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Introduction(

The recent efflorescense in the theory of polyhedral mani-
folds due to Smale's hahdle-—theory, the differential obstruction
theory of Munkres and Hirsch, the engulfing theorems, and the work of ‘
‘Zeeman, Bing and their students - all this has led to a wide gap
between the modern theory and the old foundations typified by

Reidemeister'!s Topologie der Polyeder and Whitehead'!s "Simplicial

spaces, nuclei, and m-groups". This gap has been filled somewhat
by various sets of notes, notably Zeeman's at I.H.E.S.; another
interesting exposition is Glaser's at Rice University,

Well, here is my contribution to bridging the gap. These
notes contain:

(1) The elementary theory of finite polyhedra in real
vector spaces, The intention, not always executed, was tb emphasize
geometry, avolding combinatorial theory‘where possible., Combinatorim
ally, convex cells and bisections are preferred to simplexes and
stellar or derived subdivisions. Still, some simplicial technique
'must be slogged through.

(2) A theory of "general position" (i.e., approximation
of maps by ones whose singularities have specifically bounded
dimensions), based on "non-degeneracy". ' The conéept of nemanifold
is generalized in the most natural way for general-position theory
by that of ND(n)-space - polyhedron M such that every map from

an n-dimensional polyhedron into M can be approximated by a

.



ngnwdegenerate map (one whose point-inverse are all finite).

(3) A theory of "regular neighbourhoods" in arbitréry
polyhedra. Our regular neighbourhoods are all isotopic and equivalent
to the star in o second-derived subdivision (this is more or less the
definition). Many applicaztions are derived right after the elementary
lemma that "locally céllared implies collared", We then characterize
regular neighbourhoods in terms of Whitehead's "collapsing", suitably
modified for thls presentation. The advantage of talking about
regular neighbourhoods in arbitrary polyhedra becbmes clear when we
see exactly how they should behave at the boundaries of manifolds.

After a little about isotopy (especially the "cellular
moves' of Zeeman), our description of the fundamental pechniques in f‘ﬁ:
polyhedral topology is over. Perhaps the most basic topic omitted
is the theory of block-bundles, microbundles and transversality.

(L) Finally, we apply our methods to the theory of
handle-presentations of PL-manifolds & la Smalds theory for
differential manifolds, This we describe sketchily; it is quite
analogous to the differential case. Therevis one innovation. 'In
order to get two handles which ﬁomotopically cancel to geometrically
cancel,’the "classical!! way is to interpret the hypdthesis in terms
of the intersection number of attaching and transverse spheres,‘to
reinterpret this geometrically, and then to embed a two-cell over
which a sort of Whitney move can bé made to eliminate a palr of
intersection, Our method, although rather ad-hoc, is more direct,

avoiding the algebraic-complication of intersection numbers



(especially unpleasant in the non~simplyiconnected case) as well as
any worry that the two-cell might‘causef of"course; it amounts to the
same thing really., This method is inspired by the engulfing theorem;
AZEThere are, by the way, at least two ways to use the engulfing
theorem itself to prove this point_/.

We do not describe many applications of handle~theory; we
do obtain Zeeman's codimension 3 unknotting theorem as a consequence,
This way of proving it is, unfortunately, more mundane than "sunny
collapsing',

We omit entirely the engulfing theorems and their diverse
épplications, We have also left out all direct contact with differ-
ential topol§gy.‘ |

3* ‘ 3 | #*

Let me add a public word of thanks to the Tata Institute
of Fundaméntal Research for giving me the opportunity to work on
these lectures for three months that were luxuriously free of the
worried, anxious students and admin;strative annoyances that are so
enervating elsewhere. And many thanks to Shri Ananda Swarup for the

essential task of helping write these notes.

John R, Stallings

Bombay
March, "1967



Chapter 1
Polyhedra

1.1, Definition of Polyhedra.

Basic units out of which polyhedra can be constructed are
convex hulls of finite sets. A polyhedron (enclidean polyhedron) is
a subset of some finite dimensional real vector space which is the
union of finitely many such units. ("Infinite polyhedfa” which are
of interest in some topological situations will be discussed much
later). |

A polyhedral map f : P ww» Q is a function f ¢ P~ Q

whose graph is a polyhedron. That is, suppose P and Q are subsets
of vector spaces V and W respectively; the graph of f, denoted
by .Tq(f), is the set 1
T = e |xer, v- s el

which is céntained in V= W, which has an evident vector space
structure. | \(f) is a polyhedron, if and only if (by definition),
f is a polyhedral map. Constant functions, as well as identity
function P ~—2 P are polyhedral maps.

The question whether the composition of polyhedral maps
is polyhedral leads directly to the quesﬁion whether the intersection
of two pquhedra is a polyhedron. The answer is "Yes" in both cases.
This could be proved directly, but we shall use a round about method

-

which introduces useful techniques,
/

It will be seen that polyhedra and polyhedrai maps form

a category. We are interested in 'equivalences' in this category,



Py

that is maps f 3 P —> Q, which are polyhedral, one-to-one and onto.
When do such equivalences exist? How can they be classified? Bte....
A finite dimensional real veétor space V has a unique

interesting‘topology, which can be described by any Euclidean metric
on it., Polyhedra inherit a relapive topology which make them compaét
metrie: spaces, Since polyhedral maps have compact graphs they are
- -eontinuous, This-provides us with an interesting relationship between
polyhedra and topology. = We may discuss topological‘mattefg about,
polyhedrs - homology, homotopy, homeomorphy.- and ask whether these
influence the polyhedral;category and its equivalences,,

. After this brief discussion. of the scope of the subject,’
we - proeeed to the. development of the techmigue..

1,2, Convexity.

(R.denotes the field of real numbers, and. V a finite
' diinenaional vector spage over .

Let a, b €V, The line segment b‘étween-, a and b is.

Qenoted by [a, bl. It is defined thust
| (2, b).= {t a + (1.=.t) b|mgs ,u% .

A set C CvVv is callgd.m-if[a,ﬂblcc whenever

a, b €C. '
Cleérly v itself~is convex, and -the intersection. of -

any family .of convex sets. is again convex. uTheréfore.every'set
XZ(:V"‘is“contained in a smallest .comvex set.—;namely~the,interseﬁtion
of all convex sets epntainiggwwxg” this is.called the convex hull

~of X, and is denoted by ,/((X).



1.2.1. Definitiori. A convex combination of a subset X of V is

. a point of V which can be represented by a finite linear combination

k
S Ty X,
e R
k
where x; € X, riQR, r;2 0 forell 1, and E r, = 1.
| | 1=0

1,2.2, Proposition. The convex hull K(X} of X 1is equal to the

set of convex combinations of X.
Proof: Call the latter A(X). It will be shown first that- A(X)
is convex and. contains X, hence K(X) C A(X).

If x €X, then 1:x is a convex combination of X,

, k A
. hence X C__ A(X). Let P = 2: ry ¥ o, 6= Z_ 535 75
. i = O . j = O

-

be two points of A(X). A typical point of [, ) is of the form

k .
t P (1-t) 6= E (¢ ri) x; o+ g o ((1=t) Sj) Vs where 0&t &1,
i=20 i = 0 ‘
K 53 J k L
Since .Z_.< tor, o+ 2__ (1-t) 8y = v (S ri> + (1-t) ( Z Sj) =
i=0 i=0 i=0 j=0

=t + (1-t) = 1, and all the coefficients are 2 0, t f)+ (1=t) 6™
is a convex combination of X. Hence A(X) is convex. |

To show that A(X)( K(X) it must be shown that any
convex set C containing X contains A (X). Let
= S + .. 4 r Xn s (xi(:X, Zri = 1) be a typical convex
combination of  x, ,..., X . By induction on n it will be shown

that any ‘convex set G containing X contains f’also. If n=1,



r ; e
’"X‘;&X\.,C" If‘n>1, then

r - : .
e %, v (T =r ) 2 xo+ o+ 0 x )y
BT T = n

That is {> s on the line segment between x, &nd

I'” | l" ‘ ¢ C
T—?T Ko+ ass + T»-_r'“ . By induction, the sedond point bgléngs bo
€; hence (D(_ c. ThuS 7\(}()(; C. Theréfore A(X)( k(X); add

A = K. 0

1,2,3, Definltion. A finite subset %CO’ bii ) Kk} of V is said

to be ;Lndep@.rident (or affinely independent), if, for real numbers
o ,,...‘ N Ty the equations

Ty xo+.... +rkxk=0 and.’

r + oenoe + :O,
0 - k

imply that

I‘O = ge8 = I‘k ‘-'- O.»

Ex, 1.2.4. The subset {XO feeens xk} of V 1is independent if and
only if the subset {(xo, 1) 5eeas (Xk’ 1)} of VX IR 1is linearly
independent. 7} -
Ex. 1,2.5. The subset SLKO senes Xk‘g of V is independent if and
only if the subset { =Xy e X =% 73 of V isllinearly
independent. [ ‘

Hence if {O geveny XK}CV, X & V then SLO ,..., %
is independent if and only if {_x + x 9000y X ¥ xk)s is 1ndependent4

These two. exercises show that the maximum number of

independent points in V is (dim V + 1),



The convex hull of an independent set EiXO greess Xk%

is called a closed k-simplex with vertices ixo yeoes xk§ ap’d is
denoted by [?C seves x#} v The number k 1is called the 3imension‘
of the simplex.

' " The empty set @ is independeht, its convex hull, also
empty, is the unique (-1)-dimensional simplex, A4 set of only one
point is independent; ij = {;3 is a O-dimensional simplex, A
set of two distinct points is independent; the closed simplex with

vertices %xr y% coincides with the line segment [3, yi} between

x and Yy.

s " .
1.2.6, Proposition. If gfb gou ey thC“V, then {?O pe ey xh§ is
independent if and only if every point of *‘{fo RPN Xn% is a

unique convex combination of §{x_ ... 1.,
ig | combination o i o oo Xng
Proof: Let %fb ,..mb,nxh'g be independent, If

“:I‘X+IDO+I.X:SX+"O+SX V\rith vr,=1= S,
F 00 n'n 070 ’ n'n’ L1 2 i’

then (ro - so) N (rn - sn) x =0, and

(rg = sg) + wee + (r, - s,) = 0. Hence (ri - si) = 0 for all i,

n

end the expression for {is unique,
If {XO seens Xh} is not independent, then there are real
nunbers r, , not all zero'such that

r~ X

O+.-’. +I‘anﬂO al’ld

0

To * ese + 1T = 0,
0 n

Choose the ordering {Fo sevry xh}.so that there is a L for which



r.20 if i< i
r; &0 if i 2L,
Since not all Ty are 2ero, ry ¥ ... tIrp .= (—r‘ﬂ.) toaas * (Tn) # 0.

Let this number be r. Then

T r - C-r
.-..9 X + eee * V*-? X&,« 1 3—.._2".-’33;4";.,. ,+-—'-—1:1-X 8
T 0 r - r r B

But these. are two distinet convex combinations of ?;x1 cpevees ’Xn}

which répresent the same point, a contradiction, Q)

1.2.7. Proposition. The convex hull K (X) of X is equal to the

union of dl1 simplexes with vertices belonging to X.
Proof: By 1.2.2,, it 'is enough to show that a convex combination of
X belongs to a simplex with vertices in X, Let

= Ty X b e 47X X EX, Zri =1, vy 20?. be point

° "

of K (X). It will be shown by induction on n that belongs to

a simplex with vertices in the set %.x1 P Xn% . If n=1,

then f = X1€§EX1] . So let n > 1. A
If {x1 peeeey Xn} is independent, there is nothing to

prove., If not, there are Sy seees S5 not all zero, such that

S, X, +, ., %8 X =0 and 8, + yee +8 =0, When s, = 0,
1 n n 1 n i
. I'i .
define L = oo then it can be supposed that X, s.... X is
51 ’ T2 n

arranged such that

r Ty, I
B 2 n|
&S‘,’ \)/ 52\?“.. ,?/ """"s?n -
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: Thexfefore

'n n
P»—-(I‘1~S1-§r—1>‘x +(r2_s —s--n>X2

! 2

Feesn ¥ (rn-1 = Spet EE) Lot *

n .
. . r. ' , S S
Since for all 1 ¢ n, ___}_\;,/\fgk, and since - _! - ,,, - “n=1 o 1,
Si17 V5n °n Sn
this expresses [ as a convex combination of %;x1 ey X 3 .
jg

By inductive hypothesis, f’ is contained in a simplex with vertices

in {x1 seeeas xn_1§. L
- The fellowing propositions about independent séts will be
useful later (See L.S. Pontryagin "Foundations of combinatorial
Topology", Graylock Press, Rochester, N.Y., pages 1 - 9 for
complete proofs). |
Let dim V=m, and tgbe a euclidéan metric on V.
First, proposition 1.2.4 can be reformulated as follows:

EX. 1.2.8' Let ie1 ‘3o a9 3 em% be 8, baSiS fOI‘ V’ and {XO ,61:, Xr)}

€y tees +a§em; 0 &3 &n. Then

a subset of V, Let x, = a?
i i

the subset {XO geesy X ;L is independent if and only if the matrix

n

1 a1 32 am
. O O L] L] [ ] L] O

1 a1 az ¢ s a n
1 1 1

1 2 m
1 a a s s v o &
n n n

has rank (n + 1), [

1,2.9, Proposition. Let g'xo gesvey Xn‘% be a subset of V, n & m.



Given any (n + 1) real numbers El >0, 0&£1gn, A points

yie- V, such that o (Xi 5 yi) <Qi, and the set. {yo sevey yng is

independent.

Sketch of the proof: Choose a set %uo yeens un% of (n+1)
independent points and consider the sets Z(t) =§Lt‘uo + (1=t) X »
ceeey bu (1-t) xn} ; 0t £1. Let N(Z (t)) denote the matrix
corresponding to the set Z(t) as given in1,2.8, (the pointé being
taken in the particular order). Z(1) SA{PO so s ung , hence some
matrix of (n + 1)wcolumms of N(Z(1)) . has nonzero determinant.
Let D(t) denote the determinant of the corresponding matrix in
N(Z(t)). D(t) is a polynomial in t, and does not vanish identically.
Hence there are numbers as near O as we like such that D(s) dées
not vanish. This means that N(Z(s)) 4is independent, and if s in
near O, Z(s)i will be near X, . ) |

Hence in anyarbitrary neighbourhood of a point of V,
there are (m + 1) independent points. |

The above proof is reproduced from Pontryagm's book. The
next propositions are also proved by'qonsidering sultable determingnts
(see the book of Pontryagin mentioned above),
Ex, 1,2.10. TIf the subset {xo yeeer; xn% of V is independent,
then there exists a number ”q 7 O, such that any subset {yo PR yhs
of V with 5{xi, yi)<:7) for all i, is again independent. '

1.2.11, Definition. ' A subset X =§de seeves xﬁ} of V 1is said

to be in general position, if every subset of X containing m + 1

points is independent (where m = dim V).
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Fx, 1,2,12, Given any subset X = %?b seses X '} of V and
e n

(n + 1)=-numbers @,i>0, 0 &1 ¢n, there exists points Ty 0gign
‘with (Skxi R yi)<3&i’ and such that the subset Y = %YO,..., yh'%of
V- 1s in general pdsition.‘

Hint: Use 1,2.9, 1,2,10 and induction, [

1.3. Openconvex sets.

1,3,1, Definition. A subset A of V is said to be an open _convex

set if
1) A is convex
R) for every x, y & A, there exists &> 0, such
that -€x + (1 +€&)y & A (€= &(x,y) depending

on X, y).

’E :‘“’\’Q\-\'(‘.‘.) Y%

In otherwords the line segment joining x and y can
be prolonged a little in A,

Clearly the em@ty set and any set consisting of one point
are open convex sets, o §pen convex sets in V need not necessarily
be open in the topology of V.

| Clearly the intersection of finitely many open convex sets

is again an open convex set.

1.3.2, Definition, Let g;x1 beees xn})CV.
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An open convex combination of %ﬁ sres Xn} is a convex combination

ry Xy *i.y +ry x, such that every coefficient ry » 0. The set
of all poinﬁs vepresented by sich open donvex combihébioﬁs is denoted
by O(x1 yeses xn). |

It is easily seen that O(x1 seaes Xh> is an open convex

set.

1.3.3. Definition. If {XO srensy Kk} is independent, then
O(xO 2eves Xk) is called an open k-simplex with vertices {XO seeey szﬁ’
The number k is called the dimension of the simplex O(Xy yees, Xy )
If {io yesens 1&( {9 ,..'.,.n‘g , then the open simplex
Q(xio yeves xis) is called a s-face (or a face) of O(xo seeey X )e
If s <k, then, it is called a proper face.

Clearly, the closed simplex [x) ,...) x{{] is the dis-
joint union of 0(x, yeoes x,) and all its proper faces.

We give another class of examples of open convex sets
below which will be used to construct other types of open convex

sets.

1.3.4., Definition. A linear manifold in V is a subset M of V

such that whenever x, y ¢ M and r& [R, then r x + (1-r) y & M,

Linear manifolds in V are precisely the translates of
subspaces of V; that is, if V' 4is a subspace of V, and Z &V,
then the set 2z + V' ={z UET c:v'} is & linear manifold in V,
and every linear manifold in V is of this form. Moreover, given
a linear manifold M the subspace Vy of V of whiéh M is a

translate in unique, namely
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VM::Z-y

Thus the dimension of a linear manifold can be easily defined; and

z €M, yG&M}: {Z - z“ z €M, z' a fixed element of M%

is equal to one less than the cardinality of any maximal independent
subset of M (see 1,2.5). A linear manifold of dimension 1, we will
call a line. If L is a line; ay b &L, a # b, then every other
point on L is of the form & a + (1-t)b, t€R . If M is a linear
manifold in V and dim M = (dim V~1), then we call M a hyperplane
in V.

1,3.5. Definition. Let V and W be resl vector spaces. A& .

function @ + V —> W is said to be a linear map, if for every

t €{R and every x, ye V,
@ (& x+ (1-t)y) = t P(x) + (1-t) Q).

Alternatively, one can characterize a linear map as being
thé sum of a vector space homomorphism and a constant,
Bx, 1.3.6. In definition 1.3.5, it is enough to assume the
Gt x+ U=t)y) = ¢t P(x) + (1=t) P(y) for Ot <1, O

If A is a convex set in V and (p: A= W, (W a
real vector space) is a map such that, for x, y€ 4, 04 t <!

Pl x + (1=t) 3) = £ Plx) + (1-t) P (),
then also we call CP linear. It is easy to see that (p is the
restriction to A of a linear map of V (which is uniquely defined
on the linear manifold span;led by A).
Ex, 1.3.7. Let A, V, W be as above and CP: A ~e—>W a map., ohow
that q) is linear if and only if the graph of CP is convex, (graph

of CP is the subset of V AW consisting of "(x, y), x €4, y= CP(X)).D
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Bx, 1.3.8. The images and preimages of convex sets under a linear
map (resp. open convex sets) are convex sets (resp. open convex
sets). The images and preiméges of linear manifolds under a linear
map are again linear manifolds. [J

A hyperplane P in V for instance is the preimage of
O wunder a linear map from V to ﬂ%.. Thus with respect to some
basiswof V, P is given by an equation of the form.ZZ:‘Qi x; = d,
where X, are co~ordinates with respect to a basis of V and
Xi’ d E:{R, not all the ﬁ.i"s being zero. Hence V -~ P consists
of two connected components ('Z,Q_l xi>d and Z,Q,l %, ¢ d), which
we will call the half-spaces of V determined by P, & half space
of V is another example bf an open convex set.

1.3.9. Definition. A bisection of a vector space V consists of

a triple (P;,H+, H ) consisting of a hyperplane P in V and
the two half épaces H" and Hm determined by ‘P.

These will be used in the next few section., A few more
remarks: Let the dimension of V=m and V' be a (m - k)-dimensional
subspace of V., Then extending a basis of V' to a basis of V
we can express VT. as the intersection of (k1) subSpacespf v
of dimension (m-1). Thué any linear manifold can be expressed as
the intersection of finite set (non unique) of hyperplanes. Also
we can talk of hyperplanes, linear submanifolds etc. of a linear
manifold M din V. These could for example be taken as the
translates of such from the corresponding subspace of V or we can

consider them as intersections of hyperplanes and linear manifolds
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in V with M. Both are equivalent. Next, the topology on V is
taken to be topology induced by any Euclidean metric on V., The
topoloéy on subspaces of V inherited from V is the‘same as the
unique topology defined by Euclidean metrics on them. And for.a
linear manifold M we can either take the topology on M induced
from V or from subspace of V of which it is & translate. Againv
both are the same, We will use these hereafter without more ado.

1.4. The calculus of boundaries.,

1.4.1, Definition, Let A& be an open convex set in V. A point

x €V~ A is called a boundary point of A,if there exists a point

a & A such that 0O(x, a) ﬁiA. The set of all boundary points of //C:
A is called the bounddry of A and is denoted by alh

A number of propositions will now be presented as exer-
cises, and sometimes hints‘are given in the form of diagrams., In
each given context a real vector space is involved even when it is
nét‘explioitly mentioned, and the sets we are'considering are
understﬁod to be subsets of that vector space.
Ex, 1.4.2. A linear manifold has empty boundary. Conversely, if
an open convex set A has empty boundary, then A 1is a linear
manifold., [
Remarks This uses the completeness of real numbers.
Ex, 1,4.3. If (P ; H+, H') 4is a bisection of V, then
OH'= ¥ =P and P =g - L]

T.h,h4, Proposition. If A is an open convex set and xe;aA, then

for all b &4, O (x, b)( A
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Proof: Based on this picture:

There is 'a' such that O(x, a)CA.
Extend a, b to a point ¢ & A, For
any q € 0(x, b), there‘exists a

p & 0{x, a) such that q&Q(c, p)..

Since ¢, p € A, g & A, Hence
ox, B)CA 1T

Bx. 1.h.5. Let Q: V—3>W be & linear map, and let B be an
open convex set in W. Then ¢)( (;')-1(8))Cq51( éB). If (P is onto
then equality holds, D

1,4,6, Definition. The closure of an open convex set A is

defined to be AUBA; it is denoted by A,

Bx, 1,47, If ACB, then AC B (1

1,4,8, Proposition. If a, b& A and a £ b, where A is an open

convex set, then there is at most one x& QA such that b & O(a, x).
Proof: If b € 0(a, x) and b€O0(a, y) ; x, v €W, x# y, then
0(a, x) and O(a, y) lie on the same line, the line through a

and b and both, are on the same side of a as b, Either x

or y must be closer to a i.e, either x €0(a, y) or

y&0(a, x). If er(a, y), then xgA, but AMOA = @, Similarly

y €0(a, x) is also impossible, B

1.4.9., Proposition. Let ixo sevans Xn% be an independent set
waose convex hull is contained in a A, where A is an open convex

set. Let a€&A. Then %{O seeey Koo a:é is indepeﬁdept.
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Proof: 1.4.8 shows that each point of k{-xo seeey X a} can be
written as a unique convex combination. Hence by 1.2,6

{XO seees X a} is ihdependent.’ hun

1.4.10, Let A and B be open convex sets, If B(_ 34, then
0B C OA.

Proof: Based on this picture:

The case A or B is empty is

trivial, Otherwise, let

XEBB, b&€B, ae A; extend the
segment, [b, a] to al@h., Let
p€O0(x, a); then q&O(x, b) can
be found such that p€0(g, a').
Since qeO(x, b)( B( 04, it
follows that 0(q, a'){{ A, there-

fore p€ A, Hence O(x, a) ( A;
obviously x does not belong to A and so x€ 4. O

1.4,11, Definition. If A and B are open convex sets, define

AL B tomean AC OB,
1ehe 10 dmplies that <« is transitive,
Ex, 1,4,12, If A is an open convex set, then A& is convéx.

Lo 3

Hint: s -




1,4, 13. Proposition. If A and B are open convex sets with

ANMB#$, then d(A NB) is the disjoint union of OAM B,

ANYB and QAN IB, | |

Proof: These three sets are disjoint, since ANOA = BAOB £ .

Let CehA NB énd x €3(AMNB); since x @V - (AOB) =

= (V= )WV~ B), x either (1) belongs to V- A and to

V~B or (2) belongs to V- A and to B or (3) belongs to

.A and to V- B, Since O0(x, ¢cX_ ANB, in case (1) x €JdANDB,

in case (2) x€ OANE and in case (3) x& ANOB. The converse.

is similarly easy., [ |
Another way of stating 1.4.13 is to say that

INB=TQB, wen AMB £ 8. |

1.4, 14, Proposition. If A and B are open convex sets and

ACB and ANB# ¢, then AC B.

Prooft | Let' c e AMB, and a € A The line from 'c! to ta!
may be prolonged a little bit to at' ¢A, Siélce ale ﬁ, it
follows that O(a', ¢) B, but a€ O(a', ¢). Hence A& (CB.[

1.4.15, Proposition., If A =B, where A and B are open convex

sets, then A = B,

Prooft If AMB=@, since AVOA = BUDIB, we have ACOB and
BC QA By 1.4.10 we have ACQOA and BC OB. But

ANOA = f = BOOB, Hence ANB=@ 1is impossible except for the

empty case. Then by 1.4.14, A B and B( A, Therefore A = B.

1.4,16. Proposition, Let O (x1 seses xn) denote the closure

of O(x1 sevas xn). Then 5(}:1 seses xn> = K%& seevs x;n} .
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Proof: First, K{x1 [ Xn}CaXI seees Xn>' For let
V& K {:x:1 seens xn}; then .y is a convex linear combination

Ty XKyt +T x ., Let 3z =
n “n

1 (X1 +-..‘.+Xn>€ O(X1 s8e0 ) Xn)i

1
n . .
Then every point on the line segment O(y, z) is obviously expressed
a8 an open convex combination of Ky seeey X ) hence
O(y, Z)C O(X1 9r009 Xn)’ and so 'yE—O-(}q ERRRN Xn).

Conversely, let y € 6(:{1-,”., x,). If y € 0(x, sided xn,),
clearly yeK{x1 RPN Xn} . Suppose yeao(x1 seees xn); let
Z = .r!l_ (x1 toee 4 xn) as above, On the line segment O(y, z), pick
a sequence ai of points tending to y. Now,

ay E': oy, 2)C O(x:‘_1 O xn)c k{x_,)‘ seres xn}.  Let

a; = ri1 Xy e * rin X e I‘i4 are bounded by 1. By going to
. %]

subsequences if necessary we can assume that the sequences {rijg

converge for all J, say %o rJ.. Then irj =1, ry 20, and
r. X, converge to r, X, seos »
zlj ; g S Jek{xj, ,x% . But
Zri X, also converge to y. Hence y = % ry %y and
5 7

YGK%H 3seesy Xn-g -3

1.4,17. Definition. An open convex set A is said to be bounded,

if for every line L in V, there are points x, y € L, such that
ANLC x v .

Since in any case AN L is &n open convex set, either
AN L is empty, or AL consists of a single point, lor ANL
is an open interval, possibly infinite on L. The boundedness of -A

then implies that if AML contains at least two points, there
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are X, y& L such that ANL =0 (x, v),

1.4,18. Proposition, If A is & bounded open convex set.containing

at least two points, then & =K (DA)

‘ Proof: Since ) AC_ A and 4 is convex, it is always true that
K(p A)C L Clearly A CK( O 4), \It remains only to show
that ACK( QA), Let af A Let L be a line through 'a'
and another po:‘mt' b &' A (Such another point exists by hypothesis).
Since A is bounded, and {a, bg €L NVA, it follows that
AL = 0(x, y) for some x, y€ L, Clearly x, y €4, and
a€ EC, yJCk(da). O ‘
Remark: With the hypothesis of 1.4.18, we have A = UE, v,
ta' a fixed point of A and y€dh and A= (.5’)0 (a,yy)U{a} 5
Ex, 1.4,19. If A and B are open convex sets, and A« B,
and B 1is bounded, then A is bouﬁded. l. |

Hints
LAt ' Dy . ‘
b
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Ex, 1.4,20, ILet A ‘be én open convex set in V, and B _be an
open convex set in W, Then (1) A X B is an open convex set in
VXW; (2) O (AXB) is the disjoint union of QA %B, AX B
and D AXOB; (3) A %B is bounded if and only if 4 and B
are, provided A A0, BB O ‘

| The following £wo exercises are some what difficult in
the sense they use comgactness of the sphere, continuity of certain
functions etc.
Ex, 1,4.21. The closure of A defined- above (1.4.6) coincides
with the topological closure of A in V .0 |

Ex, 1.4.22, 4An open convex set which is bounded in the sense of

some FEuclidean metric is bounded in the above sense, and conversely,Dl

1.5, Convex cells,

1.5.1. Definition. An open convex cell is defined to be a finite

intersection of hyperplanes and half spaces, which as an open convex
set is bounded. ’ -

Clearly the intersection of two open convex celis is an
open convex cell, and the product of two open convex cells is an
open convex cell,

With respect to a coordinate system in the vector space
in which it is defined, an open convex cell is given by a finite
system of linear inequalities.. If A 1is an open convex cell, by
taking the intersection of all the hyperplanes used in defining A,

we can write A = P\ H1fi.. MHy , where P is a linear manifold
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and Hi are half spaces. Since Hi are open in the ambient vector

. . ! 1 ! .
space A is open in P. Let A =P N H1 0... ﬂ?iﬂ be another

such representation of A, If A is nonempty, then P = P'{, For

ACP NP and if P 4 P', PAP  is of lower dimension than P,
hence A cgnnot be open in P. Thus P'= P; though the HL% and
H'j’s may differ, Hence P can‘be described as the unique linear
manifold which contains A as an open subset, We define the dimension
of the open convex cell A to be the-dimension of the above linear
manifold P, If A= ﬁ, we define the dimension of A to be 1.

If A is an open convex cell, we will call A a closed
convex cell. The boundary of a closed convex cell is defined to be
the same as the boundary of the open convex cell of which it 1s the
closure. This is well defined, since A = B implies A = B, when
A and B are open convex sets (1.4.15). The dimension of A is
defined to be the same as the dimension of A,

Using 1,2.,9 and 1,2,10, it is easily seen that the
dimension of A 1is one less than fhe cardinality of maximal inde-~
pendent set contained in A or A, Similar remérk applies for A
also. Actually,using this description we can extend the definition
of dimension to arbitrary convex sets.

CBx, 1.5.2. If A is an open convex cell of dimensioﬁ K, and

i

A o3 An are open convex cells of dimension & K, then

1,--

A¢A1U... wa . O
n

1.5.3, Proposition. An open k-simplex is an open convex cell of

dimension k. A closed k-simplex i$ a closed convex cell of
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dimension k.,

Proof: It is enough to prove for the dpen k-simplex, Let the OpeAn
k-simplex be O(xO seens xk) = A in the vector space V. The the
unique lineaf menifold P containing A is the set of points

ro % . coeee * T X, Where Yo ... b ny =T, ri@(R. Define
(Pi(ro xg * cer + r, Xk) =r. (Pi is a linear map from P toR .
Then Hi = @;1 (0,0 ) is a half space relative to the hyperplane

P and O(xy 5eee, Xk> = Hyfh . NH By extending H; to half

"

\ ,
spaces H, in V suitably, o(xQ serey %) = PAHYN L. AH
Boundedness of A, and that dim A = k are clear. [}

1,5.4, Proposition., Let A be a nonempty open cell. Then

there 1s a finite set @ = &A1 R Akk whose elements are open

convex cells, such that

(a) K = U A,

1€igk
(b) Ai{\Aj =@ if i# ]
(¢) A is one of the cells Ai |
(d) The boundary of each element of G) is union of
elements of @ . (Of course the empty set is
also taken as such a union).
Proof: Let A= PN H1ﬂ... ('\Hn , where P is a linear glanifold
and Hi are half spaces with boundary hyperplanes Pi' Let(P be

the set whose elements are nonempty sets of the following sort:

Let {1yeees o} - f eens jq%u{k1 s kb

Then if it is not empty the set PAH.MN... NH.ONPN ... NP
I g - 5 Kloeq)
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is an element of P. The pfopertiés of GJ follow from 1.4.13.,0}
If the above, the union of elements of P excluding A

constitute the boundary a A of A, Then using 1.4.9, and the

remarks preceding 1.5.2, we have, if‘ AiE,GJ, Ai‘% A, then

dim Ay  dim A, We have seen that if A is a bounded open convex
~

set of dim > 1, then A = K (Q A). Hence by an obvious induction,

we have

’

1.5.5, Propositioh. A closed convex cell is the convex hull of a
finite set of points, {1 |
A partial converse of 1.5.5, is trivials
1,5.6. The convex hull of a finite set is a finite union of open
(closed) convex cells. [} |
The converse of 1.5.5 1is also true,
Ex." 1.5.7. The convex hull of a finite set is a closed convex cell.
Hint: Let {x1 seen Kn} be a finite set in vector space V. By
1416 K %’X1 yoens xngm 0 (%, ;.05 x ). Tt is enough to show
that O(x1 ,, Xr1> is an open convex cell, Let M be the linear
manifold generated by ix1 seesy X‘n} . Let dim M=k . Write
A= O(X1 N xn) S A= 5‘(.%(1 yeoes xn}. h is open in M. To
prove the proposition it ié enough to show that A is the inter-
section of half spaces in M,
Step 1. % and DA are both union of open (hence closed) simplexes
with vertices in {3{1 sesay Xn% . The assertion for A follows fr‘on}

1."2' 70
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Step 2. If B is a (k~1)-simplex in O A and N is the hyperplane
in M .defined by B, then ‘A cannot have points in both the half
spaces defined by N in M

Step 3. It is enough to show that each point of DA belongs to a
closed (k-1)-simplex with vertices in {Xﬁ ;;.;; Xn} -

Step h. Fach point x & DA is contained in a closed (k=1)-simplex
with verticef in {x1‘5.a‘5 xg} i To prove this let Cf Ghees Cp
be the closed simplexes contained in O A with vertices in

x, js;.; X which contain %; and D"g...,qu (C.®A) which do
not contain x. by Steb 1) Lé. C, k) Dj = E}A‘ Consider any point
"a& A and a point b é& 0O(a, x). Leg Ci‘ (resp. Dj’) denote the
closed simplex whose ve?tices are those of C, (resp. Dj> and ‘'al',
By the remark following 1.4.18. \J ¢ ' \J DJ_' =L Show that

kiJ C;' 1is a neighbourhood of b, Tr din 0, (k=1 for all i,
then dim C, '€ k-1 for all i. Use 1,5.2 to show that in this
case J Cil -cannot be a neighbourhood of b, [}

Since‘the linear image of convex hull of a finité set

'is also the convex hull of finite set, 1,5.7, immediately gives

that the linsar image of a closed convex cell is a closed convex
cell, If A is an 6pen convex cell in V and Q) a linear map
from V to W, then q?(ﬂ) = —Eﬁzﬁ), by 1.4.16, hence by 1.4, 15
CP(A) 1s an open convex cell. Therefore

1.5.8. Proposition. The linear image of an open (resp. closed)

convex cell is an open {resp. closed) convex cell. U}
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1.6, PréSentations of polyhedra

If (P is a set of sets and A 1is set; we shal; ..write.
AP |
when A is a union of elements of 6) . For example (d) of 1.5.4
can be expressed as "If Ag @, then BA-V"@ ", We make the
obvious convention, when @ is the empty set, that § ‘\,/'A:} no
matter what G:’ is, h

1,6.1:  Definition. A polyhedral presentation is a finite set@

whose elements are open convex cells, such that A€ @ implies
2)A*J’G3.

1.6.2, Definition. 4# regular presentation is a polyhedral pre-

sentation 63 such that any two distinct elements are disjoint, that
is, 4¢P, BeP , A#B implies ANB = f,
Ex, The @ of proposition 1,5.4 is a regular presentation.

1.6,3. Definition. A simplicial presentation is a regular pre-

sentation whose elements are simplicies and such that if A EFs
then every face of A also belongs to (2 .

If @C (Pare polyhedral presentations; we call & e

subpresentation of G) . If 63 is regular (resp. simplicial) then(h
is necessarily regular (resp. simplicial). The points of the

O-cells of a simplicial presentation will be called the vertices of
the simplicial preseqpation, The dimension of a polyhedral presen-
tation is defined to be the maximum of the dimensions of the open

S
cells of (P ¢

1.6.4, Definition. If 03 is a polyhedral presentation m}l will
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be used to denote the union of all elements of (P . We say th'at@‘

is a presentation of \@\ or that ((P\ has a presentation (P .

Recall that in t.1, we have defined a polyhedron as a
subset of a real vector space, whicﬁ is & finite union of convex
hulls of finite sets. It 1s clear cc;ﬁsequence of 1.5.4, 1.5.5 and
1.5.6 that

1,6.5, Proposition. Every polyhedron has a polyhedral presentation.

If (P is a polyhedral presentation, then \@} is a polyhedron. [}
Thus, if we define a polyhedron as a subset of a real -
vector space which has a polyhedral presentation, then this .defihition

coincides with the earlier definition.

1.6.6, Proposition., The union or intersection of a finite number

of polyhedra is again a polyhedron.
Proof: It is enough to prove for two polyhedra say P and' Q.' Let
GJ and () be polyhedral presenﬁ:ations of P and Q respectively,
Then (PU (% 1s a polyhedral presentatioﬁ of P\J@; hence PUQ
is a polyhedron, To prove that P\ Q is a polyhedron, consider
the set 0.{ consisting of all nonempty svets of the form & 0\ B,
for A&P and B € It follows from 1.4.13 that (R is a
polyhedral presentation., Clearly \@{ = PN Q Hence by 1.6.5
PNQ is a polyhedron. [l

If X¢ Y are polyhedra, we will call X a subpolyhedron’

of Y. Thus in 1.6.6, PMQ is a subpolyhedron of both P and Q.
1.6,7. 1If @ and (§ are two polyhedral presentations consider

the sets of the form AXB, A€, B, Clearly AXB is
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an open convex cell, and by 1.4.20 E)(A7<B)v is the disjoint ﬁnion

of QA % B, A){BB and aAPX OB, Thus the set of cells of

the form A K B, Ae(p_, B ¢ (%h is a polyhedral presentation, regular

if both @ end h are.  This we will denote by P& . As above, |

we have, as a consequence that P X Q is a polyhedron, with .

presentation @ X, |

Ex, 1.6.8, The linear image of a polyhedron is a polyhedron (follows

from the Qefinition of polyhedron and the definition of linear map).E}
Recall that we have defined a polyhedral map between two

polyhedra as a map whose graph is a polyhedron.‘

1.6.9. Proposition. The composition of two polyhedral maps is a

polyhedral map.
E_I_‘gg_f_} Let %, Y and 7 Dbe three polyhedra in the vectorlspaces
U, V and W respectively, and let f ¢ X=—> Y, g ¢ Y ~—> Z be
polyhedral maps, Then T‘(f)C_ UXYV and | (g)CV KXW are
polyhedra. By 1.6.7, TV(f) X Z and X A['(g) are also polyhedra
in UA VAW By 1.6.6, Qj(f)‘)(. Z) (\( X X,T'(g)) s a polyhedron.
This intersection is the set :
S 3 i(x, Vs ) k x@X, y=1£(x), z= g(y)g

in UAXVAWW. By 1.6.8 the projection of U AVXW to UXTW
takes S into a polyhedron, which is none other than the graph of
themap go f s X =22, Hence go f is polyhedral. 0O

If a polyhedral map f : P ——»Q, is one-~to-one and onto

we term 1t a polyhedral equivalence.

Ex, 1,6,10. If, f ¢ P~—» Q is a polyhedral map, then the map
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'y p @%T(f) defined by f£'(x) = (%, f(x)) is a polyhedral
equivalence,

1.6.11, Dimension of a polyhedron.

The dimension of a polyhedron P is defined to be
Max., dim O CQGD , Where G) is ’any polyhedral presentation of P.
Of course we have to check that this is independent of the
presentation chosen., This follows i“rom 1.5.2.
Let P and @ be two polyhedra and f ¢ P ~3 @ be
a polyhedral map. Let A ¢ PR Q—3 P and P P}QQ——;—} Q
be the first and second projections., If e is any presentation of
-r‘(f), then the open cells of the form A (C), OQG is. a
presentation of P, regular if and only if @ is regﬁlar. Ifr f
is a polyhedral equivalence, then the cells of the form ‘J\,(C),

C & @ is a presentation of Q. ' This shows that

1.6.12. TProposition. The dimension of a polyhedron is a polyhedral

invariant, 0

1,'7. Refinement by bisection,

1.7.1, Definition, If (P and (}, are polyhedral presentations, we

say that (P refines (3, or P is a refinement of (S provided

(&) \@l=\&)

(b) Tf Ae@P, and BEQH, then ANB =@ or ACB.
In otherwords, {P and (5 are presentations of the same
polyhedron and each element (an open convex cell) of @ is contained

in each element of @1 which it intersects. Hereafter, when there
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is no confusion, we will refer to open convex cells and closed convex

cells as open cells and closed cells, 4 polyhedral presentation is
regular if and only if it refines itéelf.
. + - '
Let (R= (P; H, H) be a bisection of the ambient
vector space V (1.3.9); (£ a polyhedral presentation of & polyhedron

in V, and let A€ @, we say that @. admits a bisection by

B at A, provided:

Whenever an open cell Aﬁ; @ intersects
A4 (d.e. AH\@A £ @), and dim A, £ dim 4, then either
A, CP or A1C HY or A1C H (in particular this should ‘be true
for any cell in the boundary of "A),

If @_ admits a bisection by (3 at 4, then we define a

presentation @' as follows, and call it the result of bisecting
@ by (R at A |

1
@_ consists of & with the element A removed, and with

the nonempty sets of the form, AQ P or AQ ﬂ+ or AN H—",
that is . ' |
@ = i(@-{_A}) U{'Ar\ P, And, anu -{;5}1. |
By 1.4.13, and .the definition of admitting a bisection, @,' ris
a polyhedral presentetion, Clearly @1 refines@ , if @ is
regular, “ '
We remark that it may well be the calse that A is
contained in P or‘ H or H. In this event, bisecting at A
changes nothing at all, that is @_l :@. .‘ If this i1s the cass

we call the bisection trivial. It is also possible, in the case of
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irregular presentations, that some or all of the sets
ANP, ANH', ANH may already be contained in @ - {‘A} in
this event, bisection will not change"as much as we might expect.

Ex, 1.7.2. Tet A and B be two open cells, with dim AL dim B

and A £ B. Let @ iP.; ut H.-} be bisections of
TN Y g
space such that A is the intersection of precisely one element from

some of the Oaj’s.h If ANBAD, then 3 an L, 1 % ¢ m, such
that BNP , BOH  and BAH  are all nonvacuous. Q)

What we aré aiming at is to lshow that every polyhedral
presentation QD has a regular refinement, which moreover is obtained
from (P by a particular» process (bisections), The proof is b’;g an
obvious double induction; we sketch the proof beléw leaving some of
the details to the reader. - |
1.7.3: Proposition REFI (P, (P {sip

There is a procedure; whidhj applied to & polyhedral

presentation (P , gives a finite sequences {_S]j of bisections (at

. 1
cells by bisections of space), which start on 63 , give end result (P ,

!

and G) is a regular presentation which refines 63 ‘.

Proof: Step 1. First, we find a finite set (Bj :,{Pj;‘ Hg, H;} 53 = el
of bisections of the ambient space, such that every element of G) is

an Intersection one element each- from some of the 03 j’s.. This is
possible because every -element of G) is a finite intersection of

hyperplanes and half spaces,. and there are only a finite number of"

¢lements in G:) o
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Step 2. Write (P = @O' Index the cells of @O in such a way that

the dimension is a non decreasing function. That is define p_ ‘to be

0 0
the cardinality of G)O’ arrange the elements of 630 as DO""’ Dp s

0

. o . ]
such that dim Dkgdlm D . for all -0 ¢ kg P 1,

I+ 0"
0
Step 3. SO,I denotes the process of bisecting (P»O at DO by 633

1
Inductively, we define S to be the process of bisecting

0 O,k+1

D N » »
(Po,k at o+ by @1 3 and G]O,k-w the result, This is well
defined since the elements of ‘G)O are arranged in the order of

nondecreasing dimension. This can be done until we get SO D and

’Fo
(PO’ pO.

Step 4. Write @1 = @ , repeat step (2) and then the step (3)
O,po .
with bisection instead of .
@2 \@1
And til we get tops.
so0 on until we ge @ 0’ when the process s ‘op GD "

is clearly a refinement of (P = G)O 3 it remains to show that 6)
‘ n

is regular, BEach element by G)n belongs to some @ o and

‘ i3
each element of @n ‘is a finite intersection of exactly one element
each from a subfamily of the (Eﬂj’s. It is easily shown by double
induction that if A € @n’ then for any J, 1L Jj & n, either AC Pj
or & Hg or ACHE. Tnet is (D  admits a bisection at A by
G?_sj for any J, but the bisection is trivial, Let C, DE P, C#D
COD#£P, dim C&dim D, Then since C is an intersection of one
element each from a subfamily of the (B j’s, by 1.7.3, there exists
an Q such that D) Pe D (‘\H{ and D (“\,H}_ are all nonempty.

But this is a contradiction. Hence @n is regular. Write
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(Pn‘ (P:S =5 +...+pi+j. This gives the

j'-)j pO
"RE 3 n,.
REFI (@ (SR {b&) er
We cen now draw a number of corollaries:

1.10,4. Corollary. Any polyhedron has a regular presentation. [}

1,10, 5. Corollary. Any two polyhedral presentations (P s O

of the same polyhedron X have a common refinement @ 5 which is
obtained from (P and from @\ by a finite sequence of bisections.

| To see this, note that @ U"&w is a polyhedral presentation
of X. The application REFI (GBU(‘}\, R, ,{S&) provides (R, .
Let %'T-l'g and %_Uk} denote the subsequences applying to 63 and@\
respectively; observe that they both result in R . g

1,10, 6. Corollary. Given any finite number @1 srees (P of
r

polyhedral presentations, there is a regular presentation @-—; of
‘(PT\ \J.. U\qbrl » and (By has subpresentations @? seves O o
, : T
with l@ | = l@ll for ell i and (P 1is obtained from @
by a finite sequence of bisections, , '
This is an spplication of RE F I ( 0) 1U v U@r’G‘ , {Sﬁ)»

and an analysis of the situation. [}
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Chapter TIT

Triangulation

As we have seen, every polyhedral presentationQ) has a
regular refinement, ‘This implies that any two polyhedral presentations
of X have a common regular refinement, that if XC“Y are polyhedra
there are regular presentations of Y contalning subpresentations
covering X, etc.. In this chapter we will see that in fact every poly-
hedral presentation has a simplicial refinement, and that given a
polyhedral map f § P-—P Q, there exist simplicial presentations of
P and @ with respect to which f is "simpliciall,

2,1, Triangulation of polyhedrat

A simplicial presentation A of a polyhedron X is also

known as a linear triangulation of X, We shall construct simplicial

presentations from regular ones by "barycentric subdivision",

2,1,1, Definition. Let G) be a regular presentation, A& centering
of (0 is a function 7} P P—\@! » sueh thet Y (C)€ C, for
every C Q;(P.

In other words, a centering is a way to choose a point
each from each element (an open convex cell) of (P .
2,1.2, Proposition. If CO C1 ces Ck are elements of @ s
ordered with respect to boundary relationship, then %_Y\(Co)""’ "q(Ck)}

is an independent set for any centering n of Gl A

Proof; Immediate from 1,4.9, by induction. {3

2.1,3. Proposition. Suppose that Q) is a regular presentation and
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C(—_‘(P. C is the disjoint union of all open simplexes of the form

o (Mlps Moo, M), M)

where A €Q , Ay <A< .o LA oand A C Q0.
Proofy By induction. Assume the proposition to be true for cells
of dimension < dim C. a C 1is the union of all simplexés of the
form O (7}(}\0), '\q(A ), .. 'Y‘](Ak)) where A, EG)
and A, .. (A (since < i tran51t1ve) Since C is a bounded
open convex cell C is the union of O T)(C x), x €0C and "7] (C)
(see the remark follow:mg 1.4,18), Now 2.1,2 completes the rest. 0

Tt follows from 2.1.2 and 2.1.3, that if (P is any regular
presentation, then the set of all open simplexes of the for;m
o( Y](co), R ‘Y)(ck)), for C, €@ ‘, with Co& .. &G , is
a simplicial presentation of m)( . This leads to the following

definition and proposition.

2.1.4, Definition. If GD is any regular presentation, \1 a centering

of @ 3 the derived subdivision of G) relative to T) is the set of
open simplexes of the form O n (Cads vves YW(GI{” , Gy Q('P

CQ< ver €60 Tt isa simplicial presentation (of \(P‘ Y and is
denoted by d ((P s ) |

‘ The vertices of d ((P » N ) are precisely the points |
(O~cells) 7\ (¢) , ¢ 6@. When ‘Y] is understood, or if the particular
choice of Y} is not so important, we refer to d( G) s Y} ) as a
derived subdivi(sion of GD and denote it by d(P

2.1.5. Proposition, Every polyhedral presentation admits of a

simplicial refinement. {}
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Hence every polyhedron can be triangulated,

2.2, Triangulation of maps. Now, we return, to polyhedrai maps.‘ If

ftP-—3 Q is a polyhedral map, we have seen that the map
£'s P31 () given by f£'(x) = (x, ‘f(x)) is a polyhedral
- equivalence and that any presentation of ') gives a presentation

of P by linear projection. Also, we saw in 1.3, that if A is a

convex subset of vector space V and @ ; A—-—-ﬁ W a map of A

into a vector space W, q;) is linear if and only if the graph of (P

is convex., Combining these two remarks,' we have that a polyhedral

map 1s 'plecewise linear' or as Alexander called it 'linear in patches',
Next, an attempt to describe bpolyhedral maps in terms of

presentations of polyhedra leads to the following definition.

2.2,1, Definition. Let (SLand ([} be regular presentations. A

function (p : OU~> (3 is called combinatorial if for all
A, A e O, A& A, implies CP(A1) 5; (p(A2>-

But unfortunately there may be several distinct polyhedral
maps \Q‘L‘ —>, ‘03;' inducing the same combinatorial map oL@ ,
and a map \(j}_l — \(f)i inducing some combinatorial map QL *‘5@)
need not even be polyhedral (We will see more of these when we come
to 'standard mistake')., If turns out that a map 0\— —> (3 induces
a unique map \Q\_\ B ‘@] if we require that the induced map
to be linear on each cell of (L. . But in this case it is sufficient
to know the map on Owcells (vertices); one can extend by linearly.
This naturally leads to simplicial maps.

2,2,2, Definition. Let X and Y be polyhedra, /g and ;Ié
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‘simplicial presentations of X and Y respectively, A map

£3:X—3> Y is said to be simplicial with respect to ,&§ and x
iff |
1) f maps vertices of each simplex in /S
into the vertices of some simplex in o .
and 2) f is linear on the closure of each
simplex in’/g
f is polyhedral, since its graph has a natural simplicial
presentation isomorphic so A .
Let X and Z;, be two simplicial presentations, Let /g
(resp. % ) be the set of vertices of /g (resp. 5@3 If
({ 4 --?;Zg is a map, which carries the vertices of a simplex
of X into the vertlces of some s:melex of éé then (also) we will
say QC is a simglicial map from & to x .
2.2.3. Bxample. If (P G) O is a combinatoriel map '\) s ©

centerings of G) and 63 respectively, the map which carries Y} @)

to 0 ( @(C)) is a simplicial map from d((P s Y) ) to d(&p, 9).0

We now proceed to show that every polyhedral map is
simplicial with respect to some triangulations,

Let P and Q be two polyhedra and f ¢t P—) Q be a
polyhedral map. Let @ s & and@ be presentatiops of P, Q and
‘T'(f)c_ PXQ. Let (L be a regular presentation of P Q which
refines (@xﬁ\) U@, and let @' be the subpresentation of (-
which covers -r‘(f).

- Let ?\ and ‘\A be the projections of PX Q onto P and
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@ respectively, By the refinement process therze is a re_g,u]rar presens=
tation 6‘\, of Q refining @\ such that:
(0 154 €&, 0 e, A0 [L(C) £ 6, then A CMC).
Then, if C & C‘? t\A.(C is the union of elements of ®'~ .
Now we look at the presentations @" = @ . (@x@-:)

of T1(£). The cells of (Y are by definition of the form

= O (AXB"Y, C¢€ @, he s B ¢ &' Clearly ¢"Cce (\P';’(B’).
~ On the other hand, éince @\‘ is a refinement of & , there is an |
open cell B € (3 with BDBI. Since @' is a subpresentation of
a refinement Ot of (P X s if ¢ ;é‘o, C C AX. B. Hence if
(x, y) & Cﬁ‘*‘c1(B‘), then 'x€ A, y €B', so (x, v)€ AXB', Hence
an(B')Ccn(AxB‘) =¢", Thus C" = C('SP:I(B') . Hence @“ |

can be also described as
@ ={c r\pﬂ(B‘)‘ s R 4o, ce@, 8 € o'}
Now, clearly G)' = %(@“) ={‘H(D) D E@"}is a

regular presentation of P (A{T‘(f) is 1-1 and A is linear)with

reference to the ambient vector spaces . Now the claim is. that f
tnduses & comblnatorial nap P >, et & ve any cellor .
( ﬁlT\ f)) 4) isacell of @") say some oM P"

£(A) = tu\(c r\(w (8)) = M(C)A B' =B' by (¥). Thus f(A) ¢ O,
d(c ﬂH;T(B )) is the union of O C QO {\i'(é'),‘ CNM (bBl)

and Q¢ N M(O8'); (by 1.4.5) and so P d (6 AN'(BY)) 1o

' the union of MU JC)N B',M(C)A DB, end M (O YN B,
hence tv\,(a(})c_—fiﬂ. Hence 1f A L 4, £(4) B', Thus f
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L] . » . ‘ ‘ .
induces a combinatorial map from @ to @\ . Moreover, since

11 -
the presentation @r comes from @ , the graph of f restricted

1
to the closure of each cell of @ is a closed cell, and hence ¢

,is linear on the closure of each cell of G) ',

The discussion so far can be summarized as:

2.2,4, Theorem. Let f 3 P —.-> Q@ be a polyhedral map, and let

(P s @-\be polyhedral presentations of P and @Q respectively. Then
there exist regular 'refinements (P’ and @-\' of (P and (% such
that

1) If A Q(Pl , F(A) E_@-,Y The induced map from " G) '
to Ej\' is combinatorial,

2) £ is linear on the closure of each cell of G) ’.

Furthermore, '
2.2,5. If (P and @ are regular and if there is a regular presen-
tation (2 of TVE)  such that |

a) For each C Q@, %(C) is contained in some element

of@,
of&,

b) For each C (;Q s {\)\.(C) is the union of elements

H
then in the above theorem we can take @\ = @\ (in

other words, a combinatorial map can be found refining only GD s

not Cn ).

To apply 2.2.4 to the problem of simplicial maps, we can

use 2.2.3 as follows: First we choose some centering © of 6“ ‘,

t
and then a centering of (P so that

£(M(e)) = 6 (£ (e)) for all © ‘5@'-
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!
Since f is linear an each element of 63 ", we have that f ¢ P~ Q
1
is simplicial with respect-to d( (P, 7)) and d v, 9). Hence,

2,2,6, Corollary, Given a polyhedral map f : P —9 Q, there exist

triangulations /g and o of P and @, with respect to which f
is simplicial., Moreover, 4 and % can be chosen to refine any
given presentations of P and Q. L.

Defining the source and target of amap f 3 K~ L to

be K and L respectively. We may now state a more general result,

details of the proof left as an exercise,

2.2.7. Theorem. Let SLK&YSbe a finite set of polyhedra, with
d=1,.00,n; let £ 2K ey K be a finite set of polyhedral
r L .
maps, the sources and targets being all in the given set of polyhedra.
Suppose that for each Y , ‘7(\, <\3y’ and each Kg(' occurs as the
source of at most one of the maps f (i.'e-. Y £ & implies 0(—Y7é &g )
Let 63{ be a presentation of Kya for each ¥ . Then there is a set
of simplicial presentationsi/gyg , with XY refining G)Y , such

that for a11 v , f is simplicial with reference to

)go(yand /%(5\’

That is to say, the whole diagram gfy} can be triangulated. )

Y

The condition on sources is not always necessary , for
example:

Ex, 2.2,8, A diagram of polyhedral maps
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can be triangulated if f ¢ X~—> Y is an imbedding,
However
Ex, 2.2,9. The following diagram of polyhedral maps (each map is a

linear projection)

J

cannot be triangulated., Y1

Ex. 2,2,10, Let (P be a presentation of a polyhedron P in V,
(p ¢t V—> W be a linear map, then (p ( (:P) = {@(C)\ C&-(P} is a
presentation of (p (p).0
Ex. 2.2,11, Let £ s P> Q be a polyhedral map, and X a sub-
polyhedron of P, Then dim f£(X) £ dim X, a
Ex, 2,2,12, If f 3 P —> @ is a polyhedral map Y is a sub-
polyhedron of Q, -5:1(‘1?) is a subpolyhedron of X T

Next, one can discuss abstract simplicial complexes, their
geometric realizations etc. We do not need them until the last

chapter. The reader is referred to Pontryagin's little book mentioned

in the first chapter for these things.
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Chapter ITI

Topology and Approximation

Since we know that intersection and union of two polyhedra
is a polyhedron, we may define a topology on a polyhedron X, by
describing sets of the form X - ¥, for Y a subpolyhedron, as a
basis of open sets, If, one the other hand, X is a polyhedron in
a fiﬁite dimensional real vector space V, then V has various
Euclidean metrics (all topologically equivalent) and X inherits a
metric topology. | »

Ex. These topologies on X are equal,

The reason is that any point of V is contained in an
arbitrary small open cell, of the same dimepsion as V.

It is easy to see that a olosed'simplex with this topology
is compact. Hence every polyhedron, being a finite union of simplexes
is compact. The graph of a polyhedral map is then compact, and hence
f 1is continuous, Thus we have an embedding of the category of poly-
hedra and polyhedral maps into the category of compact metric spaces
and continuous maps.

It is with respect to any metric giving this topology that
our approximation‘theorems are phrased.

A polyhedgon is an absolute neighbourhood retract, and the
results that we have are simply obtained from a hard look at such
results for A.N.R's,

It turns our that we obtain a version of the simplicial
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approximation theorem, which w&é‘«the starting point, one may say, of
the algebraic topology of the higher dimensional objects. Tﬁe theorem
has been given a 'relative form' by Zeeman, and we shall explain a
method which will give this as well as other related results.

We must first say something about polyhedral neighbourhoods.

3. 1. Neighbourhoods that retract.

Let G) C_G)j be regular presentations., Consider the open
cells C of & , with C N |P| # @, together with A, AL C, 4E®,
for such Y. The set of all these open éells is a subpresentationJV
of & . UV )is a neighbourhood of ‘@\ in \@1) . For, if \)\("
is the set of cells C & © such that T |Pl= #, then J\(»‘ is a
subpresentation of &N and \6;\ - W'\ C\J\P} . If & is simplicial,
\m can be described as the subpresenﬁation, consisting of open
simplexes of 6\ with some vertices in 03 together with their faces,

If (P(:_Qw is a subpresentation, we say that 63 is full
in & ;‘ 1f for every C& (heither T O|P] = ¢ or there is 2
A€ (P with TN|P] =&

In the case of simplicial presentations, this is the same
as saying thaet if an open simplex § of 6\ has all its vertices
in G) , then @~ itself is in G) .

An example of a nonfull subpresentations

i O
T e e smeen e ot

1
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3.1.1, If GJC (S, are regular presentations, then d (P is full in

a & .

For, :Lf Y} is any céntering, then an element (an open
simplex) of d@h is of the form O(Y) (CO)) yevss Y)(Ckn ,Ci & Gr
Cp& +r LG If Of, 0§ L& ky is the last element of the | ‘ci’s
that is in P » then Cy» J & L, are necessarily in @ . Theg
o( N (Cy) 5ees W)(Cjz)) €apP , and O( “’]“o? seres \,)(ck))ﬁ ]d(Pj
= B0 (C) seens ORI [

3.1.2, Definition, If fpis full in (& , the simplicial neighbourhood

of P in & , is the subpresentation of d (3» consisting of all
simpléxes of d ¢ whose vertices 'Y\(C) are centers of cells C of &
with‘ TN ND ‘ £ @. It is denoted by N@“;( P ) (or N(‘j’\(@’q)
when we want to make explicit the centering).

Clearly N ®( (P) is a full subpresentation of d & .
It can be also described as the set of elements ¢~ of d &, for
whiéh T f\"d@i = & N NQ] £ @ plus the faces of such 6 .
Hence { N @3( ) ‘ is a neighbourhoo;i of | G:)\ in the 'topologicél
sense,

Such e neighboﬁr‘hood as [N @,\( P )\ of l@‘ is usually

referred to as a 'second derived neighbourhood' of \Gl\ in \@,l , for

the following reason: If X(_ Y are polyhedra; to get such a
nelghbourhood we first start wi£h a regular presentation (Qtof Y
contyaining a subpresentation (& covering X, derive once so that
d(> is full in d L , then derive again and take | Nyg (4@ )|.

Now we can define a simplicial map r ¢ N O\( (P ) —> 4 ,
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usingtthe property of fullness of e in G - If C G;C}\, with
c N ((Pl £ @, we know that there is a A QGD s such that
[ 1(}3‘ = A, and this A is uniquely determined by C. We define
r(n0)= A |
Ex, 3.1.3. The map r thus defined is a simplicial retraction of
Ng (@) onto 4 . R ‘

That is r is a simplicial map from N & (0’3) to 4 ,
which when restricted to 4 03 is identity. r defines therefore-
a polyhedral map, which also we shall call r 3 {N@, (P N> \afl -
We have proved |
3.1.4, If X is a subpolyhedron of Y4,‘ there is a polyhedron N
which 1s a neighbourhood of X in Y, and there is a polyhedral

retraction r ¢ N~—3 X. []

3.2, Approximation Theorem.

We imagine our polyhedra to be embedded in real vectof
spaces (we have been dealing only with euclidean polyhedra) with
euclidean metrics.- Let X, ¥ be two polyhedra, fﬂD s fD' ‘be
metrics on X and Y respectively coming from the-vector spaces
in which they are situated. If [ (3 : Y —> X are two functions,

we define

P, P)=swp P& (x), B()
xXeY

If A is a subset of X, we define diam A=.sup f (x, y),
‘ X,y & A

and if B is a subset of Y, we define diamB = Sup P (%)
X,y B~
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We can consider X +to be contained in a convex polyhedron
@ If X is situated in the vector space V, we can take Q Ato be
large cube or the convex hull of X, ILet N be a second &erived
neighbourhood of X in @ and r 3 N -3 X be the retraction, Now
Q being bonvex and N a neighboufhood of X and Q, for any
sufficiently small subset S of X, K(8)( N (recall that K (s)
denotes the convex hull of S).. Tﬁis can be made precise in terms
of the metric; and is a uniform property since X is compact. Next
observe that we can obtain polyhedral présentations 63 of X, such
that diameter of each element of (P is less than a prescribed
positive number, This follows for example from refinement pi‘ocess.
Now the theorem is |

3.2, 1. Theorem, Given a polyhedron X, for every ¢ > 0, there

exists a £‘>- 0 such that for ‘any pair of polyhedra Z( Y, and
any pair of functions f ¢ Y——p X, g s Z—> X with f continuous
and g polyhedral, if P(fl Z, g) ¢§ , then there exists a
g1 Y—>X, g polyhedral, -é{ Z=g, and P(f, 'éj(e‘.
Proof:t We embed X in a convex polyhedron Q, in which there is
a polyhedral neighbourhood N and a polyhedral retraction
r s N -—7 X as above, It is clear from the earlier discussion,
tha;t given € > O, there is a o> 0, such that if a set ACX has
diemeter < UE then K (A)C N “and diameter r ( K (A)) <€ . |
‘Define 6 = Y /3.

NOW'because of the uniform continuity of f, (Y is

compact), there is a © » 0, such that if B(C Y and diam (B) < &,
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then diam £(B)g § «
‘ From this it follows that, still assuming B( Y, and
diameter B« @ , and additiénally that  { (£{Z, g)< § ; that the
set £(B){Jg(B M Z) has diameter less than 3 & = - And hence
we know thai(;ﬂj’ﬁ. (f (B)U g (B r\ z)) (N, and
Ldiam r(K (r (B)uUg (B nz))) LE .

Then we find a i)resentation /3 of Y, such that the clqsure‘
of every elemen’c; of Af has diameter less than ©, Also there is a
presentation (Cz; of Z on the closure of every element of which g
is linear., Refining /g U z and takiﬁg ‘derived subdivisions (still
calling the presentations covefing Y and Z, as A andﬁ'eSpectively),
we have the following situation: _ \

| T C /g , are simplicial presentations of Z( Y, on each

closed‘ % -gimplex g 1s linear, the dieameter of each closed
X—simplex { ©.

We now define h ¢ T > @ as followsy On a O-simplex
v of 73, h(v) = g(v), On a O-simplex w of /g -Z; , h(w)‘= £(w).
Extend h linearly on each simplex, this is possible since Q is
convex. But now, if ﬁ: = [VO geoes Vn] is the closure of a ﬁwsimplex,
then h({ ¢ ) C kK ({6 )Jelen 2)) C N; this is a computation
made above (%) since diam. & < €. |

And so W(Y)(C N. Also it is the case that h is polyhedral,
since h 1is linear on the closure of cach simplex of /S s .and on
(Z,‘: Zy clearly,‘ h agrees with g.

Define, g: Y —>X tobe roh Sinee r and h are
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polyhedral so is g ; since h[ Z =g and r is identity on X; it

ii

follows that EIZ g, To compute f>(§ , £f) we observe that any
vye€ Y is’containea in some closed simplex G:, ‘y-e/g , and both
£(y) and h(y) are contained in K (£(¢& YU gl & M 2)); and hence
both f(y) and g(y) are contained in

r (K((&) U el &0 z>>)
This set by (%) has dia.meter{ ¢ . Hence P(E, fj {e O

We now remark a number of corollaries:

3.2,2. Corollary. Let X, Y, 2 be polyhedra, Z( Y, and £ 3 Ty X

a continuous map such that f1Z is a polyhedral, Then f can be
approximaterd arbitrarily closely by polyhedral maps g ¢ Y-—>3 X such
that 42:#& ﬂ

The next is not a corollary of 3.2.1, (it could be) but
follows from the discussion there. | '
3.2.3. Any two continuéus maps £, £, Y— X, if they are .
sui‘ficiently close are homotopic. (Also how close depends only on X,
not Y or the maps 'involved). If f, and £, are polyhedral, we
can assume the homotopy also to be polyhedral,‘ and fixed on any sub-
polyhedron on which f, and f, agree.
Proof: Let N and X be as before. Let 'Y) be a number such that
ifACX,ﬂmA<Y‘,mw K(MCN.IffMVfQ<W,th
F(y,t) = ¢ f1(y) + (1-t) fz(y) € N, for 0Lt<& 1 andall ye¥
and r . F,- where r ¢ N —3 X 1s the retraction, g;ives the required

homotopy, If f,, f

12 1o
a polyhedral homotopy with the desired properties., L)

are polyhedral, we can apply 3.2.1 to obtain
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Remark: The above homotopies are small in the sense, that the image
of x is not moved too far from f1(x) and fz(x);
3.4, .Homotopy'groups and singular homology groups of a polyhedron
can be defined in terms of continuous functions or ﬁolyhedral maps
from closed simplexes into X, The two definitions are naturally
isomorphic. The same is true for relative homotopy groups, triad
homotopy groups etc. |
The corollary 3.2.2 is Zemman's version of the relative
simplicial approximation theorem. From‘ﬁhis (coupled with 4.2.13)
one can deduce (see M. Hirsch, "A proof of the nonretractibility of
a cell onto its boundary", Proc. of A.M.S., 1963, Vol. 14), Brouwer's
theorems on the noncontractibility of the n-sphere, fixed point
property of the n-cell, etc. It should be remarked ﬁhat the first
major use of the idea of simplicial approximation was done by L.E.J,
Brouwer himself; using this he defined degree of a map, proved its
homotopy invariance, and incidentally derived the fixed point theorem.
It should be remarked that relative versions of 3.2.1 are
possible., For example define a pair (Xl’ X2) to be a space (or a
polyhedron) and a subspace (or a subpolyhedron) and continuous (or
iy Xé) —> (¥, Y2) to be the appropriate
sort of function X, M*—ﬁ.X2 which maps X

2

Theorem 3.2.1 can be stated in terms of pairs and the proof of this

polyhedral) maps f : (X

into Y, . Then

exactly the same utilising modifications of 3.1.4 and the remarks at
the beginning of 3.2 which are valid for pairs.

. Another relative version of interset is the notion of
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polyhedron over A, that is, a polyhedral map 0(, ? X —> A, A map
P (L tE—~2A)—> (B Y~—>A) is a function f 3 X ~—5 Y

such thet J = q;’; » 3 we can consider either polyhedral or continuous

maps, The reader should state and prove 3.2.,1 in this context (if
possible).

3.3, Mazur's criterion.

~ We shall mention another result (see B, Mazur "The definition
of equi'valence of combinatorial :‘Lmb-eddings" Publications Mathematiques,
No. 3, I.H.E.S.y‘ 1959) at 1;his point,, which shows that, in a certain
sense, close approximations to embeddinés are embeddings (in an ambient
vector space).
Let %be a simplicial presentation of X, and let V be
a real vector Space. Let c,/"ﬁ,o denote the set of vertices of % .
leen a function CP A, ~—-§ V, we can define an extension
‘z {-—?V by mapping each simplex linearly., Clearly if YC v
is any polyhedron conteining (p (X), the resulting map X-—-—} Y is
polyhedral. We call kp the linear extension of (P . CP is called
an embedding if it maps distinct points of X into distinct points
in V.
3.3.1. (Mazur's criterion for non—embeddings) ‘
s }
If the linear extension (P of CP : %O-—-ﬁ V is not
an embedding, then there are two open simplexes 6" and ‘T of :@ s
with no vertices in. common, such that QP (67) N Cg) ( “’(") £ @.

Proof: The proof 1s in two stages.

B I8 7= 00wy penns W) and {P(vg) en, o) §

is not indep.endent, then there are faces ¢, and 6 5 of &,
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‘ - o
without vertices in common, such that Q (67) N (P(é"z) £ @
(This is just 1.2,6).
. . ~J

B) Thus we can assume that for every &~ .of ;& , (P((T)

is also an open simplex of the same dimension., Consider pairs of
| : - ~

distinct open simplexes{/? s f-’ } such that ??}'t (fD )m(@( 6"') £ 9.
Let {6-', 7 + be such a pair, which in addition has the property
dim g + dim 67" is minimal among such pairs. We can now that &
and ' have nd vertex in common. If == O(vy ,.0., vm) and

T =-O(w1 goees wn), then if @( 6")‘(\1(?)(‘1' ) # 0, there is an

equation

To q')(vo) Faaas, tr (P(vm) = s, (;P(WT){*' veo * Sl’l- (P(wﬁ)

with r. +.., +r =1=s.+ A,... +s8, Here r, and s, are
v 0 . m 0 1 n i i -

strictly greater than O, for otherwise dim §~+ dim S will not

be minimal,

Now if and have a common vertex, say, for example,
VO = wo, and rO ?f SO’ we can write ‘
(rg - 5) Plvg) + 2w, @) =5 5, vy

i1 I>

-1 ,

Multiplying by (1 - SO) , we see that some face of qj (6")
~t o

intersects a proper faoe‘ CP(O (wn yeoes wn)) of ({} (67). So
that ¢ and " had not the minimal .dimension compatible-with the

—F end
properties 6 4 T , Q(6) NP (T) 44 O

[l
Now it easily follows, since to check (P is an embedding

we need only -check that finitely many compact pairs

{(’q\)’(é—”) ’ E;S(G:l:».: - N T =¢} do not intersectd
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3.3.2. Proposition. Let /0 be a simplicial presentation of X

contained in a vector space V, let QEO be the set of vertices.
Then there exists an € 0, such that if E{}: %O.-»-} V is any
function satisfying f’(v, Cp(v))<ﬁfor all v 6%0, then the
linear extension ’Eé : X —3V is an‘embedding. A

This is a sort of stability theorem for embeddings, that
is, if we perturb a little the verticeé of an embedded polyhedrony

we 8till have an embedding.
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Chapter IV

Link and Star Technique

4.1, Abstract Theory I

4.1,1. Definition (Join of open simplexes)

Suppose g~ and < are two open simple}ies in the same
vector space. We say that & < 1is defined, when
(a) the sets of vertices of g~ and T are disjoint
(b) the union of the set of vertices of ¢~ and ‘T
is independent, |
In such a case we define g q° to be the open simplex
whose set of vertices is the union of those of € and of T . \ If
§ is a O-simplex, we will denote & < by ix}‘f or T{xj where
x 1s the unique point in 6~ .
We also, by convention, where § (or T ) is taken to
be the empty set @, make the definition
p&=60=6
Clearly dim § T = dim 6'". + dim ’+ 1, even when one
or both of them are empty.
Ex, L,1.,2. ¢ ¢ is defined if and only if e N T =@, and any
two open intervals O(x, y) , O(x', ¥ ) are disjoint, where
X X665 57 Y € T, x#x or.y;-[y‘. In this case § 9 is
the union of open f-simplexes ox, 7), €6 , 76 . 0

This is easy. Actually it is enough to assume

0(x, 7) NO(x', 7') = # for x, x' €6 , 7, 7' 3 x4 x or y 4y
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That it is true for points of G- and f:(: and %: ™ ("f‘ = @ follow
from this,

Ex, A.1.3. When g ¢ 1is defined, the faces of & & are the
same as -6"‘ q-' , where 5’*1 and C(I are faces of g andT
respectively, If either g ‘ £ € or q"' # q » then 5’*' C’(““
is a proper face of & ¢ . {1 |

Ex, 4.1,4. Let G and o be in ambient vector spaces V and W
Im VXWxIR, let & = 6% 0 X0 and T =0 XT x 1. Then
& § is defined, I |

4.1,5. Definition. Let X be a simplicial presentation, and §~

an element of/g . Then the link of § in /g denoted by 'Lk (g‘,/g )

is defined as ‘
k (g, /f) {GC 4 /g & T is defined.j

Lk (g, /S ) A lf § = g.
Obviously Lk ( 6, A} is a subpresentation of g

i

i

In case 6~ is O-dimensional, we write Lk (x,/g ) for
k(& , /S) where x is the uniqué element in §
Bx, bo1.6. If T ¢ k( 6, A ), then
| Lk( Lk(y,/%)):Lk('vw,/s).B
4.1,7, Notation. If & 4is an open simplex, then {g):‘j- and {_6 6‘"} will

denote the simplicial preserﬂ;‘ations of 0: and 86” made up of faces
of 7 . |
Ex, 4.1,8, If & = P& , end dim P > 0, then

(P, o} ) =0 s}

w (P, {T§)-{&} O
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4.1.9. Definition. Let (L and (E’) be simplicial presentations such

that for all € ¢(OL, @ ¢ @ , T 1is defined, and T Ne ¢ = @

1 .
if 64 6 or T4 T ', Then we say that the join of (L and (Y
is defined, and define the join of (JLand (3 , denoted by Q’l__*@

to be the set

but not both,
: By b.1.3 (R« ([3 is a simplicial presentation. If @

is empty, we define (N* g = ¢ * OL = OL,

In case ()L and @5 are presentations of polyhedra in V
s ~~d
and W, then we construct, by 4.1.4, (L and (B which are isomorphic

)

o~
to Ol and 65 s, and for which we can define O\_* 65 . It clearly

S\‘W'W & FGGL;TQ@ §or " may be emp‘c,y\lg

depends only on 0\_ and 673 upto simplicial isomorphism; in this way
we can construct abstragtly any joins we desire.
Bx. 4.1.10. Oux (@ = (3 »OL
Olx (B*R) - (O ) +E .

That is whenever one side is defined, the other also is defined and
both are ecqual, O
Ex, h1.11. If L € QL , Re@ s then

k (LB, OLr@) =1k (L,00) *1k (R,EB)
In particular, when (?J= g,

Lk (o, Ou* (3)
and when L =g ,

Lk (A, Qux03) =Olx e (B ,@). O

If (JL is the presentation of a single point {'v} , and is

k (f ,00) *@

i

if

joinable to (|3, then we call (U* (3 ; the cone on (3 with vertex

“
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v, and denote it by C((%). (D is called the base of the cone, If
we make the convention, that the unique regular presentation of a one
point polyhedron v, is to be written {{v}j , then C(@) :i{v}} *#(3 .

. 174 .
4.1.12, Definition. Let /) be a simplicial presentation, Aandﬁ”e/g .

Then the star of .¢ in /g , denoted by St( ¢, /g ), is defined to
oo {E e, A).

Clearly St(§, /g ) is a subpresentation of & and is

equal to () {{"‘E} TP/S) 6‘“3’T§

, In case ¢ contains only a single point =x, we write
St(x, /S ).

Bx, 4.1.13., Let /g be a simplicial presentation, § an element of

/g . If C[' is a face of § with dim ¢’ = dim § =~ 1, then

Lk(g*,/%) =Lk(°‘(’ ,{5.6*}*Lk( 6“\,40 -0

L.1,1L. Definition. If is a simplicial presentation, the

k-skeleton of /g » denoted by A k is defined to be
/Skr-\){{crj» ,s*e/& dim 6§ k(.
Clearly K K is a subpresentation of .
Ex. h.1.15. I § € Kk and dim g = A, (L £ k), then
Lk . - A4
(¢ A=, A D
Ex, 4.1,16. Let f : P—-3 Q be a polyhedral map, -simplicial with
respect to presentations /g and /g' of P and @ respectively.
Then
1
n 1 A)C (A
» t "
2 1t ge A e, AN Catee, A
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e,

‘ . ‘ 1
3) For every G ¢ /% f(Lk( §, /3 0 C k(e(6 ), /g )
1f and only if f maps every 1~81mplex of /% onto

a 1= sunplex of &

(Strlctly speaking, these are the maps :Lnduced by f).

4.2, Abstract Theory TT

4,2.1, Definition, Let (P be a regular presentation and Y} a

centering of @ , Let A (;‘(P . Then the dual of 4 and the link

of A, with respect to ‘q , denoted by 5 A and ’*\’>\A are defined
to be '

5A={o(?\ Co seees r\ck)kAgcoag.. <Cpos k),O}
%Az{‘O(WCO,..., qck)l;uc . <Ck,k }

where C. & G) for all i.

Clearly é A and /\ A are subpresentatlons of dfp = d((P M >
When there are _several regular presentations to be considered, we will
denote these by S(PA and A @ A, Y\ will be usually omitted from
the terminology, and these will be simply called dual of A and link
of A, '
4.2,2. Every simplex of d@ belongs to some C() Al

L,2,3, S 4 1s the cone on ?\ A with vertex Y\A, 0

Ex. 4.2.4, Let dim A = p, and consider any ' pesimplex ¢ of d P
contained in A i.e, § = O(\') By seees Y“Bp),‘for some

B ++r <B, = A Then AA=Ik(§, df ).‘

L.2,5. Suppose (P is, in fact, simplicial. Then we have defined

both ;\A and 1k(A,{P ). These are related thuss.

.
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A vertex of }\ A is of the foﬁn V} C where 4 £ C,
There is a unique B of Q) such that C = A B, Wq B is a typical
vertex of d(Lk (4, )). The'correspéndence e & VTB defines
a simplicial isomorphism:

A&y d (e (,,P)). B

Bx. 4.2.6. With the notation of 4.2,1, A{ B if and only if
§B C A& For any A€p, AA is the union of all S B for A ¢B.Q
Ex, 4.2.7. If (P is sim licial, A, BER , then SAHCS- B#¢
if and only if A and B are faces of a simplex of P . If C is
the minimal simplex of { containing both A and B (that C is
the open simplex generated by the union of the vertices of A and B),
then S\AOSB: dc. O

h.2.8, Definition. If (P is a regular presentation and Y\ a

k
centering of(P , the dual k~skeleton of@ , denoted by ,G) is

defined to be

G)k =% (N Cp sees v\cp)( Cod. +ev KCpr dim Co K,

| p> 0, ¢ & |

Clearly (Pk is a subpresentatidn of d(P , and is, in
faet the union of all (S‘ A for dim A > k. It is even the unioﬁ of
all 8 A for dim 4 = k.

Thus & A, AL, (Pk are all simplicial presentations,
Bx, 4.2,9.0 d(P= Q).O ,3(}3' D .. 'D@n J @n” = f§, where
n is the dimension of @ . Dim (P ko n-k U

We shall be content with the computation of links of

vertices of GD k.
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Br. h.2.10. If A , dim A%k then
Lk («,) A, (Pk) = %}Agk% Ar O

Next, we consider the behaviour of polyhedral maps with
respect to duals, |

Let f it P —3 Q be a polyhedral map; let @and@-) be
two simplicial preéentatio\ns of P aﬁd Q@ respectively with respect
to which f is simplicial. If /(,\ is a centering of n , it can
be lifted to a centering Yy of q_) , that 1s  £( M A) =/6\ £(A) for
all Aep . (see 22) f is simplicial with respect to d(@ . )
and d(® ,¥h ) alse, Now, |
L2t 12 6P, 2 Spw) C (e, O
4.2,12, If B & (3, then f“’(SQ\B) = U{«g(p AJ £(A) = B } D
Remark: All these should be read as maps induced by f, ete. |
Since each such A must have dimension > dim B, we have
4.2.13. Proposition. With the above notation, for each
K £OC PF. o

This property is dual to the property with respect to the
usual skeleta "£( (P k) C @k" . y )
L,2.14, Corollary. If dim P =n, thendim f ( &) ¢n-k 0O

In particular, if dim Q = m, and g is a point of an
(open) ‘m—-dimensionél simplex of Cp s f"1(q) is ag(n-m);-djmensional
subpolyhedron of P, [ |
Ex. 4.2,15. f_1(©1\) = (P’ , if and only if every {wsimplex of
is mapped onto a i1-simplex of 3\ . (i.e. no i-simplex of (P is

collapsed to a single point). W
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L.3. Geometric Theory.

4.3.1. Definition. Let P and @ be polyhedra in the same vector

space V., We say that the join of P and Q is defined (or P *Q

is defined, or P and @ are join%ble), ifs R

(a) PQ=¢

(b) If x, x' &P, y, y' ¢Q and either x £ x' or

y #y's then O(x, y) N O(x', y!) = £,

If the join of P and Q 1is defined, we define the join
of P and Q , denoted by P % Q@ to be

pra= U xer v eal.

By definition, P.#*#@ =@ * P = P,

Everypoint 2 ¢ P * Q can be written as:

z=(1=-t) x+ty,xeP,yeQ 0Lt &1.
The number t 1s uniquely determined by 2z; v is uniquely determined
if 2 ¢ P (ie. if t#0), x is uniquely determined if 2 ¢ Q
(i,e. if t £ 1), |
4.3.2. Let @ and @\ be simplicial presentations of P and Q3
and suppose the (geometric) join P * Q is defined. Then by 4.1.2,
the (simplicial) join 63 #* 6\ is defined, and we have m) *6\‘: P * Q

This shows that. P # @ 1is a polyhedron, -

4.3.3, Definition. If PT’ QT’ P, Q

2% %2
\pj ¥* Qj and P2 3* Q2 are defined, and f 3 Pi—-—§ P2, g ¢ Qj——? Q2

are polyhedra such that

are maps, then the join of f and g, denoted by f % g, is the map
* Q- * i ' ‘
| from P1 Q1 to P2 Q2 given by,

(£%g) ((1=t)x+ty)=(1=1t) £(x) +t g (y)
x¢ P, yeQ ,0gt 1.
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4.3,4. In the above if f Pi—> Py gt Q-2 Q, are simplicial
with tt 3 * g o4 * P
_respect to 631, 6)2, @1,&2, then f* gt P Q1~—> , ¥ 9,

is simplicial with respect to @1 *@} and @2 *@'2\ . Thus the Join

of polyhedral maps is polyhedra,,l; O

L.3.5. If P *Q is defined, (1)) * (140) = 1d
P

If, By % Q, Py * Oy By ok

fp 8 Pyp—> Py, gy Q> Q) g ¢ QZ--—} Qg are maps, then

P*Q’
are defined end f, ¢ P, — P, ,

(2,0 £) *(gyo0g)= (fz.* g, o (f, *g) [

This says that the join is a functor of two variables from
pairs of polyhedra for which join is défined and pairs of polyhedrél
“maps, to polyhedra and polyhedral maps.

\The join of a polyhedron P and a siﬁgle point v is
called the cone on P, (sometimes denoted by C(P)) with ggég P
and vertex v. -

Ex, 4.3,6. C(P) 1is contractible. 3
Bx., 4.3.7. P % Q~ Q contains P as a deformation retract.
Hint: Use the map given by (%) below - ! |

Let us suppose that P #* Q and the cone C(Q) with vertex
v are both defined. The'interval (9, L] is 0 % 1 ,' and(so two
maps can be defined:

o ::PF*Q [0, ], the join of P—> 0, @ —> I,

B:o (Q)»—-—’?E) , 1], the join of v —> 0, Q— 1.

Simply speaking, ‘
plel-t)x+ty)
AC (1 =-t) v+ty)

i
[

i

b, for- x €P, y¢& Q.
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The correspondence 3
() (t=t) x by (x, (1 -t) v +1ty)
is a well defined function between |
L7 o, 1) ma Ex s ([0, ).
It is a homeomorphism, in fact., But it fails to be in‘aﬁy
sense polyhedral, since it maps, in general, line segments into."cu_rved
lines.

Example: Taking P to be an interval, Q to be a point.

‘P/’?

.,& Q'
Clay”
The horizontal line segment corresponds to the part of a
hyperbola under the above correspondence,

We can however find a polyhedral substitute for this

homeomorphism.

4.3.8, Proposition. Let P, Q,  , p be as above, let 0 LT L 1.

Then there is a polyhedral equivalence.

L7 (oAl ex g ((o,7]))
which is consistant with the projection onto the interval. EO, ‘(’] .
Proof's Let‘ (P and ( be simplicial presentations of P and Q
and take the simplicial presentatién g = i[O} ,{‘(‘j ,; (0, )}

of LO,‘ ‘-CJ
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Consider the set of all sets of the form A( f g, 1),
where PQGD EeCh , 1 C& and & =0 iff 1 = {O} defined thus.
A( P,8, 0)=2¢
AP, e, i) fsn£1u>

The set of all these A(f ,§ , 1), call it L. It is

i

i

claimed that QU is a regﬁlar presentation of 0(“1({.0,((3), and

that A(P , 67, 1)L AP, ¢, 1) if and only ifPLP ,6¢5 » 143
Secondly, consider the set of all sets of the férm

B(f ,6 , 1) where ceP 6&@\ ] iE‘é) , and =@ if i‘{._o}

defined thus: ‘ ‘
B(P,g,0
B(P 56, 1)

Tt is claimed that @ of all such B(P , 67, 1) is a

i

£ »{v} .
PR EGAR (5)

it

| -1 .
regular presentation of P X (3 ({9, CTJ), and that

!

B(P‘:b—;i)'& E( F’Y,iﬁ'“,i‘>‘1fand0*lly1f6” 6‘" » P& “P
and 141,

Hence the correspondence A( P (}';, i) &> B(f’ s 5 1)
is a combinatorial equivalence G’L > (7?3 . 1f we choose the centerings’
M and»€ﬁ of (L and(B respectively Asuch that

L (MR, 6, (0, T = /2

and [3(2 nd coordinate of /€,~. (B( P65 (0, 1)) = 6T/.’Z
The induced simplicial isomorphism d(G\.,‘r) Y &> a((d oAn ) gives
a polyhedral equivalence o(_"i(f_o, Tl)N P X ‘3—&((‘0, "C] ),
consistent with the projection onto 10, T ). |

Tt should perhaps be remarked that by choosing 6) and (9
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fine enough, our equivalence is arbitrarily close to the correspondence
(#) on page 67. [}

4,3+9, Corollary. Let C(F) be the cone on P with vertex v, and
oL+ 6(P) —3 [0, 1] be the join of P~ 0, v —3 . Then for
any CT’ ¢ (05 1), c{;”([’_o, ‘1’]) is polyhedrally equivalent to

P A ['Q, GI;“] by an equivalence consistent with the projection to EO,’Y] .
For, take Q= v in 4.3.8. QA ‘

4.3.10. Corollary. Let [ : P *Q — (0, £} be the join of

P> 0,8 —> 150t 04YL§< 1 Ten L ([y,6])

is polyhedrally equivalent to P®K Q X[_‘( s 8] by an equivalence

consistent with the projection to LY y 6] v

| For; by 4.3.8, &J(@, §) Y PR (3)-1((;0,8] )

where (33 i 0(Q) —>» EO, 1] is the join of Q —=>1 and vertex —> 0.
By 4.3.9, interchanging O and 1, we see that {5“1( v, D)'f“'q QKE(,’ 1];
combining these and noting the preservation of projection on Lf s @J s

we have the desired result. [}

4.3.11, Definition. Let K be a polyhedron and x ¢K. Then a

subpolyhedron L of K is a said to be a (polyhedral) link of
x in K, if L # x is defined, is contained in X, and is a
neighbourhood of x in K.

A (polyhedral) star of x in K is the cone with vertex
x on any link of x in 'K.

Clearly, if a & K,(C K, end K; is & neighbourhood of * 8"
in K, then L K, is a link of ' a'in K, if and only if it is a

link of' a 'in K.
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To show that links and stars exist, we triangulate K by
2 simplicial presentatibn /}g with % as a vertex. Then( Lk(nﬁ‘;/g )\
is a link of x in X, and ‘St(x,/g )\ is a star of x in K.‘
In this case { St(x,/& )&— ‘Lk(x,/g )\ is open in K; this need not
| be true for general links and stars,
Ex, 4.3.12, 1If /& is any simplicial presentation of K, aﬁd
x €6 ¢ /g , then ‘ {B 6f} * Ik( 6, /S )‘ is a link of x in K,
[ {ﬁ?}‘* k( 6§, /S )‘ is a star of x in K.
(b) With 8A AA as 1nh2 1, if x €& A, bA*\AA\
is a link of x in K. 1
Ex. 4.3.12', (a) Let £ 1K 4 K' be a one-to-one polyhedral map,
simplicial with reference to presentations ,4& and /& ' of K and
K'.  Then Yor any § ¢ &, A o
Hi&"—} # 1k(§,A )| 1is the join of
\ l{bs‘}* tk( §, A )) and  x —=% £(x).
Formulate and prove a more general statement using 4.1.16
(b) With the hypothesis .of L.2,15, if AO is a O-cell
of@,f(\?\A\)C A(£h, )| | |
and f ( l& AO‘ is the join of Aj—> f(AO) and f “AAO\. ()

If x and a are two distinct points in a vector space,
the set of points (1 - t) x+ta, t >0 will be called 'the ray

from x through at.

Let L; and L, be two links of x in k, then for each
~point a &:LP the ray through a from x intersects L2 in a

unique point h(a) (and every point in L, is such a image). It
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intersects L2 in atmost one point, since the cone on L2 with
vertex x exists. It intersects L2 in at least ore point since
the cone on L2 must contain a neighbourhood of the vertex of the
cone on L1. )

The function h 3 L1-——4> L, thué defined is a homeomor-
phism. But, perhaps contrary to intution, it is not polyhedral.

The graph of the map h in this
simple case is a segement of a hyperbola,
| The fallacy of‘believing h is
polyhedral is old (See, Alexander "The

combinatorial theory of complexes',

oL Annals of Mathematics, 31, 1930); for

this reason we shall call h the standard mistake after Zeeman (see

Chapter I of "Seminar on Combinatorial fopology"). We shall show How
to approximate it very well by polyhedral equivalences,

It migh be remarked that the standard mistake is "pilecewise
projective, the category of such mabs has been studies by N,H. Kuiper
[~see "on the Smoothings of Triangulated and combinatorial Manifolds"
in "Differential and combinatorial Topologyﬁ} A symposium in Honor

- of Marston Morse,Edited by 5.5, Cairns_7.

L.3.13, Definition. Let A and B be two convex sets. A one-to-
one function from A onto B, o ¢t A-—% B is said to be quasi-

Linear; if for each a,, a, é-‘ A el ([a1, aQ] ) = [D{(a1), o(,(az)].

P i)

In other words, J; preserves line segments, It is easy
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‘ S |
to see that <k is also guasi~linear,

2
Fxample: Any homeomorphism of an intervel is quasi~linear. 1In "R ,

the map:

(ry, ) “‘5(—131-: r2>
=ryo

=1y
as a map from A = (r1, rz)\ 'O(ri<1}~ to
B = {(/%1, /'32) LS }';4{) O} is quasim-linear. (Q

4.3.14., Proposition. Let & : A —» B be quasi~linear. Let

{ao yeves an} be an independent set of points in A, defining an

open simplex ¢~ . Then {OC(aO) yoses o (an)% is independent,

and the simplex they define is § ( § ). Coﬁsequently  1is a face
of & if and only if J (S ) is a face of d_( §).

| The proof is by induction. For n = t, this is the
definition. ‘The inductive step follows by writing & = § ! {an}
and noting that quasi~-linear map preserves joins.: 8!

L.3,15, Theorem, Let L1 and L, be two links of x in K with

2
h:L,—3) L, the standard mistake, Suppose %‘1 and’ ‘&.‘;2 are

polyhedral presentations of L1 and L2. Then there exist simplicial
refinements and of and such that for each
Ayt Ay or Ty e
G € /§1’ g ) € & 5 and h 4 g~ is quasi-linear. If
T L1——-—> L is defined as the linear extension of h restricted
2
to the vertices of ﬂ )2 then f dis a polyhedral equivalence
simplicial with respect to /g , and A 2 and such that
f(6)=h(g) for a:u@@& .
1

Prooft We can suppose that g@ , end %2 are simplicial, and find

'
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a simplicial presentation G) of (L1* x \U Ly* x ) refining

(‘:@1*{{3;}} U %Z*{E}cﬂ ). Define /3 = Lk(x,G) ). Tt is clear
that every simplex ¢ & A is contained in ﬁgix} , for T€z1,
and hence the standard misteke h, : (Al,ﬁ L, takes § to
n(e ) C T .
4 The restriction of h, to & is quasi—-line’ar. For,

1
let a, 2, ¢ & 3 the three points Bs 8y X determine a plane

and in that plane an angular region L_, , which is the union of all
rays from x 'through the‘ points of ‘[a” az‘] + The standard mistake,
by definition, takes [a1 , a;(: 5§ to LOT which, it is |
geometrically obvious, is just Ehj(aﬂ, h1(a2)].
This, together with 4.3, 14, enables us to define
/%1 = {h1( ) )‘ § Q/%} , and to see that this is' a simplicial
presentation refining ;E . '
Similarly, via the standard mistake h, k/§)~‘7 L,s

A ool sch

) -1
Since, clearly, h L1-—37 L2 is h2 N h1 aqd the

composition and inverse of guasi~linear maps are again quasi~linear,

we have

the major part of the theorem 1s proved.
The last remark about f is obviocus., [}
4,3,16. If in 4.3.15, for a subpolyhedron K' of Ly h\K‘ is
polyhedral, then we can arrange for f 3 L1 —-.> L2 of the theorem
‘ { {
to be such that f| K - h\ K.

For, all we need to do is to assure that :E , has a
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subpresentation covering K; then because h 1is linear on each
simplex in K, the resultant f 1is identical with h there. [

L.3,17. Cbrollary. Links (resp. stars) of x in K exist and

all are all polyhedrally equivalent, [}

4.3.18, Proposition. If f ¢ P~ Q is a polyhedral equivalence, .

then any link of x in P 1is polyhedrally equivalent to any link of
x in Q.

For triangulate f, and look at the simplicial links; they
are obviously isomorphic. [}

4.3.1F. allows to define the local dimension of polyhedron K. at  x.

This is defined to be the dimension of any star of x in K. By
4,3,17 this is well defined. It can be easily seen that (by 4.3.12)
the closure of the set of points where the local dimension is p is
a subpolyhedron of K, for any intéger R
We will next consider links and stars in products and
joins.
Bx. 4.3.19. Let C(P) and C(Q) be cones with verﬁices v and w.
Let Z - (P %0 (@) U (6(B)% Q). Then
(a) C(P) ¥ C(Q) = C(Z), the cone on 2Z with
vertex (v, w)
(b) PYXw and v X Q are joinable, and
(PXw) # (v XQ) is a linkf of (v, w)
in ©(2).
Hence by straightening our the standard mistéke, we get a polyhedral

equivalence P * QY Z, which extends the canonical maps P——3 Prw
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and & —3 vXQ

Hint: It is enough to look at the following 2-dimensional picture

for arbitrary p ¢ P, g & Qs _ - | N
) (W)
v (0,
e, ©Px Q)
o Y+
7,
(9 W) (P' u)

Ex, 4.3.20, Prove that P # Q= (C(p)% Q WP % C(Q)) utilising ‘
h.3.8. 1 @ P*q—y[o, 1] is the join of P = 0, Q ~ 1,‘
the equivalence can be chosen so that CQA( (‘O, 1/2] ) goes to
PR C(Q) and prf( E/g P 1:} ) goes to C(P)¥Q T3
Ex. 4.3.21. (Links in products), If x &P, y&Q, then a link of
(%, y) in PXQ is the join of a link of x in P and a link
of vy in Q. W

The join of X +to a polyhedron ix], xz} cpnsisting of

two points is called the suspension of X with vertices x4 and

X, and is denoted by S(X). Similarly Kth order suspensions are
defined,
Bx. 4.3.22. (Links in joins).

In P *Q,
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1) Let XL P ¥ Q- (PR, and let

x:(1~t)p+tq,p§;?,qé—ﬂ;,0(t(1. If L, is a link of p

1
a link of g in &, then S(L1 *L?) (with vertices

in P, L2
p, q) is a link of x in P * @,
2) If p€ P, and L dis a link of p in P, then

L#*G is a link of p in P * Q.

Hints for 1. Consider simplicial presentations (F) and.é}; of P
and Q having p and q as vertices. .Then Lk(p,Q) ) * Lk(q, &)
is a link of()(p, 4) in (P # (O, by L.1.11. Hence a link of x
in P * Q ={-{p, q} * Lk(p, P ) Lk(q,Cj»)‘ or the suspension of
Lk(p, () * Lk(q, S\ with vertices p and g. The general case

follows from this, 1}

L.4. Polyhedral cells, spheres and Manifolds,

In this section, we utilize links and stars to define
polyhedral cells, spheres and manifolds and diécuss their elementary
properties.

Let us go back to the open and closed (convex) cells
discussed in 1.5, If A is an open cell, then the closed cell A
is the cone over ?3 A with vertex a, for any a £ A, |

L,L.1, Proposition: If A and B are two open cells of the same

dimension, then 25 A and 648 are polyhedrally‘equivalent. Morem
over the equivalence can be chosen to map any given point =x of
al¥'onto any given point y of b B.

Prooft Let dim A=n=dim B = n. Via, a linear isomorphism of

the linear manifolds containing A and B, we can assume that &
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and B are in the same n~dimensional linear manifold, and more-
over that A N\B £ @, Then 2§wA and ‘\b B are both links of any
point of A®B in A{B. Hence O A and 6 B are polyhedrally
equivalent, A rotation of A will arrange for the standard mistake
tomap x to y. And 4.3.15, we can cléarly arrange for x and y
to be vertices in A and /&,2. )
By Jjoining the above map with a map of point of A to a

point of B, we can extend it to a polyhedral equivalence of A and

B. Thus any two closed cells are polyhedrally equivelent.

4.L4.2, Definition. A polyhedral n~sphere (or briefly an n-sphere)
is any polyhedron, polyhedrally equivalent to the boundary of an open
cell of dimension " (n + 1),

By L.4.1 this is well defined,

4.k.3. Definition. 4 polyhedral n-cell (or briefly an n-cell) is

any polyhedron, polyhedrally equivalent to a closed convex cell of
dimension n,

By the remark after A4.4,1, this is well defined. All the
cells and spheres except the O-sphere are connected.

Consider the "standard n-cell", the closed n-simplex, and
the "standard (n-1)-sphere!, the boundary of a n-simplex. By 4.1.8,
4.3.,18 and 4.4.1, we have

’ h.h.h.> Proposition. The link of any point in an n~sphere is an

(n-1)=sphere, ©

L.L,5. Corollary, An n~sphere is not polyhedrally equivalent to

an (m)-sphere, if m # n.
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Proof: By looking at the links™using A4.4.L, and induction,

Lb4.6. If £f: DN is an equivalence of an n-cell with a closed
n—simplex & s, we see that for points of C corresponding to points
of Q€ , the link in C is an (n-1)-cell; and for points of C

corresponding to points of & , the link in C is an (n-1)~sphere.

4.4.7. Proposition. An n-sphere is not polyhedrally equivalent to

an n-cell.
Proofs Again by induction. For n = 0, a sphere has two points and
a cell has only one point.

For ny O, an n-cell has points which have (n-1)-cells
as links, where as in a sphere all points have (n-1)-spheres as
links, And so, by induction on n they are different. W

This allows us to define boundary for arbitrary n-cells,
namely the boundary of an n~cell C, is the set of all points of C
whose links are (n-1)-cells. We will denote this also by B C.
This coincides with the earlier definition for the boundary of a closed
convex cell, and the boundary of a n-cell is an (n~1)-sphere. And
as in 4.4.5, an n-cell and an (m)-cell are not polyhedrally equiva-
lent if m #£ n.

By taking a particularly convenient pairs of cells and
sphere, the following proposition is easily proved:

Ex, 4.4,8. Whenever they are defined,
1) The join a m-cell and an n-cell is a

(m +n + 1)=cell.

2) The join of a m-cell and an n-sphere

isa (m+n + t)-cell.
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3, The join of a m-spherc and an - n-sphere
isa (m+an + 1)-sphere.
If in (1) of 4. 4.8, ay “and G, are the csils, then
Y ] 1. N \ ) RYR 4 7 5 - . y . .
Gy ¥ C) = Jo, #0,UC, ¥ D0y In (2) of hule8, if C is
the cell, and S +£he sphere :a (C s 8Y = E‘;C * g, O

L.o4.9., Definition. A PL-manifold of dimension n (or a

PL n-manifold) is a polyhedron M such that for all points x & M,

the link of x in M is either an (n-1)-cell or an (n-1)-sphere.

4.4, 10, Definition. If M is a PL n-menifold, then the boundary
of M denoted by § M, is defined to he O M :ixQMllink of x in
M is a cell} .

Notation: If A is any subset of M, the interior of A and the
boundary of A in the topology of M, will be denoted by int w A
and bd v A rﬁeSpectively,g M~ @ M is also usually called the
interior of M, this we will denote by int M or B. Note that
inty M= N, where as int M.= M - d M,

It is clear from the propositions above,y the manifolds of
different dimensions cannot be polynedrally equivalent, of course,
from Brouwer's theorem on the '"'Invariance of domain", it follows that
they cannot even be homeomorphic.

L.L.11, Proposition.. If M is a PL n-manifold, then O M is a

PL (n-1)-manifold, and O (O M) = #.
Proof: We first observe that M -a M is open in M. For if
X & M - B M, 4let L be alink of x in M, S the corresponding

star, such that S~ L 4is open in M# S5 is a2 cell and D 5=1.
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If y &S« L, then a link of Ay in 5 is a link of y in W,
since S is a neighbourhood of y. Since S is a cell and '
y £S5~ a S, the link of y in S is ahw'Hence Ve M- BM,
for all y& S~ 1L or M ~75 M is open in M. Hence75 M is closed
in M,

If /% is any simplicial presentation of M and & Q/@,
then (iéﬁ“}* Lk(ﬁ‘,/%}\% is a link of x in M for all x &6
by 4.3.12. Hence € €CJ M or 6 C u-OM If € C BM, d6
also is contained in 5 M, since :) M ‘isx closed. 6 M Dbeing the
ulon of all such E: is a subpolyhedron of M,

Let x be a point of B My L alink of x in M and
S=L % x # , the corresponding star such that S - L is open.
L is an (n~1)-cell. And by 4.4.8, S is an ne-cell with
05=LUx*O0L If y€xxdL- QLC 5~ L, then a link of
y in S is a link of y in M as above. But a link of y in
S is a cell, since y ¢ dS. Hence x ¥JL~0 LCO M Since
a M is closed, x ¥ (BL C a M, and since x *B L is a neighbour-
hood of x in b M, L is a link of x in b M, Hence B M is
a PL (n~1)-manifold without boundary. I} |
Remark:  Thus, if x GBM,‘ there exist links L of x in M
(for example, the links obtained using simplicial presentations),
suchthat QL C OM and 9 L a link of x in O M. This need
notbe true for arbitrary links, Also there exist links L of
x & a M in M, such that L f\é) M = ’bL. For example, take a

regular presentation of M in which x 1is a vertex and take

7

dp L.
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L.h.12, Proposition. Let M be a PL n-menifold, and /S a

simplicial presentation of M, If @§* ¢ /g » then either Q‘*CBM
or M ~ BM, and
D ‘Lk( g, A )} is a (nek-1)-cell if 6 ( O M
2) st( &> /S)i is a (n-k-1)-sphere if ¢ M - QM
where k is the dimension of § .
Proof: That § (9 M or M~ Q M is proved in 4.h.11.. The
proof of (1) and (2) is by induction on k. It k = O, this follows
from definition. If k) 0, let be a (k~t)-face of § . Then
e §, A ) = (T, {66‘}* (6, A)), and ‘ {Qg}* (6 , A )l
being the link of a point in & is either (n-1)-sphere or a
(n-1)-cell, Hence, by induction, ILk( ¢* ,A) is either a cell
or sphere of dimension (n-1) = (k=1) = 1 = (n-k=1). If
6 C 0 M,\{BG} * Lk( 6 ,/E )’ is & cell. Hence | Lk( L )
cannot be a sphere, since then \ {a 6‘} * 1k( 6, /g)sz bg“ *‘ Lk( & ,/5)[
would be a sphere. Thus if § E)M, ‘Lk( S, /B)i is a {(n~k-1)-cell,
Similarly if 6 C M- Q N, th( &, A)] is a (n-k-1)-sphere. L}
Ex., 4.4.13. (1) Let M be a PL m-manifold, and N a Pi, n-manifold.
Then M YN is a PL (m+n)-manifold and B (M ¥ N) is the union of ‘
QU XN and M X ON.
Hints Use, 4.3.21 and 4,4.8.
(2) If M %N is defined, it is not a manifold except
for the three cé.ses of L.4h.8, :

. Hint: Use 4.3.22, )
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Loho 14, Propositiont

() If £: 85— 5 is a one-to-one polyhedral map of an
n-sphere S into another n-sphere S', then f is onto. ‘

(b) If f:C «-—? C' is a one~to-one polyhedral map of an
n—-cell C into another n-cell C!' such that f(b c) Ca C'y then f
is onto,

Proof of (a): By induction, If n = 0, S has two points and the

proposition is trivial, Let n »0. Let f be simplicial with respect
to presentations /§1 and /(62 of S and S'., If x is any point
of S5, x& § for some § €& A . Consider

L, Hé a*}*Lk(ﬁ",/OBT)\, J =\§¥!€’}*Lk(6',/§1>\,

) ({B (f& )} * Lk(f 6, /%2) |, and s, = \{f T Lk(E g, A 2)}.

Since f is injective f maps Lr———) L2, and f‘51 is the join of

#

L

it

fl L, and x -—-}f(x'). L, end L, are (n-1)~spheres, and by

2
induction f‘LI is bijective. Therefore f(S1) = S

o+ Hence £(5) is
open in 'S'. Since S is compact f£(S) is closed in S'. Since S
is connected, f(S) = 8'. (b) is proved similarly, &

By the same method, 'it .can be shown
Bx, h.kh,15. There is no one-to-one polyhedral map of an n—sphere into
an n-cell, |
Ex, h.h,16., a) & PL-manifold cannot be imbedded in another PL-manifold
of lower dimension,

b)) If M and N are two connected manifolds of the same

dimension, O N £ @, and DM = @, then M camot be embedded in N.

If -bN is also empty, and if M can be embedded in N then M 2=/ N,
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Ex, 4,4,17. a) If M( N are two PL nimanifolds, then
M- dMEN-JN, and M~ 3 M is open in N,
Hint: Use 4.L. 14 and b.b.15.

In particular any polyhedral equivalence of N has to
taken N~ 9N onto N~ 9N and N onto N,

b) If M(C N - dN, both M and N, PL (n)-manifolds,
and X any point of BM, show that there exist links L of x in
N, vsuch that a link of x in M is an (n~1)-cell DC L, and
D NOM= 8D 03
Ex, A4.b.18. TIn L.2.1h, show that if P is a PL n-manifold £ '(q) NH’)
is a PL (n;m)—manifold and 0 (f—j(q))CBP. O

L,5, Recalling Homotopy Facts.

Here we discuss some of the homotopy facts needed later.
The reader is referred to any standard book on homotopy theory for the
proof of these,

L 5.1, We define a space P to be (k-1)-connected iff, for any

polyhedra Y X, with dim X & k, every continuous map Y ~-% P has '
an extension to X,

Thus, a ( ~1)-connected polyhedron must just be non-empty.
A k-connected polyhedron for k £~2, can be anything. For k 2> 0,
it 1s necessary and sufficient that P be non-empty and that ﬁ-i(P) =0
for i£ k.
4.5.2. A pair of spaces (4, B) where B( A, is k-connected if for
any polyhedra Y (X with dim X ¢k, and f: X —3 A such that
P(Y) B, then f is homotopic to a map g, leaving Y fixed, such

that g(X){ B.
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This is just the same as requiring that WTwE(A, B) = 0
for 14k, If A is contractible (or just (k-1)-connected) and
(A, B) is k-connected, then B is (k;1)—connected.

We shall have occasion to look at pairs of the form
(#, & - B), which we denoted briefly as (4, - B), The following
discussion is designed to suggest how to prove a result on the
connectivity of joins, which is well known from homotopy theory.
4o5.,3, Let A1(: A, IBT(: B, and suppose (A, - A1) is a~connected,
(B, - 81) is b-connected. Then (A W B, - A% BI> is (a +b + 1)-
connected.

Let YCX, dim Xga+b+ 1, and £2 X—3 AXB, with
£(Y) M A XB, = 4

We must now triangulate X finely by say /g . Look at
t/ga{:}g and (A =%, Ten din X (s, dimX, ¢ b, and

so the two coordinates of f are homotopic, using homotopy extension,

to get a map, still called f1 such that

]X) A =8, £ (X)NB -8

Because X - X2 has X1 as a deformation retract, we can first get

fB (;X2>r\za1 = and then f"‘(A1x B1) is contained in X - X2 .
By changing, homotopically, only the first coordinate, we get
£ (4, %X B ) = £

To go more deeply into this sort of argument, see Blakers
and Massey, "Homotopy groups of Triads" I, II, III", Annals of Mathe-
natics Vol.53, 55, 58. |

L.5.4, If P is (a~1)~connected, @ is (b~1)-connected, then P * Q
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is (a + b)-connected.

For, let C(P), C(Q) be cones with vertices v, w. Then
(¢(P), = v) 1is a-connected, (C(R), - w) is b-connected. Hence by
4.5,3, (C(P) K 0(Q), = (v, w)) is (a +Db + 1)-connected. By 4.3.19,
this pair is equivalent to (C (P * @), - (v, w)). Hence P % @ is
(a + b)-connected, For a direct proof of L.5.L, see Milnor's "Con~
struction of Universal Bundles II (Annals of Mathematics, 1956,
Vol.63).
4,5,5. The join of k non-empty polyhedra is (k-2)-connected. In
particular (k-1)-sphere is (k-2)-connected, The join of a (k~1)-
sphere and & a-connected polyhedron is (a+k)-connected., Thus a
kth suspension (same as the join with a (k-1)-sphere) of a

connected polyhedron is at least kmconnected.
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Chapter V

General Position

We intend to study PL-manifolds is some detail. There are
certain basic techniques which have been developed for this purpose,
one‘of which is called "general position!", An example is the assertion
that "if K is a complex of dimension k, M a PL-manifold of
dimension » 2 k, and f ¢ K —% M 1is any map, then f can be appro-
ximated by imbeddings". More generally we start with some notions "a
map f 3 K-3 M being generic" and "amap f 3 K ~—3 M being in
"generic position" with respect to some Y ( M", This "generic" will
be usually with reference to some»minimum possible dimensionality of
"intersections, "self intersections" and "nicety of intersections®.
The problem of general position is to define useful generic things, and
then try to approximate nongeneric maps by generic ones for as large a
class of X's, Y's and M's as possible (even in the case of
PL-manifolds, one finds it necessary Lo prove generél pusition theorems
for arbitrary K).

It seems that the first step in approximating a map by such
nice‘maps is to approximate by a so called nondegenerate map, that is
amap f ¢ K-~ M which preserves dimensions of subpolyhedra,

Now i1t happens that a good deal of fgeneral position' can
be obtained from just this nondegeneracy, that is if Y is the sort
of polyhedron in which maps from polyhedra of dimension & some n

can be approximate by nondegenerate maps, then they can be approximated



by nicer maps also., [nd the class of these ¥'s is much larger than
that of PlL-manifolds, |

We call such spaces Non Degenerate (n)-spaces or
ND(n)-spaces. The aim of this chapter is to obtain a good description
of such spaces and prove a few general position theorems for these

spaces,

5.1. Nondegeneracy.

5.1.1. Proposition. The following conditions on a polyhedral map

f s P —B @ are equivalent:
(a) TFor every subpolyhedron X of P,
dim £(X) = dim X,
(b) For every subpolyhedron Y of Q,
dim £ (¥) & din .
(c) TFor every point x & Q, fmT(x) is finite,
(d) For every line segment {?, j}(:'P, x £y,
£([x, y]) contains more than one point,
(e) For every ® ® with respect to which f
is simplicial, f( @) has the same dimension
as &, § 6 -
(f) There exists a presentation.@) of p, on
each cell of which f is linear, and one-to-one.
Proofs  Clearly

(2) = (d)
(b) == (c) =% (d)

(e) -=:} (£)
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To see that (a) == (b)

Consider a subpolyhedron Y of Q; then f (f*1(Y)>C;TL
© Dim (f"1(Y>) = dim f (f‘"l(Y)) by (a) and as f (f“’(Y))CY,
dim £ (£7'(7)) L dim Y. Hence dim (£7'(¥) {dim 7.

To see the (d) ::%} (e):

Let @~ G;Gp. If f( §) has not the same dimension as
that of § , two different vertices of @~ say v, and v, are mapped
onto the same vertex of f( @) say v. Then [yj, v23, is mapped
onto a single point v, contradicting (d),

Finally“(iﬁ ::%; (a):

To see this, first observe that if f is linear and one-
to-one- on a cell C, then it is linear one one~to-one on G also,
Thus if A is a polyhedron in C, dim f(A) = dim A, But,

X=\UJ (ENT), and dim X = Max (dim X0\ G), Tt follows that
e Ce@
dim £(X) = dim X.

Thus we have

S

!

d
Ne

&

W 2>

and therefore all the conditions are equivalent, 0

5,1,2, Definition. We shall call a polyhedral map f which satis-

fies any of the six equivalent conditions of proposition 5.1.1. a

nondegenerate map.
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Note that a nondegénerate map may have various "foldings!;
in other words it need not be a local embedding,
Ex, 5.1.3. (1) If f: P4y Q is a poiyhedral map, and
P =P s UPs Py 1s a subpolyhedron of P, 1€ i £k, and if
i /Pi is nondegenerate, then f is nondegenerate.

() If £+ P~ Q is nondegenerate, and XC P a
subpolyhedron, then f / X is also nondegenerate, |

. /[ Hint : Use 1.C_J. u

Bx, 5.1.4. Proposition. The composition of two nondegenerate maps is

a nondegenerate map. !

Ex, 5.1.5, Proposition. If f 3 P1 — Q1, and g ¢ P2 wu%} Q2 are
nondegenerate, then f * g P1 * P2~*~§ Q1 * Q2 is nondegenerate.
In particular conical extensions of nondegenerate maps are
again nondegenerate,
[/ Hint: Consider presentations with respect to which
f, g are simplicial and use 1.f./, 1

Let f ¢ P~y @ be a polyhedral map, /g and EZ; tri-

angulations of P and @ with reference to which £ is simplicial.

5 th
,}g  end e S usual denote the k skeletons of ,ﬂ; and:z;..

et @, Y} be centerings of,/g s :Zg respectively such that

k k
(e § ) = VW(f 6 ) for Crf'/g . Let /@ and 75 denote
the dual skeletons with respect to these centerings. Then

Ex. 5.1.6,

s inm——e

(2) £ A ICE

1
f is nondegenerate if and only if f (gZik) (:/gk.
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e T AR
f 1is nondegenerate if and only if
£ (AN B
“(c) Formulate and prove the analogues of (a)

and (b) for regular presentations, E}

5.2. ND (n)-spaces. Definition and Elementary properties.

52,1, Definition. A polyhedron M is said to be an ND (n)-space

(read Non-Degenerate (n)-space) if and only if:

for every polyhedron X of dimension £

& 0, and any map

It X-—> M and any &> 0, there is an g —approximation to f
which is nondegenerate.
This property is a polyhedral invariants

5.2.2. Proposition. If M is and ND (n)-space, and s M —> M

a polyhedral equivalence, then M' is also ND (n).

Proofs Obvious. |

Before we proceed further, it would be nice to know such spaces exist.
Here is an exampls

5,2.3. Proposition. An n-cell is an ND (n)-space.

Proof: By 5.2.2, it is enough to prove for &, where A is an open
convex n-cell in ﬂ%?, Let £ 1 X - A be any map from a poly=-
hedron £ of dimension £ n. First choose a triangulation /g of

X, such that f is linear on each simplex of /g . Let v{ seenes T,

be the vertices of /& o First we’ alter the map f a little to a £

so that f'(v1) yases f'(yr) are all in A = Interior of A, This
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is clearly possible: We just have to choose poinps near f(vi)'s in
the interior and extend linearly. Next, by 1.2.12 of Chapter I, we
can choose Yy seeeees ¥, 8O that, vy is near f’(vi) and yi’s are
in general position, that is any (n + 1) or less number of points of
y’s is independent, If we choose y;s near enough ft(vi)’s, the
y’s will be still in A, that is why we shifted f(v;)’s into the .
interior. Now we define g(vi)'= y; and extend linearly on simplexes
of fﬁg.to a get a map X~ M, which is non-degenerate by 5.1.1 (f).
And surely if f(vi) and yi are near enough, g will be good appro-
ximation to f. 1

The next proposition says, roughly, that an ND (n)-space
is locally ND (n). |
5.2.4, Proposition. If /g is any simplicial presentation of an
ND (n)-space, and & €& /% , then iSt(GT’,/% )} is an ND (n)-space.

Proofs If x is a p‘oint of & , then (S’c( s, &)t is a cone with

vertex x and base BG_* lLk( ’6"‘,/% )l which is a link of x in

M; and ‘St(({;‘,/b )) _.Bﬁ'*lLk(f,/%)] is open in M. If

fi1X -—?\St( 5, A )} is any map from a polyhedron X of dimension
& n and € » O, we first shink it towards x by a map £ say

50 that f‘(X) C \St( g, /S)) - B e;eetuﬁ( 5, /S)s so that

? (£, £') £ €/2. NWow U = Mf»({ st(6 ,A ) -6 * {Lk( &, A )D
is a subpolyhedron of M, and f£'(X)MNN = . Therefore
P(f'(X), N > 8) 0, Let vq = min((S , € /2), S8ince M is WD (n),
we can obtain an Y} ~approximstion to f , say g which is

nondegenerate, g is an € -approximation to f and g(X)N\N = g,
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g(X) M. Therefore g(X) iSt(@'“,/g )1 . Hence * st(g™ ,/S )‘
is an ND (n)-space. | .

Next we establish a 4sort of "general position' theorem for
ND (n)-space,

5.2.5. Theorem, Let M be an ND (n)-space, K a subpolyhedron of

M of dimension § k. Let f : X —HM be a map from a polyhedron X
of dimension & n -k ~ 1, Then f can be approximated by a map
g 2 £~ M such that Wg(X) N K=d¢.
Proof: Let D be a (k + 1)~cell, Let f' : DXX —> M be the
composition of the projection D AKX ”"} X eand f, that is
£'(a, x) = £f(x) for a ¢ D, x € X By hypothesis, dim (D X X) 4 n.
Hence fl can be approximated by a map g' ‘which is nondegenerate,
The dimension of g'=!(k) & k. Consider U (g'~T(k)); (whe‘re Vv is
the projection DA X > D), this has dimension & k3 hence it cannot
be all of the (k + 1)~dimensional D. Choose some a& D ~ \T(g"”(K)).
Then g' (a WX)MNK = @. We define g by, g(x)=g'(a, x), for
x & X, Since f(x) = f'(a, x), and g' can be chosen to be as close
to f' as we like, we can get a g as close to f as we like, ©

We can draw a few corollaries, by applying the earlier
approximation theorems. |
Ex, 5.2,6. If M is ND (n), K a subpolyhedron of M of dimension
£k, then the pair (M, M= K) is (n = k - 1)-connected.
[/ Hintt It is enough to consider maps f ¢ (Dl, d D) ey (M, M- K),
and show that such an f is homotopic to a map g by a homotopy which

is fixed on () D, and with g(D) ( M ~ K. First, by 5.2.5, one can
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get a very close approximation g, to f with g1(D)C M~ K, Then
since g, B‘D and f 'BD are very close, there will be a small
homotopy h (3.2.3) in a compact poiyhedron in M-K wifh
hg = fla D, hy = g, ’6 D, Expressing D &s the identification space
of 3DX I and D, (a cell with BD? =dDX1) at O DX
and patching up h and the eguivalent gf g, on D1, we get a map
gt D~> M, with g \513: f{ d D, jg(D)C_ M~K and g close
to T, Then there will a homotopy of f and g fixed on B D_7.

As an application this and 5.2.4 we have:
5.2.7., Proposition. If /& is a simpliéial presentation of an
ND (n)-space and g(,/g , then \Lk( 8, /S )) is (n - dim € ~2)~
connected.
Prooft For by 5.2.4, $t ( @,A )‘ =& * ‘Lk( 5“,/{, )\ is
ND (n), and by 5.2.6, GSt ( §, A)‘, {St( A - %1) is
(n = dim § =~ 1)~connected, thus giving that ‘St( 5, &)\ - & is

(n - dim & - 2)-connected, But '\Lk( £, /g)’ is a deformation

retract of (St( 6',A) - %: . |

5,3. Characterisations of ND (n)-spaces.

We now introduce two more broperties: the first an
inductively defined local property called A(n) and the second a
property of simplicial presentations called B(n) and which is satis-
fied by the simplicial presentations of ND (n)~-spaces. It turns out
that if M 1is a polyhedron and /& a simplicial presentation of W,
then M is A(n) 4if and ohly if A is B(n). Finally, we complete

the circle by showing that A(n)-space have an approximation property
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which is somewhat stronger than that assumed for ND (n)-spaces.

A(n) shows that ND (n) is a local property. B(n) 1is useful in
checking whether a given polyhedron is ND (n) or not. Using these,
some more descriptions and properties of ND (n)-spaces can be given.

5.3,1. Definition (The.property A(n) for polyhedra).

Any polyhedron is A(0),
If n )} 1, a polyhedron M 1is A(n) if and only if the
link of every point in M is a (n - 2)-connected A(n - 1),

5.3.2. Definition. (The property B(n) for simplicial presentations).

A simplicial presentation /S is B(n), if and only if for
every 6 ¢ /K , ‘Lk( i ,ﬂ)s is (n - dim ¢ - 2)-connected.
By 5.2.7, we have

5.3.3. Proposition. If M is ND (n), then every simplicial presen-

- tation /& of M is B(n). [
The next to propositions show that A(n) and B(n) are
equivalent (ignoring logical difficulties), '

5.3.4. Proposition., If M is A(n), then every sﬁ;nplicial presen=-

tation of M is B(n).
Proof: The proof is by induction on n. For n = 0, the B(n)
condition says that certain sets are (\g - 2)-connected, i.e. anyA
is B(0), agreeing with the fact that any M is A(0). Let n > 0,
and assume the proposition for m ¢ n. ‘

Let |Al=M,Fedand din 's‘“ =k

If k= 0, then by the oondiﬁion A(n), the link of t;ne

element of §~ , which can be taken to be \Lk( 5, /S,)’ is
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(n - 2)-connected,

If k> 0, let x be any point of ¢ . Then a link of x
in M is bﬁ“*lLk( 5, /é)\ , which is A(n-!) by hypothesis.
Hence by inductive hypothesis, its simplicial presentation
{5@}% Lk( 6=, /g> satisfies B(n-1). If o is any (k-1)-dimensional
face of § R :

i (5 ,A)| - \Lk(cr , {oep et o, A 0 |
which is ({n-1) = (k~1) - 2)-connected i.e. (n-k-2)-connected since
0§ (6,4 ) is Bnet). [

5.3.5, Proposition. If a polyhedron M has a simplicial presen-~

tatlion,\which is B(n), then M is A(n).

Proof: The proof is again by induction. For n = 0, it is the same

as in the previous case. And assume the proposition to be true for all
m<n o,

Let x€ M. Then x belongs to some simplex @ of /g ,
and a link of x in M is J€ * ‘Lk(s*, A }& . We must show that
this is an (n - 2)-connected A(n~1),

As per connectivity, we note (setting k = dim ¢ ) +that

a § is a (k - 1)-sphere; and by B(n), (Lk(r,A )‘ is  (n-k-2)-
connected. As the join with a (k—-1)-sphere rises connectivity by
Kk, 56" *(Lk('ﬁ'”,/g) l is (n-2)-connected.

To prove that 5 § * lLk( ﬁ',A )\ is An—-!’ it is
enough to show that {bﬁ*}* k(§", Ay = /S ' say is B(n-1); for
then by induction it would follow that lA ‘] = afs" * (Lk( 6 ,/% )‘

is A(n~1). Take a typical simplex OC of /g‘. It is of the form
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RY . B¢ {06t , Y ew(g,A), wtn PorV =@ being
possible. Now Lk( { , AV =k(p, §05) ) * k(Y , (g, A
| Let a, b, ¢ be the dimensions of A ,. J, Y res-
pectively, a = b + c + 1, Remember that dim § = k. Therefore
‘Lk(s_’; £36F )| isa (k- b-2)-sphere. Now_
|p(v 167, /S D <[t Y&, A5 by Bn)
assumption, this is (n - (¢ + k + 1) - 2) connected, Hence the join
of (Lk(F) {éﬁ*] ‘ and th(\(, Lk(@",A))thich is
s s AN e o

[(n—u (c vk + 1) =2) +(k=b=2) + 1] ~connected
that is ((n = 1) ~ ; - 2)-connected.’
Thus /g' is B(n-1), and therefore by induction I/S'l
SO * [Lk( £, A )} Lalink of x in M isa (n-2)-comected
A(n-1), Hence M is A(n). )

We need the following proposition for the next theorem.

5.3.6, Proposition. Let GD be a regular presentation of an
A(n)-space M and \'] be any centering of (P . Let” 4, be any element
of 63 and dim A = k., Then

\MA\ is an (n = k - 2)-connected A vyl
and {SA‘ is a COl’ltI‘aCt_Lble An-k‘
"Proof: We know that % A is the link of & k-simplex in ci(P .
Since 4 (P satisfies B(n), \;\A‘ is (n—k-2)-connected.

If k=0, AA is the link of a point and therefore
An~-1), since M is A(n).

JIf k30, then BA*\%A! is a link of 2 point in M,
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and so is A(n-1), Take a (k-1)-simplex g§ of d GD in o A3  then
AL is Lk(§, d §OAY* A4) which (by induction on k), we know
to b& a presentation of an A({n-1) = (k-1) - 1)-space.
To prove that {é A\ ~is  A(n-k), we prove that (S A is
B(n-k), Consider its vertex W‘A, then Lk( Y\A, (,S\A) :>\ A, and
\’}\ A{ is (n-k-2)-connected. For a simplex § & ;\A, we have
|oC o, § )= ¢

simplex O = 5‘{7)1&} , e AA Lk(, g A) = Lk( 6, A A).
If © has dimension t, 4 has dimension (t-1); and so (R A\ being

(1k( &, A A))\ which is contractible. TFor a

Aln-k~1), ‘Lk( 5 A A)\ is  ((n-k-1) - (t-1) = 2)-connected, i.e,
lLk( & , 8 A)] is ({n-k) - t - 2)-connected. This shows that SA
satisfies B(n-k). {1

5.3.7. Theorem, Let M be an A(n)-space, Y X polyhedra of

dimension . £ n, and f ¢ X —3 M a map such that f|Y is non~-

degenerate, - Given any € 2 0, there is an € -approximation g to
f such that g is nondegenerate and g \ Y=7° ’ Y.
Proof: The proof will be by induction on n. If n = 0, we take
g = f, since any map on a O-dimensional polyhedron is nondegenerate,
So assume n » 0, that the proposition with m instead of
n to be true for all m{ n.
Without loss of generality we can assume that £ is poly-
hedral. Choose simplicial presentations z’ C /% ;rﬂ‘( of Y, X
and M such that f is simplicial with respect to /%, andJYYL 5 and
such that the diameter of the star of each simplex in JWC  is less

than € . Iet ©,Y) be centerings of A ana W witn
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f(e ) = “Q (£6) for all 6"(:‘/& . Then clearly fq(mk) C/Sk
( gf;k) CJ\m;k and the diameter of \c??{ is less than € for
every DL . | ‘

Consider an arrangement A1 sve gy Ar of simplexes of YWY
so that dim A:‘. ?/dim AiM’ for- 1% i « k. The crucial fact about
such an arrangement is, for each i, (%) ?\Ai is the union of 6 Aj
for some Jj's less than i,

We construect an inductive situation E such that
i

- ]

SO CEVEVERTPINATYAY

LNy
i

(1) X,

it

(2) Yi

(3) g; ¢ Xi ——% M, a nondegenerate map

@ g (a4
(5) gi\Xiw1 = g

(6) gi‘Yi = lei

J“'tn is the union of certain Ai‘s in the beginning, say Ai's
with 140, 7’y c AT ana \/Sn‘ is O-dimensional.

Hence f\ f"1( \613.1\ \SALK ) is already nondegenerate. If
we take this to be g L all the above properties are satisfied and we
have more than started the induction, Now let 1 > »Q. and suppose
that gi_l1 is defined, that is we already have the situation Z

(3-1)"
It follows from (4) and (5), that for Jj< i, ‘ '

g1 (f—1 ‘CS Aj\ )C‘&A‘jl , and hence from (%) that g niaps

=1 |A &) o {}\Ajj.
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Also this shows that if x ¢ f’”(l&Ajp then both

gi__1(x) and f(x) are in \5‘ Aj\ , which has diameter(,& , and S0

X,

g. is an & -approximation to f 10

w1

There are now two cases,
a i A = / a
Case 1 dim s k '>/ 1 f
Look at lcg Aﬂ . This is a contractible A(n-k). Let
t o | 1 t -1
' = f (\dAil) and YHYNX') Y £ ( \'}\Ai\). The maps f on
YA X and g _, ov £ (‘%A,[) agree where both are defined by
- i
E o ( 3 ), and are nondegenerate by hypothesis and induction.
l-—
Hence patching them up we get a nondegenerate map ! e’Y'——J}\géa\.
Since \CS Ai\ is contractible f' can be extended to a map (still
. k
denoted by f') of X' to \S Ai\. Since X' (_\A \, dim X'gnuk,
» - ’ )
and \CS Ai' is A(n-k), there is a nondegenerate map e X «—-\7 l& Ai\'
such that f"‘ ¥ o= f" ', by using the theorem for (n-k) $;n~1.
on X, and £ on X’;

i 3=
, o |
these two maps agree where both are defined, namely f ( \?\Ai\ ).

We now define gi to be gi

Thus g, 1s well defined and is nondegenerate as both £ and
1 81t

are nondegenerate, And clearly all the six conditions of Z are
i

satisfied,
Case 2. Dim Ai = 0,

Let By sevees B be the vertices of & which are mapped
S

onto A.l. Then
f"1(\<§ a) - \$zjv ... \SBS‘.
Let X' = \RBAU‘. v\ - \/g‘ (\f—1(\c§Ai\)
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X' is of dimension ¢ n-1, and contains fﬂ( }AAi\ )e  Let
Y= fwl( P\Ait ). Here the important point to notice is, that
Y f\X'C Y'. This is because fiY is nondegeneratet Y (”\X‘ C Q‘j},
so f(TMNX) C JW‘CI Tt is also in \S Ai‘ and therefore

) i afdsl - [As).

We first extend gi-J\Y' to X' and then by conical
extension to fm1(‘8Ai‘ ). g, , maps ' into \;\ Ai\ and is non-
degeneraﬁe on Y, SincelAA.l( is (n-2)-connected, and dim X'\{. n-1,
8 1 Y can be extended to a map f' -of X' into x% Ai‘\ \Al\l‘

/

is also A(n-1). Hence by the inductive hypothesis we can approximate

£' by a nondegenerate map f" such that f" ‘Y' = f’!Y' =g - ‘ Y,

Hence \R%B [ is nondegenerate and maps
\% Bj\ into \‘\A ( We extend thlS to a map h lgB \--} .kSAil s
by mapping BJ to A and taking the jéin .
is clearly nondegenerate. Since ‘c{B , r’\ S B, lc 1AB l(\\?B lC X'
if §f J ’ j’s agree whereever their domains of definition overlap.
Similarly hj and gi__1 agree where both are defined. We.now define

g. to be on X and h Bi. T is defined
1 gi_1 it ! 5 on ’cf ,j‘ hus gi i efine
-1 - \ .
X U \C? Ai\) = Xi and is nondegenerate since g . and
hj's are nondegenerate, It obviously satisfies conditions 1=5 on s

to see that it satisfies (6) also: Let ¢ is any simplex of d J7g
in gBj, if B, is not a vertex of ¢ +there is nothing to prove;
J

if B, is a vertex of ¢ , write er:{aj}f‘. Both n, and 1

. i .
agree on § and Bj and on & both are joins, hence both are equal
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on g .. Then (6) is also satisfied and we have the situation -0
This theorem shows in particular that ND (n) is a ZLocal:L
property; and that ND(n)-spaces have stronger approximation property
than is assumed for them.
The following propositions, which depend on the computations

of links are left as exercises.

Ex. 5.3.8. Proposition. C(X) and S(X) are ND (n) if and only if

X is an (n-2)-comnected ND (n-1), ©
Thus the koD suspension of X is ND (n) if and only
if X is an (n-k-1)-connected ND (n-k)-space.

Ex. 5.3.9. Proposition. Let /g be a sigplicial presentation of X,

Then X is ND (n) if and only \ Lk(v,/g )} is (n-2)-connected
ND (n-1) for each vertex v of /g . 0

Ex, 5,3,10, Proposition. If /g is a simplicial presentation of an

ND (n)-space, and‘ 0¢ kg n, then the skeleton //glx is WD (k), and
the dual skeleton Ak is ND (n-k). @
| Thus the class of ND (n)-spaces is muoﬁ larger than the
class of PL n-manifolds, which incidentally are ND (n) bj the
B(n)-property.
The éesults of this section can be summarised in the following
proposition:

5.3.11, Proposition. The following conditions on a polyhedron M are

equivalents
1) M is ND (n)

2) M is A (n)
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3) a simplicial presentation of M is B(n)

L) every simplicial presentation of M is B(n)

5) there exists a simplicial presentation /% of
M such that ‘LK(V,/S }\ is (n-2)-connected
An~1 for all v & /g and dim v =0

6) M satisfies the approximation property of

theorem 5,3.7.

7) MX I is ND (n+1). O

5,0, Singularity Dimension,

5.4.1. Definitions and Remarks., Let P and M be two polyhedra,

dim P=p, dim M=m, pLm and £ : P ~— M a nondegenerate map.
Ee define the singularity of f (or the 2-fold Singulérity of f) to
be setﬂhx € P"fp1 f(x) contains at least 2 pointé} » and denote it by
S(f) or 5, (£). By triengulating f, it can be seen easily that S(f)
is a finite union of open cells, so that S5(f) is a subpolyhedron of pe

Similarly, we define the r-fold sinpularity of f for r %3

to be the set {x ¢ P‘ ¢! £(x) contains at least r points}' This will

be denoted by S, (f). As above 8. (£f) is a finite union of open cells,

so that S (f) 4is a subpolyhedron of P, Clearly 8, (f):}s3 (£)) veus

and S, (f) are empty after a ceftain stage; since f is nondegenerate.
The number (m - p) is usually referred to as the

codimension; and the number r(p) - (r-1)m, for r > 2 is called

the r-fold point dimension and is denoted by dr (see e.g. Zeeman

"Seminar on combinatorial Topology", Chapter VI)., Clearly dr = dp.t"(m"p>‘

It will be convenient to use the notions of dimension and

@
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imbedding in the following cases: (1) dimension of A, where A is a
union of open cells., In this case the dim,-'A denotes the ma.mmwn of
the dimensions of the open cells comprisiné A and is the saﬁle as the
dimension of the polyhedron A, (2) Imbedding f of C =% M, when
C is an open cell and M a polyhedron, This will be used only when

f comes from a polyhedral embedding of C. In such a casé £(C) will
be the union of a finite member of open cells. And if A(: M is some
finite union of open cells, then f-1':A) will be finite union of open
cells, and one can talk of its dimension etc.,

A nondegenerate map f ¢ P =3 M will be said to be in

general poéition if

. : A
dim (S, ())& dp -jd\..o.}»k
If p=m, this means nothing more than that f is nondegenerate, so
usually p ¢ m

5,4,2, Proposition. Let G',) be a regular presentation of a polyhedron

P such that for every C {(P

C is an embedding., Let the cells
of (P be G, ,o..., Cp , arranged so that

dim Cig dim 141 gt end let Pi’ igt be the sub-

ci+1’

polyhedron of P whose presentatien is {61 seany C.E. Then

i

1) 8, (r]py) =8, (flP 1}\){0 M (£(p, )}

B0 e

il

i) 5, (2] =, (e]p, ) |
ufen s e 0}

U{S (e B, TN e (ece ))}
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This is obvious. If we write P = Sj(fj, (compatible with
the definition of 8.”s, then 51(f Pi) would be just Pi’ and only
(i1) Ybe written (with ry 2) instead of (i) and (ii).

The proposition is useful in inductive proofs, For example,
to check that a nondegenerate f is in general position, it is enough
check for each little cell Gy, that dim G, ' (£(s__, (4} P, g A
If we have already checked upto the previous stage; since f is non-

degenerate | £(8,_, (47, ,)) will of dimension and then

d
(r-1)’
we will have to verify that f Ci intersects f (Sr i (f}Pi)>) in
codimension ?, (m-p) or that (Ci) intersects £ £(s 1(fk‘f’,)) in
r— i

codimensicn ) 1w, (We usually say that A intersects B in

codimension g if dim (Af\ B) = dim B ~ g. Similarly the expression

'A intersects B in codimension ?c q' is used to denote

£ dim B - q)., The aim of the next few propositions is to

dim (A A B) £

obtain presentations on which it would be possible to inductively change
the map, so that f(Ci) will intersect the images of the previous
singularities in codimension p (m~p). Proposition 5.4.7 and 5.4.9

are ones we needj the others are auxilary to these.

Ex, 5.4.3. Let A, B, C, be three open convex cells, such that

AMNB is a single point and C D) A{)B. Then dim C 2 dim & + dim B,

[ Hint: First observe that if A' and B! are any two intersecting

open cells then LA' 0\ LB' = LAI AB' where LX denotes the linear

manifold spanned by X, Applying this to the above situation

It

dim C = dim L, »dim L dim I..A + dim LB - dim (LA{\ LB)

(A wB)

il

! + di I, - di L.
dim LA dim 5 lm(A(\B>
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= dim L, + dim LB_, since AN B

is a point_._7

5.4.4, Proposition. Let A be an open convex cell of dimension n,

and (L a regular presentation of A with A ¢(Q:. If L is any
linear manifold such that dim LN A = k 2, 0, then there is a BeQU,
of dimensiong n - k, with Bn L £ &. Fuffher, if A" is any cell
of (L contained in a A, we can require that A'f\ B = #.

Proof:t If k = O, we can choose A itself to be B, If k> O,
CoL#g,

C ¢ GL}of T\nL. G must have more than one O-cell. Choose one of

consider the regular presentation@ =40 NL

these O-cells of C, ‘It must be the form BN L for some B ¢\,

We would lke to apply 5.4.2, for B, LN A and A, But B and

LN A do not intersect. ©Since we are interested in the dimension

of B, the situation can be remedied as follows: Let D be an nwéell,
such that AC D. LAD .is again k-dimensional. Since B D,
BNLCDNIL, and as B¢yL is nonempty, B and DML intersect.
BN(DNL) cannot be more than one point since BN (DAL)C BNL
which is just a point. Applying 5.4.2 to B, DML and VD nwe have
n=dimD'>/ dim B + dim (DN L) = dim B + k, or, dim B ¢ n - k.

To see the additional remark, observe that all the vertices
of G cannot be in A', for then L NAC A, contrary to the
hypothesis that L M A is nonempty. Hence we can choose a O-cell
BAL B €0\ of G not in A", Since O\ is a regular presentation
BT =4 ) |

This just means that if L does not intersect the cells of
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OL of dim &f_ » then dimension of the intersection is ¢ n -4 5
or codimension of intersection is }9_ . Using the second remark of
5.h.4, we havet

5.4,5. Corollary., Let QD be a regular presentation, containing a full

subpresentation. @\ (which may be empty). Let Q) = %Ce@_@”dim Cg k}.
. k !

If 1L is any linear manifold which does not intersect G) > then

dim(L{'\((p-@\).&n—k«'?, where n:dim(@ -6»)». i

5.4.6, Proposition. Let A be a closed convex cell of dimension

o K+ a, let S be a (k—j)—-Sphere in b A s and B1 PRI Br be a
finite number of open convex cells of dirﬁension $ q - 1 contained
in the interior of A. Furthe’f, let g be a simplicial presentation

of S Then there is an open dense set U of interior A such that

if a& U then the linear manifold L generated
XEXE (6, a) ‘
by ¢ and 'a' does not intersect any of the Bi’S.
Proof: For any g ¢ 4 , consider the linear manifolds L
. (g~ B;)
enerated b and B,, for i . Dim L < k+g-1,
& y 6 g fordLigr. Dim ('G‘:Bi>$ e

Hence U __ = int Ao U L is an open dense subset of

int A, If a is any point of U(r“ , then L ) does not .
‘ a- s &
intersect any of the Bi’s; for 1f there were a Bj with
L OB, £9, let bg L NB.. L C L and
(5"‘9‘3) J ’ (6‘9 a) J (U", b)( (5"38')
is of the same dimension as L, 6 » 8lnce b is in the interior
» (¢, a)
of A Thus a &L L contrary to the choice of
(g 3 b>C- ( g, B ) '

a. Therefore if we take U = , 1J satisfies our

Lx Vs

requirements, [}
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5.4L.7. Proposition. Let # Dbe a closed convex cell of dimension

?, k +q, let S be a (k-1)-sphere contained in D A, and let
{81 Seseas Br} be a finite number of open convex cells in int A,
Then there is an open dense subset U _of int A such that if

ag U, then S % a intersects each of the Bi’s in codimensiony aq.
Proof: Let /S be some simplicial presentation of S. First let us

consider one B,. Let @ . be a regular presentation of B,
1 1 1

containing a full subpresentation ¥, . covering E; MNOA  Let
i
G%q 1 ={_C€_(B _7(,3,, dim C¢ q—-l}. By 5.4.6, there is an open
exvan. i .

i
dense subset of int A say U.l such that if a & Uss €7 ¢ 4, then

L does not intersect any of the elements of . By 5.4.5
. ( 6‘“ ) a) v ®q-1 ’

dim L 3 - n, - where n, = dim B . Hence
(G“,a)r\(@i ('xai)é 1@ i i
dim (S *# afy B )& n, -~ q. Therefore if we take U= Uj’ where
i i 3
Uj- constructed as above for each of Bj’s, then U, satisfies the

requirements of the proposition. B

5.4.8. Proposition, Let ¢ be a k-simplex, £\ a closed convex

g-cell; GD a regular presentation of & %* /\. Then there exists
an open dense subset U of A , such that if g ¢ U, the linear
manifold L(G" , ) spanned by ¢® and a, does not intersect any
cell € E(p satisfying C N s =@ and dim Cg a-t.

Prooft et Cg@ , withCAN'q¢ = and dim C ¢ g-1. The linear

manifold L has dimension ¢ k + g, while L

(¢, C)

dimension k + g + t. Therefore L( -

(6‘" 3 f-\) has
c) N L‘A has dimension < Q-1

3
and so U, = - L, is open and dense in . Define U
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s

e

to be the intersection of all the UC. If a ¢ U, and there were some

-
(s*,a)ﬁ s
since b%"é’,dim L. =k + 1=

C of (P of dimension { g~1, C M § = §, with L

choose bé& CNL 5
(5~) a)

= dim L and so L

<6~> a)

i.e.

=L L '
(6,: a’) (6»: b> (d"" ) a>CL(6" C>,

or, a#t€ contrary to the choice of a. [}

L
(¢, ©)
5.4.9. Proposition. Let S be a ' (p-1)-sphere, [\ 2 closed convex

g-cell, @ a regular presentation of S * /\/, Then there exists
1) a regular refinement (P! of (P
2) apoint ae A ‘
3) a regular presentation &) of S % a
such that
a) & contains a full subpresentation A covering S,
b) Each C & G- /@ is the intersection of a linear
manifold with a (unique) cell EC ¢ (p*', if
C#cC, E, # EC', and if ‘c< c', then B, < EC'
c) dim 0 gdinE, - q, for all ¢ € O A
Proof: Let (J\, @ be simplicial presentatio.ns of 8, A .; and let
(P‘ be a common simplicial refinement of GL* (j?) and @ . Since
O\ is full in Ou* 3 , there is a subpresentation, say 4 , of
@‘: covering 5. If § &L, & * /\ is covered by a subpresentation
in 01 3 05 , hence there is a subpresentation of (P ‘, say G)(;,.. 3
covering & * £\ . X4pplying 5.4.8 to G) G’:‘ , we get an open dense
subset 'U@ of A . Let U be the intersection of the sets U

for §¢(\ . Let ag U. Obviously 'a' is in an (open) g-simplex
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of @ contained in"A . Hence 'a' belongs to a g-simplex of

(A > call it . |

We define (& to be union of /g , {a} , and all nonempty
intersections of the form L(ﬁ"' , a)(‘\ E, for @*(: o E & @' _g .
It is clear that L( &, a) NE-= ﬁ"{ a}r\E. Moreover E(\ S = _P:, Fe %
(F may be empty) since /S is full in 6)‘. This immediately gives
that & is a regular presentation, using the fac;t that b (AN B)
is the disjoint union of bA N B, AN 5B, aA N éB, for open convex
cells A, B with AM B # @, Moreover g is full in O, 1f

Cﬁéxisoftheform C=1L () E, we write E as EC. By

(67, a)
definition each C € @Nis the intersection of EC with a linear
. . ' ' ' . v,
manifold, and if C < C, C E@‘-/%, EC‘< EC since @ is
regular, Since L( & 2) does not intersect any (\( g—1)~dimensional
3

face E of E with E AS = by 5.4.5 dim L E ¢dim E .
o M EAS= by 545 dim L (VB (dinBy

Tt remains to verify that if CT £ C, ¢, CoE 6\"/«?} , then EC # ECZ .

Let ©, =L(¢’ N EC1, CZ:L(CC', a>“%2 ;G,TQ‘QL ,

t
EC1, EC;-"(P -A, J ;!5257402. £ €=, ad C £ C,» clearly

C 2
case EC1C & f’, ECZCG‘Cf, ( F‘ defined in the first paragraph of

E 4 EC . If & £ Q , then 61 cannot be egual to 02. In this
1

the proof). But G\f and Q’f are disjoint, hence EC %,EC . o
1 2
!
Remark: 1In the above proposition @ can be taken any presentation

of S %4 refining ‘@and a- join presentation of § # A,

5.4.10, Proposition. Let M be an ND (n)-space. Let X (C P be
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polyhedra such that P = XU C, C a closed convex cell, and

XN C = aC, and dim P:p$ n. Let f P> M be amap such
that f / X is in general position. Then there exists an arbitrary
close approximation g to f such that g is in general position
and g/ X=1¢/%,

Prooft If p=n, any nondegenerate approximation of f would do.
So let p { n. In particular dim C $P¢n

Step 4. Let D be an (¢ n)-dim-cell containing ,BC in its
boundary, and such that ’

1) D= OC ¥ A, A a closed convex (n-p)-cell

2) AN G is a single point 'd' in the interior

of both C and ¢\ sothat C= d* 0

3) DNP = C.

This is clearly possible (upto polyhedral equivalénce by
onsidering P X 0 in VAW, (where V 4is the vector space containing
W oan  (n-p)-dimensional vector space), and taking an (n-p)-cell
[\ torougn §R0 in 4 X, for some d€C-QC ete. The join

nhe identity on b G and the retraction /) —» d gives a retraction

bty
ot
3

r iD=~y C. Trnus (£/C) e r is an extension of f/C. Since M is
n WD (n)-space, (f£/C)¢ r can be approximated by a non-degenerage
map, say h, such that h/ dc =t/ B C. Let us patch up £/X and h,
and let this be elso called hy; now h maps XU D=PUD into M
snd is nondegenerate., Triangulate h so that the triangulation of

X WD with reference to which h is simplicial contains a sub-

presentation o& which refines a join presentation of BC #* A . We
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o apply 5.4.9 now, ﬁ will be QD! there and we obtain, a point aef\ ,
a presentation (j3 (what was called (™ there) of 0C * a Each cell
B of @ not in (j C, 1s the intersection of a unique EB of o& with
a lineer manifold, if B'4 B then By, < B and din B L din B~ (np).
Step B, Let B1 seens Br be the elements of (B not in ¢ C, arranged
so that dim B; ¢ dim By .3 for 1 L1 r. Let X = XUBTU .o UBy
X, is a polyhedron. We define a sequence of embeddings c("i : Xi-—% XD,

such that

7

1) o i&x is the identity embedding of X in X\ D

2) g(,i is an extension of .

i-1
3y (8)C By

L) h o(,l is in general position.

We shall construct the qC i‘s one at a time begining
with 0(,0 t X ~—> X\UD, the inclusion, hu@o = /X, is in general
position, and.we can start the induction,

Suppose o). is already constructed. Then

L=

dim Sr (h oCi 1) édr ; and by (2), (3), 0(4 1 embeds b Bi in

et

-1 :
a E, 5 consider h (h L 1 (Sr (hddy ))) intersected with
1 i L1

By, - Since h is nondegenerate, these consists of a finite number
1 ‘

of open convex cells of dimension ‘Q dr" We apply 5.4.7 to this
(OB) end{B, ,u..)f
1 i 1 ¥ 3

of 5.4,7 standing for the open cells of h"1(h DCJ 1 (Sr (h e(;i ))
R --n1

situation with q = n-p, A = EB , 8=y
3 i

intersected with By  for all r ?, 1. By 5.4.7, we can choose a
i

I3 (] *
point in EBi say e (a of 5.4.7) so tha.to()i_1(bBi) ey
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intersects all these (i.e. for all ra 1) in codimension )2 (n-p).

The join of "Q'i 1¥aBi and the map of a point by of B, to e,

e 4

gives the required extension on Bi'
. -1
Then dim {&,i Brvh  (ndy  (5.(n “Ci-1))}$ d_ - (n-p),

equivalently dim{(hcﬁ,i Bi) N h O(Ji-1 (Sr(h °Ci_1)) édrﬂ ’

that is dim {(h cﬁ,i Bi)('\ h QC,i (Sr(h oc,,i\ Xi—~1)) }sdm s

since h ¢, is an extension of h £, .
i T i

Since

Syt (h&i> = Sr+1 (n &

X

)

i-1
UfB; 0 (0 )7 (el (5, (n 0 |, 00
Ufs, el |1, YAGE)T k) ()1

a d L] . 0] » » » S °
nd since h &1_1 is already in general position, dim r+1(hcﬂi) i
At the last stage, we get an imbedding G{'r of X UBC ¥ a in

X\JD, such that h g(,r is an general position,

That h OC'r can be chosen as close to f as we like is

clear. D

54,11, Theorem. Let M be an ND (n)-space, X{ P polyhedra

dimp gn and f 3P —-—-§M a map such that f 3 X is in general
position. Then there exists an arbitrary close approximation g to f
such that g l X= 7 ’ X, and g 1s in general position.

Prooft Let G) be a regular presentation of P with X covered by a
subpresentation % . Let (@""ij) ={A1 geos AI?S be arranged so




bhat dim A L din by g g (g

Apply proposition 5.4, 10 successively to (]P1 , X1) vy (Pr , Xr)'

Lt P =, z[' aen f =
e i X\J x{U‘ UAi, Xi Pi—~1'

This requires the following comment: We must use our appro-
ximation theor‘em,\ which for M and € » 0 gives 5( € ) >0, such
that for any Y _)Z, hy o ¥ ey M,hz 1L ey M, if h2 is polyhedral,
and hAZ is a cg( & )-approximation to. h, , then there is
h3 ¢ ¥ —9 M, a polyhedral extension of h, , which is an & -appro-
ximation to .’ '

We want g to be an & -approximation to f.
Define ¢~ = & = 6 €1
TG ( 2 )

Denote f ( P

by f We start with g, = fo = f tX, Suppose g

Qo

i i’

-

is defined on P, such that g, 1 is in general position and is an
i i~

6 i approximation to f,

o

e Then we first extend By to Pi

say fi‘ so that fi‘ is an 6 5 approximation to fi (this is possible
2
since €“ . Cg( S i/2)) by the approximation theorem. Then we
i )

use 5.4.10 to get an ei/Z approximation g, to f ' such that
i

gi is in general pesition and gi‘ Pi~1 = gim1. gi is an
e j-epproximation to f, and is in general position. g gives the
required extension. [3

| By the methods of 5.4. 10, the following proposition can be

provedt

5 4,12, Proposition. Let M be ND (n); dim pgn, P = XUC,

where C 1is a closed p~cell, X NC = 3 C. Let £ 3 P »=pM be
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a map, such that f‘ X is nondegenerate; and call dim X = x, Then
there 1s a nondegenerate approximaﬂion g s P wﬁ M, arbitrarily
close to f, suchf/;;hat |
; g \X = fs X, eand

S(g) = S(f‘X) plus (a finite number of open

-convex cells of dim ¢ Max (2p-n, p+x~-n)

Sketch of the proof: First we proceed as in Step & of 5.4.10. Now

p = dim C, In Step B) instead of 4) we write
. a —1 - “
dlmiB.lm (n 0(,1) (h o(ui~1.(Xi_1))}£-Max (2p-n, p+x-n).

And in the proof instead of the mess before, we have only to bother
-1 ‘
about h (hdy (X)), intersected with E_ .
: i-1 i1 Bi

G R S CR ) Ve CE AV VL

el e

! (X)) . (h 4 (B ... UB, )). Now the only
i-1 1 i1

‘ -1
ossibility of h (X intersecti i he X)
.p ¥ (£(X)) intersecting EBi is when EBCh (£(X))

since h is simplicial. Since dim By  dim B, « (n~p), it

By

already intersects in the right codimension., And the intersections
with second set can be made minimal as before < 0

5,4.13. Theorem, Let M be ND (n); X(CP ; dimp¢n, f¢tP—p M

a map such that f ‘ X is an imbedding. Then arbitrary close to f
is amap g 3 P—3 M, such that g' X = f‘ X and calling
=dim X, p = dim P - X,
dim S(g) \<¢ Max (Rp - n, p + x - n).
Proofs This follows from 5.4.12, as 5.4.11 from 5.4.10. 0

This theorem is useful in proving the following embedding:
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theorem for ND (n)-spaces,

5.h.1h, Theorem (Stated without proof). Let M be a ND (n)-space,
P a polyhedron of dimension p{n=-3 and f: PP M a (2p-n+1)-
connected map. Then there is a polyhedron Q in M and a simple
homotopy equivalence g ¢ P -—«-} Q such that the diagram

g

. \L inclusion
f
M

is homotopy commutative, 0 ’
The method of Step A in 5,4.10, gives;

Proposition 5.4.15, Let M be an ND (n)-space, and P a polyhedron

of dimension p ¢n and fP —-—? M be any map. Then 3 a regular

presentation (P of P, simplicial presentationY{ of M and an

arbitrary close approximation g to f such that, for each C Q(P s

g\(C) is a linear embedding, and g(C) is contained in a simplex'

G_C of JWIof dimension = dimension C + (n-p) and g( D) =09 (gC)Cb‘fé.

Moreover mcan be assumed to refine a given regular p‘reser'ltation of M,
Also a relative version of 5.4.15 could be obtained. U

And from this and 5.4.13.

54,16, Theorem. Let f t P —> M be a map from a polyhedra P of

dim = p into an ND (n)-space M, p ¢ n, and let Y be a subpolyhedron
of M of dimension y. Then there exists an arbitrary close approximation
g to f such that

aim (g(PINT) L v + ¥ - n.
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And a relative version of 5.4.16. []
5.4.17. 'It should be remarked that the definition of 'general'position'
in 5.4,1 is a definition of general position, and other definitions are
possible; and theorems, such as above can be proved. Here we formulate
another definition and a theorem which can be proved by the methods of
5.1, 10,
» A dimensional function 4 P~ﬁ?{:Q, Ty eve } is a function
defined on a polyhedron, with non-negative integer values, such that
there is some regular presentation Q) of P such that for all
¢ (-;(p , X £0C, d (x)}} dim C, and d is constant on G,

We say d, s.dz, if for all x &P, d, (x) £dy (%),

If £t P~ Mis anondegenerate map, and d a dimensional

function, and k, seeey ks non-negative integers, we define
Sd (f; Ky sees ks)

| )
= f {m &M {;a distinct points

Xy geees XSQ P, such that

d (%) ky , and (%) = m for all i} .

It is possible that such a set is a union of open simplexes,
and hence 1ts dimension is easily defined.

Amap f ¢t P w3 M 1is said to be p-regular with reference
to a dimensional function d on P if it is nondegenerate and

dim 8d (f5 k, ,eevs k)& Ky + .00 + k= (s=1)n.

1

for all s, and all s-tuples of non-negative integers.

N\

If dim P Q n, and since we have f nondegenerate then it
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is possible to show that a map f is n-regular if it satisfies only &
finite number of such inequalities, namely those for which all kiérn"i
and s ¢ 2n,
The theorem that can be proved is this;
Theorem. Let X( P, f 3 P ——p M, where M is ND (n) and dim P ¢n.
Let dy and d, be dimensionel functions on X and P, with dy ¢ dP\ X,
Suppose f‘ X in n-regular with reference to dX. Then f can be
approximated arbitrarily closely by g ¢ P~ M with g ‘X = f \X and
g n-regular with reference to dP"
The proof is along the lines of theorem 5,4.11, We find a
regular presentation G) of P with a subpresentation covering X, and

such that dy and d are constant on elements of G) . We utilise

P
theorem 5.4,10 to get g on the cells of @ one at a time; in the
final atomic construction, analogous to part B) of 5.4.10, we will have
sCOE

where 3 is a (k-1)-sphere. E a cell of dimension >/ k + q, wher,e
g = n-p (the cell wé are extending over is a p—cell; on which 'dP is
constant)/ p). We have to insert a k-cell that will interéect such
things as .

! (sdp ( 951*1 T
in dimension | ’

/AN

L (p-cell) - s.n.

We can do this for our-situation; this inequality will imply



114

8; 1is n-regular. [

,Finaliy we can define on any polyhedron P a canonical
dimensional function d :

d (x) t Min {?im'(Stary‘in Z%Star of xin P_/

Vg Q—[-Star of x in pj}

A function n-regular with reference to thié d will be
termed,  perhaps, in geﬁeral position, it being understood that the
target of the function is ND (n), Thus:

Corollary: If X( P, dim Pgn, £: P —y M, M a. ND (n)-space, and
if f 'X is in general position then f ‘X can be extendéd to a map‘
g s P ~—47’M in general position such that g closely approximgtes f.

5.4.,18, Conclusion. Finally, it should be remarked, that the above

'general position! theorems,‘ interesting though they are; are not
delicate enough for many applications in manifolds. For example, oﬁe
needs ¢ If f ¢ X ——>» M amep of a polyhedron X .into a inanii‘cld,
and Y CM, the approximation g should be such that not only

dim (g(X) M\Y) is minimal, but also should have ‘Sr(g5 intersect Y

(3

minimally e.g. if 2x +y < 2n, S(g) should not intersect Y at
all.,. The above procedure does not seem to give such resﬁlts. If for
example we know that Y can be méved by an isotopy of M to make its
intersections minimal with some subpolyhedra of M, t'hen‘these delicate
‘theorems can be proved, This is true in the case of manifolds, and we

refer to Zeeman's notes for all those theorems.
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Chapter VI

Repgular Neighbourhoods

The theory of regular neighbourhoods in due to J,H.C.
Whitehead, and it has proved to be a véry important tool in the study
of pieceﬁise linear manifolds. Some of the important features of regular
neighbourhoods, which have proved to be useful in practice can be stated
roughly as follows:

(1) a second derived neighbourhood is regular (2) equivalence of two
regular neighbourhoods of the same polyhedron (3) a regular neighbour-
hood collapses to the polyhedron to which it is regular neighbourhood
(L) a regular neighbourhéod can be characterised in terms of collapsing.
Wﬁitehead's theory as well as its improvement by Zeeman are stated only
for manifolds, Here we try to obtainﬂa workable theory of regular
neighbourhoods in arbitrary polyhedra; our point of view:was suggested
by M. Cohen,

If X 4is a subpolyhedron of a polyhedroﬁ K, we define a
regular neighbourhood of X in P to be ény subpolyhedroh of K which
is the image of a second deri%ed neighbourhood of X, under a polyhedral
equivalence of K which is }ixed on X, I£ turns out that this is a
polyhedral invariant, and any two regular neighbourhoods of X in K
are equivalent by an isotopy which fixed both X and the complement
of a common neighbourhood of the two regular neighbourhoods. To secure
(4) above, we introduce "homogeneous collapsing". Applications to

manifolds are scattered over the chapter. These and similar theorems
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are due especially to Newman, Alexander, Whitehead and Zeeman,

6.1, Isotopy.

Let X De a polyhedron and I the standard 1-cell,

e
6. 1.1, Definition. An isotopy of X in itself is a polyhedrsl self-

equivalence of lX}& I, which preserves’the I-coordinate.
That is, if h is the polyhedral equivalence of X XI,

writing h(x,t) = (h1 (x,t), h, (x,t)), wé have b, (x,t) = t. The map

of X into itself which takes x to h1 (x,t) is a polyhedral equi-

valence of X and we denote this by ht' Thus we can write h as

h(x,t) = (b, (x), ).

We usually say that 'h is an isotopy between hy and h1' , or 'ho
is isotopic to h1' or 'h is an isotopy from h, to hl‘_ The
composition (as functions) of two iéotopics is again an isotopy, and the
composition of two functions isotopic to identity is again isotopic to
identity; ’

Now we‘describe a way of constructing isotopies, which is

particularly useful in the theory of regular neighbourhoods.

6.1.2. Proposition. Let X be the cone on A, Let f t X=X

be a polyhedral equivalence, such that f! A= idA. Then there is an
isotopy h ¢+ XX I —3) X XTI, such that h|(XX0)U AXI = identity
and h1 = f, |

Proofs Let X be the cone on A with vertex v, the interval I =(l,0]
is the cone on 1 with vertex O, Therefore~by 4£.3,19, XXI is

the cone on X X 1 YA XI with vertex (v,0). Define
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h e XRTIJART —y TRITUAKRI
by |
h(x, 1)

it

(f(x), 1) for xé&X

h(a, t) = (a, t) for agh, t&I
Since he A= idy, h is well defined and is clearly vé pﬁlyhedral equi-
valence. .We have h defiﬁed on the base of the cones wé extend it
radially, by mapping (v, 0) | £o (v, 0), that is we take the join of h
and Identity on (v, 0), Calling this extension also ki, we See that
h is a polyhedral equivalence and is the identity on (A X I) * (v, 0).
Since XX OUAX I (A XKI) * (v, 0} ", h is identity on
XAOYAXI, To show that h preserves the I-coordinate, it is
enough to check :on (X X1) % (v, 0), and this can be seen for example’
by observing that the t(x,1) + (1-t) (v,0) of X XI with reference
to the conical representation is the same as the point (t x + (1-t) v,t)
of XK I with reference to the product representation, and writing
down the maps, ;[3

If h is an isotopy of X in itself, A(X, and 1f

n{ A KXI = Id(A X I) as in the above case, we say that h leaves A

fixed, And some times, if h 1is an isotopy between IdX and hy,

we will just say that 'h_is an isotopy of X', and then an arbitrary

isotopy will be referred to as 'an isotopy of X in itself’'. Probably
this is not strictly adhered to in what follows; perhaps it will be

- clear from the context, which is which,

From the above proposition, the following well known theorem

of Alexander can be deduced:
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6,1.3. Corgllary. A polyhedral automorphism of an n~cell which is the
identity on the boundary, is i‘sotopic to the identity by an isotopy
leaving the boundary fixed, a

: It should be remarked that we are deéling with I-isotopics
and these can be generalised as follows:

6.1.4, Definition. Let J ©be the cone on K with vertex 0. A

J-isotopy of X is a polyhedral equivalence of ' X %J which preserves
the J-coordinate, ) -

The isotopy is said to be between the map X K0 -—3 X R0
and the map XK K «'—? XK K, both induced by the equivalence of X J,
And we can prove as above:

6.1.5, Proposition. Let X be the cone on 4, and let

1 IXK = XX K be a polyhedral equivalence preserving the Keco-

ordinate and such that f]AXK =1I Then f 1s isotopic to

d .
AX K
the identity map of X by a J-isotopy h ¢ X XJ —3 X W J, such
that on AXJ and X KO0, h is the identity map. U

This is in particular applicable when J is an n-cell.

6,2, Centerings, Isotopies and Neighboui'hoods of Subpolyhedra.

Let @ be a regular presentation of a polyhedron P, and

let Y} , © be two centerings of @) . Then obvicusly the correspondence .

ne < 8¢ , ¢ €f
gives a simplicial isomorphism of d( (P, Y\ ) and d((P, 9), which

gives a polyhedral equivalence of P, We denote this by f@) (coming

1
-
from the map 7\0 ~¥ 0 (). Clearly fY] Q:(:ﬁ‘Q ‘")> 3
3 ! 2

and fy),QO fg,{n:fv\,{h wher'ev],@,/f,, are three
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centerings of | .

6.2.1, Proposition. The map 1 described above 1s isotopic to

©
the identity through an isotopy h inP KI — P % I, such that if for
a C(:G) Y) and (’3 are the same on C and all DQ(Pmth DL C
then h ‘ C% I dis identity.
Proofs First, let us consider the case when Y] and © differ only on
a single cell A, Then f is identity except on

2

‘St(Y\A, d (@, Nl - \St.( ©4, 4 ([P, ?e))\. This is a cone,
and f @ r\ is identity on its base; then by 6.1.2. We obtain an

isotopy of | St( V\‘A d (Q) V) )) ‘, which fixes the base., Hence it

will patch up with the identity isotopy of K - ‘(St(\/‘A, d( (P, Y‘ ))\

The general f (3 I‘) is the composition of finitely many
of these speolal cases, and we just compose the isotopies obta:med as
above in the special cases. For isotopies constructed this way, the
second assertion is obvious, @[3

‘Let X be a subpolyhedron of a polyhedron E;, ar;d let @
be a simplicial presentation of P containing a full subpresentz_iti‘on
7(0 covering X. We have defined N@( Xo) (in 3.1.) as the full
subpresentation of d G) , whose vertices are Y‘C' for C (-;@ with
CNZX#@P This of course depends on a centering Y\ of GJ , and to

make this explicit we dendte it by NG) (%, Y} ) ‘ N Q‘;()@; N )s

is usually called a 'second derived neighbourhood of X', We know that

N(P (% » N )‘ is a neighbourhood of X, and that X is a deformation

retract of \NGD (%, Y] )l (see 3.1), Our next aim is to show that

any two second derived neighbourhoods of X in P are equivalént by

%
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an isotopy of P leaving X, and a complement of a neighbourhood of
both fixed, We go through a few preliminaries first,
Ex, 6.2,2., With the same notation as above. Let W and § Dbe two
centerings of (P such that for every C e@-.?(o, with
C NX#£ @, Y]C = BC, Then

[np (Kol = {rp (6 ,0)).
[ Hints This can bé seen for example by taking subdivisions of G)
which are almost the same as d(Q‘) s Y and d(@ , 8 ), but leave A
unalteredj. ,

6.2.3, Proposition. With X, P,k ,(P as above, let Y‘\ and © be
two centerings of (P , and U the union of all elements of @ ', Whose
closure intersects X. Then there is an isotopy h of P fixed on X
and P - U, suchthat h(|N@ (%Y )]) =" NP (%58 o
Proof: We first observe that P - U is a subpolyhedron of P and there
is a full subpresentation 0L of GD which covers P - U, namely, C & (L
if and only if CANX = #. By 6.2,2 we can change Y} and @) on 'Xa
and O’}_withou‘c: altering (N(P()g‘, M )l and (N(D (% 5 Q”- So we
may assume that V‘ and © are the same on 7(0 and 0L . The isotopy
h of proposition 6.2.1 with the new f e’q in the hypothesis has then
desired properties, D

With X, P,'xa s q:) as above, let Cp s P -—-?E), 1] be
map given by: if v is a?CD-vex"tex (P(v) =0, if v is a (G) - % )=
vertex (P(v) = 1, and (P is linear on the closures of @ ~simplexes,
Then CP—1(O) = X, since ()(o is full in q) s If € is a simplex of
(P.J)(o , then € N\X#@, if and only it P () = (0, 1), If
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Gis a simplex of GL ( (L as in the proof of proposition 2.3) then
Qp( 6" 1. Roughly, the map (P ignores the parts of P away from
£ and focusses its attention on a neighbourhood of X, We will use this
map often. |

6.2.L4, Proposition. With the abové hypotheses, if 0 { ¢ B (74 1,

-1
then there is an isotopy h of P, taking (p ([o, @)_]) onto

cp~1(@,oﬁj) and leaving X and P - @"1( [_o,v))- fixed,
Proof: Let ¢ be the map: P~ [0, ] described above. Choose a
centering { ‘of (P as follows: if € is a simplex of (P wien
& N x 4@, then D ( I &)=Y , and choose {n arbitrarily onYa
and QL. Let (P denote a([,4p). Let K, be the sub-
presentation with ‘7(0'{.1 \ %= x. Obmously( (%> %) |
- ¢ =1 [0, 7]), and if P is any simplex of $
" both in and out of ()Q', then (P (P)=1(0,7y ). Now choose two
centerings & and \’} of (p‘ such that if £ ¢ G)‘,
gp(fb){),y), then t{)(\qc P and C{D(eo) and

arbitrarily otherwise. Then clearly
v e (X% - <p“‘<[o,(3]>
ama|v @ (% >0 )| = @ ([0, &).
We apply 6.2.3 now, and \J_of 6.2.,3 in this case happens to be
R CR2)
6.2.5, Proposition. Let @ be a simplicial presentation, ?(0 a full

subpresentation of G} , ((Pl = P, ‘X«;‘: X, Y) & centering of G)

and N = (N@ (% Y) )‘ . Let 6'3 be a simplicial refinement of

with vevtlces
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d(@ ' M ) with ’\,é the subpresentation covering X; let @ a cen-

tering of (3», and N' =\N' @\(’\a s O )\ » Finally, let Mbe a

neighbourhood of N, Then there is aﬁ isotopy h of P, taking N

onto N'; and leaving P -\ and X fixed,

Hemark: Note that if . were somewhat large, or if there were no W

in the statement, then. the proposi’gion is an immediate consequénce- of

6.2.3 and 6.2.4,

Proof: We first replace the cAentering Y" by a centering Y'} ! as

follows: Let ﬁp : P -—}[O, 1] be the usual function given by,

CP (% -vertex) = 0, CP (GD - % )—vertéx = 1, and Cp is Llinear on

the closures of @ ~gimplexes. Choose Y]' such that if P is a

simplex of (D with ¢ (P) = (0, 1), then P \q’ P-4, '
-;\ V‘} is a polyhedral equivalence carrying ‘ (P (7(9 Y\ )'

- onto i N (P(](D N ) l ,.1( EO, 3] ). Actually f ' -q is

isotopic to the identity, but we will need only that it is a polyhedral
i

equivalence, Let f N (W) = W, As u' is a neighbour—
hood of (@ ' Lo, 2] ); we can find & VY > é such tha‘ov

9 “([_o,“/_] )CW. Stnoe £ v,y is simplicisl with reference

to d( (P, ) end A((, r)’) and (9 is refinement of d(@,q),'

b y) ', vr' carries (Symto a refinement of d( 6), Y) '). Let us call

this @", and similarly :f'r",’y] (/\d) by s ‘-\,6'\-,-

the centering of @; induced dg from Q be 6‘. We have,

Ty Qg 6 Y)>\>n{ p%n Y| - ¢ ([0, &)

and

Ty (i g @D - iy @'
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Now choose another centering @_1 of 6‘\' as follows:

Let o, ,(0 ¢ L € ) be such that if v is a vertex of (3\' not
- in X%, then @(v)}a& . @1 is chosen so that if 6 ¢ (33‘ has

vertices in and out of X, then CP ( 91 € ) =d . Then clearly

{N ‘/&‘(’\d ' 6 1)\ = (p"1([0, OQJ ). By 6.2.L4, there is an isotop:;r

h of P, leaving X and complement of CPMT('{Q»\/ )) fixed, with

by taking (D-?(CO, —}5}) onto (9-1([@,0(] ). By 6.2.3 there is

an isotopy h' leaving X and complement of Cp_1(£0, %)) fixed,

with h, ' baking (‘) (f_O J;J ) = | a '@, ) Jonto

" & % ') |

Let f v",h' be the isotopy of P in itself given by

? ! (p, )= (£my ' (p) t)’ P, Then zrgw’ w ' o?‘

VA Naes ve 8=ty oRoholy.y
is the required isotopy, First gy = £ -y),’yi'j o h; oh1 o f M "\’}

i3 ' "‘1
carries N onto NY, Secondly since P - ‘\L‘(;P - C{) ([O: %3]) and

P - \K_CP - (p”([o 'Y_] h and h' are fixed on P - (U‘,"- They
are alsg fixed on X, As f y; Y} carries X onto X, \J_omto L'

g also fixes X and P - U . O

6,2.6. Corollary, Let X be a subpolyhedron of a polyhedron P, Let

@1 and 63 5 be two simplicial presentation of P, containing
full subpresentations 7{51 and 7(, 5 respectively with
= | = X, Let and be centering-of
PQHJ | O, =d B, ot (P,
P e W ‘N@1(?<°1’ @”l’N (7 (% ®)
u a neighbourhood of N1\~) N2 in P, Then there is an isotopy of

P leaving X and' P -€L fixed and taking N, onto N,
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Propf: Take a common subdivision @ of d( 6)1, S 1) and d(@2,92>
and apply 6,2.5 twice. [}

6.3. Definition of "Regular Neighbourhood". Let X be a subpolyhedron

of a polyhedron P,

6.3.1. Definition, A Subpolyhedron N is said to be regular neiéhbourw
hood of X in P if there is a polyhedral equivalence h of ‘P on
itself, leaving X fixed, such that h(N)' is a second derived neighboﬁw
hood of X, -
More preciseiy N is a regular neighbourhood of X if ga,nd
only if
i) there is a simplicial presentation q) of P .
with a full subpresentation % covering X
and a centering '7'\ of Gj s and
11) & polyhedral eqﬁivalence h of P fixed on
X such that h(N) =\»N'(P( RSB
Regular neighbourhoods .do exist and if N is a regular neighbourhood of
X in P, then N is a neighbourhood of X in P.

6.3.2. Proposition, If Ny and N, are two regular neighbourhoods of

X in P and U a neighbourhood of 1\11\)1\12 in P, then there exists
an isotopy h of P taking N; onto N, and leaving X and P - W

fixed, '
Proof: Let @i, %o s> Y}y Bys L= 1, 2, be such that
hi\N @i(%i’fni)t:Ni’ 1= 1, 2
Let ), be a subdivision of a( (P, Y),) such thet b is
simplicial with reference to @\1 , and let '\3, be the subpresentation
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of @,1 covering X, Let 61 be a centering of (}1.

. '
N A Rl LN N VIR NCRPA
say / Note that n, is fixéd on X7,
-1
By 6.2.5, there is an isotopy f, fixed on X and P - hy (\A)  with

,f, taklng l(NGJ1()(D1,7} )\ onto ‘NG\ ('\,3.1 S )l Then
h? £ ?i', is an isotopy of P fixed on X and P - UL and
~ g -1 1 o~
(h1 f h1)1 = h, £, h, takes N, onto N, (where hi is the isotopy

of P in itself given by ’51 (p, t) = (n, (p), £)). Vorking similarly

with (- v obtain £ with "ﬁz £ "ﬁ; fixed on X and P -k end

(h £ ﬁ* h, f; h; taking N, onto N;. Now N; and ‘N; are
genuine second derived neighbourhoods, and U, is a neighbourhood of
| N' U N' . Hence by 6.2,6 ‘there is an isotopy g of P fixed on X
and P -, , with g, (N ) =

(hy £ h, ) g (h1 f h1 ) is the required isotopy. O

6.3.3, Proposition. If f ¢ P~ P' is a polyhédral equivalence

and N a regular neighbourhood of X in P, then F(N) is a regular
neighbourhood of f(X) in P'.

Proof: Let (P q:’ be a simplicial presentatlons of P and P’
with reference to which f is simplicial, Y} be a centering of

@ , () = Y) " the induced centering on 67‘. We can assume

that 6) 5 63' contain full subpresentations K, , W l covering
X and X'; (by going to subdivisions @necessary)._

£ ([N(P (%, 0 )1 = [v @ (%', W] . By derinition, there is a
polyhedral equivalehce F of P fixed on X such that | |
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p(N) = \Nﬁ) (X% > " )} . Let p' be the polyhedral equivhlence of
P' given by fepsf', Then (fepef ') = (£ep) (¥) -
= f(tN@ (% M) = ‘N@\( %, q')‘ ,and if x' g £(X), £ (x!)€X,
therefore f e pof (x') = fe p (ff‘(x')) = f-i‘_1(x') =x', D

6.3.4. Notation. If A is a subset of a polyhedron P; we will denote

by int p N and bd _ N the interior and the boundary of N in the

P
(unique) topology of P.

Ex., 6.3,6, If N is a regular neighbourhood of X in P, and

B =bd N, then XQN;B. a

Ex, 6.3.7. Let XC;NCQCP be polyhedra, with N Cint p Q. Then
N is a regular neighbourhood of X in Q@ if and only if N is a
regular neighbourhood of X in P. D

Ex, 6,3.8. Let X( P be polyhedra, If A is any subpolyhedron of

P, let A' denote the polyhedron A - intp X. Then N is a regular
neighbourhood of X in P if and only if N' is a regular neighbour-
hood of X! in P!, 3

EBx, 6.3.9. Let A Dbe any polyhedron, and I the standard i~cell,

Let 0 <P <Y < 1 bethreec mmbers. Then, AX[D, L)ie
a regular neighbourhood of A in AY I, and A X.[f(a ,\/3 is a regular‘
neighbourhood of A)‘-,@ in AAL I '

63 10, Notation and proposition.

If (P is any simplicial presentation and 3 any set of
vertices of @ , Wwe denote by (P‘Z the ma;dmalﬁ..‘e%\gpresentation of(P

whose set of vertices is Z . @Z is full in (P . We write

5@ () G‘L(S( ¥ ) (when q) is understood) for U{\SW‘ \19%2},
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This is of course with referer nce to some centering ‘r\ of Q) .

g@( ¥ ) is a regular neighbourhood * @Z\ in "O)‘ . If Y s
a set consisting of single vertex =x, we have the some what confusing
situation g@( ixy) = g{x} ,
vertex x. In this case we will wite \§ P x| Su \$ x| for

SQD({X})

Let JR be a subpresentation of a simpliclal presentation

and Y) be a centering of @ . Let Q)' (P, 1)) and
M = aldn, | ) (still calling Y} 1Y as Y} ). If 3 is the
set of vertices of @ ' consisting of the centers of elements of
I, then @Z :wd(dr;q) W' is full in @)'.

!
Given a centering of @ = d(@ ) ‘1’) ), we define

* \S(WC)\ for any C(_(P
and Jhw_ = 5@ (Z ) = U{ Cc*y ¢ F‘%}ls a regular ne:\.ghbourhood

of i%! We use the same r}otatlon (\f"t*) even when Yy is not

where X denotes the O-simplex with

subpresentation, but a subset of (P . These are used in the last
part of the chapter. As the particular centerings are not so

important, we ilgnore them from the terminology whenever possible.

6.L. Collaring.

To study regular neighbourhoods in more detail we need
a few facts about collarings. This section is devoted to proving
- these,

6.4,1, Definition. Let A be a subpolyhedron of a polyhedron P,

A is said to be collared in P, if there is a polyhedral embedding
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h of A X E), 1_] in P, such that

i) h (a, 0) = & for all a ¢ A

ii) the image of h is a neighbourhood of A in P, And
the image of h 1is said to be a collar of A,

v 6:4.2. Definition. Let N be a subpolyhedron of a polyhedron P

and let B = Bd P N. N is said to be bicollared in P if and only
if
i) B is collared in N

ii) B is collared in P - N,

é__lL_%_l Clearly this is equivalent to saffiﬁg that there is a poly-
hedral err;bedding h of B A t—-i, + 1] in P such that
i) h(b, 0) =b , b &B
i1) h (B (0, + PP -N
iii) h(BwEA,qp(:N
iv) the image of h is a neighbourhood of

B in P. ‘ L

6.4.3. Proposition. If N is a regular neighbourhood of X in P,
then N is bicollared in P.

Proof: It is enough to prove this for some convenient reguJ:ar neighbour-
hood of X Let G) be a simpli‘cial'\presentation of P containing a
full subpresentation (X: covering X and let @ : P—> [O, 1] be

the usual map, We take N to be @—1((0, é—}) clearly

Bd , N = LPTJ(%). Let us denote this by B, We can now show that
(P”(-‘i%;,. %}') is polyhédrally equivalent to B)([—J_,«A- 13 in tﬁe

following way:
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B has a regular presentation (ES consisting of all nop-
empty sets vmgp“’(%) for G EP .
Likewise 4;([?, %]) has a polyhedral presentation,fﬁx

consisting of all non-empty sets of the following sorts:

s“m;"f ()
Tag (& 8)
NG (3)
6O @_1 (2, 2) .
cng ® T Tl |
§ = &_1},. (-1, O),{O} , (0, + 1), | {+ 1}} is a regular presentation
of [_.1, + 1] . There is an obvious combinatorial isomorphism between

G% and GE)}( é , which determines, is a appropriate centerings, a
polyhedral equivalence between B K [— 1, + 1 ] and ,(9—1(%., ?,;]) Cre.
This shows that N is bicollared in P. T .
Ex, 6.4.4, - If A is collared in P, then any regular neighbourhood.
of A in P is a collar of A,
/ Hint: Use 6.3.7 and 6.3,9_7. @

Thué if N is a regular neighbourhood of X in P and
B=Bdpl, aregular neighboﬁrhood of B in FTW is a collar of
B. |

Ex, 6.4.5, 1If N, is a regular neighbourhood of X in P and

N2 is a regular neighbourhood of N1 in P, then N2 - N1= N2~ IntP N,

is collar of B = Bd _ N.
i P

[ Hint: Use 6.3.8 and 6.4.4_7. [3
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Ex, 6.4.6. If N1 ~is a regular neighbourhood of X in P, and N2 .

1s a regular neighbourhood of N1 in P, then N2 is a regular
neighbourhood of X in P. ]

Ex, 6.4.7. (i) If N, and X

1 2
X. N ‘ . ""'""':""'_ .
of in P with NE C: IntP N,, then N2 N1 is collar over

are two regular neighbourhoods

51 = Bd P N1.

(1i1) N, is a regular neighbourhood of NT.-
/ Hint: Take two regular neighbourhoods Ng', N1' of X, such that
N,' - N1' is a collar and try to push N, onto Nz' and N, onto

w'7. 8

- The following remark will be useful laters

2

Ex, 6,4.8. Let N be bicollared in P  and N' be a regular
neighbourhood of N in P. Then there is an isotopy of P taking

N onto N. If X C:Int N, this isotopy can be chosen so as to

P
fix X, C3

6.4,9. Definition. A pair (B, C) of polyhedra with B )C, is

said to be a cone pair if there is a polyhedral equivalence of B
onto a cone on C, which maps C onto G, “

Clearly in such a case we can assume that the map on C
is the identity. And if (B, C) is a cone pair, C is collared
in B,

6.4,10. Definition. Let AU P be polyhedra, and 'a' a point of

A. Then a pair (LP s LA) is said to be a link of a in (P, A) if

1) 1,C L
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1) L  is a link of -a in A4

A
1i1) L, is a link of a in P,
!
If (LP » Ly ) is another link of a in (P, A), then
. ) 1 St
the standard mstake LP--? L, tskes L, onto L', and there-

fore there is a polyhedral equivalence L — L 1 taking LA——)r LA"
We shall bmefly term this an equlvalence of pairs

(L p s L )-—-—-? (LP' s L. ). So that, upto this equivalence, the link

A‘
of a in (P, A) is unigque.

6.h.11, Definition. Let AC P be polyhedra. 4 is said to be

locally collared in P if the link of a in (P, A) is a cone pair

for every point a & A.

Clearly A A0 is locelly collared in A K|0, 1], and
therefore if A is collared in P, it is locally collared. We will
show presently that the converse is also true,

6.4.12. Definition. Let B be a subpolyhedron of A?([Q, 11.

B is said to be cross section if the projection AN B), 1:} — A,
when restricted to B 4s 1 - 1 and onto and so is a polyhedral
equivalence B 4.

6.4,13, Proposition. Let B be a cross-section of AKLO 13

contained in A A (O, 1). Then there is a polyhedral equ:x.valence

h :-A‘X[Q,ﬂ — A)&[O,, 1] y leaving A WO and AX 1 pointwise
fixed, and taking B onto A %% and such that

h(a)(&) )= a?&@ 1_] for all a@ A,

@9_@; There is an obvious homeomorphism with these properties,

" but it is not polyhedral.
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Proofs Let p ¢ AXLO, 11 -—% A be the first projection. Trian-
gulatc thne polyhedral equivalence p\B : B —» A, Let @ and QL
be the simplicial wresentations of B and A.

/ R . . ;.

:1\ :{*}O} , (0, &), i%} , (5, 1), {j}} is a simplicial
presentation of LO, 1} . Consider the centering 'W of (L %
given by \q ( & X ) = (barycenter of § , barycenter of T ),

o
ceOL - aed -

We will define another regular presentation @ of AWKI
a5 follows:

. __1 ‘ ) .
For each § & L , p (6 ) is the union of the

following five cells:
§50,0 (6)NB FXI
}\6" ’ (Dv"ﬁ 5

i

-1
where AG* is the region between € W 0 and p (& )MB and !

f)ﬁ"' is the region between p~1(6“)(\ B and § A 1. (Note that

(e nBe( )

We take @ to be the set of all these 6 %
cells as §~ varies over (J| . Choose ?
a centering & of G , such that the \ ¢

first co~ordinate of each of the five

cells above is the barycenter offﬁf .

/

Now there is an obvious

combinatorial isomorphism

@ o, G\_x{ s and if we choose

the centerings described we obtain 0KQ
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h: AXI—> 4AT which is simplicial relative to d((® , 9) and

d( Cﬂ.7§€§ , T) ), and has the desired properties,.

4,13, In this situation,‘define ?\E3=

.;i(a, t)%aEA,tQI,EijB,b:(a, s),t,g:s%

i.e. this is all the stuff of the left of B, Then h takes ;%E
onto A& 7({?, é] , B onto AX3. In particular B is collared
in ;\B.

6.4, 14, "Spindle Maps', Let L 4, with the cone on L and

vertex 'a' contained in A,  Call the cone S,  Suppose S ~ L is
open in A, (This is the case when a is a vertex of a simplicial
presentation (b of 4, and L = \Lk (a,(ﬂu)‘ and S = ‘St (a, OL)’ .

Let p =1 —> I be an imbedding with @(1) =1, In

this situation we define the ”spindle.map".
- n (P, L, )t AXT —»aXI
thus: on L % [é ¥\I]; it is the join of the identity map.on L
with the map (a, t) —m—> (a, &3(t)) of aX I. On the rest of
4RI it is the identity map.
A spindle map m is an embedding, and commutes with the
- projection on A, If B is a cross section of A YKI<,which does

not intersect A X1, then m (B) has these properties also,

6.4, 15, Proposition, Let AP be pélyhedra. If A is locally
éollared‘in P, then 4 is coilared in P,

Proof: Tn P AL0, 1] , consider the subpolyhedron
e=pPxoUsxfo, 1]. We identity ? with PXOCQ Let (P

be a simplicial presentation of P, in which a subpreseﬁtation 0L
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covers A,

Consider a vertex ‘a' of (\ ; let L, and L, denote
‘Lk (a, Gk)\ and {Lk (a,@ 3l , Then (L Lq) is a link of a
in (P’, A) and there is a polyhedral equivalence,\)/ H -LP~'> LA 3 19

P’

for some v, taking LA onto L.

' -1
by composing with (Y‘LA) * ddyy . And so we suppose "V / L,

We can make Y identity on L L

is identity.
We can suppose that v is so situated (for example in a

larger vector space) that L % v and L, # (a, 1) intersect only
: E2% '

A

in L,. Thus we have via 7 and the identity on LA x (a, 1),

a polyhedral equivalence of L. = LPu LA % (a, 1) with LA w E

Q‘
where E :{v, (a, 1)} , which is identity on L, % (e, 1). Now
LQ * a is a star of 'a' in Q, and via this p.e. 1is poly-

hedrally equivalent to LA #* E % a, ‘ Q_Q,‘:\.)

We can find a polyhedral e@uivalence
ﬁ) of B i a (which is equivalent
to a closed 1-cell) leaving v
and (a, 1) fixed and 'taking

(2, 0) to (a, 3). BSuch a
obviously takes ax('_o, d

onto aXti %, -1] . E*%Q.

Take the join of B and the identity map L,, this

.G .

: gives a polyhedral eQuivaleno.e of L a which is the identity

3
Q
on LQ' Hence this can bg extended to a polyhedral equivalence of

Q by identity outside Ly * 8. Let us call this equivalence of
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,

Cy ﬁ)a' q}'a (AAI)CART, end @a

Now take the composition h in any order of all such

AXI is a spindle map.

Ba, with 'a' running over all the vertices of (\. . This maps
A=A O into a cross section h(A) = B of 4 ‘}{\[O, 13 which does
not intersect A X1 or ALY 0. Finally n(P) N A )!\i = ?\B.

B is collared in ?\ B, and so in h(P). Then, taking

h  we see that A is collared in 7P, D

6.4.16. Corollary: If M is a P.L. Manifold with boundary M,
then a M is collared in M. [
Now, an application of the corollary:

6.4, 17, Proposition. If h is an isotopy of a M, then h

extends to an isotopy H of M,
Proof: Let (B s I XA I > I be the map given by
R (s, t) = Max (t - s, 0). This is polyhedral, e.g. the diagram
shows the triangulations and the images of the vertices.

E)(s, 0) = 0, ({5(1, t).—;o,@(o, t) = t. 1 0
Define H= (QMXI)XTI —> (AMRI)KI ~ &
by H((x, 8), t) = ((h B(g,w(")’ s), t).

i

This is polyhedral,

H ((X: S)J O) & = ((h (X>; S>3 O> = ((X> S), O):

B (s,0)
since h, = Id. Hence HO = Id of 6 M I,
H ((x, 0), t) = (5 0,90 O 8 = (5 (), 0), b,

Thus H extends the isotopy O MX O given by h (identifying O M
and Q) MY 0).
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And H ((x, 1), t) ((n {5(&’ ) (x), 1), t)

((x, 1), t) since Q5(1, t) = 0.

i

Hence H BM)&1 is identity. Hence the isotopy h of bM

extends to an isotopy H of any collar so that at the upper end
of the collar it is identity again, and therefore it can be' extended

inside. Thus h extends to an isotopy of M. 0

6.5. MAbsolute Regular Neighbourhoods and some Newmanish Theorems.

6.5.1, Definition. A pair of a polyhedra (P, A) is said to be an

absolute regular neighbourhood of a poiyhedron X, if
i) xC P-4
ii) P KO is a regular neighbourhood of
xx 0 in P)ROUAX[P, JCPx[o, 1].

Hence A 1is collared in P,

' -

Probably, it yill be more natural to consider X, P ani -
L. in an ambient polyhedron M in which P is a neighbourhood of
X as in links and stars. DBut, after the definition of regula£ s
neighbourhood, absolute‘regular neighbourhood is just a convenient
name to use in some tricky situations. |
Ex, 6.5.2. If (P, A) is an absolute‘regular neighbourhood of X
and if h : P __J> P' is a polyhedral equivalence, then {P', n &)
is an abso}ute regular neighbourhood §f hx D
Ex, 6.5.3. If N is a regular neighboﬁrhood of X ,in P, and
B = Bd N, theﬁ (N, B) is an absolute regular neighbourhood of ;

1

X. 0 : ' : -
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Bx, 6.5.4. Let P  Q, and suppose that - (P, A) is an absolute
regular neighbourhood of X, and P - A is open in Q, eand A

is locally collared in Q — (P -~ A), Then [ is a regular neighbour-
"hogd of X in q. 0O

Ex. 6.5.5. Let C (A) be the cone on A& with vertex v. Then

(C (A), A) is an absolute regular neighbouf:hood of v,

| In particular if D is an n-cell, (D, BD) is an
absolute regular neighbourhood of any point x & D - a D. E,

6.5.6. Theorem. If D is an n~cell, M a PL-manifold,

DC Int M, then D is a regular neighbourhood of any x & D - B D

in M.

"6.5.7. Corollary, If D is an n-cell in an n-sphere S, then

S~ D is an n-cell.

Proof of the theorem: The proof of the theorem is by induction on

the dimension of M; we assume the theorem as well as the corollary
for n- 1,

1) First we must show that D~ ¢) D is open in M,
If we look at the links, this would follow if we know that‘a.poljrhedral
imbedding of an (n~1)-sphere in an (n-1)-sphere is necessarily ont‘o.‘
And this can be easily seen by looking at the links again and‘induction.
(see 4.4 in particular A.4.14 and 4.4.17(a)).

ii) If we know that O D is collared in M - int D (it
is collared in D), we are through by 6. 5.4, vFor this, it is enough
to show that b D is locally collared in M- int D, Consider a

-1 :
link of a in M, say s , such that a link of 'a' in D is
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‘[*1 -1 - — .
an  (n=1)=cell DZ C sg , with D "AOp- D, "1t s

<

clearly possible to choose such links (see 4.L.17 (b)). Now, a link

. n—1 -1 -1
1ot 4 M- 1 . - o -
of in I~ 3int D is Sa ‘ (Da A D, ).
o x (a I~ 1 n-1 -1 .
bs in (1) D; - alll is open in Sf and therefore the link
. . . Ji=1 n-1
of a in M -~ int D is Sa - Da . But by the corollary to the

n-1
theorem in the (n-1)-case, this is an (n-1)-cell, say £\

-1 -1 -1 -1
and it meets D in bDa = Bﬂn . hnd (&n s BA )
is equivalent to (C ( lkrkd), DA -1). Therefore ¢ D is
locally collared in M — int D and we are through.

Proof of the corollary assuming the theorem: Represent Sn, a

standard n-sphere as a suspension-of Sn—1, a standard (n—1)~sph§re,
and observe that the lower hemisphere (say DS) is a regular
neighbourhood of the south pole, say s. Let f be a polyhedral
equivalence of S5 to Ch taking a point x & D‘~‘al)to the south
pole s, By the theorem D is a regular neighbourhbod of x, there-
fore f(D) 1is a regulsr neighbourhood of the s in s?, By 6.3.2

there is a polyhedral equivalence p of S" such that p(DS) = £(D).

Therefore £ (8- D) = £(8) - £(D) =8 =p (D) =p (5) -p (D) =

n ‘
=p (8 =~ DS) = p (Dn) , where D = denotes the upper hemisphere,

4
Therefore p—1-f (5 -D) = D, or S~-D is a n-cell. \]

Ex. 6.5.8, Corollary, If M is a PL n-manifold and Dy D2 are

two n-cells contained in the interior of the same component of M,

then there is an isotopy h of the identity map of M, such that

‘h(D,) =D, 0



We usuallj express this by saying that "any two n-cells
in the interior of the same component of M ar-é equivalent!" or that
they are "equivalent by an isotopy of M", |

If M is a PL n—manifoid, b?ﬁ its boundary, then by
6.5,8, any two (n~1)-cells in the same component of DM are equiva~
lent by an isotopy of O M. Since this is actually an isotopy of the
idenﬁity, by 6.4,17 we can extend it to M, Thus

6.5.9, Proposition. Any two (n-1)-cells in the same component of

d M are equivalent by an isotopy of M, [J
This immediately gives |
Ex, 6.5,10. If D is an n-cell and A an (n-1)-cell in D,
then (D, A ) is a cone pair (That is, there is a polyhedral
equivalence of (D, A ) and (C( 4 ), A )., And We have seen such
a polyhedral equivalence can be aésumed to be identity on‘ A ). O
This can also be formulated a's:
Ex. 6.5.10', If [_\i is an (n~1)-cell in the boundar'jr of - Di’ an

n-cell, i = 1, 2, any polyhedral equivalence &4\ 1 — AZ can

be extended to a polyhedral equivalence D1‘-_‘..‘> D‘2. 0

Also from 6.5.9, it is easy to deduce if [\ is any '
(n—-T)-—cell in B M, then there is at least one n-cell D in M such
that .D KXBM = &C&)‘me this follows the useful proposition:
Ex, 6.5.11. If M .is a PL n-manifold and D an n-cell with
MAD=3dMAID = an (n-1)-cell, then MU D is polyhedrally
equivalent to M, Moreover, the polyhedral equivalence can be chosen

to be identity outside any given neighbourhood of MU D in M. u
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The methods of the proof of the theorem 6,5.6, can bel used
to prove the following two bropositions, which somewhat clarify the
nature of regular neig{,hbourhoods in manifcldss
Ex. 6.5.12, Let M be a PL-manifold, DM its boundary (possibly @),
and N a regular neighbourhood of X in M. Then

~a) N is a Pl~manifold with (non-empty) boundary
unless X 1s a union of components of M.
b) If XCM- O M, then NC M- O M, the
interior of M.
c) If X QBM% g, N AJ M is a regular
neighbourhood of X N 8M in B M,

d) 'In case c), Bd " N is an (n-1)-manifold,

meeting b M in an (n-2)-manifold BN’,
where N = N (\bM

[Note that int =~ N and bd M N denote the interior and

M
boundary of N in the topology of M, On the otherhand if N is a
PL-manifold int N and B N denétes the sets of points of N
whose links are spheres and cells reSpectiVelyJ.

Hints Use 4,L.8, N

Ex, 6,5.13, If N is a regular neighbourhood of X in M, a
PL-manifold with X((int M, and N' is polyhedrally equivalent tol

N and located in the interior of a PL-manifold M2 of the same

dimension as M) then N' is a regular neighbourhood of X' in Mz,

where X' is the image of X under the polyhedral equivalence

N —yn, O
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Ex, 6.5.14, A is any polyhedron, and I +the standard 1~-cell

(A XI, AR 1) is an absolute regular neighbourhood of AX O, If
0L < 1, then (AXI, &4 x{_O, 1}) is an absolute regular neigh-
bourhood of A x A . a

Ex, 6.5.15, The union of two n-manifolds intersecting in an (n-1)

submanifold of their boundaries is an n-manifold., 3

6. 6f Collapsing,

6.6,1." Definition. Let (P be a regular presentation. A free edge

of G) is some E £ G-) such that there.exists one and only one

A e (P with E € A, We may term A the attaching membrane of the

free edge E. It is clear that A 1is not in the boundary of any
other element of @ ; for if A LB, then E ¢ B. It is easily
proved that dim A = 1 + dim E,

The set G) - {E, A}‘ is again a regular presentation,

and is sald to be obtained from @ by an elementary collapse at the

free edge BE,

6.6.2. Definition. We say that a polyhedral presentation (P

collapses (combinatorially) to a polyhedral presentation % , and

write (P \Y 6‘ s, 1f there exists a finite sequence of presentations
s ¢ 90 0 V\’ith = and =
@1 ’ ,G)k (P 6)1 G)k (9\
an§ cells E1 geseesy Ek-1 , Ei ¢ 6)1 s.t.@i is obtained from
(P P by an elementary collapse at Ei "

6.6,3, Proposition. If G\ is obtained from @ \by an elementary

collapse at Ej; and if '(P! is obtained from Q) by bisecting a



1 1¢2‘,

cell C by a bisection of space (L; H +, H-) and if @‘1» C Gy
is the subpresentation with \@,’j: \6\), then Gy \J 6’\'.

[ Remark: Recall that , we have been always dealing with Fuclidean
polyhedra]. |

Proof: If the bi"éfection is trivial there is nothing to prove, so
suppose that the bisection is non trivial, Then there are three
cases.,

Case (1) C is neither E nor A, 1In this case, E is a free
edge of GD' with attaching membrane 4, and Ql = (P' --{E, A};

t
thus (9‘\ is obtained from G) by an elementary collapse.

Case (ii) C = E, Define B, =H+ NE E,=H-NE, F=LNE

Then we have

, B, or A,

-"”“-‘

= =
L ‘ o
/ e

Thus E1 is a free edge of with attachlng membrane A; F

is a free edge of (P {EV A} with attachlng membrane EZ.

The result of these two elementary collapses is 6,»« G\ .
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Case (iii) € = A

Define A = H+ M, & = H- (\4 B =L & Now O AU N ki,
contains 5 A, and therefore either a 1‘11 or E) A2 intersects E;
say, b A1 NE # @ Then, @' be;‘mg regular, we must have E { A1;
then’for‘ dimensional reasons, dim E = dim B, we cannot have E 4B

hence B H+ ; and so it is impossible to have E Az. In
summary, B { Al > B (Az.

: }
Thus E 4is a free face of GD with attaching membrane A1 s B

! .
is a free face of CP - {E, A& with attaching membrane 4.

2

!

' The result of these two elementary collapses is & . QA

t
6.6.4, Proposition. If (P \(h, end (P is obtained from

by a finite sequence of bisections of cells, and- @; is the subm
presentation of O)y defined by \ @»" = KN, then q:)' \(@1‘
‘_1_3_1;99_3‘.‘5 The proof is by induction, first, on the number of collapses
in (P \( O\ s, and second, on the number of bisections involved.

The inductive step is 6.6.3. {3

6.6.5. Definition. We say that a polyhedron P collapses

(geometrically) to a subpolyhedron Q, if there is a regular

presentation G) of P with a subpresentation @\ covering Q,

such that @ collapses combinatorially to G\ . We write P Q.
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This notion is polyhedrally invariant:

6.6.6, Proposition, If P\ Q, and &£ :P —> X is a polyhedral

equivalence, then X ¥d, (Q).

~ Proof: There are regular presentations (P, Gh of P and  Q, with
G.) vV @\ combinatorially, and simplicial presentations /S s ')(.,, of
P and X with o, simplicial relative to A and 9 . There is a
regular presentation (P' of P refining q} and ﬂé , and obtained
from @ (also from /} but we dé not need it? in this proposition) by

3 . . > s ' . 3
a finite sequence of bisections. Hence if G‘ is the subpresentation

1 ! i
of (P covering @, then P v G, by 6.6.4. Since 4, is
one-to-one and linear on each element of @', the set

\ :
L @) ={o(,(c)

is combinatorially lsomorphic to G‘J‘; and o(( @‘) is a sub~

\ .
C (‘:@ } is a regular presentation of X, which

presentation 'covéring d,(Q), which is combinatorially isomorphic

to O\!. Therefore o{,(@') V& ( O\') or X M{(Q). u

‘6.6.7. _Proposition. If P1 W P2 , and P2 kY] PB , then P1 N Pz.

Proofs Let(P1 R @2 be presentation of P1 s ‘Pg »\fi’c,h(p1 N(PZ’
and (PB, @4 be presentations of P2 , P3 with (PS \V’ @h' '

By 1,10.6 there is a regular refinement (&, of @1 J (P 5 U(PB U(Pzﬁ
and subpresentations 6\ iy &'\2, (3\3, O‘x of with{@ﬁ = (G\i(’

6\1 obtained from 0) il by a sequence of bisections. Clearly

6\2-‘- 6\3 and by 6.6,4, 6\1 ¥ 6\2, and &\‘3 \l&a and
therefore P1 \, P2' D

6.6.8, Proposition. If N 1is a regular neighbourhood of X in P,

then N Y X,
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Proof: By virtue of 6.6.6 and the defini;oion of regular neighbourhood,
it is enough to look at any particular N, Let G) be a simpliecial
presentation of P ' with a full subpresentation % covering X; and
let @: P - Lo, 1] be the usual map, Take N = (9~1({9, 21,
Let Z denote all the simplexes of CP having vertices
both in ‘X, end (0) - % ). We prove N X by induction on the
number of elements of ¥ . If § = #, then N = X, and there is

nothing to do, Hénce we can start the induction.
e M=% U g | ces}
viFne'® | e}

Then “¥{ is a regular presentation of N, If € is an element of

of maximal dimension, @&~ _1(%5) is a free edge of It with
attzching membrane &= r\gp- ({0, £)). (Note that ¢ is a
principal simplex of (P i.e. not the face of any othér simplex).

| After doing the‘elementary collapse we are left with JYt'. Now

(P -»{5‘} = (P! is a regular presentation containing % , and

the corresponding z' a ‘2: - {6‘ % Hence inductivelj JY‘C‘&KB .
ind so, e V). )

Bx. 6.6.9. Let N' be s neigh‘bour'hood of X in P, (all polyhedra).
If N W X, then there is a regular neighbourhood N of X in P,

NCInt , ' suchthat N NN [}

6.7. Homogeneous Collapsing.

A}

Let (P be a regular presentation, with E, A (;@ , BE LA
and dim A = dim E + 1,

¢ ‘
Recall the definition of ?\03 E. This is defined,
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relative to some centéring Y) of GD , to be the full subpresentation

of 4 @ whose vertices are iY‘\Q\ B LC E{P}
6.7.1. Definition. Let E, A4, (P; be as above and ‘Y\ be a

centering of G) . (B, A) is szid to be homogenous in q) , 1f there
is a polyhedron X and a polyhedral equivalence I \%E\*--}X *{}1, w}
a sﬁSpension of X, such that f( ‘q Ay = w,

It is easily seen that if this is true for one centering
of @ , then it is true for any other ‘centering of 63 s hence
"(E, A) is homogeneous in @ " is well defined.

6.7.2, Definition. Let XK CJY‘(be subpresentationsof (p . We say

that JY(' collapses to Xa homogeneously (combinatorially) in @ 5

if there is a finite sequence of subpresentations of @ s

N s %.

and pairs of cells (E,, 4.) ,..., <Ek-1’ Ak—1> s By Ay

eI

i
such that

1)JY\C1.—_JTI,JY;CK = X

2) J\(‘C 1 is obtained from ~\T by an elementary
i+t i .
collapse at Ei’ a free edge of e s with
attaching membrane Ai’ for 4 =1, .., k~t

and 3) (Ei’ Ai> is homogeneous in G) , for i = 1,.., ket,

6.7.3. Proposition, If (p' is obtained from (P by bisecting a
cell C by a bisection of space (L; H+ , H~); and if Y C YYe Q(P s
with X) obtained fr.om JR by an eleméntary collapse at a free edge

E with attaching membrane A, where (F, A) is homogenous in q} H

and if J‘ff, '}(D‘ are the subpresentations of (P, covering \"‘Y\C!



146

r

and \7@,3 ; then JY\C’ N 7(; homogeneously in G.)
Proof: If the bisection in trivial there is nothing to -prove. If
it is not trivial, there are turee cases as in the proof of
proposition 6.6 3. |
Gasg 1+ C is neither E nor 4, 1In this case the only problem is
to show that (E, A) is homogeneous in G) 1. Let us suppose that
.everything is occuring in a vector spéce V of dim n; and let
dim E = k. Then there is an orthogonal linear manifold M of |
dimension (n~k), intersecting E in a single point W(E) = e, say..
Tt is fairly easy to verify that in such a situation if E& D, then
DAMAL @, |

If we now choose centerings of Q‘J ‘and 0)1' so that
whenever D VM # @, we have the center of D belonging to M, then
defining ‘

@w{Dr\M pudg, ol }

and (N similarly with respect to G)', we will have:
Ape Mgl
Ap ® Age)- |
and @\ s (9\ are regular presentations of \@‘ MM, Hence bothh
\% q) (E)‘ and ;\@[(E)\ are links of e in \(}3’ Y\ M, and

hence polyhedrally equivalent (by an approximation to the standard

il

i

7

mistake); if we choose a center of A the seme in both case, we geb
a polyhedrel equivalence taking Y\ A to Y\ A, Finélly, by
hypothesis \ % (E)l is equivalent to a suspension with Y) A as
a pole; and so A@'(E)‘ has the same property, and (B, A) is

!

homogernious in @
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Case 2¢ C = E ; we define E1, Ez, F as in the proof of 6,6.3. We

have to show that (E1, 4) and (F, EZ) are homogeneous in @ o

1

Thet <E1’ 4) is homogeneous in QD follows from the

fact \A@(E)l: ‘AG)[(ET)\(With appropriate centerings) because
!
any D >E1 in O’) is an element of (P which is >E1 and hence,
G) being regular ) B&,
. I .
That (F, E2>' is homogeneous in 63 , we see by the

formulas

;\(P' (F) = 'A(P(E) *{Y} BN Ez}
(callirig the appr@priate centering of G)' also Y) ).
Case 3: C = A ; we define A1, A2, B as in the proof of 6.6,3. We
have to show that (E, A’) and (B, A2) are homogenous,
| There is a simplicial isomorphism A(P (B) o, Ao')' ()
taking Y) (A) onto Y'}(l\w)‘". And as (E, A) 1is homogeneous in(P R

: !
we have (E, A1‘) is homogeneous in @

. }
That (B, Az) is homogeneous in G) “we see by a formula

like that in case 2:

Agt ® = A i 4, W0
6.7k, Pfoposition. If e 5‘7@ homogeneously in @ , and (PY

is obtained from (P by a finite sequence of bisections of space, and

JT*(', %’ are the subprésentations of GD‘ covering t\mﬁland \)@\ ,
then JY\f_t ‘ 5, ')(Q' homogeneously :'Lﬁ q) '

This follows from 6.7.3, as 6.6.4 from 6.6.3. [k

6.7.5. Definition. Let P be a polyhedron, and X, N subpolyhedra
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of Y. N 1is said to collapse homogeneously (geometrioally) to X

" in P, 1if there are regular presentation K, C Y. C @ ooﬁering

X, N and F respectively such that ¢ collapses homogeneously to

7(0 combinatorially in (P

We write N N X homogeneous'ly in P, This definition is

again polyhedrally invariant:

6.7.6. Proposition. If N W X homogeneously in P, and  : P—> Q

is a polyhedral equivalence, then g(: (N) -——5‘(_(}() homogeneously in
Q.
This follows from 6.7.L as 6.6.6 from 6.6.4. T}

6.7.7. Proposition. If N is a regular‘neighbourhood of X in P,

then N \[X homogeneously in P.
Proof: As in 6.6.8, we start with a simplicial presentation (P of
P in which a full subpresentation 7&, 5 c;overs X, and take
N = @"1([0, ,la]> where QQ : P-—J-)[C‘), 1] is the uspal map.. By
virtue of 6,7.6, and the definition of regular neighbourhood, it is
enough to ,pr‘ove that this N W X homogeneously.
Let JR be the regular presentation of N consisting of
cells of the forms ‘
simplexes of cx“
6 OG0, 1)), for CER with § (€)= (0,1)
| 6‘"(\(@”1(%) , for g&[ with (P(G’):(0,0
Define @ to consist of
all simplexes of % ’

all simplexes of @ which have no vertices in % .
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5 (\{F((O;%))
€ AP EN (o FEP wen PUE) = (0,)
6’(\%61(%5 1) |

G) is a regular presentation of F which refines (P , and has as

subpresentations JTQ and X . J\{‘(and X, are the same as in
proposition 6.6,8, and therefore we know that Y€ AY, XD . Now, the

1

claim is YT Y % homogeneously in Q’B . In otherwords, if
E=EnD T, A= g c@"((o 2)), where € &P mth(@ (6™) = (0,1),

we have to show that (E, A) is homogeneous in G) . In fact

R -
denoting by@ the subpresentation Of (‘P covering Q@ 1(%),

)@(E {/Y)A q } where

t r\_1((2, ))- . D.

we have

L

?\0;,@:)

A!

H

6.8. The Regular Neighbourhood Theorem.

We have seen that if N is a regular neighbourhood of X
in F, then |
X int N
2) N is bicollared in P
3) N ] X homogeneously in P.
'Gonvex;sely. |

6.8.1, The Regular Neighbourhood Theorem,

If ¥ N P are polyhedra suéh that

1) X(:int;P N

2) N is bicollared in P
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~3) N WX homogeneously in ‘P

then N is a regular neighbourhood of X in P,
| The proof will start with some technicalities which exploit
the homogeneity of the lcollapsi’ng (The X's, P's etc. occuring mean—

while should not be confused with the X, P of the theorem).,

- 6.8.2. Proposition. Let YC_X be polyhedré, and let P = X * {v, w}
a suspension of X.' Then a regular neighbourhood of Y % v in P
is a regular ﬁeighbourhood of v in P, [In other words, a regular
neighbourhood of a subcone of a suspension is a regular neighbourhdod
of one of the poles__7.
Proof: Let G, (X) denote X * v and let ¢ : ¢ (00—, )
be the join of the maps X ~—>1 and v —30. For any Z( X%,
CL (2) fbr 0 £ L <1 will denote the set of points
{:(1~t) v+itoz Sz € Z, 0Kt S«,o(} . If 2 is a subpolyhedron
EPCEICER I S B
By 6.3.7, it is enough to prove the proposition for some
regular' neighbourhodd of X *v. Hence, by a couple of maps, it is
enough to show thaf CS/%(X) is a regular neighbourhood of Cé (Y) in
¢, (X). (It is clearly a regular neighbourhood of v in C, (x)).
Let, 7(0 be a simplicial presentation of X, containing a
subpresentation '\ﬂ covering Y. We define a regular presentatio‘n

of G, (X) to consist of:

{§ for @ GXa
‘q;-{v} for § € ‘Xa”'\a
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& v N c@ ((O ) |
Q—-iv& N (P_1 (2) for § E'\ﬂ
cLvy v @ ! <%, 1) )

Then @ has a subpresentation & covering C 3 £(Y), and for each
AeP ~-B with Ia Cl (v) £ ¢, (P (4) includes the interval
(4, 1). Choose a centering " of(P , 50 thet for all A¢ (P -G
with & N 0y (¥) £ 6, Pina) =3

Then d( @ n ) has the property that if {° is a simplex
with vertices both in d Gy andin d@P -d§ , then ¢ ().
contains «(%’V 2), and d G\ is full in d (P . Choose a centering @
of d G) so that for ¥ € d (P with vertices in and out of c\ O
& ({)(@ ) = %, Now N = ’Nd@ (a8, )| = cp“‘ ([o, $/‘_p;
and thus (@ ’2/8]) is a regular neighbourhood of both 01 (Y)
and v, ‘C]

Now, let ‘P be 2 polyhedron and (P a simplicial
presentation of P. Let 3 be any set of vez:tices of Q) and '} a
centering of (P . Recall the definition of é\(P( T ) omnd (PZ

(6.3.10),
dptz0- U {|Spvl vzt
all the vertices of ;fq' are in
5 ge(p @
szié full in (P and S(P )= \ ® ( @f_ ){ is a regular neighbour—
hood of |(PZ, in P,
Let C(P) = P % v be a cone on P and CP 2 C(P)—> [O, 1}

il

be the join of v~ O and P —>» 1, If L is a subpolyhedron of
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P; 0L ¢ T, C 4 (L) will mean (L #* v) r\q)'1 ([0, ] ) as
before. By L % [& ,‘3:} , 0 <L < B < 1, we shall mean

@ *v) 0@ ((f,@]) Inperticiler C, (P) - @™ ([0,4] )
and P {d 5P ] - (P'"T( L& >R ). The simplicial presentation
(P * Ul of ©(P) will be denoted by O((P).

6.8,3. Proposition. There is a centering of C(@ ) with respect

to which ‘
1) l SC(@}V* = C%(P) ‘
| 2) ; gC( (P >(a)\ = ‘S(P(a“)l A [i;, 1] for any vertex
Goof G:)
Prooft We take any'centering 1\ of GD » and extend it to e )
by defining
Mo =2 N(&) +kv, for €.
Then it is obvious that (p is simplicial relative to d (C((@), 1)
and the triangulation of [O, 1 ] with vertices {nO, 1,1 S
From this it easily follows that lSC((P)V\ = ¢y (B,
The second assertion can be proved by a straight forward
messy computation as follows:?

A typical simplex of élqﬁ(a) is a face of simplex of
d((p, Y) ) of the form O(Y\ o’ ) )y seeees V) k), with
2= M) B K6, (o 5, e
A point in [Y)O ‘sessy k] X, i, 1] is um.quely determined by
t’o yevey tk 3 AA P SuCh that t O Z- ti , ';J"é“ $ o( \

and the point ist

k ' ‘
CEEYS M PEKET R
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' a
On the otherhand, a simplex of é;(j(q} )( ) is a face

of a simplex determined by some L between O and k, and vertices

Nl
byl

Y}o:"“’ \’)'Q_ 9%\{\X_+-‘V;--~’ Y‘k‘F%V,
with a = Y)O’ Y‘ 1 =\q(6’l):{a}< 6‘1< 6'2 s <6~k’ G_lEG) .

A typical point in the closure of such a simplex is uniquely determined

by Tq soea Thoo Sp seeey S ‘where ri, sj 2 0 and

_ k
E% vyt :E:: Sj =1, The point is
S K
z V).

(%) io:—: ry Vgt 2,2— o5 (8 M

Comparing coefficients in (%) and (%¢), we find that these

points coincide ift

ti =_1:_j; ,i(ﬂ,.
£
t =r£+%81
tj':l’léii ij)«a—
4

3 =2o€tj,j>9. i

[~To be sure, we should have started in (3¢) with an index different

from k. But it can be easily seen that, when determing whether the

points coincide, it is enough to consider () and () /.
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To show that {cgc_@)(a)l C (S(P(a) s [%, 1] _—

we need to check that if r's and s's satisfy their conditions

3

(being >0, and of sum 1), then the solutions in . (A) for £ and

the t's satisfy theirs (3 § L & 1 and the t's are » O with

sum 1), This is easy; S

To show that - {5@ (a)\- x\:%, 1] C \gq@)u)\ p
we need to check if 3 £ ¢ 1, and the t's are 2> O with sum 1, |
£hen there is son;e L for which the solutions found in (B) satisfy
the appropriate conditions, That the sum of r's and s's is one is
clear; to make all > 0, we take Y, to be the maximum of those

-~

integers (m) for which
k .
. 1
ey 2
m
ko »
Since 1({ € 2, and 3 tj = 1, there is such an Q_ ; this
. 0

choice of fl makes both r‘% and s'A 2,0, iy
Remark: If Z is ‘a set of verticer of (P , we have as above,
C?Q@( 3 )= g@)(f)X[ﬁ, 11.
Now let P = X * iu, w} be a suspension, We define the

lower hemisphere L of P to be X * u ; it should bé_remar'ked

that L 1is a regular neighbourhood of u in P,

6.8,4, Proposition. With P, X, L as above there is a polyhedral

equivalence h t G(P)—— C(P) with h‘? = idp , such that
h({L x[%, 1]3 VU o (P)D =L X%, 1].

Proofs We can draw a picture which is a "cross section" through any

particular point x in X:
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ZfThé picture is actually.the union

" of the two triangles [?; v, Q} and
Lx,lv, u] in C(P), which we have
flattened out to put in a planar
picture, The vertically shaded part
is the portion of L X{%, 1} in
the cross section and the horizontally
shaded part is the part of C% (P) -

in the cross section. We have to

push the union of these two into the
vertically shaded portion, and this
uniformly over all cross sections_/,

From this picture we may see the followings C(P) is the

union of
A:{XKE%, 1]}*{_u, w} o, and
B= §X % %}*J where J = v * {u, w}.
And Arxa:{xx\ L {u,w} :

Now J is just, polyhedrally, an interval, and' 80 there
is obviously a polyhedral equivalence f ¢ J =% J such that
f (u) = u, f (w) = w
fEv+sw =5v+dau
Such an f will take the part [u, vl {v, Pvo+} w'.] onto
(?} FU*E V:}o
" Let g ‘:‘ B —3 B be the join of f on J and identity
on XX 4. It is clear that g’ AMB is the identity map, and so

by extending by identity on 4, we get a polyhedral equivalence
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say h i C(P) —> C(P),

‘It should be pictorially evident that h has the deéiredv
properties, 1 |

Putting all these together we get the proposition which we

need ¢

6.8.5. Proposition.

Hypotheses: (1) @ is a simplicial presentation of P, C(P) the
cone over P with vertex v, C(G)) = @ * {v}}, and T a
set of vertices of @ .

(2) There is a polyhedron X and a polyhedral squive-
lence h ¢ P —) X # {u, w} such that N \@Z\ Y =Y % u, for
some Y C X,

!

(3) g(_((P) v‘ and SC( {P )(z) are constructed
with reference to some centering?, of C( (P ). '

Conclusion: There is a polyhedral equivalence c(;, : C(P) —> c(P)

= g < () v i

Proof: Let T] be the centering of {( (P} described in proposition

@ () l

6.8.3, Let f=7¢ " 4, be the simplicial isomorphism of d{C((P )’6,)
onto d(o((p ),Y) ). ‘

Let h, : C(P) =~ C(X * {u, w}) be the join of
htP—S X* {u, w} and the map vertex to vertex.

Now (g 03(2) is a regular neighbourhood of ‘(PZ\ in

P, and therefore h £( (S(P(i:) ) is a regular neighbourhood

n e |Pr | ) i 2o, W} B 2 \@pl - 1] - in

fact. f. maps every q:) ~simplex onto itself —~ and \@‘L‘ )= Y %,
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Thus h £( (S’QD(Z) ) is a regular neighbourhood of Y % u in

X % {u, } . Therefore by 6. 8 2, h f( 8 (£)) is a regular
néighbourhood of u in X % {u, W}; But so is X * u, Hence there
is a polyhedral equivalence &2; : X £u, w}w—e} X *{u, w} such
that '

3

B (n 1 g@(z) )) = X * .
Lot B, s o {w, w}) = c(x* {u, w}) be the join of

and identity map of the vertex of the cone.

Now f is such that £ (S o SI) ) = 1£( 5@(5:)))4%, 1]

~and f(\(g C((P ) v\>= C% (P).

Since 331 and h1 are radial extensions the same thing

holds, 1i.e,

(31 h1 £( 6(0(@()2)

it

B on (£ S(P(s.:)hs[%, 13
Rnr S@(Z) )7{%, 1]

it

which J;.S 1 x 3 x s ], and
. (B, f (‘SC( ®) V\)'” P1 h, (C% (»))
C_% (X * {u, w}),

1

Applying 6.8.4, we get a polyhedral equivalence

Y s o(x {w w})*‘) o(x * {u, w}) with y/X * fu, w]

identity and

it

Y (@xw w[s ] Vo @i >>
= ‘(X/* ) xt%, 1

The desired map J_ is now,

L -rlon! o P oY o, onor .o

1
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We will now write down two specific corollaries of
proposition 6,8,5, which will immediately give the regﬁlar_ neighbour—
hood theorem. First we recall the notation at the end of section
3 (6.3.10).

If 6} is regular presentation, given a centering 7} of@

Lo

i

and a centering of d(@ ,N ), we defined
t%d@(qc)‘ , for any C

an'dj\m* \J { C*’ C (—JY‘C}, for any subset JYtof G) .
1 SN is a subpresentation of (P - tren ACTL, 1)) (here 1) [
is again denoted by Y) ) is full in (]) »¥) ). Writing
M= are, n) 03' =d((P,M), and T as the set of vertices
of (P' of the forn M C, for € €YU, we see that Q);;: I
and (9@‘( 2 )= _Jn:*, which is a regular neighbourhood of ‘J]f‘cl

m\@; -

6.8,6. Corollary. Let G) be a regular presentation with a sub-

i

presentation JTE ;, E a free edge of jY‘g with attaching membrane A
such thet (E, A) is homogeneous in Q) . Then there is a polyhedral
equivalence h = || —> {03 | which is identity outside of

£ ;\(PEi and which takes " omto (I - {EP”.

/ Note: It is understood that there is a centering " ofa) , and

a centering of (P ,Y) ). 7.

. i !
Proof: Look at St( 'Y) E, d 63 ); this is a presentation say @

“of F % \A(P E) Let Z denote the set of vertices of d 63 of
. 1
the form ’q F for F{E and \'“' A, Then \ 03 ?:\ is the join of

a. E to V)A. Since ( A 03 E‘ is equivalent to a-suspension
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(homogenity of (E; AY) with W’l A going to a pole, we see that

bE 3 \A(PE} is equivalent to a suspension with \@i}

going to a subcone. And B #* lA @ Ex is a cone over QB * \AG} E’

And consider the centering of (Pr coming from that of d( @.n.e

“Thus we have the situation of 6.8.5, and making the necessary

substitutions in 6.8.5, we gét a pyolyhed.ral equivalence o‘; of
Pl=Fx ‘R@E\ taking \g@' (WE)} U S(P,( $ ) onto
G)‘.( s ). (g@'( Y] E)‘, is just E*, Now observe that the

set of centres of elements of ) in -q_‘)' is IU{Y} E} |

(This is where we use the fact that E is a free edge). Therefore

I AE U 5@'<z> and (- D" 0| @ (- & ()

So- o, takes the part of (Jﬁ*) in l Q') 'i onto the part of

(J(t" iE} )ee in ) }(P 'j . g{' is identity on the base of the cone,

and E* CKP“ . Therefore extending o&t,o an.equivalehce h of

\(P) by patching up with identity outside '03’1 , we see that h

takes J\'\Q* onto (Jk - {E‘% )* and is identity outside

\(P":.E% A(PE’ 3)

Gorollary 6,8,7: In the same situation, there is a polyhedral

equivalence h' i ;@\ =y MD ‘ which is iéeritity outside

T ‘Aq) al, which bakes M- B8]0 onto dre- {E, Ak )",
[for this corollary we need only that E is a free edge

of A, and A is the attaching membrane, Homogenity of‘ (E, 4)

is not necessary]. :

_Pix_:_q_g‘)_i:: This time we call Q:&' = St( Y} A, d@);l and Y the set

of vertices Y)F, F A and' F 7! E. Then ‘Q);__‘: 94 - E. QA

is equivalent to a suspension with aA -~ B as the lower hemisbhere.
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Hence aA * ‘}\@A ( is equivalent to a suspension with {(P;:\
mapping onto a subcone. - Applying 6.8.5, we get a polyhedral
equivalence (' of T * | }\(P 4] on itself, which is identity on
J A ‘A(PA t and takes 6@1( 37 ) UA" onto SCPT( 5. ~ Since

E is a free edge and A is prinpipal in N, (803( =) is just

the part of (Y- {E, A})"‘c in & % 12\03 A} , and ' () UA*
~is the part of (N~ [Eg)*g in & * {)\(PA! . Extending (L' to
an equivalence h' of {@) by patching up with identity outside

T« \;\Gu A, since &% is contained in T \A@ 4} we see that

h' takes (J- {;E})* onto (M- {E, A} )* and is identity outside
T XA@A{. 0

Thus in the situation of 6.8.6, if we take the composition

h' h of the equivalences given by 6.8.6 and 6.8.7, h'e h takes
JYt* onto (Jrc-{E, A} ¥, Support of h](: P {x@ A‘, support
of hCE ¥* \A(P E l’ hence h' e h fixes, the polyhedron

! (JYC.. {E, A})I . This at once gives,

6.8.8, Proposition. If JTe 5/7(3 homogeneously in@ , then there is

a polyhedral equivalence of i@ ‘ s, wWhich is identity on ‘X"’ and

takes J"‘C* onto 7&*. (W]

6,8,9, Corollarys If N \ X homogeneously in P, then any regular

neighbourhood of N in P is a regular neighbourhood of X in P, I\

Proof of the regular neighbourhood theorem 6.8. 1,

By 6.8,9 any regular neighbourhood say N' of N is a
regular neighbourhood of X, Since N is bicollared in P, there
is a polyhedral equivalence h of P +taking N onto N'. Since

XCIntP N, h can be chosen to be fixed on X (see 6.4.8),

Therefore N 1is a regular neighbourhood of X, D



161

6.9. Some applications and remarks.

In this section we make a few observations about the
previous concepts in the context of PL—manifolds
6.9.1, Let M be a Pl-manifold, BM its boundary, q:\ a regular
presentation of M, let E, 4 €(P ,"E<X A and dim A= dim E + 1,
(E, &) is homogeneous in Q3 if ‘and only if either both E and A
are in a M or both E and A are in M-«b M.
Proof: Let Y be a centering of | (P . Let E' (E a simplex of
d(@ > ) of dimension = dim E, and A = {_“\ A} E. Now the .
problem is equivalent tot When is \LK('E', d{(P )& equivalent to
a suspension with Y\A going to a vertex? If E and A are in
M - éM, so are & and A and l LK(E', a(p )\ is a sphere,
hence it is possible, If E and A are both in a M, so are B
and A' and |IK(E', d( )| is a cell, with N A contained in the
~boundary, 3o again it is possible, If E is in b M and .A is in
M- M soare B and A and | Ik(B', aQ )| 1is a cell with
V‘) A in the interior. Hence in this case it is impossible. ®

Suppose now that JYt and 7(9 are subpresentation of (P
and 1t v X homogeneously in G:) . In the sequence of (elerﬁentary):
homogensous of collapses from JYt to X , 1f a collapse C1 in

the boundary comes before a collapse 02 in the interior we can

interchange them i.e. if Cy c th
interchange them i.e. i J{t o \\‘th \%Jvti” , then we
t t ! !
find ch that C C and the
oan tin JYti sueh The | JYti.J \QSAJYtl \g%in

free edge and attaching membrane of Ci and C,.’ are the

i, 31i=1,2

same. Doing this a finite number of times we have
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6.9.2. If N WX homogeneously in M, then N Y\ X U(NAJM)Y ol
In particular, this is true for regular neighbourhoods. Some re—
arrengement is ‘pgss‘ible for the usual elementary collapseé also:
E};. 6.9.3. Suppose Q) \/ 6\ , combinatorially, and
031 yeeoved (Pk, | i ¢k °re subpresentations such that @ :
is obtailned from @id - by an elementary collapse at the free edge
By with attaching membrane A, . and P=(,, G- P+ Then
we can find subpresentations @’1" (Pz",.., le' )(PT' = (P,} @k‘ =G\5 |
such that ‘qail is obtained from (P'. by an elementary collapse
i~1
at the free edge Ei iy with attaching membrane ‘A:‘:.-«T and
dim AJ; ?,dimﬁhi. Moreover, except for order, the pairs (Ei” Ai')
a‘re'the same as the pairs (Ej’ Aj).
More: .briefly,‘ we can rearrange the collapses in the order
of non~increasing dimension. (Y
Ex, 6,9.4. An n=cell collapses to any (n-1)-cell in its boundary.
‘This follows from 6.5.10. Q4
Ex, 6.9.5. An n-cell is collapsible to any point in it: ¥
We call polyhedron collagsib.le if it coilapses to a point,
Ex. 6.9.5', A collapsible polyhedron collapses to any point in it.
[Hint:‘ By virtue of 6.9.3, it is enough to consider one dimensional
collapsible presentations with the given point as a vertex /. O
6.9.6. If M is a collapsible PL n-manifold, then M is a mecell,

Sketch of the proof: OM £ @, for if @M = @, there is no free '

. edge to start the collapsing. Next we can assume that M collepses .

_ _ v ‘ . -
to a point in M - by M, either by 6.9.5 or by 6.9.4 and 6.5.11. Now
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attach a collar of &)M to M (to get PL-manifold ‘M') so that
all the collapsing is in the interior of M', hence homogenéous. .
Now all the conditions of the regular neighbourhood theorem are
satisfied, Hence M is the regular neighbourhood of a print in M", :
hence an n-cell., &
The following two remarks will be useful in the next chapter,
6,.9.7. Let f 1 K kﬁbn"k—-% M" be an imbedding into int M, where
K is s K-menifold end D™ ° an (n-k)-cell. Then £(k % D*K)
can be shrunk into any given neighbourhood of f(K X e) in WM, for
a fixed ¢ € int ik by an isotopy which can be assumed to be
fixed on £(K % e). 4

K % Dn"k YV K we (this follows, for example, from
6.5.14 by induction). It is easily seen that f£(X x Dn_k) is a
neighbourhood of f(k Xe) in M and is bicollared, ¥h

6.9.8, Proposition, Let M be a PL n-manifold, and N a

PL (n-1)-manifold in & M, and M YN. Then M is polyhedrally
equivalent to N W, I. Moreover the polyhedral equivalence
h s MY N K I, can be so chosen thatk h(n) = (n,0) for n gN..
Proofi: Such an N cannot be the whole of a M, Either B N£d,
or N is a finite union of components of du (see L4.b.16). 1In
any case N is bicollared in a M. If N' is regular neighbour-.
hood of N in O M, since N is bicollared in O M, N' is
ﬁolyhedrally equivalent to N (6.&.8>.

~ Since M Yy .N, there is a regular neighbourhood say A

of N in M such that M W A (see 6.6.9). Let A f\bM=N'.

Then N' is a regular neighbourhood of N in a M, It is clear
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that A 1is polyhedrally equivalent to N X I. HNow attach B and C,

B acollar over QM ~N' and C a collar over N to M such that

BN C =@ Let the resulting manifold be M,

' Consi@er anqther coilar C1 {C C, and the manifolds A UQ1 and MUC1.
In M', all the collapses from M to A are in the interior and‘
hence M M A& homogeneously in M', and the collapsing from | A WN
continues to be homogensous in M. Clearly C L\“‘/ N homogeneously in
M', Thus both A \_JC1 and M\JC1 collapse ‘homogreneously in M' to

N, both are neighbourhoods of N in Mf and both are bicqliared.

Hence there is an equivalence A\ 01 oM \JC1. ‘Clearly TANS C1 NN XTI,
Hence M \)o1 N %I, hence M 2NX I.

To prove the last remark observe that if cﬁ, t N I= C1
is an equivalence such that dy (n, 1) = n, for n €N, the equivalencé
MRMAC,  can be chosen such that it carries’ n gN to o (n,0) & c,.
Finally-the equivalence 4 UC, M UC, can be assumed to be identity

on 01. [}
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6.10, Conclusion.

Now let us; recapitulate briefly the programme’for proving
the regular neighbourhood theorem:

(A) We have a notion of equivalence of pairs

\ (P, )= (p', 1)

(B) We define a yegular neigﬁbourhood of ¥ in P to
be any thing equivaslent by an auto-equivalence of (P, X) to
(N’GD( 75)(, where Q§ is a simplicial'presentation of P with a full
subpresentation ;Kg covering X,

(G) We have the notions of the cone on P, suspension on
P, and P YI; and hence the idea of local cpllaring, collaring and
bicollaring.

(D) We can prove: P)Q{b, %i} is a regular neighbourhood
of PKO in P XX;Q, 1:} . The lower half of the suspension of P
is a regular neighboqrhqod‘of a pole. A locally collared subpolyhedron
is collared. Regular neighbourhoods are bicollared,

(E) We have for regular presentations, the ﬁgtion.of
collapsing, and of homogeneous§ and we prove that N NX homogeneously
in P if N is a regular neighbourhood of X in P,

(F) Finally, we prove.the converse, that if N Y X homo~
geneously in P, then a regular neighbourhood of N is a regular
neigbbourhood of X, We pick up a particular regular neighbourhood
of N and shrink it down.a bit at a time to a particular regular
neighbourhood of X, In doing this; we need to have proved the

1
theorem for a particular case ¢+ X is a pole of a suspension p'
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and N is a subcone of P, hn analysis of the proof shows that we
need thé result for various P' of dimension less than that of P,
Hence we could héve proved this by induction on dimension, although
it is simple enough to prove in the special case by construction.

Now it should be remarked that precisely the same programme
cen be carried out in other contexts. In particular for pairs:

A pair (P, Q) is a polyhedron P with a subpolyhedron
Qs owesay (P, @) (C (Py Q) if P,C ¥, and G = QMNP .

If (P1,Q1) C: (Pza sz we define the boundary of the former in the

latter to be (bd, P, Q M\ bd, P ).

2 P

Define an equivalence h : (P1, Q1)-f5 (PZ, Qé) to be

a polyhedral equivalence L 9113 P2 mapping Q1 onto QZ'

An admissible presentation of (P, Q) is a pair of
regular presentations Cﬁ\ (; 63 withv \le =‘P,l\ehx = Q. A free
edge of an admissible presentation (QP, G}Q is an E GSQD , which
is a free edge of QD with attaching membrane A, such that Af
E & 6\ , then A QG\

The programme can be carried out mechanically with the
obvious definition of homogeneous collapsing.

Finally, we draw some consequences, by applying to
PLemanifolds,

Let A (B, where A is a PL a-manifold and B is a
PL b-manifold, We say (B, 4) is locally un—knotted if, for every

x & A, if (LB s LA) is polyhedrally equivalent to (L,* X, LA)
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for some X, It is possible to show that X must be either a cell

or a sphere of dimension b—a.—-1;/ and that if A is connected,A then
either all the X's. are cells, in which case A is 1ocally‘ un~-knotted
in D B or all X's are spheres, in which case 3 A=A N bB.

It then occurs as in the case of a single manifold, that
all the collapsing (i‘n the pair sese) which is in the interior of
(B, A) is homogeneous, and hence we can prove the following result:

Let D? C C\b, v;rith (/A , D) a locally un-knotted pair
of the sort where D =D N Q) (-. Thenif A\ )\, D \/ point,
the pair (/\, D) dis an absolute regular neighbourhood of a point
(relative to (O £\ , ® D) and so ({\, D) is polyhedrally
equivalent to (S # D, D) where S is a (b-a-1)-sphere, i.e,

(A, D) is un-knotted.

[This is a key lemma for Zeeman's theorem, that

(b - a)),,?) ‘:‘...."> (A, D) is un-knotted. See Zemman "Seminar on

combinatorial Topology", Chapter IV, pp. l;—5__7.
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Chapter VIT

Regular collapsing and applications

7.1. Let ﬁ be a simplicial presentation. We say that § ¢ 4 is an
outer edge of /S , if there is a /,Xﬁ/g, such that if g ¢ ‘D,' PQX,
then ?4 A 5 and dim /A > dim €~ . In this case /\ is uniquely
fixed by §~ , and is of the form [\ = U, U # §. The elements
of/g having g™~ as a face are exactly of the form g~ c'r', C[‘{ fS‘T

1

The remaining faces of A are of the form g-*‘ C'c’t, @-x <K WL

in otherwords they consist of {6 6 \}*{‘&} . Thus
A -ARY U [ (RS
is a subpresentation of /% , énd .

e

l/% lu A
\/%’l - 6T
Let dim /A =n. Then, we say that ' is obtained from |

/g by an elementary regular collapse (n) with outer edge g~ and

maj or simplex

-
If A /% seves A z)g , and /g is ob'tained

from /g . by an elementary regular collapse (n), we say that A

i
regularly collapses (n) to ;z; .

The elements of the theory of regular collapsing can be
approached from the point of view of "steller subdivisions!" { ¢.C.f.
Section 13 of "simplicial spaces, nuclei and megroups" or the first
few pages of Zeeman's "unknotting spheres", Annals of Mathematics, 72,

(1960) 350-361), but for the sake of novelty we shall do something else.
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7.1. 1. Recalling Notations. &, ¢ ,.... usually denote open

simplexes, #G-"” s ?—f , .. denote their closures (closed simplexes),
and 66"‘ s 5 ¢ 5 .. their boundaries. The simplicial presentation.
of ? consisting of @ and its faces is denoted by {6: 3, and that
of ) € consisting of faces of § ‘be{bé”}(see L.1). & T stands
for the‘join of the two open sirr&alexe;a §and T , when the join‘is
defined. If @§ is a O-simplex and x is the unicgue point of § ,
we will write {x} ST for ¢ T . On the other hand the join of two |
polyhedra P and Q when it is defined is denoted by P * Q.
Similarly the join of two simplicial‘prlesentations (P and 6\ when'
it is defined is denoted by (P * (N . For example if § @ is
defined, then {.A 6"3 *{'FY'} is the canonical simplicial' presentation
of the pélyhedron 06" *® . If P is a polyhedron consistiné of

a single point x, we will sometimes write x * Q dinstead of P % Q. i

With this notation {x}g“" and x * & are the same,
Let A be an (n~1)-simplex, I = [O, 1}, and let /% be
a simplicial presentation of E A I such that the projection
PN KL —> N\ is simplicial with reference to /S_é,nd {Z&&
The n-simplexes of /g can be ordered as follows:
T.\ 1 "”’T]k , so that if XQ—A, X AI intersects the Tai’s
in-order, That is A Y 0 is a face of -P ,? T‘1 has another

face &.1 which maps onto A,‘ A{:‘Lsaface of T‘Z,...., Ai1

is a face of -P ., but r has another face that maps onto A ’
, iv i

call it ) i and so on. We start with AO = A % O and end up

with A, = A X1,
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Let us write /\ = € 9 in some way. Let

Z&;go U de* T )% I. (If g =@, T should be taken to
be just E K 0). Then there is a subpresentation % of /S which
covers T,

7.1,2, Lemma. (With the- above hypotheses and notation) /S regularly

collapses (n) to % .

Proof: We in fact show that there is a sequence of regular collapses

with major s:.mplexes Tﬁ IETEY TT . We must then define

/g Zs U{- e U{ﬁig

and find some outer edge lying on P, so that the corresponding
i -

regular collapse results in & e
1'—.

Now ‘r‘ 5 is an n-simplex and its projection A is an
(n=-1)-simplex, therefore there are two vertices v, and AL} of T‘
(choose v, , v, so that the I-co-ordinate of v, is - the
I-co~ordinate of v2) which map into one vertex v of [.\ . Now
A = § T and so v is a vertex of either & or T .

Case 13 v is a vertex of §~ . Write 5’":{\/‘} {“'. Let ’E‘J‘ and T
be the faces of —Fi lying ovar 6”" and < . Then . |
~ e :
L=y & =
and the two faces of T-‘ N which are mapped onto A are
fnt & ?’c Ay
a {v 2} XA .

i
Define Vi:{VZE ﬁ" s

it

~2

R

<



It is claimed that if we take G~  as an outer edge then the result

i
of the elementary regular collapse with major simplex T“ 5 '154,
. L

A2

& | e

9

G ; cannot be in % because the only (dlm 6“ ) simplex

in 6 X1I WhlchlSln% 156‘"nand 6"‘;46‘“‘ since v, is

a vertex of G’i. Also Pi is the only simplex among T‘1 ,..,—P.

i
. . e FEAL
which contains v, as a vertex. Hence if E“i < Pr then P ¢ A i

e

We then have to show that T\i N ﬁi-d = BS'i * ”('i

Q6 * Ty - 5(@2}5‘) *(m)
() U, » 35" {v1}¢r )

The first term here is A 2 which is where T‘ intersects B U Ur\
T

agng

-1
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The second term written slightly differently is EV‘1 v;j * 5’%‘“ #* g?“
to which we may add a part of the first term namely ( 6,1., & ) to

obtain all faces of . which msp to

T d ({v} g ') » Cy

(T *q) U Y_c‘)s“eeﬁ # v
In other words, this is T_‘ i N B J 6 *-';(' ) A I}

This shows that

Q6

r

H

4

| o * T
T m}&i—d%‘ 561 Ly
and so £ 5 to Ai 1 is an elementary regular collapse with outer
edge §; end major simplex Tﬁ\i'
] e ~y
Case 2¢ v is a vertex of " . Write U= v @ , define ¢~ , T
to be faces of Tl'i lying over €  and GT'. Tn this case
k #d 1
T.‘i = {V&{‘Vz‘g 6'-- Cz’
and the two faces of T\i which are mapped on A are
) !
%’1}1 & T - Ai—1
~ by
md fr,} & T - AL
We now define
o}
6§73 = %} €
o~ .
Ty={nt

and make computations as before.

i
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and Q) %‘i * Ev1 v2} x ?é»" :tfi N {(56“%?{)}&11

' And this shows that If we perform an elementary regular
collapse (n) on /g i_ with outer edge S“i and major simplex T‘i’
we get Y iq

Hence A regularly collapses (n) to Z; . B

Define I' =1, I¥ =1I9"% 1, T -0C I,

and ka (I 1x o) \,J(Tk_17§ 1) C ¥,

It is easy to see that T, is a (k-1)-cell in a Ik,

k

and is the set of points of Ik at least one co-ordinate of which

is zero.
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] kK _k-1 -1 '
Let IR X T —> Ik bs the projection.

. ¢ /( e s
.1.3., Lemma. Let /g be simplicial presen-
7 3 e n’ 41’1—1 s P I, ! p
1

n-1

tations of I, I™' ,..., I' with respcct to which all the maps

o[u Nt °(’2’ are simolicial, Then there exist subpresentations

xl’l ’ an_1 sees Z, covering Tn’ Tn—1 seey T1 respectively,
and such that /g 5 regularly collapses (i) to xi for all 1.
Proof: The proof is by induction. It is easily verified that X 1
collapses (1) to £ .

So, inductively, we know that /g s collapses (i) to 2(;1 ’
for i4 n-1. Now an isb just the subpresentation of /S o

covering In_1x 0 \) \Q‘E—l \ X I = Tn.

Let the collapsing of & to % occur along the
’ n-1 n-1

major simplexes A AETERY A < Then we define

mi:%nq Uizls {Z\k\g

and write A = § &Y. s Wwhere & is the outer edge of
i i i i
the regular collapse (n-1) from to . Then
o, = O

— 1+1
A (\IGX-NI ) 65_i*c(i
D=fine @ ;= the subpresentation of 4 covering
n

LSV plusoL’: ( \'Gli\)' Thus 631 = An and @kﬂ =£n.

We will show that 03 regularly collapses (n) to
i

Gz) i1 , stringing these together, then /g regularly collapses (n)
n

to %n'



175

To show that @ : regularly collapses (n) to 03 it
i+

is enough to look at the part of @ s covering o( - ( Zi) i.e.
—— n w—

Aix I. Alx I (\ \@'i.ﬂ\ = Alx 0 UE a G‘i *:ti) XI:S

and CL n

Zi)(l is just the projection A iX I — Ai which

is simplicial with reference to the subpresentation of én covering
Ai)( I and {Z\lg . And our lemm2 7.1.2 is especially tailored

for this situation. (3

7.1.4. Theorem, Let A be a n-cell, B an n-cell in A, and 63
a regular presentation of A, Then there is a simplicial presentation
g refining P , with a subpresentation % covering B, such that
ﬁregularly collapses (n) to % .
Proof: There is a polyhedral equivaience h s A~ In, with
h(B) = T. Then h is simplicial with reference to some @1 and
6 , where @ can be assumed to refine & . The diagram
| n n n-1 ‘Lz 1
1 —-———? 1 _.% O 1
can be triangulated by simplicial presentations /gn sesey )g1, where
én can be assumed to refine 6\ . By 7.1.3, /sn regularly
collapses (n)} to %n , the subpresentation of /gn covering Tn.

' -1
Therefore the isomorphic presentation h ( An) x,)& collapses
~1
regularly (n) to h (S %) = 'x a
n

Suppose that /S is a simplicial presentation of an
n-cell A, regularly collapsing (n) to % ,( \%1) = B, an

{(n-1)=cell in a A, Let the intermediate stages be

ARy Ao
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where X .,y 1is obtained from é ; oyea regular collapse (n) at
1
outer edge 6“1 and mzjor simplex A ;7 g"-i cr'i-
W= define the upper boundary of A . as follows:
i
upper boundary of ,'g . é) (x/; 1\)-—?s.m:er:x,or (‘Z\ )

upper boundary of /g
i+

= (upper boundary of/s . E;i * bcf'i)u D 6“3._ *Q i
It can be alternatively defined as follows: Upper boundary of
£ ; = unions of closures of (n-1)=cells E of/s {0 such that if
E ¢ % , E 1is the face of exactly one n-simplex of /S 5 and if
E ¢ x then E is the face of no n-simplex of 4 5

Now we would like to assert that
7.1.5. (a) The upper boundary of A s is an (n-1)-cell, with constant
boundary b ( {I;]) The upper boundary of the last stage is ‘x] .

(b) Z ; 1intersects the upper boundary of . precisely

along @, * aq'l . In particular O]7 cannot be in1 the upper
boundary of /g i for any i, hence can never be in b ‘;l;( .

If in 7.1.3, in each column we do the collapsing as described
in 7.1.2, the above assertions can be verified in a straightforward

manner, by using similar properties of £ and an analysis of
n- -

1
the individual steps in 7.1.2, The general case seems to be more
cumbersome (A proof is given in the appendix), But the special case
is enough for our purposes, namely for the next theorem, the main
result of this chapter.

First using 7.1.5, we define a polyhedral equivalence CP 5

from the upper boundary of 4 N to the upper boundary of /giﬂ by
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1

. = identity outsid e
) ity outside G’i acti’

———

and on S‘i * aftl s it is the join of the identity
map B 6"1 #* B "("_l to the map of centre of § ., to the centre of
i
T ..

1

Thus from é \ A‘W‘%‘ to ‘x‘ , we reach by simpli-
cial moves, never disturbing the boundary of \’xo\ .

7.1.6. Theorem. Let D be a (k+1)-cell contained in the interior

of an n—cel}.A . Let a D= E,U E2 s F}‘ and E2 two k-cells,
9 E, = O E ; let X C /\ be a polyhedron such that XA D bE1.
Then there is an isotopy of [\ , fixed on X BA , taking E,
onto Ez.

Proof:

Consider /\ to be a standard n-cell, we can suppose that bA C_ X,
and triangulate the whole picture, so that there are subpresentations
covering D, X. Refine the subpresentation covering D, to A s
which regularly collapses (K + 1) to&i which covers E,. Extend
A to the whole of A , to say (p . Let the intermediate stages

of the collapsing be

. Aie AT

54+ oObtained from ; by an elementary regular collapse (k+1)
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at out edge 5. znd major simplex -P - G_i f?(i
We will find 2n isotopy taking the upper boundary of /S i

to the upper bound:ry of g (4 and fixed except in a certain n-cell

to be described,

—Pi is a (k+1)-simplex contained in the complement of

X, which is also covered by a subpresent:atlon of @ So if take
\AQ}V\= s BaY, z n (&} and (Z *T_‘ )hx —an

Now T\ ;N X must be contained in 6 & * C(’i , for this is the
only part of T\ N which vould contain points in aEi' let s and t
be the centres of S"i and C't-‘i, the line segment [s_, t] can be
prolonged a little bit (here we use the fact that A is standard) to

v and w in L\ o that

([v,w:was- 07, +T)Nx CIE; 3T,

([V w] €9 o, B‘T ) * Z) (\ upper boundary
of/g Qaﬁ“ aT

(here we use the fact that if L M (§ 3* K)C L NK, where 6§ is a
simplex and K, L are polyhedra, then there is a stretching 6"’ o;t“
§ i.c. containing § such that L N (é‘-“ 3 K)CK NL)., Thus
we have in order {v, s, 1, w} and thﬁ;re is 2 polyhedral equivalence

f of [v, w‘], taking v to v, s to t and w to w., Join f
to the identity on ) 5" * 0 T, * S end cxtend by identity

outsids of L w]%‘ 66" * éq_ *Z call it h Now h

is the result of a nice isotopy and takcs the upper boundary of /g

to the upper boundary of /g 141
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The composition of the hi’ will then take the upper

boundary of 41 = E1 to the upper boundary of 4p = E2 . 3

7.1.7. Fhemark: In theorem 7.1.6, f\ can be replaced by any

PlL-manifold. Of course D should be in the interior. [}

Ex., 7.1.8., If vN and M are two Pl-manifolds and f: N )&I—_)int M
an imbedding, show that there is an isotopy of M fixing b M and
carrying f(N % 0) to f(NX1 U gNXI). If X is a polyhedron
in M, and X f(N¥ I)COf(NA O), the isotopy can be chosen to
leave X fixed, 0O

7.2. Applications.

7.2.1. Definition. Let S be an n-sphere, and Z a k-sphere in
S, The pair (S,3 ) is said to be unknotted if (S5, 3 ) is
polyhedrally equivalent to (X # 3,2 ) for some X.

X must of course be an (n-k-1)-sphere. Clearly a pair
equivalent to an unknotted pair is again unknotted. .

7.2.2, Proposition. Let S be an n-sphere, and z a k-sphere in

S. If there exists an (n-k-1)-cell D in S such that D' *3 ( 8,
then (S, Z. ) is unknotted.

Proof: D * 2 ié an n-cell, and so the closure of S - D *ZT
say O\ , is again en n-cell and OA=J3(*3T )= do*x .,
Then S is polyhedrally equivalent to a suspension of aD * 3
hence (S, T ) 1is equivalent (X * 3 , 3 ) where X is a
suspension of dn. N

7.2.3. Corollary. If (P is a regular presentation of an n-sphere S,

A

and A& a (k+1)-cell in(P , then (S, O 4) {s unknotted.
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contained in the intlerior of a Pl-manifold

isotopy of

M takir
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\

égqg .A\ (with respect to some centering on) )
If 2 k-sphere 3 bounds 2 (k+1)=cell D

M

1, then there is an

g 3 onto the boundary of a (k+1)-cell of some

regular presentation of M.

Proof: Take a regular presentation (P of M in which D is covered

by a full subpresentation QE“' Consider a k-cell E of (hin oD

and the

Llet PdA~EFE=§E

[

(k+1)-cell]

say #A of @, , which contains it in its boundary.

and QD - E = EB and D - A = D', Then D'

is a (k+1)-cell with boundary E, y E, and E intersect D in

a E‘ =a EZ. Hence: by theorem

7.1.6, there is an
M taking Ez onto
Thus
d A
Corollery.

p

is un

fixing E,
moved onto

7’2. 5'

n-sphere, and

(s, 2 )

only if 2 bounds

Fod

D,
in S,
The necessi

a

Proof:
7.2.3.
Motivate

interior of a Plen

) D will be

a k-~sphere in

knotted if and

ty is clear.

d by 7.2.4, we define a k-sphere 3_

isotopy of

E1 and

Let S be an

a {k+1)-cell

Sufficiency follows from 7.2.4 and

in the

nanifold M to be unknotted if it bounds a
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(k+1)=cell in (the interior of) M. From 7.2.4 it is clear that
7.2.6. If 4 is a (k+1)-cell of some regular presentation of M,
and & C int ¥, then Q4 is unknotted. If 21 and ZQ are
two unknotted spheres in the same component of M, there is an isotopy

of M which takes Zj onto ‘2_2 keeping M fixed. 0

7.2,7. Definition. If D is an n-cell and E a k-cell in D, with

BD C 3 E, (D, E) is said to be unknotted if (D, E) is poly-

hedrally equivalent to (X # E, E) for some X

Since E is not completely contained in 5 D, such an X
must be an (n-k-1)-sphere.

ind we define a cell E in the interior of a PL n-manifold
M to be unknotted, if there is an n-cell D in M containing E
such th'at (D, E) is unknotted, & cell which is the closure of an
open convex cell of some regular presentation of M is clearly un-
knotted. Given any two unknotted cells D, and D  of the same

2
dimension in M, there is an isotopy of M leaving § M fixed and

2 1
a PL n-manifold M, k< n, D}(\ D, = #, then there is a n-cell 4

taking D1 onto D.. Given two unknotted k-cells D and D2 in

containing D, and D, in D and such that the triple (4, D,, Dz)

is equivalent to a sténdard triple., In particular if k¢ n=-2, from
the standard situation, we see that there is a (k+1)-cell A in
int ¥ containing D, and B2 in 5 A and inducing chosen
orientations on D1 and D2.. These remarks will be used in the
next chapter.

k n
Now, as a corollary of 7.2.5, if 3 ( S are k and
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n~spheres and n 3 2k + 2, then (Sn, zk) ’is unknotted. The next
case n = 2k + 1 is a little more difficult. Actually n -k 2 3
s kenough; But this will be proved only in the next chapter., Here
we sketch a proof of the.case n = 2k + 1,

7.2.8. Proposition. Let S be an n-sphere, 3§ a k-sphere in 3,

n=2k+1, and k¥» 2. (8, Z_ ) is unknotted,

Sketch of the proof: By 7.2.5 it is enough to show that 2 bounds

a (k+1)-cell in S, To prove this it is enough to show that a
k-sphere in RZkﬂ bounds a (k+1)-ceil. Congider a k-sphere P
2k +1
in ‘R " and let @ be a simplicial presentation of P. If @
N . . 2k+1
and U are two ( ¢ k)-dimensional simplexes in R and L
and I""’( the linear manifolds generated by them, § T is defined
: . 2k+1 .
if and only if given any point x € ‘P\ , there is at most one
line through x meeting L 5 and Lq» .

Consider L :U{ L (¢ the linear manifold generated by

L
,x )‘ (€,7)
e QG), for which § < is not defined.
2k +1

The dimension of all such L £ 2k, hence =z - L
A A W R

. . + .

is open and dense in [R . By the above remark, if we take any

point x€ U , then for any (& ,T ), V&(P ,Wﬁ@, at most one
line through x meets § and ‘T , that is, at most a finite number
of lines through x meet P more than once. But each of these
finite number lihes through x may meet P more than twice, By
similar arguments using triples (& ,T ,f ), €, T, € (P, we

! 2k +1 1
can get an open dense set  C\L C R such that if x E.\L,

only a finite number of lines meet P more than once, and each such
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meets P exactly twice. Now we ~hoose such a point x; let L1,..., Lp.

be the lines through x which meet P at two points. On each Li’
gall the point on P nearer to x as Ni, and the other Fi’ and

consider the set N1 se ey Np . If k),.?., we can put N1 seaey N

is a 1-cell in P not meeting Fi' Let N be a regular neighbourhood

of that 1-cell in P. We can choose N so that Fi% N for all i.

N is a k-cell and (its complement in P) say F is another k-cell
x #* N is a (k+1)-cell, b(x *#N) = NUx * bN, and F meets

x #* N, exactly in b N. Hence by theorem 7.1.6, here is an isotopy
of [R™*'". taking N onto x * ON and keeping F fixed, But
now {x * 9 N)UF is the boundary of the (k+1)-cell x * F, Since
P is moved to (x *b N)\UF by an isotopy, P also bounds some
(k+1)=-cell. O
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Appendix to Chapter VII

In the theory of reguler collapsing, let us add the follow-

ing operation (due to J.H.C. Whitehead): 2lso namely the operation of
removing & principal simplex (open) from a simplicial presentation.
This is called "perforation". If /é is a simplicial presentation,
and % ' is obtained from ’S ty removing a principal i-simplex, we
will say that " A’ is obtained from A by a perforation of dimension
i", or more briefly " /g.' is obtained from & by perforation (i)".
If in the definitic;n or regular collapsing, we did not put the res-
triction that the dimension of the major simplex should be greater than
that of the outer edge, then perforation also would come under regular
collapsing. Since regular collapsing as defined in 7.1 does not change
the homotopy type (even the simple homotopy type), where as perforation
does, we prefer to distinguish them.
A1, Let ;g' (&be simplicial presentationisuch tl;lat é' is
contained from /S, by an elementary regular collapse (n) at outer
edge § and major simplex D = 6T, Let PQA‘ Then

a) Lk(?,/&) = Lk(f),/gl) if P is not a face ofA .

b) If U & f‘(ﬁ, then Lk((\‘3 ,ﬂ;) is obtained from

Lk(f> ,/g}' by a perforation of dimension (n-—dimf -1).

c) If PC A and Wi*? , then Lk(f,/S') is

obtained from Lk(?, /’i) by an elementary regular
collapse of dimension (n-—dim? -1). 0O
The verification is easy. The only faces of A which are

not covered by (b) and (c) above are of those in 4-— A ', that is
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those which contain ¢ as face. Of course these do not appear in /S ‘.

Supposga /i collapses regularly ‘n) to CE . If f&/g-% s
P has to disappear in some collapse; let us denote the major simplex
of the recular collapse (n) in which f) is reroved by &n If
ETF> is the outer edge of the particula- collanse, then Er%s < F
What all is left of Lk(P,A) at this stage is ,k P Af’}) With
this notation, using A.1, we have easily the following:
A2) a) If Pez, then Lk(f,z;) is obtained from

Lk((i> ,%) by perforations and regular collapses

of dimension (n-dim F-t}

b) If ?Q X 75 , then Lk(f’ Laiﬂg) is obtained

from ’Lk(f ,A) by perforations and regular

collapses of dimension (n-dim (3 -1). 34

Let @C (J\be simplicial presentations and suppose 03 is
obtained from G‘- by regular collapses and perforations of dimension i.
Then we can rearrange the operations so that perforations come first
and regular collapses later. This is =asily seen by considering one
perforation and one regular collapse. If the perforation comes after
the regulsr collapse, we can reversez the order; of course the converse
Vis not true. By 2 finite number of such changes, we can perform the
perforations first and the regular collapses later, so that the end
result is still@ . I ‘m‘is a connected PL{i)-manifold, the
effect of a perforgtion (i) upto homotopy type is the same as removing
a point from the interior of \OL‘ . Since a regular collapss does not
change the homotopy type, we have

A3) If \(S\_\’is a connected i-manifold, andog is obtained from



186

|
by k perforations (i) and certain elerentary regular collapses (i),

then \@‘ has the same homotopy type as O'\_} with k interior points
removed. In particular if \G\’ is 2 i-cell then t@)‘ has the homotopy
type of a wedge of k|spheres of dimension (i-1). If {O\.\ is a i-sphere
then\@l has the hovTotopy type of a wedge of (k-1) spheres of dimension
(i-1). ©

Of course, in the above when i = 1, the wedge of O-spheres

has to interpreted properly. That is we should take the wedge of k
O-spheres to be (k+1) distinct points, in particular if k = O to
be just a point. Suppose \@.\ is a i-cell, and \@{ has the homotopy
type as point, for example when \@\ is a i-cell or an (i-1)-cell.
Then there cannot be any perforations. If ‘ O'L‘ is a cell andf@\ =6‘GL‘,
there is exactly one perforation, If |QlL\is a i-sphere and |G| and
i-cell in it, again, there is exactly one perforation,

It should be remarked, that all the above statements are
made for the sake of proving Lemma 7.1.5 to which we proceed now.
Let us first recall the definition of the upper boundary. Consider% )
a simplicial presentation of an n-cell A regularly collapsing (n)

to :G , where l%( = Bis an (n-1)-cell in A, Let the individual

Kk h %

where Xi* 1 is obtained from N by an elementary regular collapse(n)

stages be

at outer edge 6‘1 and major simplexAi = 6‘; CTi. (This is the
hypothesis for the rest of the appendix). Then the upper boundary oféi

(denoted by 3(£IS$)) is defined inductively as follows:
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3 (AlB) - T SETETRT
5(/21”2;{3 i ‘Ei*acri}U bs_i*:(i ’

The trouble with this definition is that it is not clear that it is well

defined, e.g. that Ei *aﬁ(‘i(b (Z 1\26). So we consider the following:

&i\x% Uif 'E is an {(n-1)-simplex of Xi such

that (1) if E& /g -—% then E is the face of exactly one n-simplex
of/g (2) if E &2.‘5 then E is the face of no n-simplex of /g }

We claim that c)( X = 6 “ . To begin with they are

equal, that is when i = 1, Suppose they are equal for i. Then we
> ) > 1

will show that they are equal for i+1 alse, In 5— (% i‘ z) and

1, , .
(414’1‘\2; ), the only changes can be from faces of a Now

all the (n-1)-simplexes 1“{6-}3*5:5 ‘7(" '?Shave to be in b (/g \Qg)

since Ai is the only n-simplex of % having them as faces. So by

induction 6"',* afr is really in @ (/&,‘x). Now consider
g1(£5.+1 I;) None of the (n-1)-simplexes of {6‘ & ib"(‘j}
in this, since they are not in /%‘-H'
SLb 5"& {“‘(‘ ‘& have to be in b (41*1\3 Y. For, consider any
(n-1)-simplex E of{a 6'18"“{“('1} If E is inz , then Ai

the only n-simplex of & having E as face, since that is removed

The (n-1)-simplexes of

there is no n-simplex of éiﬂ having E as a face. If EE& £ -% s
there are two n-simplexes in /g having E as a face. One of them A 3

is removed, The other should be in 4

o’ since otherwise E cannot
i
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be removed in any of the later collapses. Thus a@" %C'( is in
a(&ﬂ % ). Slnpe we have accounted for all the (n-1) faces of

Al, these are the only changes from a (A L) to é (41*-!‘23 ),
that is "

?t(xi+1‘% )3 = 51(&\%) - 55_ *BTiEU (561 * 51)

| — ”_'1 —
Hence by induction a and a coincide for all i, and a is well
defined. ?

at AR,

Proof: Suppose ¢’ i(_"é ( )si];z;). There sre four possibilities:

Either (1) ‘f‘icfbﬁ._s 1)
or  (2) g, C0B

A
or (3) TlCB-BB @

or (W) T,CA-h Y A

We will show that H"l Cd (41\%) is impossible in —éaach case.

By A.2 in cases (2) and (3) Lk(®’;,%§ ) is obtained from
Lk(T’ );) by perforations and regular collapses of dimension
(n-dim f(“i - 1), 3In cases (1) and (4) Lk(‘T {AC(}S) (with the
notation of A.2) is obtained from Lk("('i,)g ) by perforations and
regular collapses Qf dimension (n-dim ¢y - 1). By A.3 and remarks
thereafter, there ;:annot be any perforations in cases (1) and (2) and
there is exactly one perforation in cases (3) and (4).

By A.?;§ b) in the collapse at outer edge G"i and major

simplex A:‘x. = 6”1‘”("1, what happens to Lk( ‘T'i,Ai) is exactly a
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perforation of dimension (n-dim T‘i - 1). So straightaway we have
C('i(' 61’& -B or ’Ti (EB is impossible.
So, the only possibilities that remain are (3) and (4).

Let us consider case (4) first, We claim that if q' iC a(/gi\£)

the one perforation on Lk(F ., A } is already made. Since \Lk(‘t"i, A \

is a sphere, any (n~1)-simplex of /& having i as a face must be the

face of two n-simplexes. So T, cannot be in A 1B) (A=A ;).
For the same reason, ', camnot be in any 3 |B) witn

Lk( T, /§j> = (T, /&,). This T, ('S (Xi[z) implies

e T3, £4) # Le(T, ,A)). Suppose Lk(T,, A) 1is changed for the

first time in the kith collapse, k, i, that is Lk( C(“'i,jk ) =
) . ; i

-y A, v (T &) A, ). since 1, 4)

is a sphere; this operation from Lk("{“i, 31) = Lk( ‘Ti’ Xk ) to
i

k(T ,é +‘) is necesésarily a perforation. So the one perforation
i

on Lk("(“i, &) is already made. But in the i®"

collapse alsc what
happens to Lk( ‘Ti,/& i) is a perforation since Z\ ;T G’i q s (by

A, 1.b), &ince this is impossible ‘Ti cannot be in A - O A,

Let us consider the remaining possibility 3), ¥ iCB ~-3B,
ILR<?1’£>\ is an i-cell with boundary ‘Lk(?’ i,%)‘ . If
7 ;C d(&im, we have to show that "(‘"iCB - 0 B is also impossible.
The case when dim "(' ; < n-1 1is easily disposed of, since in that case

there is no n-simplex having ', as a face. As in case (4) "(’i is

. not iné.(&l]:fg) and ‘Ti cannot be in 6 (/SJ‘%) if
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Lk( ‘T’i,/&) = Lk(“(i, Jj)' Again, the first operation on Lk('(i,/gj)
has to be a perforation. For, all the outer edges of Lk("("i,g 1) are
in Lk("{'i,'zg), and a regular collapse Of. Lk( Ti,A1) removes a part
of Lk( C(’l,ﬁ) Thus T Cé (ﬁil%) implies that the one perforation
on Lk(‘{“i, &) is already done. But then the result of the itP
collapse will beggain a perforation on Lk('ri,Ai) by A.1.b) since
A i = 6"'1 "{’i. So this is again impossible.

Thus ' ; cannot be in S(Ailm) for any i. Q1
A,5. With the hypothesis of A.4, -5 (Xiigg) is an (n-1)-cell with
constant boundary = Ps) (,‘24) = Q B.
Proof: O (Afgf) is en (n-1)-cell with boundary = 0 B. Inductively,
assume that g (gi‘z') is an {n-1)-cell with boundary bB. By A.4,
((”‘i ¢§( /gi*x); in particular it cannot be in ®B. Since
q; ¢8( Aiim)’ no simplex of /& having ‘Ti as a face can be in
S(&i\%). So ¢ G‘i # E%i intersects 5(33%) precisely along
bﬁ”‘i *b‘]’i. Define (91 : 9 (41‘%) > (£1+1\%) by

. » . o * — * s
(P ; ¢ Identity outside® 6 B‘Ti, and on G ac(i, @i is
the join of the identity map on  §, *3T . and the map which carries
' i i

the centre of §~ i to the centre of "[" . (P 1 is clearly a polyhedral
equivalence; hence—é (é_ 1‘26 ) is an (n-1)-cell. To see that

14
0 (6(/%1\:,5 )) = a(_é (£i+1\%)), observe that the part of g_i *a‘ri

(if any) which is in 0O (9 (éi i’Zg)) should be in § §~ * AT i Since
i
C? i is identity on this part, both the cells have the same boundaries.fl
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Chapter VIII

Handles and s-—cobordism

8,1. Handles.

A handle of dimension n and index k, briefly called a

(n,k)-handle, (cv a k-handle) is a pair (H, T) consisting of an
n-cell H and (n~1)-manifold T of YH, such that there is a poly-
hedral equivalence
" f: HYA®B -

where A is a (k-1)-sphere, B & (n-k-1)-sphere, and f(T) a regular
neighbourhood of A in A * B, i

We denote handles by lower case script letters, as ’ﬁ é
and so on.

Given é handle (H, T) as above, we call T the attacﬂing

tube and S H -~ T the transverse tube of the handle. The polyhedral

-1
equivalence f in the definition can be so that f(T) = @ (L(),ﬂ),
where q) t A¥B-> 0,1 isthe join of A~—50 and B—~—51.

When this is so, f"’(A) is called an attaching sphere and f"‘(B) a

transverse sphere of the handle.

The pair (H, m) is clearly a handle of dimension n
and index n-k. It is called the dual of (H, T), and denoted by (H, ),
The cone on X is denoted by C(X). We know that, by a
standard mistake, C{A # B) =2 C(A) X C(B). This equivalence will make
CP“’([O, %]) correspond to A X (C (B). rTherefore, in defining a

handle, we could require, in place of f, the existence of a polyhedral
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eauivalence
g: HxDx D
where D is a k-cell, A an (n-k)-cell, and where g(T) = (QD)X OB,
With this formulation, for any e in the interior of A ,
then 0D A e is an attaching sphere; and for any f in the interior
of D, then fXO0O is a transverse sphere, in the handle
(DX A ,(ID)XAD), If eg int A , we call DX e a core of the

handle. If e QA , we call 1) % e a boundary core or a surface

core of the handle. Similarly transverse cores are defined, and the
definitions can be extended to arbitrary handles by using an equivalence
with the standard handle (so that even in the standard handle, we have
"more" cores than defined above). Note that there is no unigqueness
about attac’hing spheres, transverse spheres and cores in a handle, only
the attaching tube and the transverse tube are fixed.
Ex, 8.1.1, If H is an n-cell, and S a (k-1)-sphere in QH,
S 1is an attaching sphere of some (n,k)-handle (H, T) if and only if
S is unknotted in OH. DO

We have the following two extreme cases of (n,k)-handles:
If (4, T) is a (n,0)-handle there is no attaching sphere (T = @), OH
is the transverse tube as well as the transverse sphere. Any point in
the interior of H can be considered as a core. If (H, T) is a
(n,n)-handle, H is the attaching tube as well as the a.ttachiné sphere,
the whole of H is the core. Also, note that for an (n,!)-handle,

the attaching tube consists of two disjoint (n-1)-cells.
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8.2. Relative n-manifolds and their handle presentations.

A relative n-manifold is a pair (M, X), X( M, such that
for every a £ M - X, the link of a 4in M is either an (n-1)-cell
or an (n-1)-sphere, If (M, X) is a relative n-manifold, ¢ (M, X)
denotes the set of points of M - X whose links are cells. (M, X)
is not a polyhedron, but (M, X)) X and POLX) = o(M,X) ) (X077 (4, X))
are polyhedfa; so that (® (M,X)UX, X) and (D (M,X), X1) - (where
x' = xn Y LX) ) are relative (n-1)-manifolds without boundary. Any

compact set in O (M,X) 4is contained in an (n-1)-manifold contained

in 0 (M,X),
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We somet'imes denote a relative manifold (M,X) by Gothic
letter such as T , and Q (M,X) by o',

1f (M,X) is a relative n-manifold, and A an n-manifold,
such that AN M = JANJM,X) 1is an (n-1)-manifold, then it is
easily proved that (using, of course, theorems on cells in spheres etc..)
that (MU A, X) is a relative n-manifold. As in the case of the
manifolds, we have the following propositions

8.2.1, Proposition. Let (M,X) be a relative n—ma.nifold, C an n~cell

such that CAM = 3CNV(MX) is an (n-1)-cell. Let W be any
neighbourhood of CAM in M. Then there is an equivalence
| fi(MX) oy (M Uc,x)

which is identity outside U . 0O

Let BC QA and f: B —) M be an embedding with
£f(B)CQ(M,X), and B an {n-1)-manifold. Then there is an identi~
fication polyhedron M&% 4; and with the obvious convention of not
distinguishing notationally between X and its image in (Mk% A),
we have (M\% £,X) is a relative n-manifold, which we shall say is

‘obtained from {(M,X) by attaching (A, B) by an embedding f. Of

course, doing all this rigorously involves abstract simplicial complexes,
their realizations and proper abuse of notation; and we assume that
this is done in each case without mention.
Let C= (M,X) be a relative n-manifold, and
’K1 ’”'"{p be (n,i)-handles, ‘g.j: (Hj, Tj). We speak of

jn‘( +'{1 .. +Kp, when

1) HAH =g

3
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2) HoM o= T,C¥M,  for all i

In such a case geflmtmn,

e+ { = (MUHVU .. Vi, X).
p 1 P

find we say that 1L K1 .. * ﬁo is obtained from MY by attaching

&

p (n,i)-handles Qv p i-handles.

Also if we have fi H Ti —-—--)»B‘Wt embeddings for 1 = t,...,p

and f; (T,) n fj(Tj) = ¢ for i # j, we may look at what we obtain

from Y by attaching £1 ,...,{p by the maps fl""’fp’ The

result we denote by YVC U ’K V., u # and say that it is obtained
£ p
T P

from YV by attaching p (n,i)-handles by imbeddings £,

8.2.2. Definition. A handle presentation of a relative n-mani fold

(M,X) is a (n*2)-tuple K = (A_yse. .,An), of polyhedra such that,
?) XC_&'X‘,’C_....CAYI':M
2) h_, W X
3) (ixi,}{) = O‘Li is a relative n-manifold for all i

4) For each i, there exist finitely many handles of

index i ﬁ(l) 3resey ;{( i) s such that
Oy =0y, v R e {W
i i~

It follows from 3) and 4) that A_, 1is a neighbourhood of
X in M. A : W X implies that A—-IVN’ for some regular neighbour-
hood N of X in M (see Chapter VI). We can even assume that

N C int

wh . Nowif B = bd.MN then A - N N B, hence is a collar
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over B. Thus there is an equivalence of A_,‘ to N which fixes X
that is polyhedrally 4 . just looks like a regular neighbourhood of
£ in M,

- Consider a relative n-manifold (M,X) where M is a

PL n-manifold, and X a PL (n-1)-manifold in M. Such a relative

manifold, we term & special case. If (M,X) is a special case, and

X - (A-i""’f*n) is a handle presentation of (M,X), then clearly
A_;RX K I, moreover the equivalence can be assumed to carry x to
(x,0) for x & X.

8.2.3. Theorem, FHvery relative manifold has a handle presentation.

Proof: Let Nt = (M,X)  be a relative n-manifold; let (P be a regular
presentation of M with a subpresentation ')(. covering X. With a
centering Y‘ of @ , we define the derived subdivision d (GJ R \'\) s

and some derived subdivision d° @ of d(pP,n) . Define

¢* =|st(ye, dé@)\ , for C €@
SRVERALEY A
i U {-C*‘Cﬁx , or C(.(Pand dim C ¢ k}.

To thow that = (A, ,+.., A ) is a handle presentation of YV ,
1 n

=]
#

it

we note:

(1) 4_, :{ Nd(q},v‘) G ?Q)\ is a regular neighbourhood

of X in M.
(2) (4, , X) 4is a relative manifold. In fact, if 5,
*
is any subset of G) , containing X, , and ®, denotes U{'C%‘C EG&,

% \
then ( (3, X) is a relative n-manifold.



197

These are easily proved,
The oniy thing that remains to be shown is that
A~k = Ak-1 + k-handles. The i-handles svidently have to be
(c*, ¢* n {3¢1™), zor © €(P -2 end dim C = k. There are twe
different cases to consider, depending on whether C is in the interior
or boundary of /. iny how, C¥ is an n-cell, since N CEM-X and
(M,X) is a relative n-manifold.
There is a canonical isomorphism
Lk(nC, a*§) % a(uk(nG, 4@ )),
which for DCC, takes C*AD® +to
DT ={st(nD, alik(me, a@ IN|.
This shows that C¥* N {5 C}% corresponds to

NLk(nc, d@)(d {ac}) in d(Lk(w C, 4@ )).

4 further fact iss

-

k(nc, d() = a {3 ¢}« AC

Now if C is an interior k-cell, |AC| is an (n-k-1)-sphere;
and so, composing all these facts together, we get a polyhedral equiva-
lence f£: 0(C™) = 0c * |Ac| which takes C* A {a C}* onto a
regular neighbourhood of OC. This directly shows that (c*,c* n {6 CS*)
is a k-handle. |

If C is a boundary k-cell, then \?\C‘ is an (n-k=1)-cell.
Let F be a cone on \;\C§ ; we then use the standard trick which makes
C* , which was the con= on | Lk(WC, d2@ )], which is equivalent to
oc * |Acl, equivalent to C XF:
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gt CFn X T,
in which the set C° N },a C}*, which was manped to N4 {503 ‘”‘/\C(d {bC}>>
corresponds to
gc*n 3¢} = do)x L,
This shows, from our second way of looking at handles, that
(¢, ¢ N{dcl") is a k-handle.
We might remark that in case (i), C be(c*) is an attaching
- sphere, but that in case (ii), this lies in the boundary of the attaching

tube; that is why case (ii) is somewhat more complicated than case (i).({J

8.3, Statement of the theorems, applications, comments.

Here we state the main theorems of handle-theory and apply
them to situations such as s-cobordism and unknotting. We outline the
proofs, so that the rest of our work is devoted to the technigues which
make this outline valid. We say a few words about gaps (such as a
" thorough discussion of Whitehead torsién) for which there are adeqﬁate
references. Our theorems and proofs are quite similar to those well-
known for differential manifolds; of course, there is no worry about
rounding off corners; there is no need to use isotopy-extension theoremg,
since cellular moves suffice., Finally, the crucial point is for homotopy
to imply isotopy in certain unstable dimensions; the result needed here
has been described by Weber, [- see C. Weber, L'élimination des points
doubles dans le cas combinatoire, Comm. Math. Helv., Vol.bT{ Fasc 3,
1966«67_7; for variety and interest, we prove the necessary result in

a quite different way
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. 8.3.1,  Definition. A relative n-manifold (M,X) is said to be

geometrically trivial, if M y X

1f (M,X) is a special case, where X is an (n-t)-sub-
manifold of @ M, M an n-manifold, then geometric triviality means
just that M= XX I with X corresponding to XK 0.

When A(C B are finite CW-complexes, with RC)B a homo-
topy equivalence, the torsion of (B,A), denoted by T(B,A), is a
certain element of the Whitehead group of W1(B).
8,3.2. Definition. Suppose (M,X) is a special case. That (M,X)

is algebraically trivial means:

(1) XG M is a homotopy equivalence.

(2) T(MX) =0

(3) B(M,X)C) M induces an isomorphism on ﬁ",

/ Remark: Using a form of Lefschetz duality in the universal
covering spaces, it is provable that (3) is implied by (1) plus the
weaker condition that % (M,X)G M induces an injection on ﬂ.j 7.

If (M,X) is not a special case, let N be a regular
neighbourhood of X in M, Define M, = M- N, and X, = bd, N.

Then (M1, X1) is a special case, uniquely determined, upto pol’yhedral
equivalence, by (M,X). We call (M,X) algebraically trivial whenever
(M,, Xi) is algebraically trivial.

When we know of (M,X) that only conditions (1) and (3) are
satisfied, (M,X) being special, we call (M,X) an h-cobordism, and
T'(M,X) the torsion of of this h-cobordism. |

Clearly, if (M,X) is geometrically trivial, it is also
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algebraically trivial. The converse, we shall show, is true for
relative n-manifolds, n30 .

Let (M,X) be a relative n-manifold which is a special
case, Here are the main results.
Theorem A, If (M,X) is l-connscted, and& ¢ n-4, then (¥,X) has
a handle presentation with no handles of indicse & L. If further-
more, (M,X) has a handle pressntation with handles of indices £ p
only, then it has a handle presentation with handles of indices ),2.+ 1
and £ Max( L+2,p) only. 0O
Theorem B. If (M,X) has a handle presentation with handles of
indices ¢n-3 only, and n3 6, and if X (M is a homotopy equivalence
with T(M,X) = 0, then it has a presentation without any handles; so
that M Yy X, O
Theorem C. If (M,X) is aleebraically trivial and n)6., then it is
peometrically trivial. (O

Theorem C holds for the gzen-ral relative n-manifold, and this
follows from Theorem C in the special cas. by referring to the special
case (M,, X1) described earlier.

Theorem 4 and B imply Theorem C by duzlity, which is
described in 8.8. We start with a handle presentation Q—Q of (M,X);
by Theorem & -~ we can chanse the dual presentation 3{ * into one with
no handles of index £ n-4; dualizing thié, we get a handle presentation
gﬁ?

applies to S'e 1

of (¥,X) without handles of indices ) 4; since n 26, Theorem B

8.3.3. We now list the techniques used in proving Theorems A and B.
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(1) Cancelling pairs of handles. In = handle presentation

2}€,= (ILI seeey An), sometimes there is a very gxplicit geometrical
reason why a (k-1)-handlr % and »  k-handls fé nullify each other,
so that they can bo dropped from the handie presentation. If N is
the transvorse tube of fﬁ , end T the attaching tube of %% , and
N<NAT 2nd T - NAT are both (n-1)-cells, this is the case. This
alone suffices to prove Theorem & when L = 0. We discuss this in 8.5.

(2) Modifying the handle presentation. We want to shrink

down transverse and attaching tubes until they become manageable, and

to isotop thines around. This can be done without damaging the essential
structurc, which consists of (a) The polyhedral equivalence class of
(M,X), (b) The number of handles of each index, (c) The salient features

> algebrai =, namel he s A A A A
of the algebraic structure, namely, the map IT—k( » k—1)—?ril1( vt k—2)

and bases of these groups. This is done in &.L.

(3) 1Inserting cancelling pairs of handles, the opposite to (1)

is sometimes necessary in order to simplify the algebraic structure;

this occurs in 8.6. This, togcther with (1) and (2), allows us to
prove Theorem & for £ = 1, at the expenss of sxtra 3-handles. Once

we have done this, there are no more knohttv group-theoretic difficulties,
and the universal covering spaces of the Ai’s are all embedded in

each other. Then we can tazke a closer look at:

(L) The algebraic structure. This consists of the boundary

maps FYL (Ak,Ak_1)-+ rT;—T(“k 1’Ak 1), When there are no 1-handles,

these groups are free modules over the fundamental-group-ring, with

bases determined, upto multiplying by * FT, by the handles. We can
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change bases in certain prescribed ways by inserting and cencelling
pairs of hendles, This allows us t» set up a situation where =

(k-1)-handle and a k-handle algebraically cancel. We discuss this in

8.9. And now, both Theorems 4 and B folliow if we can get algebraically
cancelling handles to cancel in the real geometric sense. This amounts

to getting an isotopy out of a homotopy of attaching spheres; this is,

of course, the whole point; all the other techniques are 2 simple trans-—
lation to handle presentations of the theory of simple homotopy f.ypes

of J.H.C. Whitehead.

(5) The isotopy lemma. This is the point where all dimen-

sional restrictions really make themselves felt., The delicate case,
which applies to (n-3)- and (n-4)-handles, just barely squeaks by.

8.3.4. The s-cobordism theorem. By 2n s-zobordism is meant a triple

(M;A,B), where M 1is an n-manifold; # and B are disjoint
(n-1)-submanifolds of & M; g M- AUB 1is polyhedrally eaquivalent to

O AK I in such a way that O A corresponds to 9 A X O (and, of
course, BB to OA X 1); AGM and BG M are homotopy equivalencfas;
and T (M,4) = 0.

A trivial cobordism is a triple (M;A,B) equivalent to

(AXI; AX0, A X 1),

Theorem. If (M;4,B) is an s-cobordism, and dim M) 6, then

(M;4,B) is a trivial cobordism.

Proof: This follows from theorem C.. The pair (M,A) 1is a relative
manifold, special casc; and all the hypotheses of Theorem C are-clearly

valid; in particular, [\ 1(B)’-:; Ht(a M-4) '»‘:(T’(M), since BGM is a



203

homotopy equivalence. Hence, by theorem C, (M,A) is equivalent to
(AX I, A X0). We know, by assumption, that M- AyUB is a

regular neighbourhood of 04 in EM - A3 and clearly DAKI is a

regular neighbourhood of 84X O in QAR 1) - & X 0y Thus we can
fix up theé equivalence of (M,:l) to (A% I, A®O) to take QM-4y B
onto B AX I; this leaves B to map onto A %1, which shows the
¢obordism is trivial. 0

We remark that if YU (A) is trivial, then T(4,4) = O |
automatically, It is with this hypothesis that Smale originally proved
his theorem; various peoplé (Mazur and Barden) noticed that the hypo-
thesis needed in the non-simply-connected case, was just that AC) M
he a simple homotopy equivalence (whence the "s"); i.e. U (M,4) = O,

8.3.5, Zeeman's unknotting theorem. We have already described the

notion of an unknotted sphere.
Theorem. If A( B, where A is a k-sphere, B an n-sphere, and
k & n-3, then A is unknotted in B.
Proof: By induction on n. For n £ 5, the crses are all quite trivial,
except for k = 2, n = 5, which has been treated earlier, For n >,»6
we will show that the pair (B, A) is equivalent to the suspension of
(B': A') where B' is an (n-1)-sphere and A a (k-1)-sphere; and
clearly the suspension of an unknotted pair of spheres is unknotted.
To desuspend, for n 2 6, we proceed thus:
If x€A, then the link of x in (B,A) is a pair of
spheres which is unknotted, by the inductive hypothesis. That is to

say, A 1is locally unknottsd in B. In particular, we can find an n-cell
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EC B, such that EN A is a k-cell unknotted in E; and so that
(3 E, Q(ENA)) is bicollared in (B,A); in fact, this coald have
been done whether or not A were locally unknotted.

Define F =B - B, B};earlier results ¥ is an n-cell.
Consider the relative manifold (F, FAA)., It is easily seen that
this pair is algebraically trivial; becauce of codimension > 3 all
fundamental groups are trivial, and so Whitehead torsion is no
problem; the homology situation is an easy exercize in Alexander
duality. Hence, by Theorem C, F collapses tc Ff\g , since FQ A
is'a k-cell, it collapses to a point; putting these together, (F, Ffa)
collapses t0 (pt, pt) in the category of pairs; these collapses are
homogeneous in the pair (BjA) because of local urkncttedness. We
started with (F, FMA) bicolliared, and hence, by the regular neigh-
bourhood theorem, suitably stated for pairs, (F, FNA) is a regular
neighbourhood of x € A in (B,A), whicn is an unknotted cell pair
(again using local unknottedness).

Thus (B,A) is the unioa of two uninotted cell pairs
(E, Er\A) and (I, FMA), wiich shows it is poiyhedrally equivalent
to the suspension of (O X, (ENA)). =
Remark 1. This is just Zeeman's proof, except that we use our
Theorem C where Zeeman uses the cumbersome technique of "sunny
collapsing™,

Remark 2. Lickorish has a theorem for desuspending general suspsen-

©

. s no, . : R R .
sions embedded in S in codimension <~ 3. It is possible, by

similar argument, to replace "sunny collapsing" by Theorem i. The
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case n = 5 can be treated by & very simple case of sunny collapsing.
Remark 3. If ACB, where & is an (n-2)-sphere locally unknotted
in the n-sphere B, and n } 6, and B - A has the homotopy type of a
l-sphere, then A is unknotted in B.

Proof exactly as in the codimension 3 case; we need to know
that Whitehead torsion is O0K; which it is since the fundamental group
of the l-sphere is infinite cyclic; and this group has zero Whitehead
torsion, by a result of Graham Higman (units of group-rings).

HRemark 4, It has been a folk result for quite a while that the
Inknotting Theorem followed from the proper statement of the h-cobordism
theorem, |

8.3.6. Wnitehead torsion. For any group [1 , thers is defined a

commutative group Wh( Tf'). Elements of Wh({V ) are reprasented by
square, invertible matrices over the integer group ring 27U . Two
matrices 4 and B represent the same element in fWh(?T'), if and
only if there are identity matrices Ik and Ig , and a product E of
elementary matrices, so that 4@ I, -E (B®I;). Here

Ik denotes the kxk identity matrix.

Uo
UV =
& (OV).
An elementary matrix is one of the following:
(a) I+ €55 where eij is the nxn matrix all of

Bh
ERa e
(¥

whose entries are zero exceph for the 1 , which is 13 and i £ 3.
(b) &, (&L; k), which is the n=®n matrix ecual to the
identity matrix, except that the kkth entry is 4, 3 we restrict o

to be an element of + [T .
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By cleverly composing matrices of thié sort, we can obtain
I+ ')\eij for any A€ Z [V, for instance.

fddition in Wh( 1) is induced from (B , or, equivalently,
from matrix multiplication.

The geometric significance of Wh([V ) is that a homotopy
equivalence f : K=—>» L between finite CW-complexes determines an
element of Wn(fT ), 1 = V\"1(K), called the torsion of f. If the
torsion is zero, wonderful things (e.g. s-cobordism) happen,

If [T is the trivial group, then Wh( {T ) = O, basically
because Z VU is then a Euclidean domain. |

1r [V is infinite cyclic, then Wh( fT) = 0, by Higman.

His algebraic a.rc{wnent is easily understood; it is, 1n ébme mystical
sense, the analogue of breaking something the homotopy ty’per of a circle
into two contractible pieces on which we use the result for the trivial
group.

If (1 has order 5, then Wh((T ) # 0. In fact, recent
computations show‘ wh( {T") to be infinite cyclic.

Various facts abc;;ut Wh can be found in Milnor's paper.
/[MWnitehead Torsion" Bulletin of AM.S., Vol.72, No.3, 1966_/. In
particular,v the torsion of an h-cobordism can be computed (in a
straight~forward, may be obvious, way) from any handle presentation.

There is another remark about matrices that is useful. Let
A bé an nxk matrix over Z IV, such that any k-row-vector [ i.e.
TRk matrix_7 is some left linear combination, with coefficients

in Z (T, of the rows of 4; in other words, A corresponds to a
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surjection of a free 2 {U -module with n basis elements onto one
with k basis elements. Let Ok denote the k Wk 2zero matrix.
Then there is a product of elementary (n+k)w (n+k) matrices, E,

so that E, (g } = ék . This is an easy exercise,
k nxk

8.3.7. In homotopy theory we shall use such devices as univeral
covering spaces, the relative Hurewicz theorem, and some homology
computations (with infinite cyclic coefficient group). For example,

if (H,T) is a k-handle, then

]

H; (H,T) =0 for i#nh

i

Hk (H,T) = Z, an infinite cyclic group,

We always arrange to have the fundamental group to act on
the left on the homology of the universal covering space.
Suppose that (M,X) is a relative n-manifold, special case,

and (N,X) = (M,X) + ﬁj +...+{ , where the ‘ 's are handles of
j&
index k. - Suppose X, M, N are connected, and that »“‘1(M)-—-)W1(N)

is an isomorphism; this implies that we cé.n imagine not only that M({N,
but that ﬁ(_ hﬁ, where® ~v" denotes universal covering space. Call
- T,

Then the homology groups Hi(f{,ﬁ) are left 2 il —modules.
More explicitly, Hi(f},i'{) =0 if i #k; and Hk(ﬁ,ﬁ) is a free
7 (V-module with basis { ‘ﬁA yeves {ﬁ,g } .  What does (’ﬂl mean?
We take any lifting of 4Qj = (H,T) to = handle (H',T') in N
we pick either generator of Hk(H',T'), and map into Hk(ﬁ.,g) by

inclusion; the result is E{; The ambiguity ih defining ‘_‘ﬁ ; is
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simply stated: If we make another choice, then instead of {}%3} we
haveq(,{ﬁj] , where , ¢ + TV .

When k 2 2, we can go further and say that, by the relative
Hurewicz theorem, T\"k(ﬁ,?a) = Hk,(ﬁ,f:{)zwk(N,M). And thus we have a
fairly well-defined basis of frk(N,M) as n Z (T -module, dependent
on the handles 4{1 seees 1{

This shows, by the way, thzt (N,M) is (k-1)-connected.

p.

We might have expected this, since, homotopically, N is obtained from
¥ by attaching k-cells,

Another thing is 2 version of Lefschetz duality as follows:
If M is an oriented manifold, and X (C M with X a polyhedron,
then Hi(M,X) v Hn—i(M’aM"X)' Since universal covering spaces can all

be oriented, this works there. In particular, if Xg M is 2z homotony

o
Y

e ~ - b
equivalence, then H™(M, X) = O for all i, and so H;(M, @ ¥-X) = O
~ N
for all 4. When o M-X is the universal covering space of bm-x,
that is, when (T,( Ot-X) MM (M), then the relstive Hurewicz theorem
will show that Q M-XC) M is 2 homotopy edquivalence.

8.3.8. Infinite polvhedra. fn infinite polyhcdron P 1is a locally

compact subset of some finite-dimensionsal real vector space, such that
for every x&P, thers is an ordinary polyhedron Q C P, such that x
is contained in the tonolosicol interior of Q in P. 4 polyhedral
map f ¢ P1--§ P,, betwesn infinite polybedra is = function, such
that for every ordinsry pclyhedron @ 7 . Yhe graph T‘(f\ Q) 1is an

ordinary polyhedron.

The category of infinite polyhedra includes ordinary
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polyhedra; and in addition, every open subset of an infinite polyhedron
is an infinite polyhedron.

The link of a point in an infinite polyhedron is easily
defined; it turns out to be a polyhedral equivalence class of ordinary
polyhedra., Hence the notions of manifold and boundary in this setting
are easily defined.

If M 1is an infinite n-manifold, then any compact subset
XCM is contained in the topological interior of some ordinary
n-manifold NC M.

As for isotopies, we restrict ourselves to isotopies which
are the identity outside some compact set; such are the isotopies
obtained from finitely many cellular moves. Any such isotopy on the
boundary of M can be. extended to an isotopy of this sort on M,

We can talk of regular neighbourhoods of ordinary (= compact)
subpolyhedra in an infinite polyhedron, and the same theorems (including
isotopy, in this sense) hold.

These concepts are useful here because if (M,X) is a
relative n-manifold, then Q(M,X) is sn infinite n-manifold. And
now, any isotopy of a(M,X) extends to an isotopy of M, leaving a
neighbourhood of X fixed. In other words, this is convenient
language for dealing with relative manifolds. This is the only’
situation where we shall speak of infinite polyhedra; it is, of course,
obvious that infinite polyhedra can be of use in many other cases
which are not discussed in these notes (in particular, in topological

applications of the "Engulfing Theorem').
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8.4, Modification of handle presentations,
It K=y ,eeee, ) and H = (B ,...., B) are -

handle presentations of the relative n-manifolds (M,X) and (MLX")

respectively, an isomorphism between 3 and D¢’ is a polyhedral
equivalence h t M —% N taking X onto X' and Ay onto B, for
all i. Such an isomorphism gives a 1-1 function between handles and
preserves various other structures:

Let ' = (A__1 sevens An) be a handle presentation of the
relative n-manifold (M,X) and let f : b~ A be & polyhedral
equivalence taking X- onto itself. Then byQ@if is meant the handle .
presentation (B_1 s Bn> of (M,X), where

B. = f(Ai) for i¢ k

B = f(h) = A
Bi = ;‘i for i k.

It is clear that QY ¢ 1s a handle presentation of (M,X),
the handles of index > k are equal to those of Qﬁ’while a handle of I€
of .index ¢ k will correspond via f to a handle of Qﬁ,f.
There is another way upto isomorphism of locking at ‘a& e
A f
Suppose f 3 Ak'"‘) Ah is as before. Let (H, T) be
a (k+1)-handle of the presentation Q€. Attach (H,T) to A not

by the inclusion of T in b(éxk, X), but by f‘T. In this way

attaching all (k+1)-handles we get a relative manifold (Bk+1’ X) and
an equivalence f, extending f. Similarly sttach the (k+2)~handles
to B,,, one for each (k+2)-handle of A, by the map f,., suitably

restricted; and so on. In this way we get a relative manifold (Bn’ X)
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and a handle presentation (,&-1 geenes Bn) of (B.&q,X>-

Ak s Bk+1 PR
- This will be dénoted by gﬁf. fn gives an equivalence of (M,X) with
(Bn’ X) and an isomorphism of &ef_, with ")f

The main usekin this chapter of the above modifications is
for simplifying handle presentations, that is to obtain presentations
with as few handles as possible, or without any handles or without
handles upto certain index using the given algebraic data about (M,X).
It should be noted that (1) Qﬁf neced not be isomorphic to g{and
(2) Qﬁf is not a handle presentation of (M,X). (2) is not a serious

drawback, since 2{;{‘ isomorphic to&ﬁfq via I‘;’ and so whatever

£ .
simplification one can do for & can be done also for g{f"“ which

is a handle presentation of (M,X) or we con first do the simplifications
in g{f and pull the new handle prescntation to one of (M,X) by f;1.
We will adopt the procedure which is convenient in the particular case.
If £k —F A is isotopic to the identity leaving X fixed,
(and this will be usually the case), thengf‘a andé{f, will have many ‘
homotopy properties in common; but more of this later. |

The most frequently used ways of modifications are cataloguei
below:
8.4.1. Let (H,T) be a k-handle of the pres;entaticng—ﬁ = (A”‘,..., ,An)

of (M,X). Then if 5.is a transverse sphere and N = QH-T the

transverse tube, we have N a regular neighbourhood of S in c\)(Ak,X).
If N' 1is any other regular neighbourhood of S in o (AK,X), there is

an isotopy of a (%{,X) relating N and N' and this can be extended
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] . '
to A, to give an end result £, with f1(N) =N, Thengf £y
has its new handle (f1 H, f, T) whose transverse tube is N'. [}

8.4.2, Let (HP T1) be a (k+!)~handle of Y, , with an attaching
sphere ¥ . Then T, is a regular neighbourhood of 37 in é(z‘xk,X),.
If T1' is any other regular neighbourhood of 3 in a('[‘k’)o we
can obtain a polyhedral equivalence f2 of Ak which isotopic to 1
fixing X, such that f, (T’) = T?'. Then :}sz (which is isomorphic
to 261‘51 ) will have its (k+1)-handle corresponding to . (H1, T1)
to have attaching tube T1 ', and handles of index { k will be un-
changed. O,

Combining 8.4.1 and & 4.2, we have

8.4.3., Proposition. Let Jf = (A_1 yeeeos An) be a handle presentation

of the relative n-manifold (M,X); let % be a k-handle and f{ a
(k+1)-handle with a transverse sphere of % being S 2nd an attaching
sphere of é being >, Let N and T be régular neighbourhoods
of S and I in a(Ak,X). Then there is a handle presentationge'
of (M', X') 1is equivalent to (M,X) with 2{: being isomorphic to
Q‘Cf for some f 3 fzk——-% A’k isotopic to the identity leaving X
fixed; so that :‘Ln_g{1 the handles ‘ﬁ‘ and ‘[/’Z' corresponding to
% and A are such that:

the transverse tube of 'ﬁv is N,

the attaching tube of ’é' is T, and

the kB level Ak' of Q{: is equal to the

K jevel A of%e.

Proof: Using the equivalences f, and f2 given by 8.4.1 and 8,4.2,
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( £, . . : : :
:}E,fl) is the required presentation, It is isomorphic to the

ntati ). 5§ ‘ £ re
presen alon%&(f24 ) of (M,X) ince both £, and f, are

isotopic to the identity leaving X fixed, f2"1 £, has the same
property. The last point is obvious. L\

8.4h.4, Let'ﬁi = (H,T) be a (k+t)-handle on}ﬁ , and S an attaéhing
sphere of ‘& ., S is in b (Ak,X). Suppose that €' 1is another
k-sphere in b(ﬁ ,X) and that there is an equivalence f of A
taking X | onto itself and such that £(S) = 8'. Then ingef, the
handle&1 corresponding to T% will have s! as an attaching sphere.
If, for example, we can go from S to s! by cellular moves, the we
can obtain an equivalence f of 4 isotopic to 1 leaving X fixed
and with £(8) = S‘, This will also be used in cancellation of handles,
where it is more convenient to have certain spheres as attackfing spheres
than the given ones. -0

8.4.5. Let % be a k-handle in 2 handle presentation J{ = (A_yseeesh)
of a relative n-manifold. Then if k § n-2, there is h disotopic to the

identity, h_; Ik R 4 Ak" leaving X fixed, such that the handle %,1
of Z}Eh corresponding to ’K; has a boundary core in b(“"x};H,)therP
Hy = Glpsenmh).

(Keader, have faith that this is useful!)

We prove this by choosing attaching spheres for all the
(k+1)-handles, findine a transverse sphere for % that intersects all

the attaching spheres only finitely, noting that the transverse sphere.

contains other points, and then shrinking the attaching tubes and the
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transverse tube conveniently. More explicitly,
Let &1 ,...,{p be the (k~1)-handles ofi}?_ , with
attaching spheres S1 5o ens Sp' Let N be the transverse tube of’{ H

there is a polyhedral equivalence f : N Dk % O n-k so that for

s
any x&int Dk, f_1(k )&B An-k) is a transverse sphere to{h. Now,
(S1U USp)(\N is (£ k)-dimensional, and so, triangulating
projDk e f 80 as to be simplicial and picking x in the interior of
a k-simplex of Dk (see 4.2.14), we héve found a transverse sphere
™= 1 (x xINTH) to ‘K » such that J M\ (SU ...usp) is
finite. Now, § is an (n-k-1)-sphere; and since k g n-2,
contains infinitely many points; there is y¢% - (51\) aee Sp).

Now then, if we teke very thin regular neighbourhoods of
s 5 8, ,...,Sp in b(Ak,X)the regular neighbourhood of $. will
intersect those of S1 yeeos Sp in only small cells near each point
of intersection of ¥ N\ (S1 oo Sp), and hence there will be a cross-—
section of the § ~neighbourhood [i.e. , corresponding to
DEx 2, )2 EB&’_k, (%,2) = f(y)], through y, not meeting any of
the S; neighbourhoods. We make these regular neighbourhoods the

1

transverse tube of 'g. and the attaching tubes of % veny ﬁ s Oy
™ 1 3 p

changing Q{ to (g€g1 )82, where g, and g, are equivalences

g
A —yA  isotopic to the identity, fixing X. In (:‘Eg\ 2  we have
11

a boundary core of the handle corresponding to {L which misses all
the attaching tubes of the (k+1)-handles (this is that "cross—section

through y"). We define h = g2‘1 8¢} and since gEh is isomorphic

g 1
to (ge&) 2 s we have some boundary core of %1 where /ﬁ is
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the handle corresponding to K which does not intersect the attaching

) . {
tubes of all the (k+1)-handles, and is therefore in a(r’tkﬂ, X) e

8.5, Cancellation of handles.

Convention: Let us make the convention that a submanifold of another
manifold should mean this:

If ACB, 4 and B are PL-manifolds, we call A a
submanifold of B, if and only if, A4NQJB is (dim A - 1)-submanifold
of QA We are usually in this section interested only in the case
dim A = dim B,

With this convention, if A is a submanifold of B, then

B~ & is a submanifold of B, and bd o(A) = bd 5B - A) = O A -9B,

If CC BCA all PL-nanifolds such that each is a submanifold of

the next, then A - (B-C) = .1 - B UC, We may therefore be justified
somewhat in writing A = B for & - B,

Thus, hereafter, A is a submanifold of B means that A
is a submanifold of B in the above sense, and in that case B - A

stands for B - 4,

Let = (A wesey, A ) be a handle presentation of a
__1 3 3 n

relative n-manifold (M,X)., Let 'f‘u = (H, dH - N) be a k-handle
with transverse tube N, =and &3 = (X,T) be a (k+1)-handle with
attaching tube T, Note that NUTC a(Ak,K) with the above con-

ventions we can write

B +ﬁ' = ((Ak-'KJ)UK)UH.
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A 7
8.5,1, Definition, We say that ‘P\ and 'é can be cancelled if

1) NAT is a submanifold of both N and T

2) N~ (NNAT) and T - (NOT) are both (n~1)-cells. .

Suppose JQ and 4% can be cancelled. Then
Assertion 1, (Ak -{, JNK is an (n-1)-cell contained in b(Ak—ﬁ, ,X)
and in 0 K.

In fact, (A —é JNK = T — (NOT), which we assumed to be
an (n-1)-cell.
Assertion 2. ((%—X,)UK)(\H is an (n~1)-cell contained in
5((Ak_h)u K,X)and in § H. For

((Ak—ﬁ)UK)nH attaching tube of % plus NAT

(dH-N U (NNT)

OH - (N - NAT)

and this is an (n-1)-cell, since 0 H is an (n-1)~sphere and (N -~ NOT)

is an (n=1)-cell in & H. ' ' .o
Combining these two assertions with proposition 8.2.1, we

have ‘

8.5,2. Proposition. Suppose %ez (A_1 ,;.., An) -is a handle presen-

tation of a relative n-manifold (M,X); and there are ﬁ = (H, O H-N)
a2 k-handle, and % = (K,T) a (k+!)~handle that can be cancelled.
. Let” W be any neighbourhood of YAT in 4. Then there is a poly-
hedral equivalence ,

'f:(Ak-ﬂ,,'x) ~ (Ak+%,x)
which is identity outside WU~ , 0 ‘

This being so, we construct a new-handle presentation
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]

(B_y 5...5 By) of (M,X), which we denote by, - (ﬁ ,é ) as

follows:
By = £ (4) for i<k
By = f (Ak-.‘ﬂ) = iy +&
B, = Ay for iXk.

Tﬁis of course depends on f somewhats.observe that, since the attaching
tubes of the (k+1)=handles are disjoint, the attaching tubes of
(k+1)~handles other than k are in b(ﬁ.k, X) =T C a(Ak +&,x), 50
that QE - (ﬂ,'&) is a genuine handle-presentation,
8.5.3. (Description of 3 - (ﬁ, ﬁ)) The number of i~handles in
X - (‘K,&) is the same as the number of i-handles of 3{ for
i # k, k#1, For ipk, each i-handle of J{ is a i-handle of
4 - ('ﬁ,‘&) bwith the single exception of ’F{ ; and. conversely. For
i 4k, each i-handle on—E except'& , say { s corresponds to the
i-handle f(‘e) of K - (‘K,‘k) and conversely each i-handle of
QE - (ﬁ,,ﬁ) _is of this form. If the attaching tube of ‘& does not
intersect some k-handle '{ , We can arrange f"( to be identity, so
that { itself occurs inQ{-— ({ ,'&) 0

Th; conditions for 'ﬁ. and % to cancel are soméwhat
stringent. We now proceed to obtain a sufficient condition on '{ and % s
which will enable us to cancel the handles corresponding to ﬂ and ﬁ
in some ng: This requires some preliminaries.

Suppose 4, B, C are three PL-manifolds, AUBCC -9 C.

dim A = p, dim B = q and dim C = p+q, 5A=5B=¢ . Let x&h NB,
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8 5,4. Definition., A and B are said to intersect transversally at

x in C, 4if there is a neighbourhood F of x in C and a poly-
hedral equivalence £ : F-jg—) S# 2 % v where S is a (p-1)-sphere,

S a (g-1)-sphere, such that

1) f(x) = v
2) f(AQF) = S % vy
3) f(BAF) =22% v

8.5.5. Proposition. Let S and 5 be (p-1)- and (g-1)-spheres

respectively and B = S* 2 * v |, Let D=83* v |, A=s5* v ,
Suppose Eg is any simplicial presentation of E containing full sub-
présentationsb and 0& covering D and A . Let P = ‘N é (E)‘
and Q m“N Efég )& . Then
1) PNQ is a submanifold both of P and Q and
is contained in the interior of E (P, Q, and
PNQ zre all (p+q)-manifolds)
2) P-PNQ ™ P NOE
Q-PNQ Ny G N JE
Proof: First observe that, if the proposition is true for some centering
of ES , then it is true for any centering of EE . Next, if 75: is
some other presentation of E such that D and /A are covered by full
subpresentations, it is possible to choose centerings of E; and ‘E;
so that P =P and Q=@ (P', Q' denoting the analogoues of P
and Q with reference to ES'). Thus it is enough to prove the
proposition for some suitable presentation Egl of E and a suitable

!
centering of é; . Now we choose "EEI to be & join presentation of
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E=5%*3 % v and choose the centering so that (see 6.8.3 and

the remark thereafter)

P' Q' = |st(v, a &')\ - ¢y (8 *Z ),

PLE'NQ' = (P'ﬁ&E);{};, 1], and
Q-P'n e = (¢ E)x[;, 1] .
And in this case (1) and (2) are obvious. a

8 5.6. Proposition. Suppose A and B are spheres of dimensions

p and q respectively, contained in the interior of a (p+q)-manifold
C and that A and B intersect at a2 single point x transversally
in C. Then there are regular neighbourhoods N and T of A4 and
B in C, such that

1) NAT is a submanifold of both N and T

2) N - (NNT) and T - (NNT) are both (p+q)-cells.
Proofs Let F be the nice neighbourhood of x in C given by 8.5.4
i.e. there is a polyhedral equivalence f : F % E =5 * L ow v
where S is a (p-1)-sphere and $ a (g-1)-sphere, such that
£(x) = v, f(hmF) =S % v , and f(BAF) =% %v . Then (4 - F)

is a (p-1)-cell and (B - F) is a (g-1)-cell. Let /f, and 61

be triangulations of F and E such that f is simolicial with
reference to /51 and 81. We can assume 6 , contains full sub-
presentations covering S * v and Z * v , Now some refinement
/g of /51 can be extended to a neighbourhood of AL B, denote it
by /g', it can be supposed that /S’ contains full subpresentations

1
O'\- s 63 covering A, B respectively. Let T} be a centering of /S
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Denote by a the triangulation of E corresponding to A by f, and

/S. Choose N:\N/g‘(o\)|
and Tz‘N,S, (@)\, end let P, @ be as in 9,5.5, If

by 4. the centering of g corresponding to ‘1

P, = £7(P), Q, = (%), then P, - (PN Q) PNQF end

Q - (PyNG,) Vv Q, NOF. Clearly P,CN, G;CT are submanifolds and
NAT = P1r\Q1. Thus HNT is 2 submanifold of both N and T.

N - (NAT) =N - (PNG) = W-P)U (P~ (PN Q,))  collapses to
(N - P1) since P, - (P1(\ Q1) coll2pses P N 0F C (W - P1). But

Lot in C - F which is a

N - P, is a regular neighbourhood of
(p-1)=cell. Thus N - (NAT) \ N - P1 M & - F which is collapsible.
Thus N - (NAT) is 3 collapsible (p+g)-manifold, hence a (p+q)-cell.
Similarly T - (NAT) is a (p+g)-cell, 0

8,5.6, Definition. Let = (h_y 5eens 4 ) be a handle presentation

of a relative n-manifold (M,X). Let ’{L be a k-handle and k be a

(k+1)=handle of Q"e . We say that (‘ﬁ-, %.) can be nearly cancelled if

there is a transverse sphere S of ﬁ« and an attaching sohere ¥ ofﬁ
which intersect a single point transversally in a (Ak, X).

8 5.7. Proposition, Suppose&‘; is a handle presentation of relative

n-manifold (M,X))ﬁ o kehandle and R 2 (k#1)-hendle in K. If R
and ’&‘ can be nearly cancelled, then there is a polyhedral eguivalence
£ Jlk»-—-) Ak isotopic to the identity leaving X fixed such that,

in Qﬁf the handles ‘ﬁb, and %'(:,{) corresponding to K and% can
be cancelled.

Proof: Follows from 8.4.3 and 8.5.6, [
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8.6. Insertion of cancelling pairs of handles,

In this section we discuss the insertion of cancelling pairs
of handles and two applications which are used in the following sections.

First we form a standard trivial pair as follows:

e

]
\‘
b=
{
’ p
f—

';%”?%}///;?Cizzf a

- 1 ’.«:’../N e ; ‘7"/-;—
Y

Let D be a k-cell, I = (0,1] and A an (n-k-1)-cell,
Then E =DXIXA is an n-cell. Let
Dk 1]x B
dp w[,1\x B
Clearly 4{ = (H1, T1) is a handle of index k. Next, let
Du f0,1)XK A

3 xfo,3) §x 0
{(D % 0) U(DX32) Y (.DoxLo,%;})}xA.

i

1]

T

1

Hy

I

T|
"2

Clearly, i% = (Hy, Tp) is a handle of index (k+1). Finally, let F

denote (DR O XA) U(IDRIXD)., (DX OXA)N(IDWI XA )= 0D KORA,
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is an (n-2)-menifold, hence F is an (n-1)-menifold. Moreover F
is collapsible, hence it is an (n-1)-cell.

Now, let:Mi be a handle presentation of a reiative n-manifold
(M,X); we take an (n-1)-cell F' in e(Ak,X) away from the k- and
(k+1)-handles, That is F' 4s in the common portion of
D(Ak,1, X), B(Ak, x) and o (Ak+1, X) and clearly it is possiblé to
choose such an F' if (k+1)n, that is kg n-2, Now we take some
equivalence o P F', and attach E to A by d, . Denote
the result by %UE. Since E is an n-cell meeting a(Ak,X) in an
| (n-1)-cell F', there is an equivalence f i 4 % AUE leaving X
fixed. Then we get a new handles presentation (B_, se ey Bn) of

(M,X) as followss

-1 .
By = f (Ai) , for ik,
Bi = Ai for j.)‘k.

Next we consider the problem of attaching 2 cancelling pair
of k- and (k+1)=handles (%L,{i) to A, with ft having a prescribed
attaching sphere. We recall from Chaipter VII (7.2) that a sphere in the
interior of a PL-manifold N is unknotted (by definition) if it bounds
a k-cell. In such a case it bounds an unknotted cell (again in the
sense of 7.2), If S and 8' are two unknotted k-spheres in the
same component of N - bN, then there is an isotopy hy of N
leaving N fixed such that h,(S) = S'. Similarly if D and D'
are two unknotted k-cells in the same component of N - 6N, ‘there is

an isotopy of N taking D onto D'." Similar remakrs apply in the
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casé of relative manifolds also,

Now consider just Ak, let F'

a(Ak,)Q end form & UE by an equivalence B F ¥ F',
S= ODX&X e, where 24L& 1 and e & A -0 .
attaching sphere of K; , and '2'_' =5{DKK_O,%}{‘A€ .

= {‘(D %O)UD KU dD X{O,—%l&xe is an attaching sphere of ‘g. .

be any (n-1)-cell in

Consider

S is an

|
' S
/
& >y
; e e mme e agm e e | S
< :
P
P el e iR SRl P .l Tkl s
. [ T
78 ; A €
o i Wz""ﬂ"""?.
® @
y ! P
I .—-—) Py P e T ., oy, | B Smom e
o :
P T L T T T WP QPO P
A—-L§f e 8 @ & 4R g
L

And {‘D)& 0 UaDX[O,o(.]})Qe = C, say, is a k-cell bounding
S = 6D X £ X e, an attaching sphere of ’gu . Moreover
foro v A0 %[0,2]) fxe

¢~ D% [4,d] % e

CAnS

it

i

it

C - (a regular neighbourhood of S in C).

Finally C 4is unknotted in F,

The result of all this is, if A is a (k-1)-sphere bounding

an unknotted k-cell B in b(Ak, X), then we can attach a cancelling
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pair of k- and (k+1)=handles (K,;ﬁ.) such that A is an attaching
sphere of ﬁ and an attaching sphere of 7% intersects ()(Ak,X) in
B - (a given a regular neighbourhood of # in B). This can also be
seen as follows: |

Let L be an (n-1)=-cell, A & (k-1)-sphere in L
bounding an unknotted k-cell B in the interior of L. Let M be
an n-cell containing L in its boundary. We may join A and B to
an interior point v of M and take second derived neighbourhoods,
Let H be 2 second derived neighbourhood of A # v and K be the
closure of &,econd derived neighbourhood of B #* v - H] . Then
(H, HNL) is a k-handle, and (X, (X0OH) U (KnL)) is a (k+1)-handle,
The k-handle has A as an attaching sphere, and an at“baching sphere
of the (k+1)-handle intersects L in (B - a regular neighbourhood
of A in B). Thus we have,
8,6.1. Let R - Chy sevnes An) be a handle presentation of a
relative n-manifold (M,X) and let S C a(Ak,X) be a (k-1)-sphere
which bounds an unknotted cell T in J(h,X). Then there are a
k-handle ‘?\: and a (k+1)=handle ‘P{, , such that

(1) S is an attaching sphere of ‘P\,

(2) There is an attaching sphere 3 of %, with

N “k very closed to T, that is g nAk

can be assumed to be (T~ a prescribed regular
neighbourhood of S in T),
(3) ((Ak,X) + 'R:)+ & exists and is polyhedrally

equivalent to (Ak,X) by an equivalence which
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is identity outside a given neighbourhood of
T in “k
If S is in b (Ak-1’ x)n b(fx ,X) we can choose R. to
have its attaching tube in a (Ak—1’ %), s> that there is an obvious
handle presentation of ((Ak + ‘?\a) +'.€Z , X), We give below two appli-
cations of this construction.

8.6,2. Trading handles. Let 2& = (A g 5euee, An> be a handle

presentation of a relative n-manifold (M,X), Let Py be the number
of i-handles in 3 . Suppose that there is a (k-1)-handle {

(2 & k ¢ n-1) with a transverse sphere $ , and that there is a
(k-1)-sphere S in 3("‘;{_1’ XN o (Ak,X} such that (1) S is
unknotted in 6(Ak,X), (2) S intersects 5 transversally at exactly
one point in 6(Ak—1’ X). Then there is a procedure by which we can
obtain another handle presentation 2{’; of (M,X), such that (a)
for i # k-1 or k+l, the number of i-handles in K is equal to the
number of i-~handles ingf_‘, (b) the number of (k-1)-handles in 2\?,’
is P(ko1)" 1 (c¢) the number of (k+1)=handles in %Q_' is p(k+1)+ 1.

This is done as follows:

First consider only A,. Applying 8.6.1, we can add to Ak

a cancelling pair of k- and (k+1)~handles ({.,ﬁ) such that S
is an attaching sphere of /Fb , and the attaching tube of S 1is in

)
a(Ak—P X). Write (Ak + “?\,) + 7%= B, Then the relative manifold

|
(B,X) has the obvious handle presentation Q‘G = (B_1 yeevas Bk+1)

where
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= (Ak +KJ?£= 3.

In ', the handles { ang ‘?Lcan be nearly cancelled.
Hence for some equivalence f of Ak—?’ isotopic to identity and
} 1 1
leaving X fixed, in Uﬁf, the handles { and Ka (= ﬂ ) corres-

ponding to '{ and ﬁ» can be cancelled, Let g{" = :.k‘f ~( ,R:’ f‘)

"
g{, is a handle presentation of (B,X); +the number of i-~handle in

u ' 1
g for i<kk-1 is py, the number of (k-1)-handles is ¢, is
Py~ 15 the number of k-hendles is p,_ and there is one (k+1)~handle.
Also there is an cquivalence & : “k_‘) B which can be assumed to be

identity near X, Thus we can pull back D(g” to a handle presentation
-1
%of (AK,X) by o

Now, we would like to add the (> k+1)-handles of 3€ to 3{3
to get a new handle presentation of (M,X). But it may happen that
the attaching tubes of the (k+1)-handles of 3 intersect the
transverse tube of &'1( 'P{) which is in c)(lxk,X). However, we can
adopt the procedure of 8.4.5, to get the' desived type of handle

presentations as follows:

Let 7{ (k+1), .&(kﬂ %Q{”) be the (k+1)-handles
1 ) 2 p(k+1 :

T, ..., T respectively..

of with attaching tubes T
3{, § o2 P(k+1)

Choose some attaching soheres S, 5. ., 3 of these handles,

1 (k+1)

and then a2 transverse sphere ’Z\, of (’f% avoiding

Sy seees S . This is done in the same way as in 8.4.5, using
Plr1)
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‘ -1
the product structure of the transverse tube of J; (‘& ) as
ic+1 Ne=k-1 . . . .
VA SVAN and noticing that the Si are now .k-dimensional,
Then choose a regular neighbourhood 1\]1 of 21 which does not inter-

!
sect the Si s and do a modification of type 8.4.1 so that, for some

g, inﬂ{g the handle ﬁ' corresponding {—1(&_) has N, as

its transverse tube., Now choose regular neighbourhoods Ti' of Si

iﬁ 6(Ak'x) such that T.'AN, =@ for all i and T,'AT. =§
’ i 1 i J

for all i, j, i # J. There is an equivalence 3 of A isotopic

to the identity leaving X fixed such that ﬁ, (Ti) = Ti' for all 1.

(k+1) . .
Now attach the handles N to Ak not by the inclusion of Ti

but by f3 ;Ti. Then we obtain a relative n-manifold say (C,X) and .
a genuine handle presentation say 3{91 of (C,X). Moreover the

equivalence [3 of A can be extended to an equivalence g o1 of

' -~
i A
Ak+1 with C., Now pull back :K1 to A, by ( &kﬂ) . In the

handle presentation ( (bk 1)"1 (:K)}) of Ak+1 there are handles
+

only upto index (k+1); so that the handle of index 3 k+2 of X2
“can be added as they are to get a handle presentation of (M,X) of
the derived type. [}

8.6.3. The second application is concerning the maps in the homotopy

groups: \Tk (Ak, Ak—1) ._25.;“;{_1 (Ak-i’ Ak—-2)’ It will be seen later

that under suitable assumptions, these are free Z IV ~-modules with more
or less well defined bases, The problem is to find handle presentations

for which the matrices of bk’s with reference to preferred bases will
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be in some convenient form (8.9. ). Here we describe an application

of 8.6.1 which is useful for this purpose.

Let N be a PL n-manifild; and assume that ON 1is comnected.
Let { ' {2 be two k-handles (2 & k ¢ n-2) so that n 2 4) attached
to N, If we choose a cell in 3 N intersecting the handles as "base
point", any attaching sphere of £1 ( {2) determines a2 well defined

element in ﬂ-k-1 ( ON). Let the elements in (Tk 1(31\7) determined

by ﬁI and 2 be o(,, and o(.z. Let & be an element of

{T,( aN) Imagine that the handles are in the formﬁ .= (Dlei’ aDiXA.l),
i

D; a2 kecell, M, an"(n—k)—cell i=1,2. Let p, ¢ ;. Then,

we have surface cores Ci = Dix Py of ‘e'bi, and representatives
Sy =bDi)€pi of o, ;+ Let P be a path between a point of S, and
a point of 3, 1in N representing ©O. Since n b, we can
assume that P 1is an embedded arc, and since k¢ n-2, that it meets
each Si at exactly one point. Now : P appears also as an arc joining
C, and C,. Thicken P, so that we have an (n-1)-cell Q which
intersects C, and 02 in (k-1)-dimensional arcs E1 and E2
with E:.L = B C{f\hQ. We can be careful enough to arrange for Ei
to be unknotted in b Q, so that there is a k—cell FCQ with
dFNAQ = E Uy E,.

The composite object CyU F U 02 is now a k-cell with
boundary (ST - EI) \)BF - (EIUEZ)] \)(Sé - Ez), which represents

in (Tk 1 (3N) the element q(,1 + 0 & . The sign depends on F,
_ - 5 .

and we can choose F so as to have the prescribed sign (see Chapter VII).

Mrreover we can assume that C,UFUC, is unknotted in d((n +'€\ 1)+K«2)).
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Streteh C,UFUC, a little to another unknotted k-cell T so that
5=3T C (DN - union of the attaching tubes of é , end ‘ﬂ 2).

That is, we have a (k-1)-sphere S in 3 N representing

c(., + & 0 &2 ( € =X1, prescribed) and bounding an unknotted cell

T in (N + { (t 'ﬂz) and S 1is away from Ka1 and 152. We now
add a cancelling pair of k- and (k+1)-handles 'K and £ , 50 that
an attaching sphere of { is S5 and an attaching sphere of /{ inter—
sects b((N + ﬂ1 + {2) along J1UFUC22.

Vow,

N +£1 + ’»{2';“..((1\] + {;,1 + ﬂz) +'K),*&

But then 41 and & nearly cancel, since attaching sphere of % '

’ does, that is,'

at one point, transversally. So that, after an isotopy we can find a

intersects a transverse sphere of {1 exactly as C

1 1
(k+1)=handle é such that 1 and % actually cancel. Thus

(N+£1+£2)+ {’L&% (N+£1+&2)+{+&'
~ (N+7€2+{)-

We have proved,

8.6.4, Proposition. Let N be a PL n-manifold, with connected

boundary aN; nyhb. Let {1 and {,2 be two handles attached to N,

and c(.o1, 062 be the elements in Wk 1 (dN) given by 'ﬁ,‘ and {2;

and © be an element of i 1(3 N). Then there exists a handle ﬂ which

can be attached to N, with its attaching tube away from ‘ﬁ, | and ‘ﬂ 2
so that N +'£1‘ +'£2;~(, N + '{ +7{2, and the element of Wk 1(6 N)

represented by 'g. is &,1 *0 &‘2’ sign prescribed. Q1
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Remark 1: Some details; such as thickening of P, choosing certains
cells so as to be unknotted; are left out. These are easy to verify
using our definition of unknotted cells and choosing regular neighbour-
hoods in the appropriate manifolds. There is another point to checks:
that the homotopy groups can be defined with cells as 'base ‘point.s‘,‘

so that we can get away without spoiling the embeddings (of attaphing
spheres in appropriate dimensions), when“forming sums in the homotopy
groups or the action of an element of the fundamental group.

Remark 2¢: In 8.6.4, instead of the whole of b‘N, we may as well take
a connected (n-1)-manifold N' in §N and do every thing in its
interior; of course, now do, . .L,2 eﬁr_1(N') and Q & W1(N').

Remark 3: The proof can also be completed by observing that S and S1

differ by cellular moves in (N + &2).

8,7, FElimination of O = and 1<handles.

The first thing to do is to remove all handles of index O,
and 1 to attain a stage where W1(Ak)z W,(M). At this point we
can interpret Wi(Ai’ Ai—1) and so on as homology groups in universal

covering spaces and this helps things along.

8.7.1; Proposition. Let (M,X) be a relative manifold, M connected,
X £ ¢ , and J a handle presentation of (M,X). Then all the
O-handles of gf can be eliminated by cancelling pairs of O~ and
1-handles of l}(’. to obtain a handle presentation of (M,X) free of
O=handles.

Proof: A O-handle 'K‘ = (H, ¢ ) and a 1-handle 'g’. = (K,T) cancel
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if and only if the attaching sphere § of ﬁ intersects { in" a
single point; for the attaching tube T of ﬁ consists of two dis-
joint (n-ﬂ)-cells, and the transverse tube of f is 0 H, and so
what we need is for exactly one of the (n-1)-cells of T to be in
OH. So all the O-handles of B3& which are connected to A_, (£ 8,
since X # §) by means of O- and 1-handles can be eliminated. But
every O-handle must be one such; for if { is a O-handle of 3{’_
which is not connected to A_; by O- and t-handles, then 'E together
with all the O- and 1-handles connected to it will form a component

of A, which is totally disjoint from A—l' Thus A, has at least

1
two components,-and so, since WO(A1)-—§ ‘TO(M) is an isomorphism,
we have a contradiction to the assumption that M is conngcted. 0

For the next stage, we need a lemma:

8,7.2. Lemma., A null homotopic 1-sphere in the interior of a

PL-manifold M of dimension » 4 is unknotted,

Proof: Let S be a null homotopic 1-sphere in the interior of M.

We have to show that S bounds a 2-cell in M. Let D be a 2-cell,
and J an equivalence of bD “withe S, Since S is null homotopic
L éjctends to D, Approximate o by a mep in general position
such that ‘3’6 D= &‘OD, and @ (D) C int M. The singular set

82 ( B ) of P consists of finite number of points and SB( R ) etec.
are all empty. So we can partition 82( P ) into two sets

{p, seens pmg ’ {q1 ,.‘.., qm% such that B (pi) = {3(qi), 1¢i¢m

and there are no other identifications, Choose some point p on d D

and join {p, P, yees pmkby an embedded arc V which does not meet any
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of the q.l's. Let N be a regular neighbourhood of ‘{ in D, which
does not contain any of the qi's. N is a 2-cell.

Let N MW D=3NAJID=L, 3N -L =K, and D= N=D',
Since L is-a 1-cell, K is also 1-cell, and D' is a 2-cell..
And PBlN as well'as Pf D' are embeddings. So P (dD') is un-
knotted in M, But by 7.1.6, there is an isotopy carrying @ (L)l to

i3 (K) and leaving p(aD'- K) fixed, that is, the isotopy carries

S  onto [3(313'). Hence S 4is also unknotted. B
Remarks: (1) The same proof works in the case of a null homotopic
n-sphere in the interior of a (‘2n + 2)=dimensional manifold.}

(2) The corresponding lemma is true in the case of
relative manifolds also. |

(3) If S is in QOM, then the result is not known.
It is conjecturedrby Zeeman, that the lemma in tﬁis case is in

general false (e.g. in the case of contractible 4 dimensional manifolds

of Mazur).

\

8.7.3. Proposition. Let a€= (A_1 yeoees An) be a handle presentation
without O-handles of relative n-manifold (M,X) and let \T1(M,A_‘) = 0,
Then by admissible changes involving the insertion of 2- and 3-handles
and the cancelling of 1- Iand 2-handles, we can obtain from aﬁ a handle
presentation of (M,X) without O- or f-handles, provided n3 5.

Proof: Let 'ﬁ be a 1-handle of J€. By 8.4.5, we can assume that

there is a surface core of % in A(AZ, X).

Because IT1(M, A_,) = 0, then W1(A , A_1) = 0 (from the

homotopy exact sequence of the triple (M, A,, A 1) s and so. C is
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homotopic leaving its end points fixed to a path in A_,. B(A__-1 ,X)C A_1

is a homotopy equivalence (we are confining ourselved to the special’

_case after 8,3). So we get a map, where D is a 2-cell

f s D— :’12 - int A_1
with 8D 3G, such thet £(dD- C)C (A Kend £ C = I

Now in the (2 4)-manifold '6(A_1)§the removal of the attaching
tubes of the 1-handles does not disturb any homotopy of dimension £ 2, so

that, we can arrange for
. £(dD - ) C §(A_,X) - (attaching tubes of 1-handles)

C (A ,X)  (since A, = Ay
Likewise in a(A1,X), the removal of the attaching tubes of

2~-handles can be ignored as far as one-dimensional things go, so that

we can assume
79D - C)C 9 (4,,X),
and that f‘dD is an embedding. Also, we can arrange £(dD) to
intersect ﬁ precisely along C.
Finally, then we have

*A
£ D )2

with £2(9D)C 9 (4,X) N b(A1,xj

f\C = 1d and this is the only place where

C 3
£( QD) M\intersectsﬁ . Hence f(©D) intersects a transverse sphere
of ". at exactly one point transversally.

Now, upto homotopy, A2 is obtained from a(AZ,X) by

attaching cells of dimensions (n-2) and (n-1) [cf. duality 8. 8_7.
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Since (n-2)2 3, 'WZ(AZ’ (L ,X)) = 0. Thus the map f can be |
deformed into 6(1\2,){) leaving f ‘dD fixed, Thus the {-sphere

f (6D) is null homotopi“c in B(AZ,X), hence by Lemma 8.7.2 it is

unknotted in d (AQ,X). Now we can apply 8.6.3 to trade { for a

3-handle, We can apply this procedure successively until all’ the

i-handles are eliminated. Since in this procedure, only the number of
1-handles and 3-handles is changed, in the final handle presentation

of (M,X) there will be no O-handles either. §

Remark: If (M,X) is { -connected and 2%+ 3¢n, we can adopt the

above procedure to get a handle presentation of (M,X) without handles

of index ¢ {.

8.8, Dualisation.

In this section, we discuss a sort of dualization, which is
useful in getting rid of the very high dimensional handles.

Let (M,X) be alrelative n-manifold (remember that we are
dealing with the special case; X an .(n—1)-submanifold‘ of & M),
and let Jf be a handle presentation of (M,X). Consider the manifold
Mt obtained from M by attaching a collar over O 0LX) (= dM-X by

the notation of 8,5)s -
ut - fuw (- 0 x o] )

identifying x with (x,0) for x ¢OM - X. Let

M* = M*— A_1
o - {(bM.x)V« 1} U{é(éM—X)KQO:’]}
and X¥ = (QMX) X 1,
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| _ | — %X
_‘ ; // ;2///// .,,_.._..,,_;.
At T

dual of (M,X). Now %ﬁ gives rise to a

A

We consider (M X*)  as

[

*
handle presentation JJ8

i

(B_1 seaes Bn) of (M*, X¥) as follows:

By = (Qu-x) % {o,1]
Be =MT- by
= B ”{«? RT3

P(n-k)

3*
are the (n-k)-handles ofg{ . This 2& s

Where &1 pTo ey {

p( n-k)

we will call the dual ofge_ . The number of k-handles inge is equal
to the number of (n-k)-handles in m*.

Now,
du* = x* g, %)
so that a(M*, x*y = B(A_i,X).

Since A_; is a collar over @ (4 _,X), this shows that (M,X) is
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a dusl of (M', ¥*) ; and with this choice of the dual peir Jp is the
dual of 3¢". |
| Given any handle presentation '3<)= (C__1 Ferwey Cn) of
(M*, X*) with C_1 = B_,', then we obviously get a handle presentation
3{,%~ of (M,X), Even if C_, # B_,, we can get a handle presentation
of (M,X) whose number of k-handles is equal to the number of
(n=k)-handles of )¢, as followss
et xt- Wx)x 1. In MY, c_1\x* and XWX

(both) homogeneously. Since C_1 is a collar over X' s by using

the thoorems about cells in spheres and cells in cells, we see that

C_,‘ is bicollared in M*. Moreover C__1 is a neighbourhood of x*t
in MY, Hence by the regular neighbourhood theorem, C__1 is a
regular neighbourhood of x¥ in MY, But B_, is also a regular
neighbourhood of xt in wt. Therefore, there is an equivalence f
| Since r(dM¥T) =¥nt

of ¥, rixing x¥, with £(c_) =B,

and C_,N dul - B_1ﬂaM1’= ¥, £ maps X' onto itself, and as

6M+= xux® , £ has tomap X onto itself. Now the desired handle

presentation of (M,X) is given by

D4 = f(A;I) (since A;1‘\1X, f(A;1)‘3Uf(X) = X)
D =ut - £c . )
: * ; *
oy R O e Ry )
where ’&1 N ép are the (n-k)-handles ofg(,.
(n-k)

Thus
8.8.1. If there is a handle presentation of (M*, X*) without handles
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of indexg&n-L , then there is a handle presentation of (M,X) with~
out handles of index 31 . This gives:
8.8,2. Theorems A and B imply Theorem C,

Since X C> M is a homotopy equivalence and
4 \—\'1(M) B “'1( d (M,X)), using duality in the universal covering spaces,
that is H; (M*, X*) = H™(y, x) - 0, we see that X'GM* is also
a homotopy equivalence. If n ),6, then we can find a handle presentation
of (M, ¥*)  yithout handles of index & 6-4L = 2 by Theorem A, Hence
we can obtain handle presentation J{ of (M,X) without handles of
index 2 n-2, that is, with handles of index { n-3 only. But then, |
" by Theorem B, as 9 (M,X) = 0, we can get from € a handle presen-
tation of (M,X) without any handles, that is M W X, O
8.8.3 If n=5 and (M,X) is a h-cobordism, then there is a
handie presentation of (M,X) with only 2- and 3-handles. Q

Ex. 8.8.4. A (compact) contractiblePt 2-manifold is a 2-cell. ©

8,9, Algebraic Description.

We have already remarked (8,3.7) that there is a certain
algebraic structure associated to a handle presentation J@= (A__1,..‘. ,An)
of a relative n-manifold (M,X). We suppose now that (M,X) is a
special case, and that there are no O- or 1-handles in 3% (A_y= Ay= A1)~
Also n>3 and (’\'1()() Y W1(M) is an isomorphism. This we will
call Hypothesis 8.9.1. In this case, the maps

T@= W) ... =RK)

are all isomorphisms. The reason W1(A1) 3 W1(A2) is an isomorphism
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is that Wi(x) sy ﬂ;(l ) is an isomorphism and \T1(A1)—-—§ \T1(A2)

is a surjection, We identity all these groups and call it .
Now, the groups

oy = Wy (A, 4

P
Lond P
are identified with Hy (A, A, ;). They are free modules over Z 1y

with bases corréspondina to handles, 9§ {'ﬁsl) sevses ﬂéi)g are the
i

‘ . (1) (1)
i~handles, the basis of Ci is denoted by {[{1 J,..., {{pi l}and

the elements of this basis are well defined upto multiplying by elements
.

4 If £ Ak ey Ak is a polyhedral equivalence isotopic to
the identity, it is easily seen that the algebraic structures already
described for Yf and Y, may be identified.

In addition, we have a map
Vit Ce=r C_,
which is.tile boundary map of the tripie (Ak’ Ak-1’ 1\(_2). This is | °
also unchanged by changing Q{ to g€ .

If there are no handles of index { k-2 and \Tk 1(M,x) = 0,
we see‘:

i A = 0 f th t
First, Wk_1(Ak, k-2) , and hence from the exac
sequence of the triple '(Ak, AK__12 Ak—2) the map bk : Ck-.--y -Ck-1

is surjective.

Dually, if there are no handles of index » k and rrk(M,X) =0,

we have
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ak t Ck—-')- Ck—1 to be injective.

Now, the boundary map ak plus the bases of Ck and Ck |

determine a matrix B in the usual way. That is, if

i ({ﬂ(k)]) P(k—1)°(13 [f (k—1)] OC;LJ

then Bk is the pk"p(k.y) matrix

%-1,1 ‘('1,2 Coee
6(-2,1 042,2

P e ]

1y p(k—1)

2, p(k—1)

° ° ° ]

° L @ °

Lf pk’1j épk,z e e o x'pk’ pk—1

ek

If we choose a different orientation of corec}K:(.Lk) » ‘then {_‘(:(Lk)]

(k) , th
is replaced by - ) (in the basis of Ck) so that the i
i

k
row of Bk is multlplled by -1, If we extend the handle ‘{( )

along a path representingd], € it , then {'{ 1 is. replaced by

e /K’(k)}, so that the 1°% row of Bk is multiplied by & .
Thus, by different choices of orientations of cores and paths to
the "base point", we can change B, somewhat. There is another type

of modification which we can do on Bk; ‘that is adding a row of Bk

to another row of Bk. This is done by using 8.6.3 as followss

k k
Consider two k-handles %i) and ﬁg) ofg‘e, and

3
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let 2g&k g n-2. We now apply 8.6.3, (Remark 2), with Ak (=N

S(Ak_‘,X) =N, &g_m = {1 ){gk): {2 . This gives a new handle
'ﬂ(k), away from Ki(k) and %gk), such that

)
ey? ’ék * £§k> R Ay’ {:(Lk)+ igk)
and 6[{], with proper choices, now.represents [,ﬂik)]: e K‘ gk],

(sign prescribed), in T . 1( a(A‘k i’ X)). Also, we can assume that

(k)
/{ is away from the attaching tubes of the other handles, so that
(k) (k) |
B = (Ak-1+ { ) +‘j + (other p-2 k-handles of 3f )

Lo
and '1/ can be assumed to be identity on X.
Now (B,X) has an. obvious handle presentation
3{, = (B_y 5000 Bn), where

By = Ay, 1g -t

Bk= B.

The kD

boundary map of:K , with the appropriate bases, has a matrix
which is the same as B, except for ith row, whicH is now replaced

by the sum of the ith row + (X 6 )times the jth row, corresponding

S 3] <0 3R]

We pull K, to a handle presentation 'K, of (Ak,X> by 7’ . Ind

t
and j{‘.’ , the matrices of the boundary maps are the same if we choose

to the relation
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. t
the corresponding bases, And :_K, can be extended to handle presen-
“tation 3, of (M,X) by adding the (3}k+!)-handles as they are,
. By doing a finite number of such changes, we have

8.9.2, (Basis Lemma). ZW is a handle presentation satisfying 8.9.1,
(k gn-2)
3

B, 1is the matrix of the k" boundarv of map ofge., with

with respect to bases corresponding to handles. Given any pkx pk
matrix E which is the pfoduct of elementary matrices, then 3 a
handle presentation 2{’,' of (4,X) satisfying 8.9.1

(1) the number of i-handles in & 1is the same as the
number of i-handles ingﬁ ', for all i, and

(2) the matrix of the k" boundary map of IR’ with
appropriate bases corresponding to handles is E- Bk u

As an application of the "Basis Lemma", we will prove a
proposition, usually known as the "Existence Theorem for h=cobordisms",
Lét M be a PL (n-1)-manifold; M compact, with or without boundary.
The problem is to produce a PL n-manifold W containing M in its

boundary such that (W,M) is a h-cobordism with preseribed torsion.

8.9.3, Proposition. If the dimension of M is greater than 4, then

given any ‘\'O €& Wh( WF(M)), there exists a h-cobordism (W,M)
with T (w,M) = T,

Proof: Let A = (aij) be a matrix (m » m) representing "T'o.

Consider N = MW I, identify M with M™% 0, To (N,M) attach m
cancelling pairs of 2- and 3-handles and m 3-handles away from

these., Let W' be the resulting manifold; and let Q‘C be the obvious
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f, ,
handle presentation of (W ,M); 3R satisfies 8.9, ‘i Then the matrix
of the Brd boundary map ofg{ with anpropriate bases is &gml.

Consider the matrix (A 0 &; this is a product of elementary matrices.

' .
Hence by 8.9.2, we can obtain a new handle presentation 3¢ of (W',M)
‘satisfying 8.9.1, such that the number of handles of each index is the
, ‘
same in € and R, and the 3™ boundary map of T}@' with bases

corresponding to handles is

Ll

Thus, if %1 yeees 2m

2-handles of g{" and {&A s [{i} denote the corresponding basis

elements, then

34,
A

Let W be the manifold W' - ( % 1\_) Uéz ). Let "), be the
m+ m

are the 3-handles and 7‘{1 3vees ﬁm the

m
%; 8 ({A , if i¢m

0 if ivym.

the handle presentation of (W, M) given by ‘){i’s and ﬁ'i’; for
i4m Then. the 374 boundary map ofﬂ{, has the matrix A, Clearly
MC)W is a homotopy equivalence (4 is non-singular). Since, dually
we are attaching n-2 and n-3 handles to Bm) to get W, é,nd
n-3 2 3, ﬂ](a (W,M)I)—-') ﬁ-j(W) is an isomorphism., Hence (W,M) is

a h-cobordism with the prescribed torsion “[’O. a.



hgain, consider a handle presentation < satisfying 8.9.f1.
For kg€n-3, AK is, upto homotopy obtained by attaching cells of

dimension 23 to B(Ak,x). " This shows, \T1 (8(Ak,x))-—~‘q ﬂ:(Ak)
- "

is an isomorphism for k ¢n-3; and hence B(:’\k,m = (Kk’ X).

We are interested in the following question

Suppose a k-sphere 3 C (!},X) represents in
L (Ak, Ao ) the element L‘ﬂlcorrespondmg to a particular k-handle.
Then, is there amap f s S -.......;E(AK,X) homotopic to the inclusion
of § in a(Ak,X), such that f! a hemisphere of § is an embedding
onto a core of ? |

We note that a(Ak,X) N 6(%_,,}{)

B(Ak,X) - (transverse tubes of k~handles)

= O(A

y 1,X) - (attaching tubes of k-handles)

and so b-(Ak,X) N o (1\(_1,)() will have fundamental group I{ if
either (n-k-1) & (n~1) <3 or (k—1) (n-1) = 3, so that .ksh(n—-B)

is sufficient. This implies

/""\../ ‘

/'—"'\_____/-—/
a%Maa%mm=b<mna%1

]

AL IE_ 0.
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Consider the following dia,gram:‘

Wk (a(ﬁk’x)s 5“\‘1{,}() (\\a(f\k_fx)) _.:.L.l_>(rk (Aks Ak )

N

R

- - ‘-‘ ~ ~ s .~
n k(b(Ak,m, LICW 0T Tt o) B IN AR O
h, 1,
NNy NN o R
ne (E.D, G n AR 0} Layn, By )
Here h, h, are hurewicz maps, 1i,, i, ig are induced

by inclusion maps, of , and of, , &re the maps induces by M —3) M, .

All the induces occuring are 3, 2, & 1 and of 2 are well known to

be isomorphisms. h1 and h2 are isomorphisms since the pai;-s are

(k=1)~connected. By excision, 5.3 is an isomorphism. Hence i,

and :'L1 are also isomorphisms. Therefore, a boundary core of :

and 3 fepreéent the same element in Wk(a“‘k’x)’ B(Ak,x) r\‘d(ink_,,x})-
Thus the answer to our question is Yes: |

8.9.4 LetJ£ be a handle presentation satisfying the hypothesis 8.9 1,
_ Let k be an integer {n-3 [or k3, W,( B(Akyx))"‘? (T,(Ak)

is an isomorphism, kg¢n-1 /. Then two geometric objects, representing
g

the same element of Wk (Ak,‘ Al( 1) , also represent the same element

of Wk(B(Ak,x), A4, 1) r\B(Ak_Px)) . In particulsr, if 2(5(%’X)

is a k-sphere, representing the element mirx Wk (Ak, Ak—-f); then
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it represents the element &K} in \T.k( 6(f*1{,x): 5(%{,}()(\ A(Ak_,,X)).

This means that there is a homotopy in B(Ak,X) ~ from the identity map
of ¥ to a map taking the upper hemisphere of 2. ina 1=t way
onto a (boundary) core of 'g, , and taking the lower hemisphere of
in‘c,_o‘Vv_A(Ak,X)(\ a(./.k_1,X); in particuiar the end result of % will
not intersect any other handles. a

If S5 is the attaching sphere of a (k+1)-handle lé and
akﬂ (L‘ﬁ]):[ﬁ], we have the above situation, We would like to
get a suitable isotopy from the above homotopy information, to cancel
the handles cc;rreSpondipg ‘&_ and ‘K in some 2{ . This is provided
by the following lemmé. Sinde the proof of this lemma is rathér long
and seems to be of some general interest, we will postpone the proof

to the last section.

8.9.5, (Isotopy Lemma)., With the hypotheses of 8.9.L4, if in addition,

ny6 and k¢ n-L, then there is an isotopy in B(Ak,X) carrying $°
to another k-sphere ¥ t, such that i' intersects a transverse
sphere of { in one point transversally and does not intersect the
other k-handles. {J

8,10, Proofs of Theorems A and B.

In this section, we .will prove Theorems A and B assuming the Isotopy
Lemma, which will be proved in the next section.

AFirst let us see what afe tht types of manifolds and presen-
tations that we have to consider. Theorem &, for L & 1 is proved in .
g8.7. So, we can assume L),Q, and hence n»6. For Theorem B, L=n

and n)6, by hypothesis. So again using 8.7, it is enough to consider
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handle presentations satisfying 8.9.1, and in addition n26.
We start with two observations concerning the matrices of
the boundary maps:

(1) (1)
8.10.1. Let & be handle presentation satisfying 8.9.1, ﬁ ;o .,‘K '

Py

be the .i-handles ofaﬁ Let B (& ) be the matrix of the

(k+1)8t boundary map B with respect to preferred bases. That is,

O ko1 (R(kﬂ) 2‘_" o 13 .(’fml «(mz(rn

(k) (k+1)
Suppose ", and { can be cancelled. Then we have formed

k
a handle presentatlona ({( ) ﬁ, (kH))- (B ',...,B ) say , of

(M,X) as follows:

B, = f(Ai) for i<k
(k) (k+1)
R e IR &
Bi = A. for iSk.
(k) (k+1)
Here f is an equivalence K ) ’e mapping X

(k+1)
onto itself. If the attaching tube of : does not intersect

(k
any other k-handle except ﬁ f can be assumed to be identity

(k) ‘
on all ‘g ,;z We assume that this is the case. Now

‘ + k+1
’ﬁ;k) ,....,'K(k) are all the k-handles and ’ﬂ (k 1),...., { (iext)
Pk P(x+1)

k) +
are all the (k+1)=handles ofg‘e- (‘4} % (k 1> .‘ Thus (by.
( )
g {_ * ] is a ba51s of W(B

abuse of notatlon) ( .1

w
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(k+1 ) N
and(gz )],...,,K(k M is a basis of ﬂ— (B . B ). Let

P(+1) k+1  k+1° k

1

C) K1 denote the (k+1)3t boundary map °f3€- (ﬁik) ’ K/ikﬂ)).

; . ive di A = B,A B )
Cons;d‘e'er the following commutative dlggram ( o Bk+1’ AkC oA ic- k—1)'

, 3 _
Wkﬂ A B ”—)n—k () “fg")ﬂ_k (Ak’ Aet!

ﬂ—kﬂ (B Bk)"i“?‘}: (B) —-j-l—?wk (B, B_,)

In this diagram, the vertical maps are induced by inclusion,

. 4 8 ]
the horizontal  maps are canonical maps, and jeb = Bkﬂ’ o= akﬂ'

(o TR

o (BETE B e e
13, (gik)n =0

(R VI (£ Sl e

Hence, for 132, ak‘ﬂ (%ikﬁ)])

0,0 1Y)
REYTOR (i)

Now

and

&

if
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= igeed ‘5(£{§k+1)3>
) 13*'ak+1({{§kﬂ)])

N ( zp‘i & i H\.gk)l )

i=1

= 4 u(70)

i

i=2
1

Trus, 1f the matrix of § is (o), then the matrix of .

is QL 13), 122, j>,2. This we have as long as the attaching tube
(k+1)
of : keeps away from the transverse tubes of the handles

(k)
’Ki , i>2, (It is easy to see that d vor = of =0, in

1,pk

this case). It does not matter even if the attaching tubes of other

1,2

) k
(k+1)-handles intersect the transverse tube of {f ). B
8,10,2, If f : A A is an equivalence isotopic to the identit
8.10.2 > A q P y

f
leaving X fixed, then in%e anda-e, the attaching spheres of the
corresponding (k+1)-handles represent the same elements in \"\"k (Ak).

Since the (k+1)st boundary maps are factored through “.k (Ak) , the

corresponding matrices are the same after the choice of obvious bases
o ) . :

in A{and 8{ , and hence in 2{( and Sﬁ(r‘)‘ G

Proof of Theorem A,

Step 1: Let JC-= (Ay 5eeens An) be a handle presentation of (M,

satisfying 8.9.1. We are given that (M,X) is [{ -connected, the

we know that the sequence
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TV, Gy 80— T (4, R T M, (a,a )0

is exact,

Suppose that we have already eliminated upto handles of
index (i-1), that is iang{ s Ay =4y= .. =4 3 thenby
¢ ) A i+ A, 4 is onto. Let B be
(), “-5_4-1 (xi+1’ i) — \T:‘L ( i’ Li-‘l) i+1
the matrix (piﬂ)g pi) of ai+1 with bases corresponding to handles,

Then, there exists a (p +p )W (p +p, ) matrix B, which is
i+1 i i+t i

the product of elementary matrices, such that

Exf B |2,

0 0
pi Pi_”) pi

If we attach p; cancelling pairs of (i+1), (i+2)-handles away from

the handles of index 4 (i+2) to the ith level ofm s then in the

resulting handle presentation * (B_, yores Bn) of (M,X), the matrix
Iy (s ' ' es 1
of $ a1 (BiH’ Bi)---'b K ( 37 Bi—1) with appropriate bases is
Biy
Op,

Then, by the Basis Lemma, we can obtain a handle presentation of (M,X)

 satisfying 8.9.1, with exactly the same number of handles of each index

. St .
as above, but (i+1) boundary matrix will now be



251

Pi+12Py

This means that starting from €, we can obtain a handle

presentation ¢ (C_y s.., C ) of (M,X) such that

(1) K, satisfies 8.9.1, and there are no handles of
indices ‘i 2

2) the (i+1)5Y bounda £ "W has the matrix [ I
(2) ) ry map o mas e m r:uc“p?L
0

Now we can eliminate the i-handles one at a time as follows:
1+1) 1((i) ,fgiﬁ1> (1)
Step 2: Consider ‘& and . aiﬂ(( 1 3)-_- %1 1;

and ig n-4. Hence by the Isotopy Lemma, there is an equivalence f

J - » ‘ (1+1)
of (Ci,X), such that f takes an attaching sphere S5, of \

|
to another ..i-sphere S1 and S; intersects a transverse sphere of

{ gl) at one point transversally. Moreover it can be assumed that f

i+t ‘ :
(attaching tube of %i )) does not intersect the transverse tubes

of the other i~handles., f can be extended to an equivalence f of
C, taking X onto itself and in xé’ the handles corresponding {Sl)

(i+1)
.and % : can be nearly cancelled. By 8.5.7, there is an equivalence

' f£.g f
g of C;, so that in (9% ) = :K(g ) , the handles corresponding

{L(i) (i+1) -
1 - and P, can be cancelled. Again, we can require that gef

i+1))

( ; :
(attaching tube of ’{ | should not intersect the transverse tubes

- 1 . 47 o s
of the handles %gl) » 322, Consider 3‘2( This is a handle

gty
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A% e ts.»*c‘(‘w Yo Yo L&QM‘&F‘]

(1+1)
presentatlon of (M,X), and in :K thelhandles ﬁ( 2 g

{(1) i+1)
- say, correspondlng to and ﬁ can be cancelled By

‘ r" +
the (i+1) boundary map of ( f)‘ (é(l) ﬁ(l 1))

has the matrix [I(p 1')1 . Hence, we can go on repeating step 2
i

8.10,4;

to obtain a handle presentation of (M,X) without handles upto index i.
Thus, inductively, the Afirst part of Theorem A is proved.
The second part is clear. [}

Proof of Theorem B: By Theorem A, we can assume that there is a handle

presentation Qeof (M,X) with handles of indices (n-3) and (n-4)

only. D€ obviously satisfies 8,9.1. Consider the map
: Y A __.5 A A .
a n-3 ri“n-3 (An-B’ An-—h) n—'n--lp ( nel’ n-’)')

Here A_1 = L. = An 5° Let A be the matrix of bn 3 with respect

to bases corresponding to handles. A is a nonsingular matrix, say
m¥m matrix, Since X (M,X) = 0, A represents the O-element in
Wh( [T ). Hence for some qg¢m there exists an (m*q) K(m+q) matrix

E which is the product of elementary matrices, such that

A O
0 Iq

Now we add q cancelling pairs of (n-3)- and (n-4)-handles
to An— 5 away from the other handles, so that in the new handle
presentation, sayg(,, of (M,X), the (n—3)rd boundary map of3{, has

k

the matrix
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Then by the Basis Lemma, we éan obtain a new handle presentation '3-(,'
of (M,X) with exactly (m+g) handles of indices (n-3) and (n-4)
and no others, and such that the matrix of the (n-3)7d boundary map
of 3{,‘with respect to bases corresponding to handles is Im+q- Now,
by a-repeated application of Step 2 in the proof of Theorem A, all

the handles can be eliminated .so that M ‘WX, W1

’

8.11, Proof of the Isotopy Lemma.

We begin with some elementary lemmas.

8.11,1, Lemma. Let QC P, YXA C X be polyhedra, where A\ is
ond § PR q,fs(yk.\jmalm .
k-cell and #g dim Q ¢ k& Then the seét of points &0 such that

QO (Tud)

]

§ contains an open and dense subset of {N .

Proof: Let Q'

£V (Y X A). Then dim Q' ¢ dim G <k ., The
projection of Q' to /\ does not cover most of the points of
k-dimensional £\ . Any point & not belonging to the projection of

Q to A will satisfy QR £'(YR&L) =g O

8,11 2, Lemma, If dim Q= k in the above, then the set of points

A € # such that Qﬁi"(YYuJ.) is O-dimensional contains an open and
dense subsét of & . |
Proof: Triengulate the projection of Q' to & Of K is the
simplicial presentation of A with respect to which this map is
simplicial, then every point f of A —‘Ak._ 1‘ will have the above
Aproperty by 4.2. 2 4

Let f 3 P—3% X be a nondegenerate map, simplicial with

respect to the presentations G) y Yo of P, X. Let 3 (f) denote

the closure of the set S(f) =% &P kgy&P, y £ x, fly) = f(x)}(see
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5.4). S (£) is covered by & subpresentation of (P , call it § .
8.11,3. If € is a principal simplex of Z , then ¢ \‘St(ﬁ",@)‘

is an embedding.

Proof: Since f is nondegenerate it maps Lk(s‘,@) into Lk(fG“,X)
and on ( st(§",{ N it is the join of F ~—3 f& and |
| Lkl 6, R)| — [te(£6,% ), The nap | k(6P )| —> |K(eE, m\

an embgdding; otherwise if "’S‘, ,fcrz, ‘11, Tzﬁ Lk(ﬁ“,q)) and

£6,-265, then f(6 ¥ )= 2(6 T,) sothat €T €E >

contrary to the assumption-that.€" is a principal simplex of Z .
Hence the map | {St(ﬁ" ,Q\)‘ — \St(f(ﬁ' ),Xo)\ being the join of
embeddings is an embedding. {7

" Proof of the Isotopy Lemma for k & n-5: The situation ist We have

a handle presentation &€ of a relative n-manifold (M,X) which is
. a special case, and Y satisfies the hypothesis 8.9.1. We have
k-sphere S (what was called 2 in 8.9.4 and 8.9. 5) in 6(Ak,X)
representing [’K,] in (Ak, Ak ‘) where 'K, is a k-handle, We
deduced in 8.9.L4 that in this case if k & n-3 there is a homotopy
heSKI -——)B(:-LK,Y« such that hy = embedding S Cb(ﬁ(.)&)and h?’
(transverse tubes of all k-handles) is a k-cell C which is mapped
by h, isomorphically onto a core of { , 80 that

h,(5 - ©)C Ay, 1) N B

k- 1’
In the .Lsotopy Lemma, we have further assumed that k £ n-h.
We firsit prove the simpler case when k § n-5, that is when the co-

dimension of S in O (4,X) 7is 3 4.

(d
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We can by general position suppose $ (h) has dimension
€ 2 (k#1) = (n-1) = 2 k*3 - n. |

Now { is polyhedrally equivalent to D* XAn-k, with
the transverse tube of ’K corresponding to D x © & C(A,X), For
any point { € int D, & X O M is a transverse sphere; and any such
transverse sphere will intersect the core hl(C) transversally in
exactly one point, since h1(-C) c'orresponds to D ‘AP\ s for some
peda,

| We try to apply Lemma 8,11,1 to this situation. Define 4

Q = "Shadow" ¥ (h) = {:r"rojs Z.(h)] %I

P=SKI

P—-?-—) XY XAk becomes

SK I -—Y—l-?B(Ak,X) D transverse tube of{/ N aﬁ%Dk.
The érucial hypothesis now is dim Q@ { k. Since, in general
dim (projg = (h)) ¢ dim Z(h), we have dim Q & dim J_ (h)+1 € 2k+L-n.
To have this ¢ k is exactly where we need k § n—5..

The conclusion then is: ‘
oL X 6 /A There éxists a tra\.nsverse sphere T of ’K of the form
L X O B, for some d_ €Int D, so that h"(T) does not intersect
the shadow of the singularities 3 {h) or, what amounts to the same,

-1
the "shadow" of h (T), namely |
z= [projg i/ (MR 1C X1
does not intersect 3 (h). Hence there is some regular neighbourhood
N of Z in SAI, with N N 5(h) = §. This implies, since ho

is an embedding, that h‘ SAOUN  is an embedding.



256

We clearly have N Yy NQOSXO, and these are (k+1)- and
k—manifolds, NOSKOCON, Thus h (SRO) = S and h[SKO - (NO\SKO)+
+ (JN - 5%0)} = ' differ in O{A by cellular moves along the
manifold h(N). Thereore (by 7.1.8) there is an isotopy ofa(Ak, X)
taking 5 onto S'. By construction all of h™'(T) 4is in N, and
S' contains only h (QN - S®O0) in h(N), end this will intersect
T at h(n'(T) N SX1), that is at point (corresponding to L %P )
transversazllly.

By being only a /bit more careful, considering the transverse
tubes of otherl k-handles, we can arrange for S' not to intersect
the ofher k-handles at al'j~ (if T is a t;ra.nsverse spherg{-—aome
k-handle other than {, , then h™(T')ASK1 = @, and there is an
fsotopy of 0 (& X) carrying & (4, X)=-small regular neighbourhoods
of prescribed transverse sphere of the other k-handles to a(Ak,X)*
transverse tubes of the other k~handles).

Remark: This already gives Theorem C for n38,

The case k = n-h.

In case k = ﬁ-—h, n6, the above result is still true,
but ﬁhis involves some delicate points,

Since n b6, ;«re have (for- k = n-hk) the crucial number
2k + 3 -np0,

We consider, as before h ¢ SKI —P B(Ak, X) in
general position, so that dim ¥ (h) £ 2k + 3 = n, Remembering
S = h(SK0), we further use general position so that h—1(S)C\S K(O,ﬂ

is of dimension & k + (k+1) - (n-1) = 2k + 2 = n, and call
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8 (h) = closure (h“(S)ﬂ s (0,1).

Make h simpliclal, say with reference to A{ of S% I,
and refine/{ to /‘! so that e(h) is covered by a subpresentation
©, S (h) by a subpresentation §~ , and the projection S%HI —-3 S
1s simplicial on K . | ' |

Now we have to pick our transverse sphere T = y Xbén‘k
in the transverse tube DX X 'O D'™¥ 5o that |

(1) w (1) \ shadow ¥ (h) is O-dimensional

@ rmazm-d¢@ -

(3) h“(d?) M shadow {(2»( + 2-n)-skeleton of Z}=

On S A0 \U a neighbourhood of [ghadow h;t('l‘)] ,- h
is a lécal embedding, using Lemma 8,11, 3,

Let Q = shadow h"(T). The finite set of points
Q N\ 2.(h) does not intersect any point of h_1(T). Each point say
x€ QAT (h) belongs toa (2k + 3 = ‘n)-simplex of §. y &y 6,
Since G‘x has dimension 3 1, we can move SWI in a tiny neighbour-
hood of x by a polyhedral equivalence f : SAI —» SKI so as to
move x around on €7, that is, so that

f(R)NT(h) =3NS - {1} + 'Y
where the choice of x' ranges over an infinite set. f will not
move h"(T) nor will it move S®KO . There are only a finitely
many points to worry about, and so we can find a polyhedral quivalence
f: SAI—> SAWI, leaving h—1(T)\) SWO fixed, such that the set
of pc;ihts £(Q) OVS(h) are mapped by h into pairwise distinct .

points.
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At this moment, we see that on SXO U’f(Q), h is an
embedding. Since h is a local embedding on some neighbourhood of
£(Q) (we restrict f close to the identity so that |
£Q)C SKI - {(21{ + 2 - n)-skeleton of § B, and an embedding on
£(Q); hence it is an embedding on some neighbourhood of f£(Q).

| &(n) is well out of the way, and so h actually embeds
all of SWO {J (a neighbourhood of £(Q)).

We now proceed as before, using f(Q) to move around along.

This trick looks a bit different from piping, which is
what we would have to do in the case n = 5, k = 1; this was the case

when we had a null homotopic I{-=sphere C h—manifold unknotted,

vyf:
22/9/1617
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