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1. Introduction

We shall present a set of new operations which interrelate the elements of the
various dimensional cohomology groups of a space. They are topologically
invariant, and provide sharper methods for distinguishing topological types and
homotopy types of spaces. They are generalizations of the squaring operations
introduced in [4].

Let HY(K;G) denote the ¢™ cohomology group of a complex K with coef-
ficient group G. Let integers ¢, ¢ be given, and let G, G’ be fixed coefficient groups.
Then a cohomology operation, relative to (¢,7,G,G’), is a mapping

¢: H(K;G) —» H (K@)

defined for each K and such that f*¢ = ¢f* for any map f of one complex into
another.

For any integer p > 0, the pt* power of a cohomology class in the sense of
cup products is a cohomology operation. The new operations are closely related
to the powers. Let I, be the symmetric group on p elements and T'; its group
ring with integer coefficients. A 0-sequence in T', is a sequence a1, az, =" * such
that aiaiy = 0 (¢ = 2, 3, --+), and the sum of the coefficients of a; is zero.
Corresponding to each such sequence and any p-linear function from G to G,
we construct a sequence of cohomology operations

®?: H(K;G) —» H™ '(K;Gy), allg,

where @, is @ reduced mod 7 for some .. Jepending on ¢ and e; .
If we set ¢ = identity of 7, g = ** j fo. cyclic permutation, and

o1 = g — 6 azj = Zf:ol gk, Jj=12 -

we obtain a 0O-sequence. The corresponding @7 are called cyclic reduced powers-
When p = 2, they are the squaring operations.

In the present paper we present the theory for a general 0-sequence. The
special properties of the cyclic reduced powers will be given in a subsequent
paper.

The importance of cohomology operations to the study of homotopy groups
is seen as follows. Let f: 8™ — S% be a map of an n-sphere into a g-sphere (n > g¢).
Form a complex K by adjoining to S? an (n + 1)-cell by the map f of its bound-

1 Preliminary results were announced at the International Congress at Harvard. A
major part of the investigation was made while the author was a John Simon Guggenheim
Memorial Fellow.
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48 N. E. STEENROD

ary into 8% Then H* and H"" are the only non-trivial cohomology groups
of K. If f is inessential, K has the homotopy type of 8 v S"*! (two spheres
with a point in common). Since S™*! is a retract of 8¢ v S™* it follows that
any cohomology operation ¢: H*(K) — H"*'(K) must be zero. Hence, if some
¢ is non-zero, the map f must be essential.

The above method will be used in the subsequent paper to show that Tn3(S™)
admits a homomorphism onto a cyclic group of order 3 when n = 3. This agrees
with recent results of Serre [3]). The results of Serre are of course much more
extensive. However it should be emphasized that the reduced power operations
are effectively computable; and any result describing the structure of a ho-
motopy group should be buttressed by an effective method for deciding which
element of the homotopy group is represented by a given map.

The method we will use to construct the new operations has its origin in a
procedure devised by Lefschetz for constructing cup products (1; pp. 173-190).
He used the product complex K X K, the cross product of cocycles, and chain
transformations approximating the diagonal map of K into K X K. The clue
to our generalization is the observation that the diagonal map is invariant under
the permutation of the factors but the chain transformation is not. We then
apply the Smith-Richardson technique [2] to obtain measures of the impossibility
of obtaining a symmetric chain transformation. This leads directly to the
squaring operations. Replacing K X K by p-fold products yields the general
reduced powers.

2. Preliminaries

We shall deal with geometric cell complexes K which are closure finite. The
closure ¢ of any cell ¢ is required to be a subcomplex of K ; hence also ¢ = 6 — 0.
We write ¢ < 7 to indicate that ¢ is a face of r. The group Co(K) of ¢g-chains
is the free abelian group generated by the g-cells (i.e. finite chains with integer
coefficients). If ¢ < 0, Co(K) = 0. The boundary operator is denoted by
9: Co(K) — Cyy(K). The Kronecker index, In(c), of a O-chain ¢ is the sum of
its coefficients. As usual ddc = 0 for each ¢ ¢ C,(K), and In(dc) = 0 for ¢ e C1(K).
We denote by Z,(K), By(K) and H,(K) the groups g-cycles, g-boundaries and
g-dimensional homology classes .copectively. A complex is acyclic if each
g-cycle, ¢ > 0, is a boundary, and each 0-cycle of index zero is a boundary.
We shall consider henceforth only those cell complexes K such that & is acyclic for
each o in K.

For any abelian coefficient group G, the group C*(K;G) of g-cochains is the
group of homomorphisms of C,(K) into G (i.e. infinite cochains). The value of
u ¢ CY(K ;@) on ¢ e Co(K) is denoted by u-c. Given a homomorphism ¢: C,(K) —
C.(K') of one chain group into another, then the homomorphism ¢: C"(K’;G) —
C*(K ;@) defined by

2.1) (@u)-c = u-(gc), u e C'(K'5@), c € Co(K),

is called the dual of ¢. In particular, the coboundary 3: C*(K @) — CHKG)
is the dual of 3: Cya(K) — C,(K).
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If L is a subcomplex of K, then C*(K,L,@) denotes the subgroup of g-cochains
which are zero on cells of L. Clearly & maps C%(K,L;G) into C**'(K,L;G). We
designate by Z%(K,L;®), B*(K,L;@) and H(K,L;G) the ¢™ cocycle, coboundary
and cohomology group of K mod L respectively.

A chain transformation ¢ of (K,L) into (K’,L’) is a sequence of homomorphisms
¢: Co(K) — Cy(K’) (all g) such that

(2.2) ¢Co(L) C Co(L)),
(2.3) In(¢c) = In(c), ¢ e Co(K),
(2.4) dpc = ¢ac, ¢ € Co(K).

Then the dual of ¢ satisfies pC*(K’,L’;G) C C*(K,L;®), and 8¢ = ¢b. It thereby
induces a homomorphism

(2.5) o*: H'(K'\L';G) —» H(K, LiG).
If ¢, ¥ are two chain transformations of (K,L) into (K’,L’), then a chain

homotopy D of ¢ into ¢ is a sequence of homomorphisms D: Co(K) — Cga(K")
such that

(2.6) DC.(L) € Cqsa(L)

2.7 dDc + Ddc = yc — ¢c, c e Cy(K),
Then the duals of D, ¢, y satisfy DC*(K',L’;G) C C*Y(K,L;G) and

(2.8) Déu + 8Du = Ju — ¢u, u e CYK',L';G).

Taking u to be a cocycle, this gives ¢u ~ Yu; hence ¢* = ¢*.

A carrier C from (K,L) to (K',L’) isa function which assigns to each cell o of
K a non-vacuous subcomplex C(s) of K’ such that ¢ ¢ L implies C(s) C L/,
and ¢ < 7 implies C(¢) € C(7). The carrier is acyclic if C(s) is acyeclic for every
o. We say that C carries the chain transformation ¢ [homotopy D] if, for each
o € K, ¢o [Da] is a chain on C(0).

2.9 Lemma. If C is an acyclic carrier (K,L) — (K',L’), then C carries some
chain transformation ¢; and, if ¢, ¥ are two chain transformations carried by C,
then C carries a chain homotopy D of ¢ into .

For each vertex v of K, let ¢v be a 0-chain of index 1 on C(v), e.g. a vertex.
Extend ¢ linearly over Co(K) by setting (2 _aw,) = > agv;. For any 1-cell o
with dc = 7, — 7o, we have ¢dc = ¢, — ¢72 is a 0-cycle on C(c) of index 0.
As C(o) is acyclic, it contains a 1-chain ¢o such that d¢c = ¢do. Extend ¢
over C1(K) linearly.

Suppose ¢ constructed for chains of dimensions <g. Let ¢ be a g-cell. For
any (g — 1)face 7 of o, ¢7 is defined and lies on C(r) C C(0). Thus ¢do is a
chain on C(c). It is a cycle since dpds = ¢p3dc = 0. As C(0) is acyclic, it contains
a g-chain ¢o such that dpsc = ¢do. Extend ¢ over Cy(K) linearly. This completes
the inductive construction of ¢. ,

The construction of D proceeds similarly. For any vertex o, yo — ¢o is a
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0O-cycle of index 0 on C(c); hence it bounds a 1-chain D¢ on C(c). Extend D
over Co(K) linearly. Assume D constructed for chains of dimensions <q. For
any g-cell o, the chdin z = Yo — ¢ — Do is defined and lies on C(o). If we
apply 2.7 with ¢ = 9o, it follows that z is a cycle. As C(o) is acyelic, we may
choose a chain Do on C(s) with boundary 2. Extend D over ('y(K) linearly.
This completes the inductive construction of D and the proof of the lemma.

2.10. LemMa. If the acyclic carrier C satisfies dim C(oc) = dim o for each o,
then the chain transformation carried by C is unique.

Suppose C carries ¢ and ¢. By 2.9, C carries a chain homotopy D of ¢ into .
But Do is a (¢ 4 1)-chain on C(¢) having dimension g. Thus De¢ = 0 for each o.
Then 2.7 gives ¢ = .

Let f be a map (K,L) — (K',L'), i.e. a continuous function | K| — | K| such
that f(| L |) € | L’ |. A carrier C from (K,L) to (K',\L") is a carrier
for f if f(¢) C C(o) for each cell o. The minimal carrier for f is obtained by
defining C(c) to be the least subcomplex of K’ containing f(s). The map f is
called proper if its minimal carrier is acyclic.

2.11. LemMA. If f is a proper map, then, for any acyclic carrier C of f, and any
chain transformation ¢ carried by C, the induced homomorphism ¢* is independent
of the choice of C and ¢.

Let €’ be the minimal carrier, and let ¢ be a chain transformation carried by
C’ which exists by 2.9. Then C carries ¢, . By 2.9, C carries a chain homotopy
of ¢ into ¢. By 2.8, ¢* = y* Any other choice of C, ¢ would give the same
result; so the lemma is proved.

When f is proper, we shall denote by fx a chain transformation which has a
common acyclic carrier with f. We call f4 an algebraic approximation to f. Its
dual is denoted by f*. The homomorphisms of cohomology groups induced by
f* are denoted by f*. By 2.11, f* depends only on f.

3. Operator Complexes

Let K, K’ be cell complexes. An operation of degree i from K to K’ is defined
to be a sequence of homomorphisms

(3.1) D;: Cy(K) — Coui(K)

defined for all q. Although the integer 7 is unrestricted, it will be positive or
zero in applications. Let O; denote the set of all operations of degree 7. It forms
an additive group with addition defined by (D; 4+ D})c¢ = Dic + D’c. We define
the boundary operator

(32) w: 0" — O,'_.l
by the rule
(3.3) (wDi)e = Dic + (—1)"™D,dc, ¢ € Co(K).

It is easily seen that ww = 0. Hence the sequence of groups O; and the homo-
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morphisms » form a chain complex (in the algebraic sense of W. Mayer). It is
called the operator complex from K to K’, and is denoted by O(K K2

If D; is an s-cycle, i.e. wD; = 0, then 3.3 states that D; carries cycles into
cycles, boundaries into boundaries, and thereby induces homomorphisms
H(K) — H,«K') for each q. If D; , D are i-cycles, and wE;4; = D; — D; so
that D; ~ D’ in O(K,K’), then 3.3 states that dE, .z = D’z — Dz for each
cycle z of K. Thus Dz ~ D’z in K’, and the homomorphisms of homology
groups induced by D;, D’; coincide.

Let D, be a 0-cycle. We shall say that D, has an index if there is an integer &
such that In(Doc) = kIn(c) for each ¢ e Co(K); and k is called the index of Dy .
Thus

(3.4) In(Dyc) = In(Do)In(c), ¢ e Co(K).

If K is connected, every O-cycle has an index. Let v be a vertex of K, and
k = In(Dw). For any ¢ € Co(K), the connectedness of K implies the existence of
a d e C1(K) such that dd = ¢ — In(c)v. If we apply D to both sides of this re-
lation, use dDy = Dd (D, is a 0-cycle), take the index of both sides, and use
Ind = 0, we obtain 3.4.

It is clear that any 0-cycle Dy of index 1 is a chain transformation (2.3, 2.4).

In 33,let ¢ = 1 and ¢ = 0. Then dc = 0. Using Ind = 0, it follows that
In((wD;)c) = 0. Thus wD; has an index, and it is zero.

Let C be a carrier K — K’. The operator complex of C, denoted by O(C),
consists of those elements D; of O(K,K’) such that, (i) D,s is a chain of C(s)
for each cell o, (ii) D; = 0 for s < 0, and (iii) when ¢ = 0, Dy is a 0-cycle having
an index. Clearly D; ¢ O(C) implies wD; ¢ O(C). Hence O(C) is a chain complex.
The basic result of this section is the following.

3.5. LEmMa. Let C be an acyclic carrier from K to K'. Then the operator complex
0(C) contains 0-cycles of index 1, and O(C) is acyclic.

The existence of a 0-cycle of index 1 is given by 2.9.

Now let D be an i-cycle of O(C), and if ¢ = 0, let In(D) = 0. We shall con-
struct an (¢ 4+ 1)-chain E of O(C) such that wE = D. If ¢ is a vertex, then
wD = 0 implies that Do is an i-cycle on C(s). If 7 = 0, we have in addition
that In(Do) = 0. As C(0) is acyclic, there is a chain Eo on C(s) such that
9Ec = Do. As o is a vertex, dc = 0; hence by 3.3, (wE)s = Do. For any 0-chain
¢ = X aioi,set Bc = > a:Ec; . Then (wE)c = Dec.

Suppose, inductively, that Ec is defined for r-chains ¢, 7 < ¢, so that
(wE)c = De, and Er is a chain on C(7) for each r-cell . Let o be a g-cell. Then
the chain z = Do + (—1)""'Edc is defined and lies on C(c). It is a cycle, for

9z = dDo + (—1)""0Eds
= (@D + (=1)'Dd)s + (—=1)""(wE + (—1)""'Ed)oo
= (=1)'Dds + (—1)""(wE)ds = 0.

2 This complex has been considered by Lefschetz [1; Ch. V]. It is the product K X K'*
of K with the dual of K’. The correspondence is obtained by assigning to ¢ X 7’* the opera-
tion D such that De = 7’ and D is zero on all other cells.
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Hence we may choose a chain Eo on C(¢) such that dEs = 2. Then (wE)o = Deo.
For each g-chain ¢ = > _a.0,, we set Ec = > a:Eo; . It follows that (wE)c = Dc,
and the inductive construction is complete.

4. Product Complexes

If K., K, are cell complexes, then their product K; X K, has as cells the
products of the cells of K; and K, . Given incidence numbers [o1:71] in K; and
[o2: 2] in K, we define incidences in K; X K, by

[oy X a2 : 71 X 09] = [o1: 7]

4.1) )
[o1 X 02 101 X 7] = (—1)%0y : 74, q = dim oy,

and all other incidence numbers are zero. The products ¢ X 7 of the generators
of the chain groups define a bilinear pairing of C,(K,) and C,(K,) to Co+-(K1 X K3)
called the cross product. Then 4.1 is equivalent to

(42) a(cl X 02) = (601) X co + (—1)q01 X (662)

where ¢; € C(K1) and c; ¢ C.(K,).
The product of relative complexes is defined by

(K1,Ly) X (KsLs) = (Ky X Kz, Ky X Lyu Ly X K,).

Abbreviate this by (K,L). Assume that the coefficient groups G, , G2 are paired
to a third G; . Define the cross product pairing of C*(K,,L,;G,), C'(K,,L2;G,) to
C""(K,L;Gs) by

(43) (u1 X u2)'(0'1 X 0'2) = (ul-al)(ug-@).
From this and 4.2, we obtain
(4.4) 8(u X v) = (du) X v+ (—1)%u X (6v).

It follows that the product of cocycles is a cocycle, and its cohomology class
depends only on the classes of its factors. We obtain thus a cross product pair-
ing of H*(Ky,Ly;Gh), H (K,,Ly;Gy) to H*'(K,L:Gs).

Let g(x: , 22) = (22, 21); then ¢ is a map

g:K1XK2——+K2>(K1.

It has the carrier C(s; X 03) = & X & which is acyclic since the product of
acyclic spaces is acyclic. If we set

(4.5) gglor X a2) = (—1)70y X o1,
q = dim oy, r = dim o,

then, using 4.2, we have dgy = ¢g¢d and Ingg (1 X 1) = 1 where V1, U are
vertices. Thus, by 2.10, g is the unique algebraic approximation to (9,0).

Let a pairing Gz, Gy to G5 be defined in terms of the pairing G;, G, to G,
by ba = ab for a e Gi, b € G;. Then uy X u; is defined for u, e C'(K\,Ly;G),
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uy € C"(Ka,Ln;Gs). Using 4.3 and the definition 2.1 of the dual ¢g¥ of gx, we
have

g#(ug X up)- (o3 X a9) = (uz X 1) -gg(or X og) = (—1)"uz X U1-02 X o1

= (=1)T(uz-09)(wr-01) = (—1)"(ur-01)(uz" 02).
It follows that
(4.6) g* (up X u) = (1) X us.

In case (Ki,L;) = (K:,L;), then the product complexes based on the two
orders of the factors coincide; and ¢g¥ becomes an automorphism of the group
of cochains. If also G; = G., then 4.6 is ambiguous; because the cross product
on the left is based on a different pairing from that on the right. However, if
the initial pairing of Gy = G, with itself to G5 is commutative, then the two
cross products coincide, and 4.6 is unambiguous.’

The p-fold product complex

(K,)L,) = H?—I(Ki:l‘i)

is defined by an obvious induction. Henceforth we shall omit the cross symbol
and write ¢; --- ¢, and w - -+ u, for the products of chains ¢; and cochains
u; of K;.If ¢ = dim ¢; and r; = dim ., then an induction based on 4.2, 4.4
gives

(4.7) dew - - ¢p) = ZLI (_1)q1+~--+q;_1cl o+ cia(9c)Cipr -t Cp -
(48)  o(wr - up) = Dt — 1)ty e (U Uigr U -

Our principal concern is with the p-fold product where all the factors co-
incide with a fixed (K,L). In this case the product is denoted by (K ,L)? and is
called the p-fold power of (K,L). Let g be the map of (K,L)” onto itself ob-
tained by interchanging the i™ and (¢ + 1)** factors. The same reasoning as
for 4.5 gives

(49) g#((fl st O'p) = (—1)““"’10'1 tt 010410042 *** Op

where ¢; = dim o .
To have p-fold products of cochains, we assume given two coeflicient groups

G, @ and a p-linear function b(ar, -+, a) € G’ for ar, -+, a, in G. For ex-
ample, if R is a commutative ring, we may take G = G’ = R and let the p-linear
function be the product a; - -+ ap. If ui, -+, u, are cochains of (K,L) with

coefficients in G, we define
(ug « - up)- (o1 +++ o) = blur-or, -~ , UpTp).

This product of cochains is a p-linear function whose values are cochains of
(K,L)” with coefficients in @’. We assume henceforth that b(ai, --- ,a,) is

3 If the pairing G, to G is skew symmetric then 4.6 remains valid if the sign of the right
hand member is changed. -
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commutative, i.e. its value is unchanged by any permutation of the arguments.
Then 4.9 and the same reasoning as for 4.6 give

(4-10) g*‘ (ul fe up) = (_l)r.'r.'+1u1 Tt Ui Ui Uliqe - 0 Uy

where r; = dim u; .

Let II, denote the full permutation group on p letters. The identity element
of IT,, is denoted by e. We may regard II, as the permutation group of the factors
of (K,L)? for any (K,L). Each g € II, determines a unique g4 which, for each
g, is an automorphism of C(K") giving thereby a representation of II, as a
group of automorphisms. The cochain operations g* are automorphisms of
C((K,L)”;G"). They provide an anti-representation of 11, ; for, by 2.1,

((9192)# u)-c = u-(uge) g = U-JigGepC
= (9 W) (gexo) = (gf off w)-c.

Henceforth we shall write g for both g% and ¢* the context will prevent am-
biguity.

Let T', denote the group ring over the integers of II, . Elements of T will be
written as linear combinations D z.g; of g ¢ II with integer coefficients z;. Let
s denote the ring homomorphism of T' into the integers obtained by mapping
each element of I into 1. If « = Dz, , then s(a) = > z;. We call s(a) the index
of a. Let ¢ denote the ring homomorphism of T into the integers obtained by
mapping each even permutation into 1 and each odd permutation into —1.
We call t(a) the coindez of a.

The representation of II as operators on chains of K” extends to a representa-
tion of T as endomorphisms of the chains. If ¢ is a vertex of K? , it is clear that
In(as) = s(a); hence, for any ¢ e Co(K”), we have

(4.11) In(ac) = s(a) In(c).
Similarly T' has an anti-representation as endomorphisms of cochains. If v e

C*(K,L;G) let u” denote the cross product of p factors u. If g € IT is the simple
interchange of two adjacent factors, then 4.10 gives

(4.12) gu® = (—=1)%",
Then, for any « €T,
(s(c)u? if dim u s even,

(4.13) au’ =
t(a)u” if dim wu s odd.

6. The Fundamental Construction

As the construction to be given is carried out under general circumstances,
we shall describe first the basic idea in the simplest case.

Let d: K — K X K be the diagonal map d(z) = (z,z). It is not cellular; but
has the minimal carrier C(¢) = & X & which is acyclic. Hence we may choose
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a chain transformation D, with carrier C. Lefschetz [1; Ch. V] defines cup
products in K by

(w o v)o= (uXv) Deo.

The permutation group II of the factors consists of two elements e and g.
Let A =g — e, = = g + e in the group ring I' of IL. Now d is invariant under
II; but the algebraic approximation Do to d may not be. In fact, by taking K
to be a 1-cell, it is easy to see that Do cannot be invariant. However gD, and
D, are two chain transformations carried by C. Hence C carries a chain homotopy
D, of D, into gD, . In the language of §3,

le = gD() -_ Do = ADo.

Now wD; has the symmetry property expressed by ZwDy = 0. In general 2D; =
0; but =D, is a l-cycle in O(C) since wZD; = SwD; = 0. As O(C) is acyclic,
we may choose D, in O(C) such that wD; = ZD; . Then wD. has the symmetry
AwD, = 0. Hence AD, is a 2-cycle in O(C). Then there exists a D; in O(C) such
that wD; = AD,. We define in this way an infinite sequence {D;} in O(C) such
that

wDy = ZD3i1, wDyiy = ADzis .

Thus the impossibility of approximating d by an invariant D, gives rise to
an infinite sequence of operations {D;} from K to K X K. Following the idea
of Lefschetz, we define cup-¢ products in K by

(u iv)o = (u X v)Dig.

These products provide a new definition of the squaring operations given in
[4].

We turn now to the construction in the general case. Generalizing slightly
the situation of §4, we shall suppose that II is a group of cellular mappings of
a complex K’, i.e. each g in IT is a homeomorphism of | K’ | which maps cells
onto cells. Then the unique chain transformation assigned to each g provides
a representation of the group ring T of II as a ring of endomorphisms of the
chain groups of K’. The index s(a), @ € T, is defined as in §4.

Consider now the operator complex O(K, K'). If D is a chain of O(K, K}
and a € T, define aD in O(K, K') by

(5.1) (aD)c = a(Dc), c e Cy(K).
In this way T is represented as a ring of endomorphisms of O(K, K’). Since
dac = adc for chains ¢ of K’, it follows from 3.3 that

(5.2) waD = awD, ael,D ¢O(K, K).

A carrier € from K to K’ is said to be invariant under II if, for each o ¢ K
and ¢ € II, g maps C(c) onto itself. Then, if D is a chain of O(C), it follows that
aD is a chain of O(C). In this way T is a ring of endomorphisms of 0(C).
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5.3. DEFINITION. A 0-sequence in T is an infinite sequence @y, as, - of
elements of I' such that
(5.4) s(a) = 0, and a;1a; = 0 for: =1,2 ...,

REMARK. It is to be noted that, if we define ay ¢ T to be the sum of all ele-
ments of II, each with coefficient 1, then aay = s(a)ay for any «a e I'. Thus the
condition s(e;) = 0 in 5.4 can be replaced by ayay = 0 in accord with the re-
maining conditions.

5.5. LEMMA. Let C be an acyclic carrier from K to K’ invariant under the group
I operating in K', and let {o;} be a 0-sequence in the group ring T of I1. Then there

exists a sequence {D;} where D, is an i-chain of 0(C), 7 = 0,1, -, such that
(5.6) In(Do) = 1’ and wDi = aiDi—-l forl’ = 1, 2, ctt .
If {D.}, {D',-} are two sequences satisfying 5.6, then there is a sequence {E;} where
E; is an i-chain of O(C), 1 = 0,1, ---, such that E, = 0, and
wE, = Dy — Dy
5.7 , .
wEi+1=D.--—D,-—a,~E,-, 'L=1,2,"‘.

The existence of a Dy of index 1 is given by 3.5. By 4.11, 3.4. we have
In(aiDy) = s(a;) In(Dy) = 0.

Then 3.5 states that D, exists in O(C) such that wD;, = a,D, . Suppose inductively
that Dy, - -- | D, have been found in O(C) satisfying 5.6. Then

wor Dy = opp1wDy = agpapDi_y = 0, by 5.2, 5.4.

Hence ax41D; is a k-cycle of 0(C). By 3.5, O(C) contains a (k + 1)-chain Dy,
such that wDyy, = ax,Dy . This completes the construction of the {D;}.

To prove the second part of the lemma, we set B, = 0. Since In(Dy — Dy) =
0, 3.5 provides an E; satisfying 5.7. Suppose E, , - -+, E, have been found in
0(C) satisfying 5.7. Then

@Dk = Di — auFy) = wDj — oDy — el
= awDiy — axDiy — ow(Dhoy — Diy — cnsByy)
= 0 by 5.4.

By 3.5, the cycle D;, — D, — arB} is the boundary of some chain Ei41in O(C).
This completes the proof.
6. Reduced Powers of Cocyles

The preceding result is now applied to the case where K’ is the p-fold product
K’ of K, II = 1II, is the permutation group of the factors (§4), and € is the
minimal carrier for the diagonal map d: K — K" given by d(z) = (x, --- , ).
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Then C(s) = &” is acyclic. Let {a;} be any 0-sequence in T, and let
(61) Di: CGI(K) — ClH-i(Kp), 7'.’ q = 0) 1) )
be a sequence in O(C) satisfying 5.6.

Let L be a subcomplex of K. Clearly we may regard C as a carrier from (K,L)

to (K", L”). Passing to cochains with coefficients in G’, each D; has a dual which
we denote by the same symbol:

(6.2) D:: C'(K?,L”,G") — C"'(K,L;G").
If the relations 5.6 are expanded using 3.3, we obtain
aD;c + (—1)""'D.dc = a:D;_sc.
The dual relation to this is obtained by evaluating w ¢ C"(K”,L”;G’) on each
term and applying the definition of the dual of 9, D;, ;. This gives
(6.3) Dw + (=1)'sD;w = D yeiw.
When w is a cocycle, we have
(6.4) D;w = (=)D jaw.
Now let u ¢ C?(K,L;@) be a g-cocycle, and set w = u” ¢ C"*((K,L)";&’) (p-fold

products are defined in §4 in terms of a p-linear commutative function G — G).
Using 4.13, we obtain

(= 1) s(a)Diytt”, q even,

(65) BD,‘ILP = X
(= D)™ ta)Dind”, g odd.

It follows that D’ is a (pqg — 7)-cocycle mod s(a;) when ¢ is even, and mod
t(a,) when ¢ is odd. It is a cocycle of K which is zero on L. It is called the z-fold
reduction of the pth power of u, or briefly, the (p, 7)-power of u. Naturally this
concept depends on the portion oy, - -, a; of the chosen 0-sequence. In the
next two sections we show that the cohomology class of D;u” depends only on
that of u, and that the resulting operations on cohomology groups are topo-
logically invariant. They depend only on ay, ---, a;; and, in particular, do
not depend on the choice of the sequence D; .

Since s and ¢ are ring homomorphisms, a;a;_; = 0 implies

(6.6) s(ai)s(aic1) = 0 = t(a)t(ai).
It follows from 6.5 that, for any 7, either D;u” or D,_;u” is an absolute cocycle.
7. Invariance Under A Cohomology
Suppose u, v € C*(K,L;G) are cohomologous cocycles, i.e.

(7.1) éa = u—v forsome aeC ' (K,L;G).
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Define a; in C**7((K,L)";@") by

(7.2) a = D (= D)% a7
Applying 3.8, we obtain

(7.3) u’ — V" = éa, .

Thus w ~ v implies 4” ~ v”. We should like to infer from this that D,u” ~ D",
So we apply D; to both sides of 7.3, and use 6.3 to obtain

(7.4) D’ — D = Diday = Diqoiay + (—1)%Dqa; .

If a;a; were zero mod s(a;) or mod #(e;) according as ¢ is even or odd, then we
would have the desired cohomology relation. As this need not be the case, a
more involved argument is required. The clue to this argument is the observa-
tion that a;a; is a cocycle, and in fact is the coboundary of some cochain a; .
Then 6.3 can be applied to D;_;da; to give a further reduction of 7.4. Continuing
this process p steps yields the desired result. The details follow.

Construct an algebraic cochain complex M as follows. The group C'(M) of
r-cochains is zero if » % ¢ or ¢ — 1; C*(M) is the free abelian group on two
generators u, v; and C? (M) is the free group on one generator a. The coboundary
6 in M is defined by 7.1. Then the cohomology group H'(M) is zero if r #= g,
and H(M) is infinite cyeclic.

Form now the p-fold tensor product

M =MOM® ---®M.

The cochain groups of M” are the free groups generated by p-fold products of
a, u, v. The dimension of a product is the sum of the dimensions of the factors.
Then C"(M?) = 0if r > pgorifr < pg — ¢. lf pg — p < r < pg, then C"(M")
is the free group whose base consists of p-fold products of a, %, v in which there
are pg — r factors a. The coboundary operator for M” is defined by 4.8.

7.5. LEMMA. If r 5 pq, then every cocycle of C"(M?") s a coboundary.

The assertion is trivial for p = 1. Proceeding by induction on p, we assume
the lemma holds for p — 1 in place of p. Let z be an r-cocycle of M” where
r # pq. If z is written as a sum of products, and we collect those terms having
first factors a, u, v respectively, then z takes the form

(7.6) 2z = aF + uF + G
where E ¢ " (M* ™) and F, G ¢ C"Y(M”™"). Then by 4.8,
62 = (u — »E 4+ (—1)""adE + (—1)%(usF + v3G)
= uw(E + (=1)%F) — o(E — (—1)%G) — (—1)‘asE.

Since 6z = 0, and a, u, v are distinct generators of M, it follows that each term
of the last expression is zero. Hence

E = (=1)"%F = (—1)%0.
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Therefore F + G is a cocycle of C""%(M”™"), and the inductive hypothesis pro-
vides a cochain L ¢ C"(M”™") such that 6L = F + G. It follows quickly
that
8(aF 4+ (—1)%L) = 2,
and the lemma is proved.
We return now to the hypotheses of 7.1, and suppose p, ¢ and ¢ are
fixed integers. Define n = n(q, a;) by
s(es), even,
7.7 n = 1
t(ai), q odd.
Then D;u”, D;v" are cocycles mod n.
7.8. LEMMA. If a, u, v satisfy 7.1, then there exist cochains ax , by e C?**((K,L)?;
@), k=1,---, p, each of which is a sum of products of a, u, v, and such that

day = ul — o

(79) 6ak+1 = a;—k+10k + (—l)l‘nbk ) k= 1, cre, D — 1
0= Ai—p+10p + (—l)pnb,, .

We prove first the existence of a , by in C***(M?) satisfying 7.9. The opera-
tions of II, and T, in M” are defined by 4.10.

Suppose first that » = 0. Define a; by 7.4. Then

daar = aday = a;(u’ — v°) = n(u’ — ") = 0.
By 7.5, the cocycle a.a; is the coboundary of some cochain a, of M?. Suppose
a, - ,a;in M” have been found so as to satisfy 7.9. Then

datirp10r = aim14100; = aimppr(aii420i1) = 0.
This last step requires the observation that the o’s form a 0-sequence in T', and
the operations of I' in M” form an anti-representation. By 7.5, the cocycle
o;i_1410; bounds a cochain a;4; in M?. The construction continues until a, has
been found. The preceding argument shows that a; ,11a, is a cocycle of
C*"P(M?). As a” generates this group, éa” # 0, and M? is free, we must have
Ajp10p = 0.

Now suppose n # 0. By 6.6, if ¢ is even, s(a;_1) = 0, ard, if ¢ is odd, {(a;—1) =
0. Therefore, in either case, the preceding argument applies with ¢ replaced by
i — 1 and provides elements by, ¢ C?* *(M?) saticfving

5b1 = u” - Up, 5bk+1 = ai_kbk, 0= ai_pbp .
Now define a; by 7.2. Then 7.3 holds and
8(aia; — nby) = a;(u’ — ) — n@w® — V") = 0.

By 7.5, the cocycle a;a; — nb; bounds a cochain a, in M”. Suppose a1, -+ , a1
in M? satisfy 7.9. Then

5(0(1‘_14.104 + (—l)lnb;)
= ai—l+l(ai—l+2al—1 + (—1)l_lnbi.—1) + (—l)lnai—z+1bl—1 = (.
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It follows that ai41 can be chosen properly. Continuing until a, has been found,
the same argument shows that a;_p.1a, + (—1)"nb, is a cocycle of CP*?(M?),
and must therefore be zero.

Now map M” into the cochain groups of (K,L)” by letting a, u, v in M cor-
respond to the cochains of (K,L) represented by the same symbols. This homo-
morphism commutes with § and the operations of T. Then the images of a; , bi
fulfill the conditions of the lemma.

7.10. THEOREM. If a) , b are chosen as in 7.8, then

Do’ — Da” = 63 05 (—1) "D ppar + nY o (=)D by .
Apply D;_ to both sides of 7.9, expand D, 6 using 6.3, and rearrange terms
to obtain
Diaaivtrss — Digaiimar + (—1)78Disaryn + (—1)""'nD, b = 0.

If these equations are summed for k = 1, -+, p, the initial two terms cancel
in pairs save for D._ja;a; and D;_p_10; 0,41 . However a,,; = 0, and the term
D;_ia,a, is eliminated by using 7.4. The resulting equation is 7.10.

An obvious consequence of 7.10 is the

COROLLARY. u ~ v implies Dau” ~ D;v” mod n.

Thus we can make the following definition.

7.11. DEFiNITION. If w ¢ H*(K,L;G) and u is a representative cocycle of w,
the cohomology class of D;u” mod n is denoted by ®fw and is called the i-fold
reduction of the pth power of w. Thus @7 is a set of transformations

®F: H'(K,LiG) — H™ '(K,LiG"), ¢=01,-
where G, denotes G’ reduced mod n, and n = n(q, «;) is given by 7.7.
It should be kept in mind that ®? is not generally a homomorphism.
8. Topological Invariance

8.1. THEOREM. Let f be a proper map (K,L) — (K',L’). For a fixed p and a
fixed 0-sequence {a;} in T, let operations {®F} be defined on the cohomology
groups of (K,L) and (K',L') based on choices {D.}, {D’}, respectively, of chain
homomorphisms satisfying 5.6. Then, for any w ¢ H*(K',L’ &), we have
(8.2) f*eiw = @If*w.

By hypothesis, the minimal carrier C for f is acyclic. Hence C carries a chain
transformation fg . Define F: (K,L)" — (K',L')* by

Fy, -+ 2p) = (flxr), -+, flzp)).
Then
Clor -+ ap) = C(or) + -+ Clop)

is an acyclic carrier for F. Define F g with this carrier by

Fylor -+ ap) = (fyor) -+ (fyon), oieK.
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Then its dual satisfies
(8.3) F¥(up - up) = (fun) -+ (Fuy),

where each u; is a cochain of (K’,L’) with coefficients in G.

Let f’: K — K’* be the composition of f and the diagonal map K’ — K'?.
Then C’ defined by C’(¢) = C(s)” is an acyclic carrier for f’. It is invariant
under the permutation of the factors of K’?. Consider the homomorphisms

FDi, Dify : Co(K) — Copi(K™).

Clearly, for any cell o of K, F g Do and Dif o are chains on C’(¢); hence F g D*
and D;fy are chains of O(C"). It is easy to verify that the conditions 5.6 hold
with {D,} replaced by {Fg D;} and also by {Dif4). Therefore the second half
of Lemma 5.5 asserts the existence of a sequence of homomorphisms {E.}, where
E; is an {-chain of O(C’), such that

0Ei1 + (=1)'E;110 = Fy D; — Dify — oiE; .

Passing to duals and denoting the dual of E; by the same symbol, we obtain
Eind + (—1)6E;1y = DiF* —f* D — Ea;.

If u is a g-cocycle of K’ which is zero on L', we obtain, using 4.13,

_ Jsle) B, q even’
t(ai)Eiu", q odd”

But F¥u” = (f¥u)? by 8.3; and E,,u” is zero on L. Therefore D;(f*u)” Nf#D'iu’
in (K,L) mod s(a;) or t(a;). This completes the proof.

If, in 8.1, we take (K,L) = (K',L’) and f to be the identity, then f* is the
identity and we have

8.4. CoROLLARY. The reduced power operations ®f are independent of the choice
of the sequence {D.} satisfying 5.6. They depend therefore only on the 0-sequence
lai} @n Ty, . In particular ®7 depends only on the portion ay, - -+ , a; .

Consider now the case where f in 8.1 is unrestricted. Let (K1,L1) be a sim-
plicial subdivision of (K’,L’). The inverse images under f of the open stars of
vertices of K; form a covering U of K by open sets. If K is locally finite, it is
well known that there is a sufficiently fine subdivision (Ki,L;) of (K,L) such
that the stars of vertices of K; form a covering which refines U. We obtain thus
a decomposition of f into three maps

(—1)E;u” = DF¥uP — f*Di?

&L M &) & kL) B &L
where
W) =z, g@) = @), k@) = 4.

The map h is proper since any subdivision of a cell is acyclic. Also k is proper
since each cell of K lies in a least cell of K’. Finally ¢ is proper since, for any
cell ¢ of K,, ¢g(o) lies in the star of some vertex v of K1 ; hence the minimal
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complex containing g(s) is contractible on itself to v. It follows that ®? com-
mutes with h*, g*, k*. Since f = kgh we must have f* = h*g*k*; and this im-
plies that ®} commutes with f*:

8.5. THEOREM. If we restrict consideration to locally finite complexes, then 8.2
holds for arbitrary maps f.

This result includes topological invariance; for, if f is a homeomorphism, f*
is a set of isomorphisms, and 8.2 shows that the operations ®; correspond under
these isomorphisms.

This restriction to locally-finite complexes may not be necessary if one always
uses the weak topology in K in the sense of J. H. C. Whitehead [6]. This is the
topology in which a set is closed if and only if its intersection with each closed
cell is a closed set of the cell. With this topology it seems likely that any open
covering admits a refinement by the stars of vertices of some subdivision. Once
this is done the above argument applies.

9. General Properties

The results of this section apply to the operations {®?} based on any 0-se-
quence {o;} in T, .

In defining {®}, we have slighted somewhat the case ¢ = 0. Since D, is a
chain transformation, D, = Dyd; and the dual D, satisfies Dy = 6D, . Hence,
for any cocycle u of (K,L), we have 6Dyu” = 0. Thus Dy’ is a cocycle without
reduction of the coefficients. In the proof of invariance under a cohomology,
7.4 reduces to

Dou" — D(ﬂ)p = D06a1 = 6Doa1 .

So Dyu” ~ Dw®. The proof of topological invariance holds with the modifica-
tion Ey = 0 so that Do(f*u)” ~ f¥ Dqu” without reduction of the coefficients.
Thus ®{ is an invariant operation sending H*(K,L;G) into H**(K,L;G"). Clearly
it is the same for all 0-sequences.

9.1. THEOREM. ®Ju is the p™ power of u in the sense of cup products.

The case p = 2 is trivial since Lefschetz [1; p. 178] defines the cup product
u « v of two cochains by choosing a chain approximation D, to the diagonal
map K — K°, and setting

(w U v)o = (u X v)-Dyo.

Then Dy* = u  u. The case p = 3 is included in an argument given by Lef-
schetz [1; p. 182] to prove the associative law (v _ v) _ w ~ u v v o w)
where u, v, w are cocycles. The general case is omitted since it is obtained by
an induction in which the central argument occurs already when p = 3.

9.2. TaeoreM. If dim u = ¢, then ®fu = 0 for all 1 > pq — q.

Let o be a cell of dimension pg — ¢ where ¢ > pq — ¢. Then dim ¢ < q and
dim ¢” < pq. Since Do is a chain of dimension pq lying on 5" whose dimension
is <pg, we must have D0 = 0. Then, for any g-cocycle u, D’ o = u*Djo = 0.
As this holds for every (pg — 7)-cell, we must have Du” = 0.
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9.3. THEOREM. There is an integer m depending only on p, q and ay, -,
Qpg—q SUCh that for any cochain u e C*(K,L;G) and g-cell o of K

(Dpg_qu’) -0 = m(u-c)® mod n

where n = s(apq_q) for q even and n = t(ape—q) for q odd.
Let k = pg — q. For any g¢-cell o, Dyo is a pg-chain on ¢ whose only pg-cell
is o”. Hence D;o = mo” for some m. Then

(Diu?) -0 = u*-Dyo = mu” 0" = m(u-0)”.

It suffices to show that m reduced mod = is independent of o. Let Z be the
ring of integers. Then H®(3,6;Z) is an infinite cyclic group generated by v.
Using standard ring operations in Z, ®{v is defined and lies in H*(¢,6;Z,). From
Dio = mo®, we obtain ®fv = mv mod n. Now let 7 be a complex consisting of
g-cell r and its boundary #, and let f: (7,7) — (¢,6) map # — # topologically
onto & — ¢ with degree 1. Using 8.5, we obtain ®;w = mw mod n where w =
f*v generates H'(7,7;Z). Since this relation on w is independent of o, it follows
that m mod = is independent of o.

9.4 TurorREM. For any integer k, ®7(ku) = k*®lu.

This follows immediately from (kuw)” = k"u".

If R is any commutative ring, we can always take G = G’ = R and let the

p-linear function from G to G’ be the ordinary product of p elements of R.

9.5. THEOREM. If Z is the ring of integers, then, for any u e H'(K,L;Z), we
have ®Fu = 0 for 7 # p — 1.

Consider first the special case where K = S'is a 1-sphere, L = = is a vertex,
and u = wu is a generator of H '(8%,20;Z). Since ¢ # 1 implies HY(S %) = 0
for any coefficient group, we must have ®fu, = 0 for ¢ # p — 1.

In the general case, we apply the theorem of Hopf which says that there is
amap f: (K,L) — (8",2) such that f*u, is the given u. By 8.5, we have

®lu = ®Xf*u, = f*®luy = 0 ifi=p—1
9.6. THEOREM. Let Z be the ring of integers. For any q > 0, there is an inieger
m such that, for any u e H(K,L;Z),
(9.7) ®r,—qu = mu mod n
where n = $(ape_q) for q even, and n = t(ape—,) for q odd. In addition,
(9.8) ®pg—gqau = 0.

Let S? denote the g-sphere, let z, ¢ S, and let u, generate H'(S,x, ;Z). Since
H(S%x ;Z,) is generated by 4o mod n, 9.7 holds for some m with v = uo .
This determines m. As H*"'(S%z,) = 0 for any coefficients, 9.8 is valid for w, .

Now let (K,L) be (¢ + 1)-dimensional, and « ¢ H*(K,L;Z). The Hopf theorem
asserts the existence of a map f: (K,L) — (S°,x) such that f*u, = u. Since
9.7 and 9.8 hold for e, and f* commutes with @7, it follows that they hold
for u.
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Let (K,L) be arbitrary, and u ¢ H'(K,L;Z). Let (K’,L’) be the (g + 1)-skeleton
of (K,L), and let g: (K',L’) — (K,L) be the inclusion map. Then g*: H*(K,L) =
H'(K',L'), and the kernel of g*: H*"'(K,L) — H*"'(K',L") is zero for any coeffi-
cient group. The preceding case asserts that 9.7 and 9.8 are valid for g*u in place
of u. Since g* commutes with ®/, and its kernels are zero in the dimensions
¢, ¢ + 1, it follows that 9.7 and 9.8 are valid for u. This completes the proof.

It is evident that the m of 9.7 coincides with that of 9.3.

9.9. THEOREM. Let Z be the ring of integers. If i is odd, and w ¢ H(K,L:Z),
then ®fu = 0. If ¢ = 2k is even, then there is an integer m such that, for any u €
HY(K,L;Z),

(9.10) ®hu = mu”"" mod (o)

where u"™" is the (p — k)™ power in the sense of cup products.

Let M* denote the complex projective space of 2l real dimensions, and let
o be a point of M*. It is well known [5; p. 136] that H'(M* x) = 0 for r odd
and any coefficients, and H (M* x,;Z) = Z for r even and < 2I. Furthermore
if uy generates H*(M*,x0;Z), then ul™* generates H'" *(M* xy;Z). Setting
n = s(ox), and Z, = Z mod n, it follows that u?*, reduced mod n, generates
H? 7 (M* 20;Z,). When 7 is odd, ®fu, has odd dimension, and is therefore
zero. When 7 = 2k, choose | = p — k. Then, for some integer m, 9.10 holds for
u = U . This determines m.

Consider now the general case. Let M* C M*' be a complex projective line
containing 2, . It is a 2-sphere. Let (K’,L’) be the 3-skeleton of (K,L), and ¢’
the inclusion map (K’,L') C (K,L). Then ¢'*: H'(K,L) = H'(K'L’) for any
coefficients. By the Hopf theorem, there is a map f': (K',L’) — (M*z,) such
that

(9.11) *ue = g'*u.

It is well known [5; p. 108] that the homotopy groups =;(M*) = 0'for2 < 7 < 2I.
It follows that we may extend f’ to a map f” of the (21 + 1)-skeleton (K”,L") —
(M?x,). Let g” be the inclusion map (K”,L”) C (K,L). From 9.11, we have

(9.12) " *uy = ¢"*u.

If 7 is odd, we choose I so that 20 4+ 1 = 2p — ¢, and we apply ®! to 9.12. Using
8.5, and ®fuy = 0, we obtain ¢” ®fu = 0. Since ¢"*: H” *(K,L) — H” *(K”,L")
has the kernel zero, it follows that ®fu = 0.

When ¢ = 2k, we have ] = p — k as above. Hence 21 + 1 = 2p — 2k + 1.
Therefore ¢”*: H”™(K,L) = H" *(K”,L”) for any coefficient group. From
9.10, we have

g ¥ = ®g"*u = P *uo = f*® ko
= f"*mud™ = m(f"*uo)”" = m(g”*u)"™* = ¢" *mu" ",

As the kernel of ¢”* is zero, the proof is complete.
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10. Factorization

The aim of this section is to show that 0-sequences with certain properties
lead to trivial @;.

10.1. LemmA. Suppose wD; = a;D;y as in 5.6. If, for some integer k > 0,
there are chains Ey \Eyyy1 tn O(C) such that

(10.2) wEry = Dy — axEy
then ®f = 0 for ¢ = k.
The existence of chains E;in O(C),7 = k, k + 1, - - - | such that
(10.3) wEiyy = D; — a.E;
is established inductively. Suppose Ey , - - - , E; are given, then

oDy — aill)) = aiDi—y — a(D1y — ar1Ery) = 0.

Since O(C) is acyclic, we may choose E,;; so as to satisfy 10.3 with ¢ = [
Expanding the left side of 10.3 according to 3.3, and passing to duals, we
obtain

Eid + (=1)%Eis = Di — Bia . i 2 k.

If w is a g-cocycle of (K,L), we obtain, by 4.13,
T — D JS(a)BEal q even,
(—1)8Eyu” = D {t () Bl Ay

Therefore Du” ~ 0 mod s(a;) or (a;).

10.4. THEOREM. If the 0-sequence {a;} has the property cuB = 0 for some 3 ¢ T
such that s(8) = m 5= 0, then, for any (K,L), q and u e H*(K,L;G), we have m®{u =
0 fori =z 1.

Let e denote the unit of T. Then s(me — B) = 0. Therefore (me — 8)D, has
index 0. As O(C) is acyclic, 3.5 provides an E; ¢ O(C) such that wE; =
mDy — 8D, . Then

w(le — a1E1) = malDo — al(’mDo — BD()) = 0
By 3.5, there is an E, in O(C) such that wl, = mD, — a,E, . Thus 10.1 applies
with k¥ = 1 and with {D;} replaced by {mD.}.
10.5. COROLLARY. If ay8 = 0 for some 8 with s(8) = 1, then ®f = 0 for 7 = 1.

10.6. ExampLE. Let p = 3, let the permutation g interchange the first and
second factors, and let ¢’ interchange the second and third. Set

a=g—g +g9 —ggeT.
Then s(a) = 0. Also aa = 0. Setting a; = a forz = 1,2, --- | we obtain a
0-sequence. If
B=1¢g +99'9g —99,
we have s(8) = 1 and o8 = 0. By 10.5, the 0-sequence gives trivial operations.
10.7. TurorEM. If {a;} has the property that oy is conlained in the group ring
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of a subgroup 11" of T of order m, then, for any (K,L), q and uw ¢ H*(K,L;G), we
have m®fu = 0 for i = 1. Taking I = 11, these relations hold for m = p!. Thus,
in all cases, ® u has a finite order dividing p!.

Let 8 be the sum of all elements of II’ each with coefficient 1. Then s(8) = m.
If g € I, it is clear that g8 = B. From this it follows that a8 = s(a)8 for any
a in the group ring of II'. Therefore s(e;) = 0 implies ay8 = 0. The conclusion
of the theorem follows now from 10.4.

10.8. THEOREM. If {a;} has the property that, for some k = 1 and some integer
m, may can be faclored moy = B~ so that a8 = 0 and yar—; = 0 (or s(y) = 0
when k = 1), then, for any (K,L), q and v ¢ H'(K,L;G), we have m® u = 0 for
all v > k.

If k = 1, s(v) = 0 implies In (yDy) = 0.If k > 1, then wyDis—; = yox_1Dr_s = 0.
In either case, the acyclicity of O(C) ensures the existence of a chain E; such
that wE, = yDi_;. Then

w(mD, — BEy) = mayDiy — ByDi—y = 0.
Hence O(C) contains E;,; such that
wliiy — mDy — BE, .
Then
w(mDpy — aepillir1) = mogDe — awu(mDy, — BE,) = 0.

Hence O(C) contains E, such that
wEiys = mDypyy — ar1Eiq .

The conclusion follows now by applying 10.1 to the sequence mD; .

ReMark. If we extend the O-sequence {a;} by adjoining ay = the sum of
the elements of II (see remark following 5.3), then 10.4 can be included in 10.8.
For, s(8) = m is equivalent to may, = Bay which is the analog for k = 0 of the
factorization in 10.8.

10.9. THEOREM. If the 0-sequence {a;} in T, lies in the subring T ,_, correspond-
ing to the permutation group I1,_, of the first p — 1 factors of K*, and if {®7}
{®F!} are the operations corresponding to {a;} € T, {ai} C T',_; respectively,
then, for any (K,L), ¢ and w e H'(K,L;R) (R = ring), we have

®fu = (@7 'u) wu
where _ denotes the cup product.

Choose operations D, : K — K”™' corresponding to {a;} C T',_,. Let I de-
note the identity transformation of the chains of K. Let D; X Iin O(K X K, K?)
be defined by (D; X I)(e X 7) = (D) X 7. A simple calculation shows that

wD; X I) = (wD;) X I = (a:Diy) X 1.
Choose also an algebraic approximation dg to the diagonal map K — K X K.

It is clear that the compositions (D; X I)dg are in O(C) where C is the minimal
carrier for the diagonal map K — K”. Since ddg = dgd, we obtain

w((Di X Ddyg) = (0(D: X I))dg = ((@:Dim1) X Ddg = ai(Diny X Ddy.
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This last step is valid by virtue of the identification of a; € I',_; with an element
of T, . Thus (D; X I)dg may be used to define ®}. Doing so, the dual cochain
operation is dg(D; X I); and applying it to «”, where u is a cocycle of (K,L),
we obtain

d*(D: X Iu’ = d*(Da”™") X w).

Lefschetz’s definition of the cup product is v . w = d*(u X v). From this the
conclusion of the theorem is immediate.

11. Equivalence of 0-Sequences

We say that a e I' is regular if it has a unique inversea ' e 'iaa' = ¢ = o 'a
It is well known that, if « has a right or left inverse 8 in T, then « is regular and
B = a'. Two O-sequences {a;}, {8:} in I' are called equivalent if there is a se-
quence of regular elements vy, v1, - - in I such that

-1 . ¢
61’ = YiYi-1, 1= 1) ‘23 e

11.1 TaEOREM. The operations ®! based on equivalent 0-sequences differ at
most in sign.
Suppose wD; = a;D;; and vy, v1, - - - are regular elements of T'. Then

wyD: = viaryitryiaDi1 = BryiaDis .

Thus {v.D;} satisfies 5.6 for the 0-sequence {8,}. Since y:y;* = ¢ implies s(y;) =
+1 and t(y;) = =1, it follows that the operation Dsy; dual to v;D; when applied
to the cocycle u” gives Dyu” = +Da’.

12. Remarks

We have not as yet given a single example of an operation ®; which is both
non-zero and which differs significantly from standard operations. The results
of §10 show that the 0-sequence must be selected with care if ®7 is not to be
identically zero. The results of §9 show that, regardless of the choice of the
0-sequence, the operations ® on 1 and 2-dimensional classes will be zero or will
coincide with standard operations. In a subsequent paper we will show that the
cyclic reduced powers (see §1) are generally non-trivial.
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