finite; we compute

Vg(S(B» II Vg(glB + • · • + gnB)

n
= 1: (g.B + g (.)htB)

i=1 1 T 1

n

II ~ g'T(ifh (B)
i=l i

Where ggi II g'T(i)hi , hi € H, and 'T some permutation of {I, . • • , n}.

Then Vg(S(B» is finite since Vhi(B) is ftni~e for all lIt. This computa­

tion shows that s induces a map E(H) -+ E(G).

Given A € Q(G) ,

sf(A) + A =s(A n H) + A

n n
= ~ gi(A n H) + A n ~ giH

t=l t-l
n

I: ~ (giA + A) n (gtR)
1=1

n
= ~ V (.f\) n (giH)

illl gi

which is finite. This shows sf induces the identity on E(G). This proves

the lemma.
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Now for the proof of Theorem 4.A.6.2 itself: If H is of finite index in

G, then let K be the intersection of all conjugates of H. Now K is still

of finite index in G; we have in fact [G : K] ~ [G : H] !. And' K is a nor­

mal subgroup of G, from which it follows that K is normal in H as well.

By the lemma E(G) ~ E(K) and E(H) ~ E(K); so E(G) ~ E(H).

Proof of 4.A.6.3 If H normal in G, [G : H] =00, H infinite, finitely

generated, then E(G) =Za ·
Let A e: Q(G). It must be shown that A or A* is finite.

Let T ={hi' .•. , hn}, be a finite set of generators of H. Let S be a

set of representatives of the cosets G/H. For s e: S, let A =A n (Hs).s
Then, for hi € T we have

Vh (A) = U Vh (A );
i se:S i s

and since A € Q(G) , we conclude that, for all but finitely many s,

Vh (A ) • ~.
1 s

Hence, for all but finitely many s and for all hi € T " we have

V
h

(A ) II ~;
i s

. -1
in this latter case, (As)s cHand has for all hi € T the formula

-1
) V

h
(A)s =o.

i s

It follows that, by the last rule In 4.A.2 and the computations in 4.A.4,
-1(A)s =~ or =H. Thus, for all butftnitely many s € S, A =~ or A •s, s s

Hs; in particular, there exists s € S, such that A • pj or A =Hs., s s
If A =pj for one s and A , Is infinite for another s' , thens s

V _l(A) II A + s's-lA
s's

·intersects s'H in A' + s's-1A =A' and so is infinite, contradictings s s .
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A € Q(G). Thus, if As • ~ for some s, then As is I§ for all but finitely

many s and is finite for the remaining s. Hence A is finite.

Similarly, if A • Hs for some s, the above argument, on A*, shows

A* is finite.

Remark to 4.A.6.3 This theorem applies to groups G which may

not be finitely generated themselves. For instance, if Q is the additive

group of rational numbers, which is an extension of the integers (a finite­

ly generated, infinite normal subgroup) with infinite quotient group, we see

that E(Q) ~ Z2. We could therefore derive a result such ~s this: Let A .

be any subset of Q such that, for all n, A differs from

by only some finite set. Then, either A is itself finite, or Q - A is finite.

This is also an. instance of a group with one end being a direct limit of

groups with two ends.

Other peculiar cases of infinitely generated groups can be considered

here. In the additive group G • Z of those rationals mod 1 whose de-noo

nominators can be expressed as powers of n, for n > 2 we can describe a

nontrivial element of E(G) by the element A € Q(G) consisting of all ele­

ments of G that can be written in the form

a
Ii
n

where a == 1 (mod n).

It is easily proved that the difference in the sets

A and A+2..sn

is finite and, since

generates G, this shows A € Q(G); and, clearly, both A and A* are infinite.
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From this example we can generalize to show that Z has infinitelynoo
many ends. This kind of group gives counterexamples to show that "finite-

ly generated" cannot be dispensed with in theorems 4.A.6.3, 4.A.6.4, and

5.A.I0.

Proof of 4.A.6.4 G finitely generated, A € E(G), nontrivial, such

that there are infinitely many g € G with Ag II A, implies G has two

ends.

A is represented by an element, also called A, in Q(G) such that

neither A nor A* is finite, and, for infinitely many g, Ag + A is finite.

We consider the graph r of G relative to a finite set of generators; in

this we have OA finite, since A € Q. There is therefore a finite connected

subgraph a of r, containing all the edges of BA.

Let r A be the graph consisting of 4 and all the vertices in A and all

edges whose ve~ces are in A or ~. Then r
A

is a connected graph;

otherwise there would be a proper subset ol A with empty coboundary.

Since G acts freely on r, there are only finitely many g € G such that

a nag* ~. Hence there is g € G with A + Ag finite and .A nag =~; for

this g, not both A - Ag and Ag - A can be nonempty (Figure 4.1).

A

Fig. 4.1

The argument for this is based on geometric reasoning; we must have

both A n Ag and A* n A*g infinite and hence nonempty. If A - Ag ¢ ~,

then a path in rA joining points in A - Ag and A nAg exists and hence

must intersect OA C Ag; the place where the intersection occurs happensg
-well within A. A similar argument in A* shows, if Ag - A:/:_, that some
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part of ag lies well,within A*. A path connecting, these two, within ag,

since 4g is cOlUlected, will now intersect tJA c a; and so An ag would

not be ~. .
-1Therefore, either A c Ag or Ag cA. We can, by looking at g ,if

necessary, assume A c Ag , and we have the further fact, since 6 nag =
16, that tJA n cSAg =~. Let B =Ag - A; this is finite, and on looking at

+00
C = U Bgn

n=-oo

we can see easily that tJc : ~. It follows that C =G then.

Suppose now D is any element of Q(G). Since OD is finite, there is k

so that all vertices of some finite connected graph N containing OD lie

in

+k nC
k

: UBg.
n=-k

tf.'

An argument similar to the one involving A and Ag shows that there are

four possibilities:

DeCk so that D Is finite.

D* c Ck so that D* is finite.

. Ag-k c D and D - Ag~k is finite so that

D + A =D + Ag-k + (Ag-k + A) is finite.

A*gk+l c D and D - A*gk+l is finite, ~o that

D + A* is finite.

Thus an element of Q(G) ean represent only one of four elements of

E(G) , and G has then exactly two ends.

Comment on 4.A.6.4 If we look upon E(G) as a set on which G

acts and suppose G has more than two ends and that G is finitely gen­

erated; then 4.A.6.4 says the isotropy group I of any nontrivial element
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of E(G) is finite. Therefore the orbit of any nontrivial element which is

in l-to-l correspondence with the cosets Gil is infinite. This implies

E(G) is infinite and that G acts in a highly nontrivial way on E(G). Thus

we obtain the theorem that a finitely generated group with more than two

ends has infinitely many ends.

Proof of 4.A.6.5 To say that G is finitely generated, having two

ends, implies there is a,finite normal subgroup N <I G, such that GIN ~ Z

or ~ Za * Za-
Let A be an element of Q(G) such that A and A* are both infinite.

For all g € G, either Ag + A is finite or Ag + A* is finite. The set H of

those g € G with Ag + A finite is a subgroup of index 1 or 2 in G.

We define now a function ep : H - Z as follows. Let f : G - Z have

f(g) = 1 for g € A and f(g) =0 for g € A*. Let, for g € H, f (a) =1 ifg
a € Ag, and =0 if a € A*g. Define

i..e., f/>(h) =the number of elements of Ah - A minus the nuInber of ele­

ments of A - All. We see q, is a homomorphism, by realizing that

fbg - f
g

is the translation of f
h

- f by g and so has the same integral, so

that

The-kernel N of ep is Seen, by considerations in the proof of 4.A6.4,

to be finite, and so q, maps onto an infinite cyclic subgroup of Z.

If H has index 2 in G, then it is possible to extend c/J into the finite

dihedral group by taking account of the possibility that Ag == A* modulo

finite sets.

4.A.8 Computations and the Proof of 4.A.6.6

To make computations of ends, it is easiest to work with groups with a

.. bipolar structure.
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Let G be such a group and {F, S, EE, EE*, E*E, E*E*} be a bipolar

structure on it. By the nontriviality axiom, EE* :j. ~; it follows from

axiom 5 that E*E :;:. _, and from axiom 6 that EE* and E*E are both in-

finite.

Let A = EE U E*E. It follows that both A and A* =G - A are infinite.

Let g be any irreducible element of the bipolar structure. If g € F US,

then by axioms 3 and 4, gA =A. otherwise, by 3.B.2.2 and 3.B.2.3,

gAcAUFUS,

-1
and, since g Is also irreducible,

g-IAcAUFUS,

so that A c gA Ug(F US). Thus

gA - A c F U S and A - gA c g(F U S).

Hence V (A) :; A + gA c F U S U g(F U S) is finite for all irreducible ele..g
ments g. Since G is generated by Its irreducible elements, therefore by

4.A.4, A E Q(G); and A represents a nontrivial element of E(G) since A

and A* are both infinite. Thus:

4.A.8.1 If G has a bipolar structure, then G has more than one end.

Let G
2

be the subgroup of G consisting of F U {irreducible elements

of E*E*}. If we suppose that F is of index ::: 3 in G2 , we can find
-1 .

a, b € G2 - F and ab f. F. Then consider A :; EE U E*E as above; the

-sets A, Aa, Ab are then all disjoint elements of Q(G) and thus represent

three distinct nontrivial elements of E(G). We combine this with .6.4

to see:

4.A.8.2 If G has a bipolar structure and F is of index 2:: 3 in G
2

,

then G has infinitely many ends.

A rather simUar computation ~an be made when S ~ _; EE* contains

an irreducible element x, and Ga - F contains some element a. In this
-1 -1 -1case, xa is an irreducible element of "EE*; Ax ,Aa x ,and A*

are then disjoint. Therefore, as in the earlier case, G has infinitely many

ends:

'. '
: ... f if. -,1,"

.. ," 't. ~ : ~ ~.I. ~ •
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4.A.8.3 If G has a bipolar structure, S = ~, F of index ~ 2 in G2 ,

and EE* contains some irreducible element, then G has infinitely many

ends.

We now describe some particular instances of bipolar structures.

(i) Let G • G1 *F G2 where F is a finite group properly contained in

each of Gland G2 • Thus G is the universal group of the pregroup

G1 U G2 ; considering words In that pregroup, if X and Y stand for E or

E* , let XY constst of all those elements of G represented by reduced

words (xl' · • · ,xn) in G1 U G2 , where

if X • E , Xl E 01 - F

if X =E* , Xl € 02 - F

if Y • E , xn E G1 - F

if Y =E* , x
n

E G
2

_. F ·

It is easily verified that the resultant structure, with S =~, is 'a bipolar

structure on G.

(il) Let G =G1 F..§CP where F is a finite subgroup of G1 • Then G is
-1the universal group of the pregroup P consisting of G1 , xG1 , Gtx

-1 -1xG1x ,where F is identified with xep(F)x • We construct a bipolar

structure, making XY consist of elements represented by reduced words

(u1 ' • · • , un) in P such that

-1
if X =E , u1 E (x01x - F) U xGl

-1
if X • E* , u1 E (G1 - F) U Glx

-1 -1
if Y • E , un E (xG1x - F) U G1x

if Y • E*', un E (G1 - F) UxG1 •

This too produces a bipolar structure with S I· _.
Now, finitely generated groups with two ends have been characterized

in 4.A.6.5, and it results that each such group G can be written as either

. of two cases:

(i) There is the case G • G1 *F G2 where F Is of index 2 in both 01

and G2 • This is the case when G has a finite normal subgroup F with
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quotient group Z2 * Z2. This latter group has a subgroup of index 2 which

is infinite cyclic; the infinite cyclic group has two ends clearly, and so by

4.A..6.1 and 4.A.6.2, any group of this form definitely has 2 ends.

(ii) Or there is the case where G =F FS;, where F is finite and ep is

some automorphism of F. This is the case when G has a finite normal

subgroup F with infinite cyclic quotient group. Every such group has two

ends.

We now know exactly how many ends G has if it can be written as G ==

G
1

*F G
2

or G =Gt F.§ep. If it falls into one of the immediately preced­

ing two cases, then G has two ends; while if these cases are not so, then

the corresponding bipolar structure satisfies the hypothesis of A.4.B.2 or

A.4.8.3, and so G has infinitely many ends.

In particular, this completes the proof of 4.A. 6.6.

4.B Results in Graph Theory

A graph r consists of two sets, rO and r
1

of ~'verticesJland "edges"

and two functions vI' v2 : r1 -... rO' "first" and "second" vertex. The graph

r is said to be locally finite if viand v2 have the property that the inverse

image of each element of rO is finite.

A typical example is the graph of a group G with respect to a set T c G.

Bere rO =G, r1 • T x G , and v1(t, g) =g, v2(t, g) =tg. The graph r is

locally finite if T is finite, and it is connected (in the obvious sense) if T

generates G.

The Boolean algebra of all subsets of r O is called A(r); AS denotes

intersection. ·The group of all subsets of r1 under symmetric difference

is called B(r); if necessary we write X nY for the intersection of two

subsets of r1 since we do not conceive of B(r) in the form of a Boolean

algebra.

If A E A(r), X E: B(r), we define

AX" {e eX Ivt(e) E A}

XA· {e EX Iv2(e) E A}.
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These are elements of B (r); for A, B € A (r) and X, Y E B (r) we have as;.

sociative and distributive rules for ABX, AXB, XAB, (A + B)X, A(X + Y) ,

X(A + B), (X + Y)A.

We denote by 1 e:A(r), the set rO itself, for which we have rules lA II

At =* A, IX =Xl =X; and denote A* II I + A =complement of A.

For A € A(r), we define fJA € B(r), thus:

We' have the rules:

O(A + B) =oA + oB

c5(AB) =(c5A)B + A(OB)

O(A*) =OAt

An element A eA(r) is said to be connected if, whenever A =B + C,

with BC =0 and B:/: 0 # C, then (oB) n(OC) ¢ O. This is the same as

requiring that there exist a connected subgraph of r having vertices A.

The entire graph r is connected if and only if 1 is connected, if and

only if OA =0 implies A =0 or A = 1.

4.B.l If A, B E A(r), with 0 :;:. A c B and ~oA c oB, and B is connected,

then A =B.

Proof: B =A + (A + B), and, since A C B, we have A(A + B) =o. Thus,

if A + B ¢ 0, it must happen that OA n 6(A + B) * 0, but this contradicts

6Ac 6B.

Let Q(r) denote the set of those A E A(r) such that 6A is finite. Then

Q(r) is a subalgebra of A(r). Let lOA) denote the number of elements of

liA. Let M be the- subgroup of B(r) consisting of all fJA for A finite. Re­

calling the definition of th~ ends of a graph in 4.A, we see that, if r has

more than one end, then M is definitely smaller than 6(Q(r». The follow­

ing discussion could perhaps be extended by being less specUic about M,

but we have not done this in detail and so do not include it here.

.. An element A E: Q(r) such that 6A , M, will be called nontrivial. Let

k be the minimum of all 1fJAI for A nontrivial, and call k the width of r.
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If r Is connected and has more than one end, then its width is a well-de­

ter~inedpositive integer. An element A € A(r) which is nontrivial and

whose 16A1 =k, the width of r, will be called narrow. We went to derive

some lattice-theoretic properties of the set of narrow elements of Q(r).

4.B.2 If A is narrow and r Is connected, then A Is connected.

Proof: If not, A could be written as a nontrivial disjoint sum B + C

whose boundaries were disjoint. Since 6A =eSB + eSc I. M, either eSB or

oC is not in M, say oB; since 0 '* C '* 1 and r is connected, eSc *0 and

so I eSB I < IeSAI ; thus A would not be narrow.

4. B. 3 (Descending Chain Condition) Let Al ::J Al ::> • • • be a descend­

ing sequence of narrow elements of Q(r) , where r is connected. Suppose

00

B= nA *0.
n=l n

Then B = A for some n.n

Proof: Let k be the width of r. If e € OB, then one vertex of e be­

longs to all A and the other is outside of all but finitely many A . Thus,. n n
there is n ,such that for all n ~ n , e € OA . Hence there are no moree e n
than k elements in OB since, if there were more, then almost all A

n
would have at least k + 1 elements in OA . It follows that oB is con­

n
tained in some eSA . By 4.B.2, A Is connected, and so, by 4.B.l, B =A .

n n n

4.B.4 Corollary There exists a narrow element A € Q(r) which is

minimal with respect to containing v € rO• That is, if v € B c A and B

is narrow, then B =A.

Otherwise there would (by the axiom of choice) exist a descending

sequence of narrow sets, all containing v.

4. B. 5 Theorem If A is narrow, minimal with respect to containing v,

and B is any narrOW element, then at least one of the following

X =AB, AB*, A*B, A*B*

haseSX€M.
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Proof: Suppose none has 6X € M. Let k be the width of r ; write:

o(AB) =A(OB) + (oA)B

o(AB*) =A(OB) + (oA)B*

o(A*B) =A*(OB) + (OA)B

O{A*B*) =A*(oB) + (oA)B*

using the fact that OA =oA*.

We deduce from this table that
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Io(AB) I + Io(AB*)I + IO(A*B)I + Io(A*B*) I :S 210AI + 210BI =4k.

We cannot have any JOX I < k since then, having OX I. M, the width of r
would be less than k. Thus all have IoX I ~ k and hence =k. Thus all

the sets

AB, AB', A*B, A*B*

are M-narrow. However, in that case, one of AB or AB* contains v and

is properly smaller than A, in contradiction to the minimality of A.

We shall summarize this discussion in one self-contained statement.

4. B.6 If r is a locally finite, connected graph with more than one end,

let

k = min {lOA I IA € Q(r), A and A* both infinite};

call A narrow if A and A* are both infinite and loA I =k. Then there

exists a narrow A such that, for all narrow B, one of

AB, AB*, A*B, A*B*

is finite.

Proof: We take A to be a narrow element which is minimal with respect

to containing some particular vertex. By 4.B~5, one of O(AB) , etc., say

o(AB), is O(F) for some finite set F; hence, r being connected, AB + F =
o or 1; it is impossible to have AB + F = 1 since A* is infinite and F is

· only finite; and so AB + F =0 or AB =F.
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4.B.7 Let A and B be narrow elements of Q(r) such that AB and

A*B* are infinite. Then AB and A U B =(A*B*)* are narrow.

Proof: Let k be the width of r. We note that AB and (AB)* ::> A*B*

are both infinite. Hence IO(AB) I ~ k; simUarly Io(A*B*) I 2: k. Writing

o(AB) =(l>A)B + A(OB)

l>(A*B*) =(ljA*)B* + A*(ljB*) = (OA)B* + A*(oB)

we see that

lo(AB)I + 10(A*B*)I ~ loAI + loBI =2k.

Hence Io(AB) I = Io(A*B*) I =k and both AB and A*B* are narrow, and,

since o(A U B) =6(A*B*), it follows that A U B is narrow.

We recall that E(r) is the quotient algebra of Q(r) by the ideal of fintte

subsets of ro.

4.B.8 Let 0 ¢ Q! C P * 1, where a,(3 € E(r). Let L(a,(3) ==

{'Y € E(r) J a c 'Y C P and ')I is representable by a narrow element C of

Q(r)}.
Then L(a, ~) ts closed under intersection and union, and, being a sublat­

tice of a Boolean algebra, is a distributive lattice.

The proof ts based on picking representatives and applying 4.B.7.

4.B.9 The set L(a,p) satisfies the descending chain condition. I.e., if

P ::> 'Y1 ::> y2 ::> • • • ::> 'Yn ::> • • • ::> a , where all 'Y1 are rep,,-esentable by nar­

row elements C € Q(r), there exists N, such that for n 2: N, 'Yn =)IN.

Proof: We can suppose for all n, 'Yn ¢ Ol, otherwise the conclusion is

clear. Represent ')It by Ct € Q(r) with Ci narrow. Then ')Ii ts also repre­

sentable by Di :I C1 n ... n Ct ' which is narrow by 4.B. 7, and we have

D1 ::> D2 ::> • • • ::> Dn ::> • •• •

Represent a by A € Q(r). Let S denote the set of vertices of edges

in oA; then S is a finite set. Now, Di , being narrow, is, by 4.B.2, con­

nected; furthermore, since 'Yta * * 0 (since 'Yi ::/: a) and 'Yta =- a *0, we

have DiA* :;:. 0 *DiA. It follows from connectedness of Dt that the two sets
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o(D.A) =(oD.)A + D.(OA)
1 1 1
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must intersect, and hence Di(OA) *0 and so Di n S:l=~. Therefore,

00 00

n D ::) n (D n S) *~
n=1 n n=1 n

since an intersection of a decreasing sequence of nonempty finite sets is

nonempty. By 4.B.3, then,

00

n D =D
1 n Nnil

for some N, and so for n ~ N, Dn = DN , and so Yn =')IN.

4.B.l0 Dually, L(a,p) satisfies the ascending chain condition.

Proof: This is equivalent to the descending chain condition on

L(fl*, a*).

4.B.11 (Boundedness of cna,ins in L(a,~». Given 0 =1= a c p * 1 in

E(r) , there is N :I N(a,l3) such that whenever

Yi ¢ "i+1 for i =1, · · · , n - 1, and Yi representable by narrow elements

of Q(r) for 1· 1, ... , n, then n::5 N ..

Proof: Because of the ascending and descending chain conditions on

L(a,{j), there is a chain in L(a,j3) which cannot be further enlarged:

such that if 0t c e C 6i+1 , e € L(a,p), then 0i = E or & =- 61+1 .

Now, if there were a longer chain

a C ')11 c ... C ')In C (j with n > N,

we Could, by the Jordan-Holder-Scbreier-Zassenhaus-Arttn theorem ap­

plied to L(a,p), refine the 6-chain to contain at least n-l nontrivial in­

clusions. This would contradict the maxtmality of the 6-chain.
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5.A The Structure of Groups with Infinitely Many Ends

Let G be a finitely generated group with more than one end. We have

seen exactly what kinds of groups have two ends, in 4.A.6.5; namely, a

group which has a homomorphism with finite kernel onto Z or Za * Z2 '.

If G has more than two ends, then, by 4.A.6.4, it has infinitely many

ends.

Let T be a finite set generating G and r the corresponding graph; we

note that G acts on r on the right and hence acts on Q(r) and E(r) on

the right.

There is, by 4.B.6, an element A € Q(r) which'is narrow and which is

minimal among narrow sets that contain some particular v € G • rO' Given

g € G, we note that lOAf • I OAg J so that Ag Is narrow, and thus, by 4.B.6,

at least one of the four sets

Ag n A, Ag n A*, A*g n A, A*g nA*

is finite. Since A, A*, Ag, A*g are all infinite, it is impossible that four

of the six possible pairs of these sets consist of finite sets. The question of .

which ones of these sets are finite thus partitions G into six sets. We shall

have to deal with the notation as follows:

Let E and E* be operators on A as follows: E(A) II A, E*(A) =A* ;

let EE, EE*, E*E, E*E* be the four symbols made by concatenating two

Qf {E, E*}; let X, Y , Z, etc., be variables standing for E or E* with the

convention that, if X stands for E or E* , then X* stands for E* or E,

respectively.

54
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Define F, S, EE, etc., as subsets of G, as follows:

55

F = {g € G I both Ag n A* and A*g n A are finite}

= {g € G J A =Ag in E(G)}

S ={g € G I both Ag n A and A*g n A* are finite}

={g € G I Ag =A* in E(G)}.

H=FUS
xy ={g € G - H I X(Ag) n YeA) is finite}

={g € G I X(Ag) c Y*(A) in E(G)}
¢

={g € G I YeA) ~ X*(Ag) in E(G)}.

~ese last three equivalent conditions define four subsets EE, EE* , E*E ,

E*E* of A.

We hereby explicitly assume that we have a group G with infinitely

many ends.

5.A.l F is a finite subgroup of G.

This follows from 4.A.6.4 since F is the isotropy group of the element

A in E(G).

5.A.2 H =F U S Is a subgroup of G in which F has index 1 or 2.

This is clear.

-1
5.A.3 If g € XY , then g € YX.

For, X(Ag) c Y*(A) in E(G). Multiply on the right by g-l" to get
:I:

X(A) c Y*(Ag-l), which implies
¢

-1g €YX •

. 5.A.4 If g € XY and f € F, then gf € XY •

For, in E(G) , X(Ag) ~ Y*(A), and Y*(Af) ~ Y*(A). So, by multiplying

the first inequality by f:

X(Agf) ~ Y*(Af) =Y*(A)

and hence gf € XY •
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5.A.5 If g E XY and s € S, then gs E: XY*.

For, in E(G), Y*(As) =Y*(A*) =Y(A) , so that

X(Ag) ~ Y*(A) implies X(Ags) ~ Y*(As) = YeA)

and gs E: XY* •

5.A.6 If g E XY and p E Y*Z, then gp E XZ.

For, we have, in E(G) ,

X(Ag) C Y*(A) so that X(Agp) C Y*(Ap)* ¢

And also

Y*(Ap) C Z*(A).

*
Hence,

X(Agp) c Z*(A) or gp € XZ.

*
We have at this point proved all the axioms of a bipolar structure, ex-

cept for the boundedness assertion and the nontriviality axiom, axioms 7

and 8.

Let Xl' · · · ,Xn+1 be symbols, and let gt € Xixt+l' so that for all t,

Xt(Agt) ~ Xi +1(A)

or

XI (Aglg2 · · · g ) C X2(Aga • • • g ) c .. · C X (Ag ) C X +l(A).n*. n* ¢ n n* n

We recognize now the fact that there Is an upper bound on n, given p =
gtg2 • • • gn' is a consequence of 4.B.ll, tbat chains of narrow elements

between two narrow elements have a limited size. Thus:

5.A.7 For given pEG, there is N(P) such that, if p =gtg2 · · · gn

and gt E XtX1+1 ' then n :S N(P).

5.A.8 . EE* is not empty.

Proof: Let A be a finite connected subgraph of r containing all.the

edges of oA. Let L be the set of vertices of A. It is easy to see, be-
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cause of the fact that G acts transitively on vertices of r, and a has

finite size, that there exist x, y € G - H, such that
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Ax n 4 =f6 = ay n a and Lx C A, Ly c A* .

We cannot have, if ax n a =_, all four of the sets (Ax) nA, (Ax) n A* ,

etc., nonempty. (To prove this Is to argue along the lines of the proof of

4.A.6.4.) By construction, since L contains points both in A and in A* ,

we must have (Ax) n A and (A*x) n A nonempty and also (Ay) n A* and

(A*y) nA* nonempty. It follows that either (Ax) nA* or (A*x) nA* is

empty, and, since x I. H, we have x € EE* or x € E*E*; similarly,

y € EE or y € E*E •
-1Therefore, one of the elements x, y , yx belongs to EE* .

Then, we have proved that, given a minimal narrow A € Q(r), where

r is the graph of the group G with respect to a finite set of generators,

and, assuming that G has more than two ends, we can define a bipolar

structure on G.

5.A.9 If G is a finitely generated group with infinitely many ends,

then there is a bipolar structure on

G : {F, S, EE , EE*, E*E, E*E*}.

Thus G has one of the following two types of structure:

(1) G =G1 *F Ga, a free product with'finite amalgamated subgroup F,

properly contained in both factors, and of index > 2 in at least one factor.

(2) G =G1 F..5ep, where F is a finite subgrouP1 properly embedded in

Gte

,Proof: These are just the possibUities for a bipolar structure listed in

3.B.5, taking into account 4.A.8 to exclude the cases where G has two

ends.' Adding to this the result stated as 4.A.6.6, we have an if and only if

statement:

5.A.I0 A finitely generated group has infinitely many ends, if and only

if it can be decomposed according to case (1) or (2) of 5.A.9.
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5.B Group-Theoretic Consequences

A torsion-free group Is defmed as one in which the only element of finite

order is the identity.

5.B.l A finitely generated, torsion-free .group has two ends if and only

if it is infinite cyclic. It has infinitely many ends if and only if it can be

written nontrivially as a free product.

This follows from 4.A.6.5 and 5.A.lO.

5.B.2 If P Is a property of groups which Is inherited by nontrivial free

factors and if when a group has property P then is has more than one end,

then any finitely generated torsion-free group with property P is a free

group.

Proof: Let G have property P. Then G has more than one end; if G

has two ends, by 5.B.lit is free (cyclic). Otherwise, by 5.B.l, it is a free

product Gl * G2 , and both G1 and G2 have property P and (by Grushko's

theorem) can be generated by fewer generators than G can; by induction on

the number of generators, G1 and G2 are free, and hence G is free.

5.B.3 Serre Conjecture If G is a finitely generated torsion-free group

with a free subgroup .F of finite index, then G is a free group.

Proof: Any finitely generated subgroup H of G contains the free group

F n B as a subgroup of finite index. A nontrivial free group has mQre than

one end, and so, by 4.A.6.2, any supergroup of finite index containing it has

more than one end. Thus by 5.B.2, G is free..

5.B.4 Eilenberg-Ganea Conjecture If G is a finitely generated group

of cohomological dimension 1, then G is free.

Proof: The property P of having cohomological dimension 1 is inherited

by nontrivial subgroups, and implies that group is torsion free. That it im­

plies the group has more than one end is a simple conseque;nce [see 27] of

the duality theory for finitely gen~ra~ projective modules over the group

ring of G, together with homological interpretation of ends.
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5.C The Sphere Theorem
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Finally, we propose to sketch a proof of the sphere theorem. This Is

presented not so much as an alternative to the proof of Papakyrlakopoulos,

Whitehead, and Epstein as it is a demonstration of the interweaving of

topological and group-theoretic facts. Thus, in the arguments of Papa­

kyriakopoulos there appear ideas about covering spaces and the disen­

tangling of singularities which suggest a whole combinatorial investigation

into group theory, such as this paper has begun. Having started this in­

vestigation, we have now attained a point where the sphere theorem is

easier for the intuition to grasp.

We shall not quite prove the most general form of the sphere theorem

here, instead proving a fairly general form from which the theorem in

1.B.l can be derived without great difficulty. We, of course, assume the

Loop Theorem, Dehn's Lemma, and the other consequences of Chapter 2.

5.C.l Let M be a compact 3-manifold such that 11
2
(M):I: O. Then

there is in M a two-sided E which is a 2-sphere or projective plane,

which carries a nontrivial element of 'IT2(M) .

Proof: We first simplify the picture by maIdng modifications along the

boundary, which allow us to conclude that the fundamental group of M wUI,

in this simple form, have more than one end. Since we have a characteriza­

tion of such groups, and therefore a topological picture of such ~oups, we

invent a situation to which we can apply 2.B.2, and, after some topological

modifications of this, we can then see the conclusion of the theorem.

If aM contains a 2-sphere or projective plane, then that boundary com­

ponent itself determines a nontrivial element of 1't
2
(M) and, pushed slightly

into M, can be taken as 1;. (It is easy to see that, if aM contains a 2­

sphere which is contractible in M, then M 1s itself contractible.)

If, for some component T of aM, the map 111(T) ~ 'IT1(M) is not injec­

tive, we can apply the Loop Theorem and Dehn's Lemma to write M as
. 2

M' plus a handle D x I; since M has the homotopy type of the wedge of

M' and a circle, an argument on the homology of the universal covering
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spaces shows 1f2(M') =I: O. The operation M - M' performs a reduction on

aT.
Thus either the theorem is true or there is a submanifold M" of M,

with 'lT
2
(M") -'lT2(M) injective and 'lT

2
(M") * {o} and aM" containing no 2­

spheres or projective planes and 1T1(aM") -1T1(Mil) injective.

In this case, if Mil is the universal covering space of M" , aM" consists

of copies of the universal covers of aM" and so is acyclic in dimensions

2: 1. So 11'2(M") l'::$ H2(W') l'::$ H2(W', aw') l'::$ a:(W'). If C
f

and C denote

the cochain complexes of finite and ordinary cochains respectively, and Ce
their quotient, then we have an exact cohomology sequence, which implies

o ~ 1 ~
that H (M/ ) has rank 2:: 2; this is on the basis of the facts that H (M") =0e
and Hf(W) =0; these follow from the facts that W' is a universal cover-

ing space and 11'1(M") is infinite, otherwise "Ii' would either be a homotopy

3-sphere or all components of aM" would have finite fundamental groups.

For these reasons we conclude, cf. [12], [21], tbat W' and hence 1I'1(M")

has at least two ends. On the basis of 3.B.6, 4.A.6.5, 4.A.6.6, and the

theorem 5.A.l0, if G II: 'IT 1(M") , we can construct an aspherical space having

fundamental group G as follows:

Corresponding to case -(I) of 5.A.9, G == G1 *F G2 , we let ~ and ~ be

aspherical spaces with fundamental groups G1 , G2 , containing a copy of

~ an aspherical space with fundamental group F. We let X =
K1 U{~x [-1, +1]} U~, identifying ~ x (-1) with ~ in ~ and

~ x (+1) with ~ in K2 . Define A as ~ x o.
Corresponding to case (2) of 5.A.9, G =G1 pJq,. Let K1 be an asphe~i­

cal space with fundamental group G1 , containing KF in two ways, both

representing F C G1 and CP(F) C G1 • Let X =~ U(~ x [-1, +1]), identi­

fying ~ x (-1) with ~ in K1 and ~ x (+1) with Kq,(F). Define A •

~XO.

It is an easy matter to see that A is blcollared in X in either case and

that X is aspherlcal, ct. [31], and 'lT1(X) ~ G, ct. [5] and [7].

There is some map f : Mil - X inducing an isomorphism of fundamental

groups. By 2.B.2, f is homotopic to g in such a way that g-l(A) is a re-
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-1duced bicollared 2-manifold in Mil , and, for each component Ti of g (A) ,

1T1(Ti) .... 1T1(A) is injective. Thus each 1T1(Ti> Is finite, and so T
i

is either

a 2-cell, a 2-sphere, or a projective plane.

If Tt is a 2-cell, then aTt c aM" must be contractible on aMI! and so

must bound a 2-cell there. Let Tt be a 2-cell for which aTi bounds an

ilUlermost 2-cell on aM". By modifying g in the neighborhood of the 2­

call in aM" , we can change T. to a 2-sphere.
1

If Ti is a 2-sphere contractible in Mil , then Ti bounds a contractible

submanifold N eM'l, and a homotopy in the neighborhood of N will re­
-1

move Ti from g (A) ·

If Ti is a 2-stded projective plane, then it carries a nontrivial element

of 1f2(M") since the lifted 2-sphere in the orientable double covering of

M'l cannot bound any contractible manifold-the covering translation would

be a fixed-point free homeomorphism on this contractible manifold, con­

tradicting the Lefschetz Fixed-Point Theorem.

Thus we have either the conclusion of the theorem in the end, or else
-1 dwe can find a map h : M" .... X homotopic to f which bas h (A) =p'; this

is impossible since in such a case ~ on 111 would not be onto.
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IOAI, 49
0, coboundary, 37,49
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1I'i, homotopy group:
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Adjoint Functor Theorem, 27
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bipolar structure, 7, 3"0
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Debn's Lemma-Loop Theorem,
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distributive lattice, 52
Eilenberg-Ganea Conjecture, 58
end of a graph, 8
end of a group, 9, 36
free product, 6
free product with amalgamation,

6, 28 .
graph, 8, 48
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a set, 48
Grushko)s Theorem, 5, 6
indecomposable, 8
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B(r), .~~

E(G), 37
E{r), 38
F{G), 37
L (a,{3), 52
Q(G), 37
Q(r), 38

B~, cohomology based on cochains
modulo finite cochains; Hf, co­
homology based on finite co-

~ chains; Rn{P}; 22
R(P), 26

irreducible =indecomposable, ~O, 31
isotropy group, 44
Jordan-Holder Theorem, 53
Kneser's Conjecture, 5, 16
Kneser's Lemma, 14
Lefschetz Fixed-Point Theorem, 61
narrow cochain, 9, 50
pregroup, 6, 18
reduced word, 19
reduction (of 2-mantfold in 3-mant-

fold), 14
Serre Conjecture, 58
Sphere Theorem, 2, 4, 59
three-manifold, 4
torsion-free, 58
tree of groups, 28
two-sided =bicollared universal

group, 20, 27.
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