
PARALLEL TRANSPORTAND CLASSIFICATION OF FIBRATIONS 

by 

James D. Stasheff I 

The simplest example of parallel transport is the field of (paral- 

lel) vertical vectors on I x I: 

IT T I 

and the simplest non-trivial example occurs when we form this strip 

into a Moebius band: 

clearly distinguishing the Moebius band from the cylinder. 

The idea of parallel transport originates in differential geometry 

where geometric structure such as curvature is revealed by parallel 
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transporting tangent vectors along curves: 

Essentially the same idea occurs in covering space theory where a 

loop in the space covered determines a deck transformation or permuta- 

tion of the sheets of the covering. [Veblen and Whitehead] suggested 

the greater generality of fibre bundles as a setting. We shall look at 

fiber spaces as well. 

We begin formally. 

Provisional Definition: For a fibre space 

(parallel) transport is a m~p 

T : F x ~X--~F 

such that 

I) the trivial loop acts as the identity 

2) 

3) 

F --+E -->X, a 

each loop acts as a homotopy equivalence 

T is transitive (i.e., T(f, ~+~) = T(T(f,%),~)) 

or reasonably close to it. 
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Classically and intuitively we would expect strict transitivity: 

transporting the fibre around one loop and ken another should be the 

same as transporting it around the sum of the two loops. For fibre 

spaces we lack such precision as we can see by constructing T from 

the Covering Homotopy Property. 

Consider 

where fo(y,%) = y and 

ft:F × ~X--~E with 

ft(Y,e) = y where e 

achieve 1 and 2. 

f 
Fx~X _~o E 

F x~2X ~ 
g t  

gt(y,%) = %(t). The CHP gives us 

fl:F × CaX--+F; in fact, we can assume 

is the trivial loop. We set T = fl and 

The lifting ft is not unique, but any two are homotopic. (They 

are homotopic within E to fo by a homotopy whose image in X is 

homotopy trivial and thus the homotopy can be deformed to be fibre 

! 

preserving, i.e., fl and fl are homotopic in F .) The same reason 

applies to show T(T x i) ~ T (i x m):F x ~X x ~X--~F where m is 

loop addition [Hilton]. 
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One can in fact say more, but we need a language with which to say 

it. One approach is to consider the adjoint map ad T : ~X--->F F . (We 

will not worry about the function space topology but rather always use 

continuity in reference to T rather than ad T ). The transitivity 

of • is equivalent to the multiplicativity of ad • . The homotopy 

condition above is equivalent to ad T being an H-map. In general 

for maps of one associative H - space to another we have the notion of 

strong homotopy multiplicativity. 

Definition. If Y and Z are topological monoids, a map 

f:Y --->Z is s.h.m. (strongly homotopy multiplicative) if any of the 

following conditions are satisfied: 

a) There exist maps fn:Yn x In-l-->Z such that fl = f and 

fn(Yl ,''',yn,tl,''',tn_ I) = 

fn_l(''',yiYi+l,''',ti,''') if t i = 0 

fi(Yl, • -" ,Yi,tl,''',ti_l) • fn_i_l(Yi+l,''',Yn,ti+l,''',tn_l ) 

if t. = 1 • ]. 

b) Sf : SY--->SZ extends to BY -->BZ. 

c) There exists a commutative diagram 
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WY 

I\ 
Y > 

f 

h 

Z 

where WY--~ Y is the standard retraction [Floyd] and h is a 

homomorphism. 

d) f can be factored up to homotopy as Y --~ YI<--- Y2 ---> " " " ---> Z 

where the Y. are also monoids and the maps are homomorphisms 
l 

and the maps Y2i --->Y2i-i are homotopy equivalences. 

In particular we can ask if ad T : ~X ---> F F is shm. Repeated use 

of the CHP provides the adjoint maps 

4) T :F x (D/~) n x In-l--+ F 
n 

as desired. Details are given in [i0]. The significance of these 

=~ps is that they completely determine the fibration as we now indicate. 

Let us back up a little. If a group G acts on a space Y, we 

can look at the orbit space Y/G. If G ---> Y --->Y/G is not a 

principal G-bundle, we can replace it, up to homotopy, by one, namely 

G --> EG x Y ---> EG x G Y = YG where EG is the universal (contractible) 

G - bundle. 

For any fibre space F ---~E --~X, we have the fibration (up to 

homotopy) ~X ~ F ----> E which suggests trying to identify E as F~X 



in some sense. The lack of transitivity is a problem, so let us look 

at YG in more detail. One way of describing YG is a realization 

of the simplicial space 

action 
-~ Y x G x G ÷ Y x G ÷ Y 
-9- -~ 

proJ 

In May's notation, the realization is B(Y,G,*), though we have not 

mentioned degeneracies and prefer to avoid their use, cf. [7]. 

Now suppose that we have ash- action of a monoid G on Y (i.e., 

maps m : y × G n x I n-I --+ y adjoint to an shm-map). Form 
n 

1 I Y xGnxln 

n> 0 

and factor by the following equivalence relation: 

(y,gl,.--,gn,tl,-°.,tn) ~ (..-,gigi+l,-.-,ti,---) if t i = 0 

(mi(Y,--.,gi,tl,''',ti_l)gi+l,''',gn,ti+l,''') if t i = 1 

Again call the result YG or B(Y,G,*). 

In particular all this applies to a transport T for F --->E --->B . 

Theorem: Let {Ti} be a family of maps satisfying i), 2), 3) and 

4). The map B(F, ~X,*) --->B(*, ~X,*)= B~X is a quasifibration with 

fibre F . (With extra connective tissue, Fuchs has been able to 
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build an equivalent Dold fihration [3].) 

If T. 
i 

above, then 

B(F, ~X,*) --*B(*, ~X,*). 

! 

If {T i} is arbitrary as above and {vi } 

B(F, ~X,*) --->B(*, ~X,*) using the CHP, then 

{T~} . 

Thus {T i} is a complete invariant of 

of transports classify fibrations. 

is obtained from F--->E--->B using the CHP as indicated 

E--*B is weakly fibre homotopy equivalent to 

is constructed from 

{wi } is homotopic to 

E --->B ; homotopy classes 

The usual way of classifying fibrations is by homotopy classes of 

maps X--->BH(F) where H(F) 

fences of F. Now {ad T i} 

hence induces a map at the B 

X = B2X 

is the monoid of self-homotopy equiva- 

is an shm- map of ~X into H(F) and 

level. We have thus 

BadT 
BK(F) 

Theorem. For a suitable choice of the equivalence X ~ B ~X, 

classifying map above is the usual one [II]. 

Here we should note that we assume X 

CW- complex in order to assert X = B ~X. 

more general topological conditions (e.g., perhaps weakly locally 

the 

has the homotopy type of a 

I am unaware of any study of 



contractible and paracompact) which would guarantee the same equiva- 

lence. 

Remarks on operads: Within the context of this conference, it is 

appropriate to mention the relation between the structures we have been 

studying and the concept of operads. 

tion of higher homotopies i.e., maps 

an operad action is of the form yn × M(n) --->Y, 

Our transport {T i } is a collec- 

F × (gX) n x In-l-->F, whereas 

where M(n) is a 

contractible in cases of current interest. 

my complexes K e . g . ,  K 3 = I b u t  K 4 

parameter space frequently more complicated than a cube, though often 

An "ancient" example are 

is a pentagon 

(wx) (yZ) 

( (II)(YxI i) i (XIIII)) 

and K 5 

Malraison has a function space equivalent of 

terms of maps [0,I] f-~ [0,n]. Thinking of 

[0,i] into n 

using loops parameterized from 

loops. The corresponding K 
n 

a polyhedron with 6 pentagonal and 3 quadrilateral faces. 

K n, readily described in 

f-i (i) as dividing 

pieces, we can see the relevance to loop spaces by 

0 to i and the classical addition of 

structures can be pictured 
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One reason for studying {K n} -spaces rather than strict monoids 

is that the definition is homotopy invariant. If X m Y and X is a 

monoid, Y need not admit an equivalent monoid structure (cf. Exotic 

S 3 multiplications on [Slifker]) but Y will admit an equivalent 

{K n} - structure (usually called strongly homotopy associative - s.h.a.). 

Now recall that an operad is, among other things, a category; where 

defined, composition is associative. It makes sense to talk of 

M--~End X being shm rather than a strict morphism, ash- functor 

rather than a strict functor. Again if X ~ Y 

then Y is at least an sh-M-space (Lada). 

asserts Y is a WM- space where WM 

and X is an M-space, 

Alternatively Boardman 

is his construction, presented 
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here by Floyd. 

Floyd has also pointed out that a WM-space X can be replaced up 

to homotopy by an M-space. Lada has given an alternative description 

of this process, namely B(M,M,X) where B is constructed using cubes 

as above. Actually Lada, following May, usedthe associated triple MX 

which is just the free gadget 

ME = I I M(n)x z ~I ~ 
n 

where the equivalence is given entirely in terms of degeneracies 

di:M(n ) --->M(n-l) corresponding to ~-i ---> 

point in the i-th coordinate. 

In comparing operads by morphisms M--->M 1 

by inserting the base 

which are homotopy 

equivalences on each component, we find the inverse maps M 1 ---> M are 

at least shin. Finally since operads have associative compositions, we 

can generalize to sh-operads having operads act on operads. 

Since the conference, I have seen work of Segal in which he has 

related E- l- operads to his F-structures and given an alternate 

approach to the last two paragraphs using essentially form d above 

for handling sh- morphisms. 

To come back to more concrete objects, I will consider briefly the 
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"local" approach to classification. Here local refers to structure 

defined on a space in terms of an open cover {U }. 
s 

For example, a 

fibre bundle p:E --->B is defined in terms of local product structures: 

p-I(u S) ~ U × F 

U 
s 

A fibre space over a nice base [i] can be defined in terms of local 

equivalences: 

p - I ( U s )  -~ Uc~ × F 

U 
s 

A foliation is defined in terms of special local coordinates: 

U -=RkxR n-k 
s 

Now an open cover {U S} gives rise to a simplicial space U : 

+% {us ~ usa uy} ÷+ {u So uB}s, s ~ {us } + ~,8,Y 

where all intersections are non-empty. 

as a category U with 0bU = I I U S, 

given by Mor (x ~ Us, y e U 8) = @ unless 

Mor (x,x) = x). There is an obvious map 

is paracompact is a homotopy equivalence. 

(If desired, think of {U } 
s 

the disjoint union and Mor U 

x = y in which case 

BU = IUI--~X which if X 

(The pictures in [9] are 
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quite indicative. ) 

Now local structures of the sorts considered above imply compata- 

bility on the overlaps. 

For example, a fibre bundle involves transition functions 

geB: U NU B --->G (where 

U N UB ~Uy, we have 

G is the group of the bundle) such that on 

g~sgBY = ge¥ 

This is a morphism U--->G and hence induces X = BU-->BG. Classi- 

fication can be verified directly if we choose the appropriate realiza- 

tion, namely Milnor's which has built in a nice "universal" open cover. 

To be precise, for a category 

BCC A ~ x C~ 

-~ { gij -~ A~ consisting of pairs (t, }) s/t t c 

t.t. # 0 
I J ' gij 

titjt k # 0 then gijgjk = gik" 

of the quotient topologies of the maps A n x C [n] --> BC 

pairs such that 

C , consider the subset of 

and i,j runs over all 

Mor C except gii g 0bC and if 

Topologize this space by the limit 

where C [n] 

denotes composable n-tuples and the map is given by 

(s0'''''Sn' gl'''''gn ) ---+ (~' {gij }) 
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where t k. = s.j for some k 0 < k I < "'" < kn and gk.k. . . . .  gi+l g~'j 
J • J 

The universal cover of BU is given by {ti-l(0,1]} and the gij 

coordinates regarded as functions U. ~ U. --->Mor C are universal 
l j 

transition functions [9]. (Strictly speaking, the U. are only point- 
1 

finite, but following [i] or [6] we can deform the original t. to 
1 

functions which are locally finite, so the associated ~.-i(0,I] 
1 

are also.) 

We now describe the classification procedure. If X is paracom- 

pact, we can now restrict attention to countable locally finite cover- 

ings {Ui}. The "i- cocycle" condition gijgjk = gik says that 

x e-> {gij (x) } induces a map BU ---> BC . Conversely given a map 

X f-~ BC, define a local structure on X in terms of the covering 

{f-l(u i)} by Yij (x) = gij o f (x) for x s U.I (~ U.j . 

Starting from any f:X--+BC, we obtain X--->B{f-Iu} --->BC. 

o {f-iui If we use t i f as the partition of unity subordinate to } , 

the composite is given by 

x ~ (''',t i o f (X),''',gij = f(x)) 

but this is precisely how one would represent f in terms of coordinates 



t i 

Yij 

li' 

]4 

and gij" In the other direction, if we start with a cocycle 

on a numerable covering U with associated partition of unity 

then 

is given by 

X ---> BU ---> BC 

x --~ (~i(x), ¥ij(x)) 

and this pulls back the universal example to the open cover 

xil(0,1] C U i with transition functions Yij(x). 

Since the same bundle gives rise to different 1 -cocycles as we vary 

the cover or choice of local coordinates, we must also consider equiva- 

leaee classes of bundles. Following Steenrod [12], two fibre bundles 

Ei--->X for i = 1,2 are equivalent if the union of the corresponding 

families of transition functions can be extended to a 1 - cocycle on the 

union of the corresponding coverings, i.e., if BU-->BC and 

BV--->BC extend to B(U,V). The corresponding partitions of unity 

give rise to maps I:X-->BU-->B(U,V) 

These are homotopic via tl + (l-t)~ 

obvious linear homotopy in terms of the 

classifying maps 

and ~:X-->BV-->B(U,V) 

where this really means the 

A~ coordinates. Thus the 

X--+BC for equivalent transition functions are 



homotopic. 
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E 0 

equivalent bundles. Thus we have the result: 

Now for bundles, a bundle E -->X x I is equivalent to 

x I --~X x I where E 0 = EIX x O; hence homotopic maps induce 

Equivalence classes of G- bundles over X are in 1 - 1 

correspondence with homotopy classes of maps X--+BG. 

In general, the notion of equivalence must be weakened so as to 

insure that a structure on 

restrictions to X x t. 

tions [4]. 

For fibre spaces, we have one additional subtlety; we have 

only homotopic to gay in H(F). 

specific choice of homotopy 

X x I implies the equivalence of the 

This is the approach which works for folia- 

As discovered by Wirth [14], 

g ~y~ : U N U B N U x I --->H(F) 
y 

is crucial to the classification as are higher homotopies 

U / ~  " ' "  ~ U x I n-I -->H(F). 
s0 ~n 

In other words, we have an shm -map 

g c ~ B g f 3 y  

a 

U---> H(F) and hence a classifying 

map 

X -~ BU ---> BH(F) 
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for paracompact X ° 

Thus whether through the local or the global (e.g., CHP and trans- 

port) approach, we see that classification of fibre spaces involves shm- 

maps. Once again, we can return to strict morphisms by enlarging the 

operative objects, e.g., W~X or WU, but it is the shm-maps 

which are the immediate consequences of the defining properties of 

fibre spaces. 
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