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COHOMOLOGY INVARIANTS OF MAPPINGS!

By N. E. STEENROD
(Received September 8, 1948)

1. Introduction

The Hopf invariant of a map of a (2n — 1)-sphere into an n-sphere [6] is shown
herein to be a special case of a general bilinear operation involving an arbitrary
map of one space into another, cohomology classes in the image space, and cup
products of the Alexander-Cech-Whitney type. The new operations, called
functional cup products, are invariants of the homotopy class of the function, and
their vanishing is a necessary condition for the function to be inessential. A
variety of examples are given in which these new products are non-zero in spite
of the fact that the usual invariants vanish. These examples indicate that the
functional cup products will play an important part in the study of extension
problems and homotopy classification.

The Hopf invariant is most readily pictured for a map f: S — §° of a 3-sphere
on a 2-sphere. Let f be simplicial, and let x; , 2, be interior points of simplexes of
S”. Then f(21), f'(x) are seen to be unions of simple closed polygons. Using
orientations of S* and S°, one assigns orientations to the edges of these polygons
so that they become 1-cycles v; and v.. The Hopf invariant of f is the linking
number of v; and v, .

The construction of the 1-cycles v1 , v from the 0-cycles z; , x» is a special case
of the inverse homomorphism defined by Hopf for a map of one manifold on
another. It is known that these inverse homomorphisms are dual to the induced
homomorphisms of cohomology groups. The latter are defined for arbitrary
spaces, while the former are not. It is apparent, therefore, that a translation
of the Hopf invariant into the language of cohomology may lead to a more
general operation.

This translation is readily found. The dual of the 0-cycle z, is a 2-cocycle u,
which generates the cohomology group. To v, corresponds f*u, (the induced
counter-image of u; in S*). To calculate the linking number, one chooses a
2-chain T' whose boundary is vy, and forms the intersection 0-cycle of I' with
v2. The dual of T' is a 1-cochain a in S* whose coboundary éa is f*u,. It
exists since every 2-cocycle on S* is a coboundary. The dual of the intersection
is the cup product @ \_ f*u, which is a 3-cocycle of S°. The third cohomology
group of S°, H*(S®), is infinite cyclic. If z is a generating 3-cocycle of H*(S%),
then a  f*us = hz for some integer h. Then h is the Kronecker index of the
intersection of I' with v, , i.e. h is the Hopf invariant.

If one attempts to carry over this procedure to a simplicial map f: K’ — K
of one complex into another several difficulties arise. First, if u is a p-cocycle
on K, f*u need not be a coboundary. We are therefore restricted to cocycles

1 A summary of this paper appeared in a paper by the same title [9] (see bibliography).
954



COHOMOLOGY INVARIANTS OF MAPPINGS 955

representing elements of the kernel of f*: H*(K) — HP(K’). Assuming f*u
is a coboundary, choose a cochain @ with da = f*u. Now let v be a g-cocycle
on K. We can then form a . f*». The second difficulty is that a _ f*v need
not be a cocycle:
dla o ff) =da o= fuoffr=fuoo).

(In the case of the 2-sphere, u; \_ us was identically zero). The difficulty is
resolved by assuming that w . v = b is a coboundary, then a _ f*» — f*b is
in fact a cocycle. The third difficulty is that the cohomology class of this
cocycle can be altered by altering the choice of @ and b. It can be altered by
any element of the image group f*H” ' (K) by altering b, and by any element of
H* ™ (K') _ f*» by altering a. One obtains then a unique operation by factoring
H?*"Y(K') by these two subgroups. (Both subgroups were zero for the map
S — 8.

We are thus led to a product, denoted by u ‘7 v, defined for cohomology classes
u, v of dimensions p, ¢ such that f*u = 0 and v . v = 0. The value of the
product is an element of the factor group of H*T*(K’) by the union of the
subgroups f*H?**}(K) and H* " (K') _ f*v.

In studying the properties of these products the author first used the technique
of simplicial complexes, maps cochains, etc., and the machinery of the singular
and Cech theories for extending results to general spaces. This proved ex-
ceedingly cumbersome. A second definition was found which is invariant in
form in that it employs only well-established properties of the cohomology
groups and their homomorphisms. This is the definition to be used. In
addition to providing simpler proofs, it divests the situation of the irrelevant
machinery of complexes, and thereby fits into the present trend in algebraic
topology.

The principal tool of this invariant method is a space attached to a function f
called the mapping cylinder of f. It has been used extensively by J. H. C.
Whitehead [10] and R. H. Fox [2]. Through its use, one can define new homology
invariants of f. In particular, the homomorphisms of homology groups induced
by f are imbedded in an exact sequence of groups. The homotopy type of the
mapping cylinder is an invariant of the homotopy class of f. In this way the
new invariants depend only on the homotopy type of f.

In a recent paper [8F, the author extended the cup products by defining

2 The author takes this opportunity to correct an error in this paper. On page 299,
§6, it is assumed that the group @ is paired with itself to G’. For the results that follow
to be valid, this pairing must be commutative. The reason for this appears in the co-
boundary formula 5.1. There, G;, G: were paired to G’, and the pairings used in defining
the terms % \_si_1 v and v \_Ui_ u were tacitly assumed to be the same. Thus, when G; = G,
the pairing must be commutative. This correction does not affect the subsequent applica-
tions since, in all such, the pairing is commutative. S. Eilenberg has pointed out to me
that, if one assumes that the pairing is anti-commutative, then the coboundary formula still
holds if the sign of the term » \_si_; u is reversed. In this case, one obtains also an invari-
ant set of squaring operations with the same properties except that the cases p — ¢ even and
odd are interchanged.
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cup-¢ products for all integers ¢. These led to invariant squaring operations.
Just as the cup products lead to functional cup products, the squaring operations
lead to functional squares.

One of the principal applications of the functional products is to the projection
of a sphere bundle on its base space. It is shown that Gysin’s homomorphism
[4] is a special case of a functional product. His central isomorphism theorem
is obtained from a more general theorem about manifolds with boundaries.
It was a study of Gysin’s paper which led to the present results.

Another application is to the mappings of spheres on spheres. The functional
squares provide an additional method of showing that certain maps are essential.
In particular, a map of an (n + 1)-sphere into an n-sphere is inessential if
and only if a certain functional square is zero. Since these operations are
computable, at least for simplicial maps, they provide an effective means of
determining the homotopy class.

2. Review of homology and cohomology theory

We describe briefly the notations and principal properties of homology and
cohomology theories. Since the two are similar, just, one of these, cohomology,
is given in detail, and the changes to be made for homology are indicated at the
end. For a full discussion see [1].

A pair (X, A) consists of a topological space X and a subspace 4 of X. If A
is vacuous, the symbol (X, 0) is abbreviated by X. A map f: (X, A) — (¥, B)
is a continuous function from X to ¥ such that f(4) € B. We write (X', 4") C
X, 4)if X' © X, A’ C A and X’ has the subspace topology. The symbolism
f: (X', A") C (X, A) is read: f is the inclusion map of (X’, A’) into (X, A)
(i.e. f(x) = z for each z € X’).

Iff: (X, A) — (¥, B),and (X', 4’) C (X, 4) and (Y, B’) C (Y, B) are such
that f(X') C Y, f(A") C B’ then the map fi: (X', A’) — (¥’, B’) such that
filx) = f(x) for e X’ is called the map defined by f.

Two maps fo , f1: (X, A) — (Y, B) are homotopic, fo =~ f, , if there exists a map
h:(X X I, A X I) = (Y, B), where I = [0, 1], such that h(z, 0) = fo(z) and
h(x, 1) = fi(z) for z e X.

A cohomology theory H defined on a category of pairs of spaces and of maps
assigns to each pair (X, 4) and each integer ¢ = 0 an abelian group H%(X, A)
called the ¢g-dimensional cohomology group of X mod A. For convenience we
define H*(X, A) = 0 for ¢ < 0. In addition it assigns a homomorphism

8: H™Y(4) — HY(X, 4)

called the coboundary operator. Furthermore it assigns to each map f: (X, 4) —
(Y, B) and each ¢ a homomorphism

f*H'(Y, B) —» H'(X, 4)

called the homomorphism induced by f.
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For any pair (X, 4) let
:A CX, X C (X, 4)
be inclusion maps. The infinite sequence
(2.1) o HYYA) S HY(X, 4) 5 HY(X) — HY(A) —

of groups and homomorphisms is called the cohomology sequence of (X, A),
abbreviated: C.S. of (X, 4).

The system HY f* & of groups and homomorphisms have the following
properties.

22. If f: (X, A) C (X, A), then f*: H'(X, A) C H'(X, A).

2.3. If f: (X, A) — (Y, B), g: (Y, B) = (Z, ), then (gf)* = f*¢*.

24. If f: (X, A) — (Y, B), and f1 : A — B is the map defined by f, then, for
each ¢, commutativity holds in the diagram

g) < g
'] ']
HYX, A) <<—H*(Y, B).

Explicitly, for each u e H*(B), f*ou = of T u.

2.5.If fo, fr: (X, A) — (Y, B) are homotopic, then fo = f for each dimension q.

2.6. The cohomology sequence of (X, A) is exact. Explicitly, in each group
of the sequence (2.1), the image of the group on the left is the kernel of the
homomorphism on the right.

2.7. If U is open in X and its closure U lies in the interior of 4, then the
inclusion map f: (X — U, 4 — U) C (X, 4) induces isomorphisms f*: H "(X A~
HYX — U, A — U). This property is referred to as invariance under
excision.

2.8. If P is a space consisting of a single point then H(P) = 0 for ¢ 5 0.

The group H°(P) is called the coefficient group of the cohomology theory and
is denoted by G.

Corresponding to a prescribed coefficient group there are various ways of
constructing a cohomology theory. For example, the Cech theory is defined
on the family of compact pairs (X, A) and all maps of such. We shall regard
two cohomology theories as distinct if they have distinct coefficient groups
even though they are constructed by the same process.

A homology theory likewise assigns to each g, (X, A) a group H, (X, A) called
the ¢** homology group of X mod A. However the boundary operator has re-
verse direction:

9: Hy(X, A) — H(4).

In addition the homomorphism induced by a map f: (X, 4) — (Y, B) has re-
verse direction:
fe: H(X, A) = H (Y, B).
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The homology sequence of (X, 4) is obtained by reversing the arrows in (2.1)
lowering the indices and replacing 8, 7*, 1*, by 9, Jx,tx. The properties 2.2 to
2.8, if modified in a similar fashion, all hold for a homology theory.

3. Cup and cap products

We describe briefly the basic properties of the cup and cap products in-
volving homology and cohomology. For full details see [1].

A triad (X; Ay, A,) consists of a space X and two subspaces A1, 4;. A map
J: (X; Ar, As) — (Y; By, B)) is a continuous function from X to Y such that
f(4:) © B; (¢ = 1,2). For any such f, we denote by

fir (X, 4) > (Y, B) (i = 1,2), fi:(X,4,04,) — (Y,B:;uBy)
the maps defined by f.

A cup product is a pairing of two cohomology theories 1H, :H to a third H in
the following sense. If (X; A,, 4,) is a triad, and

U € 1HP(X, Al), Ve 2Hq(X, Az),

then their cup product u \_ v is defined and is an element of H” (X, 4, u A4,).
These products have the following properties.

3.1. u v is bilinear.

3.2. If (X, A4) is a pair, and ©: A C X, and u e .H"(4), v ¢ ,H'(X), then,
in H**%(X, A), we have

o(u o ™) = du L.
3.3. Similarly, u € H*(X) and v € ,H**(A) implies
(T*u L) = (—1)%u o .
34. If f: (X; A1, 42) — (Y; By, By), and u e H*(Y, By), v e HY(Y, B),
then
filu Uv) = flu o fiv.

It is useful to extend the domain of definition of v _ v as follows. Let
(X1, A1), (Xa, As) be two pairs such that X;, X, are subspaces of a space X.
Define the intersection of the two pairs to be a pair:

(X1,4) n (X5, 4:) = X1inX,, (X1n 4;) U (41 n Xo)).
Let A1, he be the inclusion maps
hi: (X1, 4) n X, C (X, 4y), hy 1 (X2, 4)) n X; C (X, A)).
If u e 1H” (X1, A1) and v € JHY(X: , As), define u v e H* (X1, 41) n (X2, 4,))
by .
(3.5) v = hiu  hv.

This is clearly an extension of the original cup product and 3.1 still holds.
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The analog of 3.4 for a map f: (X; (X1, 41), (X2, 42)) — (Y; (Y1, By), (Y2, By))
obviously follows from the restricted form of 3.4. Under the hypotheses of
3.2we haveu v = u . * by (3.5). Hence the conclusion of 3.2 takes on the
simplified form

(3.2") S(u ) = du .
Similarly, the conclusion of 3.3 can be written
(33,) B(u W] U) = (—1)pu ) ov.

A cap product is a pairing of a cohomology theory 1H with a homology theory
oH to a homology theory H as follows. If (X; A,, A,) is a triad, and

Ve 1Hq(X, Al), 2 € 2H,-(X, Al 8] Az),

then their cap product v ~ z e H,_,(X, A,) is defined. These products have
the following properties

3.6. v ~ zis bilinear.

3.7. If (X, A) is a pair, and 7: A C X, and v ¢ ;H*(X), 2z ¢ ;H,(X, A), then,
in H,_,1(4), we have

AW ~2) = (—=1)%* ~ 92.
3.8. Similarly, if v ¢ H'(A) and z ¢ H,. (X, A), then, in H,_,_1(X), we have
W ~z+4+ (=1)%@® ~32) = 0.
39. If f: (X; A1, A2) = (Y; By, Bs), and v € 1H(Y, By), z € .H, (X, A; U 4,),
then

f2*(f;kv ~ Z) =7 Afa*Z.

Unlike the cup product, there is an ambiguity in the symbol v ~ z in the
following sense. If v e H'(X, 4:) and ze.H, (X, A) and A D A,, then
v ~ 2zeH, (X, A,) is defined for each A, such that A = A, u A,. Thus
the full triad must be specified whenever v ~ 2 is written. This ambiguity
appears in the term 6v ~ 2 of 3.8.

If (X; (X1, A1), (X2, A2)) is a compound triad as above, and

v e H' (X, Ay), z e .H, (X1, 41) n (X, 4,)),
we extend the definition of v ~ 2z € H,_4(X2, A2) by defining
v ~2 = hu(hiv ~ 2).
Then 3.6 holds, 3.9 generalizes to maps of compound triads, and in 3.7 and 3.8 the
¥, 7% can be omitted.
4. Homomorphisms of exact sequences

The construction of the functional product, given in the next section, has a
purely algebraic aspect which we consider now. The author wishes to acknowl-
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edge that he read the following algebraic construction in an unpublished manu-
seript of R. H. Fox who applied it in a situation entirely different from the
ones contemplated in this paper.

Suppose we have two exact sequences of groups and a homomorphism of one
into the other as shown in the diagram of Fig. 1. The commutativity relation

. ""Gl ——)Gz ——)Ga —‘7-3—)G4—”—4—)G5'—')°“
l¢1 l¢2 l¢x ldu l¢5
- — H, - Hz———)Ha——)H4——)H5—->--
Fig. 1

¢i+1g:i = hipi is assumed to hold in each square. Define K, to be the intersection
of the kernels of ¢4 and g :

(41) ueK, if gau = 0 and dau = 0.

Define L, to be the smallest subgroup of H; containing the images of A; and ¢s .
Using + in this sense,

(4.2) L, = ¢2(G2) + h(Hy).
LemMma 43. Letw e Ki. There exist elements u' € G; and w € H, such that
4.4) how = ¢au/, gsu' = u.

In fact, for each u' such that gsu’ = w, a w satisfying 4.4 exists. The set of elements
w such that a u’ exists satisfying 4.4 is a coset of L, in H, denoted by ¢u. The
mapping

¢ :Ky— H,/L,
8o defined ts a homomorphism.

Proor. Since gsu = 0, it follows from exactness of the upper line of Fig. 1
that a u' exists such that gsu’ = w. For any such v/, commutativity in the
third square yields hspsu’ = ¢ugsu’ = ¢su = 0 since u ¢ Ks. Then hapst’ = 0,
and the exactness of the lower line unply the existence of a w ¢ H, satlsfymg 44,

Now let (wi , u1), (w2, us) be two pairs satisfying 4.4. Then g3(u, — ug) = 0.
This and exactness provides an element s € G; such that gss = u; — us. Then
commutativity in the second square yields

hz(’Uh — W2 — ¢23) = howy — howe — h‘2¢23 =
b1 — Paus — bsges = ¢a(uy — Ug) — ba(ur — ug) =

This and exactness imply the existence of a t e H; such that hyt = w; — ws — ¢ss.
This shows that wy — wy € Ly .

Suppose now that (w; , uy) satisfy 4.4, and s € G, t e H;. Let us = uj — oS,
and w, = w; — Mt — ¢us. Then the exactness property gigs = 0 yields gsu; =
gau{ = u. Similarly, the exactness property hohy = 0 yields

hows = hawy — hodas = gty — dagas = Pg(uy — g28) = s .

This shows that the w’s satisfying 4.4 form an entire coset of L, in H, .
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Finally, suppose w1, us e K. Choose (wy, ;) to satisfy 4.4 for u;, and
(ws , us) to satisfy 4.4 for us . Since g; , hi , ¢; are all homomorphisms, it follows
that (w; + we, u1 + us) satisfy 4.4 for uy + us. This completes the proof.

Lemma 4.5. The operation ¢ defined in 4.3 is natural. Precisely, let T be a
transformation of the ladder of Fig. 1 into a second such ladder (distinguished by
affixing a prime throughout), thus T : G; — Gi , T : H; — H, so that commutativity
holds in every square:

Tingi = ¢iTs,  Tiumhi = hiT:, Tip: = ¢:Ts.
Then Ti: maps K, into Ki, and T; maps L, into L; thereby inducing a map
Ty + Hy/Ly — Hy/Ls . Finally, for each u e Ky, Todu = ¢'Tau.
Proor. If u e K., then giTsu = Tsgsu = T0 = 0; and ¢sTsu = Tipu =
T:0 = 0. Therefore T eK;. If weLy, choose seG, and teH; so that
w = ht + ¢25. Then

Tiw = Tsht + Tidss = MTit + ¢2Tss.
But this implies Tow e L, . Finally, if (w, u') satisfy 4.4 for ueK,, it follows
quickly that (Tsw, Tsu') satisfy 4.4 for Tyu e K.

b. Construction of the functional cup product

Assume, as in §3, that H and .H are two cohomology theories paired to a
third H by a cup product, and suppose they are defined on the pair (X, 4).
Let v e JH'(X) be a fixed element. Using v and cup products, a homomorphism
of the C.S. of (X, 4) based on ;H into that based on H is constructed as shown
in Fig. 2wherei: 4 C X, j: X C (X, A),

— H'(4) 5 HP(X, A) &5 H(X) &5 ,H?(4) —

lvv luv lu‘v lv’u
— H™'(A) & H'(X, A) &5 H'(X) 5 H(4) —
Fig. 2

and 7 = p + ¢q. FEach vertical homomorphisn is obtained by forming the
cup product of each element of the group with v.

To show that this is a homomorphism of the one sequence into the other,
commutativity must be shown to hold in each square. This holds for the left
hand square by 3.2. For the middle square, we have only to apply 3.4 to the
inclusion map (X;0,0) C (X; 4,0). For the right square, apply 3.4 to the map
i: (4;0,0) C (X;0,0) and observe that, by 3.5, s . *v = s \_ v for s e :H(4).

The situation of §4 now obtains and the operation described there can be
applied. Because of the three stage effect in the cohomology sequence, it can
be applied in three distinct ways. We shall concentrate on just one of these—
the one obtained by allowing Gs to correspond to H?(X). We translate the
results of §4 into the new language.

Define ,K* (3, v) to be the subgroup of H”(X) which is the intersection of the
kernels of +* and v:

(5.1) ue K°(@,v) if *%u =0 and w._v=0.
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Define L'7(4, v) to be the smallest subgroup of H(4) containing the images
of * and .

(5.2) LG, v) = ¢*H (X)) + H"(4) U v, r=op+q.

TaEOREM 5.3. Let ue1K”(Z, v). There exist elements u' ¢ \H*(X, A) and
w e H(A) such that

(5.4) ow=u v and *u = u.

In fact, for each u’ satisfying J¥u' = u, a w exists satisfying 5.4. The set of those
w’s, for each of which a v’ satzsfymg 5.4 exists, forms a coset of L' (¢, v) in H *(4)
denoted by u Y v. The operation u 7 v from 1K” (Z,v) to H(A) /L' (3, v) is linear
m u.

The symbol 7 v can be read: the t-cup-product of w and ». The Y plays
the role of the dot or cross of a bilinear operation.

TeEOREM 5.5. LetT: (X', A') —» (X, A)andlet Ty : X' > X and T, : A’ > A
bethemapsdefined by T. Letv ¢ H*(X) be ﬁ:ced Then the induced homomorphzsm
T maps 1K* (3, v) into :K* (5, T1v), and T¥ maps L™ (3, v) into L' (3, T1v) thereby
inducing a homomorphism:

T:H(A)/LG, v) — HY(A)/L'@G, Tiv).
Finally, for each u ¢ K" (7, v), we have
T v) = (TYw) Y (T1o).

In order that 5.5 should follow from 4.5 it is necessary to check that the
mapping T*, TY, Ts of the ladder of Fig. 2 into the corresponding ladder for
(X', A) commutes with the operations of the two ladders. Commutativity
with the horizontal homomorphisms was observed in 2.3, 2.4; and commutativity
with vertical homomorphisms follows from 3.4.

As remarked above, the operation of §4 can be applied in three distinct ways
to the homomorphism of Fig. 2. For example, if u e H?(X, A) is such that
J*u = 0 and w . v = 0, then u'}v is an element of the factor group of H™(X)
by the subgroup spanning 7*H" (X, A) and H?*(X) _ ». Theorems similar
to 5.3 and 5.5 hold. This product is included in an extension of the u'» product
given in §12. However this is not the case for the product u5'» defined for
u € 1H?(A) such that 6u = O and v ._ v = 0. We have no applications of this
product similar to those to be made of u 7 v.

The application of the cup product in defining w'7» is unsymmetric. If
u € 1H?(X) is fixed, then the operation u ._ maps the C.S. based on .H into that
based on H. However commutativity breaks down due to the (—1)” in the
coboundary formula 3.3 This is remedied by using instead the operation
(—1)"u  and we obtain a second i-cup-product of u and v. Suppose j*u’ = u
and j*' = v,and éw = v’ v. If 3.4 is applied to the inclusion map (X; 4, 0) C
(X;A,A) weobtainu’ v =u" v =u_v. Thus when the two products
can be compared, they differ only in sign.
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Assume, as in §3, that ,H is a cohomology theory paired with a homology
theory .H by a cap product to a homology theory H. Let v e, H%X) be a
fixed element. Using cap products we obtain the homomorphism shown in
Fig. 3 of the H.S. of (X, A) based on .H into that based on H. To obtain

- 2Hr(X) —:’—“) 2H1(X> A) ’i) 2Hr—1(A) '_IL) 2Hr—1(X) -
lwr\ » levf\ levr\ . lwr-\
— H, o(X) Z25 H,_o(X, 4) 2 H,_y 1(4) = H,_o1(X) —
Fig. 3

commutativity in the middle square, we choose ¢ = (—1)”. Define 5K, (3, v)
to consist of elements 2 € 2H,_;(4) such that 42 = 0 and v ~ z = 0. Define

Le_g(i, v) = ixHr_o(A) + v ~ oH,(X).

Just as above, we obtain a product

v 7 zeH, ,(X)/L,_,(i, v), z €K, 1(i, v).
The analogs of 5.3 and 5.5 are left to the reader.

6. Further algebraic properties

The assumptions of §5 apply also in this section.
THEOREM 6.1. Let u € ,:H?(X), and let v, , v; € H'(X) be such that u _ v, =
u v = 0and i*u = 1*v; = *vs = 0. Then

Y N\ N\
uiTntuiv=uy (4 v,

all three terms being defined and elements of the group H*(A)/t*H ™" (X) where
r=1p-+gq.

Proor. Since s v = s _ *» for s ¢ H" '(4), the vanishing of i*»; and
*», implies that all three groups L™ reduce to s*H(X). Choose a u’ such
that j*u’ = u, (see 5.3). Then choose w; and w: so that éwy, = w _ » and
dwy = u' U va. It follows that (wy + wy) = v (1 + v:). Thus 5.4 holds
for wy + w2, v1 + v2in place of w and ». Hence w; belongs to the coset 47 vy , ws
belongs to the coset u ¥ vz, and w; + w. to the coset u 7 (vg + 02).

THEOREM 6.2. Assume that the cohomology theories \H and .H coincide and
that the cup product satisfies the commutation rule a _ b = (—1)*b _ a where
p and q are the dimensions of a and b. Let u ¢ H"(X), v e JH'(X) be such that
u v =0andi*u = *v =0. Thenv._ u = 0, and

uY o= (=1)"0Y u,
both products being defined and elements of H ' (A4)/s*H ™ (X) where r = p + q.
Proor. Choose u' e H?(X, A) and v’ ¢ ,H'(X, A) so that 7*’ = u and

i’ = v. If 3.4 is applied to the inclusion map (X; 4, 0) C (X; 4, 4) we
obtain

wov=u v =uov == U u
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Choose w so that éw = u’ \_ v and therefore 6(—1)"w = v’ . u. Thus w is an
element of the coset u 7' v, and (—1)"w is an element of the coset v 7 .

The analog of 6.1 for cap products is

THEOREM 6.3. Let z €3H, 1(A) be such that t*2 = 0. Let v, v2 e H'(X)
be such that vi ~ 2z = v2 ~ z = 0, and both v; and v, have cap product zero with
2:H.(X). Then

~ ~ ~
nieztniz=04 2

all three terms being defined and elements of the group H,_(X)/isH,—_4(4).
The proof is similar to that of 6.1. There is no analog of 6.2 for cap products.

7. Application to manifolds with boundary

Assume that X is a connected orientable manifold of dimension » with a non-
vacuous regular boundary A (i.e. A is a connected orientable (r — 1)-manifold
and A has a neighborhood in X which is a product space of A with a line segment).

Assume furthermore of the three cohomology theories 1H, :H and H and the
cup product pairing of 1H, .H to H that the Lefschetz-Poincaré duality theorem
in the relative form holds in (X, A). Precisely, if p + ¢ = r, each of the three
pairings

HP (X, A) with H'X) to H'(X, A),
HP(X) with H'(X,A) to H'(X, A),
H(4) with H*'(A) to H™'(4)

given by the cup product is completely orthogonal (i.e. either of the first two
groups is the group of all continuous homomorphisms of the other into the
third group).® This assumption is realized in many ways. For example, let
G1, G, be character groups of one another—one group discrete, the other
compact; let 1H, .H be based on Gy, G as coefficient group, and let H be based
on the real numbers mod 1 as coefficients. Again, let all three cohomology
theories be based on a field of coefficients (e.g. the rational numbers). In this
case the adjective continuous, when applied to homomorphism, means linear.
Finally, let all three cohomology theories be based on the integers as coefficients,
and assume that there is no torsion in (X, 4).

Since X is an r-manifold with a boundary it follows that H'(X) = 0 and that
both H™(4) and H'(X, A) are isomorphic to the coefficient group and

(7.1) : HY(A) ~ H'(X, A).

From H'(X) = 0, we have u . v = 0 for any u ¢, H*(X), v ¢ H'(X)
with p + ¢ = r. Define 1K?, :K® to be the kernels of the homomorphisms
i*: JHP(X) — H?(A) and *: ;HY(X) — H%(A). It follows that v Y v is
defined for any u €,K”, v € .K°.

3 This most useful form of the duality theorem has not appeared explicitly in the litera-
ture. However it is a direct consequence of the argument given by S. Lefschetz, Algebraic
Topology (Colloq. Amer. Math. Soc., 1942) to prove his form of the theorem V, 32.2.
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From 7.1 and the exactness of the C.S. of (X, A4), it follows that ¢*H™(X) = 0.
If v e.K® then s _ v = 8 . t*» = O for each s ¢ ;H? '(4). This implies that
L(i,v) = 0. Thus,if u € . K” and v € K% then u'7v is defined and is an element
of F{'_I(A). By 5.3 and 6.1, the operation u';v is a pairing of ;K” and .K? to
H™(4).

THEOREM 7.2. Under the above assumptions the pairing u Y v of 1K? and K to
H(A) (p + q = r) is completely orthogonal.

Proor. Let ¢: ;K — H™'(A) be any continuous homomorphism. Then
o: 1K* — H'(X, A), and d¢5*: H*(X, A) — H'(X, A) are continuous homo-
morphisms. Since 1H”(X, A) and ,H*(X) are completely orthogonal, there
exists a v e2H*(X) such that d¢jsu = u v foreachu e H* (X, A). Ifse H”'(4),
then j«6s = 0 by exactness. Thereforeds v = d¢j*ss = 0. By 3.2/,6(s _1*v) =
(s w v) = 8  v. Therefore 6(s . 7*») = 0. By 7.1, it follows that
s w i*» = 0. Since this holds for every s, and ,H”*(4) and ;H%(A) are com-
pletely orthogonal, it follows that ¢*» = 0, i.e. v €2K°. If u 1K, choose a
u’ such that j*u’ = u. Then é¢u = u' _ v, and this implies that ¢u = u'7'v.
Thus, any ¢ can be realized as an ¢-cup product with a suitable v.

Conversely, let : .K? — H'(4) be any continuous homomorphism. By a
similar argument, there exists a u ¢ .H”(X) such that v v = &j*’ for each
v e H'(X, A). Using 3.3, we conclude that t*u = 0, so that v ¢ 1 K”. Now let
v €2K*. Choose u’ ¢ H*(X, A) and v’ ¢ s H*(X, A) so that 7*u’ = w and j*' = v.
Applying 3.4 to the inclusion map (X; 4,0) C (X; A, A) we obtain ' v =
w v'. Similarly v v = w U v. Hencew v =u_v = &v It
follows that u'y» = yv. Thus any ¢ can be realized as the ¢-cup product with a
suitable u.

To complete the proof we must show that for any non-zero v e ;K? there
exists a u € K” such that 4Y» % 0, and reciprocally. Suppose » # 0 is given.
Since the pairing of H”(X, A) with ;H*(X) to H'(X, A) is orthogonal, there
exists a u’ e H?(X, A) such that ' ._ v 0. Let u = j*u'. Then uv =
8 '(w’ _ v) # 0. The other half of the argument is similar.

CoroOLLARY 7.3. If the boundary A of the r-manifold X 1is a sphere, then u'v
1s defined for all u € \H*(X), v ¢ H'(X) (p + ¢ = r,p > 0, ¢ > 0) and provides a
completely orthogonal pairing of \H?(X) with .H*(X) to H'(4).

Since 1H?(A) = 0 for 0 < p < r — 1, it follows that the kernel ;K” of ¢* is
the entire group H?(X). For p = r — 1, this follows from 7.1 and exactness.
Similarly .K* = ;H*(X) for 0 < ¢ < r. Thus 7.2 applies to give the corollary.
The exceptions p = 0,¢ = rand p = r, ¢ = 0 can be eliminated by using the
reduced 0-dimensional cohomology groups.

To obtain corresponding results for cap products we make explicit and more
satisfactory assumptions. Let .H be the homology theory based on integer
coefficients. Then oH,(X, A) and ,H,_1(A) are infinite cyclic groups, and

(7.4) 9: H (X, A) & ,H,1(A).

Choose a generator z of ,H,(X, A). Then 9z generates ;H,_;(4). Let G be an
arbitrary group and let ;H and H be the cohomology and homology theory, re-
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spectively, based on G as coefficients. Let the cap product pairing of ;H with
oH to H be based on the natural pairing of the coefficient groups. It follows
that the operation ~z maps 1H*(X) isomorphically onto H,_,(X, 4), and maps
1H*(X, A) isomorphically onto H,_(X). Finally, ~dz maps H*'(4) iso-
morphically onto H,_,(A4).

THEOREM 7.5. Let 1K* be the kernel of i*: \H*(X) — H*(A). The operation
which sends v € 1K? into v 9z is an isomorphism of 1K onto H,_(X)/ixH,_,(4).

Proor. Since A has dimension r — 1, we have sH,(A) = 0. This and 7.4
and exactness imply .H,(X) = 0. Since:*» = 0, we have i*» ~ 92 = v ~ 3z = 0.
Thus the hypotheses of 6.3 (with 9z in place of 2) are satisfied. It follows that
the operation v > v " 9z is a homomorphism of 1K? into H,_,(X)/ixH,_,(A).

Suppose vz = 0. Recalling the definition (see Fig. 3), this means that a
w e H,_(X) satisfying jxw = v ~ 2 is an image w = it for some ¢ ¢ H,_,(4).
Then v ~ z = jxw = 0 by exactness of the H.S. of (X, A). Since the operation
~z is an isomorphism onto, it follows that ¥ = 0. Thusv — » 7 9z has kernel
zero.

Finally, let w ¢ H,_o(X). Since ~z maps, H*(X) onto H,_ (X, A), there
exists a v e H'(X) such that & ~ 2z = jsw. By 3.7,i* ~ 9z = 40(v ~ 2) =
+djsw = 0. Since ~0z is an isomorphism, it follows that i*» = 0; therefore
v €1K%(X). Clearly, v7 9z is the coset containing w. This completes the proof.

CoROLLARY 7.6. If the boundary A of X is a sphere, then the operation v — v7; 9z
maps H*(X) (0 < g < r) isomorphically onto H,_,(X).

This last isomorphism can be obtained directly as a composition of the
isomorphism ~z of H*(X) onto H,_,(X, A) followed by the inverse of the
isomorphism ix: H,_o(X) — H,_,(X, A).

8. Mapping cylinders

Let f: X’ — X be amap. Let I = [0, 1], and let Y be the union of the sepa-
rated spaces X’ X I and X. We proceed to ‘“match” the subset X’ X 1 with
its image in X under f. This is done by means of an upper semi-continuous
collection in Y. The elements of the collection are first, the single points
(', 7) for 2’ e X', 0 < 7 < 1, and, secondly, the sets z u (f () X 1) forz ¢ X.
The resulting decomposition space is denoted by X, and is called the space of
the mapping cylinder* of f. We agree to identify each z’ ¢ X’ with (z’, 0) € X,
and each z ¢ X with z u(f 7" (z) X 1) ¢ X;. In this way X and X’ are imbedded
topologically in X;. (These identifications lead to difficulty only in case X
and X’ have common points. In such cases the two homeomorphs of X and X’
in X, are denoted by X; and X;.) Let

: X' C X;, E:X Cc X,
be these inclusion maps. Define a map
f’: Xj — X

4 This notion is due to J. H. C. Whitehead [10].
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by f'(z’, 7) = f(z') forz’ ¢ X',0 < r < 1,and f'(z) = zforz e X. We refer tof’
as the map which collapses X into X. Clearly f’ is an extension of f. We have,
then, the diagram of spaces, pairs, and maps of Fig. 4

Xy
D) \1\|
X’ | e Xy, X"
/
N /h
X
Fig. 4

where h, %, j, k are inclusion maps. The entire configuration is called the mapping
cylinder of f. (abbreviated: MC(f)).

The basic properties of the MC(f) are:

8.1. f'¢ = f, and jk = h.

8.2. f'k = the identity map X — X,

8.3. kf' ~ the identity map X; — X, .

8.4. The two maps f’, k form a homotopy equivalence of X and X/ .

The first two statements are trivial. The fourth follows from the second and
third. To prove the third, define

hiz',7,0) = (', (1 — 6)7 + 0)
eX',0=7<1,0
h(z, 0) = x zeX,0
Then h is a homotopy of the identity map of X, into the map kf’.

Figure 5 shows the diagram of homology groups, induced homomorphisms
and boundary operator associated with the MC(f). The H.S. of (X,;, X’)

H,(X,) N
i/ i /
N
- H (X" / "'rk' H,(X;, X") > H,,(X')
>.\ /h: \\.
H,(X)

Fig. 5

is obtained by running along the upper line. It follows from 8.4 and 2.5 that
f is an isomorphism onto and k« is its inverse. By 8.1, we have feix = fx and
Jxkx = hx . Thus the sequence of groups and homomorphisms obtained by
running along the lower line of Fig. 5 is isomorphic to the H.S. of (X;, X’), and
under this isomorphism fx corresponds to 7« . Thus, from the point of view of
algebraic topology, the induced homomorphism ¢« is completely equivalent to fx .
It has the advantage that it is bound naturally into an exact sequence.
DEeriniTiON 8.5.  For any homology theory H and map f: X’ — X the homology
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sequence of f (abbreviated: H.S. of f) is the infinite sequence of groups and
homomorphisms of Fig. 5. The cohomology sequence of f (abbreviated: C.S.
of f) is defined analogously.

The lower line of Fig. 5 provides an imbedding of the infinite sequence of
homomorphisms fx: Hy(X') — H,(X) (p = 0, 1, ---) into an exact sequence.
This can be done in many ways by interpolating groups H, in place of H,(X,, X")
and suitable homomorphisms in place of hx , 3. The group H, is only partially
determined by the condition of exactness: it must be an extension of the factor
group H,(X)/f«+H,(X') by the kernel of fyx: Hp1(X') — H,_1(X). Any such
set of extensions could be used. The important feature of the extensions
chosen, H,(X;, X"), is that they are defined naturally and are additional algebraic
invariants of f. The precise meaning of this naturality and invariance is clarified
in the next section.

The following example shows that the H.S. of f is not determined by the
homomorphisms fx alone. Let X be a 2-sphere, and X’ a projective plane.
Let f map X’ into a point 2o of X. Let g map a projective line L of X’ into o and
map the 2-cell X’ — L topologically onto X — z,. Let the homology theory H
be based on integer coefficients. Then fx = g« in all dimensions, and are trivial
except in the dimension 0. However it is readily seen that H:(X,, X’') is
the direct sum of an infinite cyclic group and a cyclic group of order 2 while
H,(X, , X') is an infinite cyclic group.

Assume now that 1H, .H are cohomology theories paired by a cup product to a
third H. Using the MC(f) we shall extend the functional product ';’» defined
for inclusion maps in §5 to general maps. Letf: X’ — X. If v e JH*(X), define
1K*(f, v) to be the subgroup of elements w in 1H”(X) satisfying

(8.6) uov=0, f*u = 0.
Define
(8.7 L7, v) = FFH™(X) + H7(X') O ™, r=p+aq.

It is readily proved that f* maps, 1K”(f, v) isomorphically onto 1K”(z, f"*v)
(see 5.1), and L''(f, v) = L4, f*) (see 5.2). Thus we can make the

DerINiTION 8.8. For each u € ,K*(f, v) define u'7» by 'Yy = (f*u)Y (f*v).

Since f’* is linear, the linearity of »'7v in w implies the linearity of «'7v in w.
Similarly, the linearity in v, as expressed in 6.1, carries over to the extended
product. The commutation rule of 6.2 with ¢ replaced by f is also immediate.

The 7> product also extends to an 7 product. If v e H*(X) is fixed, define
2K,_1(f, v) to be the subgroup of elements z of ;H,_1(X") such that

(8.9) ffo ~z=0, fxz = 0.
Define
(8.10) L.—o(f, v) = fsH—o(X") + v ~ H.(X).

Then K,1(f, v) = 2K,1(s, f*v) and k« maps L, (f, v) isomorphically onto
Lr—o(@, f™*v).
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DeriniTioN 8.11.  For each z €K, 1(f,v) definev > 2 by v 7 2 = fa((f*0) 7 2).

Then v/ z is linear in z. The analog of 6.3 is that linearlty in » holds for v’s
satisfying v ~ H,.(X) = 0.

In 8.8 we have a second definition of u'7’» in case f is an inclusion map 4 C X.
It is necessary to check that 8.8 agrees with 5.3 in this case. If we compare
5.1 and 5.2 with 8.6 and 8.7 it is clear that the two products have the same domain
and the same range. Denote by A, the portion of the MC(f) consisting of
points (z, ) withz e A, + = 0. (We cannot identify Ao with A since 4 C X).
The collapsing map f: X F— X deﬁnes maps fo: 4o — A and fi: (X, 4o) —
(X, 4). By 5.5, the product u' 7, as defined in 5.3, has, as image under f*,
the product (f*u)'Y'(f*v). This last is the definition of u'7'» given in 8.8. Since
fo is the natural identification of 4, with A, the assertion is proved.

Observe that the definitions of the domains and ranges of the products ‘7, 7
are made without recourse to the MC(f). In particular, if f is a homeomorphism,
all four reduce to zero. To obtain non-trivial products one must have an f
whose f* has non-trivial kernels, and has images which are proper subgroups.

9. Transformations of maps
Iff: X’ > X and g: Y’ — Y, a transformation T: f — g is a pair of maps (¢, ¢):
X Lx
(9.1) L e
YV 5 Y
such that tf(z’) = gt’'(z’) for each z’ ¢ X'.
We assign to T' a map of the MC(f) into that of ¢ as follows. Define

"', r) = ('), ), TeX' 0= r <1,
t"(x) = t(x), reX.

Thent": X;— Y,,and " | X = t,and ¢" | X’ = ¢’. Denote by I: (X;, X') -
(Yy, Y’) the map of the pairs defined by ¢t”. Thus the four maps t, ¢, ¢, {
carry the spaces of Fig. 4 into the corresponding spaces of the MC(g). It is
easily checked that these maps commute with the maps of the two mapping
cylinders. (There are six trivial relations to verify.) If H is a homology
theory, it follows that the induced homomorphisms t« , tx, tx , i+ commute with
the homomorphisms of the homology sequences of f and g. Thus 7T induces a
homomorphism of the H.S. of f into that of g which we denote by T« .

Transformations have properties similar to properties of maps. Thus T:f — f
is called the identity if t: X C X, t': X’ C X’ are identities. By 9.2, t” is likewise
an identity. Hence

9.3. If T: f — f is the identity, then Tx is the identity map of the H.S. of f.

T :fi—>foand Ty : fo — fs , their composition T's : fi — f; is the pair of maps
ts = toty , 85 = sty . By 9.2, 8 = tst; . Hence

94. If T1 :fl —>f2 and T2 :fg —>f3 , then (TQTl)* = Tgqu .

If T: f — g is such that both ¢, ¢’ are topological maps, define 7" = (£, ¢'™).

(9.2)
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Then T ': g — fand TT", T"'T are the identity maps of g, f respectively. In
this case we say that f and ¢ are topologically equivalent and T is an equivalence.
By 9.3 and 9.4 we have

9.5. If T: f — ¢ 1s a topological equivalence, then Tx maps the H.S. of f iso-
morphically onto that of g.

This last is a precise formulation of the statement that the H.S. of f is a
topological invariant of f.

Similar propositions hold for cohomology.

Assume now the situation where cup products are defined. The invariance
of the product Y} is expressed in the following

THEOREM 9.6. Let T, be a transformation of a map f into a map g as in 9.1;
and let v € HY(Y). Then t* maps 1K (g, v) into 1K°(f, t*v), and t'* maps L' (g, v)
into L' (f, t*v) thereby inducing a homomorphism

V¥ H (Y /L (g, v) » H(X')/L(f, t*).
Finally, for each u € K" (g, v), we have
¥ (uv) = (t*u) Y (t*v).

Proor. Now u . v = 0 implies, by 3.4, that t*u  t*» = 0; and g*u = 0
and the commutativity relation #f = gt imply f*t*u = 0. This proves the
first statement. An element of L' (g, v) has the form g*w + s _ g*» for some
weH (Y)and s ¢ :H'(Y). Apply t* to this element, use 3.4 and the relation
tf = gt’. The result is f*t*w + t"*s  f*t*v which is an element of L7, t*).
For the last statement, let 7: ¥/ C Y, and ¢': X’ C X/ be inclusions. Applying
8.8 and the relation #f’ = ¢'t”, we have

(t*u) 7 (tF0) = (F*t*u) 7 (fHtR) = ((7*g*u) T (17*g™).

Now apply 5.5 to the map I (in place of T) and the elements g"*u, ¢"*v (in place
of u,v). Then the term on the right above becomes

¥ ((g%u) ¥ (g™*0) = ¥ (u ' v) by 8.8.

Two special cases of 9.6 are useful. In the first, let X = Y and ¢t = identity.
In the second, let X’ = Y’ and ¢’ = identity.

CoroLLARY 9.7. Let t': X' — Y', and g: Y/ — Y. Let u e :H(Y) and
v € H'(Y) be such that w v = 0 and g*u = 0. Then

¥ v) = u,7 o

CoroLLARY 9.8. Letf: X' > X,andt: X —> Y. Letu e H*(Y) andv e H*(Y)
be such that w v = 0 and f*t*u = 0. Then, if t': X' — X' is the identity,

¥ (u N v) = (t*u) Y ().

For cap products 9.6 has the analog.



COHOMOLOGY INVARIANTS OF MAPPINGS 971

TueorEM 9.9. If T: f — g, and v ¢ HY(Y), then tx maps K, ((f, 1*v) into
2Kr1(g, v), and tx induces a homomorphism

ty: H,—o(X)/L,_(f, t*v) — H, ((Y)/L._(g, v).
For each z € K, 1(f, t*v), we have

ty (%) 7 2) = v (tx2).

10. Invariance under homotopy

Let fo and fi be two homotopic maps X’ — X and let f: X’ X I — X be a
homotopy of fyinto fi. Foreach 6 ¢ I, define t5: X’ — X’ X [ by ts(z’) = (', 6).
Let t: X C X. Since f(z, 0) = fo(x), it follows that ¢ , ¢ form a transformation
To :fo — f. Similarly, ¢; , ¢ form T} : fi = f. Associated with T are the maps
ts and & (see 9.1).

TueoreM 10.1. For 6 = Oand 1,%: (X;,,X") — (X;, X' X I)isa homotopy
equivalence. Hence Tox induces an isomorphism of the H.S. of fs onto that of f.

CoroLrary 10.2. Homotopic maps have mapping cylinders which are homo-
topically equivalent. Hence their homology and cohomology sequences are 1so-
morphic.

CoroLrary 10.3. If fo ~ fi and either of u 5] v, u 7 v are defined, then both are
defined and they are equal. The same holds for v 7, z and v 7, 2.

Proor. Because of symmetry, it suffices to prove the case 8 = 0. It is
readily verified that % is a homeomorphism of (Xy,, X’) with the subspace of
(X, X" X I) consisting of X and points (z’, 8, 7) for which & = 0. It suffices
to exhibit a deformation retraction of (X;, X’ X I) into this subspace. Let I’
be the r-interval used in constructing the MC(f). Then X, is obtained as an
upper semi-continuous collection on the disjoint union (X’ X I X I') u X.
One readily constructs a deformation retraction of I X I’ into the subset
(I X 1) u (0 X I') such that I X 0 is deformed over itself into 0 X 0. For
example, this is accomplished by radial projection from the point (2, 0) in the
(6, 7)-plane onto the lines ¢ = 0 and r = 1. Using this deformation in each
section ' X I X I', there results a deformation retraction of X’ X I X I’ into
(X' XTI X1)u (X" X0XI,and X’ X I X 0is deformed over itself into
X" X 0 X 0. Since the points of X’ X I X I’ which are identified with points of
X in X;arein X’ X I X 1 and these points are fixed under the deformation, it
follows that this deformation induces a deformation of X, which clearly has
the required properties.

The first corollary follows from the theorem and the fact that homotopy
equivalence of spaces is a symmetric and transitive relation. The second
corollary follows from 9.6 and 9.9.

REMARK. One can prove the isomorphic character of Tox directly. Since ¢
is the identity map of X, ¢« is the identity map of H,(X). It is obvious that
t: X' > X' X Iisa homotopy equivalence, hence tox: H,(X') ~ H,(X’' X I).
Since Tox is a homomorphism of the H.S. of f, into that of fi, and t« , lox are
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isomorphisms, it follows from the “five lemma’’ [1, Ch. 1, 4.3] that f« is also an
isomorphism.

TaeorEM 10.4. If the map f: X' — X s homotopic to a constant, then all
products w7 v and v} z which are defined are zero.

Proor. By 10.3, we can assume that f is a constant, and f can be factored
into the composition of two maps f1 : X’ — P, f,: P — X where P is a single
point. Since the groups of P are zero in dimensions 5 0, all }; products are
zero if of dimension > 0. Since f5 maps H°(X) onto H(P), we have H'(P)/L’
(f2,v) = 0; so every O-dimensional }; is zero. If 4’7 is defined, then u . v = 0
and f*u = fifsu = 0. This implies fsu = 0 since H*(P) = 0 (p # 0), and f7
maps H°(P) isomorphically into H°(X’). Therefore u};v is defined. Since
it is zero, it follows from 9.7 that u'7v» = 0.

If v 2 is defined, then fxz = faxfixz = 0. Since the groups of P are zero save
for Ho(P), and fox maps this group isomorphically into Hy(X), it follows that
fixz = 0. Hence (f2v) >z is defined. Since the groups of P vanish except in the
dimension 0, (f3v) > 2z can be different from zero only if it has dimension 0 and v
has dimension 0. But this requires z to have dimension —1, so z = 0. By
9.9, we have v > z = fig (fav) 7 2) = fix (0) = O.

11. Application to sphere bundles

In this section it is assumed that X is a compact orientable n-manifold without
boundary and that X’ is an orientable sphere bundle with base space X and
fibres of dimension £ > 0. Since X’ is locally a product space over X, it follows
that X’ is a compact manifold of dimension n + k. Since X is orientable and
the bundle is orientable, it follows that X’ is orientable as a manifold. Let
f: X’ — X be the natural projection of the bundle into its base space.

The structure of the mapping cylinder X, is readily described. Since each
fibre is a k-sphere and f maps it into a point, the portion of X; corresponding to a
single fibre is a (k + 1)-cell. Thus X, is fibred into (k + 1)-cells and is a bundle
over X with projection f': X; — X. It follows that X/, is itself an orientable
(n 4+ k& + 1)-manifold having X’ as a regular boundary.

Assume now that \H, .H are cohomology theories paired to a third, H, by a
cup product so that the Lefschetz-Poincaré duality theorem holds in (X, X’)
(see §7). Define :K*(X), :K*(X) to be the kernels of f*: ;H"(X) — H*(X’) and
f*: HY(X) — ;H*(X'). Let the integers p, q satisfy

(11.1) p+g=n+k+1.

Since the composition of i: X’ C X, and f': X; — X is f, it follows that f"* maps
1K?(X) and ,K*(X) isomorphically onto the kernels ,K* and 2K* of * (see §7).
From 8.8 and 7.2, we obtain

THEOREM 11.2. Under the above assumptions, the pairing u'yv of 1K*(X),
K4X) to H"*(X") s completely orthogonal.

Consider now the special case where both X and X’ are themselves spheres.
It has been shown [7] that, in this case, the fibres have dimension » — 1 and,
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therefore, dim X’ = 2n — 1. Hopf [6] has given examples of this for n = 2,
4 and 8. Since the groups of an r-sphere are zero except in the dimension 0 and r.
we have 1:K*(X) = 0 (p # n), and :K"(X) = ;H"(X). Then 11.2 becomes

TueoreM 11.3. If S, S’ are spheres of dimensions n, 2n — 1, and S’ is a
sphere bundle over S with projection f: S’ — S, then the pairing uv of H™(S),
JH™(8S) to H™(8S) is completely orthogonal.

In particular, suppose 1H, :H and H coincide and have integer coefficients;
and the cup product is defined by the natural pairing of the coefficients. Since
S, S’ are spheres, they have no torsion. It follows that (S;, S’) has no torsion.
Hence duality holds in (S; , S’) with integer coefficients. Then 11.3 specializes to

CoroLLARY 11.4. Using integer coefficients, let u be a generator of the cyclic
group H"(S). Then u u is a generator of the cyclic group H*"*(S).

To obtain analogous results for the " pairing we make the same assumptions
on the cohomology theory 1H and the homology theories ;H and H as those
preceding 7.5. Then 7.5 yields

TaeorEM 11.5. Let X be an orientable k-sphere bundle over the orientable
n-manifold X, and f: X' — X the projection. Let 2’ be a generator of the cyclic
group H*(X"), and let \K*(X) be the kernel of f*: \H'(X) — H'(X’). Then the
operation which sends v e |K*(X) into v, 2’ 1is an isomorphism of 1K*(X) onto
H.(X)/f«H,(X') (r =n+k — g+ 1).

This theorem is a mild translation of the central theorem of Gysin’s work on
sphere bundles [4]. To obtain his form of the theorem one must eliminate
cohomology as follows. Let z generate H,(X). The operation v — v ~ 2
maps 1K?(X) isomorphically onto a subgroup K, ,(X) of H, (X). Let p =
n — ¢. Then Gysin’s assertion is that K,(X) is isomorphic to H,(X)/f«H.(X")
(r =p + k 4+ 1). Our description of K,(X) differs from Gysin’s but can be
proved equivalent.

ExampLE. The result 11.4 leads to the following example of a non-trivial
functional product where all elements involved are of order 2. Let S* be a
2-sphere and let P* be the rotation group of §*. Let x, ¢ S* be fixed, and define
h: P — 8 by h(r) = r(x) for r e P’. Now P° is equivalent to real projective
3-space. Let S° be a 3-sphere, and f: S° — P® the double covering. Then the
composition ¢ = hf: 8° — §* is the Hopf fibre mapping. Using integer co-
efficients throughout, let u; be a generator of H*(S%), and let w be the non-zero
element of H*(P®) which is a cyclic group of order 2. Then h*u; = u. By
11.4, w5 s is a generator of H*(S*). If ¢ is the identity map of S°, by 9.8, we
have t¥* (u;;’w;) = u'Yu. Since f is the double covering, t¥ is just reduction
mod 2. Thus u ¥ u is the non-zero element of H*(S)/f*H’(P?).

12. Extension of functional products to the relative case
It was observed in §3, that, if (X; 4, B) is a triad and u ¢ H"(X, 4),
v e H' (X, B), then u \_ v is an element of H' (X, Au B) forr = p +¢q. Let
f: X'; A', B') > (X; A, B) be a map of one triad in another, and suppose
wov=0,and ffu = 0 in H"(X’, A’). It is to be expected that a product
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u Y v can be defined as an element of H(X’, A’ u B’)/L"\(f, v) where
L7'(f,v) = ffH (X, Au B) + H(X', A") U f*v.

This is the case and we will indicate briefly the procedure.

Denote by X,, A;, B; the mapping cylinders of the maps X’ — X, A’ —» 4
and B’ — B that f defines. We can regard 4, , B; as subspaces of X, in a natural
way. The diagram of maps shown in Fig. 6 is the

(Xr; Ay, By)

o 41, B) s (X;; X' u A, X' uB))
/'

N S
(X; 4, B)

Fig. 6

generalization of the mapping cylinder of Fig. 4. The maps 4, 7, j, k are inclu-
sions and f’ is the collapsing map of §8. Just as in §8, we have

12.1. f = f'iand h = jk.

12.2. The pair of maps f’, k¥ form a homotopy equivalence of the two triads.

As a corollary:

12.3. The homology and cohomology groups of (X, A), (X, B) and (X, A u B)
are isomorphie, respectively, to the groups of (X;, A,), (X;, By) and
(Xs, Ay u By) under the homomorphisms induced by f and k.

Consider now the inclusion

I: (X’; A', B') € (X'u A, u B,; A, , By).

12.4. The homology and cohomology groups of (X’, A’), (X', B’) and
(X’, A’ u B’) are isomorphie, respectively, to the groups of (X’ u A;, A,),
(X’ v By, By) and (X’ v A; u By, A; u B;) under the homomorphisms
induced by L.

We prove the first case, the others are similar. Delete from the pair
(X' u Ay, Ay) the points of A, for which the r-parameter exceeds 1/2 (including
all points of A). By 2.7, this excision induces isomorphisms of all groups.
The excised pair is retracted into (X', A’) by the deformation obtained by
allowing the r-interval [0, 1/2] to contract into 0. Thus the excised pair and
(X', A") are homotopically equivalent, so their groups are isomorphic.

Now let v € .H*(X, B) be fixed, and let f*v = v’ € H'(X;, By). If u e
HP (X, A) satisfies u . v = 0and f*u = 0, it follows from 12.1 and 12.3 that
u' v =0and *u' = 0.

The generalization of Fig. 2 is shown in Fig. 7.

HPHX, A RN H (X, XU Ay) 5 H (X, Ay) 5 HP(X!, AY)

b v b
H (X' A'uB) > H (X;,X'vA,;uB;) 5 H(X;,,A;uB,) > H(X',A'"u B’
Fig. 7
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The homomorphisms ¢*, j* are induced by inclusion maps. The operation é on
the upper line is the composition &m*1*:

HTN(X, A & HPTY(Xu Ay, A) B HP (X u A) & HP(X,, X' u Ay)

where m is the indicated inclusion map, &’ is the ordinary coboundary, and
I*7! exists by 12.4. This & is called the coboundary operator of the ordered triad
(Xs; X', Af). The upper line of Fig. 7 is called the cohomology sequence of
(X;; X', Ay). As proved in [1, Ch. 1, 14.4], this sequence is exact. Simi-
larly, the lower line of Fig. 7 is the cohomology sequence of the ordered triad
(Xs; X', A; u By), and is also exact.

Commutativity in the middle and right squares of Fig. 7 follow readily from
3.4. Commutativity in the left square is not so obvious. This is proved in
{1, Ch. 15] for the singular cohomology theory for general spaces, and for the
Cech cohomology theory on compact Hansdorff spaces. It can be deduced for
triangulable spaces from the properties listed in §3.

Hr—l(B)
s/ e
v N
H'(4,, B) e H'(A,, B)
a3 '}/
ut H'(4, B) T
i/ '\Q
H' (A4, A,) s H'(4, A))
‘\‘\. /8/5
HT-H(X, A)
Fig. 8

Having established that \_»' is a homomorphism of one exact sequence into
another, the product «/\7v’ is defined (§4) and is an element of H (X', A’u B')/
L@, v'). It follows from 12.1 and 12.3 that L™(, ') = L™'(f, v). Thus
we define u %Y v by

A\ -/
ufv=u’,-v'.

The results of §6 concerning bilinearity, and the results of §§9, 10, concerning
invariance under transformations and homotopy, carry over to this generalized
product. The details are left to the reader.

13. Relations with coboundary

We shall obtain formulas for §(u'7v) analogous to the formulas 3.2, 3.3’. An
essential step is provided by a general proposition which we consider first.
Let (X; A1, A2) be a triad, and define

A=A1UA2, B=A1nA2.

In Fig. 8 we have an associated diagram of groups and homomorphisms. The
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maps 1, j, l are all inclusions. The coboundary operations issuing from H™(B)
are those of the indicated pairs, and &1 , s , 8’ are those of the indicated triples.
We shall assume moreover that (X; A, , 4,) is a proper triad, i.e. that the excision
maps i, I, induce isomorphisms onto. Then the coboundary operators of the
ordered triads (X; A, A2) and (X; A;, A;) are defined:

da = oot (@ =1,2).
THEOREM 13.1. Under the above assumptions, for each w e H™(B) we have
8151?1) = —Szag'w.

This is a corollary of the purely group theoretic “hexagonal lemma’ see
(1, Ch. 1, 15.1]. It is only necessary to verify that (1) commutativity holds in
each triangle of Fig. 8, (2) 6’6 = 0, and (3) the image of ji is the kernel of 7x
(¢ = 1, 2). Commutativity is obvious. To prove (2) observe that & is a
composition of j*: H'(A, B) — H'(A) followed by an ordinary coboundary.
Since j*6 = 0 by exactness, (2) follows. The fact that the C.S. of the triple
(4, A., B) is exact embodies (3).

TreoreM 13.2. Let f: (X', A') — (X, A), and let fi: A’ — A be the map
defined by f. If w e 1H”(A) and v e H*(X) are such that w _ v = 0 and fiu = 0,
then both w3,v and (3u)'7'v are defined. Furthermore &, the coboundary operator of
(X', A"), maps L \(f1, v) into L'(f, v) (r = D + q) thereby inducing a homo-
morphism

&% H (AN /L (fi, v) > H'(X', A")/L(f, v),
and
¥y v) = —(u) ¥ v.
Proor. By 3.2',u _ v = 0 implies du _ v = 0, and f*6u = &'ffu = 0. So
both products are defined. Since &'ff = f*5, and &'(s _ fv) = &s o v, it

follows that 8 maps L™'(fi, v) into L'(f, v). Figure 9 shows the groups and
homomorphisms involved in constructing the two products.

H7(A) B H'(4,,4) & H(4;,4) L HP(A)

X 1o s 18
H'(X', A") 23 H™(X,;, X' u A;) & H(X,, X'u 4,) 35 H(X)
Fig. 9

All coboundary operators have been shown to exist save for d;, the coboundary
operator of the ordered triad (X, ; A;, X’). To prove its existence, one must
show that the groups of (4,, A’) and (X’ u A;, X’) are isomorphic under the
inclusion map. But this follows from the fact that X’ is a deformation retract
of the closed neighborhood in X’ u A, consisting of points of r-value < 1/2.
Thus full excision holds in (X’ u 4;, X’) (see [1, Ch. 1, 12.2)).

Let w' = f™u and ' = f*». Then a representative of u}v is an element
wof H'(A”) such that a uj e H”(4,, A’) exists with the properties &;w = uj v’
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and jiu; = u. Now dou' = f*su and j*u; = &ius follow from 24. The
commutativity relation 8;(us _ v') = dsus \_ ¢’ is proved in [1, Ch. 15]. However
anti-commutativity holds in the left square of Fig. 9. This follows from 13.1
applied to the triad (X, ; X’, 4;). It follows that —é&w lies in the coset 6u'y .

Taeorem 133. Let f: (X', A’) — (X, A), and let f : A’ — A be the map
defined by f. If u e 1H"(X) and v e :H*(A) are such that u v = 0 and f*u = 0,
then u 5, v and u Y (8v) are both defined. If, in addition, fiv = 0, then &' induces a
homomorphism

¥ H'(AN/fIH(4) > H'(X', A")/f*H"(X, A)
and
¥y v) = —(=1)"uY ().

The proof is similar to that of 13.2. The condition fiv = 0 disposes of the
term H?'(4’) _ fiv which may not behave well under &'.

14. Review of squaring operations

Let 1G and G be abelian groups and suppose a pairing of 1G with itself to G
is given which is commutative (i.e. a bilinear operation g:-¢: ¢ G is defined for
g1, 02€1G and g1-g2 = ¢g2-g1). Let G: denote the factor group of G by its sub-
group of elements divisible by 2: G; = G/2G. The pairing g g. followed by the
natural homomorphism &: G — G yields a self-pairing £(g:- g2) of 1G to Ge .

Now let ;H, H, H, be cohomology theories having the coefficient groups
1G, G, G, respectively. A set of squaring operations is a collection of homo-
morphisms, one for each pair (X, A) and each pair of integers p, a:

Sq®: HP(X, A) » H?**(X, A) o odd,
Sq%: 1H?(X, A) — HEY (X, A) a even.

These homomorphisms satisfy the following conditions

14.1. If f: (X', A”) — (X, A), then f*Sq* = Sq°f* for all p, a.

14.2. If 6 is the coboundary operator of (X, A), then 68q°u = Sq” éu for
each u ¢ ;H"(4).

143. Sq" =0if a < 0.

14.4. If « > p, and u ¢ 1H*(X, A), then Sq“u = 0.

14.5. If u e ;H?(X, A), then Sq”u = u  u if p is odd, and Sq*u = &(u _ u)
if p is even (¢ is reduction mod 2).

The existence of Sq” corresponding to a prescribed self-pairing of 1G to G was
proved in [8]. The operation denoted by Sq; in [8] is related to the present
Sq” by Sq” = Sq: where « = p — ¢. The squaring operations were derived
from a cochain product v, and Sqsu = uYu. It was shown that Sq®u
is always of order 2 even for an odd . It is not known if the conditions 14.1 to
14.5 are sufficient to characterize the operations Sq°.
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16. The functional squaring operations

The operations Sq® lead to operations j@ just as cup products lead to
‘¥ -products. Let f: (X, 4") — (X, A), and let 1K”(f, a) denote the subgroup
of elements 4 ¢ ;H” (X, A) such that

(15.1) Sq°u =0, f*u = 0.
Adopting the notations of §12 for the mapping cylinder, let »’' = f’*u Then,
by 14.1, Sq°w’ = 0 and ©*u’ = 0.

Figure 10 shows the homomorphism Sq® of the C.S. of the ordered triad
(X7 ;5 X', Ay) based on 1H into the same based on H. In this case a is odd.

H7HX, AN S HY (X, X' u Ay) 25 \HP(X,, A) 5 HP(X', AY)
lSq" lSq“ lSq" lSq"
H?7 WX, A S HPY (X, ; X u A)) I B (X, , Ap) & HPY(X', AY)
Fig. 10

When « is even, replace H by H, in the lower line of Fig. 10. Commutativity in
the middle and right square holds by 14.1. Since & decomposes into &m*I*™
as in Fig. 7, commutativity in the left square follows from 14.1 and 14.2.

Since u’ belongs to the intersection of the kernels of ¢* and Sq®, the operation
of §4 can be apphed to u’ yielding a coset of L***7'(f, ) in H” +°‘_I(X ', A") which
is denoted by Y*u. Thus

You e B X, A/ D,
where
Lp+a—1(f, a) = f*Hp'i-a—l(X A4) + Sq"‘{ HP-I(X', AI)}.

This holds when « is odd; when « is even, replace H by H,. From 4.3, we have

15.2. Y°u is linear in u.

By 14.3, we have

153. If @ < 0, then ¥*u = 0.

By 14.4, we have

154. If u ¢,H?(X, A) and & > p, then Y*u = 0.

By 14.5, we have

15.5. If u e \H”(X, A), then 7w = u Y w if p is odd, and \Y?u = £(u Y u)
if p is even.

Note that, in this case, the term Sq”{,H” (X', A’)} is zero by 14.4 so that
Y?u and u Y u lie in the same group.

TuEOREM 15.6. Let f: (X', A") — (X, A), and g: (Y’, B") — (Y, B); and let
T: f — g be a transformation (see §9). Then t* maps 1K”(g, &) into 1K*(f, a),
and t'* induces a homomorphism

¢#: H'(Y', B')/L'(g, @) = H'(X', B))/L'(f, @), r=p+ta-1

Finally, for each u ¢ 1K"(g, a),
% N = Yot*u.
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The proof is similar to that of 9.6. The transformation T' induces a map of
the MC(f) into that of g, and thereby induces a homomorphism of the diagram
of Fig. 10 for (¥, B), g into the same for (X, 4),f. All commutativity relations
are readily proved, and 4.5 applies.

As corollaries of 15.6 we have the analogs of 9.7 and 9.8:

CoroLLARY 15.7. Lett': (X', A") — (Y, B"),and g: (Y’, B’) = (Y,B). Then
1K*(g, @) € 1K (gt', @), and

¥ N = (7)), u e1K%(g, ).

CoroLLARY 15.8. Let f: (X', A") — (X, A), and t: (X, A) — (Y, B). Then

t* maps 1K*(f, a) into 1K*(f, ), and
¥ () U = Yt*u u e 1K°(tf, @)
where t' is the identity map of (X', A').

TreoreM 15.9. If fo, fi: (X', A") — (X, A), and fo = f1, then, if either
5% or 7{u is defined, both are defined and they are equal.

This is also a corollary of 15.6. It is only necessary to observe that the proof
of 10.1 shows that the map &: (X, ; X', 45,) — (Xy; X’ X I, A) is a homotopy
equivalence of the two triads.

CoroLLARY 15.10. If f is homotopic to a constant map, then Y = 0 for all
aand u.

The proof is similar to that of 10.4.

TaeoreM 15.11. Let f: (X', A’) — (X, A), and let fy : A" — A be the map
defined by f. Then & maps K°(fi, a) into :K**'(f, a), and &' induces a homo-
morphism

¥R H(A)/L(fy, @) —» H (X', A)/L(, @), repta—l
and
6,#}_{(1” = _\!/aau U € le(fl ) a)'

The proof is based on the diagram obtained from Fig. 9 by replacing v’ by
Sq“ and setting 7 = p + a. Commutativity in the right square holds as before.
Commutativity in the middle square is proved by expanding it into three squares
according to the definition of 6; as a composition of three homomorphisms, and
then applying 14.1 and 14.2. In the left square, anti-commutativity holds
by 13.1.

16. Computation of products using cochains

We shall give formulas for the functional products and squares using cochains.

For any space X, let S(X) denote the total singular complex of X [see 1, Ch. 7.
For any pair (X, A) and any singular cohomology theory H, let C*(X, A)
denote the group of cochains of S(X) which are zero on S(4) (used in defining
H?(X, A)). Let Z°(X, A) be the subgroup of cocycles, and B*(X, 4) the sub-
group of coboundaries of C*7'(X, A). Then H*(X, A) = Z*(X, A)/B*(X, A).
If f: (X', A) — (X, A), let f*: C*(X, A) — C*(X', A’) be the cochain mapping
induced by f.
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Suppose, as in §12, that f: (X’; A’, B') — (X; 4, B), u e .H?(X, A) and
v e H*(X, B) are such that f*u = 0 and v _ v = 0. Choose representative
cocycles u; €127 (X, A), v1 € 2Z°(X, B) of u, v. Since u ._ v = 0, there exists a
cochainb e C" (X, AuB) (r = p + ¢) such that 6b = w; v . Sincef*u =0,
there exists a cochain a €107 (X', A’) such that éa = f¥u; . Define w; by
(1) wr = f¥b — a U f¥ur.

TaEOREM 16.1. The (p + q — 1)-cochain w: , defined in (1), is a cocycle of
S(X') and is zero on S(A’ u B’). Its cohomology class w is an element of the
coset u 7 v of L'\ (f, v).

Proor. Applying standard coboundary relations, we have

dwy = 6f*b — 8(a  f¥v) = f¥8b — (8a) U f¥u

= fﬂ(ul \/Ul) _f#ul uf#% = 0.
Thus, w, is a cocycle.

Suppose a; € 1.C°(X’, A’) and da; = f¥u,. Define w; as in (1) using a, instead
ofa. Thena; — a e, Z° (X', A’), and w; — w; = (a1 — a) w f¥v. Therefore,
altering a alters w; by a cocycle representing an element of ;H” (X', 4")  f*v.
Since this group is contained in L™'(f, v), it suffices to prove 16.1 for any suitable
choice of a.

For each step of the construction of u Y v (see §12) we choose representative
cochains as follows. Clearly

u = fRu e 27Xy, Ay), 2= [0 eZ(X,, Ay)
are cocycles representing f*u and f*v. In addition,
ug U ve = 3f' ¥,
Consider now the inclusion maps
1:(X';A,B") C (X'ud;;4;,Byp), k:(X'ud;;4,,B) C(Xy;544,B)).
Clearly f'kl = f. Since f*u = 0, and the excision map ! induces isomorphisms,
it follows that k**u = 0. Hence k¥ uy = 8,0’ for some a’ ¢ ,.C* (X’ u 4;, 4)
where §; denotes coboundary in S(X’ u A4;). Extend &’ to a cochain a” ¢ ,C**
(X;, Ay) by giving a” the value zero on any singular simplex of S(X,) which is
not in S(X’ u A;). Then k¥a” = a’. It follows that k¥ (uz — 8a”) = 0.
Therefore us — 8a” € 1Z2°(X;, X' u A)), and, if v ¢ H(X;, X' U 4y) is its
cohomology class, then j*u’ = f*u. Observe also that
Sl¥a" = #8510 = I¥k¥uy = f¥u,.
Define a = 1¥a’. As proved above, we can suppose the w’ of (1) is defined using
this a. Then
@) I¥EX(f %) — a” O f'*n) = f¥b — a U f¥u = w,
and
(3) 8" *b — a” U *v) = (ug — 8a”) U *u.
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Recall now the definition of 6: H™ (X', A’uB’) — H'(X;, X’u A;u By). If
weH (X', A’ uB’), we choose a representative cocycle w; , then we extend w; to
a cochain z e C"*(X;, A;u B,) and then form éz ¢ Z'(X;, X’ uA,;u B;). By (2),
z = f'#b — a”  f'*v' is such an extension; and by (3), the cohomology class
of 6z is w'  f*v where j*u’ = f*». Hence éw = v’  f*v. This proves 16.1.

TaeoreEM 16.2. If (X'; A’, B’) and (X; A, B) are simplicial complexes, and
the map f is simplicial, and w' in (1) 7s a simplicial cochain constructed from
simplicial cochains u', v', a, b, then the cohomology class of w' is likewise a repre-
sentative of u Y v.

Proor. If X is the space of a simplicial complex K, then K C S(X) and any
cochain on S(X) defines one on K. This transformation ¢: C*(X) — C*(K) is
known to be a cochain equivalence and induces an isomorphism H?(X) =~
H?(K). If w3, v, a,bareasin (1), then

dw = f¥eb — (ga) w f¥oun

and ¢w, also represents u'7». Thus 16.2 holds for simplicial cochains which are
¢-images. To complete the proof, one need only show that the cohomology
class mod L™*(f, v) of w; is independent of the choice of representatives u; , v1,
a, b as simplicial cochains.

If u, , v are fixed, one can vary the choice of @ and b only by cocyles. From
the form of (1), it follows that the class of w varies by elements of ,H” (X', A")
o f*v and f*H (X, A u B) which are in L™(f, v).

Suppose selections % , vy, a, b are made, and the choice u, is altered by a
coboundary: u; = u; + 8s. Letd’ =b + s\ v anda’ =a + f¥s. Then the
corresponding w; is

wy =¥V —a Uffnu=f*0b+son) — (@a+ F¥s) of¥fn
= f¥b + f¥s — f¥ —a U f¥u — f¥s U f¥u = .

Thus, altering the choice of u; does not alter w; if the a and b are correspondingly
altered.

Suppose selections u; , v, a, b are made, and v is altered by a coboundary:
v =v+ 8 Letd =b+ (—=1)"us t. Then &b = u U v, and the cor-
responding w; becomes

wi = f¥ — a o fFor = w + (—1)%8(a U f*0).

Thus w, is altered by a coboundary.

Now any choice u; , 11, @, b can be carried into any other by simple alterations
of the type just considered. Since the class mod L™ (f, v) of w: does not change
under simple alterations, it will not change under any. This proves 16.2.

There is a corresponding cochain construction for the functional squaring
operations. Suppose f: (X', A’) — (X, A) and that u e H”(X, A) satisfies
15.1. Let uy € 1Z°(X, A) be a representative of u. Let ¢ = p — a. Then
there exists a b ¢ C*** (X, A) such that 8b = w3 s ur. This is taken mod 2
when « is even. Similarly there exists an a .07 (X", A’) such that éa = f¥u,.
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Define w; by
(4) w1=f”‘b—au.'—1a—au;6a.

THEOREM 16.3. The (p + a — 1)-cochain wy , defined in (4), 7s a cocycle of
S(X") and is zero on S(A’). Its cohomology class w is an element of the coset
Y u of L *7(f, a). When a is even this holds mod 2. The same is true using
simplicial cochains when (X', A’), (X, A) are simplicial pairs and f is simplicial.

Proor. By [8, formula 6.3], we have

dwy = f¥8b — d(a _sda + a i a)
=¥ (w1 s m) — da i da + €@ iza + a i da)

where ¢ = 0 for an odd «, and ¢ = +2 for an even a. Since f¥ (u; _: u) =
da i da, we have owy = O for @ odd, and éw; = 0 (mod 2) for « even.
Suppose a is varied by adding a cocycle z €,Z° (X', A’). The new w; is

w; =f#b — (@ + 2) uifﬂul — (a4 2) Ui (a + 2).

Applying the bilinearity of these products and the coboundary formula [6, 5.1]
we obtain

Wi — Wi =2 i 2 — (=1)%¢ wia) + (1D + 1]z Ui a.

The last term is zero or zero mod 2 according as « is odd or even. It follows that
the cohomology class of w; has been altered by an element of Sq*{,H* (X", A")}.
Thus it suffices to prove 16.3 for any convenient choice of a.

For each step of the construction of ‘*u, we choose representative cocycles.
Let us = f"*u;. Then uz i us = 8f'*b. Define a’, a” and a as in the proof of
16.1. Letu; = up — da”. Then us €1Z°(X,;, X" u Aj), and j*u' = f*u where
' is the class of us . Define ws by

Wy = f/ﬂb + a// i1 a// + a// i 5all — (—l)péa” Wit Us .
Applying the coboundary formula [8, 5.1], we obtain
owe = (U1 — 8a”) i (w1 — da”)
—[(=1)" 4+ (=DU@" ie @” + " i a” — (—1)76a” L us).

(5)

The lower line is zero (zero mod 2) if « is odd (even). It follows that w; defined
by

(6) ws = I¥k¥w, = f¥b + a ina + a Lida — (—1)%a Uiy da

isa cocycle (cocycle mod 2) on S(X’) and is zero on S(4’). If w is its cohomology
class, we have, by (5), that éw = Sq®u’. Thus w belongs to the coset *u. It

remains to show that w; of (4) is cohomologous to w;. But w, — w; =
(—1)P8a i da — 2(a iz @ + a s 8a), and, by [8, 6.3], this coincides with

(—l)pé(a ws @ + A i1 5(1)
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when « is odd, and is congruent to it mod 2 when « is even. Thus w; ~ w;,
and the proof that wi represents *u is complete.

In the simplicial case, it is clear that (4) gives the proper cocycle provided
a and b are ¢-images (see proof of 16.2). To complete the proof it is only neces-
sary to show that a change in the choice of %, , a, b alters the cohomology class of

wy only by elements of L>T*7'(f, ). This is similar to the proof of 16.2, and is
omitted.

The cochain form for ‘;"*u enables us to establish

TeEOREM 16.4. If “/®u is defined, then 2 Y *u = 0.

Proor. If « is even, the result is trivial since the coefficients of 7w are
reduced mod 2. Let « be odd. Consider first the case of the singular theory.
Select cochains u; , a, b and define w; as in (4). Since @ = p — 7 is odd, we have,
by [8, 6.3], that

2(fﬂb —a ia1a — aida)
= f’# (2b - (—l)p U i1 u) + (—l)p 5((1 wid + a i+l 60/)
By [8, 6.2], 2b — (—1)” u _s41 u is a cocycle. Thus 2w, is the sum of a co-
boundary and the image of a cocycle. Hence its cohomology class is in
L?"*7Y(f, a). This proves 16.4 for the singular theory. In particular it holds

on complexes. This implies that it holds for the Cech theory since it holds on
each approximating complex.

17. The Hopf invariant

Let f: 8’ — S be a map of a (2n — 1)-sphere S’ into an n-sphere S (n > 1).
Using cohomology groups based on integer coefficients, let « and ' be generators
of H™(S), H*"'(8’) respectively. Since L**7'(f, u) = 0 (see 8.7), we have, for
some integer v(f), that
1) uY u=y{fu'.

In view of 16.1 and the discussion in the introduction, we may refer to v(f) as
the Hopf invariant of f (there is a difference in sign which is irrelevant since the
sign of v(f) depends on the choice of u).

The known properties of the Hopf invariant are readily deduced from the
definition (1). Its invariance under a homotopy of f follows from the invariance
of uYu. In particular, if f is inessential, then, by 10.4, y(f) = 0.

If nisodd, by 6.2, u ¥ u = —u Y u; hence y(f) is zero.

If f is the projection of a representation of S’ as a sphere bundle over S, then,
by 11.4,v(f) = £1. By the preceding result, this can happen only if n is even.

If Siisa (2n — 1)-sphere, and g: S; — &', then, by 9.7, g*(u7u) = u }; u.
Therefore v(fg) = v(f)-degree (g).

If S, is an n-sphere, and h: S — S:, and w; is a generator of H"(S,), then,
by 9.8,

1 ?fj u = (h*u) k// h*u) = (u k/ u)d2

where d = degree (k). Therefore y(hf) = y(f)d".
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Suppose f, fo: 8 — S are two maps of a 3-sphere into a two sphere, and
v(fi) = 'Y(fz) Let fo: 8" — 8 be the Hopf fibre mapping. As shown by
Pontrjagin,’ the map fi(t = 1, 2) can be factored into a map g; : S’ — S’ followed
by fo. Choose u’ so that v(fo) = 1. Since y(fog:) = degree (g:), it follows that
g1 and g; have equal degrees; hence they are homotopic. This implies that fi
and f, are homotopic. Thus, in the case n = 2, y(f) is characteristic of the
homotopy class.

18. A generalization of the Hopf invariant

Let f: 8" — S be a map of an (n + a — 1)-sphere into an n-sphere. The
suspension (= Einhingung) of f is a map g: §’ — S of an (n + «)-sphere into an
(n + 1)-sphere obtained by regarding S, S’ as equators of S, §’ and extending f
as follows. Each z ¢S determines a longitudinal semi-circle C,. Then g is
the map which carries each C, isometrically onto Ct -

Let E,., E_ denote the two closed hemispheres into which S divides S. For
any cohomology theory, the following homomorphisms are isomorphisms onto
(n > 0):

(18.1) H™(S) — H"*‘(E.HS) < S, B D H(S).

The maps j, I are the indicated inclusions. For the proof see [1, Ch. 3, 3.2].
If u e H"(S), we will call j*I* 'u the suspension of u.

THEOREM 18.2. Let f: 8" — S be a map of an (n + o — 1)-sphere (o = 2)
into an n-sphere, and let uw e \H"(S). If g: S’ — 8§ is the suspension of f, and if
v e :H""(8) is the suspension of u, then ;" is the suspension of — 7 u.

The proof is based on the diagram of Flg. 11.

HY(S) > HY(E,, S) < H(S, E) 5 . H(§)

I [ I =
I o } & ’
H(S) — H (B, 8'") «—— H'(S, EL) — H'(§)

Fig. 11

Here r = n 4+ o, and ¢1, ¢g. are maps defined by g. Since & > 1, we have
r > n + 1; hence the groups L',-L"™" vanish, and the groups ;K"*", ;K" are the
entire cohomology groups. Thus Y%, $7%, - have the indicated domains and

ranges. Since gj = j'g», and gil = l'g., commutativity holds in the right and

5 A classification of mappings of a 3-complex into a 2-sphere, Rec. Math. [Mat. Sbornik]
N.S.9 (51) (1941) Theorem 1. The following is a simpler proof. Let ¢: E — 8’ be a repre-
sentation of S’ as a 3-cell E with its boundary E pinched to a point. By the covering
homotopy theorem (7], the map fi¢ can be factored into ¢, : E — 8’ followed by fo. Then
¢1(I0) lies on a single fibre S8!. Since 7(SY) = 0, ¢, | E can be contracted on S! to a point.
Extend this to a homotopy of ¢; into a map ¢. Then y can be factored into ¢ followed by a
map ¢: S — 8’. Then f, g is homotopic to fi. A second covering homotopy deforms g
into a map g¢; such that fog, = fi.
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middle squares by 15.6. In the left square, anti-commutativity holds by 15.11.
This implies 18.2.

CoRroLLARY 18.3. If 7 *u is non-zero, so also is 3 .

We may now generalize the Hopf invariant as follows. Let S, S’ be spheres
of dimensions » and » + @ — 1 where @ > 1. Using cohomology groups based
on integer coefficients, let 4 be a generator of H"(S). Let u’ be the non-zero
element of H}**7'(S’) based on integers mod 2 as coefficients. Let the pairing
of coefficients be ordinary multiplication reduced mod 2. If fisamapf:S'— S,
then “Y*u is an element of H; "*7"(S’) since L""*7'(f, ) = 0 (see §15). Hence,
for some integer v.(f) = 0 or 1 we have

(18.4) YU = va(fu'.
We shall call v.(f) the generalized Hopf invariant of f.

By 15.9 and 15.10, we have

18.5. If f is homotopic to g, then vo(f) = va(g). In particular, if f is inessential,
then vo(f) = 0.

By 15.5, we have

18.6. If f is a map of a (2n — 1)-sphere into an n-sphere, then v.(f) = v(f) mod 2.

By 18.2, we have

18.7. If f is a map of an (n 4+ a — 1)-sphere into an n-sphere, and f is the
suspension of f, then va(f) = va(f).

18.8. If a is odd, then va(f) = O.

Proor. Since « is odd, we can define “;*u in the group H""*7*(8’) without
reducing mod 2. If we can prove this element to be zero, then reducing mod 2
will show that 18.4 is zero. Now

8 H™*71(8") ~ H™*(Sy, 8")

since the cohomology groups of S, and hence of Sy, vanish in the dimensions
n+ aandn + a — 1. It suffices, therefore, to prove 67 °u = 0. By definition
(§15), 87 °u = Sq®w1 where u; e H"(S;, S) satisfies j*u; = f*u. By [8, 6.10],
Sq®uy is of order 2 in H"**(S;, 8’). But this group is infinite cyclic, so Sq*u =
87 % = 0.
18.9. If S’ is an (n 4+ a — 1)-sphere, S and S, are n-spheres, f: S’ — S, and
h: 8 — S; has degree d, then
Ya(hf) = d-va(f) mod 2.
Proor. Letu; be a generator of H*(S;). Then h*u; = du. By 15.8 and 15.2,
va(h)u' = 57%u = Fi(h*u) = Y(du) = d¥u = dva(f)w'.

18.10. If Sy, 8’ are (n + a — 1)-spheres, S an n sphere. f+ & — S, and g:
S1 — 8’ has degree d, then

Ya(fg) = d-va(l) mod 2.
This follows directly from 15.7.



986 N. E. STEENROD

18.11. If f s @ map of a (2n — 1)-sphere into an n-sphere, and f’ is any map
obtained from f by a series of suspensions, then v,(f') = y(f) mod 2.

This follows immediately from 18.6 and 18.7.

18.12. If fi, f. are two maps of an (n + 1)-sphere into an n-sphere, then f is
homotopic to fz if and only v.(f) = v2(f2).

Proor. Half of the statement follows from 18.5. To prove the second half,
we use the result of Freudenthal (3] that there are just two homotopy classes of
maps of an (n 4+ 1)-sphere into an n-sphere: the class of maps homotopic to a
constant, and the class of maps homotopic to the result of a succession of suspen-
sions of the Hopf map of the 3-sphere on the 2-sphere. In the first case y2(f) = 0.
In the second case, by 18.11, v(f) = 1.

18.13. If f is a map of an (n + o — 1)-sphere into a n-sphere, and oo > n, then
'Ya(f) = O.

This follows from 15.4.

Note that these results include a part of the results of Freudenthal [3]. If f
is a map of a (2n — 1)-sphere into an n-sphere, and the result of suspending f a
number of times yields an inessential map, then 18.11 asserts that f has an even
Hopf invariant. In particular the result of a series of suspensions of any one of
the Hopf maps 8° — &, 8" — §* and §*° — S° yields an essential map.

It is to be observed that the results of Freudenthal, even for a map S"* — 8",
do not provide an effectively calculable method of deciding the homotopy class
of the map. If the map is simplicial, then v.(f) is calculable using 16, (4).

19. The Whitehead product

Let Si, S: be spheres of positive dimensions p, q. Let z1€S1, 22 €S2 be
reference points. In the product space S; X Sz, let X = (81 X x2) u (x1 X S2).
Then X consists of two copies of S; , S, with a point in common. The projections
of 81 X S into each factor define maps

h:X—-8, hy: X — S,

J. H. C. Whitehead, in a study on homotopy groups [11], constructed a
map of a (p + ¢ — 1)-sphere S onto X as follows. Let E; , E; be cells of dimen-
sions p, ¢. For a = 1, 2,choose a map fa: E. — S. which maps E. — E,
on S« — Z. topologically and carries E, into 2. . LetS = (E; X E;) u (E1 X Es)
Then Sisa (p + ¢ — 1)-sphere. The product mapping fi X fo : E1 X E; —
S; X 8; carries S into X. Let f: S — X denote this map. Whitehead showed
that f is essential, and generates an infinite cyclic subgroup of 7,4.-1(X). This
is also a consequence of the following

TuaeorEM 19.1. Using cohomology groups based on integer coefficients, let u, v
generate the groups H?(Sy), HY(S:) respectively. Then (hiu)YY (h3v) is a generator
of H*1(8).

Proor. We shall show that the mapping cylinder X; is a (p + ¢)-manifold
with regular boundary S. The conclusion will follow then from 7.3. Choose a
(p + ¢)-cell E in the interior of E; X E; in such a way that there is a homeo-
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morphism h of S X I onto E; X E, minus the interior of E, and h maps S X 1
onto S and S X 0 onto E. Then the composition of & and f; X f maps S X 1
onto X in the manner of f and maps S X I — S X 1 topologically into S; X S:.
Thus X is homeomorphic to the manifold obtained by deleting an open (p + ¢)-
cell from S; X S:.

20. Functional products of exterior differential forms

Suppose X, X are differentiable manifolds and f: X — X' is differentiable.
According to the Whitney formulation of the deRham theorem [13], the coho-
mology classes of exact exterior differential forms of degree p of a manifold are
in 1 — 1 correspondence with the elements of the p™ cohomology group of the
manifold based on real numbers as coefficients. Under this isomorphism,
addition is preserved, and products of exterior forms correspond to cup products
of cocycles. It is clear therefore that the functional products of cocycles must
correspond to an operation on exterior forms which we now describe.

Let U, V be exact exterior forms of degrees p and ¢, and suppose U-V = 8B
is an outer derivative. Under f, the form U has an image form, f*¥U in X'.
Suppose f¥ U = 84 is also an outer derivative. Then the form

1) W = f*¥B — A-f¥V

is an exact form of degree p + ¢ — 1. Its cohomology class may not be a
unique function of U and V'; however it is unique modulo images of exact forms
of X, and products of exact (p — 1)-forms of X’ with images of exact g-forms of X.

It is clear that, if u, v, a, b are cochains corresponding to the forms U, V, 4, B,
then w = f¥b — a _ f¥v corresponds to the form W. By 16.1, the cocycle w
rerpresents the product uv». Thus the operation (1) corresponds to the func-
tional product. All of the properties of u'Yv now carry over to properties of (1).

If one attempts to carry over the operation Y*u in a similar way by using the
formula 16, (4), there results only a trivial operation on exterior forms. The
reason for this is that Sq®u is always of order 2. If real coefficients are used,
it is always zero.

In a recent paper J. H. C. Whitehead [Proc. Nat. Acad. Sci. 33 (1947), 117-123]
gave an integral formula for the Hopf invariant of a differentiable map f: S* — S*.
This can be derived from the preceding considerations as follows. Let U be
an exact form of degree 2 on S* which corresponds to a generator w of H*(SY
based on integral coefficients. For example, the element of area of S divided
by 4= is such a form since its integral over §%is 1. Since any exact form on S°
of degree 2 is a derived form, there exists a form 4 on S* of degree 1 such that
3A = f#U. Define W by (1) (B =0). Then W corresponds to uYu = y(f)Hu'
(see §17,(1)). Hence the integral of W over S is the Hopf invariant y(f).

PRINCETON UNIVERSITY

BIBLIOGRAPHY

1. S. EiLenBERG-N. STEENROD, Foundations of algebraic topology, to appear.
2. R. H. Fox, On homotopy type and deformation retracts, Ann. of Math. 44 (1943), 40-50.



988 N. E. STEENROD

11.
12.
13.

. H. FrevpentHAL, Uber die Klassen der Sphdrenabbildungen, Compositio Math. 5

(1937), 299-314.

. W. GysiN, Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten,

Comm. Math. Helv. 14 (1942), 61-122.

. H. Hopr, Uber diec Abbildungen der dreidimensionalen Sphire auf die Kugelfliche, Math.

Ann. 104 (1931), 639-665.
—————, Uber die Abbildungen von Sphéiren auf Sphdren niedriger Dimension, Fund.
Math. 25 (1935), 427-440.

. W. Hurewicz-N. STEENROD, Homotopy relations in fibre spaces, Proc. Nat. Acad. Sci.

27 (1941), 60-64.

. N. STeEENROD, Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947),

290-320.
—————, Cohomolggy invariants of mappings, Proc. Nat. Acad. Sci. 33 (1947), 124-128,

. J. H. C. WHITEHEAD, Simplicial spaces, nuclei and m-groups, Proc. London Math.

Soc. 45 (1939), 243-327.
—————, On adding relations to homotopy groups, Ann. of Math. 42 (1941), 409-428.
H. WHITNEY, On products in a complez, ibid 39 (1938), 397-432.
—————, Topological properties of differentiable manifolds, Bull. Amer. Math. Soc.
43 (1937), 785-805.



