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Whitehead torsion of free products
By John Stallings*

0. There is a covariant functor from groups to abelian groups known as
Whitehead torsion. It has been of interest mainly in combinatorial and differ-
ential topology. Our main result is that, if A — A+xB «— B represents AxB as
the free product of the groups A and B, then the induced diagram of Whitehead
torsions, WI(A) — WIT(A*B) — WI(B), represents ‘WI(A+B) as the direct sum
of WT(A) and WI(B). Or, as we shall say to save space, WF(A*B) = WIS (A)
+WIT(B).

The proof is purely algebraic and will be developed in a broader algebraic
context.

My original proof was a geometric monstrosity and may be forgotten be-
cause of the cleaner algebraic proof in this paper. The basic tools used are
S. Gersten’s theorem [4] on K, of a free ring, P. Cohn’s description of the free
product of rings [2], and a few trivial algebraic tricks.

1. The functor K;!

Let A be a ring with 1. Let 9 denote the set of square, invertible matrices
over A; in G there is a composition law @), described thus:

won-(1 )

“I’’ will denote the identity matrix of any size. Then ~ will denote the equiv-
alence relation on § generated by:
1) A~API; and

* Sloan Foundation Fellow.

1 On the notation. In Whitehead’s paper [9], the symbol @ is used for what we call $; the
symbols @/& are used for what we call W(A); also, z(«) has the same meaning as ours in
§7; and T is used for what we call WT(I). Our guess is that Whitehead’s T stood for ‘“‘tor-
sion,’’ since the values of ¢ lie in T, and z(a) is called the ‘‘ torsion of a.”” More recent nota-
tion has been derived from the analogy to the groups of vector bundles over a space; thus
KY(A), Ki(A), K-Y(A) are used for what we call W(A); such things as Ki(A) and I?l(A) are used
for our Ki(A). The symbols Wh(II) have also been used to denote Whitehead’s T and our
W (1).

In our opinion, the basic functor, which we call Ki, should have a simple, reasonable
symbol; the other functors, which have only isolated uses, deserve more bizarre symbolism.
The use of the subscript ‘“1’’ is defensible only because there is another functor Ko (or Ko
or KO or “projective class group’’) which sometimes occurs as the target of a boundary oper-
ator from some source K; (but this phenomenon does not occur in this paper).
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(2) A~ EA, where E is any matrix of the form

o 7} e )

This equivalence relation is compatible with the operation @; the set of
equivalence classes forms a commutative group W(A); the equivalence relation
is the same as that generated by (1). A~ A@® I; and

(3) AB ~ BA if A and B have the same size;
it also follows that AB ~ A @ B. Finally, if ¢ : A— I' is a map of rings (with
“p(1) = 1"’ included in the definition of map of rings), then the correspondence
A— A, where A is a A-matrix and A¢ the I'-matrix whose entries are the
images of those of A by @, induces a homomorphism W(p): W(A) — W(); so
that ® is a covariant functor from the category of rings to the category of
commutative groups. These facts are well-known and due to Whitehead [9].

Let R denote a fixed ring. We shall call A an R-ring, if A is a ring con-
taining R, and the inclusion R C A is a map of rings, and there exists a map
of rings ¢ : A — R such that for all » € R, &(r) = r; the map ¢ is not part of
the structure of R, only its existence is necessary for A to be an R-ring. If
@ : A —T is a map of rings, and if A and I' are R-rings, and if for all » € R,
@(r) = r, then we call ¢ a map of R-rings. Clearly, R-rings and their maps
form a category.

Define K,(A; R) to be the cokernel of the map induced from the inclusion,
W(R) — W(A). Since we shall not in this paper have occasion to consider more
than one ground ring R at a time, we abbreviate the notation to K (A). From
W, K, inherits the fact that it is a covariant functor, from R-rings to com-
mutative groups.

2. Free products

The word ‘‘free product’’ is used to denote the direct sum in a category
whose objects have multiplicative structures. For example, we say that the R-
ring C is described as the free product of R-rings A and B, if there are given
maps @ : A— C and B: B— C, such that for any R-ring X and maps a’: A —
X and £’ : B— X, there is one and only one consistent map v:C — X. We
abbreviate this sentence to C = AxB.

Similarly, if G and H are groups, we may speak of their free product G+H.

The group ring of a group G, with coefficient ring R, denoted R(G), is an
R-ring A, together with a homomorphism of G into the group of units of A,
such that given any homomorphism of G into the group of units of an arbitrary
R-ring X, there is one and only one consistent map A — X,
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It is clear by abstract argument, then, that R(GxH) = R(G)xR(H).

There is a well-known construction for free products of groups [7, p. 11].

If we consider only the more restrictive category of R-algebras, that is,
R-rings A such that every element of R commutes with every element of A,
then the analogous concept of the group algebra has a simple construction.
Specifically, R will be a commutative ring and R(G) will be the free R-module
with basis {G}, in which » € R is identified with -1. It has multiplication de-
fined by (r,g:)(7.9,) = (7,7:)(9.9,).

Z will denote the integers. It is obvious that every Z-ring is a Z-algebra.
Hence the integral group ring always exists, by the above construction. There-
fore we conclude that for certain Z-rings, namely Z(G) and Z(H), their free
product as Z-rings exists, namely, Z(G)xZ(H) = Z(GxH).

We now wish to prove the existence of free products of R-rings in general,
and to establish a particularly convenient deseription of it.

(The nature of group rings, for arbitrary R and G, seems interesting and
is open.)

3. Graded rings

Let S be a semigroup with identity element, usually written multiplica-
tively. That = is an S-graded ring, means that to each w € S there is associ-
ated an abelian group =,, and that to each u, v € S there is associated a homo-
morphism f,,,: %, ® =, — =,,; such that the obvious associative law holds,
and such that in =, there is a two-sided unit element for this multiplication.
We shall confuse this concept of = with the direct sum, over all w e S, of
=, together with its multiplication defined via p,,, for all # and v in S. Then
% is an ordinary ring.

In case of the additive semigroup N of non-negative integers, we use addi-
tive notation on the indices.

One important example of an N-graded ring is the tensor ring of a bimod-
ule. Let M be a bimodule over the ring R. We define a graded ring T(M) as
follows:

T(M),= R
Upa: T(M), @ T(M), — T(M), Qr T(M), = T(M),-,

is the natural map, using the natural associativity of the tensor product.

That T(M) is a graded ring is obvious. It is an R-ring since T(M) can be
retracted onto R by sending T(M), to 0 for » > 0. And it has the following
defining universal property: There is a map of bimodules o : M — T(M), such
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that for any R-ring X and any map of bimodules '’ : M — X there is one and
only one consistent map of R-rings 8: T(M) — X.

It is now seen that we can construct the free product of two tensor rings
easily; namely, T(M)xT(M,) = T(M, + M,), where ‘‘4’’ denotes the direct
sum of bimodules, which can be explicitly realized as a set of ordered pairs,
M, x M,.

3.1. Ring graded on F'

F will denote to free semigroup on two symbols {a, b}. F'is the set of all
finite words in {a, b}, including the empty word 1, with juxtaposition as multi-
plication.

Suppose that A and B are two R-bimodules. Define a ring A graded on F'
(it will turn out that A is just T(A + B) with a more complicated grading) thus:

A=R
Aaw :A®RAW
Abw :B®RA10'

[Roughly, A, is just w with occurrences of a replaced by A and b replaced by
B and &), inserted between terms.]

P DA QA — A, Qe Ay = Ay,
is the natural map.

A little thought will show that this is the free product of 7(A4) and T(B).
With this gradation we shall denote the ring by T(A4, B).

3.2. The semigroup G

G will denote the semigroup on two symbols {a, b} with the relations aa =
a and bb = b. We shall now describe the free product of two R-rings A and '
as a G-graded ring. Let us remark that given any word in the symbols {a, b},
by applying reductions which change any segment aa to a and any segment bb
to b, we eventually obtain a reduced word, one with no segment of the form aa
or bb. And this reduced word is independent of the chain of reductions used.

Now, let A and I be R-rings. Let ¢,: A — R and ¢, :T' — R be retractions.
Let A denote ¢,7%(0) and B denote ¢.7%0). Then A and B are R-bimodules, and
as bimodules, A= R + A and I" == R + B. Further the multiplications on A
and I" define associative maps A XA — A and BK, B— B.

Now, A can be recovered from A (and I' from B similarly) and this multi-
plication by taking the tensor ring T(A) and factoring modulo the relations
which say that an element equals its image under the map T(A), = AR, A —
A = T(A)..



358 JOHN STALLINGS

Therefore, without further ado or proof, it is clear that AxI' may be
described as T(A)* T(B) modulo the relations which identify an element with
its image under the multiplications A ®, A — A and BB — B. Using the
gradation T(A, B) these are maps T(A, B),,— T(A, B), and T(A, B),, —
T(A, B),.

Let us observe what these relations do to the gradation on T(A4, B). If w
is obtained, for example, by reducing a segment aa of w to a, then the multi-
plication A ®, A — A identifies T(A4, B), with its image in T'(4, B), under the
map consisting of the appropriate tensor product of identity maps and multipli-
cation. If u is a reduced word, obtained from w by two different sequences of
reductions, then the relations introduced by the two sequences of multiplica-
tions will be exactly the same, because of associativity.

Hence, adding the relations to T(A4, B) makes every element of T(A4, B),
equivalent to an element of T(A, B),, where u is the reduced version of w, and
no two elements of T(A, B), are identified.

This shows that A =T can be described as a G-graded ring. The components
(A1), are isomorphic as R-bimodules to T(A, B), where % is the reduced word
representing g € G. The multiplicative structure is a mixture of the multipli-
cative structures of A and I" and tensor product.

This is the structure theorem we wish. We may write it mnemonically
thus:

IfFA=R -+ Aand ' = R + B, then

A\l =R+ A+B+AQB+BRA+ARQBRQA+BRARB+ ++-

where @ means Q. The multiplicative structure is determined by multiply-
ing components by the tensor product and then collapsing if possible using
the multiplications ARQ A — A and BQ B — B derived from A and I,

3.2.1. Let us observe the very important fact that A *I' contains as a sub-
ring the tensor ring of A ®,B. And that this may be explicitly described as:

R + (left ideal generated by A X B) N (right ideal generated by A ® B)
= T(ARxB).

For, the left ideal generated by A X, B consists of all T(4, B),,, Where
wab is reduced; and the right ideal generated by A ,;B consists of all
T(A, B).;., Where abw is reduced. Their intersection then is exactly the set of
all T(A, B)gy» for n =1, 2, -+ -, And multiplication between these components
is just that found in the tensor ring.

3.3. A remark about groups

This construction of the free product of rings gives a rather unusual con-
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struction for the free product of groups. Let II, and II, be multiplicative
groups; construct Z(I1,) and Z(I1,); then by the above method construct
Z(I1,)* Z(11,). Define the group A to be the group of those units in Z(II,)*
Z(I1,) which are generated by II, and II,. It is claimed that A is the free
product of I1, and IT,:

Let X be any test group and a : 11, — X, B8 :1I, — X homomorphisms.
These extend, by the universal property of group rings, to maps Z(I1,) — Z(X)
and Z(I1,) — Z(X), and by the universal property of free product of rings, to
a map Z(I1,)« Z(11,) — Z(X). This, restricted to A, maps A into X, since A is
generated by 11, and IT, and these are mapped into X.

Therefore, A is indeed the free product of II, and II,. The reader might
find it amusing to work on a few simple examples. For example, if we express
aba—b~' as a sum of homogeneous components, we get

1 . a*(b—-l)* + b*(a—l)* + a*b*(a—l)* + b*(a——l)*(b—l)* + a*b*(a—l)*(b—l)*
where 2* denotes ©x — 1.

It would seem that the homogeneous components in the G-grading are re-
lated to the free derivatives in the sense of Fox [3].

4., Higman’s trick

G. Higman [6], in work on the Whitehead torsion of an infinite cyclic group,
performed basically the trick leading to simplification which follows.

Consider a matrix M whose entries belong to a free product A+I' of R-
rings. Evidently, we may write each entry as a sum of terms each of which is
the product of elements of A and I'. We perform an inductive simplification
of M by changing M to M@ I and multiplying on the left or the right by ele-
mentary matrices. We reduce the number of terms which have been written
as the longest products until we obtain a matrix M’ in which every entry is the
sum of an element of A and an element of I'. This reduction process can be
described thus:

& & & & & &0 & & &0 & & & 0
& %+ay &\~ & %+oy&0|~| & %+ay&0|~ &% & —x
& & & & & &0 & & &0 & & & 0

0 0 01 0 Y 01 0y 01

Hence, if M is an invertible matrix over A =T, it is equivalent in the group
TW(A*T) to a matrix of the form M, + M, + M,, where the entries of M be-
long to R, the entries of M, to A, the entries of M, to B; in what follows the
subscripts 1, a, b will always have this meaning.
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Recall that A = ¢,7%0) and B = &,7%(0), where ¢, and ¢, are retractions of
A and I" onto R. Applying the map €,*¢; to AxI' maps our invertible matrix
M, + M, + M, into M, and maps AxI onto R. Therefore J, is invertible over
R. Multiplying M, + M, + M, by M,™* changes the class of the matrix only by
an element of “W(R), and therefore represents the same element of K,(AxI).
Hence:

Every element of K(AxT) is represented by an invertible matrix of the
Jform

I+ N, + N,.

5. Another trick

On applying the maps (identity)* ¢, and ¢, x (identity) to the matrix I 4+ N,
+ N, we obtain I + N, and I + N,, and we discern that these are matrices in-
vertible over A and I', respectively. Their inverses are evidently of the form
I+ P,and I + P,, respectively.

The following identity is the trick referred to:

I+ N,+ N,=({I+ NJ)I— P,P)I+ N,)
which it is suggested that the reader derive from the equations
I+ NI+ P)y=I=I+ P)I+ N,).
Now the matrix in the middle, I — P,P,, must therefore be invertible over
AT, with inverse I + Q. Where do the entries of @ lie? We note:
I+QUI—-PP)=1 and (I—PP)I+Q)=1.
This is the same as to say:
Q=+ @QPP, and Q=PP(I+ Q).

The entries of P,P, lie in A ®; B. Hence, from the first equation, we con-
clude that the entries of Q lie in the left ideal generated by A &, B; and, from
the second equation, that they lie in the right ideal.

Therefore, recalling observation 3.2.1, we know that I — P,P,is an invert-
ible matrix over the subring T(A Q) B) of Ax1I.

Hence:

K,(A=T) is generated by the images, under the obvious maps, of K,(A),
K T), and K(T(A Q= B)).

6. Fundamental theorems

LEMMA. Let H be a covariant functor from R-rings to abelian groups,
such that H(R) = 0. Then the maps A — AxI' —T induce an embedding of
H(A) + H (@) in H(AxTI).
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The proof is easy.

6.1. THEOREM. Let A and B be the kernels of retractions of the R-rings
A and T onto R. If K,(T(A®grB)) =0, then K(AxI') = K,(A) + K(T).

PRroOF. By 5 and the hypothesis that K,(T(A ®zB)) =0, we know that
K,(AxT) is generated by the image of K,(A) + K,(I'). By the Lemma, the map
K(A) + K(I') — K(A*T) is an embedding. Hence the natural equality.

We now recall a result of Gersten [4] that, if K,(R(z)) =0, then K, of a
‘“‘free’’ ring is zero; and this is in particular true if R is a principal ideal domain.

The terminology means this. R(x) is the tensor ring of an R-bimodule iso-
morphic to R itself. A ‘‘free’’ ring is the tensor ring of an R-bimodule iso-
morphic to the direct sum of several copies of R; such an R-bimodule we shall
call ““free’’.

A very brief sketch of the proof of Gersten’s result follows.

The ‘‘free’’ ring A can be thought of as a polynomial ring over R in non-
commuting variables {x,, - - -, z,}, which, however, commute freely with R.

An invertible matrix over A can, by Higman’s trick, be made equivalent
in K,(A) to a matrix

I+ N2, + -+ Nz, .

The inverse of this matrix can be written explicitly in the ring of formal power
series; since the inverse exists in the polynomial ring, all but a finite number
of its coefficients are zero. Hence we find that there is a number % such that
any product of more than k of the matrices {N,} is zero.

It then follows that the matrix is the product of matrices of the form I +
P,w,;, where P; are nilpotent R-matrices and w; are words in the 2’s. To see
this, multiply I+ Nw, + -+ + N,», by (I + Na,)*--- (I + N,z,)™* and
verify that the homogeneous components of this matrix are twice as nilpotent.
Then perform the same sort of trick on this matrix, and so on.

Such matrices I + Pw are the images of invertible matrices I + Px under
a map of R(x) into the ‘‘free’’ ring. Hence, K, (‘' free’’ ring) is generated by
the images, under all R-ring maps R(x) — ““free’’ ring, of K,(R(z)).

Finally, if R is a principal ideal domain, and we consider a matrix I + P,
where P is nilpotent, this is similar (and hence equivalent in W(R(x))) to a
matrix I + Qx where Q is in upper triangular form; such matrices are obviously
the product of elementary matrices.

From 6.1 and Gersten’s result, we clearly have:

6.2. THEOREM. If A®:B is “free’’ as an R-bimodule, and if KI(R(x))
=0, then K, (AxT') = K(A) + K(T).
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Now, one easily sees that the functors K, and T commute with direct limit.
We might call a direct limit of ‘‘free’”” R-bimodules semi-‘‘free’’. So that we
can replace the condition on A X B by requiring that it merely be semi-*‘free’’.

In case R is a commutative ring, we can use the theorem of Lazard [8] to
deduce that semi-‘‘free’” R-bimodules are the same as flat R-modules. Further-
more, Bass, Heller, and Swan [1] have shown that rings B which are regular
have the prorerty that K(R(x)) = 0; this extends our rather easy remark that
this is so when R is a principal ideal domain. We can therefore conclude, for
example:

6.2.1. COoROLLARY: If R is a regular, commutative ring, and 1f A and
B are kernels of retractions of the R-rings A and I’ onto R, and 1f AXR,.B
1s a flat R-module; then, K(A*T") = K,(A) + K(T).

A special case of this, in proof of which we do not need to use these more
general results of Lazard, Bass, Heller, and Swan, is:

6.3. COROLLARY. If A andl are Z-rings which are Z-torsion-free, then
K(AxT) = K,(A) + K(I").

Now, let IT denote a group, and consider the category of Z-rings. There
is a homomorphism 11 — K,(Z(II)) determined by associating to 7 € II the 1 x1
matrix (7). The quotient of K,(Z(II)) by the image of II under this homo-
morphism has been called 7 by Whitehead. To emphasize its functorial charac-
ter, we call it “WI(II), the Whitehead torston of II. WIS is clearly a covariant
funetor from groups to commutative groups, such that “WJ(trivial group) = 0.

It therefore follows a remark like the Lemma at the beginning of this
section, that WJ(I1,) + WI(IL,) is embedded in “WI(I1,*11,). To show the two
are equal, it is therefore enough to show WIS (I, «I1,) is generated by WI(I1,)
and “WJ(I1L,). Since WJ is a quotient group of K,, it is enough to show that
K,(Z(I1,11,)) is generated by K, (Z(11,)) and K,(Z(IL,)).

But, by 2, Z(I1,x11,) = Z(I1,) *« Z(11,). And by 6.3,

K(Z(11)* Z(1L,)) = K|(Z(IL)) + K,(Z(1L,)).
Hence:

6.4. THEOREM. The Whitehead torsion of a free product of groups s
equal to the direct sum of the Whitehead torsions of the factors.

7. Conclusion
From 6.4 and Higman’s result that the Whitehead torsion of an infinite

cyclic group is zero, it evidently follows that the Whitehead torsion of a free
group F'is zero and that “WI(I1x F') 1s naturally tsomorphic to “WI(II).
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This suggests that the Whitehead torsion might be conceived of as a sort
of “‘obstruction’’ thus:

Let ¢ : F'— II be a homomorphism of a free group onto IT; let M, and M,
be free modules over Z(F') and Z(I1), of the same rank; pick some epimorphism
M, — My. Given an automorphism « : My — My, there is always an endomor-
phism & : M, — M, covering it. When can « be covered by an auto-morphism?
The answer is, stably, if and only if the torsion of «, z(a) € WI(II) is zero.
Thus 7(«) appears to be very much like a K-theoretic characteristic class in the
realm of vector bundles.

It seems that there is much more of significance in this analogy, cf. Ger-
sten’s thesis [5].
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