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A CLASSIFICATION THEOREM FOR FIBRE SPACES 

.iAI@S STASIiEFFt 

(Receiwd 21 Jtmuuy 1963) 

LET [X, yl denote the set of homotopy classes of maps of Xinto Y. Let U’(X) denote the 
set of fibre homotopy equivalence classes of Hurewicz fibrings p : E -+ X with fibres of 
the homotopy type of F. 

CLASSIFICATION THEOREM. If F is a j&e CW-complex, there is a space BH such that 
[ , BH] and LF( ) are naturah’y equivalent as functors from the category of C W-complexes 
and homotopy classes of maps to the category of sets andfmlctions. 

We regard LF( ) as a functor as follows: Given a map f : X+ Y and a Hurewicz 
fibring p : E -, Y, the induced Hurewicz jibring f *p : EI + X is defined by taking E, = 
((x, e) If(x) = p(e)} and setting (f*p) (x, e) 3i: x. The induced function LFcf) : LF( Y) -* 
LF(X) is given by LF(f) lp] = Lf*p]. If f is homotopic to g, then LFW = LF(g) by 
Corollary 6.6 of [l]. 

The following fact about Hurewicz fibrings will often be of use to us. The technique 
used in the proof provided our original insight into the classification theorem. 

F’ROPOSI’MON (0). Ifp : E-c B is a Hurewicz fibring and B and all the $&es have the 
homotopy type of CW-complexes, then so does E. 

This follows from the following special case: 

~OPOSITION (1). Let p : E + B be a Hurewicz jibring with fibres of the homotopy type 
of a CW-complex F. If B = B’ v e” and E’ = p-‘(B’) has the homotopy type of a CW- 
complex, then so does E. 

Proof. Let x : e” + B be the characteristic map. Since e” is contractible, the induced 
dJ 

space E, is fibre homotopy equivalent to a product. Let e” x FZE, be fibre homotopy 

inverses and let 1: E, + E be the obvious map. Now let v 5: x c’41Sn-’ x F and form 
d = e” x F v, E’. Clearly 24 induces a map a : $ -+ E. To obtain an inverse, let h, : E, + E, 
be a homotopy covering the identity such that h, = 1, ho = c#$. Represent e” as CS”-’ 
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and for any cone CX, define s : CX-+ CX to be the deformation 

((2t, x) 0 5 2t I 1. the vertex of the cone being (0, x) 
46 4 = \(I, x) 1 S 2t 5 2. 

Now construct a map p : E + d extending the identity on E’. On E - E’, let /I be given 
p-1 

by E-E’ -+E,~e” x FSlle” x F-+6 when #;7-’ lies over the top half of e”, i.e. if 
$1-‘(e) = (t, x, y) with x E 9-r, y E F and 0 s 2t s 1, then p(e) = (2t, x, y). Otherwise 
when $1-‘(e) = (t, x,y) with 1 I 2t s 2, let B(e) =j/~~,_~j-‘. We see that j? is well 
defined and it is not hard to check that a and j? are mutual homotopy inverses rel E’. 

If E’ were itself a CW-complex, so would I be, assuming v deformed to be cellular. 

More generally, if E’ 1: 6’ : E’ are homotopy inverses and 8’ a CW-complex. then d 
has the homotopy type of the CW-complex e” x Fu +Y’. Thus E is sure to have the 
homotopy type of a C W-complex. 

We will prove Proposition (0) by repeated application of Proposition (1) using the 
following technique. For any map f : E + B, a C W-complex, we can consider E, , the 
space obtained using the weak topology of the decomposition E, = U E, where the E, 
are the inverse imagesf-‘(e,J of the closed cells e, of B. (It is easy to show that if B is 
locally finite, E, is homeomorphic to E.) Now assume p : E + B is a Hurewicz fibring and 
al1 the fibres have the homotopy type of a C W-complex F. The argument for Proposition (1) 
extends to prove that E,,, has the homotopy type of a CW-complex when B is obtained 
from B’ by simultanepusly attaching any number of cells, for example when B is the n- 
skeleton and B’, the (n - 1)-skeleton of a C W-complex. Moreover, as shown in an appendix, 
under these conditions we can prove: 

PROPOSITION (2). E, has the homotopy type of E. 

Proposition (0) now follows by induction on the skeleta of B. 

Although we are interested in studying Hurewicz fibrings, we must for technical 
reasons introduce quasi-fibrings, that is, maps p : E -+ B which have the property that 
p* : Xi(E, p-‘(x)) --t x,(B, x) is an isomorphism for all i, all x E B and all choices of base 
point in p-‘(x). The essential facts about quasi-fibrings are given in [3]. 

DEFINITION (3). Ifpi : E, -+ B, i = 0, 1 are quasi-jibrings, a map f: E, + El is a map 
over B ifp, f = p,, and is a weak fibre equivalence if it is a map over B and a weak homotopy 
equivalence. The quasi-fibrings p. andp, are quasi-equivalent if there is a sequence of quasi- 

fibringsp,,p, ...,P~-~,P~ =pO such that for each i, pi is weakly jibre homotopy equivalent 
to pi+1 or pi+l is weakly$bre homotopy equivalent to pi. 

Denote by QF(X) the set of quasi-equivalence classes of quasi-fibrings p : E -) X with 
fibres of the weak homotopy type of F and total spaces of the homotopy type of CW- 
complexes. 

PROPOSITION (4). Each class in QF(X) is represented by a Hurewiczjbring. 
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EhO x I -, E,, + E induces a weak homotopy equivalence between corresponding fibres 
and hence is adjoint to a homotopyf’ : X x I+ Prin(E) covering h. If’@, r)(y) = 13(x, y, r)]. 

A similar result will hold for a special type of quasi-fibring which is of crucial importance 
in our work. 

The prolongation ProlQ) 

Given a quasi-fibring p : E -, B with fibres of the homotopy type of a space F, we 
imbed it in the prolongation ProI : Prbl(E) + Prol(B). For any space X, CX will denote 
the cone on X. Prol(E) = C(Prin(E)) x F u,E where v : Prin(E) x F+ E is defined by 
v(cpJ) = cp(jJ. Prol(B) = C(Prin(E)) up* B where p’ = Prin(p), and Prol(p) is defined as 
an extension of p by 

C(Prin(E)) x F-, ProlQ 

i I 
Pr4P) 

C(Prin(E))4 Prol(B). 

LEMMA (8). &01(p) is a quasi-fibring ifp is. 

Proof. The proof of Proposition (2.3) in [2] is readily adaptable. We need only observe 
that for each cp E Prin(E), the map v(cp, ) : P-+ E is a homotopy equivalence into a fibre. 

LEMMA (9). Prin(Prol(p)) is a quasi-fibring zy Prin(p) is. 

Proof. Prin(Prol(p)) can be identified with Prol(Prin@)) by identifying 

Prin(C(Prin(E)) x F) with C(Prin(E)) x H. 

The ultimate prolongation U&(p) of a quasi-fibring 

Given a quasi-fibring p : E + B, relabel it q. : Do + B, . Inductively define q. : D,, -, B, 
to be ProI&,_,) : Prol(D,_,) + Prol(B,_,) and let Ult(p) : Ult(E) + Ult(B) be the limit of 
the quasi-fibrings q. : D, + B.. 

LEMMA (10). Urt(p) is a quasi-fibring if p is. Prin(Ult(p)) is a quasi-fibring if p is a 
Hurewicz fibring. 

Proof. The case for Ult(P) is covered explicitly in [2]. The argument applies equally 
well to Prin(Ult(p)) as the limit of the quasi&brings Prin(q,) in light of Lemmas (7) and (9). 

LEMMA (11). Prin( Ult(E)) is aspherical. 

Proof. It is sufficient to prove Prin(D,) is contractible in Prin(D,+,). The contraction 
is given by k, (q)(f) = (t, (p,f) E C(Prin(D,)) x F. 

The universal example u : UE -, BN 

Consider the trivial fibring 8 : F -, *, a point. Prin(F) is just H so Prin(Ult(B)) is a 
quasi-fibring with aspherical total space and fibre H. Following Dold and Lashof, we 
denote this quasi-fibring by pR : EH + BH and call it the universal H-fibring. The analogy 
with the universal bundle of a topological group is underlined by our main theorem which 
asserts that BR is a classifying space for a certain type of fibring. 
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The Hurewicz fibring Hur(Ult(B)) we denote by u : UE + Ba. We shall see that under 
suitable restrictions it is indeed the Universal Example of a Hurewicz fibring with fibres 
of the homotopy type of E. But first we verify: 

PROPOSITION (12). Let f*p : E, + X be induced by f : X -, Y from a Hurewicz jibring 
p : E + Y. If X, Y and E have the homotopy type of CW-complexes, then so does E, . 

Proof. Let JMcf,p) denote the double mapping cylinder off and p, i.e. Mcf; p) = 
X x I u/ Y up E x I where (x, 1) is identified with f(x) and (e, 1) with p(e). Consider 
thespace6’={~:I-+MCf,p)]A(O)~XxO,lyl)E:ExO). Iclaim6hasthesamehomo- 
topy type as E, . Explicit equivalences are given as follows: Define a : E, -+ Q by 

a(~, eN) = 1 k w 0~22~ 1. 
(e, 2 - 2f) 1 I2t 5 2. 

Define y : t” + E by r(A) = 1(l) and + : I + X by h(A) = A(0). Since f# is homotopic to py, 
the map y may be deformed to y’ which will cover ffi. Deiine an inverse for a by p(A) = 
@(A), y’(A)). By Theorem 3 of [5] (cf. Corollary (3)), d has the homotopy type of a CW- 
complex, hence E, does. 

COROLLARY (13) (cf. [4 ; p. 7]:i. Thefibres of p have the homotopy type of C W-complexes 
if E and B do. 

THEOREM (14). Let p : E 4 B be a Hurewiczjibring. If F is afinite CW-complex and B 
(and hence E) has the homotopy type of a CW-complex, then Hur(Uit(p)) has jibres of the 
hDmotopy type of F. 

Prooj. Sincej : Ult(E) + Hur(Ult(E)) is fibre preserving and a homotopy equivalence, 
it induces a weak equivalence between corresponding tibres. It is sufficient therefore, to 
verify that the fibres of Hur(UltCpj) have the homotopy type of CW-complexes, for which, 
in the light of Corollary (13) it is. enough that Ult(E) and Ult(B) have the homotopy type 
of CW-complexes. For this we need the fact that if B has the homotopy type of a 
CW-complex so does P&(E), using Proposition (0) and the fact that R has the homotopy 
type of a CW-complex since F is compact [5, Corollary (2)]. It follows that C(Prin(E)) x F 
has the homotopy type of a CW-complex and hence so do Pro](E) and Prol(B). Since 
Prin(Pro1 E) can be identified with Prol(Prin E), the argument can be iterated. Passing to 
the limit, we verify the same thing for U&(E) and Ult(B): they are of the homotopy type 
of C W-complexes. In particular this is true of BB . 

The transformation S : [ , BH] + LF( ) 

We define s(f) = LFcf)[u] = [f* u: UE,-rX]foranymapf: X+B,. 

The transformation T : LF( ) --) [ , BB] 
7 

Consider a commutative diagram E’- E where p and p’ are Hurewicz 

P* 
1 b 

X’-x 
I 
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fibrings and, induces equivalences between corresponding fibres. If we carry out our 
constructions on p and p’, we obtain 

E’ 

\, / J’ 
X’ - x 

I UW) 1 
ult(x’) - Uh(X) 

J’ 
\ 

‘1 
Uh(E’) P Ul h. 

Since Prin(Ult(E’)) and Prin(Ult(E)) are aspherical, Ultcr) is a weak homotopy equivalence. 
If X’ and X have the homotopy type of CW-complexes, so do Ult(X’) and Ult(X), assuming 
F is a finite CW-complex. Thus Ult(J) is a homotopy equivalence. 

In particular this is true if X’ is a point. In this case, U&(X’) is just BH and we will 
denote the equivalence by j : BH -+ Ult(x>. It induces an isomorphism j* : [Y, Be] -, 
[Y, Ult(X)] for any space Y. In fact for any point X’ within a given path-component of 
X, we get the same isomorphism j*. [This can be seen by considering the fibring E,, induced 
over a path p : I + X. E,, is fibre homotopy equivalent to F x I since I is contractible, from 
whence it follows easily that Ult(X) is homotopy equivalent to BII x I. Thus Ult@) gives 
a homotopy between the corresponding maps j.] On each component, therefore, we define 
T(p) by jJ(p) = b] where g is the inclusion X t Ult(X). Returning to the figure for 
arbitrary p’, we have similarly j’ :BIi -, Ult(X’), g’ :X’ c Ult(X’) and Ult(J)j’- j so 
j,T(p’) = Ult(f)* j,T(p’) = Ultdf),[g’] = [UltCf)g’] = [slf]. Thus if X = X’ and f is the 
identity, then T(p’) = T(p) so T passes to equivalence classes. Since [gf] =f*[g], T is 
natural. 

The relation between T and S 

THEOREM (15). ST is the identify on LF( ). 

Proof. Let p : E+ X be imbedded in Ult(p) as in defining T. The imbedding 
E -+ Ult(E) + Hur(Ult(E)) will induce homotopy equivalences between corresponding 
fibres. Thus p is equivalent to g* Hur(Ult(p)) by Theorem (6.3) of [I]. Similarly u is 
equivalent to j* Hur(Ult(p)). Let p’ = Hur(Ult(p)): we have ST[p] = T(p)*[w] = 

W*j*b’l = B*b’l = bl. 

As for TS, suppose we attempt to evaluate T(u). We would have 

* 

‘\ / 
e - BH 

I I 6 

BH - Ult(B,) 

J 
i 

WF) 
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so that T(U) = h O 9 where h is any inverse for j and hence T(U) is a homotopy equivalence 
of BH onto itself. [In fact] is homotopic to 3 so that T(U) = 1, but we do not need this.] 

THEOREM (16). TS is an automorphism on [ , BH]. 

Proof. By naturality TS[f J = T(f*[uJ) = f *T[u] = T(u)*Lf]. 

Combining Theorems (15) and (16), we see that T is one-to-one and onto. This 
completes the proof of the classification theorem. 

The use of the Dold and Lashof construction to defme the functor T, I owe to I. M. 
James. The full strength of the present classification theorem and the efticiency of the 
proofs given is due to the patient insistence of several people, particularly J. MiInor, 
D. M. Kan and the referee. 

APPLICATIONS 

Let F = S” and let Bo(,+i, be the classifying space for the orthogonal group on R”+ ‘. 
Since an orthogonal motion of R”+l induces a homeomorphism of S” onto itself, O(n + 1) 
can be regarded as a subgroup of H. Dold and Lasbof have shown that there is a map 
J : Boca+ll -, B, which corresponds to identifying orthogonal bund!es up to fibre homotopy 
equivalence. From our point of view, Jean be defined as T(y”+‘) where y”+’ is the universal 
Y-bundle y”+ ’ : E + Boc,+ 1j. 

THEOREM (17). The induced map J* : H*(B,; Z,) + H*(Botn+l); Z,> is onto for p r 2 
or3. _ 

For primep and n > 4, J* is not onto since H4(B0(_ I,; Z,) = Z, while H4(BH; 2,) = 0 
since nI(BH) x n,_,(H) has no p-primary component for i s; 4, being isormorphic to 

nn+i-l(s”l* 

Proof for p = 2. We know that H*(BOin+,) ; Z) is generated by the Stiefel-Whitney 
classes Wi( y”’ ‘) which can be defined for a sphere fibringO : E 3 B bv 

w;, = tp-‘Sqkiyl) 

where 0: If’- ( ) ’ B -+ Hj+“(B, E) = Hj+“(M,, E) is the Thorn isomorphism 16: Theorem 
(1.3)] and Mp is the mapping cylinder of p. This isomorphism can be obtained from the 
Gysin sequence which exists for any fibring with fibre of the homotopy type of 5’“. In 
particular, we can define W,(u) in this way and by naturality we have J*Wdu) = W,(g”+‘j 
so J+ is onto. 

Proof for p = 3. This is almost the same. The Steenrod operations 9: replace the 

sq’ , H*@o(n+~; Z,) is generated by the mod 3 reductions of the Pontrjagin classes pi 
and one knows pi E cP”B~ @(I) mod 3 [7]. 

APPENDIX 

Proof of Proposition (2). Let i : E, + E denote the identity map from the weak to the 
original topology and let pw : E, + B be the obvious map. Recall that E, is a deformation 
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retract of Hur(E,) and in fact the deformation retraction can be given by h,(e, A) = 
(e, 2) where A’(s) = A(&) for 0 i; s 5 1 so that pJrO N Hur(p,). 

I 
Hur(E,,,)&E,-E 

\\“o 
HWPW) 

’ I/ 

PA 

L 

B 

Thus pih, N- Hur(p,) so ih,, can be deformed to g : Hur(EJ + E, a map over B. Now i is a 
weak homotopy equivalence (the topologies agree on compact subsets) and hence ihO and g 
are aiso. Thus g restricted to corresponding fibres is a weak homotopy equivalence. 

If E, has the homotopy type of a CW-compiex, so does Hur(E,) and hence so do the 
fibres of the latter by Corollary (13). Thus g restricted to corresponding fibres is a homotopy 
equivalence and hence g is a fibre homotopy equivalence by Theorem (6.3) of [I]. 
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