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Introduction 

To each isolated hypersurface singularity one can associate a sequence of p 
rational numbers, called its spectrum. Here p is the Milnor number of the 
singularity. (cf. [M]). The spectrum gathers the information about the eigenval- 
ues of the monodromy operator of f and about the Hodge filtration on the 
vanishing cohomology (see (2.1) for a precise definition). 

The idea behind the concept of spectrum is the following. In IS1] a mixed 
Hodge structure has been constructed on the vanishing cohomology of any 
isolated hypersurface singularity. It appears that many important invariants of 
the singularity can be expressed in terms of the Hodge filtration alone, so it 
may be enlightening to forget about the weight filtration. In this way the 
spectrum has arisen from the "characteristic pairs" of [S1]. For quasi-homo- 
geneous singularities the spectrum numbers occur as eigenvalues of the residue 
of the Gauss-Manin connection on the lattice 34f" (see [Ma, Ex. (6, 7)]). 
Arnol'd was the first to discover the importance of the spectrum for defor- 
mation theory ([A]). He conjectured that the spectrum behaves semicon- 
tinuously under deformation of the singularity, in a certain sense. A stronger 
version of his conjecture has been proved recently by Varchenko [V2] for the 
case of deformations of low weight of quasi-homogeneous singularities: for 
such deformations, any open interval ( a , a + l )  is a so-called semicontinuity 
domain (see (2.2)). This result covers almost all cases one meets in practice. 

In this paper we prove a slightly weaker statement than Varchenko's for 
arbitrary deformations of isolated hypersurface singularities: any half open 
interval ( a , a + l ]  is a semicontinuity domain. This still implies a positive 
answer to Arnol'd's original question. The case a N -  1 has been proved by 
Varchenko in IV3], see also IV4]. 

Our proof depends heavily on Varchenko's idea to use the relation between 
the spectra of a function f and the function f + z  q, where z is a new variable. 
The extra argument we put in consists of recent results about limit mixed 
Hodge structures for families of projective varieties over a disc whose general 
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fibre is not necessarily smooth ([EZ, GNP, B and SZ]). As byproducts we 
obtain semicontinuity results for Hodge numbers of complete intersection 
singularities, in particular for the geometric genus (treated before by Elkik) and 
a new proof that the spectrum is constant under deformations with constant 
Milnor number. 

The spectrum is related to asymptotic integrals which can be associated to 
the critical point of f. For 0 < [ t l < r / ~ e ~ l  we let Xt=f-l(t)c~B~. If co is a 
holomorphic (n+l) - form on a neighborhood of 0 in II~ "§ and 7(0 is a 
continuously varying homology class of dimension n on Xt, then the function 

co 
Itt)= j' ~f 

~(t) 

admits an asymptotic expansion as t tends to zero: 

I (t)= ~ C~,'q ~ t~(log t)q/q! 
~,q 

such that q~Z, O<q<=n, c~EIl~, e > - 1  and e x p ( - 2 n i c 0  is an eigenvalue of the 
monodromy operator. The complex singularity index/3 e is given by 

/3 C -  1 = min {c~[~ co, ~, q with C~'q ~ 4= 0} 

= in f  {c~]Vco, 7: limt-~l(t)=O} . 
t~O 

It has been conjectured by Malgrange [Ma] that fie is semicontinuous under 
deformations of f. Varchenko's construction of the asymptotic Hodge filtration 
IV6] implies that /~r is equal to the smallest spectrum number, so its 
semicontinuity follows from the semicontinuity of the spectrum. 

We thank the University of Kaiserslautern for its hospitality. 

I. Limit mixed Hodge structures 

(1.1) The limit behaviour of a variation~ of Hodge structure over a punctured 
disc was analyzed by Schmid [Sc]. He shows that the limit object is a limit 
mixed Hodge structure. The Hodge filtration of this can be considered as the 
limit of the Hodge filtrations for the various parameter values t, as t tends to 0. 
The weight filtration is the socalled monodromy weight filtration, depending 
on the Jordan normal form of the monodromy. In case the variation of Hodge 
structure comes from geometry this limit mixed Hodge structure has been 
described more or less explicitly by the author IS 1]. 

A family of singular varieties over a disc gives rise to a variation of mixed 
Hodge structure over a small punctured disc, over which one can stratify the 
map. As there is no general theory of limits of mixed Hodge structures 
available (see however [SZ]) one restricts to the geometric case. The methods 
of [S1] have been generalized by various authors to the singular (or/and non- 
proper) case. The idea is, to make a version of the formalism of vanishing 
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cycles in terms of (cohomological) mixed Hodge complexes. This also applies 
to the cohomology of Milnor fibres. 

Let X and U be reduced analytic spaces such that U is smooth. Let 
f :  X --* U be a flat projective mapping. We say that f is locally trivial if there 
exists a semi-simplicial resolution e: X . ~ X  of X such that all X i are smooth 
and the induced mappings f i = f o e i :  X i ~  U are projective submersions. Using 
the results of [GNP] ,  say, it is easy to see that for every projective mapping 
there exists a partition of the base into locally closed submanifolds such that 
the restriction of the mapping to the inverse image of each stratum is locally 
trivial. 

(1.2) Lemma. Let f: X--+ U be a locally trivial projective map. Then the func- 
tions 

uw-~ dime Gr~,H"(X,, 112) 

are locally constant on U. (Here X, is the fibre over u and F is the Hodge 
filtration on its cohomology.) 

Proof. It suffices to treat the case d i m ( U ) = l ,  for which we refer to [B, 
Th6or6me (2.6)]. 

We fix the following notations. We let S denote the unit disc in the 
complex plane and f :  Y- ,  S a flat projective map, where Y is a complex space 
of dimension n + 1. We assume that f is locally trivial over the punctured disc 
S*. Let S~ be a universal covering of S* and let Y ~ = Y x s S  ~. Let i: Y o ~ Y  
and k: Y ~ Y  denote the obvious maps (we let Y,=f- l ( t ) ) .  Then Y~, is ho- 
motopy equivalent with each fibre Y, t #0. 

(1.3) Theorem. There exist filtrations Wo, M~ and F ~ on each cohomology 
group H"(Yo~) with the Jbllowing properties: 

a) W~ and M~ are increasing, F" is decreasing, M.  and F" define a mixed 
Hodge structure on Hm(Y~); 

b) Let feZ .  Then Gr w =  Wr/W~_I, together with the filtrations induced on it 
by Mo and F',  coincides with the limit mixed Hodge structure (in Schmid's 
sense) of the variation of Hodge structure GrW R"f.ll)rls.; 

c) Let T denote the monodromy operator on H"(Y~) and "Is, T, its semisimple 
and unipotent parts. Then T s preserves the filtrations W, M and F, and N =log  T. 
satisfies: N (W3c l/Vii , N (FP)c F p-1 and N (mk)c mk_ 2. 

d) The filtrations W, M and F exist already on the level of a cohomological 
mixed Hodge complex ~r with the property that Hm(,~l~ and which 
admits a morphism Nr~o-~d" of cohomological mixed Hodge complexes. Here 
3ff~o is a cohomological mixed Hodge complex defining the mixed Hodge struc- 
ture on the cohomology of I1o. 

Proof. 

(1.4) 

See [EZ II, Prop. 2.1; G N P  Chap. 9; B; SZ Chap. 5]. 

The sheaf of vanishing cycles R ~  is the cone of the natural morphism 
i-lRk.ll2y~o. It gives a long exact sequence of hypercohomology groups 

. . . ~  Hm(Yo) ~ H'n(Yo~) ~ H"(R 4) ~ Hn'+ '( Yo) ~ .... 
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Because R q~ is quasi-isomorphic to the cone of the morphism •r'o--' ~ " ,  one 
may give it the filtrations of the mixed cone (see [EZ]). In this way the 
sequence above becomes a long exact sequence of mixed Hodge structures. 

Suppose that Yo has only isolated singularities. Then around each of its 
singular points x i we take a small ball Bi and put Xi=B~c~ Yt for t small 
enough (but unequal to 0). Then we may interpret H' (Rcb)  as @/-)m(x~) where 
/~ means reduced cohomology, i 

Because the construction of R ~  with its Hodge and weight filtrations is of 
local nature on Y0, we may apply it in other than projective situations, e.g. 
Stein mappings for which the fibres all have at most isolated singularities and 
for which the critical set lies finitely over the base space. In particular the 
mixed Hodge structures on the hypercohomology groups Hm(Rq~) do not 
depend on the global family but only on the map germs at the critical points 
(and on the choice of a local parameter on the disc). 

(1.5) Let us now consider the case of a more-parameter  family: we take a flat 
projective map F: Y--* U between a complex space Y and an irreducible and 
reduced complex space U, whose fibers have dimension n and have at most 
isolated singularities. Then we can apply the previous construction as follows. 
We take a holomorphic mapping of the disc S to U and pull back the family. 
The resulting mixed Hodge structure will depend very much on the choice of 
the arc. In particular the weight filtration will vary with the position of the 
image with respect to a stratification of U as in the following lemma. However, 
the numerical invariants of the Hodge filtration behave much better. 

(1.6) Lemma.  Let F: Y-~ U be a fiat projective mapping. Then there exists a 
complex analytic stratification (S j) of U such that the functions 
uw-~dimGrPH"(Yu) are constant on each Sj for all p, meN. 

Proof By Lemma (1.2) it suffices to take a stratification (S j) of U such that the 
mappings (Y • induced by F are locally trivial. It has already been 
remarked that this stratification exists. []  

(1.7) In the next lemma we consider some stratification, satisfying the proper- 
ties of Lemma (1.6). We choose arcs h: S ~ U which map the punctured disc S* 
into one stratum. We let R t~ h denote the sheaf of vanishing cycles associated to 
the family Y x v S over S, induced by h. 

2n 

(1.8) Lemma.  The number ~ (-1)"+idimGr~Hi(R~h)--Zp(h) (p fixed) does 
i=O 

not depend on h but only on the two strata which intersect h(S). 

Proof Let the family over S induced by h have a general fibre Yv and let Y~ be 
constructed from it as in (1.1). According to Theorem (1.3) one has for every p 
and m: 

dim Gr~ Hm( Yv)=~ ", dim GrPGrk Hr"( Yv)=~ dim Gr~GrW H'(Y~) = dim Gr~ Hm( Y| 
k k 
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Because morphisms of mixed Hodge structures are strictly compatible with the 
Hodge filtrations, the sequence 

...-~ Gr~Hm(Y,) -~ Gr~Hm(y~) -~ GrPHm(R Oh) ~ Gr~H~+x(Y,) -~... 

with u=  h(0), is also exact. Taking alternating sums of dimensions we obtain 

2n 

zp(h)= ~, ( -  l) "+i [dim Gr~Hi(Yv)-dim GrPHi(Y,,)]. 
i = 0  

This expression depends only on the strata of u and v by (1.6). 

(1.9) Definition. Assume that the projective family F: Y-~ U is flat, its fibers 
have only isolated singular points and U is irreducible. Then we define func- 
tions Sp: U ~ Z  by sp(u)=Zp(h ) where we choose the arc h such that h(0)=u 
and h maps the punctured disc to the top dimensional stratum of U. 

By Lemma 0.8) the functions Sp are analytically constructible on U. 

(1.10) Definition. The map F: Y ~  U is said to have only spherical isolated 
singularities if for any arc h as in (1.7) one has Hi(R~h)=O for i ~ n = d i m  Y 
- dim U. 

Examples. By [G, Lemma 3.2] this is the case if the fibers of F have only 
isolated complete intersection singularities, and by [GS, Th.2] if the fibers of F 
are normal surfaces and its generic fiber is smooth. 

(1.11) Theorem. Let F: Y-~ U be a fiat projective map which has only spherical 
isolated singularities and such that U is irreducible. Then the functions sp are 
upper semi-continuous on U. 

Proof Because each Sp is analytically constructible, it suffices to prove the 
following: if u~U lies in the closure of the stratum of w U ,  then sp(u)~=s,(v). 

By the curve selection lemma there exists a holomorphic map germ 
h: (S,0)-~(U, u) mapping the punctured disc to the stratum of v. Then clearly 
the computation in (1.8) shows that 

2n 

sp(u)-s , (v )= ~ (-- l) "+i dim Gr~Hi(RCbh) 
i = 0  

=dim Gr~H"(R~h)~=O. 

(1.12) Remark. In the theorem above the hypothesis can be weakened to 
Gr~Hi(R~h)=O for i ~ n  (p fixed). This is always true for p=n: the case i<n  
can be proved via the fact that the complex Gr~RC~ h has zero cohomology 
sheaves in degrees smaller than n, and the case i > n  follows from the fact that 
the "Milnor fiber" of h is a Stein space of dimension n. In particular the 
function s, is always semi-continuous. If the generic fiber of F is smooth, the 
value of s, at ue U is the sum of the geometric genera of the singular points in 
the fibre Yu (cf. [$2, Prop. 2.12]). Its semicontinuity has been proven by R. 
Elkik (see [E, Th.1]). 



562 J.H.M. Steenbrink 

(1.13) Remark. In the situation of Theorem (1.11), suppose that one has an 
automorphism g of Y with Fg=F. Then g acts on all terms of the exact 
sequence in (1.8) and the statement of (1.11) remains true if one replaces every 
space by its subspace on which g acts with a given eigenvalue 2. In this way sp 

is itself = ~ s p  x where we sum over all eigenvalues 2 of g; each function Sp 

semicontinuous on U. 

2. Spectra of isolated hypersurface singularities 

(2.1) Each isolated hypersurface singularity (Xo, Xo) has a privileged class of 
smoothings, namely those for which the total space is smooth. These are just 
the germs f:  (C"+ a, 0) ~ (~, 0) where f is a defining function for X o. Let # be 
the Milnor number of f and let F ~ denote the Hodge filtration on the 
vanishing cohomology group H"(R~:)  of f. As stated in Theorem (1.3), the 
semisimple part T~ of the monodromy preserves F ~ 

The spectrum of f is defined as the unordered /~-tuple of rational numbers 
(a 1 . . . .  ,a,)  with the following property: the frequency of the number a in the 
spectrum is equal to the dimension of the eigenspace of ~ acting on FP/F p+I 
with the eigenvalue exp ( - -2n  i a), where we take p = I n - a ] .  

(2.2) If F: X ~  U is a good representative of a deformation of an isolated 
hypersurface singularity, we let Z u denote the union of all spectra of the critical 
points in the fiber F-~(u). Here we take the union "with multiplicities": the 
frequency of a in Z u is the sum of its frequencies in the spectra of all critical 
points with value u. 

A subset A of IR is called a semicontinuity domain (for deformations of 
isolated hypersurface singularities) if for every good representative as above, 
the function which associates to u~U the sum of the frequencies of the 
elements of A in Zu, is upper semicontinuous on U. 

Example. According to (2.1) the function sp from (1.9), applied to the case of (a 
globatization of) a smoothing of an isolated hypersurface singularity, just 
counts the number of points in Z u which lie in the interval ( n - p - 1 ,  n-p] .  
Hence every such interval is a semicontinuity domain. 

(2.3) V.I. Arnol 'd [A] has conjectured that each half line ( -  0% t] ( te l l )  is a 
semicontinuity domain. A.N. Varchenko [V2] has verified that for defor- 
mations of low weight of quasi-homogeneous isolated hypersurface singularities 
every open interval (t,t+ 1) is a semicontinuity domain. Using the main ideas 
of his proof plus Theorem (1.11) we will prove a somewhat weaker statement 
in the general case, which still verifies Arnol'd's conjecture: 

(2.4) Theorem. Every half open interval (t, t + 1] is a semicontinuity domain for 
deformations of isolated hypersurface singularities. 

Before we give the proof, we show that every deformation of an isolated 
complete intersection singularity can be globalized. This is a well-known result, 
which shows that Theorem (1.11) can indeed be applied in the proof of (2.4). 
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(2.5) Lemma.  Let F: (X, Xo)-~(U,O ) be a deformation of an isolated complete 
intersection singularity (Xo,_X0). Then after possibly shrinking X and U there 
exists a fiat projective map F: Y-~ U and an open embedding of X in Y such that 
F=l~lx and F has no critical points outside X. 

Proof. It  suffices to check this for a versal deformation of (Xo, x0). Hence we 
may assume that F is a polynomial mapping from tl2"+k, 0 to II~k, 0 which is flat 
and finitely determined. Choose an integer s such that F is (s -1)-determined 
and such that its components F 1 . . . . .  F k are of degree smaller than s. Consider 
the family of polynomial mappings F + f  where the components f l  . . . .  ,fk o f f  
are homogeneous polynomials in z 1 . . . . .  z,+ k of degree s. By Sard's theorem, 
there exists a dense open subset V of the space of all such mappings, such that 
for F + f e V: 

1) F + f  is equivalent to F as a germ at 0; 

2) the closure of ( F + f ) - l ( 0 )  in I~+k(ll2) has 0 as its only singular point. 

We choose f such that F + f e  V and let 

G i(t, Zo . . . .  , Z,+k)= Z~oFi(Zl/Zo, ..., Z,+k/Zo) + fl--tiZ~o 

for i--1 . . . . .  k. Let B, be the open ball in ~k with center 0 and radius r and let 
Y =  {(t, z)eB r • lp"+kIGi(t, z)=0,  i=  1 . . . . .  k}. Then for r sufficiently small, the 
projection map/~ :  Y ~ B r satisfies all our requirements. 

p n (2.6) Corollary. The numbers d i m G r v H  (Rob), which are defined for any 1- 
parameter smoothing of an isolated singularity, in the case of complete in- 
tersections do not depend on the choice of a smoothing. Hence they define 
invariants of the singularity. 

(2.7) Proof of Theorem (2.4). The main idea is due to Varchenko (see IV2, 
3d]). If  f :  ( ~ " + 1 , 0 ) ~ ( ~ ,  0) has an isolated singularity and z is a new variable, 
then the spectrum of the function f +  z q (qeN) consists of the numbers a + k/q 
where a runs over the spectrum of f and k =  1 . . . . .  q - 1 .  Moreover the auto- 
morphism g of ~ ,+2  defined by (x, z)w-~(x, exp (2~i/q)z) preserves the fibers o f f  
+ z  q and hence acts on its vanishing cohomology, preserving the Hodge fil- 
tration. The number  of spectrum points of f in the interval (n - p -  1 - k/q, n -  p 
-k/q] is equal to 

dim {yeGr~H"+ l(R Of +~,)[g*(y)=exp(2~ik/q).y}. 

Let t~lR and let F: X--*U be a good representative for a deformation of 
(X0, Xo), with smooth general fiber. Let fu be the defining function for X,. Then 
for any q ~ N  we may consider the family 

~.+1 x C x  U- - ,~  x U 

(x, z, u ) ~ ( g ( x )  + z", u) 

with the automorphism g induced by the substitution z~exp(2gi /q) . z .  The 
for this family, with Z=exp(2gik/q), is semicontinuous fact that the function sp 

on ~ x U (see (1.12)) implies, that the interval ( n - p - l - k / q ,  n - p - k / q ]  is a 
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semicontinuity domain for deformations of (X o, Xo). Hence every interval (a, a 
+ 1] with a e Q  is a semicontinuity domain. This implies the general case since 
spectrum numbers are rational. 

(2.8) As a trivial consequence of Theorem (2.4) we recover a result of Var- 
chenko [V 1] : 

Theorem. The spectrum is constant in a deformation of isolated hypersurface 
singularities with constant Milnor number. 

Proof If the Milnor number does not vary in a family, then each interval (a, a 
+ 1] contains a constant number of spectrum points. This is only possible if 
the spectrum remains constant. 

(2.9) For  complete intersections we obtain the analogous result: 

Theorem. In a deformation of isolated complete intersection singularities with 
constant Milnor number the functions sp are constant. 

Proof This is a direct consequence of the semicontinuity of the sp and the fact 
that their sum, the Milnor number, is constant. 

(2.10) Remark. For  surfaces the number of spectrum points in the interval 
(0, 1) is equal to the number /~_ which denotes the maximal dimension of a 
negative definite subspace of the intersection form on the vanishing homology. 
This can be proved as follows. By a result of Durfee [Du]  / ~ - p  = # +  +/% 
=2pg. Moreover pg is the number of spectrum points in ( - 1 , 0 ]  or, by 
symmetry, in [1, 2). As all spectrum numbers lie inside ( - 1 , 2 ) ,  the result easily 
follows. 

The semicontinuity of the number / ~  is an easy consequence of the fact, 
that, if a function g deforms into f, the vanishing homology of f embeds 
isometrically in the vanishing homology of g. Substituting this argument in the 
proof of Theorem (2.4) one obtains a result of Varchenko [V3, V4]:  for 
isolated plane curve singularities every open interval (a, a +  1) is a semicon- 
tinuity domain. 

We are not able to prove this in higher dimension. Finally Theorem (2.4) 
implies 

(2.11) Theorem, In any deformation of isolated hypersurface singularities the 
complex singularity index (the smallest spectrum number plus one) is lower 
semicontinuous. 

This was proved by Varchenko in the case of quasihomogeneous singularities 
for deformations of low weight and in the case that the complex singularity 
index is not bigger than 1 IV5]. 
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