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Introduction 

The recent, efflorescense in the theory of polyhedral mani-
.folds due to Smale's handle-theoryj the differential obstruction 
theory of Munkres and Hirsch, the engulfing theorems, and the work of 
Zeeman, Bing and their students - all this has led to a wide gap 
between the modern theory and the old foundations typified by 
Reidemeister's Topologle der Polyeder and Whitehead's "Simplicial 
spaces, nuclei, and m-groups". This gap has been filled somewhat 
by various sets of notes, notably Zeeman's at I.H.E.S.; another 
interesting exposition is Glaser's at Rice University, 

Well, here is my contribution to bridging the gap. These 
notes contain! 

(1) The elementary theory of finite polyhedra in real 
vector spaces. The intention, not always executed, was to emphasize 
geometry, avoiding combinatorial theory where possible. Combinatori-
al ly, convex cells and bisections are preferred to simplexes and 
stellar or derived subdivisions. Still, some simplicial technique 
must be slogged through. 

(2) A theory of "general position" (i.e., approximation 
of maps by ones whose singularities have specifically bounded 
dimensions), based on "non-degeneracy". The concept of n-manifold 
is generalized in the most natural way for general-position theory 
by that of ND(n)-space - polyhedron M such that every map from 
an n-dimensional polyhedron into M can be approximated by a 



non-degenerate map (one whose point-inverse are all finite). 
(3) A theory of "regular neighbourhoods" in arbitrary 

polyhedra. Our regular neighbourhoods are all isotopic and equivalent 
to the star in e second-derived subdivision (this is more or less the 
definition). Many applications are derived right after the elementary 
lemma that "locally collared implies collared". We then characterize 
regular neighbourhoods in terms of Whitehead's "collapsing", suitably 
modified for this presentation. The advantage of talking about 
regular neighbourhoods in arbitrary polyhedra becomes clear when we 
see exactly how they should behave at the boundaries of manifolds. 

After a little about isotopy (especially the "cellular 
moves" of Zeeman), our description of the fundamental ̂echniques in 
polyhedral topology is over. Perhaps the most basic topic omitted 
is the theory of block-bundleŝ  microbundles and transversality, 

(4) Finally, we apply our methods to the theory of 
handle-presentations of PL-manifolds a la Smales theory for 
differential manifolds. This we describe sketchilyi it is quite 
analogous to the differential case. There is one innovation. In 
order to get two handles which homotopically cancel to geometrically 
cancel, the "classical" way is to interpret the hypothesis in terms 
of the intersection number of attaching and transverse spheres, to 
reinterpret this geometrically, and then to embed a two-cell over 
which a sort of Whitney move can be made to eliminate a pair of 
intersection. Our method, although rather ad-hoc, is more direct, 
avoiding the algebraic -complication of intersection numbers 



(especially unpleasant in the non-simply-connected case) as well as 
any worry that the two-cell might cause! of coursê  it. amounts to the 
same thing really. This method is inspired by the engulfing theorem; 
./"There arê  by the way, a,t least two ways to use the engulfing 
theorem itself to prove this point_7. 

We do not describe many applications of' handle-theory; we 
do obtain Zeeman's codimension 3 unknotting theorem as a consequence. 
This way of proving it iŝ  unfortunately, more mundane than "sunny 
collapsing". 

We omit entirely the engulfing theorems and their diverse 
applications. We have also left out all direct contact with differ-
ential topology. 

# * 

Let me add a public word of thanks to the Tata Institute 
of Fundamental Research for giving me the opportunity to work on 
these lectures for three months that were luxuriously free of the 
worried, anxious students and administrative annoyances that are so 
enervating elsewhere. And many thanks to Shri Ananda Swarup for the 
essential task of helping write these notes. 

John R. Stalllngs 

Bombay 
March, 1967 



Chapter I 
Polyhedra 

1.1. Definition of Polyhedra. 
Basic units out of which polyhedra can be constructed are 

convex hulls of finite sets. A polyhedron (enclidean polyhedron) is 
a subset of some finite dimensional real vector space which is the 
union of finitely many such units. ("Infinite polyhedra" which are 
of interest in some topological situations will be discussed much 
later). 

A polyhedral map f : P • — Q is a function f j P ^ Q 
whose graph is a polyhedron. That is, suppose P . and Q are subsets 
of vector spaces V and W respectively; the graph of f, denoted 
by P(f), is the set 

-7-1 V 1 
(f) = y) X(:P , y = f(x) fcQ 

which is contained in V x W, which has an evident vector space 
structure, l'(f) is a polyhedron, if and only if (by definition), 
f is a polyhedral map. Constant functions, as well as identity ' 
function P •—^ P are polyhedral maps. 

The question whether the composition of polyhedral maps 
is polyhedral leads directly to the question whether the intersection 
of two polyhedra is a polyhedron. The answer is "Yes" in both cases. 
This could be proved directly, but we shall use a round about method 
which introduces useful techniques. 

It will be seen that polyhedra and polyhedral maps form 
a category. We are interested in 'equivalences' in this category, 



that is maps f ; P ^ Qj which are polyhedral, one-to-one and onto. 
When do such equivalences exist? How can they be classified? Etc.... 

A finite dimensional real vector space V has a unique 
interesting topology, which can be described by any Euclidean metric 
on it. Polyhedra inherit a relative topology which make them compact 
metric spaces. Since polyhedral maps have compact graphs they are 
•«pRtinuous,.. This- provides us with an interesting relationship between 
polyhedra and topology., We may discuss topological matters about 
polyhedy® ~ •homology, homotopy, hc®eomorphy.r: and .ask whether these 
influence the polyhedral category and its'equivalences,. 

• -' After this brief discuseion of the scope of the subject̂ : 
we-proeeed to ths development of the technique. ," 

Convexi_ty, 
(R, denotes the field of real numbers, and ? a finite 

dimenaionaJL .vector space over 
Let a, b ^ V. "The line segment bet-weea-. a and b is. 

denoted by â, b3 . It is defined thus: 
â, b3.= -[t a + (l ~.t) ; 

, A set C Q j is called convex - if ...b̂  C" 0 whenever 
a, b G C. 

' Clearly V- itself-is convex̂ , snd.-the intersection-of 
any family .of convex sets, is again-. convex, .Therefore every set 
X C^ is contained in a, smallest xonvex set.namely-the interse-ction 
of all̂ .convex. sets .ftpntairdng ̂^ this....ia:.-called _the convex.- hull 
of Z, and is denoted by /C(X), 



1.2.1. Definition. A convex combination of a subset X of V is 
a point of V which can be represented by a finite linear combination 

k 
r. X. 

i V o ^ ^ 
k 

where x̂  t X, r̂  e (R., r̂  ̂  0 for all i , and J" r. = 1. 
i = 0 ' 

1.2.2. Proposition. The convex hull k.(X) of X is equal to the 
set of convex combinations of X. 
Proof; Call the latter A(X). It will be shown first that- /\(X) 
is convex and. contains X, hence K(X) C A(X). 

If X 6- X. then 1 • x is a convex combination of X, 
k I ' 

hence X Q A(X). Let p •= ̂ ^ r̂  x̂  , <j~ = Sj ŷ. 
i - 0 j = 0 

be two points of /\(X), A typical ̂ oint of Iĵ p, (r3 is of the form 
t f + (1-t) ^ (t r^) x^ + ((1-t) Sj) ŷ , where 

i = 0 j = 0 c 
Since t rj_ * 2™ ŝ  = t ( ̂  r̂ ) + (l-t) ( ̂  ŝ ) 

i = 0 j = 0 i=0 j = 0 
= t + (l-t) = 1, and all the coefficients are ̂  0, t -p + (l-t) 
is a convex combination of X, Hence 7\(X) is convex. 

To show that A(X) (_ K(X) it must be shown that any 
convex set C containing X contains 

A(X). Let P= r X + ... + r X , (x ̂ X. T" r = l) be a typical convex I 1 1 n n i ^ i 
combination of x̂  ,...̂  x^ . By induction on n it will be shown 
that any convex set C containing X contains also. If n - 1, 
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then ^ x.̂  e C,- If n > 1, 

is p is on the line segmetit between x̂  &nd 

r - , -j-i— Xp + ... + .̂ -i. x̂  , By induction, thfe sedond point belongs .to t̂ r̂̂  ^ y---- n " 
Ĝ  hence 'p t G. Thus ?\(X)Qc. Ther̂ for-e aiid 

1.2i 5. , Definition. A finite subset ̂ x̂ , ̂ '' ̂  \ ^ ^ 
to be indepfiAdent (or fiffinel:y independent), if, for real numbers 
r̂  5... J r̂ , the equations 

imply that 

r + . . + r 0, 
0 . k 

" ••• = ̂ k " 0. 

Ex., 1,2.4. The subset ^x^ x̂  ̂  of V is independent if and 
only if the subset (̂x̂ , 1) ,..., (x̂ ,̂ 1 of V IR. is linearly 
independent. Q 
Ex. 1.2. 5. The subset ^x^ ,..., x^ of V is independent if and 
only if the subset x̂̂  x̂  .., x^ - x^ ̂  of V is linearly 
independent. Q 

Hence if ^x^ x (J V̂  then ^^ V" »i 
is independent if and only if ^ + x^ ̂ ,.,, x + x^^ is independent* 

These two. exercises show that the maximum number of 
independent points in V is (dim V + 1), 



The convex hull of an independent set ^x^ x̂^ ̂  
is called a closed k-simplex with vertices |xq ,...., x̂ ^ and is 
denoted by x^ x^^ The number k is called the -'imension 
of the simplex.-

The empty set 0 is independent̂  its convex hull, also 
empty, is the unique (-1)-dimensional simplex, A set of only one 
point is independent; \_x3 = ̂ xj is a 0-dimensional simplex. A 
set of two distinct points is independent; the closed simplex with 
vertices \x,. y ̂  coincides with the line segment [x, y3 between 
X and y. 
1.2.6. Proposition. If ^̂ x̂  j.x^^C-Vj then ̂ x̂  x ̂  is 
independent if and only if every point of K^Q x^l is a 
unique convex combination of '̂ x̂  .., x | , 
Proof; Let ^^ x^^ be independent. If 

r X + + r X = s X + + s x , with y r. = 1 = T s., ' 0 0 n n 0 0 n n £.1 x' 
then (r. - ŝ ) x̂  + ... + (r - s ) x =0. and , '' 0 0 0 n n n 
(tq - Sq) + ~ ŝ ) = 0- Hence (r. - ŝ )̂ = 0 for all i ̂  
and the expression for -p is unique. 

If |xq , x^^ is not independent, then there are real 
numbers r̂  , not all zero' such that 

r„ x,̂  + . + r X = 0 and 
0 0 n n 
r. + ... + r = 0. 
O n 

Choose the ordering ., x̂ .̂ so that there is a X- for which 



r^^O if i < 1 
0 if i l. 

Since not all r̂  are zero, r̂  
Let this number be r. Then 

0 t-1 r • r 
But these, are two distinct convex combinations of S x, .,,,„.„,„. x 

L 1 n 
which represent the same point, a contradiction, 'Q. 
1.2.7. Proposition. The convex hull K (X) of X is equal to the 
union of all simplexes with vertices belonging to X. 
Proofs By 1,2.2.,, it is enough to show that a convex combination of 

"" » 
X belongs to a simplex with vertices in X. Let 

» p 
of (X). It will be shown by induction on n that̂ belongs to 
a simplex with vertices in the set ^x^ .3....,.,̂  Xĵ ^ . If n = 1, 
then p = x̂  £ [x^ . So let n J> 1. 

If x̂̂  x^^ is independent, there is nothing to 
prove. If not, there are ŝ  ŝ , not all zero, such that 
ŝ  X, s X = 0 and ŝ  + + s - 0, When s. := Q, 1 1 n n 1 n 1 

define -i = 00,5 then it can be supposed that x. j,,..,.' x is M i n 
arranged such that 

s.. 
n̂ 
"n 

Then ŝ  V 0, Hence x̂  = 
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Therefore 
P = (r̂  ™ ŝ  3 

+,..,+ (r , ~ s , ̂n) X , 
^ n-1 n-1 n-1 'n 

Since for all i < n, r. _n , and since - - ... - n-1 _ î  
•"n this expresses P as a convex combination of i x 

' L 1 n-1 3 
By inductive hypothesiŝ  p is contained in a simplex with vertices 
in ĵ x̂  ^ . a. 

The following propositions about independent sets will be 
useful later (See L̂ S, Pontryagin "Foundations of combinatorial 
Topology''̂ , Graylock Presŝ  Rochester̂  N.I..̂  pages 1 - 9 for 
complete proofs). 

Let dim V •= m, and be a euclidean metric on V. ,, 
First, proposition 1.2.4 can be reformulated as follows; 
Ex. 1.2.8. Let be a basis for V, and ' XQ x^ 
a subset of V. Let x. = a! e + ,.. + a® e : 0 4 i g. n. Then 

1 1 1 1 m ' ---
the subset ^^ ,..,, x^ ̂  is independent if and only if the matrix 

1 2 m a a . . . . a 0 0 0 
1 2 m a a . . . . a 1 1 1 

1 2 1 a a n n m 
n 

has rank (n + 1), Q 
1.2.9. Proposition.. Let ^XQ x^^ be a subset of V, n 4 m. 
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Given any (n + l) real numbers ^ 0, 0 ̂  i ̂ n^ 3 points 
yj_ev, such that 6 (x. , ŷ ) < and the set. ̂ y^ ŷ '̂  is 
Independent. 
Sketch of the proof; Choose a set S Uq û ^ of (n + 1) 
independent points and consider the sets Z(t) = û  + (l~t) x^ 
., .. , t û  + (1-t) x^^ , 0 $ t Let N(2 (t)) denote the matrix 
corresponding to the set Z(t) as given in 1,2.8, (the points being 
taken in the particular order). Z(1) - ̂ u^ ,,., u ̂  , hence some 
matrix of (n + l)-columms of N(Z(1)) •has nonzero determinant. 
Let D(t) denote the determinant of the corresponding matrix in 
N(Z(t)). D(t} is a polynomial in t, and does not vanish identically. 
Hence there are nmbers as near 0 as we like such that D(s) does 
not vanish. This means that N(Z(s)) is independent, and if s in 
near 0, Z(s)̂  will be near x̂ . O 

Hence in anyarbitrary neighbourhood of a point of V̂  
there are (m + l) independent points. 

The above proof is reproduced from Pontryagm's book. The 
next propositions are also proved by sonsidering suitable determinants 
(see the book of Pontryagin mentioned above). 
Ex, 1,2,10, If the subset ,,,.,, x^ ̂  of V is independent, 
then there exists a number "Vj ^ 0, such that any subset ̂ ŷ  ,.,,, y^^ 
of V with <S"(x̂, y^) < "Ti for all i, is again independent. 
1.2. 11, Definition. ' A subset X = ̂ x^ x ^ of 'V is said 
to be in general position, if every subset of X containing m + 1 
points is independent (where m = dim V). 
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Ex. 1.2. 12. Given any subset X = ̂ x̂  , x̂^ of V and 
(n + 1 )-numbers 0 4. i ̂  n, there exists points O ^ i ^ n 
with ^(x^ , y^) and such that the subset Y = ̂ q, .., ̂  ŷ  ̂ of 
V is in general position. 
Hint I Use 1.2.9, 1.2. 10 and induction. Q 
1.3. Openconvex sets. 
1.3.1. Definition. A subset A of V is said to be an open convex 
set if 

1) A is convex 
2) for every x, y ̂  A, there exists £-> 0, such 

that -ex + (1 + A. ( e= 6(x,y) depending 
on x, y). 

In otherwords the line segment joining x and y can 
be prolonged a little in A. 

Clearly the empty set and any set consisting of one point 
are open convex sets. So open convex sets in ? need not necessarily 
be open in the topology of V. 

Clearly the intersection, of finitely many open convex sets 
is again an open convex set. 
1.3.2. Definition. Let fx̂  ,..., x^^V. 
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An open convex combination of x̂̂  ,..,, x^^ is a convex combination 
r| X] + .., + Tp̂  Xp̂  su6h that every coefficient r̂  ̂  0. The set 
of all points i'epresented by sUch open Cdnvex combinations is denoted 
by 0(x̂  x̂ ). 

It is easily seen that 0(x ,,,., x ) is an open convex 
1 n 

set. 
1.3.3- Definition. If ̂ x^ x^^ is independent, then 
0(Xq x^) is called an open k-simplex with vertices ̂ Xq , x^, 
The number k is called the dimension of the simplex 0(xq ,,,,, Xĵ ), 
If ÎQ C. ̂  J..., n^j then the open simplex 
0.(x̂  , x̂  ) is called a ŝ face (or a face) of 0(xq ,..., Xĵ). 
If s < k, then, it is called a proper face. 

Clearly, the closed simplex x̂  , .•>.), x̂ ^ is the dis-
joint union of 0(XQ ,..., x^) and all its proper faces. 

We give another class of examples of open convex sets 
below which will be used to construct other types of open convex 
sets. 
1.3.4. Definition. A linear manifold in V is a subset M of V 
such that whenever x, y ̂  M and r ̂  then r x + (1-r) y € M. 

Linear manifolds in V are precisely the translates of 
subspaces of V; that is, if V' is a subspace of V, and Z € V, 
then the set z + V' z + z' z' fcV'J- is a linear manifold in V,' 
and every linear manifold in V is of this form. Moreover, given 
a linear manifold M the subspace Vĵ  of V of which M is a 
translate in unique, namely 
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- y z £z - z' z e M, z' a fixed element of . 
Thus the dimension of a linear manifold can be easily defined, and 
is equal to one less than the cardinality of any maximal independent 
subset of M (see 1,2,5-). A linear manifold of dimension 1, we will 
call a line. If L is a line, a, b £ L, a b, then every other 
point on L is of the form t a + (1-t)b, If M is a linear 
manifold in V and dim M = (dim V-1), then we call M a hyperplane 
in V. 

Definition. Let V and W be real vector spaces. A 
function cp s V -—^ W is said to be a linear map, if for every 
t ef^and every x, y ̂  V, 

Cp(t X + (l-t)y) = t (p(x) + (l~t) Cp(y). 
Alternativelŷ  one can characterize a linear map as being 

the sum of a vector space homomorphism and a constant. 
Ex. 1.3.6. In definition 1,3.5, it is enough to assume the 
Cp(t X + (.1-t)y) = t Cp(x) + (1-t) C()(y) for 0 ̂  t ̂  1. D 

If A is a convex set in V and <p s A — ^ W, (W a 
real vector space) is a map such that, for x, y t A, t <1 

cp(t X + (1-t) y) = t cp(x) + (1-t) cp(y), 
then also we call Cp linear. It is easy to see that <p is the 
restriction to A of a linear map of V (which is uniquely defined 
on the linear manifold spanned by A). 
Ex. 1.3.7. Let A, V, W be as above and (p s A > W a map. Show 
that cp is linear if and only if the graph of ^ is convex, (graph 
of Cp is the subset of V X W consisting of " (x, y), x f A, y= <p(x)).D 



Ex, 1.3«S. The images and preimages of convex sets under a linear 
map (resp. open convex sets) are convex sets (resp. open convex 
sets). The images and preimages of linear manifolds under a linear 
map are again linear manifolds. D 

A hyperplane P in V for instance is the preimage of 
0 under a linear map from V to j'̂  , Thus with respect to some 
basis of V, P is given by an equation of the form ̂  x^ ̂  d, 
where x̂  are co-ordinates with respect to a basis of V and 

not all the s being zero. Hence V ~ P consists 
of two connected components 

i T i y d and ̂  X,. x. d)̂  which 
we will call the half-spaces of V determined by P. A half space 
of V is another example of an open convex set. 
1.3.9' Definition. A bisection of a vector space V consists of 
a triple (Pj-H ̂  H ) consisting of a hsrperplane P in V and 
the two half spaces H"̂  and H determined by P. 

These will be used in the next few section. A few more 
remarks: Let the dimension of V - m and V be a (m - ,k)-dimensional 
subspace of V, Then extending a basis of v' to a basis of V 
we can express V' as the intersection of (k--l) subspaca5of V 
of dimension (m-l). Thus any linear manifold can be expressed as 
the intersection of finite set (non unique) of hyperplanes. Also 
we can talk of hyperplanes, linear submanifolds etc. of a linear 
manifold M in V. These could for example be taken as the 
translates of such from the corresponding subspace of V or we can 
consider them as intersections of hyperplanes and linear manifolds 
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in V with M. Both are equivalent. Next;, the topology on V is 
taken to be topology induced by any Euclidean metric on V. The 
topology on subspaces of V inherited from V is the same as the 
unique topology defined by Euclidean metrics on them. And for a 
linear manifold M we can either take the topology on M induced 
from V or from subspace of V of which it is a translate. Again 
both are the same. We will use these hereafter without more ado. 
1.4. The calculus of boundaries. 
1.4.1. Definition. Let A be an open convex set in V. A point 
X ̂  V - A is called a bomdary point of A, if there exists a point 
a ̂  A such that 0(x, a) ̂ A. The set of all boundary points of 
A is called the boundary of A and is denoted by B A. 

A niomber of propositions will now be presented as exer-
ciseŝ  and aometimes hints are given in the form of diagrams. In 
each given context a real vector space is involved even when it is 
not, explicitly mentioned, and the sets we are considering are 
understood to be subsets of that vector space. 
Ex. 1.4.2. A linear manifold has empty boundary. Conversely, if 
an open convex set A has empty boundary, then A is a linear 
manifold, D 
Remarks This uses the completeness of real nimbers. 
Ex. 1.4.3. If (P 5 H"̂, H") is a bisection of V, then 
dn'' ̂  bH~ = P and bp = 0. • tl 
1.4.4. Proposition. If A is an open convex set and xt^A, then 
for all b e A, 0 (x, h)QA, 
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Proofs Based on this picture: 
There is 'a' such that 0(x, a ) A . 
Extend a, b to a point c (c A, For 
any q G 0(x, b), there exists a 
p 6 0(x, a) such that p).. 
Since c, p ̂  A, q ̂  A, Hence 
0(x, b)CA. Q 
Ex. 1.4.5. Let Cp { V ^W be a linear map, and let B be an 
open convex set in W. Then 9 cB). If Cp is onto 
then equality holds. • 
t.4.6. Definition. The closure of an open convex set A is 
defined to be AU^A; it is denoted by A. 
Ex. 1.4.7. If A (̂ B, then ^Qb, Q 
1.4.8. Proposition. If a, b ̂  A and a / b, where A is an open 
convex set, then there is at most one x ̂  such that b ̂  0(a, x). 
Proof; If b e 0(a, x) and beo(a, y) ; x, y x y, then 
0(a, x) and 0(a, y) lie on the same line, the line through a 
and b and both, are on the same side of a as b. Either x 
or y must be closer to a i.e. either x£p(a, y) or 
y60(a, x). If X eO(a, y), then x^ A, but An^A = 0. Similarly 
y^O(a, x) is also impossible. D 
U4.9« Proposition. Let x^^ be an independent set 
whose convex hull is contained in ^ A, where A is an open convex 
set. Let a£A. Then - Xq ,..., x̂ , a ̂  is independent. 
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Proof; 1,4.8 shows that each point of jcĵ Xq 
written as a unique convex combination. Hence by 1,2,6 

' can be 

Xq ..> x̂  j aJ is independent, O 
1.4.10. Let A and B be open convex sets. If bOa, then 
C c)A. 

Proof; Based on this picture: 
The case A pr B is empty is 

b' B Qy/ 
trivial. Otherwise, let 
x6c)B, b t B, a e. A; extend the 
segment a^ to a'g A. Let 
p6 0(x, a) I then qt.O(x, b) can 
be fo-und such that p€0(q, a'). 
Since q € 0(x, b) B Q^A, it 
follows that 0(q, a ' A , there-
fore p € A, Hence 0(x, a) A; 

obviously x does not belong to A and so x^ Ba. D 
1.4.11. Definition. If A and B are open convex sets, define 
A < B to mean AQ 

1.4.10 implies that <. is transitive, Ex. 1.4.12. If A is an open convex set, then 1 is convex. 
% , Hints " — 

o 
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13« Proposition. If A and B are open convex sets with 
. A AB 0 , then b(A  AB) is the'disjoint union of bA D B, 

An̂ )B and dAH^B, 
Proofs These three sets are disjoint, since A A A = Ba^B / 0. 
Let e ̂  A r\ B and x ^^(A H B); since x e V - (A O B) = 
^ (V - A) U (V - B), X either (l) belongs to V - A and to 
V - B or (2) belongs to V ~ A and to B or (3) belongs ,to 
A and to V - B. Since 0(x, cXZ A O B, in case (l) x € bAnbd, 
in case (2) xC-^AfNB' and in case (3) AfX^B.  The converse 

, is similarly easy. O 
Another way of stating 1,4.13 is to say that 

A A B A n B , when A n B ̂  
1.4.14. Proposition. If A and B are open convex sets and 
AC B and A A B ̂  0 , then AQ B. 
Proof?. Let c e A AB, and a 6 A. The line from 'c' to 'a' 
may be prolonged a little bit to a' £ A, Since a'e B, it 
follows that 0(a', c) C B, but a E 0(a', c). Hence A ̂ B,Q 
1.4.15. Proposition. If A ̂  B, ' where A and B are open convex 
sets, then A = B. 
Proof? If A n B = 0, since AU^A = B U dB, we have AC^B and 
BC^A. By 1,4.10 we have AC^A and bC ̂ B. But 
An"^A = 0 = Ends, Hence AfN B = 0 is impossible except for the 
empty case. Then by 1.4.14, aQb and A. Therefore A ̂  B. 
t.4.16. Proposition. Let 0 (x̂  x^) denote the closure 
of 0(x̂  x̂ ). Then x^) = ̂  ̂ x, ] . 
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Proof! First, K [x̂  For let 
y t K [x̂  .., x̂ j. ; then y is a convex linear combination 
r̂  .... + r̂  x̂ . Let . = i (x, + ,.. + x̂ ) € 0(x̂  .., x̂ ). 
Then every point on the line segment 0(y, z) is obviously expressed 
as an open convex combination of x̂  ,.., j x̂  I hence 

z) C )-•'> aĴd so y £ 0(x̂  
Conversely, let y £ ,,,,, x̂ ). If j ̂  ^u. i 

clearly y€ K x̂ J . Suppose y 6 Bo(x̂  x̂ ); let 
z = 1 (x̂  + ... + x^) as above. On the line segment 0(y, z), pick 
a sequence â  of points tending to y. Now, 
â  € 0(y, z) C 0(x̂  .., x^) Q ,..., x̂  ̂  . Let 
a. = r. X + ,,, 4. r. x , r. are bounded by 1, By going to 1 1, I n 

subsequences if necessary we can assume that the sequences ̂ ^ijj 

converge for all j, say to r̂ . Then r̂  = 1, r̂  ̂ 0, and 
^ r X converge to ^ r x e K x [ . But 
* Xj J J J '"I n' 
^ r̂  x̂  also converge to y. Hence y ̂  ^ r̂  Xj and 

3 
y e K fx̂  ,.,., x̂ l , Q 
1.4.17. Definition. An open convex set A is said to be bounded, 
if for every line L in V, there are points x, y ̂  L, such that 
AO lCC^, y] . 

Since in any case AH L is an open convex set, either 
AO L is empty, or A O L consists of a single point, or AHL 
is an open interval, possibly infinite on L. The boundedness of A 
then implies that if A A L contains at least two points, there 
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are x, y ̂  L such that AO L = 0 (x, y). 
1. Ii-. IS. Proposition, If A is a bounded open convex set containing 
at least two points, then Z  ~ « (^ A). 
Proof? Since ̂  A(2 A and A is convex, it is always true that 
K( d A. Clearly ^ A (̂ KC d A). It remains only to show 
that A Cl<( d A). Let a ̂  A, Let L be a line through 'a' 
and another point b C A (such another point exists by hypothesis). 
Since A is bounded, and â, b̂  CL r\ A, it follows that 
AHL = 0(x, y) for some x, y ̂  L. Clearly Xj y ̂  "^A^ and 

Remark I With the hypothesis of 1.4. 18, we have A = (J Ta, yl , 
y 

•a' a fixed point of A and ye dA and A = U 0 (a, y)U^al , 
y 

Ex. 1,4,19. If A and B are open convex sets, and A<_ B, 
and B is bounded, then A is boiinded. 
Hint I 

>. ^ 

b 

•B 

D 



22 

Ex. 1.4.20. Let A be an open convex set in V, and B ,be an 
open convex set in W. Then (1) A )<. B is an open convex set in 
V X W; (2) c) (A%B) is the disjoint union of ^AXB, AK h B 
and 5 A^bBj (3) A is bounded if and only if A and B 
arê  provided A 0, B / D 

The following two exercises are some what difficult in 
5 

the sense they iise compactness of the sphere, continuity of certain 
functions etc. 
Ex. 1,4.21. The closure of A defined•above (1.4.6) coincides 
with the topological closure of A in V . 0 
Ex. 1,4.22. An open convex set which is bounded in the sense of 
some Euclidean metric is bounded in the above sense, and oonversely.O 

1.5. Convex cells. 
1.5.1. Definition, An open convex 'cell is defined to be a finite 
intersection of hyperplanes and half spaces, ,which as an open convex 
set is bounded. 

Clearly the intersection of two open convex cells is an 
open convex cell, and the product of two open convex cells is an 
open convex cell. 

With respect to a coordinate system in the vector space 
in which it is defined, an open convex cell is given by a finite 
system of linear inequalities. If A is an open convex cell, by 
taking the intersection of all the hyperplanes used in defining A, 
we can write A = P H .. , where P is a linear manifold 
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and Ĥ  are half spaces. Since Ĥ  are open'in the ambient vector 
space A is open in P. Let A = p'f\ Ĥ 'O... H H ' be another 
such representation of A. If A is nonempty, then P = p'.. For 
A(2.P 0 P' and if P ̂  P', PA p' is of lower dimension than P, 
hence A cannot be open in P, Thus p'=: Pj though the Ĥ s and 
h' /s may differ. Hence P can be described as the unique linear J 
manifold which contains A as an open subset. We define the dimension 
of the open convex cell A to be the dimension of the above linear 
manifold P. if A we define the'dimension of A to be -1. 

If A is an open convex cell, we will call A a closed 
convex cell. The boundary of a closed convex cell is defined' to be 
the same as the boundary of the open convex cell of which it is the 
closure. This is well defined, since A = B implies A B, when 
A and B are open convex sets (1.4.15). The dimension of A is 
defined to be the same as the dimension of A. 

Using 1,2,9 and 1,2.10, it is easily seen that the 
dimension of A is one less than the cardinality of maximal inde-
pendent set contained in A or A. Similar remark applies for A 
also. -H-ctually,usins this description we can extend the definition 
of dimension to arbitrary convex sets. 
Ex, 1.5.2. If A is an open convex cell of dimension K, and 
Â  ,..,, Â  are open convex cells' of dimension K, then 
Acj^ A^U... UA^. D 
1.5» 3. Proposition. An open k-simplex is' an open convex cell of 
dimension k. A closed k-simplex is a closed convex cell of 
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dimension k. 
Proofs It is enough to prove for the open k-simplex. Let the open 
k-simplex be 0(Xq , x^) - A in the vector space V. The the 
unique linear manifold P containing A is the set of points 
rQ Xq + + r^ x.̂, where r̂  + ... + r̂^ = 1, r^eR. Define 
^i^^O " • W ^ ' ̂ i ^ linear map from P to ̂  . 
Then Ĥ  = Cp̂  (0,oO ) is a half space relative to the hyperplane 
P and 0(XQ x^) = HQA AĤ ,. By extending Ĥ  to half 
spaces Ĥ ' in V suitably, 0(XQ , x^) = P A HQ^ ... ̂  , 
Boundedness of A, and that dim A = k are clear, Q 
1.5.4. Proposition. Let A be a nonempty open cell. Then 
there is a finite set {p = ̂ ^ Â^ ̂  whose elements are open 
convex cells, such that 

(a) A = U A.. 

(b) A AA = 0 if i ̂  j 
J 

(c) A is one of the cells A 
i 

(d) The boundary of each element of (p is union of 
elements of (p  . (Of  course the empty set is 
also taken as such a union). Proof: Let A = PH HA... AH , where P is a linear manifold I n ' 

and Ĥ  are half spaces with boundary hyperplanes P̂ . Let be 
the set whose elements are nonempty sets of the following sort; 

Let n|= j^^^k^ k^^J,. 
Then if it is not empty the set P a H .n». • AH. A P.H,... OP, 

Jq^ ^ ^n-q) 
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is -an element of P, The properties of j|p follow from 1,13.D 
If the above, the union of elements of excluding A 

constitute the boundary A of A. Then using 1.4.9/ and the 
remarks precedihg 1.5.2j we have, if ^, Â  / A, then 
dim Â  ̂  dim A, We have seen that if A is a bounded open convex 
set of dim ̂  1, then A = ̂  ( ̂  A), Hence by an obvious induction,, 
we have 
1.5.Proposition. A closed convex cell is the convex hull of a 
finite set of points. Q 

A partial converse of 1.5. 5j is trivial! 
1.5.6. The convex hull of a finite set is a finite union of open 
(closed) convex cells. D 

The converse of 1.5.5 is also true. 
Ex» 1.5«7. The convex hull of a finite set is a closed convex cell. 
Hints Let x̂̂  ,..., x̂ '̂  be a finite set in vector space V. By 
1.4.16 x̂̂  ,..., x^^ = 0 (x̂  x̂ ). It is enough to show 
that 0(x̂  ,..., x̂ ) is an open convex cell. Let M be the linear 
manifold generated by x̂̂  ,..., . Let dim M = k . Write 
A = 0(x .., X ) V A = K. jx ,..., X I , A is open in M. To 

1 n Vrt 1 n 
prove the proposition it is enough to show that A is the inter-
section of half spaces in M. 
Step 1. A and A are both union of open (hence closed) simplexes 
with vertices in ^^ ,..., x̂ ^ . The assertion for A follows from 
1.2.7. 
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Step 2. If B is a (k~1)-simplex in B A and N is the hyperplane 
in M .defined by B, then A cannot have points in both the half 
spaces defined by N in Mi 
3bep 3. It is enough to show that each point of ^A belongs to a 
closed (k-l )-simplex with vertices in -̂ x̂  x̂ ". . 
Step 4. Each point x fc ̂A is contained in a closed (k-1)-simplex 
with verticer in x̂̂  j.î j i fo prove this let Ĝ  Ĉ  , 
be the closed simplexes contained in c) A with vertices in 
x̂  jii.j x̂  which contain and Dj ̂ ...j D̂  (C"^A) which do 
not contain x. by Step 1) O C. 0 D • = b Consider any point 

i 1 J ^ 
a ̂  A and a point b 0(aj x). Let Ĉ  (resp, D̂  ) denote the 
closed simplex whose vertices are those of C. (resp. D.) and 'a'. 

1 J 
By the remark following 1.4.18. U C. ' U D.' . Ji.  Show that 
u Ĉ  is a neighbourhood of b. If dim C. ̂ k-1 for all i, 
then dim C^'^ k-1 for all i. Use 1,5.2 to show that in this 
case [J Ĉ  cannot be a neighbourhood of b. Q 

Since the linear image of convex hull of a finite set 
is also the convex hull of finite set, 1,5.?, immediately gives 
that the linear image of a closed convex cell is a closed convex 
cell. If A is an open convex cell in V and cp a linear map 
from V to V/, then Cp(A) = <p(A), by 1.4. 16, hence by 1.4.15 
Cp(A) is an open convex cell. Therefore 
1.5. S. Proposition. The linear image of an open (resp. closed) 
convex cell is an open (resp. closed) convex cell. Q 



27 

1.»6. Presentations of polyhedra ' . 
If (p is a set of sets and A is set̂  we shall write 

when A is a union of elements of ̂  . For exaijiple (d) of 1̂ 5.4 
can be expressed as "If A ̂  then ^AV(p We make the 
obvious convention̂  when 0 is the empty set̂  that 0 
matter what (p is. 
U6i1» , Pefinition. A polyhedral presentation is a finite set (p 
whose elements are open convex cellŝ  such that A g ̂  Implies 
^AV-p. 
1.6.2̂  Definition. A regular presentation is a polyhedral pre-
sentation p such that any two distinct elements are disjoint̂  that 
is, , A/b implies A H B = 0. 
Ex. The (p of proposition 1.5.4 is a regular presentation. 
1.6.3. Definition̂  A simplicial presentation is a regular pre-
sentation whose elements are simplicies and such that if A ̂  (p, 
then every face of A also belongs to (p * 

If ^are polyhedral presentations, we call Qj a 
subpresentatlon of (p . If ^ is regular (resp. simplicial) then(̂  
is necessarily regular (resp. simplicial). The points of the 
0~cells of a simplicial presentation will be called the vertices of 
the simplicial presentation. The dimension of a polyhedral presen-

P - . 
tation̂ is defined to be the maximum of the dimensions of the open 
cells of  (p  4 ' 

1.6.4. Definition. If [D is a polyhedral presentation |(p) will 
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be used to denote the union of all elements of jp » We say that(J) 
is a presentation of Iffî  or that (̂p̂  has a presentation (p . 

Recall that in t.lj. we have defined a polyhedron as a 
subset of a real vector spacê  which is a finite union of convex 
hulls of finite sets. It is clear consequence of 1,5.4, 1.5.5 and 
t. 5.6 that 
t.6.5. Proposition. Every polyhedron has a polyhedral presentation. 
If (p is a polyhedral presentation, then is a polyhedron. Q 

Thus, if we define a polyhedron as a subset of a real 
vector space whicih has a polyhedral presentation, then this .definition 
coincides with the earlier definition. 
1.6.6. Proposition, The union or intersection of a finite number 
of polyhedra is again a polyhedron. 
Proof; It is enough to prove for two polyhedra say P and Q. Let 
p and be polyhedral presentations of P and Q respectively. 

Then is a polyhedral presentation of P VJQ; hence P U Q 
is a polyhedron. To prove that P O Q is a polyhedron, consider 
the set (Ĵ  consisting of all nonempty sets of the form A A B, 
for A ̂  (p and B It follows from 1.4. 13 that (Ĵ  is a 
polyhedral presentation. Clearly = P O Q. Hence by 1,6,5 
P n Q is a polyhedron. Q 

If XC Y are polyhedra, we will call X a subpolyhedron' 
of Y. Thus in 1.6.6, P A Q is a subpolyhedron of both P and Q. 
1.6.7. If (p and are two polyhedral presentations consider 
the sets of the form AKB, A ̂ (p , B ̂  . Clearly AXB is 
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an open convex cell̂  and by 1,4.20 B (AXb) is the disjoint union 
of hii X B, k/^hn and b A b B. Thus the set of cells of 
the form A X B, A ̂  (p., B f (3> is a polyhedral presentation, regular 
if both (p and are. This we will denote by (p y, ̂  ,. As above, 
we have, as a consequence that P KQ 'is a polyhedron, with • 
presentation (p X Or>. 
Ex. 1.6.8, The linear image of a polyhedron is a polyhedron (follows 
from the definition of polyhedron and the definition of linear map).Q 

Recall that we have defined a polyhedral map between two 
polyhedra as a map whose graph is a polyhedron. 
1.6.9. Proposition. The composition of two polyhedral maps is a 
polyhedral map. 
Proof! Let X, Y and Z be three polyhedra in the vector spaces 
U, V and W respectively, and let f : X — ^ Y, g : Y > Z be 
polyhedral maps. Then "PCf U X V and P (g) V W are 
polyhedra. By 1.6.7, "p(f) X 2 and X AP(g) are also polyhedra 
in By 1.6.6, ^(f)>C z)n( ^ XT(g)) is a polyhedron. 
This intersection is the set 

S 1 ^(x, y, z) I X ̂  X, y = f(x), z = g(y) j 
in UAV>.W. By 1.6.8 the projection of U ŷ  V X W to U K W 
takes S into a polyhedron, which is none other than the graph of 
the map g o f : X ̂  ^ Z. Hence g o f is polyhedral. Q 

If a polyhedral map f : P ^ Q, is one-to-one and onto 
we term it a polyhedral equivalence. 
Ex. 1.6. 10. If, f I P ̂ —^ Q is a polyhedral map, then the map 
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f'. p .—^P(f) defined by f'(x) = (x, f(x)) is a polyhedral 
equivalence, 
1.6.11, Dimension of a polyhedron. 

The dimension of a polyhedron P is defined to be 
Max. dim C > C > where |p is any polyhedral presentation of P. 

Of coiiTse we have to check that this is independent of the 
presentation chosen. This follows from 1.5.2. 

Let P and Q be two polyhedra and f t P ^ Q be 
a polyhedral map. Let ^ s P K Q — ^ P and : P ̂  Q ) Q 
be the first and second projections. If ̂  is any presentation of 
T'(f), then the open cells of the form % (C), 
presentation of P̂  regular if and only if is regular. If f 
is a polyhedral equivalence, then the cells of the form |A.(C)5 
C ̂  ^ is a presentation of Q. This shows that 
1.6.12. Proposition. The dimension of a polyhedron is a polyhedral 
invariant. O 

1.7. Refinement by bisection. 
1. ?• 1 • Definition. If and Q-, are polyhedral presentations, we 
say that (p refines , or (p is a refinement of provided 

(a) 
(b) If A e:.(p, and B^O^, then Af\B 0 or AQB. 

In otherwords, |p and are presentations of the same 
polyhedron and each element (an open convex cell) of {p is contained 
in each element of 0% which it intersects. Hereafter, when there 
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is no confusionj we will refer to open convex cells and closed convex 
cells as open cells and closed cells. A polyhedral presentation is 
regular if and only if it refines itself. 

Let (3 = (P 5 H ̂  H ) be a .bisection of the ambient 
vector space V (1,3.9); Q, a polyhedral presentation of polyhedron 

I 

in V, and let A £ (J.. We say that Q. admits a bisection by 
(B at A, provided; 

Whenever an open cell A^^ Q. intersects 
Ba (i.e. Â  PidA i 0), and dim Â  < dim A, then either 
Â  ̂  P or or H (in particular this should be true 
for any cell in the boundary of A), 

If (jL admits a bisection by (ĵ  at A, then we define a 
presentation as follows, and call it the result of bisecting 
Q by (B at A; 

consists of with the element A removed, and with 
the nonempty sets of the form, AO P or A 0 h"̂  or A n H", 
that is 

U{AnP, A o H ^ AOH-^J 
By 1.4.13̂  and the definition of admitting a bisection, is 
a polyhedral presentation. Clearly refines, if is 
regular. 

We remark that it may well be the case that A is 
contained in P or Ĥ  or H~. In this event, bisecting at A 
changes nothing at all, that is Q, . If this is the case 
we call the bisection trivial. It is also possible, in the case of 
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Irregular presentations, that some or all,of the sets 
AAPj A A H'̂,, A n H~ may already be contained in Q, - -̂ A] in 
this event, bisection will not change'̂ s much as we might expect. 
Ex. t. 7.2. Let A and B be two open cello, with dim A ̂  dim B 
and A / B. Let S . i F P j h! hTI be bisections of 

space such that A is the intersection of precisely one element from 
some of the ^ /s,. If A HB / 0, then 3 an i ,, 1 4 m, such 
that B H p ,, B O h ^ and B A h" are all nonvacuous, Q 

What we are aiming at is to show that every polyhedral 
presentation ^ has a regular refinement,, which moreover is obtained 
from (p by a particular process (bisections). The proof is by an 
obvious double inductioni we sketch the proof below leaving some of 
the details to the reader. ' 
1.7.3. Proposition REFI ( (p 

There is a procedurej whidhj apiblied to ̂  polyhedral 
presentation (p , gives a finite sequences ^S^ of bisections (at 

1 
cells by bisections of space), which start on (p , give end result (p , 
and (p is a regular presentation which refines ^ 

Step 1. First, we find a finite set (B • s|P I = l,,.,n 
_ J (̂ j ^ 
of bisections of the ambient space, such that every element of ^ iv̂  
an Intersection one element each from some of the (3 ̂'s.. This is 

J 
possible because every element of ̂  is a finite intersection of 
hyperplanes and half spaces,, and there are only a finite number of 
elements in ^ 
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Step 2. Write (p = (p̂ . Index the cells of in such a way that 
the dimension is a non decreasing function. That is define p̂  to be 
the cardinality of fp , arrange the elements of fp as D̂ ,,,., D̂  , 
such that dim D,?̂  dim D ° for all - 0 < k r p - 1. 
step 3. Sq ̂  denotes the process of bisecting ^ ̂  at D̂  by 
Inductively, 

we define S„ ̂ ,< to be the process of bisecting 
fpQjk (B ̂  ; and (p q ̂ ^̂  the result. This is well 
defined since the elements of (p^ are arranged in the order of 
nondecreasing dimension. This can be done until we get S„ and 

(Po.Po-
Step 4. Write (p = [u , repeat step (2) and then the step (3) 

M I vj U jPQ 

with bisection instead of jĵ  . 
2 1 

And so on until we get (p , when the process stops. ^ 
is clearly a refinement of ^ = ; it remains to show that ^ 
is regular. Each element by 0 belongs to some fp • and 

y n ^ i, a 
each element of ^ -is a finite intersection of exactly one element 
each from a subfamily of the /s. It is easily shown by double 

J 

induction that if A ̂  (p , then for any j, j $ n, either A P̂  
or A HJ or Ĥ . That is (p admits a bisection at A by • 
(ji J for any j, but the bisection is trivial. Let C , D g (p̂ , C / D 
C n D ̂  0, dim C ̂  dim D. Then since C is an intersection of one 
element each from a subfamily of the (ĵ  s, by 1. there exists 

J 
an such that D 0 Pĵ  , D r\ H^ and D O, h"̂  are all nonempty. 
But this is a contradiction. Hence (p is regular. Write 
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(pn" (P . - Sp + This gives the 
"REFI ((f . (p', {S.p.'. Q 

We can now draw a number of corollaries 8 
1.t0.4. Corollary. Any polyhedron has a regular presentation. Q 
U10, 5. Corollary. Any two polyhedral presentations (p , 
of the same polyhedron X have a conimon refinement , which is 
obtained from (p and from (3̂  by a finite sequence of bisections. 

To see this, note that p Ij is a polyhedral presentation 
of X. The application REFI ( (p gO, (p^  ) provides ^ . 
Let ^T^ ^ and ^U^ | denote the subsequences applying to ^ and 
respectively; observe that they both result in (j^ . D 
t.10,6. Corollary. Given any finite number (p ̂  >»•»j (p of 
polyhedral presentations, there is a regular presentation of 
(̂ t ^ ' • ' has subpresentations , ? 

(P i ~ i and ̂  . is obtained from ^ _ 
by a finite sequence oif bisections. 

This is an application of R E F I ( Q) yjp , , ̂ S^p 
and an analysis of the situation. Q 

with 
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Chapter II 

Trlangulation 

As we have seen̂  every polyhedral presentation̂ ^ has a 
regular refinement. This implies that any two polyhedral presentations 
of X have a common regular refinement, that if Y are polyhedra 
there are regular presentations of Y containing subpresentations 
covering X, etc.. In this chapter we will see that in fact every poly-
hedral presentation has a simplicial refinement, and that given a 
polyhedral map f i P — Q , there exist simplicial presentations of 
P and Q with respect to which f is "simplicial", 
2.1, Triangulation of polyhedra., 

A simplicial presentation ̂  of a polyhedron X is also 
known as a linear triangulation of X. We shall construct simplicial 
presentations from regular ones by "barycentric subdivision". 
2.1.1. Definition. Let (p be a regular presentation. A centering 
of p is a function TV : (p > such that Ŷ  (C) ̂  C, for 
every C ̂  |p . 

In other words, a centering is a way bo choose a point 
each from each element (an open convex cell) of (D . 
2.1.2. Proposition. If Ĉ  Ĉ  Ĉ  are elements of ̂  , 
ordered with respect to boundary relationship, then (Ĉ ),..., . 
is an independent set for any centering T̂  of ̂  , 
Proofs Immediate from UU.9, by induction. O 
2.1.3. Proposition. Suppose that ^ is a regular presentation and 
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C is the disjoint union of all open simplexes of the form 

where , Â  < Â  < < Â  and Â  ^C. 
Proof; By induction. Assume the proposition to be true for cells 
of dimension < dim G. c) C is the union of all simplexes of the 
fom 0 (T^(Aq), ... where A. £(p , A. < C 
and Aq <_ . . Â  (since < is transitive). Since C is a bounded 
open convex cell C is the union of 0( Tj  (C), x), x ̂ Ĉ and (C) 
(see the remark following 1.4. IS). Now 2.1,2 completes the rest. D 

It follows from 2.1.2 and 2.1.3, that if (p 
is any regular 

presentation, then the set of all open simplexes of the form 
0( T̂ (Cq), Tj(Ĉ )), for C. e{p , with Cq< .. , is 
a simplicial presentation of . This leads to the following 
definition and proposition, 
2.1.4. Definition. If |p is any regular presentation, Y| a centering 
of 5 the derived subdivision of relative to Tj is the set of 
open simplexes of the form 0( Tj (CQ), ..Y^(Cj^)) , Ĉ  ̂  (p , 

. It is a simplicial presentation (of ) and is 
denoted by d((p,r|). 

The vertices of d ((p , T| ) are precisely the points 
(0-cells) T| (C) , C When Y| is understood, or if the particular 
choice of T| is not so important, we refer to d( (p , ̂  ) as a 
derived subdivision of and denote it by d ^ . 
2.1.5. Proposition. Every polyhedral presentation admits of a 
simplicial refinement. Q 
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Hence every polyhedron can be triangulated, 

2.2. Triangulatlon of maps. Now, we return to polyhedral maps. If 
f I P -—^ Q is a polyhedral map, we have seen that the map 
f's P _9rP(f) given by f'(x) - Qx , f(x)) is a polyhedral 
equivalence and that any presentation of "PCf) gives a presentation 
of P by linear projection, Alsô  we saw in 1.3, that if A is a 
convex subset of vector space V and ^ : A-—^ W a map of A 
into a vector space W, <p is linear if and only if the graph of (p 
is convex. Combining these two remarks, we have that a polyhedral 
map is 'piecewise linear' or as Alexander called it 'linear in patches' 

Next̂  an attempt to describe polyhedral maps in terms of 
presentations of polyhedra leads to the following definition. 
2.2.1. Definition. Let (̂ L and (Ĵ  be regular presentations, A 
function Cp s Qi — ^ is called combinatorial if for all 
Ap A^eCSt, A, 4 A2 implies Cp(A^) ̂  CpCAg). 

But unfortunately there may be several distinct polyhedral 
maps —ip (ĵ  inducing the same combinatorial map (JL—^{J) , 
and a map | (Jl. | — ^ ^^ inducing some combinatorial map (JL 
need not even be polyhedral (We will see more of thê e when we come 
to 'standard mistake' ). If turns out that a map Ĉ - —V (f2) induces 
a unique map |0L — | ( ^ | i f we require that the induced map 
to be linear on each cell of Qt. • But in this case it is sufficient 
to know the map on 0-cells (vertices); one can extend by linearly. 
•This naturally leads to simplicial maps. 
2.2.2. Definition. Let X and I be polyhedra, ̂  and 
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simplicial presentations of X and Y respectively, A map 
f s X -—^ T is said to be simplicial with respect to and ̂  , 
iff 

1) f maps vertices of each simplex in 
into the vertices of some simplex in ̂ ^ . 

and 2) f is linear on the closure of each 
simplex in ̂  . 

f is polyhedral̂  since its graph has a natural simplicial 
presentation isomorphic so , 

Let /f and ̂  be two simplicial presentations. Let ^ 
(resp. the set of vertices of (resp. ̂  ). If 

• /f^ -—^^^ is a map, which carries the vertices of a simplex 
of /I into the vertices of some simplex of ̂  , then (also) we will 
say is a simplicial map from to ̂  . 
2.2.3. Example. If CQ : ̂  —^ ̂  is a combinatorial map 1f| , 0 
centerings of ^ and ̂  respectively, the map which carries T| (c 
to Q ( ̂ (C)) is a simplicial map from d(Q") , ) to d( (̂T), ©).• 

We now proceed to show that every polyhedral map is 
simplicial with respect to some triangiiLations. 

Let P and Q be two polyhedra and f : P — ^ Q be a 
polyhedral map. Let (D j and be presentations of P, Q and 
~P(f)(^ F XQ. Let 0L be a regular presentation of P X Q which 
refines and let Q' be the subpresentation of 
which covers 

- Let /\ and ̂  be the projections of F Q onto P and 
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Q respectively. By the refinement process there is a regular present 
tat ion of Q refining ^ such that 5 

If • A e 6 , C e (2, AH [̂ (C) / 0 , then AQj^C). 
Then, if 0 ̂  Q^ , ̂ (C) is the union of elements of , 

Now we look at the presentations = , (O ) 
of ~P (f). The cells of are by definition of the fortii 
C" - C n(A Xb'), G £ (2, A ^ P , b' ̂  Clearly C"CC H (X^b'). 
On the other hand, since is a refinement of , there is an 
open cell B £ with 3 3b' . Since ' is a subpresentation of 
a refinement (J- of (p ̂  , if c" ̂  0, C C AX B. Hence if 
(x, y) t C then x £ A, y Q, B', SO (X, y) e A X B'. Kence 
Cn|JC^(B')Ccn(AXB') - C", Thus C" = Cpij^^B') . Hence g" 
can be also described as 

C /O, Cfcig, b' 
NOW, clearly (p ' = = "JJ^CD) | D a 

regular presentation of P 7̂ (f) is 1-1 and is linear̂ with 
reference to the ambient vector spaces . Now the claim is. that f 
induces a combinatorial map (̂D — ^ Q^'. Let A be any cell of (p 
( ̂  P(f)) (A) is a cell of 

say some 
c r\ jockB'), 

f(A) ^ I^C A = A 3' B' by (•). Thus f(A) ̂  . 
^ ( C N is the union of ^ C N. I^^B'), C 

and ^ G A I^^(SB'). (by 1.4.5) and so ^ (C A is 

the union of ^ C) A B', f\  "̂ B", and FA. ( & C) A B', 
hence C)C) Hence if A^^ A, f(Â ) ̂  B'. Thus f 
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induces a combinatorial map from (p' to Moreover, since 
the presentation ^' comes from the graph of f restricted 
to the closure of each cell of (P is a closed cell̂  and hence f 
,is linear on the closure of each cell of '. 

The discussion so far can be sunmiarized as! 
2.2.4. Theorem. Let f i P •—^ Q be a polyhedral map, and let 

(^be polyhedral presentations of P and Q respectively. Then 
there exist regular refinements ^ and of and such 
that 

I ! , 

1) If A ^ ( p , f(A) ̂  ̂  . The induced map from (p 
to ^ is combinatorial. 

t 
2) f is linear on the closure of each cell of 
Furthermorê  

2.2.5. If ^ and ^ are regular and if there is a regular presen-
tation of 'p (f) such that 

a) For each G ̂  , /\(G) is contained in some element 
of (P , 

b) For each C , pv(G) is the union of elements 
of & . 

then in the above theorem we can take ^ = (in 
other words, a combinatorial map can be found refining only ̂  , 
not ). 

To a.pply 2,2.4 to the problem of simplicial maps, we can 
use 2,2.3 as follows? First we choose some centering Q of ^ ', 

I 
and then a centering "Y| of (p so that 

f( 'Ŷ (C)) = 0 (f (C)) for all C 
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J 
Since f is linear an each element of (p , we have that f ; P -— 
is simplicial with respect-to d( (p , Tj ) and d( 0). HencSj 
2.2.6. Corollary, Given a polyhedral map f : P — ^ Q, there exist 
triangulations ̂  and ̂  of P and Q, with respect to which f 
is simplicial. Moreover̂  ^ and ^ can be chosen to refine any 
given presentations of P and Q. Q 

Defining the source and target of a map f : K -—^ L to 
be K and L respectively. We may now state a more general resultj 
details of the proof left as an exercise, 
2.2.7. Theorem. Let -̂ K̂ b̂e a finite set of polyhedra, with 

1 J.. • > n; let f t K — — ^ K be a finite set of polyhedral 
maps, the sources and targets being all in the given set of polyhedra. 
Suppose that for each V , J^y •̂ p'v'' and each K^ occurs as the 
source of at most one of the maps f (i.e., V / 5 implies )• 
Let (PY be a presentation of Ky for each Y . Then there is a set 
of simplicial pre sent ations ̂ ^^ ̂  , with ^ y refining (py , such 
that for all Y , fy is simplicial with reference to ^ 

That is to say, the whole diagram ^ fy Z can be triangulated. D 
The condition on sources is not always necessary , for 

example t 
Ex, 2.2,8, A diagram of polyhedral maps 

X 

z 
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can be triangulated if f ! X-——^ Y is an imbedding. 
However 

Ex. 2,2.9. The following diagram of polyhedral maps (each map is a 
linear projection) 

cannot be triangulated, Q. 
Ex._ 2.2.10» Let ^ be a presentation of a polyhedron P in V, 
{p . V — ^ W be a linear map, then Cp ( (p) = £cp(c) j C^^j-is a 
presentation of CD (p).Q 
Ex. 2.2.11. Let f I P ^ Q be a polyhedral map, and X a sub-
polyhedron of P. Then dim f(X) ̂  dim X. D 
Ex. 2,2.12. If f ; P — ^ Q is a polyhedral map Y is a sub-

-I 
polyhedron of Q, | (Y) is a subpolyhedron of X. t\ 

Next, one can discuss abstract simplicial complexes, their 
geometric realizations etc. We do not need them until the last 
chapter. The reader is referred to Pontryagin's little book mentioned 
ia the first chapter for these things. 
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Chapter III 

Topology and Approximation 

Since we know that intersection and union of two polyhedra 
is a polyhedron̂  we may define a topology on a polyhedron X̂  by 
describing sets of the form X - Yj for Y a subpolyhedron, as a 
basis of open sets. If, one the other hand, X is a polyhedron in 
a finite dimensional real ve'ctor space V, then V has various 
Euclidean metrics (all topologically equivalent) and X inherits a 
metric topology. 
Ex. These topologies on X are equal. 

The reason is that any point of V is contained in an 
arbitrary small open cell, of the same dimejision as V. 

It is easy to see that a closed simplex with this topology 
is compact. Hence every polyhedron, being a finite union of simplexes 
is compact. The graph of a polyhedral map is then compact, and hence 
f is continuous. Thus we have an embedding of the category of poly-
hedra and polyhedral maps into the category of compact metric spaces 
and continuous maps. 

It is with respect to any metric giving this topology that 
our approximation theorems are phrased. 

\ 

A polyhedron is an absolute neighbourhood retract, and the 
results that we have are simply obtained from a hard look at such 
results for A,N.R's, 

It turns our that we obtain a version of the simplicial 
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approximation theorem, which was the starting point, one may say, of 
the algebraic topology of the higher dimensional objects. The theorem 
has been given a 'relative form' by Zeeman., and we shall explain a 
method -which will give this as well as other related results. 

We must first say something about polyhedral neighbourhoods. 

3. 1.. Neighbourhoods that retract. 
Let ^ Q be regular presentations. Consider the open 

cells C of , with C H \(pl / 0, together with A, A < C, A £07, 
for such The set of all these open cells is a subpresentationvjV 
of O . |jNfl is a neighbourhood of |(p | in • ?or, if Jsf' 
is the set of cells C' ̂  such that c'O ({pj = 0, then is a 
subpresentation of ̂  and ((̂ ij - \ • If is simplicial, 
sjŷ  can be described as the subpresentation, consisting of open 
simplexes of with some vertices in (p together with their faces. 

If ̂  Q is a subpresentation, we say that ^ Is full 
in ; if for every C ̂  Q^ either C H | J>| = 0 or there is a 
A ̂  (p with C n I p) - A, 

In the case of simplicial presentations, this is the same 
as saying that if an open simplex of has all its vertices 
in (p , then ^ itself is in (p . 

An example of a nonfull subpresentation? 
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3.1.1. If are regular presentations, then d (p is full in 
d en . 

For̂  if Tj is any centering, then an element (an open 
simplex) of is of the forai 0( T) (0̂ )) 

GQ< ... < Cĵ. If k, is the last element of the Ĉ 's 
that is in p , then Ĉ , j ̂  , are necessarily in (p . Then 
0( Ŷ (Co) T̂ (C£.))ed(p , and 0( ̂ {C^) V̂ (Cĵ )) O |d(p| 

= 0( rj(Co) -̂ (cjL)). a 
3.. 1.2. Definition. If ̂  is full in (3% , the simplicial neip:hbourhood 
of (p in , is the subpresentation of d consisting of all 
simplexes of d whose vertices T|(C) are centers of cells C of 
with C n j(p j / 0, It is denoted by N (p ) (or ) 
when we want to make explicit the centering). 

Clearly N p ) is a full subpresentation of d (> , 
It can be also described as the set of elements 0~ of d ̂  ^ for 
which njd(pj = I (p I plus the faces of such . 
Hence | N ^ ( (p ) is a neighbourhood of |(p | in the topological 
sense. 

Such a neighbourhood as N (p ) \ of ((pj is usually 
referred to as a 'second derived neighbourhood' of ̂ (p| in j for 
the following reason! If XQy are polyhedraj to get such a 
neighbourhood we first start with a regular presenrtation Q^of Y 
containing a subpresentation (B covering X, derive once so that 
d (2> is full in d CL , then derive again and take | ) . 

Now we can define a simplicial map r j N (p ) — ^ d(p , 
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using the property of fullness of in , If with 
C n (p| / \ie know that there is a A ^(p „ such that 
C n j(pj - A, and this A is uniquely determined by C. We define 
r ( Ŷ  C) = T| A. 
Ex, 3.1•3. The map r thus defined is a simplicial retraction of 
Nq^((P) onto d{p , D 

That is r is a simplicial map from N ̂  (p) to d (P , 
which when restricted to d is identity, r defines therefore 
a polyhedral map, which also we shall call r : N^ ((p )j —> | d|) 
We have proved 
3.t.4. If X is a subpolyhedron of Y, there is a polyhedron N 
which is a neighbourhood of X in Yj and there is a polyhedral 
retraction r : N — X . O 

3.2, Approximation Theorem, 
We imagine our polyhedra to be embedded in real vector 

spaces(we have been dealing only with euclidean polyhedra) with 
euclidean metrics. • Let X, Y be two polyhedra, p , p' be 
metrics on X and Y respectively coming from the -vector- spaces 
in which they are situated. I- dC j B ' ̂  -—^ X are two functions, 
we define 

p(oC.P) ) = Sup f (c/L U), p(x)) 
x^Y 

If A is a subset of X, we define diam A = sup f (x, y), 
x,y e A 

and if B is a subset of Y,  we define diam B = Sup f'(x̂ y) 
B • 
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¥e can consider X to be contained in a convex polyhedron 
Q, If X is situated in the vector space V, we can take Q to be 
large cube or the convex hull of X. Let N be a second derived 
neighbourhood of X in Q and r i N .—> X be the retraction,' Now 
Q being convex and N a neighbourhood of X and Q̂  for any 
sufficiently small subset S of X, N (recall that K  (S) 
denotes the convex hull of S),, This can be made precise in terms 
of the metric; and is a uniform property since X is compact. Next 
observe that we can obtain polyhedral presentations ^ of X, such 
that diameter of each element of (p is less than a prescribed 
positive number. This follows for example from refinement process. 
Now the theorem is 
3.2.1. Theorem. Given a polyhedron X, for every ̂  > 0, there 
exists a S y- 0 such that for any pair of polyhedra 2 Y, and 
any pair of functions f : Y- ^ X, g : Z ^ X with f continuous 
and g polyhedral, if p(f| Z, g) < ̂  , then there exists a 
g i Y — i polyhedral, i j Z - g, and f (f, i)< ̂  . • 
Proof: We embed X in a convex polyhedron Q, in which there is 
a polyhedral neighbourhood N and a polyhedral retraction 
r t N - — X as above. It is clear from the earlier discussion, 
that given ^ > 0, there is a "V̂  > 0, such that if a set A X has 
diameter < Y| , then K N and diameter r ( (A)) . 
Define = ^ /y 

Now because of the uniform continuity of f, (Y is 
compact), there is a 0 > 0, such that if B C Y and diaxcu (B) < 0, 
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then diam ^ 
From this it follows that, still assuming and 

diameter B< 0 , and additionally that p(f|Z, g)<5 I that the 
set f(B) {J g(B A Z) has diajiister less than 3 ̂  = Ŷ  • -̂ d hence 
we know that f (f (E) U g (B H Z)) C N, and 

(̂ diam r(k(f (B) Ug"(B nZ))^ < £ , 
Then we find a presentation of Y, such that the closure 

of every element of has diameter less than 6, Also there is a 
presentation ^ the closure of every element of which g 
is linear. Refining Ij ̂  taking-derived subdivisions (still 
calling the presentations covering Y and Z, as A anĉ espectively)j 
we have the following situations 

C ' simplicial presentations of Z ̂ Y, on each 
closed ^ -simplex g is linearj the diameter of each closed 
/f-simplex 0. 

We now define h : Y — > Q as follows: On a 0-simplex 
V of ̂  , h(v) = g(v),. On a 0-simplex w of /| - ? h(w) = f(w). 
Extend h linearly on each simplex, this is possible since Q is 
convex. But now, if = ĵ v̂  ,..., v ~ is the closure of a /̂ -simplex, 
then h( ̂  ) (fC ̂  ) U g( f ̂  2)) Nj this is a computation 
made above since diam. ̂  < 0. 

And so h(Y)(3 N. Also it is the case that h is polyhedral, 
since h is linear on the closure of each simplex of Ĵ  ., and on 

= Z, clearly, h agrees with g. 
Define, g : Y -—^ X to be r o h. Since r and h are 



49 

polyhedral so is g ; since h[ Z ~ g and r' is identity on X| it 
follows that gjZ ~ g. Td compute P(g > f) we observe that any 
y£ Y is contained in some closed simplex j both 
f(y) and h(y) are contained in |( ) U s( ̂  f̂  2)); and hence 
both f(y) and g(y) are contained in 

r (k(f( ̂  ) U g( ̂ n z))̂  
This set by (*) has diameter< £ . Hence p (g, f) < O 

We now remark a number of corollariest 
3.2.2. Corollary. Let X, Y, Z be polyhedra, Z^ Y, and f i Y ^ X 
a continuous map such that f 2 is a polyhedral. Then f can be 
approximated arbitrarily closely by polyhedral maps g i Y ^ X such. 
that g Z = f z. a 

The next is not a corollary of 3,2.1, (it could be) but 
follows from the discussion there. 
3.2.3. Any two continuous maps f̂ , f̂  i Y ^ X, if they are . 
sufficiently close are homotopic, (Also how close depends only on X, 
not Y or the maps involved). If f̂  and f̂  are polyhedral, we 
can assume the homotopy also to be polyhedral̂  and fixed on any sub-
polyhedron on which f̂  and f̂  agree. 
Proofs Let N and X be as before. Let "Vj be a number such that 
if AQX, diam A < Ŷ  then K (A)Cn. If f (f,, > then 
F(y,t) = t f̂ (y) + (1-t) f2(y) ̂  N, for 0<t ̂  1 and all y ^ Y 
and r . F, where r : N — X is the retraction, gives the required 
homotopy. If f̂ , £2 are polyhedral, we can apply 3.2.1 to obtain 
a polyhedral homotopy with the desired properties. D 
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Remarks The aboye homotopies'are small in the sense, that the image 
of X is not moved too far from and f2(x). 
3.2,4. Homotopy'groups and singular homology groups of a polyhedron 
can be defined in terns of continuous functions or polyhedral maps 
from closed simplexes into X, The two definitions are naturally 
isomorphic. The same is true for relative homotopy groups, triad 
homotopy groups etc. 

The corollary 3.2.2 is Zemman's version of the relative 
simplicial approximation theorem. From-this (coupled with 4. 2.13) 
one can deduce (see M, Hirsch, "A proof of the nonretractibility of 
a cell onto its boundary",. Proc. of A.M.S,, 1963, Vol, 14), Brouwer's 
theorems on the noncontractibility of the n-sphere, fixed point 
property of the n-cell, etc. It should be remarked that the first 
major use of the idea of simplicial approximation was done by L.Ê Ĵ  
Brouwer himself; using this he defined degree of a map, proved its 
homotopy invariance, and incidentally derived the fixed point theorem. 

It should be remarked that relative versions of 3.2,1 are 
possible. For example define a pair (X̂ , X^) to be a space (or a 
polyhedron) and a subspace (or a subpolyhedron) and continuous (or 
polyhedral) maps ft (X̂ , X̂ ) — ( Y ^ , Y^) to be the appropriate 
sort of function X̂  ^ X̂  which maps X̂  into J^ • '̂hen 
Theorem 3,2.1 can be stated in terms of pairs and the proof of this 
exactly the same utilising modifications of 3.1.4 and the remarks at 
the beginning of 3.2 which are valid for pairs. 

Another relative version of interset is the notioa of 
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polyhedron over A, that is, a polyhedral map J^ : X ——^ A. A map 
f s ( ^ i X — ^ A) ^ ( t Y ^ A) is a function f 5 X > Y 
such thet X. •= " we can consider either polyhedral or continuous 
maps. The reader should state and prove 3.2.1 in this context (if 
possible). 
3.3. Mazur's criterion. 

We shall mention another result (see B, Mazur "The definition 
of equivalence of combinatorial imbeddings" Publications Mathematiques, 
No.3, I.H.E.S.j 1959) at this point, which shows that, in a certain 
sense, close approximations to embeddings are embeddings (in an ambient 
vector space). 

Let ^^ be a simplicial presentation of X, and let V be 
a real vector space. Let denote the set of vBrtices of ̂ ^ , 
Given a function C) 1 •—^ V, we can define an extension 
Cp ; ̂ ^ — ^ V by mapping each simplex linearly. Clearly if V 
is any polyhedron containing <p (x), the resulting map X ^ Y is 
polyhedral. We call cp the linear extension of C) . Cp is called 
an embedding if it maps distinct points of X into distinct points 
in V, • • 
3.3.1. (Mazur's criterion for non-embeddings) 

If the linear extension C^ of Cp i oG^ — ^ V is not 
an embedding, then there are two open simplexes CP and ^ of ^SJ 
with no vertices in. common, such that Cp ( ) ̂  
Proof; The proof is in two stages. 

A> If 6""= 0(v V ) and {Cp^^O^ ' 
is not indep-.endent, then there are faces ^^ and of 
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without vertices in common, such that ( ) Cp(6~2) 0 
(This is just 1.2,6), 

B) Thus we can assume that for every fp .of ̂  , Cp( (S~ ) 
is also an open simplex of the same dimension. Consider pairs of 
distinct open simplexes£p , f 'j- such that ^ ( ̂  ) O ̂  ( / 0. 
Let l^j cy 1- be such a pair, which in addition has the property 
dim + dim is minimal among such pairs. We can now^hat 
and ̂  have no vertex in common. If ^ = 0( Vq ,..., v̂ )̂ and 
T = ŵ ), then if (jp ( 6") A Cp ( T ) / 0, there is an 

equation 

ro(p(Vo) H- ..... + r^ fUJ  = Sq cp(ŵ ) ... + ŝ  ̂ (w^) 

with r̂  + .,. + r = 1 = ŝ  + A.... + s . Here r. and s. are 0 m 0 1 n 1 1 -
strictly greater than 0, for otherwise dim dim X will not 
be minimal. 

Now if and have a common vertex,,, say, for example, 
v̂  = w , and r„ > ŝ . we can write 

i^ 1 1 
Multiplying by (1 - ŝ ) , we see that some face of ® ( r ) 
intersects a proper face C^^ 0 (w^ ) ,,.., ŵ )̂  of ( r-). So 
that and ̂  had not the minimal -dimension compatible- with the 
properties 5" ^ T , Cp ( ) r\ ^ ( T ) ^ D 

Now it easily follows, since to check Cp is an embedding 
we need only check that finitely many compact pairs 

(ir ) , 9 ( T ))• ' f = 0 j do not intersect; 
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3.3.2, Proposition. Let ̂  be a simplicial presentation of X 
contained in a vector space V, letj^Q t̂e the set of vertices. 
Then there exists an £ such that if Cjj) | ̂ ^ — V is any 
function satisfying -̂ (v, Cp(v))<( for all v C" ̂  , then the 
linear extension Cp ; X — V is an embedding. D 

This is a sort of stability theorem for embeddings, that 
iŝ , if we perturb a little the vertices of an embedded polyhedron̂  
we still have an embedding. 
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Chapter IV 

Link and Star Technique 

4.1. Abstract Theory I 
4.1.1. Definition (Join of open slmplexes) 

Suppose g- and ^ are two open slmplexes In the same 
vector space. We say that T̂ X Is defined, when 

(a) the sets of vertices of ^ and 'X disjoint 
(b) the union of the set of vertices of and T 

is independent. 
In such a case we define ĉ  to be the open Biaplex 

whose set of vertices is the -union of those of -G" and of , If 
6" is a 0-simpleXj we will denote 5" by ̂ ^ ̂  or ̂  £xj where 

X is the unique point in . 
We alsô . by convention, where Q" (or T* ) is taken to 

be the empty set 0, make the definition 
J Z ! = 6~ 

Clearly dim T̂ - dim 6~ + dim ̂  +1, even when one 
or both of them are empty. 
Ex. 4. 1.2. ^ is defined if and only if cT T = 0> and any 
two open intervals 0(xj y) ̂  0{x', j) are disjoint, where 
X, X' (T ^ y' t T > ̂  ̂  y / y'. in this case 6~T is 
the union of open 1-slmplexes 0(x, y), xt , y ̂  . Q 

This is easy. Actually it is enough to assume 
0(x, y) r\ 0(x', y') = 0 for x, x' e T , y, y' 1 X / x' or y / y', 
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That it is true for points of Q"" cind and. g™ r\ — 0 follow 
from, this, 
Ex. 4.1.3. Ifeen ^ is defined, the faces of are the 
same as ' , where ^ ' and are faces of (J" and'X' 
respectively. If either ^ ' / or ^ , then q̂" ' 
is a proper face of 6" ̂  . D 
Ex. 4. 1.4. Let and ĉ  be in ambient vector spaces , V and W. 
In V W IK , let f - ry. 0 XO and 7 = 0 )<. T X Then 

^ is defined. Q 
4. t» 5» Definition. Let be a simplicial presentation, and (Ĵ  
an element of , Then the link of ^ in denoted by ' Lk { ̂  , A ) 
is defined as 

= is defined.] 

Lk (G™ , 4 ) = ̂  if r* = 
Obviously Lk ( , ) is a sub pre sent at ion of , 
In case ĝ  is 0-dimensional, we write Lk (x, /| ) for 

Lk( S" > A ) where x is the unique element in C" • 
Ex. 4.1.6. If T ^ Lk( /I )5 then 

Lk(cr , Lk( /{)) = Lk(rT , 4). D 
4.1.7. Notation. If ^ is an open simplex, then • and ̂ ^ will 
denote the simplicial presentations of q- and ̂  made up of faces 
of (T . 
Ex. 4. 1.8. If ^ .= p , and dim p ^ 0, then 

Lk(p, {a^] ) 

P ̂  L r ] a 
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4. T.9. Definition. Let QL and (ĵ  be simplicial presentations such 
that for all ^ OL j T t (B ^ C T defined, and(f TOe t' = 
if ^ ^ or -f- <T Then we say that the .join of andfi 
is defined, and define the .-join of QLand (f̂  , denoted by (Ĵ  
to be the set 

i 5" ̂  6 Ot, ̂  C- ® ^or (T may be empty 1 
^ but not both. j 

By 4.1.3 is a simplicial presentation. If 0 
is empty, we define 0 = 0 * 0 ^ = 01-. 

In case 0L and (f̂  are presentations of polyhedra in V 
and W, then we construct, by 4.1.4, 01. and (p which are isomorphic 
to QL and (/̂  , and for which we can define 0L * (lo . It clearly 
depends only on Q\. and ̂  upto simplicial isomorphism; in this way 
we can construct abstractly any joins we desire. 
Ex. 4.1..10. 0\-* (Ji - (ĵ  * CJL 

01* ((B*S) = (01*3) . 
That is whenever one side is defined̂  the other also is defined and 
both are equal, D 
sx. If dC^CJL > ' 

Lk (oCp> , OL^^(B ) ̂  Lk (/ ,0L) * Lk ((i ,CB ). 
In particular, when 0 , 

Lk - Lk (dC , a ) 
and when cd = 0 , 

Lk -^a^Lk (p n 
If (Ji,  is the presentation of a single point [ vj , and is 

joinable to (ĵ  , then we call 0L* I the cone on (2) witĥ vertex 
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V, and denote it by G(Ob). (S is called the base of the cone. If 
we make the conventionj, that the unique regular presentation of a one 
point polyhedron v, is to be written j , then C((B ) = {{yj] . 
4. 1. 12. Definition. Let be a simplicial presentation, and Q" ̂  Ĵ  
Then the star of . (f In , denoted by St( ̂  , ), is defined to 
be Ifj^^ Lk( ). 

Clearly St( T , ) is a subpresentation of and is 
equal to (J | T ^ ) ^ T ] , 

In case tP contains only a single point x, we write 
St(x, 
Ex; 4. U13. Let be a simplicial presentation, (p an element of 
J^ . If ^ is a face of ^ with dim ̂  = dim - 1, then 

Lk( A ) = Lk . * Lk( , 4 ) ) , D 
4. U14. Definition. If is a simplicial presentation, the 
k-skeleton of , denoted by /S k is defined to be 

, = U ([rj 4 dim k k 
Clearly ^ is a subpresentation of 

Ex. 4.1.1$. If C" £ /{ and dim = 1, ( X ̂  k), then 
Ic 

r ĵ) ^ Lk( D 
Ex. 4.1.16. Let f 1 P — Q be a polyhedral map, -simplicial with 
respect to presentations and ' of P and Q respectively. 
Then 

2) if^^A iiMc^A))  C'stif^,  A') 
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3) For every if £ , f(Lk( C Lk(f(6~ A') 
if and only if f maps every 1-siiftplex of onto 
a 1-simplex of 

(Strictly speaking, these are the maps induced by f). 

4.2, Abstract Theory II 
4.2.1. Definition. Let ̂  be a regular presentation and a 
centering of (p , Let A ̂  |p . Then the dual of A and the link 
of A, vdth respect to Ŷ  , denoted by A and ®\Xa are defined 
to be • • 

S A =-[O( Ŷ  CQ Ŷ Ck) [ A ̂  CQ< ,, 

TjC^) ( A<Cq< ,, kVO j 

where £ jp for all i. 
Clearly ^ A and ̂  A are subpresentations of d ̂  = d((p jf] ) 

When there are several regular presentations to be consideredj -we will 
denote these by ĵp A and ^ ^ A. Ŷ  will be usually omitted from 
the teriranology, and these will be simply called dual of A and link 
of A. 
4. 2. 2. Every simplex of d ̂  belongs to some Ĉ  A, D 
4.2.3. A is the cone on /\ A with vertex T| A. -Q 
Ex. 4.2.4. Let dim A = p, and consider any p-simplex <5" of d |p 
contained in A i. e. = 0( BQ .., ̂  Bp)j for some 

B ^ e,. <Bp A, Then A A - Lk( r", dp ), • 
4.2.5. Suppose (p is, in fact, simplicial. Then we have defined 
both /\  A and Lk(A,(p ). These are related thus: 
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A vertex of A is of the form Y| C where A <. C. 
There is a unique B of p such that C=AB. 1r|B is a typical 
vertex of d(Lk (A, (p )). The'correspondence V| C V̂  B defines 
a simplicial isomorphism! 

A O d (Lk (A, J) )). Q 
Ex. 4.2.6. With the notation of 4 . 2 . A < B if and only if 
(5b C Aa, For any A£(p , P̂ A is the union of all ̂  B for A <. B.D 
Ex. 4.2.7. If p is simplicial. A, B e(P , then Sa Pi ̂  B / ̂  
if and only if A and B are faces of a simplex of ̂  . If C is 
the minimal simplex of containing both A and B (that C is 
the open simplex generated by the union, of the vertices of A and B)̂  
then <5\AnS B ĉ C. O 
4.2.8. Definition. If is a regular presentation and Y| a 

k 
centering of ̂  , the dual k-skeleton of , denoted by is 
defined to be • 

(p^ = I 0 ( Ŷ  C q C q < ... dim C q ^ k, 

. Clearly (p is a subpresentation of d^ , and is, in . 
fact the union of 

all <J A for dim A k. It is even the union of 
all <S A for dim A = k. 

Thus & A, ŷ  A, (p are all simplicial presentations, 
Ex. 4.2.9.- (P° 3(p' 3 ... 3 (p"""̂  = where 

k 
n is the dimension of ̂  . Dim (p = n - k. D 

We shall be content vdth the computation of links of 
vertices of (p 
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Ex. k.2, 10. If A ̂  p , dim A k, then 
Lk ( A, (p̂ ) = A A. O 

Nextj we consider the behaviour of polyhedral maps with 
respect to duals. 

Let f ! P — ^ Q be a polyhedral map; let |p and be 
two simplicial presentations of P and Q respectively with respect 
to which f is simplicial. If /(p is a centering of , it can 
be lifted to a centering V̂  of (p ^ that is f( A) --{o f(A) for 
all A Crjp , (see 2.2). f is simplicial xd.th respect to d((p ) 
and d(0> ̂  ̂  ) alss. Now, 
4.2.11. If AQp , f( A) C^^i^CA)). O 
4.2. 12. If B t then = '0 ̂  aI f(A) = B ], 0 
Remarki All these should be read as maps induced by f, etc. 
Since each such A must have dimension ^ dim B, we have 
4.2.13. Proposition. With the above notation, for each 

This property is dual to the property with respect to the 
usual skeleta "f( (p , ) C " • 

K K 
-1 k 

4.2.14. Corollary. If dim P = n, then dim f ( ,) ^ ̂  - k, D 
In particular, if dim Q = m, and q is a point of an 

(open) YN-dimensional simplex of , f"''(q) is a4.(n-m)-dimensional 
subpolyhedron of P. 0 
Ex. 4.2.15. f = (p ' > if and only if every 1-simplex of f . 
is mapped onto a 1-simplex of . (i.e. no 1~simplex of (p is 
collapsed to a single point). 0 



4.3. Geometric Theory. 
4.3.1. Definition. Let P and Q be polyhedra in the same vector 
space V. We say that the .ioin,...of P and Q is defined (or P_J_Q 
is defined, or P and Q, are joinable), if; 

(a) P AQ = 0 
(b) If X, x' ̂  Pj y, y' Q, and either x V x' or 

y^y'lthen 0(x, y) O 0(x', y') = 0. 
If the join of P and Q is definedj we define the join 

of P and Q , denoted by P Q to be 
P ̂  Q - 0 yl (x ̂  P, y ^ q]. 
By definition. P.* 0 = 0 * P = P. 
Every' point z t P * Q can be written asi 
z=(l»t) x + ty,xtP,ye:Q, O ^ t 

The number t is uniquely determined by z; y is uniquely determined 
if z (: P (i. e. if t ̂  0), x is uniquely determined if z Q 
(i.e. if  t -/ 1). 
4.3.2. Let Q) and be simplicial presentations of P and Q; 
and suppose the (geometric) join P * Q is defined. Then by 4.1.2, 
the (simplicial) join ^ * i® defined, and we have ^ P * Q, 

This shows that P * Q is a polyhedron. • 
4.3.3. Definition. If P̂ , Q^ Q̂  are polyhedra such that 
P̂  * Q̂  and P̂  * Qg are defined, and f 1 P̂  ^ Pj, g t Q^—^ Qg 
are maps, then the join of f and . denoted by f * g,. is the map 
from P * Q to P * Q given by, 

i I ^ 

(f * g) ((1 - t) X + t y) = (1-.- t) f(x) + t g (y) 
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4.3.4. In the above if f : P̂  — ^ P̂ , g t Q^——> Q̂  are simplicial 
with, respect to (p ̂, (f̂ * ^ 2' f * g s P̂  ̂^ Q̂  ^ 
is simplicial with respect to (p ̂  (p ̂  * Og • Thus the join 
of polyhedral maps is polyhedral. . D 
4.3.5. If P * Q is defined, (id) ) ̂  (idJ = Id ^ „ . . 

P H r 
If, P̂  * Q,, Pg ̂^ Qg, P3 * Q3 are defined and f̂  : P̂  > > 

' — ^ P3 , ĝ  : Q̂  — ^ 0.2' ' ^ % are maps, then 

(f2 - f,) ̂  (gg 0 g,) - (̂ 2 * ° "" ° 
This says that the join is a -functor of two variables from 

pairs of polyhedra for which join is defined and pairs of polyhedral 
maps, to polyhedra and polyhedral maps.• 

The join of a polyhedron P and a single point v is 
called the cone on P, (sometimes denoted by C(P)) with base P 
and vertex v. . 
Ex. 4.3.6. C(P) is contractible. D 
Ex. 4.3.7. P * Q - Q contains P as a deformation retract. 
Hint; Use the map given by (*) below • Q , 

Let us suppose that P * Q and the cone C(Q) with vertex 
V are both defined. The interval lj is 0 * 1 , and so two 
maps can be defined1 

oC ! p * Q -^[0 , l3, the join of P > 0, Q —> 1, 
(i : C (Q) —^[0 , rj, the join of v — > 0, Q } 1. 
Simply speaking, 

p( (1 - t) X + t y) = t 
(1 - t) V + t y) = t , for - X eP'. y e Q. 
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The correspondence i 
(1 ~ t) X + t y<e-t (x, (1 - t) V + t j) 

is a well defined function between 
' (QO, 1))' and PX ([0, 1)). 

It is a homeomorphism, in faot. But it fails to be in any 
sense polyhedral, since it mapsj in general, line segments into curved 
lines. 

Example! Taking P to be an interval, Q to be a point. 

cca)^ 
The horizontal line segment corresponds to the part of a 

hjrperbola under the above correspondence. 
We can however find a polyhedral substitute for this 

homeomorphism., 
4.3.8. Proposition. Let F, Q, X 5 ^ be as above, let 0 < T < 1 
Then there is a polyhedral equivalence, 

( Co,T] p X pr̂  ( ) 
which is consistant with the projection onto the interval []o,T . 
Proofs Let ^ and be simplicial presentations of P and Q 
and take the simplicial presentation ^ = [,0} J (0* T ) 
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Consider the set of all sets of the fom ^ , , i), 
where p ̂ (p , 6"r̂  (> , i £ ̂  and C = 0 iff i - [o] , defined thus: 

A( p , 0 , 0 ) = f 

M p . i ) = fe-Odf^ (i) 
The set of all these A( f , i), call it 0\, , It is 

claimed that (51 is a regular presentation of )J and 
that A( p . A( p', i') if and only if P^ p', . 

Secondly, consider the set of all sets of the form 
3( P , 6" i) where p e (p > t ^ ̂  ̂  9 ' and (T = 0 if i = [o] 
defined thus! 

B( f , 0 , 0) p /v £v} 
B(f, , i) f y^( ̂ {yjrxf^ (i)) 
It is claimed -ohat (j2) of all such B( P , ̂ , i) is a 

regular presentation of P '((o, ̂ J), and that 

r'. i') if and only if 6-4 f^f' 
and i 4 i'. 

Hence the correspondence A( p , (J", i) B(,'p 5 i) 
is a combinatorial equivalence (jL "ĉ  (ĵ  . If we choose the centerings 
Tj and ̂  of respectively such that 

oC (-TjCM f (C, T)))-
and p> (2 nd coordinate of (b( f  , ̂  , (0, ̂  ))) ^ T/2. 
The induced simplicial isomorphism d( ) d((ji ) gives 
a polyhedral equivalence cC (fP̂  ) ̂  ^ fi'̂ lP̂  )> 
consistent with the projection onto .rô  J . 

It should perhaps be remarked that by choosing ^ and 
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on page 6?. • 

4.3» 9» Corollary. Let C(F) be the cone on P with vertex v, and 
oC s C(P) ^ [O, 1_] be the join of P ^ 0," v — ) 1. Then for 
any ^ (O,- l), <r] ) is polyhedrally equivalent to 
P > {p, TrJ by an equivalence consistent with the projection to QOjtJ . 

For, take Q = v in 4 . 3 - ^ 
4.3.10. Corollary. Let ^ s P * Q —^ [o, Q be the join of 

0,- Q 1 J let 0 S < 1. Then ) 
is polyhedrally equivalent to P"̂  Q X[V, S'3 by an equivalence 
consistent with the projection to , , 

For, by 4.3.8, O ) P X ) 
where : G(Q) — > [,0, ij is the join of Q > 1 and vertex -—^ 0. 
By 4.3.9, interchanging 0 and 1, we see that [/ , l] {Si 
combining these and noting the preservation of projection on , 
we have the desired result. 
4.3.11. Definition. Let K be a polyhedron and x ̂  K. Then a 
subpolyhedron L of K is a said to be a (polyhedral) link of 
X in K, if L * X is defined, is contained in K, and is a 
neighbourhood of x in K, 

A (polyhedral) star of x in K is the cone with vertex 
X on any link of x in K. 

Clearly, if a g. K̂  CI K, and K̂  is a neighbourhood of ' a' 
in K, then L^ K̂  is a link of* a ' in K.̂., if and only if it is a 
link of' a 'in K. 
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a simplicial presentation with x as a vertex. Then | 
is a link of x in K̂  and 
In this case 

is a star of x in K. St(x,4 )1 
St(x, /4 ) - Lk(xj/{ ) is open in K; this need not 

be true for general links 'and stars, 
Ex. 4.3.12. If is any simplicial presentation of K, and 

^ e 6" e/i . then 
and {(r]*Lk( r , A ) 

* Lk( tr, A ) is a link of x in K, 
is a star of x in K. 

(b) With 5 As 'A A as in 4.2.1, if x C- A, ̂  A * j A 
is a link of x in K. D 

Ex. 4.3-12', (a) Let f t K — ^ k' be a one-to-one polyhedral map, 
simplicial with reference to presentations and ' of K and 
K'. Then 'for any ̂ ^ ̂  , x f ^ 

f j \ * Lk( A ) I is the join of 
f (Oc]* Lk( )| and X—^f(x). 

Formulate and prove a more general statement using 4.1.16 
(b) With the hypothesis of 4.2.15, if A is a 0-cell 

e ^ , ) C ('A(fAQ) 
and f ^ AqI is the join of Â  ^ fCÂ ) and f H 

If X and a are two distinct points in a vector space, 
the set of points ('1 - t) X + t a, t ̂  0 will be called 'the ray 
from X through a'. 

Let L̂  and Lg be two links of x in k, then for each 
point a fc Lp the ray through a from x intersects L2 in a 
unique point h(a) (and every point In Lg is such a image). . It 
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intersects Lg in atmost one point, since the cone on L̂  with 
vertex x exists. It intersects L2 in at least one point since 
the cone on Lp must contain a neighbourhood of the vertex of the 
cone on L̂ . 

The function h : L̂  ^ Lg thus defined is a homeomor-
phism. ButJ perhaps contrary to intution, it is not polyhedral. 

The graph of the map h in this 
simple case is a segement of a hyperbola. 

The fallacy of believing h is 
polyhedral is old (See, Alexander "The 
combinatorial theory of complexes", 

o Annals of Mathematics, 31, 1930); for 
this reason we shall call h the standard mistake after Zeeman (see 
Chapter I of "Seminar on Combinatorial Topology"), We  shall show how 
to approximate it very well by polyhedral equivalences. 

It migh be remarked that the standard mistake is "piecewise 
projective", the category of such maps has been studies by N.H. Kuiper 
/"see "on the Smoothings of Triangulated and combinatorial Manifolds" 
in "Differential and combinatorial Topology"̂  A symposium in Honor 
of Marston Morse, Edited by S. S. Cairns^. 

4.3»t3. Definition. Let A and B be two convex sets. A one-to-
one function from A onto B, Ji : A B is said to be quasi-
linear; if for each â , â  ̂  A, ̂  a^ ) = (̂ (â  )> cC(®-20' 

In other words, preserves line segments. It is easy 



to see that cC is also quasi-linear. 
Example; Any homeomorphism of an interval is quasi-linear. In f^ , 
the mapI 

as a map from A = (r̂ , r̂ ) 0 < r» < 1 to 
B = A^) /iĵ y Oj is quasi-linear. Q 

4.3. t4. Proposition. Let cC • ̂  —^ B be quasi-linear. Let 
a^l be an independent set of .points in k, defining an 

open simplex (f . Then • cCiâ ) , ̂  (â ) ̂  is independent, 

and the simplex they define is ^ ( C")' Consequently is a face 
of 6~ if and only if X ( T ) is a face of dC. ( 6")-

The proof is by induction. For n = 1, this is the 
definition. The inductive step follows- by writing ^ = 6" { 
and noting that quasi-linear map preserves joins,' Q 
/1-.3.I5. Theorem. Let L̂j and L^ be two links of x in K with 
h : L̂  — ^ Lg, the standard mistake. Suppose ^ and' are 
polyhedral presentations of L̂  and L̂ . Then there exist simplicial 
refinements and of ^^ and ^^ such that for each 1 _ 2 1 2 

h(6") ^ A 2 h ^ is quasi-linear. If 
f I L,—^ L is defined as the linear extension Of h restricted 
to the vertices of ,̂ then f is a polyhedral equivalence 
simplicial with respect to /C and and such that 
f( r-) = h( 6") for alliSt̂ ,̂ 
Proof; We can suppose that ̂ ^ ^ ' and ^^^ are simplicial, and find 
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a simplicial presentation O of i.L̂ '̂- x L̂ '̂  x ) refining 
^Si^^fel] " Lk(x,(p ). It is clear 
that every simplex ^ Ji is contained in > for , 
and hence the standard mistake ĥ  : | — ^ L̂  takes ^ to 

) C T . 
The restriction of ĥ  to Q- is quasi-linear. For, 

let 3-0 ̂  ^ 5 •t'he three points a , a , x determine a plane 
r ^ I 2 

and in that plane an angular region ̂  , which is the union of all 
The standard mistake, rays from x through the points of 

• by definition, takes Pa , a„ C ^ ^ O T which, it is 
. 1 "O-J 

geometrically obvious, is just ), ĥ  (â )̂ . 
This, together with 4.3.I4j enables us to define 

1 ~ ^ <r ) t I , and to see that this is' a simplicial 
presentation refining ^ 

A ^ L^, 

we have 
Similarly, via the standard mistake ĥ  

A 2 '{v 
Since, clearly, h s L̂  ^ L^ is hg -1 h. and the 

composition and inverse of quasi-linear maps are again quasi-~linear, 
the major part of the theorem is proved. 

The last remark about f is obvious. Q 
4.3.16. If in 4.3.15, for a subpolyhedron K* of L̂ , h | K' is 
polyhedral̂  then we can arrange for f t L 
to be such that f K = h ! 

K. 
For, all we need to do is to assure that 

of the theorem 

has a 
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subpresentation covering K; then because h is linear on each 
simplex in K, the resultant f is identical with h there. O 
4.3.17. Corollary. Links (resp. stars) of x in K exist and 
all are all polyhedrally equivalent. D 
4.3.18. Proposition. If f : P — ^ Q is a polyhedral equivalence, . 
then any link of x in P is polyhedrally equivalent to any link of 
X in Q. 

For-triangulate f, and look at the simplicial links; they 
are obviously isomorphic. Q 
4.3.1?. allows to define the local dimension of polyhedron K• at x. 
This is defined to be the dimension of any star of x in K, By 
4.3.17 this is-well defined. It can be easily seen that (by 4.3.12) 
the closure of the set of points where the local dimension is p is 
a subpolyhedron of K, for any integer p. 

We will next consider links and stars in products and 
joins. 
Ex. 4.3.19. Let C(F) and C(Q) be cones with vertices v and w. 
Let Z = (? (Q)) U (C(P)^ Q). Then 

(a) C(P) % C(Q) = C(Z), the cone on Z with 
vertex (v, w) 

(b) P y. w and vK Q are joinable, and 
(P A w) * (v KQ) is a linkf of (v, w) 
in C(Z). 

Hence by straightening our the standard mistakê  we get a polyhedral 
equivalence P * Q Z, which extends the canonical maps P ^ P Av; 
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and Q —> v Q , 
Hints It is enough to look at the following 2-dimensional picture 
for arbitrary p t P, q ̂  Qt 

(13. V) 

^ p x ccq.) 

Ex. 4.3.20. Prove that P * Q (C(p) y. Q UP ̂  C(Q)) utilising 
4.3.8. If (p f P * Q [_0, 0 is the join of P — > 0, Q — ^ 1, 
the equivalence can be chosen so that Q ( Q)̂  V^l ) goes to 
•P)<>C(Q) and i 0 ) goes to ' C(P) Q. U 
Ex. 4.3.21. (Links in products). If x ̂  P, y t % then a link of 
(x, y) in P X Q is the join of a link of x in P and a link 
of y in Q, Q 

The join of X to a polyhedron • x̂ , x^^ consisting of 
two points is called the suspension of X with vertices x̂  and 

and is denoted by S(X). Similarly K̂ ^ order suspensions are 
defined. 
Ex. 4.3.22. (Links in joins). 

In P * Q. 



72 

1) Let X C P * Q - (P ij Q), and let 
X ^ 

X = (1-t) P + t q, p % P, q e Q, 0 <. t < 1. If L̂  is a link of p 
in P, L a link of q in Q, then S(L -Ji- L ) (with vertices 

1 2 
P, q) is a link of x in P * Q. 

2) If p t P, and L is a link of p in P, then 
L a is a link of p in P Q. . 
Hint! for 1. Consider simplicial presentations (p and ̂  of P 
and Q having p and q as vertices. Then Lk(p, (p ) ̂  Lk(q, ̂  ) 
is a link ofQCp, q) in (p * Q) , by Zi. 1. 11. Hence a link of x 
in P * Q = • -ĵp, q̂  * Lk(p,(p ) * Lk(q,Qv) | or the suspension of 
Lk(p̂  (p) * Lk(q5 with vertices p and q. The general case 
follows from this, Q 
4.4. Polyhedral cells, spheres and Manifolds. 

In this section̂  we utilize links and stars to define 
polyhedral cellsj spheres and manifolds and discuss their elementary 
properties. 

Let us go back to the open and closed (convex) cells 
discussed in 1.5. If A is an open cell, then the closed cell A 
is the cone over A with vertex a, for any a ̂  A, 
4.4.1. Proposition; If A and B are two open cells of the same 
dimension, then ̂  A and ̂  B are polyhedrally equivalent. More-
over the equivalence can be chosen to map any given point x of 
5 A onto any given point y of B. 
Proof; Let dim A = n = dim B = n. Via, a linear isomorphism of 
the linear manifolds containing A and B, we can assume that A 
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and B are in the same n~dimensional linear manifold̂  and more-
over that A AB ^ 0. Then V'A and B are both links of any 
point of A f> B in 'AljB, Hence 'b A and B are polyhedrally 
equivalent. A rotation of A will arrange for the standard mistake 
to map X to y. And 4.3.155 we can clearly arrange for x and y 
to be vertices in A and A . Q 

1 ' ^ 2 

By joining the above map with a map of point of A to a 
point of B̂  we can extend it to a polyhedral equivalence of A and 
B. Thus any two closed cells are polyhedrally equivalent. 
4.4.2. Definition. A polyhedral n-'Sphere (or briefly an n-sphere) 
is any polyhedron, polyhedrally equivalent to the boundary of an open 
cell of dimension • (n + l)» 

By 4.4.1 this is well defined. 
4.4.3. Definition. A polyhedral n-cell (or briefly an n~cell) is 
any polyhedron, polyhedrally equivalent to a closed convex cell of 
dimension n. 

By the remark after 4.4.1, this is well defined. , All the 
cells and spheres except the O-sphere are connected. 

Consider the "standard n-cell", the closed n-simplex, and 
the "standard (n-1)~sphere", the boundary of a n-simplex. By 4.1.8, 
4.3.18 and 4.4.1, we have 
4.4>4. Proposition. The link of any point in an n-sphere is an 
(n-l)-sphere. Q 
4.4.5. Corollary. An n-sphere is not polyhedrally equivalent to 
an (m)-sphere, if m n. 
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Proof! By looking at the links using k.h.h., and induction. 
4.4.6. If f D vii -iS" is an equivalence of an n-cell with a closed 
n~simplex j we see that for points of C corresponding to points 
of ^ C , the link in C is an (n-l)-Gell; and for points of C 
corresponding to points of 6" j the link in C ' is an (n-1 )'~sphere. 
4.4.7. Proposition. An n-sphere is not polyhedrally equivalent to 
an n-cell. 
Proof; Again by induction. For n = 0, a sphere has two points and 
a cell has only one point. 

For n > 0, an n-cell has points which have (n-l)-cells 
as links, where as in a sphere all points have (n-1)~spheres as 
links. And so, by induction on n they are different. O 

This allows us to define boundary for arbitrary n-cells, 
namely the boundary of an n-cell G, is the set of all points of C 
whose links are (n-1)-cells. We will denote this also by ^ C. 
This coincides with the earlier definition for the boundary of a closed 
convex cell, and the boundary of a n-cell is an (n-1)~sphere. And 
as in 4.4.5, an n-cell and an (m)-cell are not polyhedrally equiva-
lent if m ̂  n. 

By taking a particularly convenient pairs of cells and 
sphere, the following proposition is easily proved; 
Ex. 4.4.̂ . Whenever they are defined, 

0 The join a m-cell and an n-cell is a 
(m + n + 1)-cell, 

2) The join of a m-cell and an n-sphere 
is a (m + n + 1)-cell. 
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3) The ioin of a m-sphero and. an • n~sphere 
is a (m + n + l)-3phere. 

If in (l) of 4,4.8, C, ' .ind Ĝ  are the ceils, then 
Cg) = SC^ In (2) of 4.4.8, if C is 

the cell, and S the sphere y (C 3) = 6 C * S. D 
4.4.9. Definition. A PL-manifold of dimension n (or a 
PL n-manifold) is a polyhedron M such that for all points x ̂  M, 
the link of x in M is either an (n-1 )-cell or an (r.-l)-sphere. 
4.4.10. Definition. If M is a PL n-manifold, then the boundary 

M link of X in of M denoted by ^ M, is defined to be c) M 
M is a cell̂  . 
Notation; If A is any subset of M, the interior of A and the 
boundary of A in the topology of M, viill be denoted by int A 

M 
and hd ̂  A respectively, M - ̂  M is also usually called the 

0 

interior of M, this we mil, denote by int M or M. Note that 
intĵ  M = M, where as int K, = M ~ ̂  M. 

It is clear fx-om the propositions above, the manifolds of 
different dimensions cannot be polyhedrally equivalent, of course, 
from Brouwer's theorem on the "Invariance of domain", it follows that 
they cannot even be homeomorphic. 
4.4.11. Proposition.- If M is a PL n-manifold, then b M is a 
PL (n-1)-manifold, and ^ ( ̂  M) = 0. 
Proofs We first observe that M - ̂  M is open in M. For if 
X fe M ~ M, let L be a link of x in M, S the corresponding 
star, such that S - L is open in M.* S is a cell and "b S = L. 
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If y ̂  S ̂  L, then a link of y in S is a link of y in M, 
since S is a neighbourhood of y. Since S is a cell and 
y - 3 S, the link of y in 3 is a'̂ fî ?̂  Hence y ̂  M - ̂  M, 
for all y ̂  3 - L or M ~ M is open in M. Hence M is closed 
in M. 

If is any siraplicial presentation of M and ^ ^ , 
then ^cir} * Lk( r , )J is a link of x in M for all x 
by 4.3. 12. Hence C <ih M or C M - If C C ^ M, ̂  
also is contained in ̂  M̂  since ^ M is- closed. ^ M being the 
uion of all such ^ is a subpolyhedron of M. 

Let X be a point of M̂  L a link of x in M and 
S = L * yi ̂  , the corresponding star such that S ~ L is open. 
L is an (n-1)-cell. And by 4-4.8, 3 is an n-cell with 
^ S ̂  L Ox ^L. If then a link of 
y in S is a link of y in M as above. But a link of y in 
S is a cell, since y ^ ̂  S. Hence x * ̂  L - ̂  L C b M. Since 
^ M is closed, x * ̂ L Q ^ M, and since x * L is a neighbour-
hood of X in ̂  M, ̂  L is a link of x in ̂  M, Hence ̂  M is 
a PL (n-1)-manifold without boundary. D 
Remark; Thus, if x ̂  ̂ M, there exist links L of x in M 
(for example, the links obtained using simpllcial presentations), 
such that L C and L a link of x in ^ M. This need 
notbe true for arbitrary links. Also there exist links L of 
X ̂  0 M in M, such that 

L fN b M = L. For example, take a 
regular presentation ^ of M in which x is a vertex and take 
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4.4>t2. Proposition. Let M be a PL n-manifold, and a 
simplicial presentation of M. If (p ̂  , .then either C ̂  ̂  
or M - M, and 

1) I Lk( Q- , A )) is a (n~k-l)-cell if C 3 M 
2) Lk( , A) j is a (n-k-1)-sphere if M - ̂  M 

where k is the dimension of ^ .. 
Proof;, That 6~ C ^ ^ or M b M is proved in U.h. 11.. The 
proof of (l) and (2) is by induction on k. It k = 0, this follows 
from definition. If k > 0, let be a (k-l)-face of 6~ . Then 
Lk( S-, A ) - Lk(«r , {66-}* Lk( r , A )), and j Lk( ̂  , /?) ) 
being the link of a point in is either (n-l)-sphere or a 
(n-1)-cell. Hence, by induction, Lk( C > A ) is either a cell 
or sphere of dimension (n-1) - (k-1) - 1 (n-k-1). If 
G* C S * Lk( , A ) is a cell. Hence | Lk( ̂  , A )| 
cannot be a sphere, since then • ^ ^̂  Lk( A ) = b * Lk( | 
would be a sphere.. Thus if C C ^ ̂ ^ Lk( , ) is a (n-k-1 )-cell. 
Similarly if 5" Q M - ̂  M, | Lk( r > 4 ) j is a (n-k~1 )-sphere. Q 
Ex. 4.4.13. (1) Let M be a PL m-.nanifold, and N a PL n-manifold. 
Then M >C N is a PI (m+n)-manifold and ^ (M¥»N) is the union of 
"SmXN and M )C Sn. 
Hint! Use, 4.3.21 and 4.4.8. 

(2) If M * M is defined, it is not a manifold except 
for the three cases of 4.4,8. 
Hint; Use 4.3.22, D 
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k.'k. 14. Propositions 
(a) If f s S — ^ S' is a one-to-one polyhedral map of an 

n-sphere S into another n~sphere S', then f is onto. 
(b) If f ! C — ^ C is a one-to-one polyhedral map of an 

n-cell C into another n-cell C such that C) ^ C, then f 
is onto. 
Proof of (a)s By induction. If n = 0, S has two points and the 
proposition is trivial. Let n ̂  0. Let f be simplicial with respect 
to presentations and ^ of S an<j Si, If x is any point 
of S, X ̂  for some ^ Consider 

(f e- )] * Lk(f-r, A^) 1 . and Ŝ  . |{f t}^ Lk( f CT, A 
Since f is infective f maps L^-—^ L̂ , and f Ŝ  is the join of 
f Lj and x — ^ f(x). L̂  and L^ are (n-1 )-spheres, and by 
induction f L̂  is bijactive. Therefore Hence f(S) is 
open in S'. Since S is compact f(S) is closed in s'. Since 3 
is connected, f(S) = S'. (b) is proved similarly, ^ 

By the same method̂  it ,can be shown 
Ex. 4.4.15. There is no one-to-one polyhedral map of an n-sphere into 
an n-cell. D 
Ex. 4.4.16a a) 4 PL-manifold cannot be imbedded in another PL-manifold 
of lower dimension. 

b) If M and N are two connected manifolds of the same 
dimension, "b N / 0, and b M = 0, then M cannot be embedded in N. 
If "b 

N is also empty, and if M can be embedded in N then M TsL N. 
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Ex. 4.4.17. a) If M ([_ N are two PL n-manifolds, then 
M - ̂  M C N - ̂  N, and M - ̂  M is open in N. 
Hint; Use 4.4.14 and 4.4.15. 

In particular any polyhedral equivalence of N has to 
taken K - N onto N - ̂  M and ̂  N onto ̂  N. 

b) If M^N-'^N, both M and N. PL (n)-manifolds, 
and X any point of ^M, show that there exist links L of x in 
N, such that a link of x in K is an (n-1 )-cell DQ L, and 
D a ̂ M - ̂  D. CI 
Ex. 4.4.18. In 4.2.14, show that if P is a PL n-manifold f~̂ (q) 
is a PL (n-m)-manifold and h (f~'(q)) C^P. Q 
4. 5. Recalling; Homotopy Facts. 

Here we discuss some of the homotopy facts needed later. 
The reader is referred to any standard book on homotopy theory for the 
proof of these, 
4. 5.1. Vfe define a space P to be (k-1)-connected iff, for any 
polyhedra Y Q 1, with dim X ̂  k, every. continuous map Y ^ P has 
an extension to X. 

Thus, a ( )~connected polyhedron must just be non-empty. 
A k-connected polyhedron for k ̂  -2, can be anything. For k ̂  0, 
it is necessary and sufficient that P be non-empty and that 5T'̂ (P) ^ 0 
for i ̂  k. 
4. 5« 2. A pair of spaces (A, B) where B Q k, is k-connected if for 
any polyhedra Y Q X with dim X ^ k, and f : X —y A such that 

CT then f is homotopic to a map g, leaving Y fixed, sucU 
that g(X)£ B. 
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This is just the same as requiring that B) = 0 
for i 4 k. If A is contractible (or just (k-1 )-connected) arid 
(Aj B) is k-connected̂  then B is (k-1)-connected. 

Wf3 shall have occasion to look at pairs of the form 
(Aj A - B), which we denoted briefly as {k,  - B). The following 
discussion is designed to suggest how to prove a result on the 
connectivity of joinsj which is well known from homotopy theory, 
U.  5.3. Let Â  Q A, B̂ !̂  B, and suppose (A, - Â ) is a-connected, 
(B, - B̂ ) is b-connected. Then (A X B, - k^Y,  B^) is (a + b + 1 )-
connected. 

Let YC X, dim X ̂ a + b + 1, and f i X — ^ A X B, with 
f(Y) n A ̂ XB, ̂  0. 

We must now triangulate X finely by say /4 . Look at 
/l^ = X̂  and - X̂ . Then dim X̂  ̂  a, dim X̂  ̂  b, and 
so the two coordinates of f are homotopiĉ , using homotopy extension, 
to get a map, still called f̂  such that 

Because X - X̂  has X̂  as a deformation retract, we can first get 
f (X )f\B - 0 and then f'^A X B ) is contained in X - X . 
B 2 1 1 1 2 
By changing, homotopically, only the first coordinate, we get 
f™̂  (A^XB^) = 0. 

To go more deeply into this sort of argument, see Blakers 
and Massey, "Homotopy groups of Triads" I, II, III", Annals of Mathe-
matics Vol,53, 55, 58. 
4.5.4. If P is (a~1)~connected, Q is (b-1)-connected, then P * Q 
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is (a + b)-connected. 
For, let C(P), G(Q) be cones with vertices v, w. Then 

(C(P), v) is a-connected, (C(Q), - w) is b~connected. Hence by 
4.5.3, (C(P))CC(Q), - (v, w)) is (a + b + 1 )-connected. By 4.3.19, 
this pair is equivalent to (C (P ̂^ Q), - (v, w)). Hence P * Q is 
(a + b)-connected. For a direct proof of 4.5.4, see Milnor's "Con-
struction of Universal Bundles II (Annals of Mathematics, 1956, 
Vol.63). 
4.5.5. The join of k non-empty polyhedra is (k-2)-connected. In 
particular (k-1)-sphere is (k-2)-connected. The join of a (k-1)-
sphere and a a-connected polyhedron is (a+k)-connected. Thus a 
k̂ ^ suspension (same as the join mth a (k~1 )-sphere) of a 
connected polyhedron is at least tc-connected. 
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Chapter V 

General Position 

We intend to study PL-manifolds is some detail. There are 
certain basic techniques which have been developed for this purpose, 
one of which is called "general position". An example is the assertion 
that "if K is a complex of dimension k, M a PL-manifold of 
dimension > 2 k, and f t K — > M is any mapj then f can be appro-
ximated by imbeddings". More generally we start with some notions "a 
map f K——^ M being generic" and "a map f : K ^ M being in 
"generic position" with respect to some TQ M*'. This "generic" will 
be usually with reference to some minimum possible dimensionality of 
"intersections";, "self intersections" and "nicety of intersections". 
The problem of general position is to define useful generic things, and 
then try to approximate nongeneric maps by generic ones for,as large a 
class of X'Sj I's and M's as possible (even in the case of 
PL-manifolds, one finds it necessary to prove general position theorems 
for arbitrary K). 

It seems that the first step in approximating a map by such 
nice maps is to approximate by a so called nondegenerate map, that is 
a map f i K ^ M which preserves dimensions of subpolyhedra. 

Now it happens that a good deal of 'general position' can 
be obtained from just this nondegeneracy, that is if Y is the sort 
of polyhedron in which maps from polyhedra of dimension ^ some n 
can be approximate by nondegenerate maps, then they can be approximated 
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by nicer maps also. And the class of these I's is much larger than 
that of PL-manifolds. 

We call such spaces Non Degenerate (n)-spaces or 
MD(n)-spaces, The aim of this chapter is to obtain a good description 
of such spaces and prove a few general position theorems for these 
spaces, 

5. 1. Nondegeneracy» 
5. t.1. Proposition. The following conditions on a polyhedral map 
f : P — Q are equivalent: 

(a) For every subpolyhedron X of P, 
dim f(X) ^ dim X. 

(b) For every subpolyhedron Y of Q, 
dim f"̂ (Y) ̂  dim Y. 

(c) For every point x ̂  Q, f '(x) is finite. 
(d) For every line segment ŷ  P, x / y, 

f( [x, yj) contains more than one point. 
(e) For every ^ , with respect to which f 

is simplicial, f( <r) has the same dimension 
as r ^ r • 

(f) There exists a presentation Q of p, on 
each cell of which f is linear̂  and one-to-one. 

ProofI Clearly 
(a) ̂  (d) 
(b) (c) ̂  (d) 
(e) (f) 



To see that (a) (b) : 
-1, Consider a subpolyhedron Y of Q; then, f (f" {j)) C,J. 

Dim (f~\l)) dim f (f~̂ (Y)) by (a) and as f (f"'(Y)) C 
dim f (r'(l)) dim Y. Hence dim (f"^Y) 4 dim Y. 

To see the (d) (e)i 
Let ^ (p . If f( (T ) has not the same dimension as 

that of ^ J two different vertices of say and v̂  are mapped 
onto the same vertex of f( 0~") say v. Then , v^^ is -mapped 
onto a single point v̂  contradicting (d). 

Finally (f) (a): 
To see thiŝ  first observe that if f is linear and one-

to-one- on a cell C, then it is linear one one-to-one on C also. 
Thus if A is a polyhedron in G, dim f(A) = dim A, But, 
X = U (X n C), and dim X = Max (dim ICs C). It follows that 

Cc-ff) Cfe(p 
dim f(X) = dim X. 

Thus we have 

a. c 

and therefore all the conditions are equivalent, ^ 
5.1.2. Definition. We shall call a polyhedral map f which satis-
fies any of the six equivalent conditions of proposition 5.1.1. a 
nondegenerate map. 
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Note that a nondegenerate map may have various "foldings"; 
in other words it need not be a local embedding, 
Ex. 5.t.3. (1) If ft Q is a polyhedral map, and 
P = ... UPĵ , P̂  is a subpolyhedron of P, 1 4 i ̂  k, and if 
f /p^ is nondegenerate, then f is nondegenerate. 

(2) If f ! P — ^ Q is nondegenerate, and X^P a 
subpolyhedron, then f / X is also nondegenerate. I 

/"Hint ! Use 1.C_/. • 
Ex. 5.1.4. Proposition. The composition of two nondegenerate maps is 
a nondegenerate map. Q 
Ex. 5.1.5. Proposition. If f : P̂  — Q ^ , and g s P̂  — ^ Q̂  are 
nondegenerate, then f * g P̂  •«• p̂  ^ Q * Q̂  is nondegenerate. 

In particular conical extensions of nondegenerate maps are 
again nondegenerate. 

/"Hint! Consider presentations with respect to which 
f, g are simplicial and use 1. f^, Q 

Let f ! P — ^ Q be a polyhedral map, and ̂  tri-
angulations of P and Q with reference to which f is simplicial. 

and ̂  ^ as usual denote the k'̂^ skeletons of J^ and^ .. 
Let Q , Tj he centerings of , respectively such that 
f(e r ) - Y|(f §-) for ct/l . Let 4 ^ and ^ ^ denote 
the dual skeletons with respect to these centerings. Then 
Ex. 5.1.6.. 

(a) 
f is nondegenerate if and only if f ̂  ) . 



(b) 
f is nondegenerate if and only if 
f (/ideas' 

(̂c) Formulate and prove the analogues of (a) 
and (b) for regular presentations, 

5.2. ND (n)~spaces. Definition and Elementary properties. 
5-. 2. 1. Definition. A polyhedron M is said to be an ND (n)-space 
(read Non-Degenerate (n)-space) if and only if; 

for every polyhedron X of dimension ̂  n̂  and any map 
f I X ^ M and any ^ y 0, there is an ^ -approximation to f 
which is nondegenerate. 

This property is a polyhedral invariants 
•5.2.2, Proposition. If M is and ND (n)-space, and ^ : M — ^ m' 

a polyhedral equivalencê  then M' is also ND (n). 
Proof! Obvious. Q 
Before we proceed further, it would be nice to know such spaces exist. 
Here is an exampli 
5.2.3. Proposition, An n-cell is an ND (n)-space. 
Proofs By 5.2,2, it is enough to prove for A, where A is an open 
convex n-cell in . Let f sX — ^ A be any map from a poly-
hedron X of dimension ̂  n. First choose a triangulation of 
X, such that f is linear on each simplex of /% , Let v̂  
be the vertices of , First we ' alter the map f a little to a f' 
so that f'(v̂ ) f'(v̂ ) are all in A = Interior of A. This 
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Is clearly possibles We just have to choose points near f(v̂ )'s in 
the interior and extend linearly. Next, by 1.2.12 of Chapter I, we 
can choose y y so that y is near f'(v.) and y ̂ s are 

1 r 1 1 1 
in general position, that is any (n + 1) or less number of points of 
ŷ s is independent. If we choose y's near enough the 
y's will be still in Aj that is why we shifted f(v̂ )'s into the . 
interior. Now we define g(ŷ ) ~ and extend linearly on simplexes 
of to a get a map X ^ M, which is non-degenerate by 5.1.1 (f). 
And surely if f(v_) and y, are near enougĥ  g will be good appro-
ximation to f. O 

The next proposition says, roughly, that an ND (n)-space 
is locally ND (n). 
5.2.4. Proposition. If is any simplicial presentation of an 
ND (n)-space, and 6" 6 A ^ then is an ND (n)-space. 
Proof; If X is a point of ^ , then | St( /J ) 
vertex x and base 

is a cone with 
which is a link of x in 

M? and 3t(6~,A )j Lk( A)j is open in M. If 
f : X C", A ) is any map from a polyhedron X of dimension 
< n and ^ > 0, we first shink it towards x by a map f' say 

so that so that f ' (X) Q St( C*, A ) - ^ * Lk( Q-, ) 
f (f, f') < 6/2. Now N ̂  M )| - ̂  r * [Lk( A )) 
is a subpolyhedron of M, and f'(X)r\N = 0. Therefore 
P (f'(X), N) > ^ 0. Let T| = min( , € /2). Since M is ND (n), 
we can obtain an ^ ~approximation to f', say g which is 
nonde gene rate, g is an ^ -approximation to f and g(X) Ps N = 0, 



g(X)r M. Therefore g(X) C )] . Hence 1 St(r ,/i ) 
is an ND (n)-spaGe, 

Next we establish a sort of "general position" theorem for 
ND (n)-space, 
5.2-. 5. Theorem, Let M be an ND (n)-space, K a subpolyhedron of 
M of dimension ^ k. Let f : X —-^M be a map from a polyhedron X 
of dimension. ^ n - k - 1. Then f can be approximated by a map 
g J X ^ M such that g(X) r\ K = 0. 
Proof; Let D be a (k + 1 )-cell. Let f' j D ><. X M be the 
composition of the projection D XX — ^ X and f, that is 

x) = f(x) for a 'r D, x X, By hypothesis, dim (D /^X) ̂  n. 
I , 

Hence f can be approximated by a map g which is nondegenerate. 
The dimension of g'-l(K) ̂  k. Consider fT (g'~UK)); (where |T is 
the projection D AX — ^ D), this has dimension ^ k; hence it cannot 
be all of the (k + ])-dimensional D. Choose some a D - OT (g'"'(K)). 
Then g' (a fNK = 0. We  define g by, g(x) = g'(a, x), for 
X ̂  X. Since f(x) - f'(a, x), and g' can be chosen to be as close 
to f' as we like, we can get a g as close to f as we like, D 

We can draw a few corollaries, by applying the earlier 
approximation theorems. 
Ex, 5.2.6. If M is ND (n), K a subpolyhedron of M of dimension 
^ k, then the pair (M, M - K) is (n - k - 1)-connected, 
/"Hint: It is enough to consider maps ft (D, ̂  D) ^ (M, M - K), 
and show that such an f is homotopic to a map g by a homotopy which 
is fixed on ^ D, and with g(D) ̂  M - K. First, by 5.2,5, one can 



get a very close approximation ĝ  to f with M - K. Then 
since ĝ  ̂ D̂ and f "̂ D are very close, there' will be a small 
homotopy h (3,2,3) in a compact polyhedron in M - K with 
hQ = f 5 D̂  ĥ  = ĝ  6 D, Expressing D as the identification space 
of b D X. I and D̂  (a cell with D̂  = ̂  D X l ) at ^ D X 1 
and patching up h and the equivalent of ĝ  on D̂ , we get a map 
g : D M, with g I ̂ D = f j ̂  D, M - K and g close 
to f. Then there will a homotopy of f and g fixed on dJJ. 

As an application this and 5.2.4 we havei 
5.2.7. Proposition. If /f is a simplicial presentation of an 
ND (n)-space and ^ f , then |Lk( ̂  , ) is (n - dim ̂  ~2)~ 

connected. 

Lk( r ^ ) 1 is 
-

Proof; For by 5.2.4, |pt ( )j = ^ 
ND (n), and by 5.2.6, Ŝt ( r> A)], |3t( (T, h ) 
(n - dim ̂  - 1 )-connected, thus giving that St( (T > ) - <r is 
(n - dim C" - 2)-connected. But Lk( , ) 
retract of st( ̂ , A ) 

is a deformation 
- c D 

5.3. Characterisations of MP (n)-spaces. 
We now introduce two more properties: the first an 

inductively defined local property called A(n) and the second a 
property of simplicial presentations called B(n) and which is satis-
fied by the simplicial presentations of WD (n)~spaces. It turns out 
that if M is a polyhedron and /I a simplicial presentation of M, 
then M is A(n) if and ohiy if is B(n). Finally, we complete 
the circle by showing that A(n)-space have an approximation property 
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which is somewhat stronger than that'assumed for ND (n)-spaces, 
A(n) shows that MD (n) is a local property. B(n) is useful in 
checking whether a given polyhedron is ND (n) or not. Using these, 
some more descriptions and properties of ND (n)-spaces can be given., 
5.3'̂ ' Definition (The property A(n) for polyhedra). 

Any polyhedron is A(0), 
If n ̂  t, a polyhedron M is A(n) if and only if the 

link of every point in M is a (n - 2)-.connected A(n - t). 
5.3.2. Definition. (The property B(n) for simplicial presentations). 

A simplicial presentation 4 B(n)̂  if and only if for 
every , Lk( -T r A ) | is (n - dim C - 2)-connected. 

By '7,2.1, we have 
5.3.3. Proposition. If M is ND (n), then every simplicial presen-
tation of M is B(n). Q 

The next to propositions show that A(n) and B(n) are 
equivalent (ignoring logical difficulties), 

/ 

5.3.4. Proposition. If M is A(n,), then every simplicial presen-
tation of M is B(n), 
Proof; The proof is by induction on n. For n = 0, the B(n) 
condition says that certain sets are (^ - 2)-connected, i.e. any X 
is B(0), agreeing with the fact that any M is A(0). Let n^ 0, 
and assume the proposition for m ̂  n. 

Let|A|-Hjff4and dim C - k. 
» 

If k 3 Oj then by the condition A(n), the link of the 
element of , which can be taken to be | Lk( C ^ A ) IS 
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(n - 2)~connected. 
If k ̂  0, let X be any point of tT" • Then a link of x 

in M is b *|Lk( h )\ / which is A(n-l) by hypothesis. 
Hence by inductive hypothesis, i^ simplicial presentation 
^^C}^ Lk( tr5 4 ) satisfies B(n-l). If is any (k-1 )-dimensional 
face of C" , 

Lk( ,4 ) I - , Lk( r./l )) 
which is ((n-1) - (k-1) - 2)-connected i.e. (n-k-2)-connected since 

) is B(n«l). Q 
5.3.5. Proposition. If a polyhedron M has a simplicial presen-
tation which is B(n), then M is A(n). 

t\ 

Proof; The proof is again by induction. For n = 0, it is the same 
as in the previous case. And assume the proposition to be true for all 
m < n > 0. 

Let X C M. Then x belongs to some simplex QT of , 
and a link of x in M is •«• Lk( ? A ) | . We must show that 
this is an (n - 2)-connected A(n-1), 

As per connectivity, we note (setting k - dim iST ) that 
is a (k - l)-sphere; and by B(n), Lk( tJT» A ) is (n-k-2)-

connected. As the join with a (k-1)-sphere rises connectivity by 
k, c) r ^ Lk(Cj/i) is (n-2)-connected. 

To prove that ^ C * Lk( A is it is 
enough to show that Lk( f , ) ~ ' say is B(n-1); for 
then by induction it would follow that /i \ = ̂  T * | Lk( ̂  ) 
is A(n-1). Take a typical simplex of . It is of the form 
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,2>V , p. C~ , i Lk(r,4 ), with (i or V = 0 being 
possible. Now Lk( ̂  , ) = Lk( ̂  , ) * Lk( V , Lk( 4 ))• 

Let a, b, c be the dimensions of <A. , , V' res-
pectively. a ̂  b + c + 1, Remember that dim g" = k. Therefore 
Lk( p) 5 r| ) I is a (k - b - 2)-sphere. Now^ 
Lk(Y , Lk( tr, = [Lk( V ^ , ) I I and by B(n) 
assumption, this is (n - (c + k + 1) - 2) connected. Hence the join 
of Lk( p> , ) and Lk( ̂  , Lk( which is 

IS 
-connected 

Lk(X , A'). 
(n - (c + k + 0 - 2) + (k - b - 2) + 1 

that is ((n - 1) ~ a - 2)-connected.' 
Thus is B(n-1), and therefore by induction ' 
= b C * Lk( C, A ) J a link of x in M is a (n-2)-connected 
A(n-1). Hence M is A(n). Q 

We need the following proposition for the next theorem, 
5.3.6. Proposition. Let Q be a regular presentation of an 
A(n)-space M and V| be any centering of ̂  , Let' A, be any element 
of Ip , and dim A ̂  k. Then 

and JAI i 
A is an (n - k - 2)-connected 

is a contractible A h-k° 
• Proof I We know that /\ A is the link of a k-simplex in d ̂  , 
Since d ̂  satisfies B(n), is (n~k-2)-connected. 

If k = 0, )vA is the link of a point and therefore 
A(n-1), since M is A(n). 

_,,If k ̂  0, then A * \ /\ A is a link of a point in M, 
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and so is A(n-1). Take a (k-1 )-simplex ^ of d p in ^ A; then 
^A is Lk( ̂  , d ^^ k^* /\A) which (by induction on k), we know" 
to be'a presentation of an A((n~l) « (k-l) - l)-space. 

To prove that [ ̂  A | is A(n-k), we prove that A is 
B(n-k). Consider its vertex 7|Â  then Lk( Ŷ  Â  ^A) = A, and 

A is (n--k-2)-connected. For a simplex 6" ̂  ̂  A, we have 
Lk( cr, A)I = C (Lk( A)) which is contractible. For a 
simplex = [T) A] , ^ ^ "A A, ' Lk( Sf , f A) - Lk( A A). 
If ^ has dimension t, Chas dimension (t-1); and so a\ being 
A(n-k~t), Lk( cr , 'A A) I is ((n-k-1) - (t-1) - 2)-connected, i.e. 
Lk( Cf 5 S> A.) is ((n-k) - t - 2)-connected. This shows that <S A 

satisfies B(n-k). D 
$.3.7» Theorem. Let M be an A(n)-space, Y (2 X polyhedra of 
dimension ^ n, and f t X ^ M a map such that f T is non-
degenerate. Given any ^ /" 0, there is an ^ -approximation g to 
f such that g is nondegenerate and g | Y = f Y. 

Prooff The proof will be by induction on n. If n ~ we take 
g = f, since any map on a O-dimensional polyhedron is nondegenerate, 

So assume n 0, that the proposition with m instead of 
n to be true for all m ̂  n. 

Without loss of generality we can assume that f is poly-
hedral. Choose simplicial presentations ^ /flX.  of Y,. X 
and M such that f is simplicial with respect to and -̂ yV̂  J and 
such that the diameter of the star of each simplex in '•̂TVH is less 
than ̂  . Let Q , "Tj be centerings of and^A^ with 
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f(9 -r ) - Tj (f-6") for all 6/I . Then clearly c A ^ 
and the diameter of \ 0 f | is less than ^ for 

every ^ (̂ f̂fC . 
Consider an arrangement k̂  ,, .̂ , k̂  of simplexes of 

so that dim Â  V dim A.,., for 1 i < k. The crucial fact about y x+i ^ 
such an arrangement is. for each i. (*) 7\A is the union of ^ A 

i J 
for some j's less than i. 

We construct an inductive situation "S™" such that 
-i 

(0 % . f- ( ISAJ U ... U \S\\) 
(2) Y . X.n Y 1 1 

M, a nondegenerate map (3) ĝ  X̂  

(5) g. 

(6) g. Y. - f 1 

i-1 
Y. 

t t is the union of certain Â  s in the beginning, say Â  s 
with i ^ L f-Vm"") cA"" and A"" is 0-dimensional. 
Hence f ( 15 A ) is already nondegenerate. If 
vjB take this to be g ̂^ all the above properties are satisfied and we 
have more than started the induction,, Now let i > and suppose 
that g. is defined̂  that is we already have the situation . . 1-1 —(i^l) 

It follows from (4) and (5), that for j< i, 

g. , (f ̂  A. ) (2 Ĉ A j , and hence from (*) that g. maps 
A-l ) into |5\A. . 
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Also this shows that if x. f^ { £ k. ) then both 
J 

and f(x) are in Â j , which has diameter ^ ^ and so 
ĝ ^̂  is an ^ -approximation to f 

There are now two cases. 
Case 1. 

Look at 

X i-r 

dim A. = K \ 
1 7 (S Â  . This is a contractible A(n-k). Let 

x' - r^ (|d\l) and Y^ynx') g r^ ( The maps f on 
Y n x' and ĝ  ̂  on ( ̂ A. |) agree where both are defined by 

( (a )> and are nondegenerate by hypothesis and induction. 
Hence patching them up we get a nondegenerate map F' ; Y' — | , 
Since Â l is contractible f' can be extended to a map (still 
denoted by f') of X' to AJ . Since x' dim x'^n-k, 
and A. is A(n-k), there is a nondegenerate map f" : x' -—^ S 
such that f Y' ̂  f' Y' , by using the theorem for (n-k) ̂  n-1. 

We now define ĝ  to be ĝ  ̂  on X̂  ̂  and f on X j 
these two maps agree where both are defined, namely f )• 
Thus ĝ  is well defined and is nondegenerate as both f" and ĝ  ^ 
are nondegenerate. And clearly all the six conditions of are 
satisfied. 
Case 2. Dim Â  = 0. 

Let B B be the vertices of which are mapped 1 s 
onto Â . Then 

r^(^Aj) = \6BJu ... I^BJ. 
Let X'. 
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x' is of dimension ^ n-l, and contains f A )• Let 
Y' = f ( T̂ Â  ), Here the important point to notice is, that 
Y n x'C y'. This is because f Y is nondegeneratei Y O x' Q 
so f(Y AX' ) Q It is also in \\ and therefore 

f(Ynx') 1 - |;\A. 
We first extend g. Y to x' and then by conical 

extension 
^ i-1 

to f (I 5 Aj ). ĝ  ̂  maps y' into and is non-
degenerate on Y , Since is (n-2)-conne cted, and dim X ̂  n-1, 

can be extended to a map f 'Of x' into | Â ^ 
is also A(n~1). Hence by the inductive hypothesis we can approximate 
f' by a nondegenerate map f" such that f" | Y' = f' Y' . 

Hence f 
into 

i-1 Y'. 

. 1 i j 4s 
is nondegenerate and maps 

We extend this to a map h. i 
J 

h, by mapping B. to A. and taking the join 
J 1 J 

is clearly nondegenerate. Since cT B. Py B., ^ B . rypl̂  , C. 
J 0 , J i) 

if 3 ̂  j'j ĥ ŝ agree whereever their domains of definition overlap. 
Similarly h. and g. agree where both are defined. We now define 0 i™ 1 
L- to be g •J- i_i on X and h on i-T j cfB. Thus g is defined i 
on X̂ ^ 

U = \ and is nondegenerate since and 
h.'s are nondegenerate. It obviously satisfies conditions 1-5 of ̂  , 
J ^ ^ 
to see that it satisfies (6) also; Let is any simplex of d ^ 
in S B , if B is not a vertex of <5" there is nothing to prove; j j 
if B. is a vertex of ^ , write ^ ~ -TB I . Both h. and f • J L J u J 
agree on and B. and on C both are joins, hence both are equal 

J 



97 

on . Then (6) is also satisfied and we have the situation . Q 
i 

This theorem shows in particular that ND (n) is a local 
property; and that ND(n)--spaGes have stronger approximation property 
than is assumed for them. 

The following propositions, which depend on the computations 
of links are left as exercises. 
Ex. 5.3.8. Proposition. G(X) and S(X) are ND (n) if and only if 
X is an (n--2)-connected ND (n-1). O 

Thus the k̂ ^ suspension of X is ND (n) if and only 
if X is an (n-k-1)-connected ND (n-k)-space. 
Ex. 5.3'9.. Proposition. Let be a simplicial presentation of X, 
Then X is ND (n) if and only Lk(v, A ) is (n-2)-connected 
ND (n-1) for each vertex v of . O 
Ex. 5.3.10. Proposition. If is a simplicial presentation of an 
ND (n)-space, and 0 ̂  k 4 n, then the skeleton is ND (k), and 
•the dual skeleton is ND (n-k), 0 

Thus the class of ND (n)-spaces is much larger than the 
class of PL n-manifolds, which incidentally are ND (n) by the 
3(n)-property. 

The results of this section can be summarised in the following 
proposition; 
5.3.n. Proposition. The following conditions on a polyhedron M are 
equivalent: 

1) M is ND (n) 
2) M is A (n) 



3) a simplicial presentation of M is B(n) 
4) every simplicial presentation of M is B(n) 
5) there exists a simplicial presentation of 

M such that LK(v, )( is (n-2)-connected 
for all V ̂  dim v = 0 

6) M satisfies the approximation property of 
theorem 5.3»7. 

7) M)( I is ND (n+l). 0 

5.4. Singularity Dimension. 
5.4.1. Definitions and Remarks. Let P and M be two polyhedra, 
dim P = p, dim M •= m, p ̂  m, and f j P •••»! "i?̂  M a nondegenerate map. 
Ee define the singularity of f (or the 2-fold singularity of f) to 

- , and denote it by be set^x £ P | f(x) contains at least 2 points 
« 

S(f) or Ŝ  (f). By triangulating f, it can be seen easily that S(f) 
is a finite union of open cells, so that S(f) is a subpolyhedron of p. 

Similarly, we define the r-fold aingulafity of f for 
to be the set ̂ x t P f ̂  f{x) contains at least r point^ This will 
be denoted by Ŝ  (f). As above (f) is a finite union of open cells, 
so that Ŝ  (f) is a subpolyhedron of P. Clearly Sg (f)^S^ (f)) ^ 
and Ŝ  (f) are empty after a certain stage? since f is nondegenerate. 

The number (m - p) is usually referred to as the 
codimension; and the number r(p) - (r-1)m, for r ̂  2 is called 
the r-fold point dimension and is denoted by d̂  (see e.g. Zeeman 
"Seminar on combinatorial Topology", Chapter VI). Clearly d̂  d̂ -̂(m-p). 

It will be convenient to use the notions of dimension and 



imbedding in the following cases." (l) dimension of k, where A is a 
union of open cells. In this case the dim.- A denotes the maximum of 
the dimensions of the open cells comprising A and is the same as the 
dimension of the polyhedron A. (2) imbedding f of C -—^ M, when 
C is an open cell and M a polyhedron,. This will be used only when 
f comes from a polyhedral embedding of C. In such a case f(G) will 
be the union of a finite member of open cells. And if A^ M is some 
finite union of open cells, then f ̂ (A) will be finite union of open 
cellSj and one can talk of its dimension etc.. 

A nondegenerate map f i P M will be said to be in 
general position if 

dim (3̂  (f))4 d̂  , favojd 
If p = m, this means nothing more than that f is nondegenerate, so 
usually p <_ m. 
5.4.2, Proposition. Let ^ be a regular presentation of a polyhedron 
P such that for every C ̂ QD , f C is an embedding. Let the cells 
of ̂  be Ĉ  >'•'•) > arranged so that 
dim Ĉ  ̂  dim , 1 ̂  i ̂ t, and let P̂ , i ̂  t be the sub-
polyhedron of P whose presentation is ^C^ ,..,, G^, 

i) S (f 1 p.) = S (f, 
Then 

ii) s^(flPi) 
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This is obvious» If we write P = (compatible with 
the definition of Ŝ '̂s, then Ŝ (f P^) would be just P̂ , and only 
(ii) be written (wi.th r^ 2) instead of (i) and (ii). 

The proposition is useful in inductive proofs. For examplê  
to check that a nondegenerate f is in general position, it is enough 
check for each little cell Ĉ , that dim Ĉ A f"\f(S^ i)) d̂ . 
If we have already checked upto the previous stage; since f is non-
degenerate f"̂  1 (4P- J) will of dimension d, and then 

i-i t 1-1 vr-1} 
we will, have to verify that f Ĉ  intersects f (Ŝ  ̂  (fjP̂ ))) in 
codimension \ (m-p) or that (C.) intersects f"̂  f(S (f P )) in 

1 r-1 i 
codimension ̂  m-p, (We usually say that A intersects B in 
codimension q if dim (A C\ B) = dim B - q. Similarly the expression 
'A intersects B in codimension ̂  q' is used to denote 
dim (A O B) ̂  dim B - q). The aim of the next few propositions is to 
obtain presentations on which it would be possible to inductively change 
the map, so that f(Ĉ ) will intersect the images of the previous 
singularities in codimension ̂  (m-p). Proposition 5.4.7 and 5.4.9 
are ones we need; the others are a-uxilary to these. 
Ex, 5.4.3. Let A, B, C, be three open convex cells, such that 
A n B is a single point and C ̂  A {J B. Then dim C ̂  dim A + dim B, 
/~Hint; First observe that if A' and B' are any two intersecting 
open cells then L̂ t L̂ i = L̂ i p̂  , where L^ denotes the linear 
manifold spanned by X. Applying this to the above situation 
dim C = dim V dim L, , = dim L + dim L - dim (L fN L ) C ̂  (A UB) A B A B 

= dim L, + dim L - dim (L„. ̂  ) A B AAB 
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= dim L, + dim L . since AA B A B 
is a point_Ĵ  

5.4.4. Proposition. Let A be an open convex cell of dimension n, 
and Qt a regular presentation of A with A ^(J-.  If L is any 
linear manifold such that dim L O A k ̂  0, then there is a B ̂ Qt 3 
of dimension̂  n - k, with B H L / 0. Further, if A' is any cell 
of 0\, contained in ^ A, we can require that A' A B = 0. 
Proofs If k =• 0, we can choose A itself to be B. If k > 0, 
consider the regular presentation C rj L C a L ̂  0, 

e . 

C t of ^ L. must have more than one 0-cell. Choose one of 
these 0~cells of C. 'It must be the form BH L for some B 
We would!like to apply 5.4.2, for B, L A A and A. But B and 
LA A do not intersect. Since we are interested in the dimension 
of B, the situation can be remedied as follows! Let B be an n-cell, 
such that A Q D. L A D .is again k-dimensional. Since B D , 
B r\ L C 0 n L̂  and as B f) L is nonempty, B and D H L intersect. 
B r> L) cannot be more than one point since Bn(DAL)<^BnL 
which is just a point. Applying 5.4.2 to B, D O L and D we have 
n -- dim D ̂  dim 3 + dim (D A L) - dim B + k, or, dim B ̂  n - k. 

To see the additional remark, observe that all the vertices 
of cannot be in A', for then L OIqJ^,  .contrary to the 
hypothesis that L C\ k is nonempty. Hence we can choose a 0-cell 
B n L, B ^ 0\ of not in A'. Since QX is a regular presentation 
B n A' = 0. D 

This just means that if_ L does not intersect the cells of 
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Q\_ of dim. ^ j[ , then dimension of the intersection is n - i , 
or codimension of intersection is > !L . Using the second remark of 
5.4.4. we have J 
5.4.5. Corollary. Let (p be a regular presentation, containing a full 
subpresentation. (which may be empty). Let (p  = dim C^ k 
If L is any linear manifold which does not intersect 0) then 
dim (L n ( (p - O^) 4 n - k - 1, where n = dim ((p -<3>). CL 
5.4.6. Proposition. Let , A be a closed convex cell of dimension 
^ k + q, let S be a (k-1)-sphere in ^ A i and B̂  ,..., B̂  be a 
finite number of open convex cells of dimension / q - 1 contained 

XT 
in the interior of A. Further, let ^ be a simplicial presentation 
of S. Then there is an open dense set U of interior A such that 
if a f U, ̂  X > then the linear manifold L, . generated 

\ , a; 
by ^ and 'a' does not intersect any of the B̂ 's. 
Proofs For any Q-g. , consider the linear manifolds L 
generated by CT and B., for I.^ i < r. Dim L- . < k+q-1. 

1 (.(T J 
Hence U = int A - ^ L. ^ is an open dense subset of 

int A, If a is any point of U ̂  , then L̂  ^ does not . intersect any of the b/SJ for if there were a B. with 
(ff- J a) 

X 
L, HB. ̂  let b € L, AB.. L r L and 
(^ . J (€r, a r 3 (r , b)^ (r-, a) 
is of the same dimension as L, since b Is in the interior 

( r . a) 
of A, Thus a t L, vC L contrary to the choice of 

( r ,  b)"^  (<T,  B.) 
J 

a. Therefore if we take U - py XJ ̂  ' ̂  satisfies our 
requirements. Q 
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5.4.7. Proposition. Let ^ be a closed convex cell of dimension 
^ k + q, let S be a (k-l)~sphere contained in ̂  A, and let 
B B 1 be a finite number of open convex cells in int A. ' r ̂  
Then there is an open dense subset U . of int A such that if 
a ̂  U, then S * a intersects each of the B/S in codimension̂  q. 
Proof! Let /i be some simplicial presentation of S. First let us 
consider one B̂ . Let ^ . be a regular presentation of ^ 
containing a full subpre s e nt at ion . covering 17 D^K  Let 
( D , =- \ CC{P) -X, , dim C< q-ll. By 5.4.6, there is an open 
dense subset of int A say Û  such that if a ̂  Û , (T ̂  , then 

s does not intersect any of the elements of (B . By 5.4.5, 
dim L, n ( ffi - X, )< n. - q, where n. = dim B . Hence 

\ ̂  ) ^ i ' X ̂  1 1 i 
dim (S * an B ) < n. - q. Therefore df we take U = fN U , where i ^ 1 3 j 
U. constructed as above for each of B 's, then U, satisfies the 

J 
requirements of the proposition. D 
5.4.8. Proposition. Let 0" be a k-simplex, a closed convex 
q-cell] Ip a regular presentation of * A • Then there exists 
an open dense subset U of ̂  , such that if a C U, the linear 
manifold L, . spanned by ^ and a, does not intersect any 16" > 
cell C ̂  (p satisfying C O ? 0 and dim C ̂  q-1. 
Proofj Let C , with C A = 0 and dim C ^ q-1. The linear 
manifold L, __ has dimension ̂  k + q, while L, . . 

(CT , C) ^ ( Q- , ) has 
dimension k + q + 1. Therefore L̂  ̂  ^̂  H A âs dimension ̂  q-1 

and so Uq = - L . is open and dense in A • Define U 
V J 
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to be the Intersection of all the U . If a ̂  U, and there were some 
Lf 

C of (p of dimension < q-1, C H 0, with L, sf̂  C ̂  0, 
choose b t COL, since b 0- , dim L. = k + 1 ( r . a) f • ( b) 
= dim L . and so L ^ L i.e. L ^ L , 

^^ > ( r , a) ( (T,  b) , a ^ (r, c) 
or, a ̂  L^^ ^̂  contrary to the choice of a. Q 

5.U.9, Proposition. Let S be a (p-1 )-sphere, ̂  a closed convex 
q-cell, ^ a regular presentation of S * ̂  . Then there exists 

1) a regular refinement of ^ 
2) a point a 6 4 
3) a regular presentation ^ of S -JJ- a 

such that 
a) contains a full, subpresentation covering S, 
b) Each C /C is the intersection of a linear 

manifold with a (unique) cell Ê  ̂  (p , if 
C / C', Ê  / E and if C< c', then E < E ' 

0 c , c c 
c) dim C ̂  dim Ê  - q, for all C ̂  (JK - /c) . 

Proof; Let QV , (ĵ  be simplicial presentations of S, J\ ; and let 
^ ' be a common simplicial refinement of * (Ji and ^ . Since 
QY i® full in © > there is a subpresentation, say /f , of 
^ covering S. If ^ ^ (JX, , * A is covered by a subpresentation 
xn , hence there is a subpresentation of \ say (p^ , 

A r-s ' covering Q" * ̂  . Applying 5.4.8 to ^ ^ , we get an open dense 
subset U ̂  of . Let U be the intersection of the sets U ̂  
for ^ ^ . Let a ̂  U. Obviously ' a' is in an (open) q-simplex 
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J 

of (p contained in' ̂  . Hence 'a' belongs to a q-simplex of 
(ĵ  , call it 

We define to be union of , £aj. , and all nonempty 
intersections of the form L^^ ^̂  E, for (j; , E ^ ^ ~/C • 
It is clear that L̂  ̂  ^̂  E = <S"{ Moreover E H S = F, F^ (F may be empty) since ^ is full in 'p . This immediately gives 
that is a regular presentation, using the fact that (Af) B) 
is the disjoint union of A H ̂ B, c)A ^B, for open convex 
cells A, B with A ̂  B 0. Moreover ̂  is full in If 
C £ is of the form C = L C\ E, we write E as E . By 

(GT , a) C definition each G f is the Intersection of E with a linear 
manifold, and if c' < C, c'^ E y E since (p' is 

C C 
regular. Since L, . does not intersect any {< q-l )-dimensional 

, a; > 
face E of E with E AS = 0, by 5,4.5 dim L, A E / dim 

(^ 5 a) G \ 0 -
It remains to verify that if Ĝ  4 Ĉ  Ĉ , G^^ ^ , then Ê  / 

q 
E. G, 

^ e(p . Ĉ  / ^ If r - t , and Ĉ  / Ĝ , clearly 

F, / S . If S" , then G cannot be equal to G . In this 

case EQ C f, Ê  p, ( f defined in the first paragraph of 

the proof). But C ^ and ̂  ^ are disjoint, hence Ê  / Ê  . Q 

Remark; In the above proposition ^ can be taken any presentation 
of S * A refining (p and a join presentation of 3 * A . 
5.4.to. Proposition. Let M be an ND (n)-space. Let X P be 
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polyhedra such that P XU C, G a closed convex cell, and 

X A C = ^ C, and dim P . p ̂  n. Let f s P M be a map such 
that f / X is in general position. Then there exists an arbitrary 
close approximation g to f such that g is in general position 
and g / X = f / X. 

Proofi If p = n, any nondegenerate approximation of f would do. 
So let p ̂  n. In particular dim C ̂  p ̂  n. 
Ste£j, Let D be an (^ n)-dinv-cell containing in its 
boundary, and such that 

0 D = "̂ C A., A a closed convex (n-p)-cell 
2) A n C is a single point 'd' in the interior 

of both C and A so that C ̂  d * ̂ C 
3) 3 r\ F = c. 
This is clearly possible (upto polyhedral equivalence by 

considerirxg F 0 in V X W, (where V is the vector space containing 
F> »'«' an (n-p)-dlmensional vector space), and taking an (n-p)-cell 

through d y. 0 in d  y. ¥, for some d ̂  C - ̂  C etc. , The join 
of the identity on C and the retraction A —^ d gives a retraction 
P . n Thus (f/c) ® r is an extension of f/C. Since M is 
an riD (n)--space, {f/O)  » r can be approximated by a non-degenerage 
map, say h, such that h/ C = f/ ̂  C. Let us patch up f/X and h, 
and let this be also called h; now h maps X U D = P 0 D into M 
and is nondegenerate. Triangulate h so that the triangulation of 
X U D with reference to which h is simplicial contains a sub-
presentation ̂  which refines a join presentation of ^ C * A . We 
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apply 5.4.9 now, ^ will be (p there and we obtain, a point > 
a presentation (ĵ  (what v/as called (3% there) of ^ C ̂  a,. Each cell 
B of not in q) C, is the intersection of a unique Ê  of ̂  with 
a linear manifold, if b' < B then E , < E and dim B < dim E - (n~p). 

B'^ B ^ B 
Step B. Let B̂  B̂  be the elements of (ĵ  not in ^ C, arranged 
so that dim B̂  ̂  dim for 1 4 i r. Let X̂  = XUb^U • •' ' 
X is a polyhedron. We define a sequence of embeddings ^ s X —^ X UD, ^ , i i 
such that 

0 dC. X is the identity embedding of X in XVi D 
2) riL . is an extension of J, 

3) 

k) h X. is in general position. 
We shall construct the ^ ^ begining 

with ^ : X — } l\Jd, the inclusion. h'cÔ  = f/X, is in general 
position, andi,we can start the induction. 

Suppose is already constructed. Then 
i-1 ^ 

dim S (h X J 4 d ; and by (2), (3), Xj embeds Q B. in r 1-1 ^ r ^^ ^ 1 

C) E I consider h"' {h £ (S (h bC ))) intersected with "i i~1 ^ i-1 
Since h is nondegenerate, these consists of a finite number 

of open convex cells of dimension ^ d̂ . We apply 5.4.7 to this 
situation with q - n-p, A = 1 S = X, ( S B ) and( B. 

î i-1 i ^ ^ J 
of 5.4.7 standing for the open cells of h~̂ (h cL (S (h X )) 

i-1 ^ i-l 
intersected with Eg for all r 1. By 5.4.7j we can choose a 
point in Eg. say ê  (a of 5.4.7) so that do ̂  / ̂  * ®i 
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intersects all these (i.e. for all r^ 1) in codimension ̂  (n-p). 
The join of ^ ^ ^ ^̂ ^ ^ point b̂  of B̂  to ê  
gives the required extension on B̂ . 

Then dim^^. (h (Ŝ (h (n-p); 

equivalently dim 

that is dim 

(hx. B )n h X. , (s (hoC. )) kd , 
I 1 1 1-1 r 1-1 r+i 

(h^ B)C\ h (S (hoC.I X. J) . I i i i r il i-l J"" r+1 
since h is an extension of h X 

i-1 1 
Since 

u k r v 

ufs^ (hoC.k„i)n(h£.r^ (haC.) (B,)} 

and since h is already in general position, dim S (hdC ) Cd 
i-1 r+1 1 X r+1 

At the last stagê  we get an imbedding 
oO of X U ^ C 

* a in 
r 

X U such that h cO j. is an general position. 
That h (fj can be chosen as close to f as we like is 

clear. £3 
5.4.11. Theorem. Let M be an ND (n)-space, X^ p polyhedra 
dim p ̂  n and f i P — ^ M a map such that f X is in general 
position. Then there exists an arbitrary close approximation g to f such that g X = f X̂  and g is in general position. 
Proof { Let ̂  be a regular presentation of P with X covered by a 
subpresentation . Let (^ -"Xs ) " Â  ,.., A be arranged so 
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that dim A. 4 dim A.̂ ^ , ^ Let P. . X U A^... U A., 
Apply proposition 5.4.10 successively to (P̂  ̂  X^) (P , X̂ ). 

This requires the foil owing coiiments We must use our appro-
ximation theorem, which for M and gives € ) ^ 0, such 
that for any I 0 Z, h, : Y — M ^ h ^ s Z ) M, if h2 is polyhedral, 
and ĥ  Z is a S ( )-approximation to., hg , then there is 
ĥ  I Y — ^ M, a polyhedral extension of ĥ  , which is an ^ -appro-
ximation to ĥ , ' 

Denote f 

We want g to be an 4" -approximation to f. 
Defi.. e , ' . 

î ^^ start with ĝ  = f̂  ~ f X. Suppose g. ^ 

is defined on P̂  ̂  such that g. ̂  is in general position and is an 
^ ^ ̂  approximation to ^ ^ • Then we first extend g. to P, 

say f̂ " so that f̂ ' is an ^ ̂  approximation to f̂  (this is possible 

since 6", , = 0 ( ̂  i/-2)) by the approximation theorem. Then we 1-1 » 
use 5.4.10 to get an £approximation ĝ  to f̂ ' such that 

S. is in general position and g. | P. = g. g. is an 
• X i 1-1 1 

^ -̂approximation to f̂  and is in general position, ĝ  gives the 
required extension. D 

By the methods of 5.4.10, the following proposition can be 
proved! 
§4.12. Proposition. Let M be ND (n); dim p ̂  n, P ̂  X U C, 
where C is a closed p-cell, X r\ 

C = S C. Let f : P — > M be 
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a map, such that f X is nondegenerate; and call dim X = x. Then 
there is a nondegensrate approximation g t P — M j arbitrarily 
close to f, such that 

g X = f X̂  and 
S(g) = S(f|x) plus (a finite number of open 

convex cells of dim ̂ Max (2p-.n5 p+x-n) 
Sketch of the proof! First we proceed as in Step A of 5.4.10. Now 
p = dim C. In Step B) instead of 4) we write 

• B. n (hiC^f^ (h (2p-n, p+x-n). dim. 

And in the proof instead of the mess before, we have only to bother 
about h (h oG (X )), intersected with E . 

i-1 i-1 B. 
1 

h"̂  (h dO. ̂  (X. .)) = (h Xj.  , (X))ijh"̂  (h dO (B U ..UB ) = 
1-1 x-1 1-1 ^ 1 - 1 1 i-1 

= (f(X))U h"̂  (h (C  (B \J ... UB )). Now the only 
i-1 1 i-1 

possibility of (f(X)) intersecting Eĝ  is when E^Q (f(X)) 
since h is simplicial. Since dim B̂  ̂  dim Ê ^ - (n-p), it 
already intersects in the right codimension. And the intersections 
with second set can be made minimal as before • £] 
5.4.13. Theorem. Let M be ND (n);' X P ; dim p ̂  n, f t P — ^ M 

X is an imbedding.. Then arbitrary close to f 
a map such that f 
is a map g : P — ^ M, such that g 
X = dim X, p = dim P - X, 

X = f X and calling 

dim S(g) ̂  Max (2p - n, p + x - n). 
Proof? This follows from 5.4.12, as 5.4.11 from 5.4.10. Q 

This theorem is useful in proving the following embedding' 
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theorem for ND (n)-spaces. 
5.4.14. Theorem (Stated mthout proof). Let M be a ND (n)-space, 
P a polyhedron of dimension p^ n - 3 and f t P — M a (2p-n + 1 )-
connected map. Then there is a polyhedron Q in M and a simple 
homotopy equivalence g : P — Q such that the diagram 

g 
p Q 

inclusion 
s/ 
M, 

is homotopy commutative. Q 
The method of Step A in 5.4.10, gives| 

Proposition 5.4.15. Let M be an ND (n)-space, and P a polyhedron 
of dimension p ̂  n and f t P — y M be any map. Then 3 a regular 
presentation ̂ ^ of P, simplicial presentation̂ t̂YC of M and an 
arbitrary close approximation g to f such that, for each C , 
g (C) is a linear embeddinĝ  and g(G) is contained in a simplex 

of ̂"tftof dimension = dimension C + (n-p) and g( b C) = b(gC)CK-
Moreover -̂ tf̂ can be assumed to refine a given regular presentation of M, 

Also a relative version of 5.4.15 could be obtained, tl 
And from this and 5.4.13. 
5.4. 16. Theorem. Let f t p — ^ M be a map from a polyhedra P of 
dim - p into an ND (n)-space M, p ̂  n, and let 1 be a subpolyhedron 
of M of dimension y. Then there exists an arbitrary close approximation 
g to f such that 

dim (g(P)a I) ̂  P + y - n. 
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And a relative version of 5.4.16, |3 
5»4., 17. It should be remarked that the definition of 'general'position' 
in 5.4.1 is a definition of general position, and other definitions are 
possiblê  and theoremsj such as above can be proved. Here we formulate 
another definition and a theorem which can be proved by the methods of 
5.4. 10. 

A dimensional function d s 1, ,.. J  is a function 
defined on a polyhedron, with non-negative integer values, such that 
there is some regular presentation ^ of P such that for all 
C t(p J X ̂  G, d (x) dim C, and d is constant on C. 

We say d̂  ̂  d̂ , if for all x f P, d̂  (x) ̂  d^  (x). 
If f S P ^ M is a nondegenerate map, and d a dimensional 

function, and k̂  k̂  non-negative integers, we define 

Sd (f? k, kg) 

m t M I 3 distinct points 
X ,..., X t P, such that 1 s 

d (x.) X k. , and f(x.) = m for all if . 

It is possible that such a set is a -union of open simplexes, 
and hence its dimension is easily defined, 

A map f I P M is said to be n-regular with reference 
to a dimensional function d on P if it is nondegenerate and 

dim Sd (f; k̂  ,..,, k^)^ k̂  + ... + k̂  - (s-l)n. 

for all s, and all s-tuples of non-negative integers. 
If dim P ̂  n, and since we have .f nondegenerate then it 
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is possible to show that a map f .is n-regular if it satisfies only a 
finite number of such inequalitieŝ  namely those for which all 
and s ̂  2n, 

The theorem that can be proved is this; 
Theorem. Let X Q P, f ; P ^ Mj where M is ND (n) and dimP^n. 
Let d̂  and dp be dimensional functions on X and P, with 4 ̂ p | 
Suppose f X in n-regular with reference to d̂ . Then f can be 
approximated arbitrarily closely by g ; F — ^ M with g | X = f X and 
g n-regular with reference to dp. 

The proof is along the lines of theorem 5.4.11. We find a 
regular presentation (p of P with a subpresentation covering X̂  and 
such that d̂  and dp are constant on elements of ̂  . We utilise 
theorem 5.4.10 to get g on the cells of ̂  one at a time; in the 
final atomic construction, analogous to part B) of 5.4.10, we will have 

S C ^ E 
where S is a (k-1)-sphere. E a cell of dimension ̂  k + q, where 
q = n-p (the cell we are extending over is a p-cell, on which dp is 
constant ̂  p). We have to insert a k-cell that will intersect such 
things as 

in dimension 
dim Ŝ  ( 5 kg) - q 

^ k̂  + ... + kg'+ dp (p-cell) - s.n. 

We can do this for our- situation; this inequality will imply 
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ĝ  is n-regular. P . 
.Finally we can define on any polyhedron P a canonical 

dimensional function d ; 
d (x) I m.n dim (Stary in fStar  of x in' ?J 

J k /""Star of X in p_7 j 
A function n-regular with reference to this d will be 

termed,- perhaps, in general position, it being understood that the 
target of the function is ND (n). Thuss 
Corollary. If X Q P, dim P ̂n, f i P — > M, M a ND (n)-space, and 
if f X is in general position then f X can be extended to a map 
g ' P — M in general position such that g closely approximates f. 
5.4.18. Conclusion. Finally, it should be remarked, that the above 
'general position' theorems, interesting though they are| are not 
delicate enough for many applications in manifolds. For example, one 
needs i If f s X -—^ M a map of a polyhedron X .into a manifold, 
and Y (^K,  the approximation g should be such that not only 
dim (g(X) f^l) is minimal, but also should have Ŝ (g) intersect Y 
minimally e.g. if 2x + y 2n, S(g) should not intersect Y at 
all,- The above procedure does not seem to give such results. If for 
example we know that Y can be moved by an isotopy of M to make its 
intersections minimal with some subpolyhedra of M, then these delicate 
theorems can be proved. This is true in the case of manifoldŝ  and we 
refer to Zeeman's notes for all those theorems. 
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Chapter VI 

Regular Neighbourhoods 

The theory of regular neighbourhoods in due to J. H.C. 
Whitehead, and it has proved to be a very important tool in the study 
of piecewise linear manifolds. Some of the important features of regular 
neighbourhoods, which have proved to be useful in practice can: be stated 
roughly as follows.' 
(l) a second derived neighbourhood is regiilar (2) equivalence of two 
regular neighbourhoods of the same polyhedron (3) a regular neighbour-
hood collapses to the polyhedron to which it is regular neighbouj'hood̂  
.(4) a regular neighbourhood can be characterised in terms of collapsing. 
Whitehead's theory as well as its improvement by Zeeman are stated only 
for manifolds. Here we try to obtain a workable theory of regular 
neighbourhoods in arbitrary polyhedra; our point of view  was suggested 
by M. Cohen, 

If X is a subpolyhedron of a polyhedron K, we define a 
regular neighbourhood of X in P to be any subpolyhedron of K which 
is the image of a second derived neighbourhood of X, under a polyhedral 
equivalence of K which is fixed on X, It turns out that this is a 
polyhedral invariant, and any two regular neighbourhoods of X in K 
are equivalent by an isotopy which fixed both X , and the complement 
of a common neighbourhood of the two regular neighbourhoods. To secure 
(4) above, we introduce "homogeneous collapsing". Applications to 
manifolds are scattered over the chapter. These and similar theorems 
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are due especially to Newman̂  Alexander̂  Whitehead and Zeeman, 

6.1. Isotopy. 
Let X be a polyhedron and I the standard 1-cell. 

6.1.1. Definition. An isotopy of X in itself is a polyhedral self-
equivalence of X^I, which preserves the I-coordinate, 

That iSj if h is the polyhedral equivalence of X Xl^ 
writing h(x,t) = ̂ĥ  (x,t), hg (x,t)), we have hg (x,t) •= t. The map 

of X into itself which takes x to ĥ  (x,t) is a polyhedral equi-
valence of X and we denote this by h, . Thus we can write h as 

h(x,t) = (ĥ  (x), t). 

We usually say that 'h is an isotopy, between ĥ  and ĥ ' , or 'ĥ  
is isotopic to ĥ ' or 'h is an isotopy from hQ to ĥ ', The 
composition (as functions) of two isotopics is again an isotopŷ  and the 
composition of two functions isotopic to identity is again isotopic to 
identity, 

Now we describe a way of constructing isotopies, which is 
particularly useful in the theory of regular neighbourhoods, 
6.1.2. Proposition. Let X be the cone on 

A. Let f : X > X 
be a polyhedral equivalencê  such that f A - id̂ . Then there is an 
isotopy h : X >< I ) X .y. I, such that h \ (X X O) U AXl = identity and ĥ  = f. 
Proof I Let X be the cone on A with vertex v, the interval I ̂ QjOj 
is the cone on 1 with vertex 0. The re fore-by 4.3.19* X X I is 
the cone on X X 1 U A X I with vertex (v,0). Define 
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h f X X 1 g A X I — ^ X x 1 U A ̂  I • 
by 

h (x, 1) = (f(x), 1) for X t X 
h (a, t) = (a, t) for a t K t ̂  I. f " 

Since h | A .= id̂ ,̂, h is well defined and is clearly "a polyhedral equi-
valence. . We have h defined on the base of the cone| we extend it 
radially.j, by mapping (v, O) to (v, O)., that is we take the join of h 
and Identity on (v, 0),, Calling this extension also h, we see that 
h is a polyhedral equivalence and is the identity on (A^ l) (v, 0)« 
Since X X 0 U A K I C (A X l) * (v, O) , h is identity on 
X X 0 U A X I. To show that h preserves the I-coordinatej it is 
enough to check on (X K l) * (v, O), and this can be seen for example' 
by observing that the t(x,, 1) + (l-t) (v,0) of X >( I with reference 
to the conical representation is the same as the point (t x + (l-t) v̂ t) 
of X X I with reference to the product representation, and writing 
down the maps,. Q 

If h is an isotopy of X in itselfj A^X, and if 
h k Ysl = Id(A X l) as in the above case, we say that h leaves A 
fixed. And some times, if h is an isotopy between Id̂  and ĥ , 
we will just say that 'h is an isotopy of X', and then an arbitrary 
isotopy will be referred to as 'an Isotopy of X in itselfProbably 
this is not strictly adhered to in what follows j perhaps.lt will be 
clear from the context, which is which. 

From the above proposition, the following well known theorem 
of Alexander can be deduced! 
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6.1.3. Corollary. A polyhedral automorphism of an n-cell which is the 
identity on the boundary, is isotopic to the identity by an isotopy 
leaving the boundary fixed. D 

It should be remarked that we are dealing with I-isotopics 
and these can be generalised as follows! 
6. l./j.. Definition. Let J be the cone on K with vertex 0. A 
J-isotopy of X is a polyhedral equivalence of which preserves 
the J-coordinate. 

The isotopy is said to be between the map -—^ X ̂  0 
and the map X^^ K — l y ^ K , both induced by the equivalence of X X J, 
And we can prove as abovei 
6.1.5. Proposition. Let X be the cone on A, and let 
f s X XK •—^ X y K be a polyhedral equivalence preserving the K-co-
ordinate and such that f AXK = Id . Then f is isotopic to 

A 'Jv K 
the identity map of X by a J-isotopy h s X X J — ^ X y. J, such 
that on A X J and X y. 0, h is the identity map. Q 

This is in particular applicable when J is an n-cell. 
6.2. Centerings, Isotopies and Neighbourhoods of Subpolyhedra. 

Let ̂  be a regular presentation of a polyhedron P, and 
let J 0 be two centerings of ̂ ^ , Then obviously the correspondence 

Vjc ec c f(p 
gives a simplicial isomorphism of d( (p, V̂  ) and Q), which 
gives a polyhedral equivalence of P. We denote this by f̂  ̂  (coming 

y )f| 
from the map 0 0 C). Clearly f = (f , 

j, Q .0 , 
and f Yj ^ 0 f ̂  f ŷ  ^ where r| , Q, are three 
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centerings of 
6.2.1. Proposition. The map f described, above is isotopic to 

^ n 

the identity through an isotopy h : P I —> P I, such that if for 
a C , V̂  and Q are the same on C and all D ̂  (p with D < C 
then h C "K I is identity. -
ProofI First, let us consider the case when Y| and B differ only on 
a single cell A. Then ^ Q identity except on 
St( V^A, d ((p, Y] ))| = st( eA, d ((p, e ))[ This is a cone, 
and ^ n is identity on its base; .then by 6.1.2.' We obtain an 
isotopy of 1 St( V̂  k, d ((p , V) )) , which fixes the base. Hence it 
will patch up with the identity isotopy of K - |(St(V|A, d( ))|. 

The general ^ is the composition of finitely many 
of these special cases, and we just compose the isotopies obtained as 
above in the special cases. For isotopies constructed this way, the 
second assertion is obvious. . O 

Let X be a subpolyhedron of a polyhedron P, and let (p 
be a simplicial presentation of P containing a full subpresentation 
XJ covering X, We have defined Xo) (in 3. t.) as the full 
subpresentation of d ̂  , whose vertices are C for C with 
C n X ̂  0. This of course depends on a centering Y\ of ̂  , and to 
make this explicit we denote it by N ( % > > ^ )• (p( X> > ) 
is usually called a 'second derived neighbourhood of X'. We know that 

( X> > ̂  ) is a neighbourhood of X, and that X is a deformation 
retract of ^ N ̂  ( X> > ̂  (see 3.1)« Our next aim is to show that 
any two second derived neighbourhoods of X in P are equivalent by 
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an Isotopy of P leaving X, and a complement of a neighbourhood of 
both fixed. We go through a few preliminaries first. 
Ex. 6.2,2. With the same notation as above. Let V̂  and be two 
centerings of (P such that for every C ̂  > with 
C nx / 0, fj G = © C, Then 

/"Hint 
I This can. be seen for example by taking subdivisions of 

which are almost the same as d((p ̂  ) and d( (p , Q but leave 
unalteredJZ. 
6,2.3. Proposition, With P,^ , ([) as above, let V̂  and 6 be 
two centerings of ̂  , and U the union of all elements of ̂  , whose 
closure intersects X, Then there is an isotopy h of P fixed on X 
and P ̂ U , such that | N^ V) )|) = j N J) ( ̂ V © ) | > 
Proofs We first observe that P - U is a subpolyhedron of P and there 
is a full subpresentation 01 of ^ which covers P - U, namely, C ̂  (JL 
if and only if C fi X = 0. By 6.2,2 we can change "Vj and on ^ 
and 0\ without altering (n p ( ; Y] ) j and Nq^ > B ) 

So we 
may assume that V| and 9 are the same on ̂  arii (JTL , The isotopy 
h of proposition 6.2, 1 with the new f cs ys in the hypothesis has the 

be 
desired properties, Q 

With X, P, , (P as above, let CD t P —^ fo, f 
map given by: if v is a ̂ -vertex <|)(v) = 0, if v is a -X)™ 
vertex- C^Cv) = 1, and C} is linear on the closures of -simplexes. 
Then cp~\o) = X, since ̂  is full in (p . If is a simplex of 
(p - ̂  , then 0, if and only if (|) ( tT) = (O, l). If 
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^ s a simplex of (Jl i. (Jl ̂ ^ in the proof of proposition 2.3) then 
cDC = ^̂ oughly, the map <5 ignores the parts of -P away from 

X and focusses its attention on a neighbourhood, of X. We vdll use this 
map often. 
6.2, L. Proposition. With the above hypotheses, if 0 ĉ  < ^CyC ^ 
then there is an isotopy h of p, taking Ĉ  ^ ( ) onto 

) and leaving X and P - fixed. 
Proof i Let cD be the maps p —^ [o, f] described above. Choose a 
centering of ^^ as follows: if gT is a simplex of ̂ ^ with 
f n x ̂  jZS, then c^ ( -|a ̂  ) = v ^ and choose -{o arbitrarily on 
and {3V . Let (p' denote d((p, ̂  ). Let be the sub-
presentation with = \ 
- LO'T]), and if 

-X. Obviously I N ^ CXa,-^ ) 
is any simplex of J wit.h vertices 

both in and out of (̂o j then CO ( f ) = (O, y ). Now choose two 
centerings ^ and of ^ such that if p (p' and 
Cp( p ) then G) = p> and ( 8 C) = and 
arbitrarily otherwise. Then clearly 

N (P' = 

( p ' ) ( = 
We apply 6.2,3 now, and of 6,2.3 in this case happens to be 

fe'V)) ' D 
6.2.5. Proposition. Let ^ be a simplicial presentation, ̂  a full 
subpresentation of Q , (J) = P, (^ = X, Y| a centering of (p ; 
and N = N V Let be a siniplicial refinement of 
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d( (p I ) with the subpresentation covering X| let B a cen-
tering of and N = N 9 ) .. Finally,, let \i be a . 
neighbourhood of N, Then there is an isotopy h of P, takifig N 
onto n'; and leaving P - "U, and X fixed. 
Remark; Note, that if were somewhat layge, or if there were no XA 

in the statement, then the proposition is an ijnmediate consequence of 
6.2.3 and 6.2.4. 

•I 
Proofs We first replace the centering Tj by a centering Y| as 
follows{ Let ^ : P —^ 0, 1 be the usual function given by, 

(^ -vertex) - 0, ((p - ̂  )-vertex = 1, and <p is linear on 
— ' t the closures of (̂  j -simplexes. Choose r| such that if p is a 

simplex of (p with ( f ) = (O, then ^ ( V̂ ' ) = I, " 

^SVj is a polyhedral equivalence carrying N 
onto N 

(P 
(p( X ^ ̂  ' )|, - Actually f ̂  is 

isotopic to the identitŷ  but we will need only that it is a polyhedral 
equivalence. Let f , ys (Xi) = \JC . As ' is a neighbour-

1 ' 
hood of ( [_0, j] we can find a y } k such that 
() ) C înce f -r| YJ is simplicial with reference 
to d( (p, V| ) and d( (p , rj') and Q^ is refinement of d( (p, 
f rj r ̂  rj carries (3̂ onto a refinement of d( (p, ̂  ' )• Let us call 
this and similarly ^ T|' ̂  by ( = Let 
the centering of induced ̂  from Q be Q'. We have, 

and 
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Now choose another centering ^^ of {̂ l as followsi 
Let oC 5(0 < <s(, < k) be such that if v is a vertex of not 
in X, then (v) > ĉ  , is chosen so that if (f ̂  has 
vertices in and out of 1, then (|) .( 0 ̂  6™ ) = ec • Then clearly 
N 6 ̂ ) j = (p"k[0,cCj ). By 6.2.4, there is an isotopy 
^ — 1 -h of P, leaving X and complement of (fp̂ 'y )) fixed, with 

h, taking onto (OjdCj ). By 6.2.3 there is 
an isotopy h' leaving X and complement of C|)~̂ ([0, fixed. 
with ĥ ' taking c4j ) = 

e l 
N onto 

Let f «I 
f 

be the isotopy of P in itself given by 

Yj îy) (p, t) ̂  (f-yj (p),̂  t) p P. Then 0 h'0 h 0 f >| ̂  

is the required isotopy. First ĝ  = f ̂  , 0 hj 0 ĥ  0 f ŷ  ' yj 

carries n onto n'. Secondly since P ~ "H'C ̂  "" Cp"̂  ([O, h}) and 
p - UCC]̂  P - ), h and h' are fixed on P - . They • 
are alscT fixed on X. As f ŷ ', Yjj carries X onto X, TXonto 
g also fixes X and P - IX . Q 
6,2.6. Corollary. Let X be a subpolyhedron of a polyhedron P. Let 
^^ and 2 be two simplicial presentation of P, containing 

full subpresentations ^ and 2 respectively with 
~ % 2 ~ and Q ̂  be centering- of ^ and 

(P and - N (p, ( x , , , n ^ n ^ and 

a neighbourhood of N^ in P, Then there is an isotopy of 
P leaving X and' P fixed and taking N̂  onto N̂ . 
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Progf; Take a common subdivision of d( ̂  © and 
and applj 6,2.5 twice, 

6.3. Definition of "Regular Neighbourhood.". Let X be a subpolyhedron 
of a polyhedron P, 
6.3.1. Definition, A subpolyhedron N is said to be regular neighbour-
'hood of X in P if there is a polyhedral equivalence h of P on 
itself, leaving X fixed, such that h(N) is a second derived neighbou3>-
hood of 1. ,. 

More precisely N is a regular neighbourhood of X if and 
only if 

i) there is a simplicial presentation (p of P . 
•with a full subpresentation covering X 
and ,a centering T^ of i and 

ii) a polyhedral equivalence -h of P fixed on 
X such that h(N) = | r ̂  ( X , ̂  )|, 

Regular neighbourhoods -do exist and if M is a regular neighbourhood of 
X in P, then N is a neighbourhood of X in P. 
6.3.2. Proposition. If N̂  and Ng are two regular neighbourhoods of 
X in P and a neighbourhood of N^U N^ in P, then there exists 
an isotopy h of P taking N̂  onto N^ and leaving X and P -
fixed. 
Proof I Let (p^, % T) ĥ , i = 1, 2, be such that 

Let be a subdivision of d( (p^, ^ ̂ ) such that ĥ  is 
simplicial with reference to , and let ^ be the subprresentatdon 
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of covering' X. Let Q be a centering of ^ , 

h. 

say /"Note that h is fixed on XjZ. 

By 6.2.5, there is an isotopy f, fixed on X and P - h. (\A,) with 
Then f, taking ^ onto I N ^ e 

hj f ĥ  is an isotopy of P fixed on X and P - XL • and 
(ĥ  f ĥ ;̂  = ĥ  f̂  ĥ  takes N̂  onto N̂  (where ĥ  is the isotopy 
of P in itself given by ĥ  (p̂  t) = (ĥ  (p)̂  t)). Working similarly 
with (p , we obtain f' with t f' 'h"̂  fixed on X and P - "U. and 

2 2 
" 2̂ "taking N^ onto N̂ . Now N̂  and N^ are 

genuine second derived neighbourhoods, and is a neighbourhood of 
0 Ng . Hence by 6.2.6 there is an isotopy g of P fixed on X . 

and P - U , with g, (N ') = N 
' ' 2 -1 

(h2 f \ ) (ĥ  f ĥ  ̂ ) is the required isotopy. D 

6.3.3« Proposition. If f s P — P is a polyhedral equivalence 
and N a regular neighbourhood of X in P, then f(M) is a regular 
neighbourhood of f(X) in p'. 
Proof; Let ^ ^ (p ' be a simplicial presentations of P and P' 
with reference to which f is simplicial, T| be a centering of 
(P , f( ̂  ) = ^ the induced centering on (P ' • can assume 
that ^ , (p contain full subpresentations > covering 
X and X'; (by going to subdivisions necessary), 
f (X , V] )|y= jN Q), ( X', . By definition,, there is a 
polyhedral equivalence ^ of P fixed on X such that 
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p(N) = ip ( , ) , Let p' be the polyhedral equivalence of 
P' given by f * p-r^ Then (f» p ® f")(w') ^ (f , p) (N) = 

- )i) = X'> Yj')| , and if x' ̂ f(X), f"'(x')eX, 
therefore f . p e f (x<) = f« p (f"\x')) = f • f"\x') = x'. Q 

6.3.4. Motation. If A is a subset of a polyhedron P, we will denote 
by int p M and bd p N the interior and the boundary of W in the 
(unique) topology of P. 

6.3,6, If N is a regular neighbourhood of X in P, and 
B = bd p N, then X N - B. Q 
Ex. 6.3.7. Let X C n C ^ C ^ be polyhedra, with W (["int p Q. Then 
N is a regular neighbourhood of X in Q if and only if N is a 
regular neighbourhood of X in P, B 
Ex. 6.3. 8. Let X (__p be polyhedra. If A is any subpolyhedron of 
P, let A' denote the polyhedron A - intp X. Then N is a regular 
neighbourhood of X in P if and only if N' is a regular neighbour-
hood of X' in p'. a 
Ex. 6.3.9. Let A be any polyhedron, and I the standard 1-cell. 
Let 0 < < p < y < 1 be three numbers. Then, AA^O, X} is 
a regular neighbourhood of A in A ">C I, and A K ,"YI is a regular 
neighbourhood of A in A X I, 
6.3. '10. Notation and proposition. 

If ̂  is any simplicial presentation and ^ any set of 
vertices of (p , we denote by the maximal. syLbpresentation of(P 
whose set of vertices is ̂  . is full in ^ , We write 

( XI ) 2! ) (when ̂  is understood) for U IStlf. 
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This is of course with reference to some centering of Q> 

X ) is a regular neighbourhood ^^^ in | (p . If is 
a set consisting of single vertex x, we have the some what confusing 
situation {x} ) = | ̂ '{xj 
vertex x. 

J where x denotes the 0~simplex with 
In this case we will write cft x | for 

S(f  ({-} )• 
Let be a subpresentation of a simplicial presentation 

and Y| be a centering of ̂  . Let QD = d( ) and 
-Tt' - VJ ) (still calling r̂  as ̂  ). If ^ is the . 
set of vertices of ^^ ' consisting of the centers of elements of 
^ , then = t t - ). ^Tt' is full in (p '. 
Given a centering of ^ d((p , Yj ), we define 

= [Sir^ c) 
and'jYx' = 5(P>(£) = 
of 

, for any G t ^ 
C ̂ '̂ If̂ îs a regular neighbourhood 

We use the same notation ( ̂ jŷ *) even when i® not 
subpresentation̂  but a subset of ̂ ^ . These are Used in the last 
part of the chapter. As the particular centerings are not so 
important, we ignore them from the terminology whenever possible. 

6.4. Collaring. 
To study regular neighbourhoods in more detail we need 

a few facts about collarings. This section is devoted to proving 
these, 
6.4.1, Definition. Let A be a subpolyhedron of a polyhedron P. 
A is said to be collared in P, if there is a polyhedral embedding 



h of A X [o, Q, in P, such that 
i) h (a, O) £ for all a 6 A 
ii) the image o"̂  h is a neighbourhood of A in P. And 

the image of h is said to be a collar of A, 
6.4.2. Definition. Let N be a subpolyhedron of a polyhedron , P 
and let B = Bd p N. N is said to be bicollared in P if and only 
if 

i) B is collared in N 
ii) B is collared in P - N, 

. Clearly this is equivalent to saying that there is a poly-
hedral embedding h of B "[-1, + Q in P. such that 

i) h (b, 0) •= b , b f B , 
ii) h (B ̂ (0, + i3)Cp - N 
iii) h 
iv) the image of h is a neighbourhood of 

B in P. 
6.4.3. Proposition. If N is a regular neighbourhood of X in P, ' 
then N is bicollared in P. 
Proof; It is enough to prove this for some convenient regular neighbour-
hood of X. Let ^ be a simplicial'presentation of P containing a 
full subpresentation covering X and let ̂  : P —^ 1 be 
the usual map. We take N to be {D (JOj i^) clearly 
Bd p N = Cp Let us denote this by B. We can now show that 

^J) is polyhedrally eqixLvalent to BK "-Ir'"̂  0 
following way. 
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B has a regular presentation consisting of. all 
empty sets A m Hg) for fc ^ . 

non-

Like wise 
f 

't ^ ) has a polyhedral presentation. 
consisting of all non-empty sets of the following sorts; 

racp a) 
a, h) 

(1) 

r (1) • re(P 
j' " , (0, + 0, •[+ is a regular presentation 
of + 1 There is an obvious combinatorial isomorphism between 

^ ^ /which determines, is a appropriate centerings, a 
polyhedral equivalence between B >\ 1, + 1 and ^ ) C 

This shows that N is bicollared in P. Q . 
Ex. S.k.k. -If A is collared in P, then any regular neighbourhood 
of A in P is a collar of A, 
/"Hint; Use 6.3.7 and 6.3.9J. Q 

Thus if N is a regular neighbourhood of X in P and 
= Ed p N, a regular neighbourhood of B in P - N is a collar of 

Ex. 6.4.5. If N̂  is a regular neighbourhood of X in P and 
Np is a regular neighbourhood of N in P, then N̂  - M - N - Int N, 

1 1 2 P 
is collar of B, Bd „ N . 

1 P 1 /"Hints Use 6.3.8 and G.U.kJ, U 
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Ex. 6.4,6. If N̂  . is a regular neighbourhood of X in P, and N̂  
is a regular neighbourhood of N in P, then N is a regular 
neighbourhood of X in P. D 
Ex. 6.4.7. (i) If N̂  and N̂  'two regular neighbourhoods 
of X in P with N̂  Q Int̂  N̂ , then N̂  - is collar over 
B̂  ̂  Bd p N,̂. 

(ii) N̂  is a regular neighbourhood of M̂ , 
/"Hint J 

Take two regular neighbourhoods N̂ 'j N ' of X̂  such that 
I 

Ng' - is a collar and try to push' onto N̂ ' and N̂  onto 
n , ' 7 . q 

The following remark vdll be useful lateri 
Ex.. 6.4.8. Let N be bicollared in P and n' be a regular 
neighbourhood of N in P., Then there is an isotopy of P taking 
N onto m'. If X C Int p N, this isotopy can be chosen so as to 
fix X. Q 
6.4.9. Definition. A pair (3, G) of polyhedra with B ̂  C, is 
said to be a cone pair if there is a polyhedral equivalence of B 
onto a cone on C, which maps C onto C, 

Clearly in such a case we can assume that the map on C 
is the identity. And if (B,- G) is a cone pair, C is collared . 
in B, 
6.4.10. Definition. Let Ad P be polyhedra, and 'a' a point of 
A., Then a pair (L , L ) is said to be a link of a in A) if 

ir ix 
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ii) L^ is a link of - a in A 
iii) Lp is a link of a in P. 

If (Lp\ L̂ ') is another link of a in (P̂  A)̂  then 
the standard mistake L p — ^ Lp' takes L̂  onto , and there-
fore there is a polyhedral equivalence Lp —^ Lp? taking L^—^ L̂ i 
We shall briefly term this an equivalence of pairs 

(Lp , L^)—^ (Lp, , L̂ Î). So that, upto this equivalence, the link 

of a in (P, A) is unique, 
6.4.1T. Definition. Let AQ P be polyhedra. A is said to be 
locally collared in P if the link of a in (P, A) is a cone pair 
for every point a ̂  A. 

Clearly A ?< 0 is locally collared in A A^O, 1*] , and 
therefore if A is collared in P, it is locally collared. We will 
show presently that the converse is also.true. 
6.4.12. Definition. Let B be a subpolyhedron of A ̂  [o, 
B is said to be cross section if the projection A i[o, Q — ^ A, 
when restricted to B is 1-1 and onto and so is a polyhedral 
equivalence B 

13' Proposition. Let B be a cross-section of 
contained in A X (O, l). Then there is a polyhedral eqiiivalence 
h t-A X[o,rj ^ Ayŝ Q, 0 , leaving A XO and A X. i pointwise 
fixed, and taking B onto A ̂  g and such that 
h J) ̂  aX|o, ij for all a^ A. 
Remark! There is an obvious homeomorphism with these properties, 
but it is"not polyhedral. 
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Proof! Let p : A X [_0, 0 — ^ A be the first projection. Trian-
gulate the polyhedral equivalence p | B s B A. Let and 
be the simplioial pi'esentations of B and A. 

/I ' 0, is a Simplicial 
presentation of , Consider the centering of (̂ L y, ̂  
given by in ( G" T ) = (barycenter of ̂  , barycenter of Cĵ  ), 

We will define another regular presentation of A Vs I 
as follows; 

For each 6 CTL ^ p~ ̂  ) is the union of the 
following five cells s 

0, p"̂  ( D O B , 

'A ^ f r-. ' 
where ^ ^ is the region between C 0 and p \ 6" ) H ^ and 
O -1 
^ is the region between p (S")rv B and ><> 1. (Note that 

P~'(r )n B ̂ (B .). 
We take ̂  to be the set of all these 
cells as varies over Q\ . Choose 
a centering S of , such that the 
first co-ordinate of each of the five 
cells above is the barycenter of - , 

Now there is an obvious 
combinatorial isomorphism 

Ol-Xt j and if we choose 
the centerings described we obtain , (T"X 0 
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h J AK I —f I which is simplicial relative to d( (J , O) and 
d( 5 )j and has the desired properties.. Q 

4.13. In this situation, define A 3 = 
- (a, t) a ̂ A, t ic I, 3 b eB, b = (a, s) , t4 
i.e. this is all the stuff of the left of B. Then h takes ^ B 
onto A xjo, -A , B onto A^i. In particular B is collared 
in /\B. 
6.4.14. "Spindle Maps". Let L Q A, with the cone on L and 
vertex 'a' contained in A. . Gall the- cone S. • Suppose S ~ L is 
open in A, (This is the case when a 'is a vertex of a simplicial 
presentation QV of A, and L = ̂ Lk (a, (J*-) and S = St (a, Ql )| . 

Let 3 = 1 — ^ I be an imbedding with P (1) = 1. In 
this situation we define the "spindle map". 

( p , L , a) I A X I — > AX I 
a Vv I j, it is the join of the identity map.on L 

lee* 
with the map (a, t) ^ (a, ^ (t)) of a K I. On the rest of 
A it is the identity map. 

A spindle map m is an embedding^ and commutes with the 
projection on A. If B is a cross section of A XI-'Which does 
not intersect A jK. 15 then m (B) has these properties also, 
6.4. 15. Proposition. Let A ̂ P be polyhedra. If A is locally 
collared in P, then A is collared in P. 
Proof: In P )<s[o, L 

J consider the subpolyhedron 
Q = PX o O a X[p, 13. We identify P with P X 0 (̂ Q. Let (p 
be a simplicial presentation of P, in which a subpresentation 

m 
thus; on L 
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covers A. 
Consider a, vertex 'a' of Q\ ; let L, and L denote 

A P 
Lk (a, O )) and j Lk (a,(p ) ̂^ , Then (Lp, L^) is a link of a 
in (P, A) and there is a polyhedral equivalence'̂  ; Lp ^ L^ -Sf-15 
for some v, taking L^ onto L̂ . We can make "y identity on L by composing with (7 id^ . And so we suppose / L 

A 
A 

is identity. 
We can suppose that v is so situated (for example in a 

larger vector space) that L if- v and L * (a, l) intersect only 
A 

in L̂ .̂ Thus we have via "y and the identity on L * (a, l) , 
•Hi 

hedrally eĉ uivalent to L^ ̂i- E a. 

a polyhedral equivalence of L = L y L (a, 1) with L f̂. E f A 
where E (a, s which is identity on L^ * (a, l). Now 
Lq -x- a is a star of , 'a' in Q̂  and via this p.e. is poly-

iav^l 
We can find a polyhedral equivalence 
^ of E ̂f- a (which is equivalent 
to a closed 1-cell) leaving v 
and (a, l) fixed and taking 
(a, 0) to (a, Such a 
obviously takes a.%. 0, 1 
onto aX L -I 

Take the join of pj and the identity map L̂ , this 
gives a polyhedral equivalence of L̂^ * a which is the identity 
on LQ. Hence this can be extended to a polyhedral equivalence of 
Q by identity outside L„ * a. Let us call this equivalence of 
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A X I is a spindle map. Q, Uy.!) Q and 
Now take the composition h in any order of all such 

P ĝj with 'a' running over all the vertices of . This maps 
A = 0 into a cross section h(A) B of A VxQo, which does 
not intersect A 1 or A 0. Finally h(P) r\ A X I = '̂ B. 

B is collared in B, and so in h(P). Then, taking 
h ̂  we see that A is collared in P. 0 
6.4.16. Corollaryi If M is a P.L. Manifold with boundary M, 
then ̂  M is collared in M. • 

Now, an application of the corollary; 
6.4.17> Proposition. If h is an isotopy of ^ M, then h 
extends to an isotopy H of M. 
Proof; Let : I X I — ^ I be the map given by 
p (s, t) = Max (t - s, 0). This is polyhedral, e.g. the diagram 
shows the triangulations and the images of the vertices, 

^ (s, 0) = 0, t) = 0, p (0, t) - t. 
Define H - (bMXl)Xl-—> ( b M A l) X I 
by H ((x, s), t) - ((h s), t). 
This is polyhedral, 
H ((x, s), 0) ((h (x), s), 0) = ((x, s), 0), 

pCsjO; 
since ĥ  = Id, Hence K̂  = Id of ^ MK I, 
H ((x, 0), t) = ((h_ ^ (x), 0), t) = ((h (x), 0), t). 

P (0,t) t 
Thus H extends the isotopy ^ M K 0 given by h (identifying ^ M 
and ^ M/. O). 
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And H ((x, 1), t) ((h ̂ ^^ ^̂  (x), 1), t) 
= ((x, 1), t) since (1, t) = 0, 

Hence H M 1 is identity. Hence the isotopy h of ^ M 
extends to an isotopy H of any collar so that at the upper end 
of the collar it is identity again, and therefore it can be'extended 
inside. Thus h extends to an isotopy of M. D 

6.5- Absolute Regular Neighbourhoods and some Newmanish Theorems. 
6. 5.'!. Definition. A pair of a polyhedra (p, A) is said to be an 
absolute regular neighbourhood of a polyhedron X, if 

i) XQ P - A 
ii) P A 0 is a regular neighbourhood of 

X K 0 in P X 0 UAX.^, l3^PX[p, r . 
Hence A is collared in P. 

I 
Probably, it will be more natural,to consider X, P and 

I 
A in an ambient polyhedron M in which P is a neighbourhood of 
X as in links and stars. But, after the definition of regular , 
neighbourhood, absolute regular neighbourhood is just a convenient 
name to use in some tricky situations, 
Ex. 6.5.2. If (P, A) i.s an absolute regular neighbourhood of . X 
and if h : P ^ p' is a polyhedral equivalence, then (P', h A) 
is an absolute regular neighbourhood of h X, D • ' 

« 

Ex. 6.5.3. If N is a regular neighbourhood of X ,in P, and 
B = Bd p N, then (N, B) is an absolute regular neighbourhood of • 
X. n ' • -
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Ex. 6.5.4. Let P C f-ij and suppose that ' (p, A) is an absolute 
reg\ilP,r neighbourhood of X, and P - A is open in Q̂  and A 
is locally collared in Q - (P -A). Then P is a regular neighbour-
hood of X in Q. Q 
Ex. 6.5.5. Let C (A) be the cone on A with vertex v. Then 
(C (A), A) is an absolute regular neighbourhood of v. 

In particular if D is an n~cell,, (D, ̂  D) is an 
absolute regular neighbourhood of any point x fc- D - ^ D. 0 
6.5.6. Theorem. If D is an n-cell, M a PL-manifold, 
D ̂  Int Mj then D is a regular neighbourhood of any x 6 D - D-
in M.. 
6.5.7. Corollary... If D is an n-cell in an n-sphere S, then 
S - D is an n-cell.. 
Proof of the theorem; The proof of the theorem is by Induction on 
the dimension of M? we assume the,theorem as well as the corollary 
for n - 1, 

i) First we must show that D - D is open in M, 
If we look at the links, this would follow if we know that a polyhedral 
imbedding of an (n-1 )-sphere in an (n-1 )--sphere is necessarily onto.. 
And this can be easily seen by looking at the links again and induction, 
(see 4.4 in particular 4.4,. 14 and 4.4.17(a).),. 

ii) If we know that "b D is collared in M - Int D (it 
is collared in D), we are through by 6.5.4. For this, it is enough 
to show that , ̂  D • is locally collared in M- int D. Consider a 
link of a in M, say S^ \ such that a link of 'a' in D is 



an (n-O-cell C ^̂  \ with H D - ^ . It is 
3. 3. Sr . 3 . 

clearly possible to choose such links (see (b)). " Noŵ  a link 
of 'a' in M int D is - (d'̂ "̂  -

Q. As in i D - Ad is open in S and therefore the link a ^ a a 
of a in M ~ int D is s'̂  ̂  - d"̂  \ But by the corollary to the 

a a 
theorem in the (n-O-case, this is an (n-1 )-cell, say 
and it meets D in ^ = ^ -nd ( 
is equivalent to (C ( ^ B Therefore ^ D is 
locally collared in M ~ int D and we are through. 
Proof of the corollary assuming the theorem; Represent Ŝ , a 
standard n-sphere as a suspension of s'̂  ̂, a standard (n-1 )~sphere, 
and observe that the lower hemisphere (say D ) is a regular 
neighbourhood of the south pole, say s. Let f be a polyhedral 
equivalence of S to S* taking a point x ̂  

D - ^D 
to the south 

pole s. By the theorem D is a regular neighbourhood of x, there-
fore f(D) is a regular neighbourhood of the s in s". By, 6.3.2 
there is a polyhedral equivalence p of s'̂  such that p(Dg) = f(D). 
Therefore f (S ~ D) = f (S) - f (D) = s'̂  - p (D̂ ) = p (S*̂ ) - p (D̂ ) = = p(S -.D)=p(d)5 where D denotes the upper hemisphere, s n n -1 Therefore p' . f (S - D) ̂  D or S - D is a n-cell. Q 

n 
Ex. 6.5»8. Corollary. If M is a PL n-manifold and D̂ , D̂  are 
two n-cells contained in the interior of the same component of M, 
then there is an isotopy h of the identity map of M, such that 
h(D̂ ) . D̂ . Q 
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¥e usually express this by saying that "any'two n-cells 
in the interior of the same component of M are equivalent" or that 
they are "eq̂ oivalent by an isotopy of M". 

If M is a PL n-manifold, "̂ M its boundary, then by 
any two (n-l)-cells in the same component of ^M are equiva-

lent by an isotopy of d M. Since this is actually an isotopy of the 
identity, by 6.4.1? we can extend it to M. Thus 
6.5.9. Proposition. Any two (n-1)-cells in the same component of 
h M are equivalent by an isotopy of M, D 

This immediately gives 
Ex. 6.5.10. If D is an n-cell and A an (n-1)-cell in ^ D, 
then (D, A ) is a cone pair (That is, there is a polyhedral 
equivalence of (D, A ) and (C{  ), A ). And we have seen such 
a polyhedral equivalence can be assumed to be identity on A , ). Q 

This can also be formulated as; 
Ex. 6. 5. If C\ ̂  is an (n-l)-cell in the boundary of D̂ , an 
n-cell, i - 1, 2, any polyhedral equivalence A ^ — ^ A 2 ^̂ ^ 

be extended to a polyhedral equivalence D̂  D2. D 
Also from 6.5.9, it is easy to deduce if A is any 

(n-l)-cell in K, then there is at least one n-cell D in M such 
that D r̂ Vl = iXQĥ 'From. this follows the useful propositions 
Ex. 6.5.11. If M is a PL n-manifold and D an n-cell with 
M 0 D = rv̂  D = an (n-l)-cell, then M vJ D is polyhedrally 
equivalent to M. Moreover, the polyhedral equivalence can be chosen 
to be identity outside any given neighbourhood of M O D in M. -Q 
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The methods of the proof of the theorem 6,5.6, can be used 
to prove the following two propositionŝ  which somewhat clarify the 
nature of regular neighbourhoods in manifolds; 
Ex. 6.5.t2. Let M be a PL-manifold, ^ M its boundary (possibly 0), 
and N a regular neighbourhood of X in M. Then 

a) N is a PL-manifold with (non-empty) boundary 
unless X is a union of components of M. 

b) If X C M - c) M, then N C M ~ b M, the 
interior of M. 

c) If X A M / 0, N r\ ̂  M is a regular 
neighbourhood of X Pv ̂  M in "3 M. 

d) In case c), Bd ̂  N is an (n-1)-manifold, 
meeting Q M in an (n-2)-manifold 
where N' = N A b M. 

/"Note that int ̂^ N and bd „ N denote the interior and 
M M 

boundary of N in the topology of M, On the otherhand if N is a 
PL-manifold int N and ^ N denotes the sets of points of N 
whose links are spheres and cells respectivelŷ JZ, 
Hints Use 4.4.8. Q 
Ex. 6.5.13. If N is a regular neighbourhood of X in K, a 
PL-manifold with X ̂  int M, and N' is polyhedrally equivalent to 
N and located in the interior of a PL-manifold M̂  of the same 
dimension as M^ then n' is a regular neighbourhood of x' in M̂ , 
where x' is the image of X tinder the polyhedral equivalence 
N N', O 
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Ex. 6.5.14. A is any polyhedron, and I the standard 1-cell 
(A A 1^1) is an absolute regular neighbourhood of A 0. If 
0 < U then (A % 1, A Î ) is an absolute regular neigh-
bourhood of A X • ^ 
Ex. 6.5.15. The union of two n-manifolds Intersecting in an (n-1) 
submanifold of their boundaries is an n-manifold. O 

6.6. Collapsing. 
6.6.1.' Definition. Let (p be a regular presentation. A free edge 
of ^ is some E £ (p such that there-exists one and only one 
A ^ (p with E < A. We may term A the attaching membrane of the 
free edge E. It is clear that A is not in the boundary of any 
other element of (p ; for if A < 3, then E < B. It is easily 
proved that dim A = 1 + dim E. 

The set (p ~ E, A - is again a regular presentation, 
and is said to be obtained from (p by an elementary collapse at the 
free edge E, 
6.6.2. Definition. We say that a polyhedral presentation (p 
collapses (combinatorlally) ̂  a polyhedral presentation , and 
write (p , if there exists a finite sequence of presentations 

(P, ' •••• '(P̂  ̂ ^̂  (P, (P, = ̂  
and cells Ê  ' \ 1 ' \ ^ (P i (P̂  obtained from 
(p ̂  ^ by an elementary collapse at Ê  ̂. 

6.6.3. Proposition. If (5v is obtained from (p ̂ by an elementary 
collapse at E; and if is obtained from |p by bisecting a 
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cell C by a bisection of space (L; H H-) and if C p' 
is the subpresentation with = then (D' \ (3%'. 
/"Remark: Recall that, we have been always dealing with Euclidean 
polyhedra_7. 
Proof; If the bisection is trivial there is nothing to prove, so 
suppose that the bisection is non trivial. Then there are three 
cases. 
Case (i) C is neither E nor A. In this case, E is a free 
edge of with attaching membrane A, and = Q) - ̂ E, 
thus ^ is obtained from ^ by an elementary collapse. 
Case (ii) C - E. Define Ê  H + C\ E, Ê  - H - H E, F = L Pj E. 

Then we have 
E 

u ^ ^ 
F A 

and no other cells of are greater than F, Ê , Ê  or A, 

Thus Ê  is a free edge of ^ with attaching membrane A; F 
1 

is a free edge of - • Ê , A . with attaching membrane Ê . 
The result of these two elementary collapses is . 
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Case (iii) C = A 
Define A = H+ HA, A - H- HA, B = L HA. Now b U ^ A' 
contains A, and therefore either ^ Â  or "b Â  intersects E; 
say, c) Â  H E / 0, Then, (p' being regular, we must have E < Â  5 
then for dimensional reasons, dim E = dim B, we cannot have E 
hence E H+ j and so it is impossible to have E <C Â , In 
summary, E < A > B < Â  i • 

Thus E is a free face of ^ with attaching membrane Â  | B 
is a free face of (p' - ' E, Â  with attaching membrane Â . 
The result of these two elementary collapses is . Q 
6.6.4. Proposition. If \ {̂ s > and ^ is obtained from 
by a finite sequence of bisections of cells, and is the sub-
presentation of (P defined* by ^lOsjlthen (p' VO^'' 
Proof; The proof is by induction, first, on the number of collapses 
in (p V , and second, on the number of bisections involved. 
The inductive step is 6.6.3. D 
6.6,5. Definition. We say that a polyhedron P collapses 
(geometrically) to a subpolyhedron Q, if there is a regular 
presentation (p of P with a subpresentation (3^ covering Q, 
such that ^ collapses combinatorially to . We write P ^Q, 
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This notion is polyhedrally invariants 
6.6.6. Proposition. If P \/ Q, and : P — f X is a polyhedral 
equivalence, then X VtC(Q)» 
Proofs There are regular presentations ^ , of P and Q, with 
(p V combinatorially, and simplicial presentations /j , Xa of 
F and X vdth X simplicial relative to A and Xa • There is a 
regular presentation (p' of P refining and A , and obtained 
from (p (also from A but we do not need it in this proposition) by 
a finite sequence of bisections. Hence if is the subpresentation 
of (p' covering Q, then p' V (3> > by 6.6.4. Since ^ is 
one-to-one and linear on each element of ^ , the set 

dC( f ) C <c(p' is a regular presentation of X, whiGh 
is combinatorially isomorphic to (p '; and cL ( ) is a sub-
presentation covering (̂O.), which is combinatorially isomorphic 
to Therefore oC ( (p ') (S) or X ^ 
6.6.7. Proposition. If P V ' and P V P_ , then P V, P . 

I fC  d. ^ I 

Proof; Let (p ̂  , (p^ be presentation of P̂  , P̂  with (p ̂  Vfg' 
and ^ (p ̂  be presentations of P̂  , P̂  with (p^ ^ (P 4* 
By 1, 10.6 there is a regular refinement ̂  of ^^ Vj (P 2 U (P 0(p4^ 
and subpresentations Qs d̂  y 6 \ with (Ji ̂ ^ = | , 
^ ^ obtained from (J) ^ by a sequence of bisections. Clearly 

andby 6.6.4, ^ V 6^2' 
therefore P̂  ̂  P̂ . Q 

6.6.8. Proposition. If N is a regular neighbourhood of X in P, 
then N ^ X. 
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Proof: By virtue of 6.6.6 and the definition of regular neighbourhood, 
it is enough to look at any particular Kl. Let ^ be a simplicial 
presentation of P mth a full subpresentation covering X; and 
let (p ; P [̂ 0, Q be the usual map. Take N - s])-

Let denote all the simplexes of (p having vertices 
both in and ( ̂  - %). We prove N V X by induction on the 
number of elements of ^ . If = 0, then N = X, and there is 
nothing to do. Hence we can start the induction. 

• L^^Tt u 4-)) l ^ e l . } 

u I r ei:] 
Then "TC. is a regular presentation of N, If ̂  is an element of 
of maximal dimension̂  O Ĉ  \k) is a free edge o f w i t h 
attaching membrane p̂  ̂  ((Ô  (Note that CT is a 
principal simplex of (p i.e. not the face of any other simplex). 
After doing the elementary collapse we are left vdth 

( P - M = 
(p' is a regular presentation containing X > and 

the corresponding - ~ ^ . Hence inductively 
Imd BO, ' ^ 
Ex. 6.6.9. Let N' be 

a neighbourhood of X in P, (all polyhedra). 
If n' VX, then there is a regular neighbourhood N of X in P, 
N Int p n' such that n' N. D 
6. 7. Homogeneous Collapsing. 

Let (p be a regular presentation, with E, A 
and dim A = dim E + 1. 

Recall the definition of ^ ̂  ^ E. This is defined. 



relative to some centering Yj of ̂ p , to be the full subpresentation 
of d (p whose vertices are E <C 
6.7. r.)efinition. Let E, A, ̂  ; be as above and be a 
centering of ̂  . (E, A) is said to be homogenous in ̂  , if there 
is a polyhedron X and a polyhedral equivalence f: ̂  —^X 
a suspension of X, such that f( T| A) = w. 

It is easily seen that xf this is true for one centering 
of ̂  , then it is true for any other centering of (p ; hence 
"(E, A) is homogeneous in ̂  " is well defined. 
6.7.2. Definition. Let % C "^^e subpresentationsof . We say 
that it collapses to X homogeneously (combinatorially) in (p , 
if there is a finite sequence of subpresentations of (p , 

X : 
and pairs of cells (Ê , Â ) , Ê , Â  ^ 

such that 
.) JTi, .-Jmc, J ( t ? C 

' . k 
2) ^^ is obtained from by an elementary i + 1 i 

collapse at Ê , a free edge of . with 
attaching membrane Â , for i = 1, k~r 

and 3) Â ) is homogeneous in ^ , for i = 1,.., k-1« 
6.7.3. Proposition. If (p! is obtained from ^ by bisecting a 
cell C by a bisection of space (L; H+ , H-); and if X C , 
with ^ obtained from -̂'Yt W ^̂^ elementary collapse at a free edge 
E with attaching membrane A, where (E, A) is homogenous in O ; 
and if , are the subpresentations of covering 
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and ; then homogeneously in (D , 
Proof; If the bisection in trivial there is nothing to prove. If 
it is not trivial, there are three cases as in the proof of 
proposition 6.6»3. 
Case t G is neither E nor A,, In this case the only problem is 
to show that (E, A) is homogeneous in . Let us suppose that 
^ everything is occuring in a vector space V of dim n; and let 
dim E = k. Then there is an orthogonal linear manifold M of 
dimension (n-k), intersecting E in a single point (E) = e, say,. 
It is fairly easy to verify that in such a situation if D̂, then 
D n M 0. • 

If we now choose centerings of ^ and so that 
whenever D M 0, we have the center of D belonging to M, then 
defining 

- '̂D AM D HM ^̂  D • 
and ^ similarly with respect to ^ , we will have: 

and 5 (3̂  are regular presentations of \ (p A M, Hence both 
^ ^ (E) and A|pKE)| are links of e in j ̂  H and 
hence polyhedrally equivalent (by an approximation to the standard 
mistake)5 if we choose a center of A the same in both case, we get 
a polyhedral equivalence taking A to A, Finally, by 
hypothesis | ̂ p(E) is equivalent to a suspension with Ŷ. A as 
a pole; and so rK (p'(E) has the same property, and (E, A) is 
homogenous in ^ '. 



Case 2! C = E ; we define Ê , Ê , F as in the proof of 6.6.3. We 

have to show that (Ê , A) and (F, E^) are homogeneous in |p ', 

That (E^, a) is homogeneous in ^ follows from the 

fact with appropriate centerings) because 
^ I 

any D in ^ is an element of Q) which is and hence, 
^ being regular ^ S. 

That (F, Eg) . is homogeneous in ^ , we see by the 
formula! 

E. E. 

(calling the appropriate centering of p' also Yj ). 
Case 3: C = A ; we define Â , Â , B as in the proof of 6,6.3. We 
have to show that (E, A^ and (B, Â ) are homogenous. 

There is a simplicial isomorphism ^ (e) ̂  j^p' (e) 
taking T (A) onto Y" (Â ), And as (E, A) is homogeneous in ̂  , 
we have (e, Â ) is homogeneous in ^ . 

That (B, Ag) is homogeneous in we see by a formula 
like that in case 2: 

a a (B) - Â , iq 

6.7.4. Proposition. If -Yt \ %> homogeneously in (p , and ^^ 
is obtained from by a finite sequence of bisections of space, and 

"HX. J ^ are the subpresentations of |p covering | ̂ipt and \ , 
then homogeneously in (p . 

This follows from 6.7.3, as 6,6.4 from 6.6.3. 
6.7.5. Definition. Let F be a polyhedron, and X, N subpolyhedra 
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of P. N is said to collapse homogeneously (geometrically) to X 
in P, if there are regular presentation % Q. "Tt. C (P' covering 
X̂  N and F respectively such that HfC. collapses homogeneously to 

combinatorially in 
We write X homogeneously in P. This definition is 

again polyhedrally Invariantt 
6. 7.6>. Proposition. If M X homogeneously in P, and c{ : P—^ Q 
is a polyhedral equivalence, then X (N) ^ homogeneously in 
Q. 

This follows from 6.7.U  as 6.6.6 from 6,6.4. 
6.7.7. Proposition. If N is a regular neighbourhood of X in P, 
then N X homogeneously in P. 
ProofI As in 6.6.8j we start with a simplicial presentation (p of 
P in which a full subpresentation , covers X, and take 
N fl) where s P [ o , Q is the usual map. By . 
virtue of 6,7.6, and the definition of regular neighbourhood, it is 
enough to prove that this N V X homogeneously. 

Let ̂-'YC, be the regular presentation of N consisting of 
cells of the form! 

simplexes of ^ 
i)), for (rG(p with Ĉ  ( D - (0,1) 

C ACp^(s) . for with Cp ( O - (0,0 
Define ^ to consist of 

all simplexes of , 
all simplexes of ̂  which have no vertices in . 
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r- i)) 

[for r e p vdth cpto = (0,1) 

^ is a regular presentation of F which refines ^ , and has as 
subpre sent at ions and ̂  . and \ are the same as in 
proposition 6.6,8, and therefore we know that \ X) • Now, the 
claim is ^ homogeneously in . In otherwords, if 
E ~Hh), A = i)), where (T ̂(p withcfl ((T) = (0,0, 
we have to show that (E, A) is homogeneous in ^ . In fact 
denoting by (ĵ  the subpre sent ation of covering 
we have 

/\(p,(E) ̂  rj A 

A'= vrx^'^i.')). 

where 

•a 

6.8. The Regular Neighbourhood Theorem. 
We have seen that if N is a reg-ular neighbourhood of X 

in F, then 
1) X Q int p N 
2) M is bicollared in P 
3) N \| X homogeneously in P. 

'Conversely, 
6.8.1. The Regular Neighbourhood Theorem. 

If X N P are poiyhedra such that 
• 1) xQnt.pN 

2) N is bicollared in P 
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• 3) N V X homogeneously in ' P . 
then N is a regular neighbourhood of X in P. 

The proof will start mth some technicalities which exploit 
the homogeneity of the collapsing (The X'6, P's etc. occuring mean-
while should not be confused with the Xj P of the theorem), 
6.8. 2. Proposition. Let I X be polyhedra, and let P = X * ̂ v, w 
a suspension of X. Then a regular neighbourhood of Y ̂^ v in P 
is a regular neighbourhood of v in P. /"in other words, a regular 
neighbourhood of a subcone of a suspension is a regular neighbourhood 
of one of the polesj/'. 
Proof; Let Ĉ  (X) denote X * v and let ffi : Ĉ  (X) ^ f\ 
be the join of the maps X —^ 1 and v — ^ 0, For any Z X, 
C ̂  (Z) for 0 < X < 1 mil denote the set of points 
' (1-t) V + t z z^Z, 04t4oC| . If z is a subpolyhedron 
C^ (Z) = (Z * v) r\ x] ). 

By 6.3.7, it is enough to prove the proposition for some 
regular neighbourhood of X v. Hencej by a couple of mapŝ  it is 
enough to show that ^ is a regular neighbourhood of Ci (Y) in 
Ĉ  (X). (it is clearly a regular neighbourhood of v in Ĉ  (X)). 

Let ^ be a simplicial presentation of X, containing a 
subpresentation covering Y, We define a regular presentation 
of Ĝ  (X) to consist of: 

for (T € Ac 
for r e 
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^ t t n f ((0. D ) 
r H n (i) for IT t ^ 

a qp (2, 1) 

Then ^ has a subpresentation covering C i(Y), and for each 
A f (p with ^ ̂  Ci (Y) ̂  0 ,, (p (A) includes the interval 
(I, l). Choose a centering Yj of (p , so that for all A ̂  (p 
with A n Ci (Y) / © ( Y) A) ^ 

Then d( ̂  ^ ) has the property that if is a simplex 
with vertices both in d Ox and in d (p - d (5) J then <p ( ®t ) • 
contains and d is full in d (p . Choose a centering G 
of d Ip so that for ̂  ^ d (p with vertices in and out of d 
^ , Cf (© T ) - Now N = (d er, , 0)| = ([O, 'S/̂ ); 
and thus (p \ [p, 'î ]) is a regular neighbourhood of both Ci (Y) 
and V. Q 

Now, let P be a polyhedron and ^ a simplicial 
presentation of _ P. Let any set of vertices of (p and a 
centering of . Recall the definition of "̂ (p ̂  X ) Q/Vvc| (p£ 
(6.3.10). 

) - u [ 
__ V - t * (p-

(pj.is full in (P and 
(Pr 

^ Q all the vertices of /^are in (p^ 
N, ( (p̂  )| is a regular neighbour-

hood of in P. 
Let C(F) = P * V be a cone on P and Cp : C(p)~^ [̂ 0, l] 

be the join of v —> 0 and P •—> 1. If L is a subpolyhedron of 
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P; 0< oC < 1, C^ (L) will mean (L * v) A ([o, ̂  ] ) as 
before. By L > (X , jSiJ , 0 < < JS < 1, we shall mean 
(L ̂  Y) N Cp'̂  ( QdC . p'3 ). In particular (P) = J,] ) 
and P jX ̂  p)J = , p)] ). The simpllcial presentation 
(p ^v}] of C(P) will be denoted by C( (p). 
'6.8.3. Proposition. There is a centering of ) with respect 
to which 

i, 1J for any vertex 
^̂  I Scqf 'I ̂  C,(P) 

OLof (p . 
Proofs We take any centering of |p , and extend it to C( ) 
by defining 

^ ( ^ Iv}) = i r|( r ) + i V, for r ^ p , 
Then it is obvious that (A is simplicial relative to d (C((p r| ) 
and the triangulation of 0, 13 with vertices i, 1 ^ . 

Ci (p). From this it easily follows that 
The second assertion can be proved by a straight forward 

messy computation as follows'! 
A typical simplex of ^ {ts a face of simplex of 

d( (p , rj ) of the form 0( rj r| ̂  with 

a " 
A point in 
t 

l I o > • • • J k. 1 is uniquely determined by 
k 

0 k̂ ̂  L > such that t. 0, ̂  tl = .1, i- 4 ^ $ 
and the point isi 

k 
X- \ Mi) (1 - ) V. 
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r (a) 
On the otherhand, a simplex of is a face 

of a simplex determined by some iL between 0 and k, and vertices 
ni ^ i nA. V , i ^ V, 

mtha.YjQ, T) . <r2'-- < r ( T i ^ Q ) 
A typical point in the closure of such a simplex is miquely determined 
by r̂  ,.., r , ŝ^ ,. .., ŝ , where r̂ , s . and 
i k 
> r. + y S. •=• 1. The point is 0 . f ^ 

X  ^ k 
(.Hf) 

Comparing coefficients in (-i?-) and we find that these 
points coincide ifi 

(A) - 1 - i ^ s a 
t, -!i , i < i. 

dC 

t; = k Sj 

t. - k h > j > 1 

(B) r. = i t., i <l 

Sj_ -2(1- oC (1 + t̂ )) 
1 + 1 

ŝ  = 2 eC t̂ , j > L . 

/~To be sure, we should have started in i-^) with an index different 
from k. But it can be easily seen that, when determing whether the 
points coincide, it is enough to consider (*) and 
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To show that ^ Q.{!pj a) 1 C <S(p(a) h, 1 
we need to check that if r's and s's satisfy their conditions 
(being and of sum l), then the solutions in • (A) for ^ and 
the t's satisfy theirs (| $ tC 1 and the t's are ^ 0 with 
sum 1). This is easy. 

To show that 
we need to check if ^ ^ and the t's are ^ 0 with sum 1, 
then there is some 1- for which the solutions found in (B) satisfy 
the appropriate conditions. That the sum of r's and s's is one is 
clear; to ra.ake all ^ 0, we take £ to be the maximum of those 
integers (m); for which 

k 
' ̂  s : 

m 
'4 

Since 1A < 2, and ^T t. = 1, there is such an Jc ; this 
. 0 ^ 

choice of ^ makes both r'̂  and s 0 , iJ 
RemarkI If is a set of verticer of (p , we have as above, 

Sa^f X ) = r. 
Now let P = X * û  w 1 be a suspension, We define the 

lower hemisphere L of P to be X * u it should be. remarked 
that L is a regular neighbourhood of u in P. 

Proposition. With P, X, L as above there is a polyhedral 
equivalence h i C(P) ^ C(P) with h| P ̂  idp , such that 

L ^ i, 1 

Proofs We can draw a picture which is a "cross section" through any 
particular point x in X: 
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/"The picture Is actually the union 

union of 

X, V, W and of the two triangles 
X, V, u"̂  in CCP), which we have 
flattened out to put in a planar 
picture. The vertically shaded part 
is the portion of L y , in 
the cross section and the horizontally 
shaded part is the part of Gj (P) • 

z 

in the cross section. We have to 
push the union of these two into the 
vertically shaded portion, and this 
uniformly over all cross sectionsJ7, 

From this picture we may see the following! C(P) is the 

A 
B = 

And 

' u, w • 
* J where J = v * u, w 

u, wj . 
Now J is just, polyhedrally, an interval, and so there 

is obviously a polyhedral equivalence f s J -—^ J such that 
f (u) = u, f (w) = w 
f (g V + I w) =gv+|u. 

Such an f will take the part ĵ u, vj IJ ̂ v, i v + ̂  w"3 onto 
I U + I v^, 

Let g B — ^ B be the join of f on J and identity 
on IK It is clear that g A p̂  B is the identity map, and so 
by extending by Identity on A, we get a polyhedral equivalence 
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say hi C(P) — ^ C(P). 
It should be pictorially evident that h has the desired 

properties. Q. 
Putting all these together we get the proposition which we 

need! 
6.8.5. Proposition. 
Hypotheses; (l) (p is a simplicial presentation of P, C(P) the 
cone over P with vertex v, C((p ) = (p -sf- {{.v}} , and ^ a 
set of vertices of (p , 

(2) There is a polyhedron X and a polyhedral equiva-
lence h s P — ^ X such that h( ) = Y * u, for 

some Y C X. 
(3) V and C( (P ) are constructed 

with reference to some centering'̂ ' of C( ). 
Conclusion; There is a polyhedral equivalence ^ ; G(P) ^ C(P) 

P = id p and ĉ  maps 
C((p ) 

such that ^ 
onto {f C( (p . 
Proof! Let be the centering of C( (p ) described in proposition 
6.8, 3. Let f = f ̂  be the simplicial isomorphism of d(C( (p ^ ) 
onto d(C(^ ). 

Let ĥ  : C(P) ^ , C(X * iu, w]) be the join of 
h J P — X l̂ u, w • and the map vertex to vertex. 

Now is a regular neighbourhood of | in 
P, and therefore h f( (S (p̂ ^ ̂  ) is a regular neighbourhood 
h f( I ) in X * {u, w}. But f( IP^I )= iP^I - in 
fact... f. maps -every ^ -simplex onto itself - and h( ̂ (p^ ) = Y * u. 
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Thus h f( cf^(X) ) is a regular neighbourhood of Y u in 
X * ̂ u, . Therefore by 6.8.2, h f( ) is a regular 
neighbourhood of u in X * ̂ u, w ,i But so is X * u. Hence there 
is a polyhedral equivalence ^ s X Uj w —^ X u, w such 
that 

P (h f( )) . X ̂^ u. 
Let p> ̂  : C(X * {a, w^ ) C(X * (u, ŵ  ) be the join of 
and identity map of the vertex of the cone. 

Now 
and f O - S o i 

f is such that f( j ) = f( ̂^ir)) K i, 1 
_ V \ = Ci (P). 
C(f ) V 2 

Since ^ and ĥ  are radial extensions the same thing 
holds, i.e. 

= h f ( r 
is \ ? 

= Ci (X * {u, w} ), 

which 

Applying 6.8.4, we get a polyhedral equivalence 
X "y ! C(X * [u, ) C(x * {u, wj ) with y 

identity and 
, y (^X ̂  u) l] U Ci (X ̂  [u, w] 

= ,(X u) X^i, l} . 
The desired map J^ is now, 

cC = f"̂  0 h"̂  0(3"^ o"y 0 0 ĥ  0 f 



We vri.ll now write down two specific corollaries of 
proposition 6.B. 5, which will immediately give the regular neighbour-
hood theorem̂  First we recall the notation at the end of section 
3 (6.3.10), 

If Ip is regular presentation, given a centering T| of^ 
and a centering of d( (p , ), we defined 

• Ĉ^ = 6 d(p ( G) , for any G 
andj^* = y I C* C for any subset ̂  of (p , 

If is a subpresentation of ̂  , then d(JYt , Yj ) (where Y] •J)̂  
is again denoted by Tj ) is full in d( (p , r̂  ). Writing 

X fj ) (p' = d((p ), and £ as the set of vertices 
of (p' of the form ^̂  0, for C ^ ^ , we see that ^ ' 
and ( ̂  ) = , which is a regular neighbourhood of , 
in . 
6,B.6. Corollary. Let Ip be a regular presentation with a sub-
presentation , E a free edge of with, attaching membrane A 
such that (E, A) is homogeneous in ̂  . Then there is a polyhedral 
equivalence h ~ 
E * \ A^E 

i(P which is identity outside of 
and which takes onto ( - r [_e|) . 

/~Notet It is understood that there is a centering Ŷ  of ̂  , and 
a centering of d((P )J7. 

I 
Proofs Look at St( T| E, d |p ); this is a presentation say (y 
of 1 * A (P E Let ^ denote the set of vertices of d ̂  of 
the form ^ F for F < E and tj A. Then 
^ E to ^ A. Since j 

i(P' is the join of 

(P E is equivalent, to a-suspension 
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(homogenity of (E, A)) with A going to a pole,, we see that 
^ E is equivalent to a suspension with 
going to a subcone. And E * (P E IS a cone over 6 E * lA P E 
And consider the centering of (p coming from that of d( (pjf̂ .), 

T̂hus we have the situation of 6.8,5, and making the necessary-
substitutions in 6.8,5, we get a polyhedral equivalence (f^ of 

= jA^E I taking U £ ) onto 

>(p'.( X )• ^ E)j is just E*. Now observe that the 
set of centres of elements of in is E J. 
(This is where we use the fact that E is a free edge). Therefore 

So cH takes the part of (Ĵ f̂ *) in (p ' onto the part of 
( - tp} in , ^ is identity on the base of the cone, 
and Ê  C 1(P 't . 

Therefore extending ^ tp an.equivalence h of 
by patching up with identity outside ^ , we see that h 

takes onto - )* and is identity outside E * E N 

gpj;̂oU.ary In the same situation, there is a polyhedral 
equivalence h' s (p ̂  — ^ ^ | which is identity outside 
A * Aj , which takes onto - (e, Â  

/"for this corollary we need only that E is a free edge 
of A, and A is the attaching membrane, Homogenity of (E, A) 
is not necessa.ry_7. 

t 
Proof; This time we call Q) = St( V̂  A, d (p ), and Y. ̂ ê set 
of vertices Yj F, F < A and' F / E. Then (p^ 

^ ̂  = ^A - E. dA 
is equivalent to a suspension.with ^ A - E as the lower hemisphere. 



160 

Hence |A(pA I is equivalent to a suspension with j(p' 
mapping onto a subcone. ̂  Applying 6,8.5, we get a polyhedral 
equivalence of A * lAm^J on itself, which is identity on 
^k^- I ( and takes ( ̂  ) U A'" onto Sg^'Ci:). Since 
E is a free edge and A is principal in-^^ 21) is just 
the part of a])"'' in I * j^p Aj , and (^'(X) Ua'̂ ' 
is the part of in Ti ̂ ^ f^g) a| . Extending to 
an equivalence h' of j^] by patching up with identity outside 
A * A since A* is contained in A ̂  |A(p a| we see that 
h' takes (J)̂ - onto |e, A^ )* and is identity outside 
A A 

Thus in the situation of 6,S.6, if we take the composition 
h' h of the equivalences given by 6.8.6 and 6,8.75 h' a h takes 
jŷ * onto aJ)* Support of h'C A* support 
of h E * E I , hence h' o h fixes, the polyhedron 

{e, a}) . This at once gives, 
6.8.8. Proposition. If homogeneously in f^ , then there is 
a polyhedral equivalence of ^ , which is identity on ' Xo and 
takes Jlp̂ '̂  onto ^ Q 
6.8»9« Corollaryf If N V X homogeneously in P, then any regular 
neighbourhood of M in P is a regular neighbourhood of X in P, CV 
Proof of the regular neighbourhood theorem 6.8.1. 

By 6̂8., 9 any regular neighbourhood say n' of N is a 
regular neighbourhood of X. Since N is bicollared in P, there 
is a polyhedral equivalence h of P taking N onto n'. Since 
XQlntp N, h can be chosen to be fixed on X (see 6.4.8), 
Therefore N is a regular neighbourhood of X. D 
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6,9> Some applications and remarks. 
In this section we make a few observations about the 

previous concepts in the context of PL-manifolds 
6.9.1. Let M be a PL-manifold, ^ M its boundary, (p a regular 
presentation of M. Let E, A A and dim A = dim E + 1. 
(E, A) is homogeneous in ^ if and only if either both E and A 
are in ^ M or both E and A are in M - ̂  M, 
Proofs Let ^ be a centering of (p . Let e' C E a simplex of 
<I( (P J ̂  ) of dimension = dim E, and A' = ̂ ^̂  A"̂  E'. NOW the . 
problem is equivalent to! When is Î LKCe', dtp )| equivalent to 
a suspension with A going to a vertex? If E and A are in 
M - ^M, so are E' and A' and | LK(E', d(p ) \ is a sphere, 
hence it is possible. If E and A are both in ̂  M, so are e' 
and a' and j Lk(E", d(p ) \ is a cell, with ^ A contained in the 
boundary. So again it is possible. If E is in "b M and A is in 
M - "b M so are E' and A' and \ Lk(E', d(p )i is a cell with 

A in the interior, Kence in this case it is impossible. Q 
Suppose now that and "Xo are subpresentation of (p 

and V homogeneously in . In the sequence of (elementary) 
homogeneous of collapses from to % , if a collapse Ĉ  in 
the boundary comes before a collapse Ĉ  in the interior we can 
interchange them i.e, if _ Jŷ  _ X^C^Jy^ , then we 

can find such that _ ' and the 
1+1 

free edge and attaching membrane of G. and C,.' • _ < o are the 
same. Doing this a finite number of times we have 
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6.9.2. If N \/X homogeneously in M, then N V ^ U (N TvS M) \ X. 
In particularJ this is true for regular neighbourhoods. Some re-
arrangement is possible for the usual elementary collapses alsos 
Ex. 6.9.3. Suppose (p j combinatorially, and 

^ J > Ipĵ  1 <" i < k subpresentations such that (p . 
is obtained from ^ ^ ^ . by an elementary collapse at the free edge 

with attaching membrane A^ ̂  and (p = (p ̂, = (P "̂hen 
we can find subpresentations Pk' (?i' ^̂ k' ' 

such that is obtained from (P' . ̂  by an elementary collapse 
at the free edge ^ with attaching membrane -A] ̂  and 

I 1 "" "" I ' 
dim Â  ̂  dim^ ̂  , Moreover, except for order, the pairs (E. , A, ) 
are the same as the pairs (E., A.), 

J J 
More' briefly/ we can rearrange the collapses in the order 

of non-increasing dimension. PL 
Ex. 6.9«4. An n-cell collapses to any (n-1)-cell in its boundary. 

This follows from 6.5-10. D 
Ex« 6.9.5. An n-cell is collapsible to any point in it; P 

We call polyhedron collapsible if it collapses to a point, 
Ex. 6.9.. A collapsible polyhedron collapses to any point in it. 
/~Hint: By virtue of 6.9.3,- it is enough to consider one dimensional 
collapsible presentations with the given point as a vertexJZ. 
6.9.6. If M is a collapsible PL n-manifold, then M is a n-cell. 
Sketch of the proofs b M i 0, for if ^M = 0, there is no free 
edge to start the collapsing.- Next we can assume that M collapses 
to a point in M - b M,- either by 6. 9. or by 6.9.̂  and '6. 5. 11. Now 
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attach a collar of ^M to M (to get PL-manifold M') SO that 
all the collapsing is in the interior of m', hence homogeneous. 
Now all the conditions of the regular neighbourhood theorem, are 
satisfied. Hence M is the regular neighbourhood of a print in m'̂  
hence an n-cell, fl 
The following two remarks will be useful in the next chapter, 
6.9.7. Let f I K — ^ M̂ b̂e an imbedding into int M, where 
K is a K-manifold fend an (n-k)~cell. Then f(.K X D̂ "̂ ) 
can be shrunk into spj given neighbourhood of f(K e) in M, for 

n—k 
a fixed e ̂  int D by an isotopy which can be assmed to be 
fixed on f(K K e), 

K X e (this follows, for example, .from 
6.5.14 by induction). It is easily seen that f(K X is a 
neighbourhood of f(k X e) in M and is bicollared. ^ 
6.9.8> Proposition. Let M be a PL n-manifold, and N a 
PL (n-1)-manifold in ̂  M, and M V N. Then M is polyhedrally 
equivalent to N • Moreover the polyhedral equivalence 
h I MCij N Xl, can be so chosen that h(n) = (n,0) for n ̂  N. 
Proof; • Such an N cannot be the whole of ^ M. Either "b N / 0, 
or N is a finite union of components of ^ M (see 4.4.16). In 
any case N is bicollared in ^ M. If n' is reg-ular neighbour-, 
hood of N in h M, since N is bicollared in 6 M, n' is 
polyhedrally «q\xiviLent to N (6.4.8). 

Since M .N, there is a regular neighbourhood say A 
of N in M such that M (see 6.6.9). Let A H 5 M = n'. 
Then N' is a regular neighbourhood of N in 5 M. It is clear 
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that A is polyhedrally equivalent to N I. Now attach B and G, 
B a collar over M - N' and C a collar over N.. to M such that 
BH C = 0. Let the resulting manifold be m'. 

Consider another collar C C C, and the manifolds A yc, and M UC^. 
In M , all the collapses from M to A • are in the interior and 
hence M A homogeneously in m', and the collapsing from A V N 
continues to be homogeneous in m'. Clearly C V N homogeneously in 

L 
m' . Thus both AUG. and M \J G, collapse homogeneously in m' to 
N̂  both are neighbourhoods of N in M and both are bicqllared. 
Hence there is an equivalence A U Ĝ  M Clearly ' A U Ĉ  Ĉ N X 
Hence M OC^ Ĉi N X hence M N X I. 

To prove the last remark observe that if cC ' N X I Ĉ  
is an equivalence such that Jv (n, 1 ) -- n, for n t N, the equivalence 
M Cii M U Ĉ  can be chosen such that it carries n ̂ N to dC (n, 0) ̂  Ĉ . 
Finally-the equivalence A 0 Ĉ  M UC^ can b̂  assumed, to be identity 
on Ĉ , D 
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6.10. .Conclusion,. 
Mow let usj recapitulate briefly the programme for proving 

the regular neighbourhood theoremi 
(A) We have a notion of equivalence of pairs 

(P, X) (P', X') 
(B) We define a regular neighbourhood of X in P to 

be any thing equivalent by an auto-equivalence of (P, X) to 
N ̂  ( ) , where is a simplicial presentation of P with a full 
subpresentation ^ covering X. 

(C) We have the notions, of the cone on P, suspension on 
P, and P ŷ Ii and hence the idea of local collaring, collaring and 
bicollaring. 

(D) We can prove; ? g ̂  is a regular neighbourhood 
of F 7s 0 in P X^O, Q . The lower half of the suspension of P 
is a regular neighbourhood of a pole. A locally collared subpolyhedron 
is collared. Regular neighbourhoods are bicollared. 

(E) We have for regular presentations, the notion of 
collapsing, and of homogeneous 5 and we prove that N X/X homogeneously 
in P if N is a regular neighbourhood of X in P. 

(F) Finally, we prove. the converse, that if N ^ X homo-
geneously in P, then a regular neighbourhood of N Is a regular 
neighbourhood of X. We pick up a particular regular neighbourhood 

i 

of N and shrink it down-a bit at a time to a particular regular 
neighbourhood of X, In doing this, we need to have proved the 
theorem for a particular case i x' is a pole of a suspension p' 
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and N is a subcone of p'. An analysis of the proof shows that we 
need the result for various p' of dimension less than that of P, 
Hence we could have proved this by induction on dimension, although 
it is simple enough to prove in the special case by construction. 

Now it should be remarked that precisely the same programme 
csn be carried out in other contexts. In particular for pairs; 

A pair (P, Q) is a polyhedron P with a subpolyhedron 
Q 5 we say (P̂ , Q̂ ) Q (p̂ , Q̂ ) if P^^ P̂ , and Q̂  = '' 

If (P ,Q ) c~ (P .5 Q T we define the boundary of the former in the 

latter to be (bd P , Q fX P )• 

Define an equivalence h : (p , Q ) — ^ (P , Q ) to be 
1 1 2 2 . 

a polyhedral equivalence CJC S P̂ JĈ P̂  mapping Q̂  onto Q̂ . 

An admissible presentation of (P, Q) is a pair of 
regular presentations C (p with \ (p) - F, \(S\ - Q. ^̂  free 
edge of an admissible presentation ( , is an E ^ (p , which 
is a free edge of (p with attaching membrane A, such that Af 
E t , then A 

The programme can be carried out mechanically with the 
obvious definition of homogeneous collapsing. 

Finally, we draw some consequences, by applying to 
PL-manifolds. 

Let A Q B, where A is a PL a~manifold and B is a 
PL b-manifold. We say (B, A) is locally un-knotted if, for every 
X t- A, if (Lg , L^) is polyhedrally equivalent to X, L^) 
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for some X, It is possible to show that X must be either a cell 
/ 

or a sphere of dimension b-a,-1; and that if A is connected, then 
either all the X's. are cellŝ  in which case A is locally un-knotted 
in B or all X's are spheres, in which case ^ A = A n 5 

It then occurs as in the case of a single manifoldj that 
all the collapsing (in the pair sese) which is in the interior of 
(B, A) is homogeneous, and hence we can prove the following resuitI 

Let D̂  with ( , D) a locally un-knotted pair 
of the sort where ^ D = D ^ . . Then if A \/ ^ \/ Point, 
the pair {l\s is an absolute regular neighbourhood of a point 
(relative to ( , "b D) and so ( ̂  , D) is polyhedrally 
equivalent to (S * D, D) where S is a (b-a-1)-sphere, i.e. 
( A.3 D) is un-knotted. 

/"This is a key lemma for Zeeman's theorem, that 
(b - a) ̂  3 ^̂ ^̂  (A J D) is un-knotted. See Zemman "Seminar on 
combinatorial Topology", Chapter IV, pp. 4-5J7. 
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Chapter YII 

IS an 

Regular collapsing and applications 

7» 1. Let be a simplicial presentation. We say that ̂ ^ ̂  i 
outer edge of , if there is a Z^^/f , such that if (r$ 
then 4 A. 3 sj-id dim A )> dim • In this case ^ is uniquely-
fixed by ̂  , and is of the form = ̂  ̂ ,̂ 0. The elements 
of having ̂  as a face are exactly of the form cj-' ̂  ĉ ' ̂  . 
The remaining faces of are of the form (j-' (T > 
in otherwords they consist of ^̂ ^ {̂ Sf ̂  . Thus 

is a subpresentation of , and 
U 

Let dim n. Then, we say that is obtained from 
by an elementary regular collapse (n) with outer edge and 

ma.jor simplex /\ » • 
= C/Q » and is obtained 1 k i + 1 « 

from by an elementary regular collapse (n), we say that i 
regularly collapses (n) to ̂ ^ . 

The elements of the theory of regular collapsing can be 
approached from the point of view of "steller subdivisions" ( c.Of. 
Section 13 of •"simplicial spaces, nuclei and m-groups" or the first 
few pages of Zeeman's "unknotting spheres", Annals of Mathematics, 72, 
(1960) 35O-361), but for the sake of novelty we shall do something else» 



7.1• 1. Recalling .Notations. ^ , ,... . usually denote open 
simplexes. (j- > ^ j .. denote their closures (closed simplexes), 
and ^ ̂  J , " their boundaries. The simplicial presentation 

C «««« 1 
of C consisting of ^ and its faces is denoted by | ̂  V, and that 
of ^ consisting of faces of C by' ̂  O (see 4. 1). 'T stands 
for the join of the two open simplex^ and ̂  , when the join is 
defined. If ^ is a 0-simplex and x is the unique point of 
we will write for . On the other hand the join of two 
polyhedra P and Q when it is defined is denoted by P * Q. 
Similarly the join of two simplicial presentations ^ and when 
it is defined is denoted by ^ * . For example if ^ is 
defined, then 1 is the canonical simplicial presentation 
of the polyhedron If P is a polyhedron consisting of 
a single point x, we will sometimes write x * Q instead of P * Q. 
With this notation {x̂ Q— and x * ̂  are the same. 

Let he an (n-1 )-simplex, I - £o, and let be 
a simplicial presentation of ^ .such that the projection 
P ' A —^ ^ simplicial with reference to and " 

The n-simplexes of can be ordered as follows: 
1p ^ J... 5 "Pĵ  , so that if X intersects the "P ̂'s 
in order. That is /\ Q is a face of "P ̂ , "P ̂  has another 
face L\ which maps onto A. , 

is a face of T^ ^^, 
i_1 

is a face of P , but T^ has another face that maps onto i i 
call it A ^ and so on. We start with /X^ = A ° and end up 

with A - A X 1. 
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Let us write - g- in some way. Let 
T = 0 U ( b ^ )% (If (T " ̂^ T should be taken to 
be just ^ O). Then there is a subpresentation of which 
covers T. 
7.1»2, Lemma. (With the above hypotheses and notation) regularly 
collapses (n) to ̂  . 
Proof; We in fact show that there is a sequence of regular collapses 
with major simplexes ^ . We must then define 

and find some outer edge lying on ,} so that the corresponding 
regular collapse results in ̂ ^ . .̂ 

Now "P̂  ̂  is an n-simplex and its projection is an 
(n-1 )-simpleXj therefore there are two vertices v̂  and Vg of "'P̂  
(choose v̂  , Vg so that the I-co-ordinate of v̂  is the 
I-CO-ordinate of v̂ ) which map into one vertex v of , Now 
A T and so V is a vertex of either or . 

vj- ̂  , Let (p and T 
be the faces of ^ lying ovgir ^ and ^ . Then 

P, -- [v̂] [v̂^ 
and the two faces of . which are mapped onto A âi*® 

[v^l r ^ - A i and 

Define 
1 



171 

It is claimed that if we take ^ as an outer edge then the result 
of the elementary.regular collapse with major simplex 

^ ^ cannot be in ; because the only (dim )-simplex 
in )<, I which is in ^ is , and / ^ since v̂  is 
a vertex of C" .. Also "Jl. is the only simplex among Ŷ ^ , 

^iAi -p. "" 

which contains v̂  as a vertex. Hence if ^^ ̂  then ^ 
We then have to show that A i 1 " h ^ i ^ 

The first term here is A ^ which is where P ^ intersects P ^ U.. 0 
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The second term written slightly differently is cs'r' f 
to which we may add a part of the first term namely ( fj ) 'to 
obtain all faces of "jp ̂  which map to 

^̂  T = I ( W r M ^̂  T 
= ( - R * U * 

In other words, this is "p ̂  ^ ^ (5̂  ) 
This shows that 

and so ^ i 1 i® elementary regular collapse with outer 
edge ^ ^ and major simplex 

I <-w ^ 

Case 2: v is a vertex of ff . Write v , define 0- , ^ 
to be faces of Jl ̂  lying over ^ and . In this case 

and the two faces of ^ which are mapped on A are 

l̂ ii f ^ ̂ i^i 
Ml . 

and [v^] r T - A -
We now define 

and make computations as before. 

=(r ^̂  h h ^ ' ) U' (^2''  ^ ^ '' tA ^ ' ) 
Zs^ I 
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and ^ r ^ ^ Kl" 

And this shows that if we perform an elementary regular 
collapse (n) on /C . with outer edge . and major simplex "P., 
we get . 

Hence regularly collapses (n) 

to X . C3 

Define = I, = I, T̂  = 0 C 

and T - 0) U (T X L) C 
k k-1 ' 

It is easy to see that T̂  is a (k-1)-cell in ^ 
k 

and is the set of points of I at least one co-ordinate of which 
is zero. 



r k k-1 k-1 
Ckj ' I = I ^ I — ^ I t)® the projection. 

7.1.3. Lemma. Let A i X A be simplicial presen-n d̂n-1 
tations of l", I v.-ith resprct to which all the maps 
oC n ^̂ ^ simplicial. Then there exist subpresentations 
JSn ' covering T̂ , T, respectively, 
and such that ^ regularly collapses (i) to ^ . for all i. 
Proof; The proof is by induction. It is easily verified that ^ 
collapses (1) to ^ •̂ 

So, inductively, we know that . collapses (i) to ' 
for i <. n-1. Now '̂ Ẑ is just the subpresentation of 

^ n 1 
covering Vs 0 0 , i X I = T . 

n-1 I n 
Let the collapsing of A to ^ occur along the 

^ 0 n-1 n-1 
major simplexes • Then we define 

(T^i  = u lA • • \ J \ \ 

and write /\ = ^ Cr , where ^ is the outer edge of i i i i 
the regular collapse (n-l) from to . Then 

A i NOVi.,1 ^ • 

Define ^ = the subpresentation of covering 

We will show that , regularly collapses (n) to 
, stringing these together, then regularly collapses (n) 
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To show that (JX . regularly collapses (n) to (Q it i i+1 
is enough to look at the part of ̂  . covering ̂  ( A.) i-e. 

and ĉ  ̂  A- ^ projection A . ̂^ ̂  —^ A^ which 
is simplicial with reference to the subpresentation of ^ covering 
^^^ I and • ^^ lemma 7.1.2 is especially tailored 
for this situation. Q 
7.1.4. Theorem. Let A be a n-cell, B an n-cell in A, and 
a regular presentation of A. Then there is a simplicial presentation 

refining , with a subpresentation ̂  covering B, such that 
ŷregularly collapses (n) to . 
Proof; There is a polyhedral equivalence h : A ^ l", with 
h (B) = t"̂. Then h is simplicial with reference to some ^ and 

, where ^ can be assumed to refine . The diagram 
<L n , 

n ' n-1 I 
I I ... ^ I. 

can be triangulated by simplicial presentations )•••} where 
can be assumed to refine . By 7.1.3, regularly 

collapses (n) to n ' subpresentation of ^ covering T̂ . 
Therefore the isomorphic presentation h = collapses 
regularly (n) to Q 

Suppose 
that is a simplicial presentation of an j, 

n-cell A, regularly collapsing (n) to , ( = ^ 
(n-l)-cell in A. Let the intermediate stages be ' 

iliit 
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where is obtained from ̂  ^ by a regular collapse (n) at 
outer edge ̂ ^ and iriajor simplex A = TTi' 

Wc define the upper boundary of . as follows: 
upper boundary of , = ̂  ( ^̂ -interior ( ^ 
upper boundary of A 

' « i+l 
= (upper boundary of ^ - * ^ * ̂  i* 

It can be alternatively defined as follows: Upper boundary of 
^ ~ unions of closures of (n-l)-cells E of^ . , such that if 

E ̂  ̂ ^ , E is the face of exactly one n-simplex of ^ and if 
E ^ then E is the face of no n-simplex of 

Now we would like to assert that 
7.1» 5. (a) The upper boundary of ̂  ^ is an (n-l)-cell, with constant 
boundary ^ ( ĵ S )• The upper boundary of the last stage is 

(b) ̂  ^ intersects the upper boundary of ^ precisely 
along g"". • In particular ^^ cannot be in the upper 
boundary of . for any i, hence can never be in 

If in 7.1-3, in each column we do the collapsing as described 
in 7.1.2, the above assertions can be verified in a straightforward 
manner, by using similar properties of ^ and an analysis of 
the individual steps in 7.1.2. The general case seems to be more 
cumbersome (A proof is given in the appendix). But the special case 
is enough for our purposes, namely for the next theorem, the main 
result of this chapter. 

First using 7.1.5, we define a polyhedral equivalence (p ̂  
from the upper boundary of ^ to the upper bo\indary of l̂y 
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Cp ̂  = identity outside ^ * ^ » 

and on ^ ̂ ^ ^^^ > it is the join of the identity 
niap ^ ^ T to the map of centre of ^ to the centre of 1 1 i 
r . . 

Thus from ^ \ 1 oG| reach by simpli-
cial moves, never disturbing the boundary of . 
7.1.6. Theorem. Let D be a (k+l)-cell contained in the interior 
of an n-cell^ . Let ^ D = Ê  U Ej , and Eg two k-cells, 
^ = ̂  Ê  ; let X CI A ^ polyhedron such that Xfv Ê̂ . 
Then there is an isotopy of ̂  , fixed on X ̂  ^ > taking Ê  
onto Ê . 
ProofJ 

Consider ̂  to be a standard n-cell, we can suppose that bA C 
and triangulate the whole picture, so that there are subpresentations 
covering D, X, Refine the subpresentation covering D, to , 
which regularly collapses (K + l) to ̂  which covers '£>2' 
^ to the whole of , to say ̂  . Let the intermediate stages 
of the collapsing be 

A- /Ip = S S ' 
obtained from ̂  ^ by an elementary regular collapse (k+l) 
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at out edge and major simplex ' = . HC'. • 
i ^ 1 

We will find en isotopy taking; the upper boundary of 
to the uoper bound'̂ry of X , and fixed except in a certain n-cell 

i + 1 
to be described. 

is a (k+1 )-simplex contained in the complement of 
X, which is also covered by a subpresentation of ̂  . So if take 

= z . X - p . c A , a n d ( Z - P = P . n x . 
Now "P X must be contained in ^ ̂ ^ * ^ ̂ ^ > "this is the 
only part of P ^ which Tsould contain points in ^ Ê . Let s and t 
be the centres of ^^ and Ĉ  the line segment [s, t]]̂  can be 
prolonged a little bit (here we use the fact that A is standard) to 
V and w in , so that 

([j, w] ( c) r. ^ T.) n"^ fNX 
^ w^ ( ^̂̂  ST^) * n boundary 

of , c s - a 
(here we use the fact that if L A ((T K]C L HK, where ^ is a 

I 
simplex and K, L are polyhedra, then there is a stretching ^ of 
^ i.e. containing ^ such that L -s^K^CkHl). Thus 
we have in order ̂ v, s, t, and there is a polyhedral equivalence 
f of w^, taking v to v, s to t and w to w. Join f 
to the identity on b ^ T^ ^ extend by identity 
outside of [V, w^ -Ji- ^ ̂ ^ ̂^ ̂  ̂ ^ ̂  ̂  ; call it ĥ . Now ĥ  
is the result of a nice isotopy and takes the upper boundary of ^ 
to the upper boundarjr of 
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The composition of the ĥ , will then take the upper 
boundary of ̂  ^ = Ê  to the upper boundary of ^ p ̂  ' ̂  
7.1.7. Remark; In theorem 7.1.6, ̂ ^ can be replaced by any 
PL-manifold. Of course D shoxild be in the interior. • 
Ex. 7.1.8. If N and M are two PL-manifolds and f: N I int M 
an imbedding, show that there is an isotopy of M fixing ̂  M and 
carrying f(N >(, O) to f(N K 1 U d N l). If X is a polyhedron 
in M, and X n f(NX l)Ĉ f(N A O), the isotopy can be chosen to 
leave X fixed. • 

7.2. Applications. 
7.2.1. Definition. Let S be an n-sphere, and ̂ ^ ̂  k-sphere in 
S. The pair (S,^ ) is said to be unknotted if (S, ̂  ) is 
polyhedrally equivalent to (X * ̂  ) for some X. 

X must of course be an (n-k-1)-sphere. Clearly a pair 
equivalent to an unknotted pair is again unknotted. . 
7.2.2. Proposition. Let S be an n-sphere, and a k-sphere in 
S. If there exists an (n-k-1 )-cell D in S such that D'^XC 
then (S, X. ) is unknotted. 
Proof: D ^ is an n-cell, and so the closure of S - D , 
say A , is again an n-cell and = • 
Then S is polyhedrally eqxiivalent to a suspension of * ̂  , 
hence (S, X. ) is equivalent (X * 21 > X ^ where X is a 
suspension of ̂  D. Q 
7.2.3. Corollary. If QD is a regular presentation of an n-sphere S, 
and A a (k+l)-cell in (p , then (S, ̂  A) is unknotted. 
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Proof! Takp D -
in 7.2.2. Q 
7.2.4. Proposition 

S(p (with respect to some centering of^ ) 

If a k-sphere y boiands a (k+1 )-cell D 
erior of a PL-TII,̂nifold M, then there is an 
g ^ onto the boundary of a (k+l)-cell of somf 
of M. 

Proof; Take a regu].ar presentation ̂  of M in which D is covered 
ition ^ . Consider a k-cell E of in ^ D 
say A of , which contains it in its boundary. 

contained in the int 
isotopy of M takir 
regular presentatior 

by a full subpresen" 
and the (k+l)-cell 
Let Â - E = Ê  
is a (k+1 )-cell wi' 
B Ê  Ê . Henc 
7.1.6, there is an isotopy of 
M taking Ê  onto 

and d D - E - and D - A = d'. Then d' 
h boundary E {j E and E intersect d' in 
by theorem 

E and 1 
fixing E. Thus D will be 
moved onto 5 A. 
7.2.5. Corollary, 
n-sphere, and ^ 

Let S be an 
a k-sphere in 

S. (S, ) is un|knotted if and 
only if 51 bounds a (k+1)-cell 
in S. 
Proof; The necessolt 
7.2.3. Q 

Motivated by 7.2.4, we define a k-sphere ''̂he 
interior of a PL-nanifold M to be unknotted if it boimds a 

ty is clear. Sufficiency follows from 7-2.4 and 
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(k+l)-cell in (the interior of) M. From 7.2.4 it is clear that 
7.2.6. If A is a (k+O-cell of some regular presentation of M, 
and A int M, then ^A is unknotted. If ^ and ^^ are 
two mknotted spheres in the same component of M, there is an isotopy 
of M which takes ^ onto keeping M fixed. D 
7.2.7. Definition. If D is an n-cell and E a k-cell in D, with 
"̂ D C ^ E, (D, E) is said to be unknotted if (D, E) is poly-
hedrally equivalent to (X * E, E) for some X. 

Since E is not completely contained in ^ D, such an X 
must be an (n-k-1)-sphere. 

/ind we define a cell E in the interior of a PL n-manifold 
M to be unknotted, if there is an n-cell D in M containing E 
such that (D, E) is unknotted. A cell which is the closure of an 
open convex cell of soma regular presentation of M is clearly un-
knotted. Given any two unknotted cells D̂  and D̂  of the same 
dimension in M, there is an isotopy of M leaving ̂  M fixed and 
taking D̂  onto D̂ . Given two unknotted k-cells D̂  and D̂  in 
a PL n-manifold M, k < n, D̂  r\ D̂  = 0, then there is a n-cell A 
containing D̂  and D̂  in D and such that the triple (A, D̂ , D̂ ) 
is equivalent to a standard triple. In particular if k^ n-2, from 
the standard situation, we see that there is a (k+l)-cell A in 
int M containing D̂  and D̂  in ̂  A and inducing chosen 
orientations on D̂  and D̂ , These remarks will be used in the 
next chapter. 

k n 
Now, as a corollary of 7.2.5, if ̂  C ^ are k and 
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n k ' 
n-spheres and n ̂  2k 2, then (S , X ) is unknotted. The next 
case n = 2k + 1 is a little more difficult. Actually n - k ̂  3 
is enough* But this vdll be proved only in the next chapter. Here 
we sketch a proof of the.case n = 2k + 1. 
7.2.6. Proposition. Let S be an n-sphere, ̂  a k-sphere in S, 
n = 2k + 1, and k̂ j. 2. (S, X ) is unknotted. 
Sketch of the proof t By'7.2. 5 it is enough to show that bounds 
a (k+l)-cell in S. To prove this it is enough to show that a 
k-sphere in ^^^^^^ bounds a (k+l)-cell. Consider a k-sphere P 
in and let ̂  be a simplicial presentation of P. If C 
and 3.re two ( ̂  k)-dimensional simplexes in ^ and L ^ 
and L ^ the linear manifolds generated by them, is defined 

2k+1 
if and only if given any point x ̂  , there is at most one 
line through x meeting L ̂  and Lĵ . Consider L =0")" L. _ 

I 
L the linear manifold generated by 

for which 6" ̂  is no;̂  defined. • 
2k+1 

The dimension of all such ^ ) ̂  hence'XA^S [f^ L 
is open and dense in . B y the above remark, if we take any 
point xt\jL , then for any ( <r , T ), T ̂ (P , ^ (P , at most one 
line through- x meets 6~and ^ , that is, at most a finite number 
of lines through x meet P more than once. But each of these 
finite niimber lines through x may meet P more than twice. By 
similar arguments using triples ( ^ , T > f 
can get an open dense set uL. such that if x ̂  , 
only a finite nimber of lines meet P more than once, and each such 
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meets P exactly tvrice. Now we choose such a point x; Ipt L^,..., L^ 
be the lines through x which meet P at two points. On each L^, 
call the point on P nearer to x as N^, and the other F^, and 
consider the set N̂  N^ . If k ̂  2, we can put N̂  
is a 1-cell in P not meeting F^. Let N be a regular neighbourhood 
of that 1-cell in P. We can choose N so that F^^- N for all i. 
N is a k-cell and (its complement in P) say F is another k-cell 
x * N is a (k+l)-cell, ^(x * N) = N U x * ^N, and F meets 
X * N, exactly in ^ N. Hence by theorem 7.1.6, here is an isotopy 
of - taking N onto x * C) N and keeping F fixed. But 
now (x N)UF is the boundary of the (k+1)-cell x * F. Since 
P is moved to (x * b N) O F by an isotopy, P also bounds some 
(k+l)-cell. Q 
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Appendix to Chapter YII 
In the theory of regular collapsing, let us add the follow-

ing operation (due to J.K.C. li/hitehead)j ?lso namely the operation of 
removing a principal simplex (open) from a simplicial presentation. 
This is called "perforation". If is a simplicial presentation, 
and ^ is obtained from ^ by removing a principal i-simplex, we 
vd.ll say that " is obtained from by a perforation of dimension 
i", or more briefly " is obtained from by perforation (i)". 
If in the definition or regular collapsing, we did not put the res-
triction that the dimension of the major simplex should be greater than 
that of the outer edge, then perforation also v:ould come under regular 
collapsing. Since regular collapsing as defined in 7.1 does not change 
the homotopy type (even the simple homotopy type), where as perforation 
does, we prefer to distinguish them. 
A. 1. Let C . b e sunplicaal presentation^such that is 
contained from by an elementary regular collapse (n) at outer 
edge and major simplex A = Let f Then 

a) - Lk(f ,/V) if f is not a face of . 
b) If ^ ^ then Lk(P,A,') is obtained from 

by a perforation of dimension (n-dimj^ -l). 
c) If f < A and , then Lk(-f» is 

obtained from Lk(p,^) by an elementary regular 
collapse of dimpnsion (n-dimp -l). D 

The verification is easy. The only faces of which are 
not covered by (b) and (c) above are of those in - ̂  ', that is 
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thoss which contain f~as face. Of course these do not appear in J^ . 
SuppoE.̂  collapses regularly ''.n) to ̂  . If fkiA- di^ > 

p has to disappear in some collapse; let us denote the major simplex 
of the regular collapse (n) in which P is removed b̂ r ^ . If 

1 ^ 

With 
is the outer edp;e of the particala.- collapse, then ̂ ^ ̂  ̂  

Vilhat all is left of Lk(f at this stas;e is » A p J^ • 
this notation, using A. 1, we have easily the follovdnf?! 
A. 2) a) If P ^ S s ^ is obtained from 

) by perforations and regiolar collapses 
of dimension (n-dim p -l). 

b) If , then Lk(p, j^Af^ ) is obtained 
from Lk('^,/4) by perforations and regular 
collapses of dimension (n-dim ̂  -O* Q 
Let (J^ Q simplicial presentations and suppose (j^ is 

obtained from ^^ regular collapses and perforations of dimension i. 
Then vre can rearrange the operations • so that perforations come first 
and regular collapses later. This is easily seen by considering one 
perforation and one regular collapse. If the perforation comes after 
the regular collapse, we can reverse the order; of course the converse 
is not true. By 3 finite number of such changes, we can perform the 
perforations first and the regular collapses later, so that the end 
result is still (J3 • If jOlfi® connected PL(i)-manifold, the 
effect of a perforation (i) upto homotopy type is the same as removing 
a point from the interior of | • Since a regular collapse does not 
change the homotopy type, we have 
A,3) If is a connected i-manifold, a n d O B is obtained from 
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by k perforations (i) and certain elementary regular collapses (i), 
then ^(j^j has the sane homotopy type as |(J\.j vdth k interior points 
removed. In particular if is s i-cell then (ĵ j has the homotopy 
type of a wedge of k spheres of dimension (i-l). If is a i-sphere 
then|(i^| has the homotopy type of a wedge of (k-1 )• spheres of dimension 
(i-1). D 

Of course in the above when i = 1, the wedge of O-spheres 
has to interpreted pj?operly. That is we should take the wedge of k 
0-spheres to be (k+1) distinct points, in particular if k = 0 to 
be just a point. Suppose \ is a i-cell, and has the homotopy 
type as point, for example when is a i-cell or an (i-l)-cell. 
Then there cannot be any perforations. If |0l( is a cell and|(g)l=&|Ol|, 
there is exactly one perforation. If a i-sphere and anil 
1-cell in it, again,•there is exactly one perforation. 

It should be remarked, that all the above statements are 
made for the sake of proving Lemma 7.1.5 to which we proceed now. 
Let us first recall the definition of the upper boundary. Consider/^ , 
a simplicial presentation of an n-cell A regularly collapsing (n) 

^ = B is an (n-1)-cell in A. Let the individual to ̂  , where 
stages be 

/I J /Ip » 
where ^̂  i® obtained from by an elementary regular collapse(n) 
at outer edge and major simplex/^^ = (This is the 
hypothesis for the rest of the appendix). Then the upper boundary of/^^ 
(denoted is defined inductively as follows: 
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^{A^M . 
The trouble: vdth this definition is that it is not clear that it is well 
defined, e.g. that ^ ^ So we consider the followingj 

^ Uj^E E is an (n-1 )-simplex o f s u c h 
that (l) if then E is the face of exactly one n-simplex 
of/^^ (2) if E t ^ D then E is the face of no n-simplex of I" 
We claim that (K)' ^^^^ 

equal, that is when i = 1. Suppose they are equal for i. Then we 
will show that they are equal for i+1 also. In ) 

th® changes can be from faces of Now 
all the (n-1 )-8implexes in^^^l^ have to be in 
since is the only n-simplex of having them as faces. So by 
induction ^ ̂ ^ is really in ^ ^o" consider 

of the (n-O-simplexes of is 

in this, since they are not 
in . The (n-O-simplexes of 

have to be in )• f"or, consider any 
(n-O-simplex E ^^ ^ is i n , then A ^̂  is 
the only n-simplex of J^ having E as face, since that is removed 
there is no n-simplex of A . having E as a face. If 
there are two n-simplexes in/^ having E as a face. One of them ^ ^ 
is removed. The other should be in A , since otherwise E cannot 

" i + 1 
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be removed in any of| the later collapses. Thus . is in — I ; ^ ^ 
+ ). Sin|;e we have accounted for all the (n-l)-faces of 

^ ., these are the ^nly changes from to 
that is 

• 1 

*i+1l 
Hence by induction 
defined. 

3 and ^ coincide for all i, and ^ is well 

Proof: Suppose 'X {C^ ^('^JoS)' There are four possibilities: 
Either (1) T ^ C ^ - ® T U 
or (2) B 

or (3) T i C 5 - ^B 

or T ^ C ^ - ^ ^ -
VJe will show that tf ̂  C ^ ^ ^ i l ^ ^ impossible in each case. 

By A.2 ijn cases (2) and (3) ^ obtained from 
by perforations and regular collapses of dimension 

(n-dim X^ - 0- cases (l) and (4) l ^ i ^ ̂  
notation of A. 2) ĵs obtained from  ) by perforations and 
regular collapses cj)f dimension (n-dim - 1). By A. 3 and remarks 
thereafter, there fiannot be any perforations in cases (l) and (2) and 
there is exactly ope perforation in cases (3) and (A). 

By A.1; b) in the collapse at outer edge and major 
simplex A . = S^.iT.j what happens to Lk(T. j/i.) is exactly a 

1' 1 1 1 
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perforation of dimension (n-dim Tj^ - 0. So straightaway we have 
T i C - ^ or C ^ S is impossible. 

So, the only possibilities that remain are (3) and (4). 
Let us consider case (4) first. We claim that if ̂  ^ ̂  ^ 
the one perforation on Lk(®r^, ) is already made. Since jLkCf'^j/i)^ 
is a sphere, any (n-1 )-simplex of having ^ as a face must be the 
face of tvro n-simplexes. So ^ cannot be in ^ ( A ) i A 
For the same reason, ̂  ^ cannot be in any ^ ^ ^ ^ 
Lk( T i , /Sj) = Lk( ̂  Thus r^ Q d implies 

^ Suppose LkC't'̂ , 4 ) is changed for the 
first time in the k.''̂'̂  collapse, k. < i, that is ) ̂  

X I 1 
= but L k ( T i » ^ Since Lk(r.,/|,) 
is a sphereJ this operation from 

1 1 1 K̂  
Lk( T * ^ , ^ ^ ) is necessarily a perforation. So the one perforation 
on is already made. But in the i^^ collapse also what 
happens to is a perforation since A ^ ̂  i ^^^ 
A. I.b), Since this is impossible ^ ^ cannot be in A - ^ A. 

Let us consider the remaining possibility ( 3 ) , ^ ^ C ® 
iLkCcC^,^)! is an i-cell with boundary Lk(<f^,X)|' If 
'X iC we have to show that T iC ̂  " ^ ® i® impossible. 
The case when dim = n-1 is easily disposed of, since in that case 
there is no n-simplex having ^ ^ as a face. As in case (h) 'T'j, i® 
not in ^ (/^jjSs) and cannot be in 

d (/^Js;) if 
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= •'̂ gain, the first operation on 
has to be a perforation. For, all the outer edges of are 
in and a regular collapse of L k ( ) removes a part 
of LkC"^^,"}^). Thus f (/SJS^) implies that the one perforation 
on LkC*^^, ̂ j) is already done. But then the result of the î '̂  
collapse will be^gain a perforation on by A.. I.b) since 

^ = Tj^' this is again impossible. 
Thus ^ cannot be in (/i JSS ) for any i. Q 

A. 5. With the hypothesis of A.4, ^ is an (n-l)-cell vdth 
constant boundary = B = ^ B. 
Proof: is an (n-l )-cell vdth boundary = B. Inductively, 
assume that 

b ( (n-l)-oell »lth boundary Sb. By A.i, 
.1^); in particular it cannot be in b B. Since 

^ C^^^ simplex of J^ having ̂  ^ as a face can be in 
intersects 3 (/IJ^j) precisely along 

b T i Define Cp. : ^ ( / i ) ^^ 
Cp ^ ! Identity outside^ ̂ ^ * and on ^ ^ * 9 i 

the join of the identity map on ̂  ^ ^ and the map which carries 
the centre of ^ ^ to the centre T ^̂  ^ ^ clearly a polyhedral 
equivalence; hence ^ Îs ) is an (n-l)-cell. To see that 

i+1 
b )) - (/i^^^iSS)), observe that the part of * 
(if any) which is in h i/Q iTs)) should be in ^ 

Since 
1 ' i 1 

Y ^ is identity on this part, both the cells have the same boundaries.H. 
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Chapter VIII 

Handles and s-cobordism 
8.1. Handles. 

A handle of dimension n and index k, briefly called a 
(n,k)-handle, (dX. a k-handle) is a pair (H, T) consisting of an 
n-cell H and (n-1)-manifold T of H, such that there is a poly-
hedral equivalence 

f : H ̂  A * B / 
. S 0 

where A is a (k-1)-sphere, B a (n-k-1)-sphere, and f(T) a regular / 
« 

neighboxirhood of A in A * B. 
We denote handles by lower case script letters, as 

and so on. 
Given a handle (H, T) as above, vre call T the attaching tube and ^ H - T the transverse tube of the handle. The polyhedral 

equivalence f in the definition can be so that f(T) = <p ((O,^}), 
where <p : A * B — ^ 0, 1 is the join of A — ^ 0 and B — ^ 1, 
When this is so, f~^(A) is called an attaching sphere and f~VB) a 
transverse sphere of the handle. 

The pair (H, ^ H - T) is clearly a handle of dimension n 
and index n-k. It is called the dual of (H, T), and denoted by (H, T)*. 

The cone on X is denoted by C(X). We know that, by a 
standard mistake, C(A •»«• B) Sf C(A) K C(B). This equivalence will make 

sl) correspond to A>C.(CtB)). Therefore, in defining a 
handle, we could require, in place of f, the existence of a polyhedral 
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equivalence 
G : H ^ D X A 

where D is a k-cell, A an (n-k}-cell, and where g(T) = 
With this forraiolation. for any e in the interior of , 

then c) D e is an attaching sphere; and for any f in the interior 
of D, then f is a transverse sphere, in the handle 
(D X A ,( If e f i n t , we call D X. e a core of the 
handle. If e ̂  ̂  A , we call J) X. e a boundary core or a surface 
core of the handle. Similarly transverse cores are defined, and the 
definitions can be extended to arbitrarj' handles by using an equivalence 
with the standard handle (so that even in the standard handle, we have 
"more" cores than defined above). Note that there is no uniqueness 
about attaching spheres, transverse spheres and cores in a handle, only 
the attaching tube and the transverse tube are fixed. 
Ex. 8.1.1. If H is an n-cell, and S a (k-l)-sphere in ^ H, 
S is an attaching sphere of some (n,k)-handle (H, T) if and only if 
S is unknotted in ^ H. D 

We have the following two extreme cases of (n,k)-handles{ 
If (H, T) is a (n,0)-handle there is no attaching sphere (T = 0), ^ H 
is the transverse tube as well as the transverse sphere. Any point in 
the interior of H can be considered as a core. If (H, T) is a 
(n,n)-handle, H is the attaching tube as well as the attaching sphere, 
the whole of H is the core. Also, note that for an (n,1)-handle, 
the attaching tube consists of two disjoint (n-l)-cells. 
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CA. Cdu. 

<X{1,\)  - kaw-diA 

cxyv aJXcJ^VwCj^ 

Cl( 3, "i.) - kcuvNclk 
oiXcXciwVN.̂  lûiiJe 

8.2. Relative n-manifolds and their handle presentations. 
A relative n-manifold is a pair (M, X), X M, such that 

for every a ̂  M - X, the link of a in M is either an (n-l)-cell 
or an (n-1 )-sphere. If (M, X) is a relative n-manifold, ^ (M, X) 
denotes the set of points of M - X whose links are cells. X) 
is not a polyhedron, but b (M, X) JJ X and ^(M,X) (X^ d (M,X)) 
are polyhedra; so that (^(M,X)UX, X) and ( b (M,X), X^) . (where 
X̂  = Xr» ̂  (M,X) ) are relative (n-1)-manifolds without boundary. Any 
compact set in "b (M,X) is contained in an (n-1)-manifold contained 
in 6(M,X). 
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Wf- sometimes denote a relative manifold (M,X) by Gothic 
letter such as-î X, , and b (M,X) by^"^. 

If (M,X) is a relative n-manifold, and A an n-manifold, 
such that Ar\ M = ^Ar\d(M,X) is an (n-1 )-manifold, then it is 
easily proved that (using, of course, theorems on cells in spheres etc..) 
that (M U A, X) is a relative n-manifold. As in the case of the 
manifolds, we have the following proposition: 
8.2.1. Proposition. Let (M,X) be a relative n-manifold, C an n-cell 
such that CfNM = ^kCA'i(M,X) is an (n-O-cell. Let IL be any 
neighbourhood of Cr\M in M. Then there is an equivalence 

f 5 (M,X) ^ (MOC,X) 
which is identity outside ijL . Q 

Let B C ^ arid f : B — > M be an embedding with 
f(B)C^(M,X), and B an (n-1)-manifold. Then there is an identi-
fication polyhedron Mt̂ ^ A; and with the obvious convention of not 
distinguishing notationally between X and its image in (MU A), 
we have A,X) is a relative n-manifold, which we shall say is 
obtained from (M,X) by attaching (A, B) by an embedding f. Of 
course, doing all this rigorously involves abstract simplicial complexes, 
their realizations and proper abuse of notation; and we assume that 
this is done in each case without mention. 

Let (M,X) be a relative n-manifold, and 
^ be (n,i)-handles, = (H., T.). We speak of ' . P J J J 

when 
1) Ĥrv Ĥ  = 0 
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2) H^n M - for all i-

In such a case definition, r< 
bx 

;ri 
^ + = (MUHU .. VH , X). 1 p i p 

'jid vje say that + ^ +. . . is obtained frem-nftt by attaching 
P 

p (n,i)-handles Qy p i-handles. 
Also if we have f^ : T^ embeddings for i = 1,...>P 

and fj, (Tĵ ) n fj(T^) = for i / j, we may look at what we obtain 
from ATt. by attaching X by the maps f ,...,f . The 

0 ^ 9 P 

result we denote by'YYt U U .. U ^ and say that it is obtained 
from-'tfC by attaching p (n,i)-handles by imbeddings f^. 
8.2.2. Definition. A handle presentation of a relative n-manifold 
(M,X) is a (n+2)-tuple 

ae = (A- .,A ), of polyhedra such that, 
1) •XCA_,C .... C \ = M 
2) 
3) (A^,X) a relative n-manifold for all i 
k) For each i, there exist finitely many handles of 

index i ^ ^ ^ , , , such that 

It follows from 3) and k) that is a neighbourhood of 
X in M. A ^ \ X implies that for some regular neighbour-
hood N of X in M (see Chapter VI), We can even assume that 
N C intĵ A_i. Now if B = then - N \i B, hence is a collar 
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over B. Thus there is an equivalence of to N which fixes X; 
that is polyhedrally A ^ just looks like a regular neighbourhood of 
X in M. 

Consider a relative n-manifold (M,X) where M is a 
PL n-manifold, and X a PL (n-1)-manifold in M. Such a relative 
manifold, we term a special case. If (M,X) is a special case, and 

= • • ^ handle presentation of (M,X), then clearly 
moreover the equivalence can be assumed to carry x to 

(x,o) for X t X. 
8.2.3. Theorem. Every relative manifold has a handle presentation. 
Proof; Let -'tft = (M,X) be a relative n-manifold; let (p be a regular 
presentation of M with a subpresentation covering X. Vfith a 
centering (p > we define the derived subdivision > 
and some derived subdivision d (p of d , r̂ ^ . Define 

C^ d^(p , for C e (p 
A., =U t X ] 

\ = \J t , or C eg) and dim ^^ kj. 
To thow that = ( , . •., A^) is a handle presentation of-Wl , 
we note: 

(1) =( N^^^ ^ J (d is a regular neighbourhood 

of X in M. 
(2) , X) is a relative manifold. In fact, if 

is any subset of (p , containing , and denotes g 
{ĉ lc 

then ( , X) is a relative n-manifold. 
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These are easily proved. 
Ihe only thing that remains to be shown is that 

A = + k-handles. The k--handles evidently have to be 
(C"̂ , C^ n 1.0 c]'"), for Ctfp a^d dim C = k. There are two 
different cases to consider, depending on whether C is in the interior 
or boundary of -Tft . •'"̂ny how, C"''' is an n-cell, since ̂  C ̂ M-X and 
(M,X) is a relative n-manifold. 

There is a canonical isomorphism 
Lk(r^C, d(Lk(r^C, d(p)), 

which for D < C, takes Ĉ '-AD̂ ^ to 
= l St(r|D, d(Lk(^C, d(p )))\. 

This shows that C* C\ corresponds to 

A further fact is: 
Lk(r̂  C, d(P ; = d Cy;- AC. 

Now if C is an interior k-cell, is an (n-k-1)-sphere; 
and so, composing all these facts together, we get a polyhedral equiva-
lence f J "blc*) - M ^ c l which takes C"̂  r\ {b c]̂ " onto a 
regular neighbourhood of ^ C. This directly shows that (C*,C* H C^*) 
is a k-handle. 

If G is a boundary k-cell, then is an (n-k-1 )-cell. 
Let F be a cone on \ /\C \ ; we then use the standard trick which makes 
C* , which was the con-̂  on \ Lk( V|C, d (p ) which is eqxdvalent to 
b e * |Acl, equivalent to C XF: 
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? : G'"':; G x 
in which the set C* r\ Cf*, which was maoped to N^ •jf-̂ Ĉ '̂  ̂ ^ ^̂  
corresponds to 

UC}'") - (DC)X F. 
This shows, from our second way of looking at handles, that 

is a k-handle. 
We iiiight remark that in case (i), C r\^(n*) is an attaching 

sphere, but that in case (ii), this lies in the boundary of the attaching 
tube; that is why case (ii) is somewhat more complicated than case (i).Q 

8.3. Statement of the theorems, applications, comments. 
Here we state the main theorems of handle-theory and apply 

them to situations such as s-cobordism and unknotting. We outline the 
proofs, so that the rest of our work is devoted to the techniques which 
make this outline valid. We say a few words about gaps (such as a 
thorough discussion of Whitehead torsion) for which there are adequate 
references. Our theorems and proofs are quite similar to those well-
known for differential manifolds; of course, there is no worry about 
roundinsf off comers; there is no need to use isotopy-extension theorems, 
since cellular moves suffice. Finally, the crucial point is for homotopy 
to imply isotopy in certain unstable dimensions; the result needed here 
has been described by Vfeber, £ see C. Weber, L'elimination dea points 
doubles dans le cas combinatoire., Comni. Math. Helv., Vol./i l, Fasc 3? 
1966-67_7; for variety and interest, we prove the necessary result in 
a quite different way 
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8.^.1. Definition. A relative n-manifold (M,X) is said to be 
g:eoinetrically trivial, if M \ X. 

If (M,X) is a special case, where X is an (n-l)-5ub-
manifold of ^ M, M an n-manifold, then geometric triviality means 
just that M X y. I with X corresponding to X 'A 0. 

When A ^ B are finite CW-complexes, with A Q B a homo-
topy eqiiivalence, the torsion of (B,A), denoted by T(B,A), is a 
certain element of the Whitehead group of fT^CB). 
8.3.2. Definition. Suppose (M,X) is a special case. That (M,X) 
is algebraically trivial means; 

(1) X ^ M is a homotopy equivalence, 
(2) T (M,X) = 0 
(3) M induces an isomorphism on . 
/"Remarks Using a form of Lefschetz duality in the universal 

covering spaces, it is provable that (3) is implied by (1) plus the 
weaker condition that ^ (M,X)^ M induces an injection on J . 

If (M,X) is not a special case, let N be a regular 
neighbourhood of X in M. Define M̂  = M - N, and X^ •= bd̂ ^ N. 
Then (M^, X^) is a special case, uniquely determined, upto polyhedral 
equivalence, by (M,X). We call (M,X) algebraically trivial whenever 
(M^, X^) is algebraically trivial. 

When we know of (M,X) that only conditions (I) and (3) are 
satisfied, (M,X) being special, we call (M,X) an h-cobordism, and 
^(M,X) the torsion of of this h-cobordism. 

Clearly, if (M,X) is geometrically trivial, it is also 
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algebraically tri^dal. The converse, we shall show, is true for 
relative n-manifolds, . 

Let (M,X) be a relative n-manifold which is a special 
case. Here are the main results. 
Theorem A. If (M,X) is 1-connscted, andt^ n-4, then (K,X) has 
a handle presentation with no handles of indices ^ 1. If further-
more, (M,X) has a handle presentation with handles of indices ^ p 
only, then it has a handle presentation with handles of indices ̂  ii. + 1 
and ^ Max( + 2,p) only. O 
Theorem B. If (M,X) has a handle presentation with handles of 
indices <n-3 only, and n ̂  6, and if X (^M is a homotopy equivalence 
with = 0, then it has a presentation vathout any h-̂ Jidles; so 
that M \ X. D 
Theorem C. If (M,X) is alpebraically trivial and n>^6 -, then it is 
geometrically trivial. Q 

Theorem C holds for the general relative n-manifold, and this 
follows from Theorem C in the special cis. by referring to the special 
case (M^, X^) described earlier. 

Theorem A and B imply Tht̂ orem C by duality, which is 
described in 8.8. We start with a handle presentation of (M,X); 
by Theorem A • we can chane;e the dual presentation ^ into one with 
no handles of index ̂  n-/j.; dualising this, we get a handle presentation 

of (M,X) >,dthout handles of indices ̂  h; since n >.6, Theorem B 
applies to 
8.3.3. We now list the techniques used in proving Theorems A and B. 
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(1) Gancellinf; pairs of handles, in a handle presentation 
~ ('Li >•••) sometimes there is a very explicit seometrical 

reason why a (k-1 )-handl'- and " k-handle ''^nullify each other, 
so that they can bo dropped from the handle pr'-sentation. If M is 
the transverse tube of , and X the attachine; tube of , and 
N - NaT '̂nd T - Nf\T are both (n-1 )-cells, this is the case. This 
alone suffices to prove Theorem A when t ~ 0. We discuss this in 8.5. 

(2) Modifying the, handle presentation. We want to shrink 
down transverse and attaching tubes until they become manageable, and 
to isotop things around. This can be done without damaging the essential 
structure, which consists of (a) The polyhedral equivalence class of 
(M,X), (b) The number of handles of each index, (c) The salient features 
of the algebraic structure, namely, the maps IT (A ,A )-Arr (A J 

k k k-1 k-1 k-1 k-2 
and bases of these groups. This is done in S.U. 

(3) Inserting cancelling pairs of handles, the opposite to (1) 
is sometimes necessary in order to simplify tĥ  algebraic structure; 
this occurs in 8.6. This, together with (l) and (2), allows us to 
prove Theorem A for J?, = 1, it the pxpenŝ -- of extra 3-handles, Once 
we have done this, there are no more k n o t t y proup-theoretic difficulties, 
and the universal covering soaces of the A.'s are all embedded in 
each other. Then we can take a closer look at: 

(A) The algebraic structure. This consists of the boundary maps fT (A ,A ) f T ,A ). When there are no 1-handles, k k k-1 k-1 k-1 k-1 
these groups are free modules over the fundamental-group-ring, with 
bases determined, upto multiplying by±n", by the handles. We can 
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change bases in certain prescribed ways by inserting and cancelling 
pairs of handles. This allows us to set up a situation where a 
(k-1)-handle and a k-han^le algebraically cancel. We discuss this in 
8,9. And now, both Theorems A and B follow if we can get" eilgebraically 
cancelling handles to cancel in the real geometric sense. This amounts 
to getting an isotopy out of a homotopy of attaching spheres; this is, 
of course, the whole point; all the other techniques are a simple tran:?-
lation to handle presentations of the theoiy of simple homotopy types 
of J.H.C. Whitehead. 

(5) The isotopy lemma. This is the point where all dimen-
sional restrictions really make themselves felt. The delicate case, 
which applies to (n-3)- and (n-4)-handles, just barely squeaks by. 
8.3.4. The s-cobordism theorem. By an s-cobordism is meant a triple 
(M;A,B), where M is an n-manifold; and B are disjoint 
(n-1 )-Bubmanifolds of ^ M; {) M - k\jB is polyhedrally equivalent to 
^ A K I in such a way that 5 A corresponds to ^ A X 0 (and, of 
course, ^ B to AC^M and B Ĉ  M are homotopy equivalences; 
and T C M j A ) ^ 0. 

A trivial cobordism is a triple (M;A,B) equivalent to 
(A X I; A A X. 1). 
Theorem. If (M;A,B) is an s-cobordi-sm, and dim M ̂  6, then 
(M;A,B) is a trivial cobordism. 
Proof; This follows from theorem C. - The pair (M,A) is a relative 
manifold, special case; and all the hypotheses of Theorem C are dearly 

% 

valid; in particular, H ^ (B)2! ( S M-A) ~ fT (M), since B ^ M is a 
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homotopy-equivalence. Hence, by theorem C, (M,A) is equivalent to 
(Ax I> ^ X.0), We know, by assumption, that 5 ^ ~ ^ VJ B is a 
regular neighbourhood of ^ A in JyM - A; and clearly ^ A X I is a 
regular nei^bourhood of ^ A K 0 in 5 (A K I) - A X Oi Thus we can 
fix up the eq\xivalence of (M,A) to (Ax I, A K O ) to take dM-A\j B 
onto ̂  A X I; this leaves B to map onto A ><.I, which shows the 
eobordism is trivial. Q 

We remark that if '^'^(A) is trivial, then T(M,A) a 0 
automatically. It is with this hypothesis that Smale originally proved 
his theorem; various people (Mazur and Barden) noticed that the hypo-
thesis needed in- the non-simply-connected case, was just that A ^ M 
he a simple homotopy equivalence (whence thp "s"); i.e. T(M,A) = 0. 
8.3.5. Zeeman's unknotting theorem. We have already described the 
notion of an unknotted sphere. 
Theorem. If A^^ B, where A is a k-sphere, 3 an n-sphere, and 
k ̂  n-3, then A is unknotted in B. 
Proof; By induction on n. For n ^ 5, the cases are all quite trivial, 
except for k = 2, n ^ 5, which has been treated earlier. For n ̂  6 
we will show that the pair (B, A) is equivalent to the suspension of 
(B , A ) where B' is an (n-l)-sphere and a' a (k-1)-sphere; and 
clearly the suspension of an unknotted pair of spheres is unknotted. 

To desuspend, for n 6, we proceed thusj 
If x^A, theii the link of x in (B,A) is a pair of 

spheres which is unknotted, by the inductive hypothesis. That is to 
say, A is locally unknotted in B. In particular, we can find an n-cell 



E B, such that E Oi A is a k-cell unknotted in E; and so that 
E, ̂ (EHA)) is bicollared in (B,A); in fact, this could have 

been done whether or not A were locally unknotted. 
Define F ='B - E. By earlier results ^ is an n-oell. 

Consider the relative manifold (F, FA A), It is easily seen that 
this pair is algebraically trivial; becauce of codimension ̂  3 all 
fundamental groups are trivial, and so Wliitehead torsion is no 
problem; the homology situation is an easy exercize in Alexander 
duality. Hence, by Theorem C, F collapses tc Fr\A j sjncc Fn A-
is a k-cell, it collapses to a point; putting these together, (F, FnA) 
collapses to (pt, pt) in the category of pairs; these collapses are 
homogeneous in the pair (BjA) because of local urikncttedneRs. We 
started with (F, FTiA) bicollared, and hence, by the regular neigh-
bourhood theorem, suitably stated for pairs; (F, F OA) is a i-egular 
neighbourhood of x t A in (B,A), whicn is an unknotted cell pai:r 
(again using local unknottedness). 

Thus (B,A) is the iinioii of two unknotted cell pairs 
(E, Er\A) and (F, FHA), which shov/s it is poiyhcdrally equivalent 
to the suspension of (b -E, ̂ (EnA)). Z 
Remark 1. This is just Zeeman's proof, except that we use our 
Theorem C where Zeeman uses the cumbersome technique of "siinny 
collapsing". 
Remark 2. Lickorish has a theorem for desuspending general suspen-
sions embedded in s" in codimension 3- It is possible, by a 
similar argument, to replace "sunny coHapsinr" by Theorem 3. The 
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case n = 5 can be treated by a very simple case of sunny collapsing. 
Remark 3. If Ĵ CB, where i'. is an (n-2)-sphere locally unknotted 
in the n-sphere B, and n ̂  6, and B - A has the homotopy type of a 
1-sphere, then A is unknotted in B. 

Proof exactly as in the codimension 3 case; we need to know 
that VJhitehead torsion is OK, which it is since the fundamental group 
of the 1-sphere is infinite cyclic; and this /rroup has zero IVhitehead 
torsion, by a result of Graham Higman (units of group-rings). 
Remark 4. It has been a folk result for quite a while that the 
Hnknotting Theorem followed from the proper statement of the h-cobordism 
theorem. 
5.3-6. Whitehead torsion. For any group , there is defined a 
commutative group Wh( ff )• t̂ lements of VT ) represented by 
square, invertible matrices over the integer group ring Z rT . Two 
matrices A and B represent the same element in Wh( iT)> if 3-nd 
only if there are identity matrices I,̂  and , and a product E of 
elementary matrices, so that A^ :r E. (B@Ijî ). Here 

denotes the kxk identity matrix. 

/in elementary matrix is one of the following: 
(a) Î  where ê ^ is the nx" matrix all of 

4. 

whose entries art- zero except for the ij~, which is 1; and i / j. 
(b) Ê  k), which is the nX.n matrix equal to the 

identity matrix, except that the kk̂ "̂* entry is ; we restrict oG 
to be an element of i (X • 
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By cleverly composing matrices of this sort, we can obtain 
^n ^^^ 6 Z IT , for instance. 

Addition in Wh( FT ) is induced from ̂  , or, eqiiivalently, 
from matrix multiplication. 

The geometric significance of Wh( fV ) is that a homotopy 
equivalence f s K — ^ L between finite GW-complcxes determines an 
element of WhCH" ), (1= called the torsion of f. If the 
torsion is zero, wonderful things (e.g. s-cobordism) happen. 

If TT is the trivial group, then Wh( (X ) = 0, basically 
because Z f^ is then a Euclidean domain. 

If (T is infinite cyclic, then Wh( fT) = 0, by Higraan. 
His algebraic argument is easily understood; it is, in some mystical 
sense, the analogue of breaking something the homotopy type of a circle 
into two contractible pieces on which we use the result for the trivial 
group. 

If fT has order 5, then Wh( fT ) 0. In fact, recent 
computations show Wh( fT) to be infinite cyclic. 

Various facts about Wh can be found in Milnor's paper. 
/'^Whitehead Torsion" Bulletin of A.M. S, , Vol.72, No. 3, 1966_7. In 
particular, the torsion of an h-cobordism can be computed (in a 
straight-forward, may be obvious, way) from any handle presentation. 

There is another remark about matrices that is useful. Let 
A be an n*k matrix over Z fT, such that any k-row-vector /"i.e. 
1 A k matrix_7 is some left linear combination, with coefficients 
in Z (T, of the rows of ii; in other words, A corresponds to a 
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sur.iection of a free ZfT-module vdth n basis elements onto one 
vdth k basis elements. Let denote the k X k zero matrix. 
Then there is a product of elementary (n+k)̂ «> (n+k) matrices, E, 
so that E. ̂ Ojĵ  ~ V ^^ ^ ^^^^ exercise. 

8.3.7> In homotopy theory we shall use such devices as univeral 
covering spaces, the relative Hurewicz theorem, and some homology 
computations (with infinite cyclic coefficient group). For example, 
if (H,T) is a k-handle, then 

H^ (H,T) - 0 for i / h 
\ (H,T) = Z, an infinite cyclic group, 

We always arrange to have the fundamental group to act on 
the left on the homology of the universal covering space. 

Suppose that (M,X) is a relative n-manifold, special case, 
and (N,X) = (M,X) + ^^ +. where the ^'s are handles of 
index k. Suppose X, M , N are connected, and that IT^ (M)—^FT (N) 

is an isomorphism; this implies that we can imagine not only that MCN, 
but that MCN, wheredenotes universal covering space. Call 
ST. rr/M). 

Then the homology groups are left Z fT-modules. 
More explicitly, H^(TI,M) = 0 if i / k; and HJ^(N,M) is a free 
Z CT-module with basis ̂  ̂ ^^ ,..., . What does [^j] mean? 
We take any lifting of A . = (H,T) to s handle (H',T') in 'N; 
we pick either generator of ,T ), and map into Hj^(N,M) by 
inclusion; the result is ^ j ] • The ambiguity in defining is 
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simply stated! If we make mother choice, then instead of we 
have j] , where X ^ 1 H" • 

When k 2, we can go further and say that, by the relative 
Hurewicz theorem, lY H^.(N,M) fTj^CNJM). And thus we have a 
fairly well-defined basis of fTj^(N,M) as a Z fT -module, dependent 
on the handles , ,... , , 

' P 
This shows, by the way, that (N,H) is (k-1)-conneoted. 

We might have expected this, since, homotopic^lly, N is obtained from 
M by attaching, k-cells. 

Another thing is a version of Lefschetz duality as follows; 
If M is an oriented manifold, and ^ CI K with X a polyhedron, 
then A.)~ H ^ ^(IH, 3 M - X ) . Since universal covering spaces can all 
be oriented, this works there. In particular, if X M is a homotopy 
equivalence, then fr(M, X) ^ 0 for ^11 i, and so ^ M-X) = 0 
for all i. When d M-X is the universal covering space of 0 M-X, 
that is, when rf̂ C ^ M-X) fT, (M), then the relative Hurewicz theorem 
will show that ^ M-XC^M is a horaotooy equivalence. 
8.3.8. Infinite polyhedra. /in infinite polyhedron P is a locally 
compact subset of some finite-dimensiona?. real vector space, such that 
for every xfe P, there is an ordinary polyhedron Q C P, such that x 
is contained in the tonoloctical interior of Q in P. A polyhedral 
map f : P^-—^ P^, between infinite polyhedra is a function, such 
that for every ordin---'ry polyhear:)n Q CP^? thp gr?ph T^CflQ) is an 
ordinary polyhedron. 

The category of infinite polyhedra includes ordinary 
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polyhedra; and in addition, every open subset of an infinite polyhedron 
is an infinite polyhedron. 

The link of a point in an infinite polyhedron is easily 
defined; it turns out to be a polyhedral equivalence class of ordinary 
polyhedra. Hence the notions of manifold and boundary in this setting 
are easily defined. 

If M is an infinite n-manifold, then any compact subset 
X^M is contained in the topological interior of some ordinary 
n-manifold NC M. 

As for isotopies, we restrict ourselves to isotopies vrtiich 
are the identity outside some compact set; such are the isotopies 
obtained from finitely many cellular moves. Any such isotopy on the 
boundary of M can be. extended to an isotopy of this sort on M. 

We can talk of regular neighbourhoods of ordinary (= compact) 
subpolyhedra in an infinite polyhedron, and the same theorems (including 
isotopy, in this sense) hold. 

These concepts are useful here because if (M,X) is a 
relative n-manifold, then ^(M,X) is an infinite n-manifold. And 
now, any isotopy of ^(M,X) extends to an isotopy of M, leaving a 
neighbourhood of X fixed. In other words, this is convenient 
language for dealing with relative manifolds. This is the only' 
situation where we shall speak of infinite polyhedra; it is, of course, 
obvious that infinite polyhedra can be of use in many other cases 
which are not discussed in these notes (in particular, in topological 
applications of the "Engulfing Theorem"). 
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Modification of handle presentations. 
If 3C. = Â ) and = B^) are . 

handle presentations of the relative n-raanifolds (M,X) and 
respectively, an isomorphism betvfeen ^ gjid is a polyhedral 
equivalence h i M — ^ N taking X onto x' and onto B^ for 
all i. Such an isomorphism gives a 1-1 function between handles and 
preserves various other structures! 

•l̂et IjK. - A^) be a handle presentation of the 
relative n-manifold (M,X) and let f : Â^ A ̂^ be a polyhedral 
equivalence taking X- onto itself. Then by ^ is meant the handle 
presentation B^) of (M,X), where 

B^ = f(A^) for i < k 

B^ - for i > k. 
It is clear that ^ is a handle presentation of (M,X), 

the handles of index > k are equal to those of "^^while a handle of 
of .index ̂  k will correspond via f to a handle of 

There is another way upto isomorphism of looking at 
Suppose f : A^ ^ A^ is as before. Let (H, T) be 

a (k+1)-handle of the presentation gt . Attach (H,T) to not 
by the inclusion of T in b (Aĵ , X), but by f|T. In this way 
attaching all (k+1 )-handl̂ ŝ we get a relative manifold 
an equivalence f extending f. Similarly attach the (k+2)-handles 

iC I 
to Bĵ ^̂  one for each (k+2)-handle of ^^ 
restricted; and so on. In this way we get a relative manifold (B^, X) 
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and a handle presentation >••••> j B^) of (B̂ ĵX)-
This will be denoted by . f gives an equivalence of (M,X) vdth 

f 
(B^, X) and an; isomorphism of vdth ̂  . 

The main use in this chapter of the above modifications is 
for simplifying handle presentations, that is to obtain presentations 
vdth as few handles as possible, or vathout any handles or without 
handles upto certain index using the given algebraic data about (M,X). 
It should be noted that (1) ̂  ^ need not be isomorphic to ^ ^ and 
(2) is not a handle presentation of (M,X). (2) is not a serious 
drawback, , since ^ ^ isomorphic via and so whatever 
simplification one can do for can be done also which 
is a handle presentation of (M,X) or we cfn first do the simplifications 

f -1 
in and pull the new handle presentation to one of (M,X) by f^ . 
We vdll adopt the procedure which is convenient in the particular case. 
If f : Aĵ  ^ Aĵ  is iaotopic to the identity leaving X fixed, 
(and this will be usually the case), t h e n a n d ^ ^ vdll have many 
homotopy properties in common; but more of this later. 

The most frequently used ways of modifications are catalogUeeL 
below: 
8.4.1. Let (H,T) be a k-handle of the presentation ̂  = (A ^j..., A^) of (M,X). Then if S • is a transverse sphere and N = Ĥ--T the 
transverse tube, we have N a regular neighbourhood of S in o(A^,X). 
If n' is any other regular neighbourhood of S in ̂  (Aĵ ,X), there is 
an isotopy of h (A^,X) relating N and N and this can be extended 



212 

to to give an end result f̂ , with f̂ (N) = N' . Then ̂  ^ 
has its new handle (f̂  H, f̂  T) whose transverse tube is n', D 

8.4.2. Let (Ĥ , T̂ ) be a (k+1)-handle of ̂  , with an attaching 
sphere ̂  . Then T̂  is a regular neighbourhood of 2Z ̂ ^ 
If T̂ ' is any other regular neighbourhood of ̂  in h ( w e 
can obtain a polyhedral equivalence f̂  of which isotopic to 1 

£ 

fixing X, such that f̂  (T,) - T̂ '. Then ^ 2 (which is isomorphic 
to 2^—1 ) will have its (k+1 )-h:mclf. corresponding to . (H , T ) 

2 I i 
to have attaching tube T̂ ', and handles of index ̂  k will be un-
changed. Qu 

Combining 8.4.1 and 8 4.2̂  we have 
8.4.3. Proposition. Let^^= Â ) be a handle presentation 
of the relative n-manifold (M.X); let be a k-handle and ̂  a 
(k+l)-handle with a transverse sphere of ̂  being S and an attaching 
sphere of ̂  beinr ̂  . Let N and T be regular neighbourhoods 
of 3 and ̂  in ̂  (Â X̂). Then there is a handle presentation ' 
of (m', x') is equivalent to (M,X) with ̂ ^^ being isomorphic to 

for some f i I-.̂ —-̂  k̂  isotopic to the identity leaving X 
I O , II , fixed; so that in the handles % and fj corresponding to 

and ^ are such that: 
the transverse tube of is N, 
the attaching tube of ' is T, and 
the levpl Â ' of ̂  is equal to the 
k̂ ^ level Aĵ  o f ^ . 

ProofJ Using the equivalences f̂  and f̂  given by 8.4.1 and 8.4.2, 
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is the required presentation. It is isonorphic to the 
presentationnP. ^ of (M,X). Since both f and f are 

isotopic to the identity leaving X fixed, f̂  has the same 
property. The last point is obvious. Q 
8.4.4. Let^ = (H,T) be a (k + 1 )-handle of^^ , and S an attaching 
sphere of ̂  . S is in ^ Suppose that is another 
k-sphere in ^ and that there is an equivalence f of 
taking X onto'itself and such that f(S) = Then in ̂  the 
handle ' corresponding to will have Ŝ  as an attaching sphere. 
If, for example, we can go from S to Ŝ  by cellular moves, the we 
can obtain an equivalence f of Aĵ  isotopic to 1 leaving X fixed 
and with f(S) = This will also be used in cancellation of handles, 
where it is more convenient to have certain spheres as attaching spheres 
than the given ones, D 
8. 4. 5. Let ^ be a k-handle in a handle presentation 3C. = ( • • • 
of a relative n-manifold. Then if k ̂  n-2, there is h isotopic to the 
identity, h ; ^ "'k' X fixed, such that the handle ^ 
of corresponding to has a boundary core in s/̂ 'Jhere 

^ (J... 
(Header, have faith that this is useful.') 
We prove this by choosing attaching spheres for all the 

(k+1)-handles, findinc a transverse sphere for ^ that intersects all 
the attaching spheres only finitely, noting that fie transverse sphere, 
contains other points, and then shrinking the attaching tubes and the 
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transverse tube conveniently. More explicitly, 
Let ^ ^ .., be the (k-1)-handles of , with 

attaching spheres Ŝ  ,..., Ŝ , Let N be the transverse tube of ; 
there is a polyhedral equivalence f s N S D^ /s A so that for 
any x^ int D^, f~\k is a transverse sphere to^h. Now, 
(S^U... USp)f\ N is k)-dimensional, and so, trianguj-ating 
projĵ k * f so as to be simplicial and picking x in the interior of 

k 
a k-simplex of D (see 4.2.14), we have found a transverse sphere 

to , such that ^ A (S^U ... US^) is 
finite. Now, ^ is an (n-k-1)-sphere; and since k 4 n-2, 
contains infinitely many points; there is y t £ - ... 0 S^). 

Now then, if we take very thin regular neighbourhoods of 
regular neighbourhood of T" will 

intersect those of Ŝ  ,..., Ŝ  in only small cells near each point 
of intersection of ^ f\(Ŝ  ... Ŝ ), and hence there will be a cross-
section of the 21 -neighbourhood /"i.e., corresponding to 
D̂ â, ,z (X,z) - f(y)_7, through y, not meeting any of 
the S^ neighbourhoods. We make these regular neighbourhoods the 
transverse tube of Ti and the attaching tubes of 

^ 
1 p 

changing ^ to where ĝ  and gg are equivalences 
isotopic to the identity, fixing X. In ^ '2 we have 

a boundary core of the handle corresponding to which misses all 
the attaching tubes of the (k+1)-handles (this is that "cross-section 
through y"). We define h = ĝ  I and since is isomorphic 
to (^^g^^ ^ , we have some boundary core of ^ where ^ ^ is 
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the handle corresponding to ^ which does not intersect the attaching 
tubes of all the (k+1 )-h'indles, and is therefore in ^^ * 

S.5. Cancellation of handles. 
Conventions Let us make the convention that a submanifold of another 
manifold should mean this: 

If A C B , A and B are PL-manifolds, we call A a 
submanifold of B, if and only if, An^ B is (dim A - 1 )-submanifold 
of ̂ A, We are usually in this section interested only in the case 
dim A = dim B. 

With this convention, if A is a submanifold of B, then 
B - A is a submanifold of B, and bd ̂ (A) - bd g(B - A) ̂  d A - dB. 

If C C B C A all PL-nanifolds such that each is a submanifold of 
the next, then A _ (B - C) = A - B U C. We may therefore be justified 

somewhat in writing a - B for n - B. 
Thus, hereafter, h is a submanifold of 3 means that A 

is a submanifold of B in the above sense, and in that case B - A 
stands for B - A. 

Let ̂  = (A ̂  Â ) be a handle presentation of a 

relative n-manifold (M,X). Let A = (H, ̂  H - N) be a k-handle 
with transverse tube N, and fl = (K,T) be a (k+l)-handle with 
attaching tube T. Note that NUTC with the above con-
ventions we can write 

\ - ft = (d^ - K) u H. 
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a transverse sphere o i A 

an sttac 
sphere of 

ii is attached to Â  by T 
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8.5. U Definition. IVe say that A and can be cancelled if 
1) NAT is a submanifold of both N and T 
2) N - (NHT) and T - (N^T) are both (n-1)-cells. . 
Suppose A and can be cancelled. Then 

Assertion 1. (Aĵ  )n K is an (n-1)-cell contained in £ ,X) 
and in 3 K. 

In fact, (Â  )AK - T - (NH T), which we assumed to be 
an (n-l)-cell. 
Assertion 2. /C ) U k)H H is an (n-1 )-cell contained in 
^ ((Â - fl) U K,x)and in d H. For 

O K ) n H - attaching tube of plus Nr\T 
- (̂  H - N) U (NOT) 
= ^ H ™ (N - NHT) 

and this is an (n-1 )-cell, since 6 H is an (n~l)~sphere and (N - NOT) 
is an (n-1 )-cell in 6 H. '' 

Combining these two assertions with proposition we 
have , . 

* i 

8. 5. 2. Proposition. Suppose (A_̂  ,. . . , Â ) is a handle presen-
tation of a relative n-manifold (M,X); and there are ^ = (H, d H-N) 
a k-handle, and = (K,T) a (k+1)-handle that can be cancelled. 
Let be any neighbourhood of N H T in Â . Then there is a poly-
hedral equivalence 

• f s (A^-^ , -X) (Aĵ  + I , X) 
which is identity outside . • 

This being so, we construct a new-handle presentation 
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(B_, ,.. . , B^) of (M,X), vrtiich we denote by^ - d A ) as 
followsI 

B̂  = f (Â ) for i< k 

Bj, = f ( V ^ ) = '̂k ^ 

B̂  = Â  for i> k. 

This of course depends on f somewhat* observe that, since the attaching 
tubes of the (k+1)-handles are disjoint, the attaching tubes of 
(k+1)-handles other than ̂  are in ^ X) - T ̂  ^ (Â  + k,X), so 
that ̂  - (fC ) is a genuine handle-presentation. 
8. 5. 3. (Description of ̂  - ( ^ )). The number of i-handles in 

- J is the same as the number of i-handles of for 
i / k, k+1. For i > k, each i-handle of ̂  is a i-handle of 
^ - with the single exception of ̂  ; and conversely. For 
i 4 k, each i-handle ofexcept A , say "C , corresponds to the 
i-handle ) of - ( ̂  , and conversely each i-handle of 

X  - dA 
) . is of this form. If the attaching tube of does not 

intersect some k-handle 'C , we can arrange f 't to be identity, so 
that V itself occurs in 

ilA). Q 
The conditions for and to cancel are somewhat 

£ 4 
strinf̂ ent. We now proceed to obtain a sufficient condition on TL and , 

£ I 
which will enable us to cancel the handles corresponding to w and ru in some This requires some preliminaries. Suppose A, 3, G are three PL-manifolds, AUB CC - c) C. dim A = p, dim B - q and dim C - p+q, - ds = ̂  . Let x fcA 
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8 5.4. Definition. A and B are said to intersect transversally at 
X in C , if there is a neighbourhood F of x in G and a poly-
hedral equivalence f ; F 3 •«• * v v/here 3 is a (p-1 )-sphere, 

a (q-1)-sphere, such that 
1) f(x) = V 
2) f(A OF) - S * V 
3) f(B rvF) = 21- V . 

8.5. Proposition. Let S and ̂  be (p-1)- and (q-1)-spheres 
respectively and E = 3 * X * v . Let v , ts - v . 
Suppose ̂  is any simplicial presentation of E containing full sub-
presentations ̂ ^ and J^ covering D and A . Let P = | M ̂  ( £) )j 
and Q=|N . Then 

1) PHQ is a submanifold both of P and Q and 
is contained in the interior of E (p, Q, and 
PRQ are all (p+q)-raanifolds) 

2) P - FA Q ^ P A 8E 
Q - PHQ ^ Q H S E . 

Proofs First observe that, if the proposition is true for some centering 
of ̂  , then it is true for any centering of ̂  . Next, if is 
some other presentation of E such that D and A are covered by full 
subpresentations, it is possible to choose centerings of ^ and ^ 
so that P = P' and Q = Q' . ' (p', Q' denoting the analogoues of P 
and Q with reference to ^ '). Thus it is enough to prove the 
proposition for some suitable presentation ^ of E and a suitable 
centering of ^ Now we choose to be a join presentation of 
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E = S ^ V and choose the centering so that (see 6.8.3 and 
the remark thereafter) 

P' Q' = (St(v, d = Ci (S ), 

PUP'HQ' = and 

QLpVQ' = (Q'r>d?5)x[i, 0 . 

And in this case (1) and (2) are obvious. Q 
8 5.6. Proposition. Suppose A and B are spheres of dimensions 
p and q respectively, contained in the interior of a (p+q)-manifold 
C and that A and B intersect at a single point x transversally 
in C. Then there are regular neighbourhoods N and T of A and 
B in C, such that 

1) NaT is a submanifold of both N and T 
2) N - (N^T) and T - (NfyT) are both (p+q)-cells. 

Proof; Let F be the nice neighbourhood of x in C given by 8.5.4 
i.e. there is a polyhedral equivalence fsF^i E = S * H * v 
where S is a (p-l)-sphere and a (q-1)-sphere, such that 
f(x) = V, f{hr\F)  ^ S * V , and f(BOF) = X * v . Then (A - Fj 
is a (p-O-cell and (B - F) is a (q-l)-cell. Let /{^ and ̂ ^ 

be triangulations of F and E such that f is simDlicial with 
reference to ^ and We can assume ^ contains full sub-
presentations covering S * v and * v . Now some refinement 
/f of ^ ^ can be extended to a neighbourhood of A (j B, denote it 
by / f i t can be supposed that contains full suboresentations 
(Jl , (J2) covering A, B respectively. Let be a centering of 



• 221 

Dejnote by ̂  the triangulation of E corresponding to /C by f, and 
by ̂  the centering of ̂  corresponding to ̂  . Choose N =\N ̂ i()| 
and T = ((B )| 3 înd let P, Q be as in 3,5.5. If . 
P̂  = f"UP), Q̂  = then P̂  ™ (P̂ n Q,) VPlH^F and 
Q̂  - (p, rvQ̂ ) V n^F. Clearly P̂ C N, Q̂ C T r̂r- submanifolds and 
Nr\T = P^nQ^, Thus imi is a submanifold of both N and T. 
N - (NHT)' - N - Q,) = (N - P,} U (P̂ n Q̂ })" collapses to 
(N - P̂ ) since P^-(P^AQ^) collapses P, ry 6 F C (N - P̂ ). But 
N - P̂  is a regular neighbourhood of T'ZT in C - F which is a 
(p-l)-cell. Thus N - (NOT) \ N - P̂  V 'A - F which is collapsible. 
Thus N - (NfVT) is a collapsible (p+q)-!nanifold, hence a (p+q)-cell. 
Similarly T _ (Nr\T) is a (p+q)-cell. Q 
8.5.6, Definition̂  Let ̂  = ,..., Â ) be a handle presentation 
of a relative n-manifold (M,X). Let 'fu be a k-handle and ^ be a 
(k+l)-handle of ̂  , We say that A) can be nearly cancelled if 
there is a transverse sphere S of and an attaching sohere X of ̂  
which intersect a single point transversally in X), 
8 5.7. Proposition. Suppose^ is a handle presentation of relative 
n-manifold (M,X) A* a k-handle and i{ a (k+1 )-ha.ndle in 

Ifi 
and can be nearly cancelled, then there is a polyhedral equivalence 
f s j'î  -—^ Â  isotopic to tĥ^ identity leaving X fixed such that, 
in^C ̂  the handles 'fi' and corresponding to K and ̂  can 
be cancelled. 
Proof! Follows from 8. k.3 and 8.5.6, Q 
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8.6. Insertion of cancelling pairs of handles. 
In this section we discuss the insertion of cancelling pairs 

of handles and two applications which are used in the following sections. 
First we form a standard trivial pair as follows: 

Let D be a k-cell, I = l] and A an (n-k-1 )-cell. 
Then E = D X I X A is an n-cell. Let 

= X A 
T̂  = dD ^ 

Clearly ̂  = (Ĥ , T̂ ) is a handle of index k. Next, let 
HG = D* L0,I]X A 

Clearly, ̂  = (H2, Tg) is a handle of index (k+1). Finally, let F 
denote (D X 0 X ) (J ( c)D (D X 0 X A ) A( ̂  D ̂  AA. )= S D XO Xil 
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is an (n-2)-manifold, hence F is an (n-1)Tmanifold. Moreover F 
is collapsible, hence it is an (n-l)-cell. 

Now, let.^^ be a handle presentation of a relative n-manifold 
(M,X); we take an (n-1 )-cell F' in ^ away from the k- and 
(k+1)-handles. That is F' is in the common portion of 
d X), ^Aj^, X) and d X) and clearly it is possible to 
choose such an F' if (k+t )<n, that is k ^ n-2. Now we take some 
equivalence ^ ; F ^ f' and attach E to A^ by ̂  . Denote 
the result by A^UE. Since E is an n-cell meeting in an 
(n-1)-cell F', there is an equivalence f : A^ ^ A^U E leaving X 
fixed. Then we get a new handles presentation (B_| .., B^) of 
(M,X) as follows: 

®i = > for i<k, 

= r 
B̂  = Â  for l>k. 

Next we consider the problem of attaching a cancelling pair 
of k- and (k+1 )-handles to Â ,̂ with having a prescribed 
attaching sphere. We recall from Chapter VII (7.2) that a sphere in the 
interior of a PL-manifold N is unknotted (by definition) if it bounds 
a k-cell. In such a case it bounds an unknotted cell (again in the 
sense of 7.2). If S and S' are two -unknotted k-spheres in the 
same component of N - ^ N, then there is an isotopy hj. of N 
leaving N fixed such that h^(S) = S', Similarly if D and d' 
are two unknotted k-cells in the same component of N - ̂ N, there is 
an isotopy of N taking D onto d' .' Similar remakrs apply in the 
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case of relative manifolds also. 
Now consider just Â ,̂ let F' be any (n-1 )-cell in 

^ (Â jX) and fom by an equivalence F F'. Consider 
S ̂  ^DXXX e, where | C. 1 and e ^ A - ^ A . ^ is an 
attaching sphere of ̂  , and ^ A • 
=-̂ (D XO) U(D is an attaching sphere of . 

C 

And fo A 0 0 = C, say, is a k-cell bounding 
S = ^D X dL>i e, an attaching sphere of 'fb . Moreover 

C r\£ = ̂ D 0 k) 
- C - ̂  D YL [i,^] K e 
- C - (a regular neighbourhood of S in C). 

Finally G is unknotted in F. 
The result of all this is, if A is a (k-1)-sphere bounding 

an unknotted k-cell B in (̂iî , X), then we can attach a cancelling 
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pair of k- and (k+1)-handles ) such that A is an attaching 
sphere of Tl and an attaching sphere of ri intersects d (iV,X) in 
B - (a given a regular neighbotirhood of A in B). This can also be 
seen as follows: 

Let L be an (n-l)-cellj A a (k-l)-sphere in L 
bounding an unknotted k-cell B in the interior of L. Let M be 
an n-cell containing L in its boundary. We may join A and B to 
an interior point v of M and take second derived neighbourhoods. 
Let H be a second derived neighbourhood of A # v and K be the 
closure of [second derived neighbourhood of B * v - Ĥ  . Then 
(H, HAL) is a k-handle, and (K, (KAH) U (KrvL)) is a (k+1 )-handle. 
The k-handle has A as an attaching sphere, and an attaching sphere 
of the (k+1)-handle intersects L in (B - a regular neighbourhood 
of A in 3). Thus we have, 
8.6.1. Let = (A_̂  5....J Â ) be a handle presentation of a 
relative n-manifold (M,X) and let 3 C be a (k-l)-sphere 
which bounds an unknotted cell T in Then there are a 
k-handle "Rj and a (k+1)-handle ̂  , such that 

(1) S is an attaching sphere of "fl 
(2) There is an attaching sphere of with 

^ Q Aĵ  very closed to T, tĥ.t is X 0 Â  

can be assumed to be (T- R prescribed regular 
neighbourhood of S in T). 

(3) ((/̂ ,X) + "R.) + ̂  exists and is polyhedrally 
equivalent to (Aĵ ,X) by an equivalence which 
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is identity outside a given neighbourhood of 
T in 

If S is in ^ > ^ we can choose fV to 
have its attaching tube in ^ ^ X), so that there is an obvious 
handle presentation of ((/̂  + "FU) , X). We five below two appli-
cations of this construction. 
8.6.2. Trading handles. Let ̂  = Â ) be a handle 
presentation of a relative n-raanifold (M,X). Let p̂  be the number 
of i-handles in ̂  . Oppose that there is a (k-l)-handle L 
(2 ̂  k ̂  n-1) with a transverse sphere ̂  , and that there is a 
(k-O-sphere S in ^ ( , X) r\ ̂  ( s u c h that (1) S is 
mknotted in h (2) 3 intersects ̂  transversally at exactly-
one point in ^ ( , X). Then thers is a procedure by which we can 
obtain another handle presentation ^C (M,X), such that (a) 
for i / k-1 or k+1, the number of i-handles in ̂  is equal to the 
number of i-handles in^^ ', (b) the number of (k-1 )-handles in 
is p̂ ĵ  (c) the number of (k+1 )-handles in ^^ is 1. 
This is done as follows: 

First consider only Aĵ. Applying S.6. 1, we can add to 

a cancelling pair of k- and such that S 
is an attaching sphere of , and the attaching tube of S is in 

relative manifold 
(B,X) has the obvious handle presentation - ) 
where 

B̂  == ii., for i 4 1̂ 1 
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"k.I = 8. 
In the handles and "fu can be nearly cancelled. 

Hence for some equivalence f of \ isotopic to identity and 
leaving X fixed, in the handles and ft (= ̂  ) corres-
ponding to 'C and fi can be cancelled. Let = -( , ). 

is a handle presentation of (B,X); the number of i-handle in 
II It 

•̂(3 for i <k-1 is p^, the number of (k-1 )-handles is is 
p •• 1, the number of k-handles is p, and there is one (k+1)-handle. 
k™ 1 ^ 
Also there is an equivalence tC : ri^—^ B which can be assumed to be 
identity near X. Thus we can pull back to a handle presentation 
% o f by 

Now, we would like to add the k+1)-handles of to 
to get a new handle presentation of (M,X)., But it may happen that 
the attaching tubes of the (k+1)-handles of ̂ ^ intersect the 
transverse tube of ) which is in (A ,X), However, we can 

K 
adopt the procedure of 8.4.5, to get the' desired type of handle 
presentations as follows: 

Let if Ai'^^'K be the (K., )-handles 
of with attaching tubes T , T T respectively., 

-(k+l) 
Choose some Attaching soheres S , . . , 3 of these handles, 

P(k+i;i_ 
and then a transverse sphere of i ri) avoiding 
S, S . This is done in the same way as in 8,4.55 using 

P(k+1) 
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the product structure of the transverse tube of X ) as 
A and noticing that the S^ are now .k-dimensional. 

Then choose a regular neighbourhood of ^ which does not inter-
t 

sect the S^ s and do a modification of type 8,4,1 so that, for some 
g, in the handle ' correspondine; ) has N^ as 

§ 

its transverse tube. Now choose regular neighbourhoods T^' of S^ 
in such that T ^ ' A N ^ = 0 for all i and T^' O T^' - 0 
for all i, j, i / j. There is an equivalence of \ isotopic 
to the identity leaving X fixed such that fi (T^) = T^' for all i. 
Now attach the handles ^̂ ^̂  ̂  to A^ not by the inclusion of T^ 
but by j T^. Then we obtain a relative n-manifold say (C,X) and . 
a genuine handle presentation say ^ of (C,X). Moreover the 
equivalence of Â ^ can be extended to an equivalence ^ ^^^ of 

with C. Now pull back '̂ C, to Â ^̂  by ( {ij^+^T^ In the 
handle presentation ( B ) of A , there are handles 

' k+1 1 K+i 
only upto index (k+1); so that the handle of index ^ k+2 of ^ ^ 
can be added as they are to get a handle presentation of (M,X) of 
the derived type. D 
8.6.3. The second application is concerning the maps in the homotopy 
groups: - It will be seen later 
that under suitable assumptions, these are free XST -modules with more 
or less well defined bases. The problem is to find handle presentations 
for which the matrices of b^'s with reference to preferred bases will 
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be in some convenient form (8.9. ). Here we describe an application 
of 8,6.1 which is useful for this purpose. 

Let N be a PL n-manifild> and assume that ^N is connected. 
Let ̂  J, two k-handles (2 k 4 n-2) so that n ̂  4) attached 
to N. If we choose a cell in b N intersecting the handles as "base 
point", any attaching sphere of ( determines a well defined 
element in ( d N). Let the elements in IT^ ̂ (^N) determined 
by and \ be cC -nnd oĈ . Let Q be., an element of 

I , ^ I IC 

rr̂ ( ̂ N). Imagine that the handles are in the form^ ̂  = (DxA, ̂ D^XA^), 
a k-cell, ^^ an (n-k)-cell i = 1,2, Let p^^ Then, 

we have surface cores Ĉ  = D^^ P̂  of i? and representatives 
Ŝ  = ̂  Dĵ  * p̂  of X Let P be a path between a point of and 
a point of Ŝ  in ̂ N representing 0. Since n we can 
assume that P is an embedded arc, and since k ̂  n-2, that it meets 
each Sĵ  at exactly one point. Now ; P appears also as an arc joining 
Ĉ  and Ĉ . Thicken P, so that we have an (n-i)-cell Q which 
intersects Ĉ  and Ĉ  in (k-1)-dimensional arcs Ê  and Ê  
with Ê  = ̂  C^n^Q. We can be careful enough to arrange for Ê  
to be unknotted in h Q, so that there is a k-cell F C Q with 
^ F ndQ = E, u E2. 

The composite object Ĉ  U F U Ĉ  is now a k-cell with 
boundary (Ŝ  - Ê ) - (E^UE^)^ ̂ (^n ~ ^^^^ represents 
in (T N) the element X, + Q "C - The 'sign depends on F, k-1 I - 2 . 
and we can choose F so as to have the prescribed sign (see Chapter VIl). 
Mrreover we can assume that Ĉ  FU C2 is unknotted in 
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Stretch C^UFUCg a little to another unknotted k-cell T so that 
S = ̂  T C ( ̂ N - union of the attaching tubes of ^ and ^ 
That is, we have a (k-l)-sphere S in | N representing 
X^ + & 0 ( = , prescribed) and bounding an unknotted cell 
T in h (N + I + ^̂ ^ ^ ^̂  away from ^ ^ and fv . We now 
add a cancelling pair of k- and (k+1)-handles ^ and A , so that 
an attaching sphere of ^ is S and an attaching sphere of ^ inter-
sects (̂(N + fC ̂  /fg) along J^UFUC^. 

Now, 
N + T ) 

1 2 * 1 2 
But then ^ and ^ nearly cancel, since attaching sphere of 
intersects a transverse sphere of ^^ exactly as Ĉ  does, that is, 
at one point, transversally. So that, after an isotopy we can find a 
(k+1 )-handle ^ such that ^ and actually cancel. Thus 

(N + / ^ + ^ + ^ (N + ̂ ^ + £ + A' 

- (N + " 
We have proved̂  
8.6.4. Proposition. Let N be a PL n-manifold, with connected 
boundary d N; Let fC ̂  and ^ two handles attached to N, 
and cL ̂, oC 2 be the elements in (T,̂  ̂  ( d N) given by "fl ̂  and 

and 9 be an element of IT ^ N). Then there exists a handle £ which 
can be attached to N, with its attaching tube away from ̂  ^ and "fl ̂  

so that N + •i.  A and the element of IT (d N) 
1 2 2 k™* 1 

represented by ̂  is tĈ  ̂  0 sign prescribed. D 
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Remark 1; Some details; such as thickening of P, choosing certains 
cells so as to be unknotted; are left out. These are easy to verify 
using our definition of unknotted cells and choosing regular neighbour-
hoods in the appropriate manifolds. There is another point to checks 
that the homotopy groups can be defined vath cells as 'base points', 
so that we can get away without spoiling the embeddings (of attaching 
spheres in appropriate dimensions), when forming sums in the homotopy 
groups or the action of an element of the fundamental group. 
Remark 2: In 8.6.4, instead of the whole of ^ N, we may as well take 
a connected (n-1)-manifold N' in ^ N and do every thing in its 
interior; of course, now oC, J^ ̂  ^ iT̂  ^(N') and ^^(N'). 
Remark The proof can also be completed by observing that S and Ŝ  
differ by cellular moves in (N + 

8.7. Elimination of 0 - and 1-handles. 
The first thing to do is to remove all handles of index 0, 

and 1 to attain a stage where fT ̂  (A^) fT̂  (M) . At this point we 
can interpret A^, A^ ^) and so on as homology groups in universal 
covering spaces and this helps things along. 
8.7.1. Proposition. Let (M,X) be a relative manifold, M connected, 
X / ^ , and a handle presentation of (M,X). Then all the 
0-handles of ^ C be eliminated by cancelling pairs of 0- and 
1-handles of ^ ^ to obtain a handle presentation of (M,X) free of 
0-handles. 
Proof: A 0-handle ^ = (H, 0 ) and a 1-handle 'fe = (K,T) cancel 
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if and only if the attaching sphere ^ of ^ intersects ^ in' a 
single point; for the attaching tube T of consists of two dis-
joint (n-1)~cell8, and the transverse tube of £ is ^ H, and so 
what we need is for exactly one of the (n-1)-cells of T to be in 
b H. So all the 0-handles of IK. which are connected to (/ 0, 
since X / 0) by means of 0- and 1-handles can be eliminated. But 
every 0-handle must be one such; for if is a 0-handle of 
which is not connected to by 0- and 1-handles, then ̂  together 
with all the 0- and 1-handles connected to it will form a conponent 
of Â  which is totally disjoint from Thus Â  has at least 
two components, • and so, since C T q C A ^ ) — ^ ^ q ( M ) is an isomorphism, 
we have a contradiction to the assumption that M is connected. 0 

For the next stage, we need a lemma: 
8.7.2. Lenma. A null horaotopic 1-sphere in the interior of a 
PL-manifold M of dimension is unknotted. 
Proof; Let S be a null homotopic 1-sphere in the interior of M. 
We have to show that S bounds a 2-cell in ^L Let D be a 2-cell, 
and X ^ equivalence of 6 D • with- S. Since S is null homotopic 
«C extends to D, Approximate ^ by a map ̂  in general position 
such that d D ^ «L|dD, and ̂  (D) C int M. The singular set 
Sg ( p ) of P consists of finite number of points and ) etc. 
are all empty. So we can partition p ) into two sets 
P̂, » [q̂  such that p (p̂ ) = P (q̂), H m 
and there are no other identifications. Choose some point p on d D 
and join p, p ,..., p I by an embedded arc V ' which does not meet any \ I m 5 
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of the q^' s. Let N be a regular neighbourhood of "/in D, which 
does not contain any of the q^'s. N is a 2-cell. 

Let N = ^ N - L = K, and D - N =« d'. 
Since L is a 1-cell, K is also 1-cell, and D' is a 2-cell. 
And |3 I N as well as D' are embeddings. So ^ ( d D' ) is un-
knotted in M. But by 7.1.6, there is an isotopy carrying p(L) to 
P (K) and leaving j3(^ D'- K) fixed, that is, the isotopy carries 

S onto P(6D'). Hence S is also unknotted. D 
» 

Remarks; (1) The same proof works in the case of a null homotopic 
n-sphere in the interior of a ^ (2n + 2)-diniensional manifold. 

(2) The corresponding lemma is true in the case of 
relative manifolds also. 

(3) If S is in ^ M, then the result is not known. 
It is conjectured'" by Zeeman, that the lerama in this case is in 
general false (e.g. in the case of contractible 4 dimensional manifolds 
of Mazur). 
8.7.3. Proposition. Let A^) be a handle presentation 
without 0-handles of relative n-manifold (M,X) and let rr^(M,A_^) = 0. 
Then by admissible changes involving the insertion of 2- and 3-handles 
and the cancelling of 1- and 2-handles, we can obtain from ̂  a handle 
presentation of (M,X) without 0- or 1-handles, provided n^ 5. 
Proof; Let ^ be a 1-handle of ̂  . By &.L. 5, we can assume that 
there is a surface core of in ̂ (Ag, X), 

Because ' = 0, then JV^CA^, ^ 0 (from the 
homotopy exact sequence of the triple (M, A^, A ̂ ); and so. C is 
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homotopic leaving its end points fixed to a path in . 'bQ̂j.] ^ 
is a homotopy equivalence (we are confining ourselves to the special' 
case after 8,3). So we get a map, where D is a 2-cell 

f s D — A g - int A ^ 
vdth ^D ^C, such that f(d D - C)C f( C ^ MQ, 

Now in the (> 4)-raanifold ' ^ ̂ he removal of the attaching 
tubes of the 1-handles does not disturb any homotopy of dimension̂  2, so 
thatJ we can arrange for 

, f(&D - C) C ^ (A_̂ ,X) - (attaching tubes of 1-handles) 
C ,X) (since - Â). 

Likewise in the removal of the attaching tubes of • 
2-handles can be ignored as far as one-dimensional things go, so that 
we can assume 

f(5D- C)C ̂ (A^.X), 

and that f | d D is an embedding. Also, we can arrange f ( ^ D ) to 
intersect ^ precisely along C. 

Finally, then we have 
f t D — ^ A^ 

with f(^D)C 'd (Â X̂) n 
fjc = Id^ , and this is the only place where 

intersects^ . Hence f(^ D) intersects a transverse sphere 
of at exactly one point transversally. 

Now, upto homotopy, A^ is obtained from 
C)(A2,X) by 

attaching cells of dimensions (n-2) and (n-1) /~cf. duality 8.8_J. 
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Since (n-2)^3, A^, ̂  (A^jX)) = 0, Thus the map f can be 
deformed into J (A2,X) leaving f dD fixed. Thus the 1 -sphere 
f (do) is null homotopic in ̂ (Â ,!), hence by Lemma 8.7.2 it is 
unknotted in ̂  (/igjX)̂  Now we can apply 8.6,3 to trade ff for a 
3-handle. We can apply this procedure successively mtil all' the 
1-handles are eliminated. Since in this procedure, only the number of 
1-handles and 3-handles is changed, in the final handle presentation 
of (M,X) there vd.ll be no 0-handles either. D 
Remark: If (M,X) is t -connected and 21 + 3^ n, we can adopt the 
above procedure to get a handle presentation of (M,X) without handles 
of index $ i. 

8.8. Dualisation. 
In this section, we discuss a sort of dualization, which is 

useful in getting rid of the very high dimensional handles. 
Let (M,X) be a relative n-manifold (remember that we are 

dealing with the special case; X am. (n-1)-submanifold of d M), 
and let ̂  be a handle presentation of (M,X), Consider the manifold 
M+ obtained from M by attaching a collar over ^ (M,X) (s JM-X by 
the notation of 8.5)° • 

M^ = [M U ( ̂ M - X) [O, l] ] 
identifying x with (x,o) for x t^M - X. Let 

M* = M+-
X* - [(^M-X) A u[a(dM™X)Ai0,l]| 

and xt = ( ̂  M-X) X 1. 
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We consider as a dual of (M,X). Now gives rise to a 
handle presentation ̂  = (B ̂  B^) of (M^, X*) as followsi 

= (^M-X)^ 

\ = Vk-1 

. I T • 

Where ^ ^ are the (n-k)-handles of . This 
P(n-k) 

we will call the dual . The number of k-handles i n ^ is equal 
to the number of (n-k)-handles in 

Now, 

so that X*) = -
Since is a collar over 5 this shows that (M,X) is 
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a dual of (M , X*) ; and with this choice of the dual p a i r ^ is the 
dual of 

Given any handle presentation ^^^^^ (C ^ C^) of 
(M*, X*) with C ̂  = then we obviously get a handle presentation 

.of (M,X). Even if C ̂  ̂  B we can get a handle presentation 
of (M,X) whose number of k-handles is equal to the number of 
(n-k)-handles of ^ ^ as follows: 

Let d(M,X) % 1. In M̂ " , \ X* and X* V X , 
(both) homogeneously. Since is a collar over X*; by using 
the theorems about cells in spheres and cells in cells, we see that 

is bicollared in M'̂ . Moreover is a neighbourhood of X^ 
in M"̂  . Hence by the regular neighbourhood theorem, is a 
regular neighbourhood of X"^ in M^ . But is also a regular 
neighbourhood of X^ in M^ . Therefore, there is an equivalence f 
of M"^, fixing Xt, with f(C_^) = Since 
and n ^ M ^ = f* d l ^ = X * , f maps X* onto itself, and as 

XUX* , f has to map X onto itself. Now the desired handle 
presentation of (M,X) is given by 

- f(A_,) (since \| X, f(A_^) "^f(X) X) 
Dk = M t -

where ,... > are the (n-k)-handles of 
^ P(n-k) 
Thus 

8 . 1 . If there is a handle presentation of (M*, X*) without handles 
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of index^ n-X , then there is a handle presentation of (M,X) with-
out handles of index i L . This gives: 
8.8.2. Theorems A and B imply Theorem C. 

Since X M is a homotopy equivalence and 
T V / M ) « [t(d(M,X)), using duality in the universal covering spaces, 
that is H^ (M*, X*) ̂  X) = 0, we see that X*^ M* is also 
a homotopy equivalence. If n then we can find a handle presentation 
of (M*, X^) without handles of index 4 6-4 - 2 by Theorem A. Hence 
we can obtain handle presentation ^ of (M,X) without handles of 
index ̂  n-2, that is, with handles of index < n-3 only. But then, 
by Theorem B, as ^ ( M , X ) = we can get from a handle presen-
tation of (M,X) without any handles, that is M V X. O 
8.6.3» If n - 5, and (M,X) is a h-cobordism, then there is a 
handle presentation of (M,X) with only 2- and 3-handles. a 
Ex. 8.8.4. A (compact) contractibleK 2-manifold is a 2-cell. Q 

8.9. Algebraic Description. 
We have already' remarked (8,3.7) that there is a certain 

algebraic structure associated to a handle presentation (A ..,A^) 
of a relative n-manifold (M,X). Wp suppose now that (M,X) is a 
special case, and that there are no 0- or 1-handles in Aq= A^ ). 
Also n^3 and IT^(X) (T̂ (M) is an isomorphism. This we will 
call Hypothesis 8.9.1. In this case, the maps 

rr^(x)^ ... 

are all isomorphisms. The reason ) —» fT (A^) is an isomorphism 
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is that rr^C^) — > ) is an isomorphism and ff ^ ( A ^ ) — ^ 

is a surjection. We identity all these groups and call it If . 
Nowj the groups 

are identified vdth H^ (A^, ). They are free modules over Z fT 
^ ^ ^ are the vdth bases corresponding to handles. 

i-handles, the basis of C^ is denoted by^ • and. 
the elements of this basis are well defined upto multiplying by elements 
±!T . 

If f I Aĵ  —y Aĵ  is a polyhedral equivalence isotopic to 
the identity, it is easily seen that the algebraic structures already 
described for ^ and ̂ ^ may be identified. 

In addition, we have a map 

I w h i c h i s t h e b o u n d a r y m a p o f t h e t r i p l e ( A ^ , T h i s i s 
also unchanged by changing ̂  to 

. If there are no handles of index 4 k-2 and TT (M,X) = 0, 
we see: 

First, A^ = 0, and hence from the exact 
sequence of the triple (Aĵ , A^_2) the map J ^ s ^ 
is surjective. 

Dually, if there are no handles of index y k and ff^^CMjX) - 0, 
we have 
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^ ^ I C ^ — ^ to be injective. 
Now, the boundary map ^ , plus the bases of C and C 

k K K-1 
determine a matrix B^ in the usual way, That is, if 

j = 1 ^ 

then Bĵ  is the Pĵ  ̂  P̂ ĵ  ij matrix-

^ 1 , 2 • • ' 1, p 

X 2,1 0^2,2 • • • 

(k-1) 

P(k-1) 

then le ' ] If we choose a different orientation of coret^^ , 
is replaced by - ^ J (in the basis of Cĵ ) so that the 1 

Pik) 
row of Bĵ  is multiplied by -1. If we extend the handle ^^ 

th 

along a path representingX € ̂  > then ^^ is. replaced by 
J^ ' that the i^^ row of Bj^ is multiplied by X . 
Thus, by different choices of orientations of cores and paths to 
the "base point", we can change B̂ ^ somewhat. There is another type 
of modification which we can do on B^; that is adding a row of B^ 
to another row of Bĵ . This is done by using 8.6.3 as follows: 

Consider two k-handles and o f ^ , and 



let 24k ^ n-2. We now apply 8.6. 3, (Remark 2), with A^ ^ = N, 
= N', = " • ^̂ ives a new handle 

/(k) ^ # (k) ^ /(k) Tt > away from and f^j , such that 

and with proper choices, now,represents | ̂  + Q 
(sign prescribed), in ft ̂  ^(A^ X)), Also, we can assume ,that 

^ is away from the attaching tubes of the other handles, so that 
B = (A + + / ̂ ^^ + (other p-2 k-handles of ̂  ) k-1 'w J k-

t \ . 
and can be assumed to be identity on X. 

Now (B,X) has an obvious handle presentation 
= (B_I B^), where 

% = V i<k-1 
B^.B. 

The k boundary map o f ^ , with the appropriate bases, has a matrix 
which is the same as Bĵ  except for i^^ row, which is now replaced 
by the sum of the i^^ row + (i 6)times the row, corresponding 
to the relation 

We pull 3<J to a handle presentation ^ of (A^,X) by ̂  . In ^ 
and ̂ ^ , the matrices of the boundary maps are the same if we choose 
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I the corresponding bases. And can be extended to handle presen-
tation of (M,X) by adding the ( ̂  k+1 )-handles as they are. 
By doing a finite number of such changes, we have 
8.9.2. (Basis Lemma), j y is a handle presentation satisfying 8. 9.1, 
Bĵ  is the matrix of the k^^ boundary of map of ^ with 
with respect to bases corresponding to handles. Given any p yi p 

IC iC 
matrix E which is the product of elementary matrices, then 3 a 
handle presentation ^ C of (M,!) satisfying 8,9,1 

(1) the number of i-handles in is the same as the 
number of i-handles , for all i, and 

(2) the matrix of the k^^ boundary map of with 
appropriate bases corresponding to handles is E • Bĵ , Q 

As an application of the "Basis Lemma", we will prove a 
proposition, usually known as the "Existence Theorem for h-cobordisms". 
Let M be a PL (n-1 )-manifold; M compact, with or without boundary. 
The problem is to produce a PL n-manifold W containing M in its 
boundary such that (W,.M) is a h-cobordism with prescribed torsion̂  
8.9.3. Proposition. If the dimension of M is greater than 4, then 
given any ̂  ^ Wh( IU(M)), there exists a h-cobordism (W^M) 
•with ^ (W,M) = r^. 
Proof I Let A ̂  (a. .) be a matrix (m K m) representing ̂  , ij 0 
Consider N = M I, identify M with M % 0. To (N,.M) attach m 
cancelling pairs of 2- and 3-handles and m 3-haxidles away from 
these. Let W' be the resulting manifold; and let t)e the obvious 
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handle presentation of (W ,M); satisfies 8.9. i. Then the matrix 
of the boundary map of ̂ ^ with appropriate bases is \ |. 

ŵ ra -J 
Consider the matrix } A 0 1 ; this is a product of elementary matrices. 

lo A-U 
t , 

Hence by 8.9.2, we can obtain a new handle presentation ^ of (W ,M) 
satisfying 8.9.1, such that the number of handles of each index is the 
same in and and the 3^^ -boundary map of with bases 
corresponding to handles is 

Thus, if ^ ^ 2m 3-handles and ^ ^ .., ^ ^ the 
2-handles of , and ^ ^ ^ , l^il the corresponding basis 
elements, then 

m - i 
0 if i>m . 

Let W be the manifold W' - ( ̂  \J ... U ̂  )• Let ̂  be the 
m+1 2m 

the handle presentation of (W, M) given by and ^^'s for 
i 4 m. Then the 3̂ ^ boundary map of ̂  has the matrix A. Clearly 
M^W is a homotopy equivalence (A is non-singular). Since, dually 
we are attaching n-2 and n-3 handles to ̂  (W,M) to get W, and 
n-3 ^ 3, rr̂(W) is an isomorphism. Hence (W,M) is 
a h-cobordism with the prescribed torsion Q 



Again, consider a handle presentation ^ satisfying 8.9.1. 
For k^n-3, A^ is, upto homotopy obtained by attaching cells of 
dimension to ' This shows, fT^ ( 

is an isomorphism for k ̂  n-3; and hence 
We are interested in the following question : 
Suppose a k-sphere ̂  represents in 

Â  )̂ the element ̂  ̂corresponding to a particular k-handle. 
Then, is there a map f I ̂  (A^,X) homotopic to the inclusion 
of 21 such that f | a hemisphere of ̂  is an embedding 
onto a core of ̂  ? 

We note that dC^s^) A 
3 Aĵ ,X) - (transverse tubes of k-handles) 
« ^(A^ ^,X) - (attaching tubes of k-handles) 

and so C\ ̂  (A^ ^ ,X) will have fundamental group IT if 
either (n-k-l) ̂(n-l) - 3 or (k-1) ^ (n-1) - 3, so 'that k^(n~3) 
is sufficient. This implies 
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Consider the following diagram: 

/K 

I 

\ 

«k ^(A^.,,!))(V V ). 
Here ĥ , h are hurewicz maps, ip i.̂, are induced 

(k-1)-connected. By excision, is an isomorphism. Hence i 
and î  are also isomorphisms. Therefore, a boundary core of 

by inclusion maps, ^ and oC ̂  are the maps induces by M —> M. , 
All the induces occuring are ̂  2. X ^ and X g are well knovm to 
be isomorphisms, ĥ  and ĥ  are isomorphisms since the pairs are 

I 
and represent the same element in 

Thus the answer to our question is Yes: 
8.9.4» L e t b e a handle presentation satisfying the hypothesis 8.9.1. 
Let k be an integer 4 n-3 /"or k ^ 3, — ^ (T (A^) 

is an isomorphism, k^n-1_7. Then two geometric objects, representing 
the same element of fT^ (A^, ̂  » also represent the same element 
of "^(A^,!) . In particular, if 
is a k-sphere, representing the element ^^in 
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it represents the element in [\ ^ A ^ (A^ 
This means that there is a homotopy in '^(A^jX) from the identity map 
of ^ to a map taking the upper hemisphere of ^ in a 1-1 way 
onto a (boundary) core of ^ , and taking the lower hemisphere of 
into. 

hiK 
,X) C\ q(A ,X); in particular the end result of X. ^ H 

K rC"" ' 
not intersect any other handles. 0 

If ^ is the attaching- sphere of a (k+1)-handle and 
^k+l ) ® we have the above situation. We would like to 
get a suitable isotopy from the above homotopy information, to cancel 
the handles corresponding and in some This is provided 
by the following lemma. Sinde the proof of this lemma is rather long 
and seems to be of some general interest, we will postpone the proof 
to the last section. 
8.9.5. (Isotopy Lemma). With the hypotheses of 8.9.4, if in addition, 
n^6 and k ^ n-4,. then there is an isotopy in ^(A^jX) carrying ^ 
to another k-sphere ^ ', such that ^ ' intersects a transverse 
sphere of ^ in one point transversally and does not intersect the 
other k-handles. 0 
8.10. Proofs of Theorems A and B. 
In this section, we will prove Theorems A and B assuming the Isotopy 
Lemma, which will be, proved in the next section. 

First let us see what are tht types of manifolds and presen-
tations that we have to consider. Theorem A, for 1 4 ^ is proved in . 
S. 7, So, we can assume and hence n >̂ 6. For Theorem B, 1, = n 
and n^6, by hypothesis. So again using 8.7, it is enough to consider 
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handle presentations satisfying 8.9.1, and in addition n^6. 
We start with two observations concerning the matrices of 

the boundary mapst (") ' 
8. 10. 1, Let ̂ b e handle presentation satisfying 8.9.1, A ̂  • 
be the., i-handles of^E. • Let B^^^ = ( ̂  ^ J be the matrix of the 
(k+0^^ boundary map ^ ̂ ^^ with respect to preferred bases. That is, 

{ C C " . • i n ^ ij . > IT). 

Suppose f^ and f^  can be cancelled. Then we have formed 
a handle presentation^^ - = (B say , of 
(M,X) as follows I 

B ̂ = f (A^) for i <k 

B. A^ for i>k. 
Here f is an equivalence \ - ^ ^ A^ 

>?(k+l) 
onto itself. If the attaching tube of % does not intersect 

(k) k+1) mapping X 

p (k) 
other k-handle except ft , , f can be assumed to be identity any 

on all /(k) 
' , Me assume that this is the case. Now 

J  (k) ^ /(k) J  (k+1) ^ (k+1) 7L are all the k-handles and 7l /L 
2 Pk P(k+1) 

(k^l). are all the (k+O-handles of-^^- ( ). Thus (by. 
f#(k)T ro 

abuse of notation"̂  >"• > TL is a basis of ( T (B . B • ) k k k-1 
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fj^ck+oi - r/(k+i)i ^ , 
and I fi^ j...,* is a basis of f( (B , B ). Let 

L 2 J k+1 k+1 k 
^ denote the (k+1 boundary map of^^ - ( ̂ ^ ^ , ̂ ^ 

k*̂! 1 1 
Consider the following commutative diagram (A = B, . A B , A r B ): 

k+l k+1 k^ k k-r- k-1 
RR (A , A ) J L ^ R R (A) J >[R CA, A ) k+1 k+1' k k k k k k-1 

-4/ 

In this diagram, the vertical maps are induced by inclusion, 
the horizontal:maps are canonical maps, and » ^k+t' J 

Now 

and 

iCr 0, 

Hence, for i>,2, 

for i^2. 



(k+1)-

Pk ^ ri(k) X 
^ X ij [Ij 3 ) 

1=2 

Thus, if the matrix of ^ is {J^..), then the matrix of ^ 
k+1 K+i 

is tC 3, j), i.^2, j >̂ 2. This we have as long as the attaching tube 
/ ( k + 1 ) 

of Tt1 keeps away from the transverse tubes of the handles 
±>^2. (It is easy to see that cC = ... - =« 0. in 

this case). It does not matter even if the attaching tubes of other 
(k+1)-handles intersect the transverse tube of 

1 ^ Q 
8.10.2. If f J A A is an equivalence isotopic to the identity 
• k ^ k 

f 
leaving X fixed, then in ̂ ^ and ̂  , the attaching spheres of the 
corresponding (k+1)-handles represent the same elements in \T, (A ). k k 
Since the (k+1boundary maps are factored through fP (A ), the 

k k 
corresponding matrices are the same after the choice of obvious bases 
in ^ , and hence in ̂  and Q 
Proof of Theorem A. 
Step 1; Let (A_̂  , A^) be a handle presentation of • • 
satisfying 8. 9. 1. Vve are given that (M,X) is X. -connected, tJW, 
we know that the sequence 
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IT2 ( V 0 

is exact. 
Suppose that we have already eliminated u?to handles of 

index ' (i-l), that is in̂ C , = Â  = .. = then by 

(*)> TTi,, A.) h ^ q (A., is onto. Let B.̂ ^ be 
the matrix of ^^^ bases corresponding to handles. 
Then, there exists a (p + p ) X ( p + p ) matrix E, which is 

i+1 i i+1 i 
the product of elementary matrices, such that 

E X • ®i.r -1 n 
Pi 
0 
Pi+r Pi 

^ OS If we attach p^ cancelling pairs of (i+1), (i+2)-handles away from 
the handles of index ^ (i+2) to the i^^ level o f ^ , then in the 
resulting handle presentation ' ,..., B^) of (M,X), the matri; 
of fT^^^ B j ^ ) — ( B ^ , with appropriate bases is 

B i+1 

Then, by the Basis Lemma, we can obtain a handle presentation of (M,X) 
satisfying 8.9.1, with exactly the same number of handles of each index 

,st 
as above, but (i+1; boundary matrix will now be 
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"i 
Pi 

This means that starting from ̂ ^ , we can obtain a handle 
presentation C^) of (M,X) such that 

( 0 satisfies 8.9. 1, and there are no handles of 
V 

indices ^ i - 1 
(2) the boundary map of ^^has the matrix f l [ M 
Now we can eliminate the i-handles one at a time as follows: 

Step 2t Consider and c) . ( ' ^ f ^ l l 
and H n-4. Hence by the Isotopy Lemma, there is an equivalence f 
of ^ such that f takes an attaching sphere Ŝ  of ^ ̂  
to another ..i-sphere sj and Ŝ  intersects a transverse sphere of 
^^^^ at .one point transversally. Moreover it can be assvimed that f 

0 (i+1) 
(attaching tube of ̂  ) does not intersect the transverse tubes 
of the other i-handles. f can be extended to an equivalence f of 

-f jP (i) 
C. taking X onto itself and in the handles corresponding ^ 
.and % ^ can be nearly cancelled. By 8.5.7, there is an equivalence 

f S ((Tf) 

g of Cĵ , so that in ( % ) = , the handles corresponding 
and fi, can be cancelled. Again, we can require that g»f /(i-Ox 

(attaching tube of j 
of the handles ^ ^ ^ ^ , Consider ̂ ^ 

should not intersect the transverse tubes 
This is a handle 

(gf) -r 
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i d ) J? handles /? and , 1 ' ( 1 + 1 ) 
and can be cancelled. By 

(i+1) presentation of (M,X), and in the 
say, corresponding to % ^ and j\j ̂  

the (i+0®^ boundary map of > 

has -the matrix Hence, we can go on repeating step 2 
L 0 J 

to obtain a handle presentation of (M,X) vdthout handles upto index i. 
• Thus, inductively, the first part of Theorem A ' is proved. 

The second part is clear. Q 
Proof of Theorem B; By Theorem -A, we can assume that there is a handle 
presentation ^ ^ o f (M,X) with handles of indices (n-3) and (n-4) 
only. obviously satisfies 8.9.1. Consider the map 

. Let A be the matrix of ^ 

, (A A ). 
n-4 n-4 n- 5 

Here A with respect -1 ~ ••• ' 'n-5' '̂ n-3 
to bases corresponding to handles. A is a nonsingular matrix, say 
m K m matrix. Since (M,X) = 0, A represents the 0-element in 
WhC IT ). Hence for some q ^ m there exists an (m+q) x(ni+q) matrix 
E which is the product of elementary matrices, such that 

'A 0 
- C o = I m+q 

Now WE add q cancelling pairs of (n-3)- and (n-4)-handles 
to A^ ^ away from: the other handles, so that in the new handle 
presentation, say^^, of (M,X), the (n-3)^^ boundary map of has 
the matrix 

A 
0 
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Then by the Basis Lemma, we can obtain a new handle presentation 
of (M,X) with exactly (m+q) handles of indices (n-3) and (n-4) 
and no others, and such that the matrix of the (n-3)̂ '̂  boundary map 
of with respect to bases corresponding to handles is Now, 
by a repeated application of Step 2 in the proof of Theorem A^ all 
the handles can be eliminated .so that M O 

8.11. Proof of the Isotopy Lemma. 
We begin with some elementary lemmas. 

8.11.1. Lemma. Let Q C Pj Y X ̂  C ^ „ 'b® poljrhedra, where C^ is X be polyhedra, i pcs<jyK><WJL Vvvcxf • 
et of points / feA k-cell and ̂  dim Q < k̂  Then the s of points ̂  % such that 

Q af" - 0 contains an open and dense subset of Z\ . 
Proof; Let Q' = f(Q)'n (Y X A). Then dim q' i dim C <k . The 
projection of Q' to does not cover most of the points of 
k-dimensional A . Any point dm not belonging to the projection of 
q' to A will satisfy Q H f H l X ^ ) = 0. O 
Q. 11 2. Lemma. If dim Q = k in the above, then the set of points 
^ t & such that QOf'^YK^) is 0-dimensional contains an open and 
dense subset of t̂  . 
Proof! Triangulate the projection of q' to h ,3f ̂  is the 
simplicial presentation of ̂  with respect to which this map is 
simplicial, then every point <j(, qf A ^^ will have the above 
property by 4.2. D 

Let f I P ^ X be a nondegenerate map, simplicial with 
respect to the presentations ̂  , ̂  of P, X. Let Jl denote 
the closure of the set S(f) X tP 3yfeP, y / X, f(y) = f(x)|(see 
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5.4). ^ (f) is covered by a subpresentation of ^ , call it ^ . 
8. 11.3. If a principal simplex of ^ , then f ||St(r,(J> )1 
is an embedding. 
Proof; Since f is nonde gene rate it maps Lk(6~,(p) into Lk(f 
and on \ St( )\ it is the join of ^ — > f 5" and 

The map I » (Lk(f6",̂ )| is 
an embedding; otherwise if ^ / ̂ T g ^ Lk(^j(p) and 
f r, - f then f( r = f(r <rT̂  ^^. 
contrary to the assumption- that. is a principal simplex of ^ . 
Hence the map [st(^,(p)) — ^ |st(f(r being the join of 
embeddings is an embedding. Q 
Proof of the Isotopy Lemma for k n-5s The situation is: We have 
a handle p r e s e n t a t i o n ^ of a relative n-manifold (M,X) which is 
- a special case, and satisfies the hypothesis 8.9.1. We have 
k-sphere S (what was called X in 8.9.4 and 8.9.5) in d (\,X) 
representing in ^̂  where is a k-handle. We 
deduced in 8.9.4 that in this case if k $ n-3 there is a homotopy 
k I S K I that h^ = embedding S Q^k^^and 
(transverse tubes of ail k-handles) is a k-cell C vriiich is mapped 
by ĥ  isomorphically onto a core of iC , so that 

In the xsotopy Lemma, we have further assumed that k ̂  n-4. 
We first prove the simpler case when k % n-5, that is when the co-
dimension of ^ in h -is 
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We can by general position suppose ^ (h) has dimension 
^ 2 (k+1) - (n-1) = 2 k+3 - n. 

Now ^ is polyhedrally equivalent to D^ with 
the transverse tube of ̂  corresponding to D ̂  ̂  
any point X ( int ol̂  X d tkis a transverse sphere j and any such 
transverse sphere will intersect the core ĥ (G) transversally in 
exactly one point, since h^(C) corresponds to D , for some 
p t ̂  A . 

We try to apply Lemma 8.11.1 to this situation. Define 
Q = "Shadow" £ (h) = |Projg 

P = S X I 
P — ^ X 3 Y becomes 
S K D transverse tube o f C ^ 

The crucial hypothesis now is dim Q < k. Since, in general 
dim (projg ̂  (h)) 4 dim ^(h), we have dim Q ^ dim 2;;_(h)+1 ̂ 2k+4-n. 
To have this < k is exactly where we need k 4 "-5. 

• The conclusion then is: 
^ K ^ A There exists a transverse sphere T of of the form 
X X b ^ i i'or some X feint D, so that h"^(T) does not intersect 
the shadow of the singularities Xl'^l or, what amounts to the same, 
the "shadow" of h'^T), namely 

Z = _ [projg h"^(T)]K I C S K I 

does not intersect ̂ (h). Hence there is some regular neighbourhood 
N of Z in 3 A I, vdth N fN 21(h) = 0. This implies, since ko 
is an embedding, that h| SX^OUN , is an embedding. 
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We clearly have N ̂  Nf)S>«.0, and these are (k+1)- and 
k-raanifolds, Nr.S;<oĈ N. Thus h(SKO)=S and h SXO - (Nf\SKO) + 
+ ( - Sŷ oĵ  = S' differ in (̂/̂ p̂ by cellular moves along the 
manifold h(N). Therefore (by 7.1. S) there is an isotopy of X) 
taking S onto S'. By construction all of h'^T) is in N, and 
S' contains only h ( dN - Sx.O) in h(N), and this will intersect 
T at h (h~UT) D S/l), that is at point' (corresponding to ^^fi ) 
transversally. 

I 

By being only a bit more careful, considering the transverse 
tubes of other k-handles, we can arrange for s' not to intersect 
the other k-handles at all (if T' is a transverse sphere^aome 
k-handle other than ̂  , then h'^T' )0 S M = 0, and there is an 
Isotopy of ̂  X) carrying ^ (A^, X) - small regular neighbourhoods 
of prescribed transverse sphere of the other k-handles to 
transverse tubes of the other k-handles). 
Remarks This already gives Theorem C for 
The case k - rv-4. 

In case k = n-4, n/^6, the above result is still true, 
but this involves some delicate points. 

Since n^6, we have (for k = n-4) the crucial number 
2k + 3 - n>0. 

We consider, as before h I SXI — > X) in 
general position, so that dim X (h) < 2k + 3 - n. Remembering 
S = h( S ^ O ) , we further use general position so that h 
is of dimension ^ k + (k+l) - (n-l) = 2k + 2 - n, and call 
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8 (h) = closure (h' (S)N S (0,3 ). 
Make h simplicial, say with reference to of S * I, 

and refine to /4-' so that 0(h) is covered by a subpresentation 
© > by a subpresentation ̂  , and the projection SM S 
is simplicial on '. 

Now we have to pick our transverse sphere T -
•in the transverse tube ^ X D^"^ so that 

(1) h~^(T) O shadow X (h) is O-dimensional 
(2) h'\T) ar(h) ̂  0 
(3) h'^T) A shadow £ (2k + 2-n)-skeleton of l ^ ® 0 
On S X O U a neighbourhood of ^hadow h~ (T)"] , . h 

is a local embedding, using Lenma 8.11.3. 
Let Q = shadow h~^(T). The finite set of points 

Q n X(h) does not intersect any point of h~^(T), Each point say 
X €• Q A ^ ( h ) belongs to a (2k + 3 - n)-simplex of ̂  ^ say 
Since ^ ^ has dimension ̂  1, we can move S X I in a tiny neighbour-
hood of X by a polyhedral equivalence f ? SAI —> S^I so as to 
move X around on that is, so that 

f(Q)nX(h) . Qf)^(h) - [ K ] ^ , 
where the choice of x' ranges over an infinite set. f will not 
move h~^(T) nor will it move S . There are only a finitely 
many points to worry about, and so we can find a polyhedral equivalence 
f : S)^!—^ SXI, leaving h"'̂ (T) 0 SX.0 fixed, such that the set 
of points f(Q) r\X(h) are mapped by h into pairwise distinct 
points. 
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At this moment, we see that on Ŝ O \J f(Q), h is an 
embedding. Since h is a local embedding on some neighbourhood of 
f(Q) (we restrict f close to the identity so that 
f(Q) S XI - + 2 - n)-skeleton of ̂  , and an embedding on 
f(Q); hence it is an embedding on some neighbourhood of f(Q), 

0(h) is well out of the way, and so h actually embeds 
all of Ŝ O U (a neighbourhood of f(Q)). 

We now proceed as before, using f(Q) to move around along. 
This trick looks a bit different from piping, which is 

what we would have to do in the case n =» 5, k 11 this was the case 
when we had a null homotopic 1-sphere Q 4-nianifold unknotted. 

vyf: 
22/9/'67 
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