The Classification of Sphere Bundles

N. E. Steenrod
The Annals of Mathematics, 2nd Ser., Vol. 45, No. 2 (Apr., 1944), 294-311.

Stable URL:
http://links jstor.org/sici?sici=0003-486 X %28194404%292 %3 A45%3 A2%3C294%3ATCOSB%3E2.0.CO%3B2-1

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://uk jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have
obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://uk.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http:/fuk.jstor.org/
Sun Nov 21 05:06:19 2004



ANNALS OoF MATHEMATICS
Vol. 45, No. 2, April, 1944

THE CLASSIFICATION OF SPHERE BUNDLES

By N. E. STEENROD
(Received September 1, 1943)

1. Introduction

Whitney has introduced [13] the general notion of one space A being a fibre
bundle over a second space B. It is a topological condition on a function f
mapping A onto B which insures that f shall have a high degree of smoothness.
It is the topological counterpart of the analytic requirement, in case A and B
are differentiable manifolds, that f shall have a Jacobian of maximum rank at
every point. Fibre bundles should prove of importance since they arise in many
connections. The factor spaces of a Lie group form a lattice of fibre bundles
(see Theorem 1). The spaces of tensors over a manifold are fibre bundles [9].

Among the simpler bundles are those for which the fibres (inverse images of
points of B) are k-spheres. One of the main problems with which Whitney
has concerned himself is the classification of the k-sphere bundles over a given
space B.

In the present paper, this problem is reduced to a familiar problem of topology.
A factor space M * of the rotation group of a (k + I + 1)-sphere is selected, and
it is proved that the equivalence classes of k-sphere bundles over a complex B
are in 1-1 correspondence with the homotopy classes of maps of B in M7 .

In addition, the homotopy groups of M; are computed for dimensions <6.
This leads to a complete solution of the classification problem when B is a sphere
of dimension =<6.

Sections 2 and 3 contain definitions and discussion of fibre bundles and related
concepts. Sections 4, 5 and 6 contain the statements of the principal results
without proofs. Sections 7 and 8 are concerned with showing that covering
homotopies exist in a fibre bundle. With this mechanism and its consequences
at hand, the proofs of the main results are given in the remaining sections.

2. Fibre bundles

The concept of fibre bundle is somewhat complicated. There must be given
three topological spaces. The first of these, denoted by A, is called the fibre
bundle. The second, B, is called the base space; and the third, F, is called the
fibre. There must likewise be given a fixed map ¢ of A onto B; it is called the
projection. (It will appear from subsequent conditions that, for each point
b e B, ¢ '(b) is homeomorphic to F.) There must also be given a fixed group
G of homeomorphisms of F, so that F is a space with a geometry. Finally,
there is given a family {N} of neighborhoods covering B, and, for each N, a
function ¢x mapping the product space N X F homeomorphically onto ¢~ (N)
80 as to satisfy two conditions. The first of these is

von(b,y) = b forbeN,yePF.
294
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For the second, define ¢x 5 (b € N) to be the map F — ¢y ' (b) given by ¢y ,(y) =
é~(b, y); then, for any b € B and neighborhoods N, N’ containing b, we must have

brsdne s € G.

The functions ¢ are called the coordinate functions.

The entire structure can be pictured in A somewhat as follows. The space A
is decomposed continuously into disjoint closed sets denoted generically by F
and referred to as fibres. Each F possesses a geometry G. A sufficiently small
neighborhood of an F can be resolved into a product space in such a way that the
fibres F’ neighboring F appear as parallel sections, and under the parallel dis-
placement F — F’ we have in addition G — G’. The space B is the space whose
points are the fibres of A, and ¢ is the natural map A — B which attaches to
each point of A the fibre containing it. '

If the group G consists of the identity alone, then the functions ¢x can be
amalgamated into a single function which represents A as the product space
B X F, and A is called the product bundle.

If F is a linear space and G is the full linear group, A is called a bundle of linear
spaces. 'This is the case of importance to differential geometry since the tangent
space of a differentiable manifold M is such a bundle. In addition each manifold
of tensors of a specified type over M is a bundle of linear spaces with the base
space M [see 9].

If F is a k-dimensional sphere (k-sphere) and @ is the full orthogonal group, A
is called a k-sphere-bundle. In case G is the group of rotations (i.e. the orthog-
onal transformations preserving orientation), A is called an orientable k-sphere-
bundle.

If the differentiable manifold M has a Riemann metric, then, by selecting the
unit sphere in the tangent space of each point, one obtains a sphere-bundle
over M. A similar operation is possible in the tensor spaces of each point.

By a change of coordinates in the neighborhood N, we shall mean the substitu-
tion of a function ¢y for ¢y such that the fibre bundle conditions still hold, and,
in addition, for b e N, we have ¢y sy € G. If A is a continuous map N — G,
we obtain a change of coordinates if we set ¢,'.,,b = ¢~ A(b). In general we do
not wish to distinguish between a bundle and one obtained from it by coordinate
transformations. This leads to the notion of equivalence of bundles.

If A, A’ are two bundles over the same base space B with the same fibre F
and group G, they are said to be equivalent if there exists a homeomorphism =
of A’ onto A which, for each b in B, maps the fibre ¢'~'(b) of A’ onto the fibre
¥ (b) of A in such a fashion that, for any neighborhoods N, N’ containing b and
attached to 4, A’, respectively, we have

(E) SnbTdnrp € G,

Clearly any number of coordinate changes in A merely replaces A by an
equivalent bundle.
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If, for example, G is the group of all homeomorphisms, the condition E is
unnecessary.

The classification problem for fibre bundles is the following: For fixed B, F
and G, exhibit one and only one A from each equivalence class.

Now let B, F be fixed and let G, G’ be two groups of homeomorphisms of F
such that G C G’. If A is a fibre bundle over B with fibre F and group G, then
the same coordinate functions ¢ represent A as a fibre bundle over B with fibre
F and group G’. This new bundle A4’ is distinct from A since the groups of the
fibres are larger. The transformation A — A’ carries equivalent bundles into
such, and is therefore an operation on equivalence classes. It is to be expected
in general that this correspondence of classes is a many-to-one map and need
not be a mapping onto.

Since the identity homeomorphism of F is contained in every G, the product
bundle B X F determines an equivalence class of bundles relative to B, F and G.
A bundle of this class will be called a product bundle with little danger of confusion.

It is sometimes convenient to consider an equivalence of two bundles not
possessing the same base space and fibre. Let A4, B, F, G be a bundle and 4’,
B’, F’, G’ a second. We shall say that they are equivalent (in the unrestricted
sense) if there exists a homeomorphism 7 of A’ onto A which carries fibres into
fibres, inducing thereby a homeomorphism 7 of B’ onto B, and is such that, if
7(d") = b, b eN and b’ € N’, then the homeomorphism éxv7én - of F' onto F
must carry the group G’ onto G.

For A, A’ to be equivalent, it is necessary that B, B’ be homeomorphic, and
that F, F’ be homeomorphic in such a way that G’ corresponds to G. Assuming
these conditions satisfied, we cannot specify these correspondences in advance
unless we wish to consider the restricted equivalence defined earlier.

On the other hand, two bundles A, A’ with the same B, F, G may be equivalent
in the unrestricted sense but not in the restricted sense. Of course, in such a
case, r would of necessity induce a non-trivial transformation of B, or of F or of
both. Naturally there are fewer equivalence classes in the unrestricted sense.

In our main problem equivalence will be used only in the restricted sense.

3. Analogy with group extensions

We digress for a moment to remark the analogy between a fibre bundle and
a group extension. In the group case F and G coalesce into the group G, B is
likewise a group, and A is an extension of G by B (i.e. G is an invariant subgroup
of A and A/G = B).

The equivalence of two extensions parallels the equivalence of two bundles;
in the first case r is isomorphic, in the second, homeomorphic.

The problem of classifying bundles with fixed B, F and G is the analog of de-
termining all extensions of the group G by the group B.

We shall see that these ideas come together quite naturally when A, B and G
are topological groups.
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4. Summary of principal results

I R is a topological group and K is a closed subgroup, the symbol R/K is used
to denote the set of left cosets of K in R. The natural map R — R/K attaches
to each rin R the coset rK. A set of cosets is an open set of R/K if their point
set sum is an open set of B. With this definition of open set, R/K is a topologi-
cal space, and the natural map is continuous [see 8, Ch. 3]. If the elements of a
coset of K are all multiplied on the left by a fixed element of R, the resulting set
is also a left coset of K. In this way R is realized as a group of homeomorphisms
of R/K. Of course R may not operate effectively in R/K; the effective group
is R/K’ where K’ is the intersection of all subgroups conjugate to K.

It is well-known that, if R is a Lie group, then R/K is an analytic manifold,
and the natural map has Jacobian of maximum rank at every point. Even
more, we have

THEOREM 1. If R is a Lie group; and H, K are closed subgroups with H C K,
then, with respect to the natural map, R/H 1s a fibre bundle over R/K with fibre F =
K/H subject to the group G = K of left translations of K/H.

Now let R be the group of rotations (i.e. the orthogonal maps preserving orien-
tation) of a sphere S of dimension k¥ + I 4+ 1. In S we select a fixed great k-
sphere S*. Let S’ be the great sphere of S orthogonal to S*. A rotation of S*
(S") becomes a rotation of S if we let it act as the identity on S’ (S*). In this
way the groups of rotations R(S¥), R(S") of S¥, S', respectively, are subgroups of
R. Since they commute with one another, we may regard their direct product

R(s", 8" = R(S") X R(S")

as a subgroup of R. It is contained in the group R(S¥, S') of all elements of R
which map S* on itself. The latter is larger since it contains the rotations of S
which reverse orientations of both S* and S'. Since any two such differ by an
element of R(S*, S'), it follows that R(S*, S') has just two components and
R(S*, 8) is the component of the identity. We shall make extensive use of the
left coset spaces

Mi = R/R(S", 8", M} = R/R(S", S).
From Theorem 1, we obtain

Miisa two-fold covering of My .

Two rotations r, ' lie in the same left coset of R(S*, S") if and only if r(S*) =
7(S*). Since any great k-sphere of S is the image r(S*) for a suitable r, the
correspondence r — r(S*) between the great k-spheres and the left cosets of R(S*,
8% is 1-1. Therefore

MY is the space whose points are the great k-spheres of a (k + 1 + 1)-sphere.!

! A simple duality shows that the bundle R over M',‘ is equivalent to the bundle R over
M; . In particular M* and M} are homeomorphic. We might therefore regard M¥ as the
space of great l-spheres of a (k + I + 1)-sphere. We adhere to the first interpretation
throughout the paper.
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By a similar argument, we obtain

M3 is the space whose points are the oriented great k-spheres of a (k + 1 + 1)-
sphere.

We might equally well regard M7 as the space of (k + 1)-planes passing through
the origin of a (k + | + 2)-space.

It is worth noting that M3 is projective (I + 1)-space and M} is an (I + 1)-
sphere.

DeriNITION. To a map g of a topological space B into M} we attach a space
A(g) as follows: A(g) is the subset of B X S**'*! consisting of those pairs (b, s)
such that s is a point of the k-sphere corresponding to g(b). Define (b, s) =
b, so that ¢ maps A(g) onto B.

It is clear that y~'(b) in A(g) is the k-sphere b X g(b). The main results hing-
ing on the function A (g) are embodied in the following theorems.’

THEOREM 2. For any map g of B in M}, the space A(g) is a k-sphere bundle
over B with projection .

THEOREM 3. If B is compact and g, g’ are homotopic maps of B in M , then the
bundles A(g), A(g’) are equivalent.

THEOREM 4. If B is a complex,’ A a k-sphere bundle over B, andl = dim B — 1,
then there is a map g of B in MY such that A(g) is equivalent to A.

THEOREM 5. If B 1s a complex,' | = dim B, and g, ¢’ are two maps of B in M’
such that A(g), A(¢g’) are equivalent, then g, g’ are homotopic.

As an immediate consequence of Theorems 2 to 5, we have

CoroLLARY. The problem of classifying the k-sphere bundles over a compler
B is equivalent to the problem of enumerating the homotopy classes of maps of B
in M} for any | = dim B.

6. The homotopy structure of M}

It should be observed that, if ¢ maps B into a point of M}, then A(g) is a
product bundle B X 8*. From this and Theorem 3, it follows that inessential
maps of B in M} determine product bundles. Asa corollary, if B is contractible
on itself to a point, then any sphere bundle over B is a product bundle.

To obtain bundles which are not product bundles one must therefore study
spaces B which are not contractible. The simplest such are the spheres of vari-
ous dimensions. This leads to the problem of classifying the maps of spheres
in M%, and this in turn to the determination of the homotopy groups :(M?%).
Furthermore an inspection of existing results on the number of homotopy classes
of maps of one space in another [5] reveals that the homotopy groups of the latter
space play a fundamental role. Therefore our immediate objective is to obtain
such information as we can about the groups =:;(M?%).

Much is already known concerning the homotopy groups of the orthogonal
groups [2; 12]. Since M} is intimately related to several such groups, the obvious
procedure is to examine this connection more closely. This leads to the follow-
ing results.

2 Theorems 2 and 4 have been stated by Whitney in a different but equivalent form (see
(15, §8]).
3 The complex B may be infinite but is required to be locally finite.
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THEOREM 6. I f k or 1 is positive,* the fundamental group of M} is cyclic of
period 2. If R(S*) is the group of rotations of S*, and if it is considered as a sub-
group of R, then there is a natural 18omorphism

wi(M?) = xia(R(S)) 271

The restriction ¢ < 1 is of no significance in the classification problem since
! may be chosen as large as convenient.

Consider now the classification problem for B = i-sphere. An element of
x(M3}) is a class of maps of B in M} which map a fixed reference point b, of B
into another such point z, of M}, and any two maps of the class are homotoplc
within the class. If C; denotes the set of homotopy classes of maps B in M?%,
then each element of »;(M?}) is contained in some element of C, : ; 8o that a map
m — C;isat hand. Since M7 is arcwise connected, any map of B in M} is homo-
topic to one mapping by into z,. Thus C; is the image of ;.

The algebraic background of the correspondence x; — C; has been given by
Eilenberg [5, pp. 63-64] as follows. A closed path beginning and ending at zo
determines an automorphism of x;. The effect of the automorphism on any
1-sphere with by mapped into z, is obtained by deforming the sphere in M} so
that b, describes the closed path. The automorphism depends only on the
homotopy class of the closed path. Indeed, the fundamental group = (M?})
appears as a group of automorphisms of »;(M}). The principal result that
concerns us is the following

Two elements of x:(M?%) belong to the same homotopy class of maps of an i-sphere
in M7 if and only if there is an element of (M%) mapping one into the other.

Whenever each element of =, induces the identity automorphism in ; the
space is said to be simple in the dimension ¢. In this case the map =; — C;
is 1-1.

We are able to establish

THEOREM 7. If k and [ are even, then M* is simple in all dimensions. In any
case M} is simple in all dimensions < Min (k,1). Ifl = 2, then M} is not simple
in the dimension 2; for m(M] 1) is infinite cyclic and the non-trivial element o of
m(M}) reverses sign in my(M}).

We have not been able to decide the question of simplicity in the remaining
cases except for trivial cases where x; = 0 or is cyclic of period 2.

6. Sphere bundles over spheres

Combining the results of the preceding section.with the known facts [2; 12]
about the groups =;_;(R(S*)), we can obtain numerous special results concerning
the number of k-sphere bundles over a sphere B of dimension <6. We state
some of these in this section.

Since = (M%) is cyclic of period 2, we have

I. The k-sphere bundles over S' are of two types: the product bundle, and the
generalized Klein bottle.

4 The case k = I = 0 is trivial since Mg is a 1-sphere.
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The term Klein bottle is justified by the fact that, if S* is carried around S it
comes back with orientation reversed. This is proved by noting that the non-
trivial element a of m(M?%) is covered by a path in R joining the identity to an
element of R(S*, S') which reverses the orientation of S*.

Since 7(M7) = m(R(S") is infinite cyclic,

11. There are an infinity of 1-sphere bundles over S°.

Since the automorphism « is a reversal of sign, an element of m (M 1) defines
the same 1-sphere bundle as does its negative. We can thus set up a natural
correspondence between the integers n = 0, 1, 2, - - - and the 1-sphere bundles
over S®. Let A, denote the bundle corresponding to n. It is clear the A, is
the product bundle.

It is well known that, if §* = group of unit quaternions, and S' = subgroup
of complex numbers of absolute value 1, then S’/S' is homeomorphic to S In
this way S° is a l-sphere bundle over S? (see Theorem 1). It is a reasonable
conjecture that this is the bundle A4, .

If G, is the subgroup of S' generated by exp (2xi/m), by Theorem 1, $°/Gn
is a bundle over S°/8' = §°. The fibre is S'/G.. which is again a 1-sphere. In
this way S°/@.. is a 1-sphere bundle over S?.  It1s reasonable to conjecture that
it is the bundle A,.. Note that S°/G, is the lens space corresponding to the
pair of integers (m, 1).

Since m1(R(S")) is eyclic of period 2 for k = 2, we have

III. If k = 2, there is just one k-sphere bundle over S* other than the product
bundle.

Since m(R(S¥)) = 0 for any k, we have

IV. A k-sphere bundle over S® is always a product bundle.

Since m,_1(R(S")) = 0 for n = 3, we have

V. If n = 3, a 1-sphere bundle over S™ is always a product bundle.

Since 73 (R(S*)) contains an infinity of elements for £ > 1, we have

VI. If k > 1, there are an infinity of k-sphere bundles over S*.

Since m(R(S")) = 0for k = 5, and m(R(S*)) = 0 for k = 5, we have

VII. A k-sphere bundle over 35 (S®) is always a product bundle if k = 5(k = 5).

One may obtain additional information by examining the results of [2; 12].

7. Factor spaces of groups

Since we must deal extensively with the factor spaces of the rotation group £,
a few general remarks about factor spaces are in order.

DerFNiTION. Let R bea topological group and K a closed subgroup. A function
& defined in a neighborhood N of the point K of the left coset space E/K with
values in R is called a slicing function for K if (1) ¢ is continuous, (2) ¢(b) is an
element of b for each b in N, (3) ¢(K) is the identity element of R. We shall
say that ¢ is snvariant under the subgroup H of R if hKh™ = K and ¢(hbh™") =
he(b)h~" for each b in N and & in H.

A slicing function is a continuous cross-section through the identity of the
family of left cosets of K neighboring K. It is invariant if the cross-section is
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mapped on itself when conjugated by an element of H. In practice, H will be
a subgroup of K.

TrEOREM 8. If K is a closed subgroup of the Lie group R, then there exists a
slicing function ¢ for K. If H is a compact subgroup of R such that hRKh™ = K
for each h in H, then ¢ may be chosen invariant under H.

Proor. Choose a system of canonical coordinates of the first kind for a neigh-
borhood of the identity e of R [see 8, p. 187]. A sufficiently small neighborhood
of e in K is a linear subspace in these coordinates [8, p. 196, 203]. By means of
a linear transformation, it can be arranged that the subspace K is defined by
equations ' = 2° = --- = 2" = O where (z) = (z', - - - , z™) are the coordinates
of the element z of R. If the elements z, y are near enough to e, then the co-
ordinates of z = zy are differentiable functions of those of x and y: Z = f(z,v).
The system of equations

(A) ff@hy=0 G=1,--,7r, ¥ =0 (G=r+1,--,m)

reduces to the system y* = 0 (s = 1, - -+ , m) whenz = e. Thus the Jacobian of
(A) in the y's is non-singular for z, y near e. It follows from the implicit function
theorem that there exists a system of continuous functions ¢'(z), defined for z
in a neighborhood of e, such that (A) becomes an identity in  when y' is replaced
by ¢'(z). The system (A) states that y lies in the intersection of the left coset
zK with the coordinate subspace complementary to K. The uniqueness part
of the implicit function theorem assures us that there is just one such intersection
near to e for x near enough to e. Therefore, for such z’s, ¢(x) is constant along
the coset zK. Thus ¢ is a function of the coset alone and is therefore the desired
slicing function.

To prove the second part of the theorem, observe first that the operation of
conjugation of R by a fixed element of R is a linear transformation of the canoni-
cal coordinates of the first kind [8, p. 280]. Since the subgroup H is compact,
there is a linear transformation to new coordinates in which conjugation by an
element of H is an orthogonal transformation.” Since K is invariant under H,
the linear subspace orthogonal to K is likewise invariant. These new coordi-
nates are canonical, and may be chosen so that K is a coordinate subspace. Us-
ing these coordinates, we define ¢ as above. Then, for h in H, both ¢(hzh™") and
hé(z)h ™" lie in the intersection of the left coset (hzh™")K and the coordinate
plane orthogonal to K. Since this intersection consists of just one point near
e when z is near ¢, we have ¢(hzh™") = h¢(z)h ™" as desired.

Theorem 1 is an immediate consequence of Theorem 8 and the following

TeEOREM 1'. If R is a topological group, K a closed subgroup of R which admits
a slicing function ¢, and H a closed subgroup of K, then, with respect to the natural
map, R/H 1s a fibre bundle over R/K with fibre F = K/H subject to the group G =
K ‘of left translations of K/H.

5 In the rotation group R with which we are mainly concerned, the Cayley coordinates
have this property [11, p. 56].
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Proor. Lety denote the natural map R/H — R/K. Let N denote the neigh-
borhood of the point K of R/K in which ¢ is defined. The left translation of N
by r in R is denoted by N,. The totality of these translations covers R/K.
For each N, , we define a map ¢, of N, X K/H into R/H as follows

é:(b, ¢) = [ré(r 'b)le, beN.,ceK/H.

Since bis in N,, 7 'b is in N, so that ¢(+"'b) is defined. Since K/H C R/H,
¢ € K/H is an element of R/H, and ¢.(b, ¢) is the left translation of ¢ by the ele-
ment r¢(r'b) of R. It is clear that ¢, is continuous.

Since ¢(r'b) is a point of the coset b, r¢(r'b) is a point of the coset b. If
¢ be regarded as a subset of K, it follows that ¢,(b, ¢) is.a subset of b; and there-
fore y¢,(b, ¢) = b.

For an element a in ¢y ~*(N,), let {,(a) be the left translation of a by [ré(r'¥
(@)™ It follows that {,¢.(b, ¢) = ¢, and ¢,(¥(a), ¢-(a)) = a. The existence
of the continuous functions ¢ and ¢, proves that ¢, is a homeomorphism of
N, X K/H onto ¢ '(N,).

Finally if b is in bpth N, and N, , the map ¢;4¢,,» of K/H on itself is given by

¢ = [Fo(r D) re(r7'b)e
which is clearly a left translation of K/H by an element of K.

8. Covering homotopies

Suppose ¢ is a continuous map of A into B, f a continuous map of X into A4,
and h(z, t),z ¢ X,0 < t < 1, a homotopy in B of the map ¢¥f of X into B (i.e.
h(z, 0) = y¥f(z)). A homotopy g(z, t) of fin A is said to cover the homotopy
h(z, t) if yg(x, t) = h(z,t) forall z,t. Clearly, if a homotopy g(z, t) of f be given,
then g(z, t) covers the homotopy ¥g(z, t). Of more significance is the matter of
constructing a g(z, t) for a given h(z, t).

The covering homotopy g of h is said to be stationary with h, if, whenever
h(xo , t) is constant in a t-interval t’ St S ¢’ then g(zo , t) is likewise constant in
that interval (i.e. whenever z, remains at rest under h, it is likewise at rest
under g).

In a recent paper by Hurewicz and the author [7] the question of the existence
of covering homotopies is considered in some detail. The property “4 is a
fibre space over B relative to ¢’ is introduced, and it is proved that, in the
presence of this property, there exists a g covering a given h which is stationary
with h.

The notions of fibre space and fibre bundle do not coincide, there are fibre
spaces that are not fibre bundles. The fibres of a fibre space need not be pair-
wise homeomorphic, although they do belong to the same homotopy type.
Whether every fibre bundle is a fibre space is not yet determined. What con-
cerns us here is to establish the existence of covering homotopies for fibre bundles,
for we shall make extensive use of the consequences.

TraEOREM 9°. If A i3 a fibre bundle over B, X a compact space, f a continuous

¢ The essential content of this theorem has been stated by ! hiesmsann and ¥.lii. (4]
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map X — A, and h(z, t) a homotopy of the map ¥f of X in B, then there exists
a covering homotopy g(x, t) which is stationary with h(z, t).

Proor. For each b in B we select a pair of neighborhoods U, V of b such that
U C V and V is contained in some coordinate neighborhood N. Since X X I
is compact (I is the unit f-interval), there exists a 8 > 0 such that, for any point
z of X and interval I’ C I of length <3, the image of z X I’ under & is contained
wholly in some member of the family {U}. Let0 =, < 14 < -+ < t, =1
be a partition of I such that t;,; — t; < 8. We shall suppose that g(z, t) has been
constructed for all z, ¢ such that ¢ < ¢, and proceed to show that g may be
extended as required over the interval I': t; < t < tp41.

Since, for each z, there exists a U containing the image of z X I’ under h,
it follows by continuity that there is a reighborhood W of z such that h maps
W X I’ into some U. Since X is compact, we may select a finite covering by
these neighborhoods: W, ---, W, . Denote the U, V pair such that
W X I — Uby U.', Vi.

By the Urysohn lemma, there exist a continuous, real-valued function u;(b)
defined on B such that u; = 1 for b in U,;, us = 0 for b outside V,,
and 0 = u; = 1. Define

7i(x) =tk + (tes1 — &) Maxig;jui(h(z, ti)).

Clearly 7, is continuous, ti £ 7; < tin, 7i(€) £ 7;0(), and 7,(x) = kg1 .
Define 74(z) = . Then g(z, t) is defined for ¢ < 7(x). We shall suppose,
inductively, that g(z, t) has been properly constructed for ¢t < 7;(z), and show
that it may be extended to ¢t < 7;.(x).

Denote by T the set of pairs (z, t) such that 7;(x) < ¢t £ 7j(z). Itis over
this set that we must extend g(z, t). It follows from the definition of the func-
tions 7 that h maps the closure T of T into ¥ ;;; which is contained in some
coordinate neighborhood N with coordinate function ¢. Since ¢ is a homeo-
morphism of N X F with y(N), there exists a map ¢ of ¢ (V) into F such that
to(b, ¢) = c for each cin F. Since (z, t) ¢ T implies yg(z, 7;(x)) = h(z, 7;(z))
is in N, the function ¢g(z, 7;(z)) is defined. We can therefore define

gz, t) = ¢(h(z, t); tg(x, 7(x)))  for (z, t) in T.

It follows from the properties of ¢ that yg(z, t) = h(z, t), and that g is stationary
with h. To see that g has been continuously extended, we note that the expres-
sion for g is defined and continuous for (z, t) in T, and, for (z,t) in T — T it
agrees with the values of g already assigned.

This completes the general step in the secondary induction. Since rm(z) =
tx41, the completion of the secondary induction establishes the general step of
the primary induction. This completes the proof.

As an immediate consequence of Theorem 9 and a theorem of R. H. Fox’,
we have

7 Fibre spaces II, Bull. Amer. Math. Soc. 49 (1943).
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TueoreM 10. If A is a compact fibre bundle over B, and B is an absolute neigh-
borhood retract, then A 1s a fibre space over B.

In the case of factor spaces of groups we can establish directly the fibre space
nature of the fibre bundles.

THEOREM 11. Let R be a topological group and H, K closed subgroups with
H C K. If H admits a slicing function, and K admits a slicing function invariant
under H, then R/H is a fibre space over R/K with the natural map as projection.

Proor. Let ¢(b) be the slicing function for K which is invariant under H.
Let 7 be the natural map R — R/H, and ¢ the natural map R/H — R/K. For
any pair (a, b) such that a is in R/H and b is in the left translation to y(a) of
the domain N of definition of ¢, we define the slicing function

¢(a, b) = 1(ré(r”’b))

where r has been chosen arbitrarily in 7 '(a). That ¢ is independent of the
choice of r in 7' (a) follows from the invariance of ¢ under H; for

(rh)p((rh)7'b) = ro(r bh™h = r¢(r'b)h.

To prove that ¢ is continuous in (a, b), it suffices to note that, since H admits
a slicing function, we may choose 7 in 1 '(a) as a continuous function of a neigh-
boring a particular choice 7, in 7~ (ao).

CoroLLARY. If R is a Lie group, K a closed subgroup, and H a compact sub-
group of K, then R/H 1is a fibre space over R/K with the natural map as projection.

9. Proofs of Theorems 6 and 7

We first prove that M} is simply-connected. Let ao be the identity element
of R, and let by be its projection in M%. Let g(x) be a continuous map of the
interval 0 £ z < 1in M} with g(0) = g(1) = b,. If it is not already the case,
one can obtain by a simple homotopy that g(x) = byfor $ < z < 1. Since g
may be regarded as a homotopy of the imageof ao , it follows from the existence
of a covering homotopy that there is a function f(z) defined for 0 £ x = % with
values in R such that f(0) = a,, and the projection of f(x) is g(x). This last
implies that f(3) is in R(S*, S') which, being connected, admits a path f(z),
1 <z =<1, fromf(})toa,. Then the projection of f(z) is g(x) for 0 < =z = 1.
By assumption k or [ is positive, say I. It is proved in [7, Th. 5] that a closed
path fin R is contractible into R(S'). The image in M7} of this contraction of f
provides the desired contraction of g into by .

Since M?% is simply-connected and is a two-fold covering of M}, it follows
that the fundamental group of M} is cyclic of period 2. The non-trivial element
of this group is denoted by a.

Our procedure in proving Theorems 6 and 7 is to exhibit a set of four natural
isomorphisms. Their combination will be the isomorphism of Theorem 6.
Under these isomorphisms the automorphism a of r;(M?) is transformed into an
automorphism of each of the groups, likewise denoted by «. In each case, the
automorphism will be exhibited in a new form.
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The first of these isomorphisms is
(A) m(M}) = =,(MY) iz 2
that always exists [7, Cor. 3] between the groups of a space and its covering space.
and is induced by the covering map ¢: M} — M} .

It is well known that the fundameéntal group of a space X is isomorphic in a
natural way to the group of covering transformations of its universal covering
space X. Since X is simple in all dimensions, a homeomorphism of X on itself
induces an automorphism of =;(X). In this way m(X) appears as a group
of automorphisms of =;(X). Thus m(X) operates in both =;(X) and =:(X).
Eilenberg has shown {6, p. 171] that these operations commute with the natural
isomorphism m(X) =~ =:(X).

The covering transformation a of M} is obtainable as follows. Let r, be any
rotation of S which maps S* on itself with orientation reversed. It will then
map S’ on itself with orientation reversed. Therefore r, lies in the component
of R(S*, 8') other than the component of the identity R(S*, 8'). If a left coset
of R(S*, S') be multiplied on the right by r,, the two components of the coset
are interchanged. As an operation on the left cosets of R(S*, S"), it is precisely
the covering transformation a.

Left translation of M} by any r in R is homotopic to the identity; for R is
arcwise connected, and a path in R from r to a, provides the 1-parameter family
of left translations. (Note that right translation of M% by r has no meaning
unless r is in R(S*, S'); for otherwise the image of a left coset of R(S*, S isnota
left coset.) Therefore right translation by r, followed by left translation by
75" (i.e. conjugation by 7o) is a map T of Mt homotopic to the covering trans-
formation a. It induces, therefore, the automorphism « in =;(M%). It has the
advantage that it leaves fixed the point by ; for r5'R(S*, 8)r = R(S*, S').
We choose by as the base point for =;(M?}).

Suppose, for the moment, that both & and ! are even. In this case, the
dimension of S is odd so that the antipodal transformation of S is in R and may
be chosen as 7, .  Since 7, commutes with each element of R (r, is represented by
the scalar matrix —1 of order k + I + 2), it follows that conjugation by 7, is
the identity in M} . This proves the first part of Theorem 7.

We introduce now a space of importance in subsequent sections as well as the
present one. As in §4, R(S") is a subgroup of R, and we define

N} = R/R(S")
using left cosets. It is easy to see that two elements r, 7’ of R lie in the same left
coset of R(S") if and only if they coincide on S* (i.e. r(y) = '(y) for each y in
S*).  On the other hand, any orthogonal map of S* in S can by extended to all
of S so as to be a rotation of S. In this way N7 is the space of all orthogonal maps

of 8*in 8. It will be so regarded in the sequel.
Since R(S") < R(S*, 8", we have the natural maps

n: Nt —» M}, ¢:R— Ni.

(1%
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By Theorem 1, each space is a fibre bundle over its image with the natural map
as projection.

We note that { maps R(S*) homeomorphically onto a subset R*(S*) which is
the fibre of N} over the point b,. The point ny = {(ao) is taken as base point
for homotopy groups in N7 .

Since R*(S*) is the fibre over by, the projection 7 induces, by [7, Th. 2], a
natural isomorphism

(B) x(Mi) = 7(NT, R*(SY)).

The element 7, , chosen as above, has the property ro"R(S")ro = R(S'). There-
fore conjugation of R by r, permutes the left cosets of R(S'), and yields thus a
transformation 7”7 of N} . Since conjugation in R preserves the inclusion rela-
tions among the subsets of R, we have nT' = Tx. It is also clear that
T'(R*(S*)) = R*(S*), and T"(ne) = no. We have thus proved that the auto-
morphism a of w(N% , R*(S*)) is that induced by 7".

An element of m;(N}, R*(S")) is represented by a map of an s-cell in N' } with
boundary mapped into R*(S*) and a fixed reference point of the boundary into
no. The correspondence between the i-cell and its boundary has been shown
[12, Th. 1] to induce a homomorphism

(C) (N1, R*(S")) = mia(R*(S)).

Since the image under 7" of the boundary of a cell is the boundary of its image,
the operations of 7" in the two groups of (C) commute with the homomorphism.
We shall prove that (C) is an isomorphism if 7+ < I. As a first step, we prove
LemMa. m(N%) =04f¢ £ 1.
Since R is a fibre bundle over N with fibre R(S"), we have by [7, Th. 2] that
the projection ¢ induces an isomorphism

7i(NT) = (R, R(S").

In [7, proof of Th. 5], it is shown that, if # < [, the image of an ¢-cell in R with
boundary mapped into ‘R(S') is contractible into R(S') leaving its boundary
fixed. But thisis equivalent to m:(R, R(S')) = 0,7 < I, and the lemma is proved.

An element u of the kernel of the homomorphism (C) is represented by a map
of an i-cell with the property that its boundary is contractible in R*(S*) to n, .
If this homotopy of the boundary be extended to the cell, we find that u is repre-
sented by a map of an ¢-cell with boundary mapped into n,. By the lemma, if
1 = [, the image of the 7-cell may be contracted into no leaving the boundary
fixed. Therefore, the kernel of the homomorphism (C) is zero if 7 < [.

An element v of ;_;(R*(S*)) may be represented by a map of an ({ — 1)-
sphere in R*(8%). If i — 1 £ I, we have, by the lemma, that the map may be
extended continuously over an i-cell with the given (z — 1)-sphere as boundary.
We obtain in this way an element u of m:(Ns, R*(S*)) whose image under (C)
is ». Therefore (C) is an isomorphism far 7 < ! and a homomorphism onto
for: =14 1.
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The final isomorphism
(D) T (R*(SY)) = mia(R(SY))

is that induced by ¢ which, as observed before, is a homeomorphism of R(S*)
onto R*(S*). The combination of the isomorphisms (A), (B), (C) and (D) is
the isomorphism stated in Theorem 6.

It is clear that the transformation 7" of R*(S*) corresponds under ¢ to the
operation T" of conjugating R(S*) by ry. Since each element of R(S*) acts
as the identity on S', it follows that 7"’ is completely determined by the trans-
formation 7, restricted to S*. Thus we have

THEOREM 7’. Under the vsomorphism of Theorem 6, the automorphism a of
m(M?) is transformed into the automorphism of mi_1(R(S")) induced by conjugating
R(S*) by any orientation reversing orthogonal map of S*.

Choose a fixed great (k — 1)-sphere S** on S*. As before, we may regard
R(S*™") as a subgroup of R(S*). Choose the orthogonal map of Theorem 7’
to be the reflection of S* through the k-plane of S*™'. Since S*™' remains fixed,
R(S*™") remains fixed under the conjugation of R(S*). In [7, Th. 5], it is shown
that the identity map of R(S*™") in R(S*) induces an isomorphism between
mi(R(S*™) and =;_,R(S*) for i £ k — 1 and a homomorphism onto if 7 = k.
The last two statements imply that, if ¢ < k, the automorphism of R(S*) induces
the identity automorphism of 7;_1(R(S*)). This completes the proof that M¥
is simple in dimensions ¢ =< k, .

Consider now the case k = 1,7 = 2and Il 2 2. In this case S* and R(S*)
are both circles. It is easily verified that the conjugation of a rotation by a
reflection reverses the sense of the rotation. Therefore the automorphism e
of m(R(S*)) is the reversal of sign. Thus, by Theorem 7/, M} is not simple
in the dimension 2.

Remark: Eilenberg has shown [6, p. 175] that the projective space M of
dimension k¥ + 1 is simple or not in the dimension k¥ + 1 according as k + 1
is odd or even.

10. Proof of Theorem 2

Since the space N of §9 is a fibre bundle over M* , we may choose a family
{U} of coordinate neighborhoods covering M} , and a family {¢y} of coordinate
functions. The fibre of this bundle is R(S*, S')/R(S'). Choose a fixed element
uo of the fibre and define

So(x) = du(x, w) forxz e U.

The function {, provides a continuous cross-section of the fibres over U.

Corresponding to a map g of B in M% , we define the family {N} of coordinate
neighborhoods in B to be the inverse images in B of the neighborhoods {U}
of M5. We have seen in §9 that each element n of N¥ is an orthogonal map of
S*into 8. Let us agree to denote the image of the point y of S* under the map
n by noy. We can then define the coordinate functions for A(g) by

on(b, y) = (b, tu(g®))oy), beN =g (U), yeS.
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Since {y(g(b)) maps S* on the k-sphere g(b), it follows that ¢y maps N X S*
on the part of A(g) lying over N in such a way that y¢x(b,y) = b If g(b) isin
two neighborhoods U, U’, then ¢,(g(b)) and ¢y (g(b)) map S* orthogonally into
the k-sphere ¢(b). One followed by the inverse of the other is surely an
orthogonal map of S* on itself.

11. Proof of Theorem 3

For each point x of M}, let X denote the great k-sphere of S corresponding
to z as indicated in §4. In particular, let zo be the point of M} corresponding
to the reference sphere S*.

By Theorem 8, there exists a slicing function ¢ for R(S*, S') invariant with
respect to R(S¥, S'). It is defined in a neighborhood N of zo. If r e R(S¥, S,
then rN = rN7~' = N because of the invariance of ¢. Therefore the left transla-
tion 7N of N to the point £ = rx, (r arbitrary) depends only on the left coset of
R(S*, 8" to which r belongs (i.e. on z alone). We denote this neighborhood of
z by N(z). These neighborhoods cover M7 .

For any pair z, , x» in M} such that z, e N(z,), we choose an r, in R such that
rn(X)) = S, and define

(21, 22) = r7'¢(rza)r

It is easy to see that r(z, , z.) is a rotation of S carrying X, into X, . It appears
to depend on the choice of r, . This is not the case; for any other choice may be
written rory for 7, e R(S¥, S') and we have

(ror) "'¢((ror)x) (ror) = r7'd(rxare)ry = 11 '¢(ra)r1,

because of the invariance of ¢ and the fact that z, is a left coset of R(S*, S%).
Finally r(x:, z,) is continuous simultaneously in z:, z. We may choose
as a continuous function of z; neighboring a particular choice because R is a fibre
bundle over M} . If r, is replaced by this function in the definition of r(z; , z2),
the continuity of the latter becomes apparent.

Suppose now that g, g’ are two maps of B in M} such that

r(b) = r(g(b), ¢'(¥))

is defined for every b. A map 7 of B X S on itself is then defined by (b, y) =
(b, ¥') where 3’ is the image of y € S under r(b). It follows immediately that
, restricted to A(g), provides an equivalence between the bundles A(g) and
A(g").

Finally, let g(b, t), bin B, 0 < ¢ < 1, be a homotopy in M} of the map g(b) =
g(b, 0). Since B is compact, a familiar uniformity argument shows that there
exists a 8 > 0 such that |t — ¢’ | <& implies g(b, t') is in N(g, b, t)) for any b
in B. Introduce now a subdivision of the t-interval of mesh <é. As shown in
the preceding paragraph, the bundles over B corresponding to successive sub-
division points are equivalent. Since equivalence is a transitive relation,
Theorem 3 is proved.
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ReMmark: If B is not compact, but the homotopy g(b, t) is uniform in the sense
described above, the conclusion will still hold.

12. Proof of Theorem 4

A simplex of B is denoted by o, its closure by é. We shall suppose that the
subdivision of B is so fine that each & lies wholly within some coordinate neigh-
borhood of the bundle A. We choose one such neighborhood for each ¢ and
denote it by N(s). The corresponding coordinate function is denoted by ¢, .

Our procedure will be to construct stepwise over the simplexes of B, in the
order of their dimension, a system of functions A, from which we shall be able
to deduce the existence of a map g and an equivalence = between A and A(g).

The function X, is to be a continuous map of & in the space N} of §9 so that
Ao(b) for each b €& is an orthogonal map of S* into S. These functions are to
have the following basic property:

(P) If ¢ is a face of ¢ and b is in &', then the orthogonal map ¢, ¢. of S*
on itself followed by the map A, (b) of S* into S is the map A,(b) of S* into S.

We define A, arbitrarily over the vertices o of B. Suppose, inductively, that
A, has been defined for each ¢ of dimension <7 so that (P) holds. For an ¢-
simplex ¢ and a point b of its boundary, we define A\,(b) by choosing a face ¢’
of o such that b ¢ 3 and letting \,(b) be the orthogonal map ;¢ of S* on itself
followed by A,/ (b). By (P), A.(b) is independent of the choice of & D b. Since
Ao(b) is continuous over each closed face of o, it is continuous over the boundary
of o. Sincel = dim B — 1, we have: — 1 < I. Therefore, by the lemma of
§9, A, may be extended continuously over ¢. Let this be done for each i-simplex.
By the construction, (P) holds. Thus the general step in the induction is
complete.

If 5 denotes the natural map N} — M}, we notice that, if b e C &, then

Me(d) = Ao+ (b) = g(b),

for A,(b) and \,-(b) map S* into the same great k-sphere of S. Since g is con-
tinuous over each closed 4, it is continuous over B and defines thereby a bundle
A(g).

Denote the projection A — B by ¢. For any u € A, we choose a o such that
b = ¢(a) €&, and denote by h(a) the image of a in S under the map ¢, followed
by A.(b). By the property (P), h(a) is independent of the choice of 0. It is a
continuous function since it is continuous over each of the closed sets y (o)
which cover A. Since both ¢,; and A,(b) are 1-1 maps, h(a) is 1-1 for a re-
stricted to ¢ '(b).

We define the map 7 of Ain B X S by

7(a) = (¥(a), h(a)).

From the stated properties of h, it follows immediately that r defines an equiva-
lence between A and A(g).
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13. Proof of Theorem b

Let go , g1 be two maps of a complex B in M" such that A (g,), A(g) are equiva-
lent bundles. Let I be the t-interval 0 <t < 1,let B = B X I,and B, =B X t.

Define ¢'(b, t) = ¢o(b). In this way a bundle A(g’) over B’ is obtained. If
we identify B with By, the bundle A(go) becomes identified with the part of
A(g’) over By ; because ¢’'(b, 0) = go(b).

Let A(g:) be the part of A(¢’) over B,. The map of By X S onto By X S
defined by ((b, 1), y) — ((b, 0), y) provides an equivalence between A(g;) and
A(go). Since the latter is equivalent to A(g:), the two equivalences provide
an equivalence map 7 of A(gy) onto A(g).

Let g(b, 0) = go(b), and ¢g(b, 1) = g:(b). Our problem is to extend g(b, t)
over all of B’. To do this, we shall use the method of §12 with B’ in place of
Band A(g') in place of A. In the present case, however, the function g is already
specified on the subcomplex By + B;. Therefore, in order to apply §12, it is
necessary to define first the functions A, for o in By + B; so as to satisfy (P),
and, in addition, n\,(b") = ¢(b’) for each b’ e . Once this is accomplished, the
general step in the extension will follow as in §12 because | = dim B .=
dim B’ — 1.

The essential point in obtaining the \’s for ¢ in B, + B, is that the function
7 of §12 (defined there in terms of the \’s) is already given, in the present case,
in the portion of A(¢’) over B, + Bi. On A(go), 7 is the identity, on A(g1),
it is the given equivalence with A(g:). We can use the 7 to define the \’s.

As in §12, we suppose B’ subdivided so fine that each closed cell lies wholly
in a coordinate neighborhood for A(g’). We choose one such for each cell o
and denote the corresponding coordinate function by ¢,. Map B’ X S onto
Sby ¢(b’,y) =y. Forein By + B;and b’ in , define

A (D) = Erdon .

In words, A\,(b") is the orthogonal map of S* into S obtained as the composition
of the map ¢,5 of S* on the fibre over b’ in A(g’), the equivalence map 7 of this
fibre into B’ X 8, and finally the map ¢ of this last image into S. One verifies
immediately that (P) holds and n\,(b’) = g¢(b’). This compléetes the proof.

14. General extension theorem

Experience has shown that in most homotopy classification problems there
is a basic extension theorem from which all results follow. We state here a
single extension theorem which implies both Theorem 4 and Theorem 5.

TraEOREM 12. Let A be a k-sphere bundle over the complex B, let B’ be a closed
subcomplex of B, let g’ be a map of B’ in M5 , and let 7' be an equivalence map of
the part of A over B’ onto A(g'). Ifl = dim B — 1, then there exists an extension
g of ¢’ to all of B such that A and A(g) are equivalent. Moreover this last equiva-
lence may be chosen to be an extension of 7.

The proof can be found in sections 12 and 13.
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