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PRODUCTS OF COCYCLES AND EXTENSIONS OF MAPPINGS

By N. E. STEENROD
(Received May 6, 1946)

1. Introduction

The Brouwer concept of degree led to the algebraic enumeration of the classes
of homotopically equivalent maps of an n-sphere 8" on itself. Two such maps
are homotopic if and only if they have the same degree. Any degree can be
realized by a suitable map.

H. Hopf [8] extended this result to the maps of an n-dimensional complex K"
in 8”. The result, as reformulated by Whitney [17], reads: Two maps f, g of K"
in 8" are homotopic (f = ¢) if and only if f*s" ~ g*s" in K" (where s” is the
generating n-cocycle on S” and f*, g* are the cochain homomorphisms induced
by f, g). Any n-cocycle in K" is an f*s" for a suitable f. Thus the homotopy
classes can be put in 1-1 correspondence, in a natural way, with the n'® co-
homology group H"(K™).

The problem of enumerating the homotopy classes of maps of S* on S* was
solved by Hopf [7,9]. The classes form the elements of an infinite cyclic group—
the Hurewicz [10] homotopy group ms(S*). Freudenthal [5] and Pontrjagin
[13] extended this result by showing that m,;1(S") is cyclic of order 2 for n > 2.!

Pontrjagin [14] then obtained an enumeration of the homotopy classes of
maps of a 3-complex K®on S*. If f = g, by the Hopf results f*s* ~ g*s*. As-
suming this necessary condition, then g = ¢’ where ¢’ and f coincide on the
2-dimensional section K* of K*. For any 3-cell o, the two maps f, ¢’ define an
element d’(f, ¢, o) € m(S?). Then f = ¢’ (and therefore to ¢) if and only if
there exists a 1-cocycle ¢' in K* such that

&, ¢9) ~ 2 o
(Here o is the Alexander-Cech-Whitney [1, 3, 18] cup product of cocycles.)
Furthermore any pair consisting of a 2 and a 3-cocycle on K* can be realized as
f*s* and d*(f, g) by suitable f, g.

This result provides an algebraic enumeration of the homotopy classes as
follows. All classes divide into disjoint collections of classes according to the
cohomology class z* of f*s*. The classes within the collection corresponding to a
2' can be put in 1-1 correspondence with the elements of the factor group of
H}(K® by the subgroup of products of H'(K®) with 22°.

The present paper solves the homotopy classification problem for maps of
an (n + 1)-complex K in 8”. In order to achieve this, the _ product is gen-
eralized as follows. For each integer # = 0 and cochains u, v of dimensions
P, g a product w —; v is defined having dimension p + ¢ — 7. In particular,
% wo? = % « v. In general, a product of cocycles need not be a cocycle if

1 Since 7i(S!) = 0 for ¢ > 1, a complete classification of maps of an n-complex in S! is
provided by the Hopf theorem.
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2 > 0 (see the coboundary formula (5.1)). However, if u is a cocycle, u <; u
is a cocycle (cocycle mod 2) if p — 7 is odd (even). These self-products, or
squares, lead to invariant homomorphisms:

Squ: H*(K) — H"(K).

(The group on the right has mod 2 coefficients if p — ¢ is even.) The ** square
of any element is always of order 2. Part I of the paper is devoted to establish-
ing the basic properties of these new products.”

The Pontrjagin formula for n > 2 becomes

dn+l(f’ g) ~ en—l —n3 en—-l.

Thus the homotopy classes within the collection corresponding to a particular
PR {{ "(K3) can be put in 1-1 correspondence with the finite group H"**(K) /Sqn_s
H"(K).

Much of the proof is based on a paper of Eilenberg [4] in which f*s*, d"*\(f, g)
and related cocycles are defined under general circumstances and their basic
properties established. As emphasized by Eilenberg, f*s" and ¢"' have co-
efficients in 7,(S™) and d"* has coefficients in 7,41(S™). In order that the cup
products should be defined, products of elements of 7,(S™) with values in r,.1(S™)
must be defined. This is done so that the square of a generator of the former
group is a generator of the latter.

The homotopy classification theorem is obtained as a corollary of an extension
theorem. In its non-relative form, it states that a map f of the n-section K
of an (n + 2)-complex K in S™ can be extended to a map of K in 8" if and only
if f*s" is a cocycle in K and its square of order n — 2is ~ 0. Attention should
be called to the crucial role played in the proof by the complex projective plane
M*. The theorem is first verified in the special case n = 2 and K = M*. The
general case is deduced from the special by a series of constructions.

The relative form of the extension theorem (see 24.1) requires a new type of
invariant operation. If f, g are two maps of K in K’ which coincide on a sub-
complex L of K, then there are induced homomorphisms (f — g)* of the absolute
cohomology groups of K’ into the relative cohomology groups of K mod L which
are a measure of the extent in which f and ¢ differ on K — L. As is natural,
these are dual to homomorphisms of the relative homology groups of K mod L
into the absolute homology groups of K*.

Part I. PropUCTS
2. Definitions

The symbol K will denote a finite simplicial complex, and G a commutative
group, written additively. The group of p-dimensional cochains with co-

t The -, product reduced mod 2 coincides with a product used by Pontrjagin in a brief
note [15].

3 This result contradicts results announced by Pontrjagin {12} in 1938. To the author’s
knowledge, no proofs of these results have yet appeared. It also contradicts results an-
nounced by Freudenthal [6] in 1939. An error in these results has been pointed out by
G. Whitehead [16].
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efficients in G is denoted by C*(K, G) (the symbol G is omitted if G is the group
of integers). Let

8: C°(K,® — C*™(K, 0

be the coboundary operator for cochains. Let B*(K, G), Z*(K, @) be the sub-
groups of C*(K, G) of coboundaries and cocycles; and let

H*K, @) = Z’(K, G)/B*(K, @)

denote the p* cohomology group of K. If w is a p-cocycle {u} ¢ H?(K, el
denotes its cohomology class. And {u} = {v} is abbreviated « ~ v; this means,
of course, that 4 — v is a coboundary. The relative cohomology groups of K
modulo a subcomplex L are denoted by H*(K, L, @).

An order in K is a partial order of is vertices such that the vertices of any
simplex are simply ordered. A fixed order « in K will be assumed until further
notice. A symbol such as g, 7 or { will denote, ambiguously, either (1) a simplex
of K, or (2) the array of vertices of the simplex ordered as in «, or (3) the
orientation of the simplex determined by this order, or (4) the elementary co-
chain which attaches +1 to this oriented simplex and 0 to all others. The
amblgulty can usually be resolved by examining the context in which the symbol
is used.

Let o, 7 have dimensions p, ¢, and let © = 0 be an integer. The ordered pair
(o, 7) is i-regular in the order « if the following conditions are satisfied.

(—1). The vertices of o, 7 together span a (p 4+ g — 7)-simplex {. In this
case, o, 7 have 7 + 1 vertices in common, denoted by V°, V', ..., V* in the
order o.

(0). V’is the first vertex of 7.

(1). V°, V' are adjacent vertices in o.

2). V', V* are adjacent vertices in 7.

(j + 1) V’ V”'l are ad;acent vertlces ine (1') 1f jis even (odd)

(1, + 1) V' is the last »erte\( of ' (‘r) 1f 1is even (odd)

Note that O-regularity requires the last vertex of ¢ to be the first vertex of .

If (o, 7) is ¢-regular, let oo be the face of ¢ spanned by its vertices < V?, let
025 (0 < 27 < 1) be the face of o spanned by its vertices = V*~ 1 and £ V¥,
and, if 7 is odd, let ¢;;1 be the face of o spanned by its vertices = V*. Similarly,
let 72541 (1 < 2§ + 1 < 7 4 1) be the face of 7 spanned by its vertices = V¥
and < V¥*, and, if  is even, let .41 be the face of  spanned by its vertices
= V*. By the i-regularity condition, ¢, 7 can be written as joins of subsimplexes:

0 = 00°0g° *** *O%ky, T = TL"Tg""""" Tok4(—1)§

where 2k = ¢ if {is even, and 2k = ¢ + 1if7is odd. Let rs;.1 be the face of
72541 Obtained by deleting the vertices V*/ and V**!, and, if ¢ is even, let 7iy;
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be the face of 7.1 obtained by deleting V*. Then the simplex ¢ spanned by the
vertices of ¢ and 7 is the join

’ .
— . 4 . . 4 . DY . T‘.+1 z Odd,
{=ono-mn {o.-+1 7 even.
Define ¢ —; r = 0 in the group of (p + ¢ — %)-cochains if (s, 7) is not ¢-reg-
ular, and define ¢ _; r = ¢ if (o, 7) is ¢-regular. Thesignis + if ¢ =0. In
general, it is the sign of the permutation required to bring the ordered array of
vertices

’ !’ !’
0o, O2, **°y O2k, Ti1, T8, °°°', T2k+(-1)%
into the order a:
! !’ !’
0o, Tr, 02, T3, "°°, Oj, Tjt1, °°°

It is to be noted that ¢ o 7 coincides with the Alexander-Cech-Whitney
{1, 3, 18] product o « .

Let @, G’ be abelian groups paired to a third abelian group G”. This means
that there is a bilinearproduct g-¢’ € G’ defined forgeG, g’ eG’. Letu” eC*(K, @,
v e CY(K,G"),and let 4 "= > gjol , v = > grof be their unique representa-
tions in terms of the distinct p and g-simplexes of K oriented by the order a.
Define

u® i V! = Z,‘,k (g,g;:)a'f (2N 0';:.

Since the right side is a linear form in oriented (p + ¢ — %)-simplexes,u” ;
»* e CPTHK, GT).

It is easily verified that the product - ; is bilinear, so that C*(K, @), C*(K, @)
are paired to C*" (K, G"").

TreEoREM 2.1. %" «; v" =014f<¢ > porg.

This follows from the fact that the common face of o7 , of has dimension <
Min (p, ¢). Then (o7, of) is not i-regular.

Remark. In the functional notation for cochains, a p-cochain is a function
u?(A°, .-, A®) with values in G and is defined on each ordered set of p + 1
vertices whose union spans a simplex. It is alternating in the order of the
vertices and is zero if the vertices do not span a p-simplex. In this notation,
if A°, ..., A’ span a (p + ¢)-simplex and A’ < .. < AP* then

w0 v'(4°, ---, APT) = WP A°, -, AD) (AR, -, APTY),
Under similar conditions,

w1 0?(A° -, ATTTY)

= S a4 A AT, e AP,

jm0
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In general, if ¢ is a (p + ¢ — 7)-simplex, any 7-face of { determines a splitting
into a product: ¢ —; v = ¢ Thenu” —; v'(}) = E +4"(0) -v%(7), the sum
is taken over those 7-faces of ¢ such that dim ¢ = p,dim r = ¢q. These formulas
are awkward to handle for the following reason: Both sides of each equation are
defined for any set of vertices on a simplex in any order; however they are equal
only if the order is a.

3. Simplicial maps

Let K, K’ be simplicial complexes, and f: K’-— K be a simplicial map. For
any coefficient group G, f induces a homomorphism

f*: C*(K, @) — C*(K', )

defined as follows. If u* ¢ C*(K, @), and ¢’ = A’ --- A” is a p-simplex of K"
then

P4 - A7) = WP(f4D) - f(47).

Explicitly, if f(¢”) is degenerate, f*u” has the value 0 on ¢’, otherwise f*u’(¢’) =
w*(f(¢')). Let s, s bethe coboundary operators in K and K’. As is well known,
8'f* = f*5 so that f* maps cocycles into cocycles, coboundaries into coboundaries
and thereby induces a homomorphism

f* H'(K, G) —» H*(K', @).

In case K’ is a subcomplex of K and f is the identity map f(z) = x for z ¢ K'»
then the cochain mapping f* has a very simple form. If u? = ) g;of , f*u’ is
obtained by replacing g; by zero for each ¢f not in K’.

If , o are orders in K, K’, then f is said to be order preserving if A’ < B’
in o implies f(4’) < f(B’) in a. If f and a are given, there exist orders o’
such that f is order preserving. For each vertex A of K, introduce a simple
order among the vertices of f'(4) and then order these blocks of vertices as
their images are ordered in K.

TreoreM 3.1. If f: K' — K is an order preserving stmplictal map, then
fflu <iv) = fFfu o f.

This is proved most readily using the functional notation for cochains. Sup-
pose ¢’ is a (p + g — 7)-simplex of K’, and ¢’ = ¢’ ;7' in the order o/ where
dim ¢’ = p, dim v/ = q. If f({’) is degenerate, then either f(¢’) or f(+) is de-
generate or they have more than an i-face in common. In this case both sides
have the value 0 on ¢’. If f(¢’) is non-degenerate, then

FFu i) = u civ(f§)).
Since f | ¢’ is a 1-1 and order.preserving map of {’ on ('), it follows that f(¢") =
+f(¢’) «;f(+') and any splitting f({") = ¢ < 7 can be obtained in this manner.
Therefore
u < o(f§)) = 2 =+ u(fe") + v(F(")
= 22 & fru(e’) - () = (fru wif*)(@).
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4. Join formulas

If ¢ is an ordered p-simplex and A is a vertex, then ¢4 is defined as follows.
It is the 0 ¢ C**'(K) if A is a vertex of ¢ or if the vertices of ¢ together with
A do not span a simplex of K. Otherwise it is the ordered (p + 1)-simplex
consisting of the ordered vertices of o followed by A. If u> = D g;0?, define
uPA = 2 gi(c?A) e C"(K, ). It lies in the star of A.

TaeoxREM. If the vertex A fellows all vertices of ¢ and 1% in the order o, then

» ragy _ J@® oA 7 even,

(4.1) 0" —i(r'4) = {0 i odd,

) . _Jo 1 even,

4.2) (*4) wi7® = {(_1)q+l(al’ wi A 7 odd,
(4.3) (6PA) < (74) = (=D (" L A,

ReEMARK. These formulas may be taken as the basis of an inductive definition
of _;, the induction is one on the number of vertices involved. If A4 is the last
vertex of o, and B the last of 7 in the order «, apply (4.1) if A < B, (4.2) if
A > B,and (4.3) if A = B. To start the induction, ¢ ;  must be defined
directly if either ¢ or r is a single vertex or if 2 = 0. From the strictly logical
point of view, it would be better to take these formulas as definitions since
all subsequent work could be based on them.

Proor 4.1. 1If 7 is odd, since A is not in ¢, the last vertex common to ¢ and
74 is not A. Thus condition (¢ + 1) for regularity of (¢, rA) fails. Let ¢
be even. If the vertices of o, 7, A together do not span a (p + ¢ — ¢ + 1)-
simplex, both sides vanish. Suppose they do. Then 74 5 0 and condition (—1)
for s-regularity holds for both (e, 7) and (s, 74). If (s, 74) is not i-regular,
whichever regularity condition fails for (s, 74) will also fail for (s, 7). Again,
both sides vanish. Suppose (s, 74) is ¢-regular. Then (o, 7) is s-regular,
because the common z-face is the same in the two cases, and the presence or
absence of A does not disturb the order relations. The number of permuta-
tions in calculating ¢ « ; (7A4) is the same as the number in calculating (¢ w; 7)4
because the last block 73:414 of vertices in 74 is the last block in ¢4 since
7 is even.

Proor 4.2. It is similar to that of 4.1, except in the calculation of the sign
of the permutation. In this case the last vertex A of ¢4 must be permuted with
™, 75, -+, 7. making a total of ¢ + 1 —{(z + 1) more interchanges for the
right side than the left. Since7isodd,¢+ 1 — (# 4+ 1) = ¢ + 1 mod 2.

Proor 4.3. If the vertices of ¢, 7, A do not together span a (p + ¢ + 2 — 1)-
simplex both sides vanish. If they do, condition (—1) for regularity of (s, 7)
and (¢4, 74) is satisfied. In addition V' = A so that condition (z + 1) for
the i-regularity of (¢4, 7A4) is satisfied whether 7 is even or odd. Condition ()
for i-regularity becomes: V' "'4 must be adjacent in ¢4 (r4) if ¢ is odd (even).
This is equivalent to: V' ' is the last vertex of ¢ () if # — 1is even (odd). This
is precisely condition (z) for the (z — 1)-regularity of (o, 7). Thus the two
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conditions hold or fail to hold together. Similarly conditions (j) (j = 0,
1, -+, ¢ — 1) for the 7-regularity of (¢4, rA) and (z — 1)-regularity of (e, 7)
hold or fail to hold together. Suppose they all hold. In calculating the sign
of the permutation of the left side, the vertex A in ¢4 must be permuted with
the 7”’s which have ¢ + 1 — 7 verticesin all. This accounts for the sign in (4.3).

6. The coboundary formula

THEOREM 5.1. If u, v are cohains of dimensions p, q, then d(u <; v) =
(=D i v+ (DY w4 duciv + (—D)Pu o .

If f: K’ — K is an order preserving map, and u, » satisfy (5.1) in K, it follows
immediately that f*u, f*v satisfy (5.1) in K’. It is only necessary to apply the
facts that f* and § commute, f* is linear, and f* preserves products (3.1). In
particular, let K’ be a subcomplex of K, and let f be the identity map, then any
cochain %’ of K’ is f*u for some cochain % in K. (Define u(s) to be u'(o) if
o is in K/, otherwise u(s) = 0). It follows from this that, if (5.1) holds in K,
it holds in any subcomplex of K.

Any complex can be realized as a subcomplex of a simplex, namely, the
simplex spanned by all the vertices of the complex. It follows that it suffices
to prove (5.1) for a complex which consists of all the faces of simplex.

The proof will proceed by induction on the number of vertices of the simplex..
To start the induction, let the simplex consist of the vertex A alone. Then the
only non-zero product of simplexes is A <o A = A. Thus all terms of (5.1)
vanish except possibly in the two cases 7 = 0, 1. In the case 7 = 0, every term
vanishes since A —_; A = 0and 64 = 0. In the case ¢ = 1, all terms involving
& vanish, the remaining two terms become (—1)4 oA + (—1)°4 o A =0.

Suppose now that (5.1) holds in a simplex s’ = A° .-+ A™". Let A be a
vertex distinct from A°% ---, A" and let s = A°-.- A" A with the vertices
ordered as indicated. Let 8, &' be the coboundary operators in s, s’. Then,
by the definition of coboundary, for any p-simplex ¢ in s':

(5.2) bc = & + (—1)*eA.

Since all terms of (5.1) are bilinear in % and v, it suffices to prove the formula
in the case u = an oriented p-simplex ¢ and ¥ = an oriented ¢-simplex 7. Four
cases arise.

CASE 1: ¢ and 7 are in 8’. Apply (5.2) to ¢ —; 7, and then the assumption
that (5.1) holds in ¢&'.

5(0’ ~i ‘r) = 5’(0’ ~i 1’) + (—1)p+q—‘+l(o’ i T)A = (_1)p+q—|'°_ -1 T
+ (=1 ot docitH (—D)Pe bt (—1)PTT e L)AL

The fact that — in s’ equals _ in s is used here (this is a special case of (3.1)
with f: 8’ — s the identity map). Thus the first two terms of (5.3) are as desired.
Apply (5.2) to the first factor of éc —; = and to the second of o ;ér, add and
obtain

(5.3)

b0 wiT+ ()% widr =80 s+ (—D% ;87

(5.4) +(_1)p+10_A oi T + (_1)p+q+la, w; TA.



PRODUCTS OF COCYCLES AND EXTENSIONS OF MAPPINGS 297

If 7 is even, by (4.1) and (4.2), the third term on the right of (5.4) is zero and
the fourth term equals the last term of (5.3). If ¢ is odd, by (4.1) and (4.2),
the fourth term on the right of (5.4) is zero and the third term equals the last
term of (5.3). Thus, in either case, the last three terms of (5.3) coincide with
the left side of (5.4).

CasE 2: onotin s',rins’. Supposefirsteo=A. ThenA o ;r=A ;1=
7 wiz1A = 0 since A, 7 have no common vertex. Also A _;ér=A4 ;87 +
(—1)*"'4 ;74 by (5.2). Each term is zero since regularity condition (—1)
or (0) fails to hold. Finally 84 —; r = 0; for (4’A, 7) is not i-regular since
condition (—1) fails if 7 > 0, and condition (1) fails if ¢ = 0. Thus fall terms
of (5.1) vanish. Suppose then that ¢ = ¢’A where ¢’ is in s’. There are two
subcases.

CasE 2': 7 7s even. By definition of §,

(5.5) 3(c’A) = (d'aA.

Now calculate each term of (5.1):

o wit) =8(’A i1 =680) =0 by (4.2),

ceit =dAciar= (-1 ciund by (4.2),

Tewi1d =7wi1dd =0 by (4.1),

dowit =0(A) wiTt=(@d)A iT7=0 by (5.5), (4.2),

owidr =dA (@ + (1) 74) by (5.2)
=04 (¢' wiand by (4.2), (4.3)°

Thus there are just two non-zero terms in (5.1) and these cancel.
Case 2": ¢ 4s odd. Calculate each term of (5.1). For the first term apply
(5.5) with ¢’ _; 7 in place of ¢/, and then apply (5.1) in s’.

5o win) = 8’4 win) = (=D(o" wi NA] = (—D™(’ ws DA
= (=)= DPY Ly (—DPTT
+ ¥ i+ (1) Cid'r]A
= (D" wia DA + (=DPPR( Loy o)A+ (—1)7H
'’ —inA+ (=1 o, 1A,

cuoint =dAd iar=0 by (4.2),
Twi1d =7TwindA = (rcind)Ad by (4.1),
dowit = (@NA it = (=DM ;i nA by (4.2),
coidr =dA i@+ (=1)74) by (5.2),

= (—I)Q+2(0', (] 5,T)A - (q” -1 T)A by (42), (43).
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Substitute in (5.1) the computed value of each term. The two sides of the
equation are then identical in form.

CasE3:cin ¢, rnotins’. Supposefirstr = A. Thenowid =occind=
A iy o = 0Osince o, A have no common vertex. Alsodoc wi4 = dc oA+
(—1)*"(c4) <; 4, and the first term is zero for the same reason. The
second is slso zero if ¢ > 0. Otherwise dc —o A = (—1)**'¢A. Since ¢ and
A’A have at most A’ in common, ¢ «; 84 = 0if 2 > 0. If z = 0, the only
non-zero term of ¢ o 84 is ¢ wo A’A = gA where A’ is the last vertex of o.
Thus if ¢ > 0, all terms of (5.1) vanish; if ¢ = 0, there are just two non-zero
terms and they cancel. Suppose then 7 = 7’4 where 7’ isin ¢'.

CasE 3': 7 is odd. Computing each term of (5.1) and substituting shows
that both sides of (5.1) vanish:

8(c wir) =8(c ;s 7A) =80) =0 by (4.1),
cwinT =dwiaTd =(ciatd by (4.1),
Twiae =174 Cino=0 by 4.2),
scwit = (0'c + (—1)?eA) ;A by (5.2),
=0+ (=D win A by (4.1), (4.3),
bt =a o ()4 =0 by (5.5), (4.1)

Casre 37 i 15 even. Applying (4.1), (5.5}, and (5.1) in s’ gives
8o wir) = 80 wiTA) =8(c i Al = [0'(c «: T)]A
= (=D o wia A + (=D Ciq )4
+ @0 wi A + (=1)%(c < ')A,

CuwiaT =0cwiaTd =0 by (4.1),
Toino =7A cige= (=17 Cia0)Ad by (4.2),
dowitr = (00 + (—1)?Med) i 7A by (5.2),
=@0c oA+ (=D e ia A by (4.1), (4.3),
goidr =a o ()A = (60 i T)A by (5.5), (4.1).

Substitute the computed values in (5.1) and the two sides become identical
in form.

CASE 4: neither o nor rin s’. There are four subcases.

Case4.1: ¢ = 7 = A. All terms of (5.1) vanish unless¢ = Oor 1. If7 = 0,
then 5(/1 voA) = 5A, A w1 A = 0, 8A w0 A = 5/1, an A 0 §A = 0. If
i = 1, all terms vanish except the first two on the right which reduce to —A4 +A.

CasE4.2: ¢ = A, r = 7A. All terms of (5.1) vanish unless 7 = 1. In this
case, all terms vanishexcept r oo = 74 o4 = A and o w17 = (—1)*A.

Casg 43: ¢ = ¢’A, r = A. All terms of (5.1) vanish unless ¢ = 0 or 1.
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In either case, 7 w10 = 0. If i =0, the only non-zero terms are 6(c <o 7) =
8(c’" Ao A) =8(c) and 0 o7 = 8(c’A) w0 A = (')A o A = (§'0")A = éo.
If £ = 1, the only non-zero termsare ¢ o7 = 0¢’A o4 = d’Aand o w1 67 =0.

Casg 44: ¢ = oA, r = 7/A. Apply (4.3), (5.5), and (5.1) in &’ to obtain:

Mo wir) = 8(’A wi TA) = (—=1)5[(¢' wia ) Al = (— D[ (e" wia ™A
= (=DH(=D?PTH( Ly A + (=D)P( i )4
F (0 i ™A+ (—1)P N wi 8'7)A],

cuinr = (=1 win )4 by (4.3),
reine = (=D Ciad)A by (4.3),
dowit = (FNA i A = (—1D (0 wia A by (5.5), (4.3),
ooidr =dA i (A = (1) Cia 84 by (5.5), (4.3),

Substitute the computed values in (5.1) and the two sides become identical
in form. This completes the proof of (5.1).

6. The squaring operations

If u, v are cocycles (bu = & = 0), then the last two terms of the formula
for 8(u < v) vanish. However the first two terms are not necessarily zero
unless ¢ = 0. Thus, products of cocycles need not be cocycles except in the
case ¢ = 0. Since the fact that u v is a cocycle hasbeen thoroughly exploited,
the main interest lies in what can be accomplished in the general case.

Suppose now and henceforth that G is paired with itself to @’. If u, v € Z®
(K, @), and w ¢ C* (K, @), direct substitution in the coboundary formula
(5.1) gives

(6.1) du winn) = (=D u v+ (D% i,
(6.2) Su wiu) = (=D + (=Dl wia u,
(6.3) dw —iqw+ woidw) = ow widw — [(—1)° 4+ (—1D)?J(w iz w
+ w o dw).
TaEOREM. Ifp — i4sodd,and u,v e ZP(K, @), then

(6.4) Ui +voeiu~O0
(6.5) (u ;s w) =0

(6.6) 2u w;u ~0

(6.7) ‘ u ~ 0 tmplies u w; u ~ 0
(6.8 u ~vimpliesu iU ~v iV

(6.9) (w+v)ciutv) ~uciu+v oo
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Proor. (6.4) follows from (6.1), (6.5) from (6.2), (6.6) from (6.4) with u = v,
(6.7) from (6.3) with » = éw, (6.9) from the bilinearity of «; and (6.4). To
prove (6.8), apply (6.7) to u — v:

w—v)oiu—v)=uciu—voiv+20;v—(woiv+vosu ~0.

The third and fourth terms are ~ 0 by (6.6) and (6.4). Therefore v «; u —
V o v 0.
An immediate consequence of (6.5), (6.8), (6.9), and (6.6) is
TrEOREM 6.10. If p — < i3 odd, the operation u — u ; u maps cocycles into
cocycles, cohomologous cocycles into such, and thereby induces a homomorphic
mapping
Sq: : H*(K, @) —» H** (K, @)

called the i** square. Each tmage under Sq; has order 2.

If p — 7is even, the situation is more complex. Let 2G” denote the subgroup
of elements of G’ divisible by 2 and let £: &’ — G'/2G’ be the natural homomorph-
ism. Then ¢ induces a homomorphism £*: C*(K, @) — C*(K, G'/2G") defined
by (2 gio?d) = D E(gHe?. Tt follows readily that £*6 = &t* and, for a
simplicial map f, f** = £**. The operation £* is called reduction modulo 2.
The relation ¥ ~ v mod 2 means £*u ~ £*.

THEOREM 6.11. If p — < is even, and u, v ¢ Z*(K, @), then the conclusions of
the statements (6.4) to (6.9) all hold mod 2.

The proofs parallel those already given in the case p — ¢ is odd. Analogous
to (6.10):

THEOREM 6.12. If p — 1 1s even, the operation u — £*(u —; w) maps cocycles
into cocycles, cohomologous coycles into such and thereby induces a homomorphism

Sq:: H?(K, @) — H** (K, @' /2G")

called the i*® square mod 2.

TreorEM 6.13. If f: K — K is an order preserving stimplicial map, then, for
each , f*Sq; = Sq.f*.

Proor. If u is a p-cocycle, and p — 7 is odd, then, by (3.1) and the prop-
erties of f*:

MPSaful =Hu wiul = {Mu ciw)} = {Ffu o ffu) = Saif*u} = Sqif*{u}.

If p — 7is even, the proof differs only in the use of f*¢* = g*f*,

ReEmARK. In case p is even and 7 = 0, it is not necessary to reduce mod 2
in order that S should be defined. Without such reduction the operation
need not be homomorphic. In the Pontrjagin extension theorem (see (21.1)),
f*s* o f*s’ is not reduced mod 2. In the generalized form of the theorem
f*s" a2 f*s" need not be reduced mod 2 since, as will appear, its coefficients
are in m,+1(S") which is cyclic of order 2 forn > 2.
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7. The product complex K X I

Until now the products have all been based on a fixed order a in K. The
present objective is to show that Sq; is independent of the choice of a. This
will be prove by exhibiting a cochain homotopy connecting products based on
different orders. This leads to the consideration of the product space K X I
where I = unit interval [0, 1]. This space has a simple cellular division into
product cells. Since it is necessary to form cup products in K X I, and no
rules are at hand for computing these in a cell space, a simplicial division must
be introduced. The required simplicial complex is easily defined. Since it
is both awkward and unnecessary to prove it homeomorphic to X X I, this
point is skipped.

Let (Ao), (A4;) be two disjoint sets of vertices each in 1-1 correspondence
with the vertices (4) of K. Let fo(4) = Ao, fi(A) = A, be the correspondences.
The union of (4o) and (4,) form the set of vertices of K X I. Let a be an
order in K. A set of vertices Ay --- A% A% ... AP are those of a p-simplex
in K X Iif, in the order @, A® < A' < -+ < A* £ A**' < ... < A% and
these are the vertices of a p or (p — 1)-simplex of K.

The maps fo , fi define unique simplicial maps of K in K X I, these are also
denoted by fo, fi. The map g: K X I — K, defined by g(4o) = g(4,) = 4
for each A, is a simplicial map, and

(7.1) gfo = gfi = the identity map of K.
IfueC?(K X I,®),p > 0define Du e C* (K, @ by

—1
(7.2) Du(A® -« A7) = ﬁ: (=D u(d] -+ AGAY -+« A7)
ku=0

where A° -+ A*Visa (p — 1)-simplex of K in the order @. The deformation
operator D is a homomorphism

D:C’K X I, — C*" (K, @, p > 0.
Since fo, fi: K — K X I, they induce homomorphisms
fo, :C7"K X I, ® — C*K, G).
These three operations are related by
(7.3) Du = fiu — fou — Déu, ueC*(K XI,@,p >0,
(7.4) 0 = fiu — fou — Déu. ueCK X I,6).

In proof of (7.4), Déu(A) = su(Aed)) = u(dy) — u(4de) = fiu(4) — fo u(4).
To prove (7.3), evaluate Déu and 8Du on the p-simplex A° --- A?:
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y A
Dou(A® --- A%) = 37 (—1)*su(A) --- AkA% ... AP)
0

L=
k . ~s
= > (- [Z (—1)'u(ds --- AF -+ AGAL --- A7)
=0 =0

2 . -
— Z (—1)Yu(dg --- Ak4¥ ... 4i ... Ali’):l’

1=k

P R s
3Du(A’ -« A%) = X (—1YDu(d® --- A7 ... 47)
=0
? izt "
= z(:) (—1) l:kz; (=1 u(Ag --- AkA% ... 4] ... AP)
1= o

SR GV R L A{’)].
7

The symbol A means that A has been deleted from the array. KEach term of
8Du is identical with a term of —Déu. The excess terms of the latter cancel
in pairs save for two terms

w(AY - AF) — w(AQ -+ AP) = ffu(A® -+ AP) — ffu(4®--- A).

Since, for any u ¢ C*(K, (), g*u is zero on simplexes of the form appearing
on the right of (7.2), it follows that
(7.5) Dg* = 0.

8. Change of order in K

Let a, a1 be two orders in K. Define K X I, fo, fi, g using the order ap

as in §7. Let
g*: C*(K, ) - C*(K X I, @)
be the cochain mapping induced by g. The orders ay, oy define two products

0 1.
iy, w1 K.

An order (ap, ay) is defined in K X I as follows. Order (4,) as their cor-
respondents (A) are ordered by ao, order (4;) as their correspondents (A) are
ordered by a;, and agree that, on any simplex of K X I, a vertex of K X 0
precedes one of K X 1. Then (a ,a;) defines a product —; in K X I. Since
Jo(f1) preserves ag (o), it follows from (3.1) that fo' (ff) maps —;into % (_3).

Corresponding to the orders ao , a; define a new product in K by
(8.1) u Viv = D(g*u <, g*), ueC?(K,@),ve CUK,Q.

This product lies in C*?** (K, (). Since D, g* are linear and _ is bilinear,
it follows that Vv is bilinear. To obtain its coboundary formula, apply & to
(8.1), use (7.3), (7.1), (5.1} and then (8.1) with ¢ replaced by ¢ — 1. This yields

(8.2) duvin)=uciv—uio— (=D u v,

+ (=D Yy v w4+ su v + (—1)%u v, &).
Take now the case where u = v is a cocycle, then
(8.3) duviu =uciu—ulu—[(—1)° + (=D u Viy u.
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This proves

TueoreM 8.4. Ifue Z?(K, G) and p — ¢ is odd, the cohomology class of u < u
is independent of the order defining —. If p — i is even, the cohomology class
mod 2 of u < u is independent of the order. Thus Sq; ts independent of the order
used to define it.

Taeorem 8.5. If f: K' — K is stimplicial, then f*3q; = Sq.f*.

Since, for any order « in K, there exists an order in K’ such that f is order
preserving (§3), (8.5) follows from (8.4) and (6.13).

TeEOREM 8.6. If the orders oy , a coincide, then u Vi v = 0.

In this case, g is order preserving, so that g*u _§ g*» = g*(w <:v) by (3.1).
Now apply (7.5) to (8.1)

9. The relative case

Let L be a closed subcomplex of K. The p-cochains of K which are zero on
simplexes of L form a subgroup C?(K, L, @) of C*(K, &. Since L is closed, the
coboundary of such a cochain is also zero on L:

5:C*K, L, @ — C*™ (K, L, @.

Therefore Z?(K, L, @), B*(K, L, @) and H?(K, L, G) = Z”/B” can be defined
in the usual way. If f: X’ — K is simplicial and such that f(L’) C L where L’
is a closed subcomplex of K’, then the induced cochain mapping f* maps
C*(K,L,G) — C?(K', L', @). 1t follows that f induces a homomorphism

(9.1) f*: H*(K, L, @) — H*(K', L', @).

If o, 7 are simplexes in K — L, then ¢ «; 7 is either zero or a simplex of K — L.
Thus, if the cochains u, v are zero on L, so also is w «;». This is likewise true
of u V;v. It follows now that the operations Sq; can be defined for the groups
H?(K, L, @) and they are independent of the order used to define them. Just
as before, Sq; will commute with the f* of (9.1).

If w e C?(L, @), it may be regarded as an element of C*(K, @) by defining it
to be zero on simplexes of K — L. This is an isomorphic imbedding of C*(L, @)
into C?(K, G). Then w has two coboundaries 6w and ézw; and éxw = d:w + v
wherev e C**(K,L,@). Incasew e Z?(L, @), s,w = 0so that

9.2) ox: Z2°(L, G) — Z"*(K, L, @)

homomorphically. Since 0 = 80w = 8x6,w + 8xv, it follows that 6x maps
B?(L, @) into B"™(K, L, Q). Therefore (9.2) preserves cohomology classes
and thereby induces a homomorphism

(9.3) &*: H*(L, @) — H*(K, L, G).
Since, for a simplicial f, 6xf* = f*6x it follows that
(9.4) fre* = §*(f|LH*

where f* is (9.1) and §'* is the analogue of (9.3) in K', L'.
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Suppose now that L has the property that it contains any simplex of K
whose vertices arein L. If ¢, r are simplexes in L, it follows from this hypothesis
on L that the products ¢ —; 7 calculated in K coincide with the corresponding
products calculated in L (using, of course, the same order as in K).

Order the vertices of K so that each vertex of K — L precedes each vertex
of L. If ¢isin L and risin K — L, then (o; 7) is not 4-regular since the first
vertex of 7isnot in . Thus if w ¢ C°(L, @) and v € C*(K, L, @) it follows that
w wiv = 0. In particular, if w ¢ Z°(L, @), then w —;6zw = 0. Apply this ta
(6.3) to obtain '

(9.5) 5x(w i1 'LU) = dxw wi0gWw — [(—1)' + (—l)p]w w2 W.

This proves
TaEOREM 9.6. Sq* = 6*Sqi, ¢ = 1.

10. Products in a space

Let X be a topological space and 4 a closed subset of X. Let H*(X, A, @)
denote the Cech cohomology group of X mod A with coefficients in G (see [11]).
An element {u} ¢ H?(X, A, G) is represented by u ¢ H?(K, L, G) where K is
the nerve of some finite covering of X by closed sets and L consists of the sim-
plexes of K that meet A. If u' e H?(K’, L', @) for a second covering complex K,

and {u} = {u'}; then there exists a common refinement of the two coverings
with nerve K’ such that
(10.1) g*u = g'*u’ in H*(K", L", @)

where g: (K", L") — (K, L) and ¢’: (K", L'") — (K', L") are simplicial projec"
tions determined by inclusion relations among the closed sets of the various
coverings. From (10.1) and (8.5) it follows that {Sqmu} = {Sqm’}. Therefore

(10.2) Sqi{u} = {Squ}

defines a homomorphic map Sq¢:H?(X, 4, G) — H™ %X, A, @) or
H™ (X, A, G'/2@") according as p — 7 is odd or even.
If f: X’ — X is continuous and f(A’) C f(A), then f induces a homomorphism

(10.3) * HX, A, @ — H(X', A, .

It is determined as follows. Let u ¢ H*(K, L, G), represent {u} ¢ H?(X, A, @),
where K is the nerve of the covering [U]. Then [f(U)] is a covering of X’
with nerve K’. Let fx: K’ — K be the simplicial map which attaches the vertex
F(U) of K’ to the vertex U of K. Then (10.3) is obtained by

(10.4) Fu} = {fru}.
by (10.4), (10.2) and (8.5),
(10.5) f*Sa; = Sqif*.

The homomorphism
&*: H*(4, @) — H*™(X, A,
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is defined by 6*{w} = {6*w} where w ¢ H?(L, G). If X is a normal space, the
relation

(10.6) 0*3qi-1 = Sq.*

holds. This follows from (9.6) and the proposition: Any covering complex
(K, L) of (X, A) has a refinement (K’, L") such that L’ contains each simplex
of K’ whose vertices are in L’. To prove this, let the vertices of K be the closed
sets Uy, -++, Un. Form the union B of all the intersections U;, --- U;, which
do not meet A. Then B is closed and does not meet A. By normahty,' there
emsts an open set W such that A < W and WB = 0. Let U; = UW, and

: = UilX — W). The closed sets [U,, U?] cover X and none of the sets
U meet A. Suppose U.1 , o, Ugmeet Aand V/ = Uj, --- Ui 0. It
follows that V = U,, - U;x ;é 0 and is not in B. Therefore V meets A.
But V' = VW, so V' meets A. Thus the covering [U;, U] has the required
property.

Suppose now that X is the space of a complex K and A corresponds to the
subcomplex L of K. Then K is the nerve of the covering of X by the closed
stars of the vertices of K in the first barycentric sudivision K’ of K. If
ueH?(K, L, @), thenyu = {u} e H(X, A, @ is known to be an isomorphism
Vv:H?(K, L, @) = H*(X, A, @). It is the function ¢ which proves the topo-
logical invariance of H?(K, L, G). Since ySqu = {Squ} = Sq:{u} = Sqau,
by (10.2) it follows that ySq; = Sq#. Therefore the operation Sq; as defined in a
complex has a topologically invariant meaning.

11. The join operation

Let K be a simplicial complex, 4 a vertex not in K, and let K denote the join
of A and K. Since R is contractible in itself to 4, H*(K, G) = 0 for p > 0
and H'(R, @) = G. It follows now from the exactness of the cohomology se-
quence of (R, K) that

(11.1) *:H'K, @ = H'K, K, &, pz0.
Let B be a second vertex not in K and let K denote the join of K with the
pair of vertices 4, B. Let L denote the join of K with B so that L is a closed

subcomplex of K. The identity map h: (R, K) — (K L) is an ismorphism of
the open complexes K — K and K — L. Therefore h induces isomorphisms.

(11.2) h*: H*(R, L G = HK, K, @, p = 0.

Since L is contractible on itself to B, the two pairs (K, L) and (R, B) are
homotopically equivalent. Therefore, the identity map k: (K B) — (K, L)
induces isomorphisms:

(11.3) ¥ H'K, L, @) = H*K, B, @), p 20
Finally, since B is a point, the identity map I: K— (I% , B) inducesisomorphisms
(11.4) *:H'K, B, @ = H'K, @, p = 1.
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The isomorphisms (11.1, 2, 3, 4) combine to form an isomorphism

(11.5) o: 'K, @ = H™'K, @, p20
By (10.5), Sq; commutes with h*, k* and *. Then, by (10.6),
(11.6) $Sqia = Sqie.

It should be observed that p — ( — 1) = (p + 1) — 7 so that the odd and even
cases in the definition of Sq; agree for the two sides of (11.6).

In case p is even, Sqo{u’} = {¥’ <o %"} reduced mod 2. Therefore
d{u —ou®} = ¢Sqo{u’} mod 2. This and (11.6) give
(11.7) ¢{u’ wov’} = Sqipju’} mod 2, p is even.

12. The existence of non-trivial squares

Since there are examples of cocycles u such that 4 u is not a coboundary,
an inductive argument, using (11.5, 6, 7), shows that there exist examples of
non-zero squares for each order 7. However, by (2.1),

TrareoreMm 12.1. Sq:{u”} = 0if ¢ > p.

TaeoREM 12.2. Sqpaua{u?} = 0 «f and only if there existsa cocycle
ve ZP (K, L, @) such that u® < p—ox u* ~ v mod 2.

Suppose W = % wpok— ¥ mod 2. Letv = u wpm u — (—1)"2w. Then
by (6.2), & = 0. For the converse, suppose the cocycle » exists. Then there
is cochain w such that

W =1uUwpaut—0—20

for some cochain »’. Form & of both sides, apply (6.2) and obtain &’ = (—1)7
U v p—2k—1 U.

CorOLLARY 12.3. If Sqpax{u?} = 0, then Sqpara{u’} = 0.

LemMma 12.4. For any p-simplex ¢, 0 wp 0 = o.

A check of the definition shows that (s, o) is p-regular. Furthermore the
¢ spanned by the union of the vertices of ¢, ¢ is 0. The sign of the permutation
is + since all the 7’ terms are empty.

TaeoreEM 12.5. If u is a p-cochain with integer coefficients then u —,u = u
mod 2.

If o, 7 are distinct p-simplexes, then (s, 7) is not p-regular since the common
face has dimension < p. Thus, by (12.4), u < , u is obtained from u by squaring
the coefficient of each simplex. The coefficient of each simplex of u —, u —u
has the form n* — n = 0 mod 2.

TreoreMm 12.6.  If u is @ p-cocycle with integer coefficients, then Sqp{u} = {u}
mod 2, and Sqp-1{u} = 0.

The first proposition follows from (12.5), the second from the first in view
of (12.2).

CorROLLARY 12.7. If u' is a l-cocycle with inleger coefficients, then ut oo U
s a coboundary.
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CoroLLARY 12.8. In an orientable n-manifold, the self-intersection of any
(n — 1)-cycle with integer coefficients is homologous to zero.
This follows from (12.7) and standard duality theorems [18, §19].

Parr II. ArrricaTIONS OF ProDUCTS TO EXTENSION AND HOoMOTOPY PROBLEMS

13. Preliminaries

Let K, Y be topological spaces, L a closed subset of K, and f: L — Y be con-
tinuous. A continuous map f’: K — Y such that f/| L = f (i.e. f'(z) = f(z)
for z e L) is called an extension of f to K. The general problem is to determine
conditions on K, L, Y and f which are necessary or sufficient or both for the
existence of an f’.

As a special case, let L = Y and f = identity. If an extension f’ exists, L
is called a retract of K and the map f’ is called a retraction of K into L.

13.1. Suppose L is a retract of K and g is a retraction. Then, for any Y
and any map f: L — Y, the extension f'(z) = f(g(x)) exists.

If fo, fi are maps of K into Y, amap F: K X I — Y (I = unit interval 0 <
t = 1) is called a homotopy of fy into f; if F(z, 0) = fo(z) and F(z, 1) = fi(x).
The statement f, =2 f; means that the hometopy F exist. The statement
fo = fi rel. L means that an F exists such that F(z, {) = fo(x) for x ¢ L. For
a fixed ¢, the map f;: K — Y is defined by f,(z) = F(z, ).

The general problem is to determine conditions on K, Y, fy, fi which are
necessary or sufficient or both for the existence of an F. If L = K X 0 +
K X 1, then Fis already prescribed on K, and the problem is to extend to K X I.
Thus a homotopy problem gives rise to a special type of extension problem.

Henceforth K will be a finite cell complex and L will be a subcomplex of K.
This is a customary restriction; results obtained in the simpler case usually
extend to more general cases by a limiting process.

It is known [2, p. 501] that K X 0 4+ L X I is a retract of K X I. This
proposition has two useful consequences:

13.2. If f: K — Y, a homotopy of f| L can be extended to a homotcpy of f.

13.3. Let fo, fi: L — Y and let F be a homotopy of fy into f; . If f, admits
an extension fo to K, there exists an extension f; of f; to K, and an extension F”
of F to K X I such that F’ is a homotopy of fo into fi.

A consequence of (13.3) is that the existence or non-existence of an extension
f’ depends only on the homotopy classof f. As an application suppose fo: L — Y
is homotopic to a constant map (i.e. fi(L) = a point 4, ¢ Y. Since a constant
map can be extended f;(K) = yo, it follows that f; can be extended to K. In
particular if Y is contractible on itself to a point y, (e.g. ¥ = n-cell), the con-
traction gives a homotopy of f, to a constant map; so any map of L into Y can
be extended to K.

Since the n-spheres 8™ (n = 1, 2, ---) are perhaps the simplest spaces not
contractible on themselves to points, it will be supposed henceforth that ¥ = S”.
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14. The obstructions to an extension

The g-dimensional section K°® of K is composed of the cells of K of dimensions
<q¢. Itis a closed subcomplex of L. Let K = K* + L. Iet f: K — 8™
Let the homotopy group m,_1(S™) be defined as the homotopy classes of maps
of a fixed oriented (¢ — 1)-sphere S* into S". For each oriented g-cell o of
K choose a map g of 87 on the boundary s of & of degree +1, and let ¢(f, o)
be the element of 7, 1(S") determined by fg. It is independent of the choice
of g. The g-dimension obstruction c*(f) to the extension of f is the g-cochain
with coefficients in m,(S™) which has the value ¢(f, ¢) on each 5. If ¢ isin
L, f is defined on o, so fg is homotopic to a constant. Therefore ¢*(f) is zero
on L and represents a cochain of K — L.

The obstruction was first defined by Eilenberg [4]; he proved the following
of its properties:

1. &*(f) = o.

2. Iffo %fl y then Cq(fo) = Cq(f]).

3. If o | K = f, | K, then ¢*(fo) ~ ¢*(f1) in K — L.

4. If ¢* ~ ¢(%y) in K — L, there exists an f;: K" — 8" such that f, | K*> =
fo|K** and *(fy) = %

5. ¢*(f) = 0 if and only if f extends over K°

6. ¢*(f) ~0in K — L if and only if f | K* extends over K°.

There is an additional property which will be needed. Let f: K — K’ map
each cell of K into a cell of equal or lower dimension. Let L € K, L' C K’
be subcomplexes such that f(L) C L’. Leth: K’ — 8". Thenhf: K% — 8",
so that ¢"(h) and c*(hf) are defined. If f maps the g-cell ¢ on a cell of lower
dimension, both c(hf) and f*c?(h) are zero on ¢. Supposef maps o on the
g-cell ¢’ with degree m. Let g: 8“ ' — 80 and ¢’: S8 — 3¢’ have degree 1, and
let k: 8¥' - 8%! have degree m. Since fg: S — 3¢’ has degree m, fg = ¢’k
and hfg = hg'k. By definition of addition in x,_1(S"), hg'k represents m times
the element represented by hg’. Therefore c(hf, ) = mc(h, ¢’). This proves

7. *c'(h) = *(hf).

If f: K" — 8" can be extended to f/: K? — 8" (i.e. ¢*(f) = 0), then ¢**'(f")
is defined. According to (3) above, the cohomology class {¢"™'(f)} = 2**'(f)
in K — Lisindependent of the choice of the extension f’ of f. This class is called
the secondary obstruction to the extension of f. It is defined if and only if the
primary obstruction ¢*(f) = 0.

Suppose, in the situation to which property (7) applies, the map h has an
extension h’: K’*— 8", Then hf has the extension h'f; and, by (7), f**™'(r") =
¢ (h'f). This proves

8. f*22M(h) = 22M'(h).

16. The stepwise extension process

Let f: L — S™ and suppose an extension of f to K is soughv. By defining f
on the vertices of K — L arbitrarily, an extension fo: K® — 8™ is obtained. Since
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S” is arcwise connected (n > 0), f can be extended over the edges of K — L giving
an extension fi: K' — 8". If f,: K — 8" and (8™ = 0, then ¢**'(f,) = 0;
80 an extension f ,1: K¢ — 8" can be found,

Since 7:(8™) = 0 for 7. < n, it follows that an extension f,: K* — S of f can
be found. Thus the first possibly non-zero obstruction which can be met
is ¢t (f,). If this is zero, f,41 can be defined. If it is cohomologous to zero in
K — L, by (14.6), f. can be redefined on the n-cells of K — L so that ¢"*'(f,) = 0.
If fu41 exists, then the secondary obstruction z***(f,) = {¢"**(fa1)} depends
only on f,. The question to be settled in the following sections is the extent
of this dependence, i.e., when can f, be redefined on the n-cells of K — L so
that 2** is still defined and is zero?

16. Normal maps

Let S™ be represented as a cell complex composed of a single vertex E° and
a single oriented n-cell E® (whose point set boundary is E'). A map f: K — 8"
is said to be mormal if f(K™™) = E°’. As shown by Whitney [17], any map
foof K in 8" is homotopic to a normal map f; . Even more, if fo | L is already
normal, the homotopy can be chosen to leave L fixed. In particular, if F is
a homotopy connecting two normal maps fo,fi ,then F= F'rel. K X 04+ K X 1
where F’ is a normal map (relative to the division of K X I into product cells
o X I). Thus if two normal maps are homotopic, they can be connected by
a normal homotopy. Thus, for maps into S", the study of extension and
homotopy problems can be carried out within the domain of normal maps and
normal homotopies. Henceforth all maps and homotopies will be assumed
to be normal.

17. The characteristic cocycle f*s™.

Let E" be a closed oriented n-cell, and let 7,(S™ be represented as the set
of homotopy classes of normal maps of E" in S". Let f: K — S" be normal.
For each oriented n-cell ¢, choose a map g: E" — the closure of ¢ so as to map the
interior of E" on ¢ with degree +1. The element a(f, o) € 72(S™) determined
by fg is independent of the choice of g. The cochain a"(f) which attaches.
the coefficient a(f, o) to o is called the characteristic cocycle of the map f.

If g: K’ — K is a cell mapping, then fgis a normal map. It is easily verified
that a"(fg) = g*a"(f).

The identity map h: 8" — 8" is normal. It is clear that a(h, E") is a gen-
erator of 7,(S"). Therefore the cocycle

s" = a"™(h)
generates H"(S", m,(S™). It follows that
a’(f) = f*s"

for any normal f: K — S". Since s” is a cocycle, so also is f*s".
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18. The Hopf extension theorem

Let E™* be a closed (n + 1)-cell with boundary S so oriented that 0E™* =
E™ (8" is the cell complex E°, E" asin §16). Let h: S™— S" be the identity map.
The problem of extending % to a map of E™ in S™ leads to an obstruction
¢"*'(h) such that c(h, E™*) is the generator of 7,(S™) defined by the identity
map of S". Therefore

(18.1) as™ = ¢"(h).

If f: K® — 8", it can be extended to a map fi: K**' — E™*! because E"*
is contractible to a point. Then (14.7) and (18.1) yield

(18.2) 3fEs™ = c"M(f.).

This leads to the Hopf extension theorem [8] as modified by Whitney [17] and
Eilenberg [4].

THEOREM 18.3. The map f: L — S™ can be extended to K™+ if and only if the
cocycle f*s™ in L can be extended to a cocycle 2" in K. For each such z" there exists
an extension f' of f to K™** such that f'*s" = 2".

If fa41 exists, then fr,is™ is the desired extension of the cocycle f*s”. Sup-
pose 2" is an extension of f*s™ and 82" = 0. Define f, on L to be f and f,(z) =
E’for z e K" — L. For each n-cell ¢ of K — L, let f, map ¢ on E" with a
degree so chosen that a(f., ¢) = 2"(¢). Then frs" = z". Since 6z" = 0, it
follows from (18.2) that ¢**'(f,) = 0. Therefore, by (14.5), f.4. exists.

ReMarg. The condition that f*s™ can be extended to a cocycle of K means
that f*s" is the image A*2" of some n-cocycle of K under the cochain mapping
h*: C™(K) — C™(L) induced by the identity map h: L — K. Due to the exact-
ness of the homology sequence of (K, L) this is equivalent to the statement
&*f*{s"} = 0 where 6* is as defined in (9.3). This leads to a form of the Hopf
theorem suitable for generalization to a general space: If X is a topological
space, 4 a closed subset, dim (X — 4) < n + 1, and f: A — 8", then f extends
to X if and only if 6*f*{s"} = 0.

19. The complex projective plane

In the space of triples of complex numbers [z, 21, 2], not all zero, two such
triples are said to be equivalent if they are proportional i.e. [20, 21, 2] ~
[20, 21 , 23] if there exists a complex number % such that z; = kz, (z=0,1,2).
The set of equivalence classes forms a 4-dimensional manifold M* known as the
complex projective plane.

A representation of M* as a cell complex composed of three cells E°, E*, E*
is obtained as follows. The equation z; = 0 defines a complex projective line
S*in M*. Tt is a 2-sphere. The vertex E° is defined by 2y = 2z = 0, and E*is
the remainder of S>. That E* = M* — §%is a 4-cell is seen as follows. In the
space of two non-homogeneous complex variables (z, , 2;) define a 4-cell

B a4+ a1,
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end define a map y: ' — M* by
(19.1) V(z0,21) = [20, 21, (1 — |2 ‘2 - la P)‘]-

The 3-sphere boundary of E* is denoted by 8% |2 |* + |z | = 1. The fol-
lowing properties of ¢ are easily verified:

(1) ¢ is continuous,

(2) ¥ maps B* — §° homeomorphically onto M* — §%,

(3) ¢ | 8% 8 — §?is the Hopf map of the 3-sphere on the 2-sphere [7, 9].

With this cell structure on M* the homology and cohomology groups are
readily computed. There is no torsion. The 1 and 3-dimensional Betti num-
bers are zero The 0, 2 and 4-dimensional Betti numbers are each 1. The
2-cocycle s* on S* (§17) is a cocycle in M* and generates H 2(M*, m(SY).

Now E® <, E’ is not directly defined by any of the definitions of the cup
product. However, passing to cohomology classes (integer coefficients), {E"}
<o {E*} is defined and is a generator of H*(M*). This follows by duality from
the fact that any two distinct projective lines intersect in a point so that the
self-intersection of the 2-cycle §* in M* has the Kronecker index 1. Now
orient E* so that {E*} = {E*} —, {E’}, then define E* o E* = E'.

Orient E* so that ¥ has degree +1. Then orient 8 so that, algebraically,
oi* = 8. Since ¢ |8’ 1s the Hopf map, its homotopy class 8 is a generator
of m3(S%) [16]. Define s* to be the 4- cocyde which attaches to E* the coefficient
B. Let a € m(S?) be the coefficient that s’ assigns to E*. Since « generates
m2(S?), the formula

(19.2) aa =8

and the requirement of bilinearity defines a pairing of (S with itself with
products in m5(S*). It follows now that

(19.3) s o8 = s

Let h: 8* — 8 be the identity map. The problem of extending h to a map of
M* in §* leads to a 4-dimensional obstruction ¢ (h) with coefficients in 3(S%).
By construction c(h, E*) = 8. Therefore ¢'(h) = s' and by (19.3),
(19.4) Ah) = s <o s
Thus the Pontrjagin extension theorem [14] is verified in this special case.

20. The complexes M"

Starting with the complex projective plane M*, we define inductively a se-
quence of cell complexes. Define M° to be the join of M* with a pair of points
M°® the join of M® with a pair of points, etc. In general, M"** (n = 2) is a cell
complex composed of a O-cell E°, an n-cell E" forming with E® an n-sphere S,
and an (n + 2)-cell E**2.  M"*?is the join of M™* with a pair of points A, B;
its subset S™ is the join of A, B with 8"}, and E"** is the join of A, B with
E"'. Moreover

l 2
'pn: Eﬂ+2 _)M”+



312 N. B, SPEENROD

is a map of an (n + 2)-cell E*** in M"** which maps 8" = a&"** on S™ and
E™* — 3"*' homeomorphically on M"*** — 8". E™** is defined inductively
as the join of E"*! with a pair of points A’, B’, and ¢, is the Einhangung [Freu-
denthal, 5] of Y., (i.e. ¥o(4") = A4, 1[1,.(B’) = B, and, for each point y e E™,
¥» maps the line segment A’y (B’y) on the segment Aypn_1(y) (B¥aa(y))).

Freudenthal has shown that the Einhangung operation maps =:(S™™) iso-
morphically onto r;;1(8™) for ¢ < 2n — 3 and homomorphlcally onto when
t = 2n — 3. Since y | 8° represents the generator 8, e w5(S%), it follows that
¥s | 8* represents the sole non-zero element 8; e m(S%). And, inductively,
¥a | 8"*" represents the only non-zero element 8, e mn+1(S™).

Let a, be the generator of 7,(S™) determined by the identity map of S". De-
fine a pairing of 7,(S™) with itself with products in r,4(S™) by

(20.1) onan = B,.

Comparing with (19.2), products are defined so as to commute with the operation
of Einhangung.

If it is assumed, inductively, that {E" '}, {E"'} = {E"*"} in M™", it
follows by (11.7) that {E"} —,—, {E"} = {E"*"} in M"**. In agreement with
this, define

(20.2) E" .2 E" = E"*

The cocycle s" in 8" is a cocycle in M™** and attaches the coefficient «, to E™.

If h: 8* — 8" is the identity, the problem of extending & to a map of M"*?
on 8" leads to an obstruction ¢***(h) which, by construction, attaches the co-
efficient 8, to E"**. It follows from (20.1, 2) that

(20.3) " P(h) = s" nas™

ReEmaARrk. It is to be noted that the Emhangung homomorphism s(S?) —
74(S*) reduces the mﬁmte cychc group m3(S?) mod 2. Correspondingly, the
join operatlon maps s* <o & (which has invariant meaning without reduction
mod 2) into s* _; s* which must be reduced mod 2 to have invariant meaning.
Since its coefficients are in the group m4(S") of order 2, reduction mod 2 is not
necessary. The author has no explanation for this fortultous circumstance,

21. The extension theorem

THEOREM 21.1. Let f: K" — 8" be such that 5f*s" = 0 in K (see 18.3), then
the secondary obstruction z"Y(f) = {f*s"} a2 {f*s"}.

Choose an extension f’: K"t — 8" which exists by (18.3). 8" is assumed
to be a subset of M"*? as in §20 An extension f’: K" — M™* of f’ exists as
follows. Lt o be an (n + 2)-cell. If ¢(f’, &) = 0 f” can be defined to map o
on 8", If n > 2 and ¢(f’, ¢) 5= O then ¢(f’, 6) = B, (see §20). Choose a map
g: 80 — 8"* of degree 1. Since ¢, | 8"* also represents 8, it follows that
f’| 8 is homotopic to ¥.g. Now g can be extended to a map ¢’: ¢ — E"** of
degree 1. Therefore ¥,g can be extended to y.g’: ¢ — M™**. Tt follow, as in



PRODUCTS OF COCYCLES AND EXTENSIONS OF MAPPINGS 313

§13, that ' | 8¢ can be extended to a map f”’ of ¢ in M"** 50 as to have degree 1
on E"**. If n = 2, then ¢(f’, ¥) = mB, for some integer m. In this case choose
g to have degree m. In a similar manner, the extension f”’ of f' over o exists
and maps o on E* with degree n. In either case, if ¢"**(h) is defined asin §19, 20,

(21.2) F*e"h) = (P,
see (14.7). By (10.5),
{f"*s"} Cna {f7*s") = {f7*(s" wn2 8N}

This together with (19.4), (20.3) and (21.2) yields (21.1).

22. The difference of two maps

Suppose K, K’ are cell complexes, L a subcomplex of K and f,g: K — K’ are
cellular maps such that f | L = g | L (i.e., f, g are two extensions of a map L — K’)
For any cochain u on K’, f*u and g*u are cochains in K which have equal values
on each cell of L. Therefore

(22.1) F — 9% = ffru — g*u
is zero on L and defines thereby homomorphisms
(22.2) ¢ — 9* CK, @ — CUK, L, @), g 0.

It is easily verified that (f — g)*&' = 8(f — g)* so that (f — g)* maps cocycles
into cocycles, cohomology classes into such and defines thereby homomorphisms

(223) (f_ g)*: Hq(Kly G) - Hq(K’ L: G), q 2 0.
If £, g, h are cellular maps of K in K’ which agree on L, then
(22.4) F—9*+ @ - W= - n*

where + means the usual addition of homomorphisms. This is proved first
for the cochain mapping (22.2) using (22.1). This in turn implies its truth
for the homomorphisms (22.3).

Suppose now that h: (K;, L;) — (K, L) and f, g: K» — K’ so that f| L, =
g|L:. Then fh,gh: Ky— K’ and fh|Ly = gh|L,. It follows immediately that

(22.5) WG — g)* = (b — gh)*

and these may be interpreted as mappings of cochains or cohomology classes.
Suppose next f, g: K — Ki so that f | L = g | L, and h:K; — Kz . Then also

(22.6) (f — 9*h* = (bf — hg)*.

In order to determine the behavior of products under (f — g¢)*, let K, K’,
f, g be simplicial. Let products in K’ be based on an order 8. Let e, o’ be
orders in K preserved by f, g respectively. Since f| L = g| L, it can be sup-
posed that «, o’ coincide on L. The orders «, o’ define products , <’. For



314 N. E. STEBENROD

P, g-cocycles u, v in K', it follows from (22.1) and (3.1) that
=% wiF— 9%+ - 9)*u wig® + g*u < (f — 9)*

= — D*u <iv) + [g*u <i g% — g*u <. g™].
Since a, o’ agree on L, the term in brackets is zero on each simplex of L. Thus
(22.7) is a relation in Z***(K, L, @).

Consider first the case + = 0. If V is the operation of §8 corresponding to
the pair of orders a, o it follows from (8.6) that g*u V, g*v is zero on L. There-
fore, by (8.2), the term of (22.7) in brackets is ~ 0 in K — L. Thus (22.7)
yields the following cohomology in K — L:

F=*ucor) ~(f—9*u o F—9* + (f — 9)*u <o g™
+ g*u <o (f — 9)*v.

Consider next the case ¢ > 0 and v = v. Just as above g*u V ; ¢ *u is zero on
L;and, therefore, the term in brackets in (22.7) is~0in K — L. Since (f — g)*u
is zero on L, its products with g*u are zero on L. Therefore, by (6.1),

3 — 9*u congtul = —(—=1)'(f — 9)*u —:ig*u
+ (=D%g*u < (f — 9)*u
is a coboundary relation in K — L. Thus (22.7) reduces to
F—*uwwiv) ~F—*u i (f — 9)*u
+ 0+ (=) lg*u ;i (f — 9)*uin K — L.
Passing to cohomology classes (and reducing mod 2 when p — 7 is even),

(22.11) f — 9*a: = Sqif — g*

23. The topolcgical invariance of (f — g)*

Let X, Y be topological spaces, 4 a closed set in X and f, 9: X — Y such that
JlA = g|A. Using cohomology groups in the sense of Cech [11], homo-
morphisms

(231) (f - g)*: Hq(Y) G) - Hq(X: 'A’ G)

will be defined. In the case of complexes (23.1) will be proved to coincide with
(22.3). This will establish the invariant character of the operation (f — g)*.

Let¢ = (V', ---, V™) be a finite covering of ¥ by open sets. Let K} beits
nerve. The associated (f, g)-covering of X consists of the open sets.

U‘. = f—l(V{)'g—l(V‘.): U'.j = f_l(Vi)'g—l(Vj)'(X - A)’ (1’).7 = 17 ) n)-

Let K, be its nerve, and L, the subcomplex of simplexes whose vertices intersect
on A. The vertices of L, are included among the non-vacuous U'. Define
the associated simplicial projections f,, g,: K, — K by the vertex assignments

(22.7)

(22.8)

(22.9)

(22.10)



PRODUCTS OF COCYCLES AND EXTENSIONS OF MAPPINGS 315

Fo(UY) = go(U') = V°, f,(UH = V°, go(U) = V.

Then fy | Ly = g4 | Ly - ,

Suppose ¢’ is a refinement of ¢ and h: K. — K is an admissible projection.
Denote by V*® the open set of ¢ which contains the open set V’* of ¢’ and cor-
responds to it under h. Then the vertex assignment

R(U/i) — Uh(l') E(Ulij\ = Uh(i.)h(f)
defines an admissible projection h: (K4, Ly) — (K4, Ly). By construction,

hfyr = f4h, hgyr = gsh.
Then, for any cochain u in K} , it follows from (22.5, 6) that

(23.2) R*(fo — go)*u = (for — gor)*h*u.

Now H(Y) is the limit group of the direct system of groups {H%(Kj , )}
using all coverings ¢. By (23.2), the collection of homomorphisms {(f — g¢)*}
maps this direct system homomorphically into the direct system {H*(K,, Ly, @)}
which is a subsystem of the direct system whose limit group is H'(X, A, G).
A homomorphism of a direct system into a subsystem of another induces,
in a natural manner a homomorphism of the limit group of the first into that
of the second. The homomorphism (23.1) is the one so determined by
{(fs — 94)*}.

Suppose now that X = K, A = L, Y = K’ and f, g are simplicial. Let ¢ ()
be the covering of K’ (K) by the stars of its vertices. It is known that K’ =
Ky , K = K, under the correspondence attaching to each vertex its star. The
invariance of the cohomology groups of K’ and of (K, L) is expressed by the
known proposition that the projections

re: H(K', @) — HYY, B), mp: HY(K, L, G) — H'(X, 4, @

(of terms of direct systems into their limit groups) are isomorphisms. Let Al

., A™ be the vertices of K’ and V' = Star(4%). Define a simplicial map h:
(K, L) — (K4, Ly) as follows. If B is a vertex of L and f(B) = g(B) = A°,
then h(B) = U'. If Bisnotin L and f(B) = A°, g(B) = A’, then h(B) = U¥.
Then h is an admissible projection, and

[ = Jsh, g = geh.
Using these, it can now be proved that
W — 9% = (f — 9*ru
for any u ¢ HY(K’, @). The (f — ¢)* on the left is (22.3) and that on the right
is (23.1). Thus the two definitions of(f — ¢)* correspond under the isomorph-
1SS Ty , Ty .
REmARK. It is almost certainly true that the properties of (f — g)* stated in

§22 for complexes and cellular maps also hold for more general spaces and maps.
This question is not decided here since it is not needed.
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24. The relative extension theorem
TaeorEM 24.1. If f, g are maps of K™ in S™ which coincide on L and possess
extensions to K" (i.e. 8f*s™ = 8g*s™ = 0, see (18.3)), then their secondary ob-
strutions (14.8) are related as follows

A" Cae N > 4,
(242 ) — g = T "o
2% o ¥} — Ao N n=2
where
(24.3) A\ = (f — g)*s"} € H(K, L, m.(S™).

Conversely, if f and \" are given, there exists a map g: K — S such that g | L =
fI L, sg*s™ = 0, and (24.3) holds.

As in the proof of (21.1), let f/, ¢’: K*** — S" be extensions of f, g; and let
f, ¢': K™* — M™* be extensions of f*, ¢’. By (21.2),

) = et TR), ) = g,
Therefore
) = ) = (7 — g)*e" ).
Passing to cohomology classes
") — 2"P(g) = (" — g% )
= (" — g")*{s" wnes"} by (19.4), (20.3),
A" Cne N7, n > 2, by (22.11),
~ o N 4+ 20%(s’} o, n = 2, by (22.10).

To complete the proof in the case n = 2, substitute g*{s’} = f*{s’} — A%, and
apply the distributive and commutation laws for the _, product.

For the converse part of the theorem, let A" = {v"} where »" is a cocycle in
K — L. Then 2" = f*" — »" is a cocycle in K. By (18.3), there exists a
map g: K* — 8" such that g*s” = 2" and g| L = f| L. Then (24.3) follows
directly.

25. Cohomology relations in K X I

The unit interval I is regarded as a complex composed of the two vertices 0, 1
and the oriented 1-cell (0, 1). Let I' be the 1-cocycle which attaches +1 to
(0,1). If Kisa cell complex, K X I will be regarded as the cell complex com-
posed of the cells ¢ X 0 = gy, 0 X 1 = a1, and ¢ X I for all cells ¢ of K. Let
Ko,=K X0,K;, =K X1and

L* = Ky + Ky + L X I
TrHEOREM 25.1. The cochain mapping ¢(u) = u X I' defines isomorphisms
¢: CY(K, L, G) — C*™(K X I, L*, @), 70
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such that 6 = ¢ and thereby induces isomorphisms
¢*: HYK, L, G) —» H"™(K X I, L* @), g = 0.

Furthermore, $*Sq;—y = Squ* for ¢ = 1.

That ¢ is a cochain isomorphism follows from the fact that each cell of K X
I — L*is of the form ¢ X I for some cin K — L. SincedI' = 0,8(c X I') =
dc X I'. Therefore the incidence number of oo and ¢ X I' is (—1)**" where
dim ¢ = q. Therefore, if u is a g-cocycle of K — L and uy = u X 0, then

(25.2) u X I' = (=1)"5u,.

Now H*(L*, L X I, @) is the direct sum of H*(Ky, Ly, ¢) and H*(K;, L, , @.
The operation &* of §9 for the pair (K X I, L*) therefore maps H* (Ko, Lo , G)
into H*™(K X I, L*,G). By (25.2), 8* is equivalent to (—1)?*'¢* under the cor-
respondence between K and K,. The last statement of the theorem now
follows from (9.6) and the fact that a square is always of order 2.

26. The separation cocycle d"*'(f, g) of a normal pair

Two normal maps f, g:K"“.—-) S" such that f|L = ¢ | L form a normal
pair if f| K" = g|K". In this case,

(26.1) fxs" = g*s".
If f, g form a normal pair, define a map
F:K"XI+ Ko+ K1 — 8"
(26.2) F(z, 0) = f(z), F(z, 1) = g(x), F(z, t) = f(z) if z ¢ K".
Then the obstruction ¢"**(F) isin K X I — L*; and, by (25.1),
(26.3) R = a7, 9 X I

defines uniquely the cochain d"*'(f, g) in K — L with coefficients in 7441(S").
It is called the separation cocycle of the normal pair f,g. Eilenberg [4] has proved
the following of its properties:

(264) 8d"*'(f, ) = () — "M(g).

(26.5) d*"(f, 9) + d""(g, k) = A"V, h).

(26.6) If f and d"*" are given, there exists a g such that d"*'(f, g) = d
(26.7) d"(f, ¢) = 0if and only if f = g rel. K™.

(26.8) d"*'(f,g) ~0in K™ — Lif and only if f = g rel. K"".

n+l

27. The deformation cochain ¢"~'(F) of a normal homotopy

Let fo, f1 : E*™ — 8" be normal maps such that fo| L = fi|L; and let F
be a normal homotopy rel. L connecting fo and f;. Since F | K, = fo, ete.,
the decomposition
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(27.1) F*s" = fis" X 0 4+ fis" X 1 — " Y(F) X I'

defines uniquely the cochain ¢"'(F) in K — L with coefficients in =,(S™). It
is called the deformation cochain of the homotopy F. Since sF*s” = 0,

(27.2) " (F) = (=D"(h — fo*s".

Thus, if fo , fi form a normal pair, it follows from (26.1) that " (F) is a cocycle.

28. The homotopy classification theorem

TarorEM 28.1. Let fy, fi : K" — 8" be normal maps such that f, | K* =
“fi| K*. Then fo = fi rel. L if and only if there exists an (n — 1)-cocycle "
in K — L with coefficients in w,(S™) such that

"} wns (") n >2
2{e'} <o {fos’ n = 2.

Suppose fo = fi rel. L, and F’ is a normal homotopy rel. L connecting them.
Let e"™ = ¢"'(F"). Let F be the map (26.2) using fo , f1in place of f, g. Since
F maps each ¢ X I of dimension = n into a point, it follows that e"*(F) = 0.
Now apply (24.1) to the maps F, F’ of (K X I)". Since ¢"™(F’) = 0,

(28.2) (@7, f)} = {

A" Cnoa N, n>2
™y =1, . 2 w2
2)\ \JOF’*{S}—X vox, n=2,

where
Y= (F — FO*{s"} = ("' X I'}.

The last equality follows from F = F’ on Ko + K;and " '(F) = 0. Ifn > 2,
by (25.1),

A" Cae A" = [Squsfe”™}] X {I').

This proves the necessity for n > 2. 1In the case n = 2, the rules devised by
Whitney [18] for calculating . in a product complex can be applied. Then

(€ XIN coler X I = —( o) X I' oo IY) = 0,
since I' o I' = 0. Therefore A’ _o \*> = 0. For the other term,
(€ XTI) colfg® XO+ X1 —e XTI = (& wofis’) X I'

since I' o0 =0,I' o1l = Iand I' , I = 0.
To prove the sufficiency, suppose " exists. Define a map

F:E" + L XI—> 8
by F(z,t) = fo(x) if e Lorif ¢ = 0. Then F is a normal map, and
F*s* = f5s" X 0 + (fi | L)*s™ X 1.
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Now
= fas" X0+ fis" X1 — et X I

is an extension of F*s™ to a cocycle in K X I. By (18.3), F has a normal ex-
tension

F:R" + K" X I - 8§

such that F'*s" = z". By (13.2), F’ extends to a map F”: K" X I — 8™
Define fi(z) = F"(z, 1) so that fy = fi rel. L. By the part of the theorem
already proved, {d""'(fo, f1} equals the right side of (28.2). Therefore

d"+l(f0: fl,) ~ dn_H(fO; fl)

It follows now from (26.4) that d"™'(fi, fi) ~ 0, and therefore f] = firel. L
by (26.7).

29. Problems

As it stands the results of this paper settle the general homotopy and extension
problem for a single dimensional stage. Special problems arising at the next
stage can be formulated as follows:

Suppose K is a 5-complex and f : K* — S° can be extended to K* (i.e. f*s* is
a cocycle in K and f*s* —, f** ~ 0). If f’ is such an extension, then c¢’(f’) is
defined and has coefficients in m4(S%), a cyclic group of order 2. In general,
¢*(f") may be non-zerc for every choice of f. For example, this is true if K is
the complex obtained from a 5-cell by reducing (upper semi-continuously) its
boundary S* to a 2-sphere S® by means of an essential map S' — 8. Two
questions arise:

(1) Ts the cohomology class c¢*(f”) independent of the choice of the extension
flof f?

(2) If (1) is true, is there an effective rule for calculating its cohomology
class in terms of f*s’?

Suppose now that K is an (n + 4)-complex (n > 2), and f : K® — 8" is such
that f extends to /' : K***— 8. Since m,15(S™) = 0, then ¢"**(f") = 0. There-
fore, f' extends to a map f” : K*** — 8™. Then ¢"**(f") is defined and has
coeficients in m,43(S™). This latter group has not been determined in general.
However it is not zero for n > 3, [9]. The questions (1) and (2) can now be
asked of ¢" T (f"").

Since 8" is n-dimensional, s" _; s" =0 for¢ =0, ---,n — 1. Iff:K"— 8"
is extendable to a map f’ : K — S" (dimension of K is arbitrary), it follows
that f*s" ;f*s" ~0in K fori = 0, - - -, n — 1, regardless of the rule for mul-
tiplying coefficients. Are these conditions sufficient for the existence of f’
if dim K < 2n?
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