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A CLASSIFICATION THEOREM FOR FIBRE SPACES

JAMES STASHEFFT

(Received 21 January 1963)

LEeT [X, Y] denote the set of homotopy classes of maps of X into Y. Let LF(X) denote the
set of fibre homotopy equivalence classes of Hurewicz fibrings p : E— X with fibres of
the homotopy type of F.

CLASSIFICATION THEOREM. If F is a finite CW-complex, there is a space By such that
[ , Byl and LF( ) are naturally equivalent as functors from the category of CW-complexes
and homotopy classes of maps to the category of sets and functions.

We regard LF( ) as a functor as follows: Given a map f: XY'— Y and a Hurewicz
fibring p: E— Y, the induced Hurewicz fibring f*p: E, — X is defined by taking E, =
{(x, &) | f(x) = p(e)} and setting (f*p) (x, e) = x. The induced function LF(f):LF(Y)—
LF(X) is given by LF(f) [p]= [f*p]. If f is homotopic to g, then LF(f) = LF(g) by
Corollary 6.6 of [1].

The following fact about Hurewicz fibrings will often be of use to us. The technique
used in the proof provided our original insight into the classification theorem.

ProrosiTion (0). If p: E— B is a Hurewicz fibring and B and all ihe fibres have the
homotopy type of CW-complexes, then so does E.

This follows from the following special case:

PRrOPOSITION (1). Let p: E - B be a Hurewicz fibring with fibres of the homotopy type
of a CW-complex F. If B= B ue" and E' = p~'(B’) has the homotopy type of a CW-
complex, then so does E.

Proof. Let y:e"— B be the characteristic map. Since €" is coniractible, the induced
[
space E, is fibre homotopy equivalent to a product. Let " x F_E, be fibre homotopy

v
inverses and let 7: E, — E be the obvious map. Now let v=y . ¢|S"”"' x F and form
& =¢" x FU,E'. Clearly ¥¢ inducesamapa : & — E. To obtain aninverse, leth, : E, - E,
be a homotopy covering the identity such that k, = 1, h, = ¢yr. Represent ¢* as CS"™!
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and for any cone CX, define s : CX — CX to be the deformation

[(2t, x) 0 < 2t < 1, the vertex of the cone being (0, x)
W, x)1s2e<2.
Now construct a map f: E — & extending the identity on E’. On E — E’, let § be given

-t ¢ sx1
by E-E —»E,—»e¢"xF — ¢"x F—¢& when y7~' lies over the top half of e, ie. if

Y '(e) =(t, x,y) with xe S"™!, ye F and 0 <2t < 1, then f(e) = (2¢, x, y). Otherwise
when Y7-'(e) = (t, x, y) with 1 <2t <2, let fe) =fhy,-,7-'. We see that § is well
defined and it is not hard to check that « and 8 are mutual homotopy inverses rel £'.

s(t, x) =

If E’ were itself a CW-complex, so would & be, assuming v deformed to be cellular,
v ']
More generally, if E'—» &’ — E’ are homotopy inverses and &’ a CW-complex, then &

has the homotopy type of the CW-complex e" x Fu,,&’. Thus E is sure to have the
homotopy type of a CW-complex.

We will prove Proposition (0) by repeated application of Proposition (1) using the
following technique. For any map f: E— B, a CW-complex, we can consider E,, the
space obtained using the weak topology of the decomposition E,, = {J E, where the E,
are the inverse images f~(e,) of the closed cells e, of B. (It is easy to show that if B is
locally finite, E,, is homeomorphic to £.) Now assume p : E — B is a Hurewicz fibring and
all the fibres have the homotopy type of a CW-complex F. The argument for Proposition (1)
extends to prove that E_ has the homotopy type of a CW-complex when B is obtained
from B’ by simultanequsly attaching any number of cells, for example when B is the n-
skeleton and B, the (n — 1)-skeleton of a CW-complex. Moreover, as shown in an appendix,
under these conditions we can prove:

PROPOSITION (2). E,, has the homotopy type of E.
Proposition (0) now follows by induction on the skeleta of B.

Although we are interested in studying Hurewicz fibrings, we must for technical
reasons introduce quasi-fibrings, that is, maps p : E— B which have the property that
DPx : t(E, p~(x)) = n(B, x) is an isomorphism for all j, all x € B and all choices of base
point in p~!(x). The essential facts about quasi-fibrings are given in [3].

DerINITION (3). If p,: E;,— B, i =0, 1 are quasi-fibrings, a map f: E, — E, is a map
over B if p, f = p, and is a weak fibre equivalence if it is a map over B and a weak homotopy
equivalence. The quasi-fibrings p, and p, are quasi-equivalent if there is a sequence of quasi-
JSibrings py, Pa ..., Pu—y s Pn = Do Such that for each i, p; is weakly fibre homotopy equivalent
10 pyyy OF Py is weakly fibre homotopy equivalent to p,.

Denote by QF(X) the set of quasi-equivalence classes of quasi-fibrings p : E - X with
fibres of the weak homotopy type of F and total spaces of the homotopy type of CW-
complexes.

PRrROPOSITION (4). Each class in QF(X) is represented by a Hurewicz fibring.
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Proof. Given any map p : E— X, the associated Hurewicz fibring Hur(p) : Hur(E) = X
is obtained by taking Hur(E) « E x X! to be {(e, A)IA(0) = ple)} and setting
Hur(p)(e, A) =A(1). The original space E is imbedded in Hur(E) by j(e) = (p(e). 4,)
where A(f) = e; E is in fact a deformation retract of Hur(E). If p is a quasi-fibring, jisa
weak fibre equivalence.

Unfortunately it is difficult to regard QF(X) as a functor since in general the map
induced from a quasi-fibring need not be a quasi-fibring. However, we do have:

PrOPOSITION (5). If p;: E;— B are quasi-fibrings and f: E, = E, is a weak fibre
equivalence then the associated Hurewicz fibrings BHur(p,) and Hur(p;) are fibre homotopy
equivalent, provided the spaces E; have the homotopy type of CW-complexes.

Proof. We have

S
Ey——E,
joit (jl
i 1
& 64

where &; = Hur(E)). Letk,: &, — E, be an inverse for j,, e.g. ko(e, ) = e. The composi-
tion j, fk, is not a map over B since k, is not, but since pok, can be deformed to Hur(p,),
J1Sko can be deformed to a map f/ over B. Since ali the maps involved are at least weak
equivalences, so is / ; in fact, / is a homotopy equivalence since &, has the homotopy type
of the CW-complex E;. Hence by Theorem (6.1) of [1], / is a fibre homotopy equivalence.

COROLLARY (6). QF(X) and LF(X) are isomorphic if X and F are CW-complexes.
(We could regard QF as a functor by identifying QF(X): with LF(X): we prefer to work
directly with LF.)

There are certain ways of getting new fibrings from old which are useful to us.

The associated principal map Prin(p) (cf. [2])

Let F be a locally compact space. Given a quasi-fibring p : E — B with fibres of the
homotopy type of F, we construct the associated principal map Prin(p): Prin(F) — B.
Prin(E) is the subspace of EF (with the compact-open topology) consisting of maps
@ : F— E such that ¢ is a homotopy equivalence between F and some fibre p~!(x). The
map is given by Prin(p)(¢) = p(¢(F)). The fibres of Prin(p) have the homotopy type of
H = H(F), the topological monoid of homotopy equivalences of F into itself. An operation
i Prin(E) x H - Prin(F) 1s given by u(e, k) = ¢ < h. (To ensure y is continuous, we need
F to be locally compact.)

I do not know if Prin(p) is in general a quasi-fibring. However,

LemMa (7). Prin(p) is a Hurewicz fibring if p is.

Proof. Let f: X—Prin(E) and h: X x I = B such that Prin(p) o f= Bl X x0=h,.
Consider the induced spaces E, and E, . Lemma (6.5)of [I] providesamapR: E, x I— E,
which from the information given can readily be seen to be a fibre homotopy equivalence.
If we map X x Finto E, by sending (x, ) to (x, f(x)}(»)), the composition 6 : X x F x I —
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E,, x I- E,— E induces a weak homotopy equivalence between corresponding fibres
and hence is adjoint to 2 homotopy f’ : X x I - Prin(E) covering A. [f'(x, H(») = 8(x, y, D).

A similar result will hold for a special type of quasi-fibring which is of crucial importance
in our work.
The prolongation Prol(p)

Given a quasi-fibring p : E - B with fibres of the homotopy type of a space F, we
imbed it in the prolongation Prol(p) : Prol(E) — Prol(B). For any space X, CX will denote
the cone on X. Prol(E) = C(Prin(E)) x Fu,E where v:Prin(E) x F— E is defined by
W, ) = (f). Prol(B) = C(Prin(E)) U, B where p’ = Prin(p), and Prol(p) is defined as
an extension of p by

C(Prin(E)) x F— Prol(E)

Prol(p)

C(Prin(E)) —— Prol(B).

LemMma (8). Prol(p) is a quasi-fibring if p is.
Proof. The proof of Proposition (2.3) in [2] is readily adaptable. We need only observe
that for each ¢ € Prin(E), the map W, ):F - Eis a homotopy equivalence into a fibre.

LeMMA (9). Prin(Prol(p)) is a quasi-fibring if Prin(p) is.
Proof. Prin(Prol(p)) can be identified with Prol(Prin(p)) by identifying
Prin(C(Prin(E)) x F)with C(Prin(E)) x H.

The ultimate prolongation Ult(p) of a quasi-fibring

Given a quasi-fibring p : E — B, relabel it g, : Do — B, . Inductively define g, : D, — B,
to be Prol(g,.,): Prol(D,_,) = Prol(B,_,) and let Ult(p) : Ult(E£) — Ult(B) be the limit of
the quasi-fibrings g, : D, ~ B,.

LeMMA (10). UlK(p) is a quasi-fibring if p is. Prin(UIK{p)) is a quasi-fibring if p isa
Hurewicz fibring.

Proof. The case for Ult(P) is covered explicitly in [2]. The argument applies equally
well to Prin(Ult(p)) as the limit of the quasi-fibrings Prin(q,) in light of Lemmas (7) and (9).

LeMMa (11). Prin(Ul(E)) is aspherical.

Proof. It is sufficient to prove Prin(D,) is contractible in Prin(D,.,). The contraction
is given by k, (o)) = (¢, ¢, f) € C(Prin(D,)) x F.
The universal example u : UE — By

Consider the trivial fibring 8 : F— %, a point. Prin(F) is just H so Prin(Ult(8)) is a
quasi-fibring with aspherical total space and fibre H. Following Dold and Lashof, we
denote this quasi-fibring by pg : Ey — By and call it the universal H-fibring. The analogy

with the universal bundle of a topological group is underlined by our main theorem which
asserts that By is a classifying space for a certain type of fibring.
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The Hurewicz fibring Hur(Ult(6)) we denote by u : UE — By. We shall see that under
suitable restrictions it is indeed the Universal Example of a Hurewicz ﬁbring with fibres
of the homotopy type of 7. But first we verify:

PROPOSITION (12). Let f*p: E; — X be induced by f: X - Y from a Hurewicz fibring
p:E— Y. If X, Y and E have the homotopy type of CW-complexes, then so does E ;.

Proof. Let M(f, p) denote the double mapping cylinder of f and p, i.e. M(f, p) =
XxIu; YU, E x I where (x, 1) is identified with f(x) and (e, 1) with p(e). Consider
the space & = {1: I - M(f, p)lA(0) e X x 0, A(1) € E x 0}. I claim & has the same homo-
topy type as E,. Explicit equivalences are given as follows: Definea : £, — & by

(x,20) 0<s2t< 1,
(e,2-2)1<2t<2.
Define y: & = Eby y(A) = A(1)and 4: & = X by (1) = A(0). Since f£ is homotopic to py,
the map y may be deformed to y’ which will cover f#. Define an inverse for a by 8(4) =

(#(2), ¥'(3)). By Theorem 3 of [S] (cf. Corollary (3)), £ has the homotopy type of a CW-
complex, hence E, does.

a(x, e)t) =

CoROLLARY (13) (cf. [4; p. 7). The fibres of p have the homotopy type of CW-complexes
if E and B do.

THEOREM (14). Let p : E — B be a Hurewicz fibring. If F is a finite CW-complex and B
(and hence E) has the homotopy type of a CW-complex, then Hur(Ult(p)) has fibres of the
homotopy type of F.

Proof. Sincej : U(E) - Hur(ULt(E)) is fibre preserving and a homotopy equivalence,
it induces a weak equivalence between corresponding fibres. It is sufficient therefore, to
verify that the fibres of Hur(Ult(p)) have the homotopy type of CW-complexes, for which,
in the light of Corollary (13), it is. enough that Ult(F) and Ult(B) have the homotopy type
of CW-complexes. For this we need the fact that if B has the homotopy type of a
CW-complex so does Prin(E), using Proposition (0) and the fact that H has the homotopy
type of a CW-complex since F is compact [5, Corollary (2)]. It follows that C(Prin(E)) x F
has the homotopy type of a CW-complex and hence so do Prol(E) and Prol(B). Since
Prin(Prol E) can be identified with Prol(Prin F), the argument can be iterated. Passing to
the limit, we verify the same thing for Ult(E) and Ult(B): they are of the homotopy type
of CW-complexes. In particular this is true of By.

The transformation S': [ , By] = LF{ )
We define S(f) = LF(f)[u] = [f*u: UE, = X] for any map f: X — By.

The transformation 7: LF( )~ [ , By]

Consider a commutative diagram E’'—— E where p and p’ are Hurewicz
P’ { 1 [ 4
i
X —X
)
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fibrings and , induces equivalences between corresponding fibres. If we carry out our )
constructions on p and p’, we obtain
E’ + E

/
N

4

X —X
ui(s) 1

Ult(X") —— Ult(X)
A LN
v \\

UIY(E") > UI(E).

Since Prin(UIt(E")) and Prin(Ult(E)) are aspherical, Ult(/f) is a weak homotopy equivalence.
If X’ and X have the homotopy type of C W-complexes, so do Ult(X") and Ult(X), assuming
Fis a finite CW-complex. Thus Ult(f) is a homotopy equivalence.

In particular this is true if X’ is a point. In this case, Ult(X") is just By and we will
denote the equivalence by j: By — Ult(X). It induces an isomorphism j, : [Y, Bg] -
LY, Ult(X)] for any space Y. In fact for any point X’ within a given path-component of
X, we get the same isomorphism j,. [This can be seen by considering the fibring E, induced
over a path u: 7= X. E, is fibre homotopy equivalent to F x Isince I is contractible, from
whence it follows easily that Ult(X) is homotopy equivalent to By x I. Thus Ult(u) gives
a homotopy between the corresponding maps j.] On each component, therefore, we define
T(p) by j.I(p) = [g] where g is the inclusion X < Ult(X). Returning to the figure for
arbitrary p’, we have similarly j':By—Ult(X’), ¢': X'« Ut(X’) and UIt(f)j’=jso
JxT(p") = Ult{f)s ja T(p") = Ult(f)4[g'] = [Ult(f)g'] = [gf]. Thusif X' = X" and f is the
identity, then T(p’) = T(p) so T passes to equivalence classes. Since [gf]=f*[g], T is
natural.

The relation between 7" and S

THEOREM (15). ST is the identity on LF( ).

Proof. let p: E— X be imbedded in Ult(p) as in defining 7. The imbedding
E - Ult(E) - Hur(Ult(E)) will induce homotopy equivalences between corresponding
fibres. Thus p is equivalent to g* Hur(Ult(p)) by Theorem (6.3) of (1]. Similarly u is
equivalent to j* Hur(Ult(p)). Let p’ = Hur(Ult(p)): we have ST[p] = T(p)*[u] =
T(p)**[p'] = ¢*[p'] = [p].

As for TS, suppose we attempt to evaluate T(x). We would have

F. +UE

AN /

N e

* By
g

B H ——————b Ult(B H)
i N

! N
Ul(F) — — UI(UE)
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so that T(u) = h - g where h is any inverse for j and hence T(«) is a homotopy equivalence
of B, onto itself. [In fact j is homotopic to g so that T(x) = 1, but we do not need this.]

THEOREM (16). TS is an automorphism on [ , By].
Proof. By naturality TS[f] = T(f*[ul) =f*T[u] = T(w).[f]-

Combining Theorems (15) and (16), we see that T is one-to-one and onto. This
completes the proof of the classification theorem.

The use of the Dold and Lashof construction to define the functor T, I owe to I. M.
James. The full strength of the present classification theorem and the efficiency of the

proofs given is due to the patient insistence of several people, particularly J. Milnor,
D. M. Kan and the referee.

APPLICATIONS

Let F = S" and let By, be the classifying space for the orthogonal group on R"*!.
Since an orthogonal motion of R**? induces a homeomorphism of S* onto itself, 0(n + 1)
can be regarded as a subgroup of H. Dold and Lasbof have shown that there is a map
J : By(n+1) = By which corresponds to identifying orthogonal bundles up to fibre homotopy
equivalence. From our point of view, J can be defined as T(y"**) where y**! is the universal

"-bundle y"*! : E = By(y41)-

THEOREM (17). The induced map J* : H*(By; Z,) + H*(By(n+1); Z,) is onto for p =2
or 3,

For prime p and n > 4, J* is not onto since H‘(Bo(,+ 15 Z,) = Z, while H*(By; Z,) =0
since m(By) = m;.4(H) has no p-primary component for i < 4. being isormorphic to
Tp s i-1(S")-

Proof for p =2. We know that H*(By:1); Z) is generated by the Stiefel-Whitney
classes W (y"*") which can be defined for a sphere fibring p : E— B bv

W, = @~ 1Sq4'd(1)
where @ : H~!(B) » H*"(B, E) = H***(M, . E) is the Thom isomorphism {6, Theorem
(1.3)] and M, is the mapping cylinder of p. This isomorphism can be obtained from the
Gysin sequence which exists for any fibring with fibre of the homotopy type of S". In

particular, we can define W (u) in this way and by naturality we have J*W(u) = W,(;"*1)
so J* is onto.

Proof for p = 3. This is almost the same. The Steenrod operations 2 replace the
Sq', H*(Bya+1); Z,) is generated by the mod 3 reductions of the Pontrjagin classes p;
and one knows p, = ®~'#% ®(1) mod 3 [7).

APPENDIX

Proof of Proposition (2). Let i: E, — E denote the identity map from the weak to the
original topology and let p,, : E,, — B be the obvious map. Recall that £, is a deformation
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retract of Hur(E,) and in fact the deformation retraction can be given by Afe, 1) =
(e, ') where A'(s) = A(ts) for 0 < s < 1 so that p h, >~ Hur(p,).

i i
Hur(E,) =< E,——E
N\ ho

> A
Hur(pw) pw /P
L7

Thus pihy =~ Hur(p,,) so ih, can be deformed to g : Hur(E,)) — E, a map over B. Now iisa
weak homotopy equivalence (the topologies agree on compact subsets) and hence ik, and g
are also. Thus g restricted to corresponding fibres is a weak homotopy equivalence.

If E,, has the homotopy type of a CW-complex, so does Hur({E,)) and hence so do the
fibres of the latter by Corollary (13). Thusg restricted to corresponding fibres is a homotopy
equivalence and hence g is a fibre homotopy equivalence by Theorem (6.3) of [1].
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