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Introduction 

In [18], the second author introduced a mixed Hodge structure on the 
cohomology of the Milnor fibre of an isolated hypersurface singularity. (For the 
definition of a mixed Hodge structure, el. [17, Sect. 3.4].) The weight filtration is 
essentially the "monodromy weight filtration" [18, Sect. 4] and thus simplifies the 
Jordan normal form of the unipotent part of the monodromy. The significance of 
the Hodge filtration, however, is not so dear, and its description seems difficult to 
use. This paper gives another description of the Hodge filtration which we hope is 
easier to understand and apply. Its definition does not use resolution of 
singularities. Instead it relies on the theory of holonomic ~-modules in one 
variable with regular singularities. 

This paper arose from conversations at the 1980 Arbeitstagung in Bonn, where 
Varchenko's conjectured Hodge filtration [22] had been discussed in Brieskorn's 
seminar. We have since learned that Varchenko obtained similar results to those in 
this paper in the summer and autumn of 1980 [23-25]. 

In Sect. 1 the Milnor fibration is embedded in a family of smooth projective 
hypersurfaces. The Hodge theory of a smooth projective hypersurface is explained 
in the fashion of Brylinski [2] in Sect. 2. In Sect. 3 we recall the description of the 
Gauss-Manin system from [8]. Our new formula for the Hodge filtration is 
explained in Sects. 4, 5. In Sect. 6 we prove that it gives the same result as [18]. We 
prove a "Thom-Sebastiani" formula for the Hodge filtration in Sect. 7 which leads 
to a proof of conjecture (5.4) of [18]. In Sect. 8 we show how to prove Varchenko's 
result about the Jordan normal forms of multiplication by f in the Jacobian ring of 
f and the logarithm of the unipotent monodormy of f with our method. In the 
last chapter the mixed Hodge structure is calculated for two examples: 

xP + y~ + z~ +axyz, p-l  +q-l  +r- t  < l,a#:O 

and 

axS+y6+x4y, aeC.  
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Lastly we would like to point out that the formula for the Hodge filtration 
given here fits together very well with what Brylinski conjectures should be the 
Hodge filtration on an arbitrary holonomic 9-module with regular singularities. 

1. The Milnor Fibration 

Suppose f is a holomorphic function defined on some open neighborhood of 0 in 
tE "+a with f (0 )=0 .  Assume that 0 is an isolated critical point off .  By making a 
holomorphic change of coordinates, if necessary, we can arrange that f is a 
polynomial of arbitrary large degree d, such that 

(i) the closure Yo of f - l ( 0 )  in P"+ t(C) has only 0 as a singular point, and 
(ii) for It[ sufficiently small, t #0 ,  the fibre Yt=closure o f f -  l(t) in P"+ I(~E) is 

smooth [1, Sect. 1.1]. 
If we choose a sufficiently small open ball B around 0 in tE" + t, then there exists 

a small open disc S around 0 in C such that 

f : f - I ( s r ) n B ~ S "  

is a C ~ fibre bundle, where S'=Sk(0}. Let X = f - ~ ( S ) n B ,  X ' = f - ~ ( S 3 n B ,  
Without loss of generality we may assume that Y, is smooth for t ~ S'. Let 

F(z o . . . . .  z. +1) = zd, +1 f (zo/z, +1 . . . . .  z./z. +1 )" 

Define YCF "+ I(tE) x S by 

Y =  {(z, t ) l F ( z ) -  t ~ +  ~ =0} = {(z, t)lz ~ Y,} . 

Let zr: Y ~ S  be the projection onto the second factor and Y' = 7r- a(S'). Then z: u 
~ S '  is also a C | fibre bundle, and we can regard f :X'-~S'  as being embedded 
fibre-wise in n: Y'~S ' .  Let X ,  = f -  ~(t), "t ~ S. 

For any t E S" we have an action of nl(S', t) on H"(Xt, IE) and H"(Y,, tE). A closed 
path which starts at t and travels once around 0-in a counterclockwise direction 
represents a generator of nl(S', t). Thus it determines automorphisms z ofHn(yt, IE) 
and a of H"(Xt, (E), called the monodromy of rr, respectively, of f 

We have natural inclusions i: X - .  Y,, it : X , ~  Y~ and r, : Yt-" Y for t ~ S'. These 
give us the following commutative diagram [18, Sect. 4] whose rows are exact: 

0 , H"(Y) ~ ,  H"(Yt) ~ H"(X,) 

I 1 1 
o , H"(Y) "~ , n"(r,) ~ H"(X,) 

Let/Px,= R'f .(Ex,  = U H"(X,) and H~,, = R"r~,~Er,. Then HI, and H}, carry the 
teS' 

structure of fiat complex vector bundles on S'. Thus they have canonical flat 
connections, both of which will be denoted by 0, and called the Gauss-Manin 
connection. The inclusion i: X ~  Y determines a horizontal map i* : H~,,~H"x,. Let 
Os,(lPr,) and Os.(H~,) denote the corresponding sheaves of germs of holomorphic 
sections. 

We are interested in extensions of ~s,(/-Px,) and Os,(tt~,) to locally free sheaves 
of ~s-modules. Such extensions always exist, and all possible extensions are 
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divided into meromorphy classes. Two extensions S" and S a' are said to belong to 
the same meromorphy class if there exist a, b ~ Z such that 

t ~ ' C ~ C t b L ~  '. 

From geometry one obtains several extensions of d~s,(/-Px, ) and 6s,(H~.,) which 
all belong to the same meromorphy class [1, 4, 3, 13, 17, etc.]. This class of lattices is 
characterised by the property that the Gauss-Manin connection has regular 
singularities with respect to them [3, Chap. II, Throrrme 1.19]. For example, if 
~'~ Yis a resolution ofn with singular fibre E, a divisor with normal crossings on Y, 
and Y" ~ ~ S is the induced map, the sheaf Rn~.f2~/s(logE) is an extension of 
Os,(H~,,), which is characterised by the properties 

(i) dt has a simple pole on it, and 
(ii) the residue Reso(dt) has its eigenvalues in the interval [0, 1). 
For our purposes it is more convenient to work with the locally free extension 

Le r of tPs,(H~., ), satisfying 
(i) dt has a simple pole on -~r, and 

(ii) Reso(dt) has its eigenvalues on .~r/tL~r in the interval ( - 1 ,  0]. 
The analogous extension of r will be denoted by Sa x. The restriction 

map i* extends to a horizontal morphism 

i* : Sar--..C# x . 

As in [18, (2.12)] one extends a and �9 to the stalks L~r.o and ~x.0. It is on 
Lex, o/t.2"x, o that our Hodge filtration will first appear. It will measure the 
behaviour of a section of Le x as t tends to 0. In Sect. 5 we shall explain how 
~x, o/tLex, o is isomorphic to the cohomology ofthe"canonical" fibre of the Milnor 
fibration. As Pham showed to us, the best way to describe our filtration is to use 
the formalism of ~-modules.  

2. Hodge Theory of Smooth Hypersurfaces 

In this section we recall the description of the cohomology of a smooth projective 
hypersurface in terms of"couches multiples" following Brylinski [2, Sect. 3]. For a 
complex manifold X we let ~ x  denote the sheaf of germs of holomorphic 
differential operators on X. Suppose that V is a complex submanifold of 
eodimension one in an (n+ 1)-dimensional complex manifold W. Let 

Btvlw = ~'(<~w)= (gw( * V)/(Pw , 

where d)w(, V) is the sheaf of germs of meromorphic functions on W with only 
poles along V. The sheaf ~ w  acts on ~w(* V) and hence Btvjw is a ~w-module. If 
s = So, st . . . . .  s: are local coordinates on W such that V is given by s = O, and b(s) is 
the class of s -  1 in Btvlw, then 

A local section of Btvlw can then be expressed as 

J 
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with g~ local sections of �9 w. Define the de Rham complex of Btvlw by 

DR ( Btv l w) = f2 iv |  iw 

with differential 

d(w|  = dto| + ~. ds~ ̂  co| ) 
j=O 

[8, p. 138] for to e t2w, P ~ ~w. Let i : V ~  W be the inclusion mapping. Following 
1-8, p. 139], define a map 

a : i , f2 v[  - 1] ~ DR(Btv jw  ) 

by 

a (to) = (to' ^ ds) | t5 (s), to s O k, k > 0, 

where co" ~ tP  w and i*(to') = to. Then a is well defined and, as Pham shows, it is a 
quasi-isomorphism. 

Now Btvjw has a natural filtration given as follows. We put Bt~ lw = 0 ifj < 0 and 
we let B ~ l w = O w ( ( j +  1)V)/C)w if j > 0 .  We give f l y [ - 1 ]  the trivial filtration 
("filtration b&e"): Fk(Ov1- - 1]) is the complex with zero on the mth place for m<k 
and f~v- t if m > k. Remark that a is compatible with these filtrations. 

(2.1) Lemma. The map a is a f i l tered quasi-isomorphism. 

Proof. We have the following commutative diagram of complexes with exact rows 

ol 
0 , ~ - - - ' ~ / v ( *  v )  ~ , DR(BEvjw) ,0. 

Here t2w(log V) is the sheaf of germs of holomorphic forms to on W -  Vfor which co 
and dco have simple poles along V, and b is the inclusion map. The map c is the 
canonical map from f2~,(, V) to Ok(* V)/f2" w and is expressed in terms of 6(s) by 

( t o )  ( - 1 )  k+l 
c F = ~ to| to~t&, j,k>__0. 

If we filter t2~(,  V) by pole order the way DR(Btv lw  ) was filtered above, then c will 
be filtration-preserving. The induced filtration on f2~v(log V) is the trivial filtration., 
and b becomes a filtered quasi-isomorphism I-3, p. 80]. So a is a filtered quasi- 
isomorphism too. 

Thus 
H'(W, DR(Btv lw))  = H" - I( V, Qv) = n ' -  t(v, IE) . 

If v is a projective variety the induced filtration on H'(W, DR(Btvlw))  corresponds 
to the Hodge filtration on V, with indices shifted by 1. 

3. Gauss-Manin Systems 

We now return to the families of hypersurfaces f :  X ~ S  and it: Y--,S. The sheaves 
$s,(H~x,) and Os,(H~,,) with their Gauss-Manin connections are ~s,-modul es. In 
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this section we shall recapitulate the definition of the Gauss-Manin systems of f 
and zc given in [8, p. 153ff.]. These are ~s-modules which extend C)s,(H"x,) and 
Os,(H~,) over S. We shall also see how the Hodge filtration on r extends. 

The graphs of f and of n in X x S and Y x S respectively are smooth 
hypersurfaces. So we have 

Bt,~lr • s = ~ ( g r a p h  n ] ( ~ r  x s )  = ( ~r  x s [ ( ~  - -  t ) -  1 ] / ( ~ u  x s 

and 
1 m 

Bt f l x  • s = 3r176 fl(dgx x s) - t~x x s [ ( f -  t ) -  1]/d) x • s 

where Oi = O/Oxi and fi = Of /ax i  [8, p. 129]. 
Now form the relative de Rham complexes of these two modules, e.g. 

DR,el(BE fix • s) = fl} • s / s |  sBt f]x  • s 

with differential 

d ( c o Q P ~ ( f -  t)) = d o ~ |  - t) + L d x j  ^ o ) |  - t) 
j=0 

for co, P local sections of s ~s/s, k > 0, and Nx • s respectively [8, p. 145]. This 
complex can be thought of as the complex of relative forms on X x S with poles 
along the graph of f modulo forms without poles. Clearly it is a complex of 
~s-modules. 

The Gauss-Manin systems o~x and r of f and g respectively are defined by 

~t~x = R"  + lpx  , DRre l(Btflx • s), ~ = Rn + lPr ,  DR~el(Bt~l  r • s ) ,  

where Px : X x S ~ S  and Pr : Yx S - ~ S  are the projections. 
We can simplify this description more. Let j = idr x rc be the inclusion of Y as 

the graph ofn in Y x S. As the complex DRr~t(Bt~lr • is supported on the graph of 
n, one obtains 

~ r  = R" + t x , ( j -  1 DRol l (BEl l  r • s)) 

and similarly for gx-  Now it follows from [8, p. 159] that 

j -  1 DR~I(Bt~I r • s) ~ f2r [D] 

(polynomials in the indeterminate D with coefficients in the complex f2~,) as 
@s-complexes. Here the differential d in the complex Or [D] is given by dO-~4coiD i) 
- ~ d%D i -  Y',~ d f  A coi Di+ 1 and the isomorphism is given by the correspondence 

r D'- al = t )  ' +  11 

The ~t-l~s.action on O r [ D ]  is given by 

{~,. �9 roD' = ogD '+1 , 
ogD ~ = f egD i _ io~D i -  t . 
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As a consequence 

Yfy =R~+I ~,QyED ] , 

A: x---R ~+ ~f, f2~[D'l. 

We define a fdtration F on f21;I-D] (the Hodg~ filtration) by 

k 

FP-k- 1Of, I-D] = ,__@0 O~-D'.  

Then F" is a decreasing filtration by subcomplexes and 9, maps F p to F p-I 
Moreover Or[D] =limF p (inductive limit for p ~  - oo). By restriction we obtain 
the Hodge filtration for O~ [D]. We let 

FPo~gr = image of R n + i n,(FPf2i, [D] ) in o~ r , 
(3.1) 

FP:/gx = image of R n + i f,(FPO,x [D]) in o~ X . 

(3.2) Lemma. J(er = limRn + i n,(FPOr [D]). 

Proof. Because n is a proper mapping, formation of Wrt, commutes with inductive 
limits (compare R. Godement: Th6orie des Faisceaux, p. 194. Paris: Hermann 
1964). 

Corollary. Let V be a Stein open subset of S and let :d be a suitable Stein covering of 
n-l(V). Then if C'(~ denotes the single complex of @s(V)-modules, 
obtained fiom the (~ech double complex of all with values in O r l-D], then 

~r(V)  = H "+ 1 (C'(q/, Or [O]). 

Indeed, because FkO~,[D] is a coherent 60r-module for all k,p, we get by 
Cartan's Theorem B that 

H~(U, FkOf[D]) = 0,  (q > 0) 

for all U C Y open and Stein. Hence for each k: 

F(V, R "+ ' n,(FkOr [D])) = H  "+ ~ (C'(~/, FkOy[D])). 

If each U in the nerve of~/has  only a finite number of connected components, then 
for these U one has 

limr(U, FkOf [ O ] ) = F ( U ,  Of[D]) 

(on each connected component the order of a section of O~[D] is bounded by 
analytic continuation) so we can take inductive limits to get 

,$'r(V) =l im F(V, R ~ + ' n,(FkOr [D])) = l imH n + l(C'(q/, FkO~ [D])) 

= H ~ + ~ (lira C'(~d, Fkt'2r [D])) = H ~ + 1 (C'(q/, O r I'D])) 

as required. 
Observe that Cartan's Theorem B does not hold in general for quasi-coherent 

sheaves (this was pointed out to us by M. Saito). As a consequence the reasoning m 
[8, p. 143] is not correct. Hence we need a different argument to get a similar result 
for ,"fix: 
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(3.3) Lemma. ,X: x_~ f ,(fPx + '[D])/df,(f~x[D]). 

Proof. Write K" = f~x [D]. We have the first spectral sequence of hypercohomology 

E~a= Rq f , (KP) =~ R~+qf,(K'). 

If Cartan's Theorem B would hold for K p, then E~ q would be zero for q >0 and the 
desired isomorphism would follow easily from this. As this is not true, we proceed 
in the following way. As E~q=0 for p > n + l  we obtain a natural map (edge 
homomorphism) 

E~z+ ,. o = ~ , +  l ( f , K  .)_oR,+ 1 f , (K ' )  = EU 1 . 

The cohomology sheaves of the complex K "satisfy: 

ocdi(K')=0 for i 4= l ,n+ l ;  

~ l ( K ' j = f - ~ ( g s  and oWn+l(K ") has support in the singularity x 

(see [8, pp. 159-161]). The same properties hold for the subcomplexes FiK" for 
i < 0. Let Q" = K'/F~ Then it follows that oWi(Q ") = 0 for i # n + 1 and oW" + 1 (Q.) 
has support in x. These properties also hold for its subcomplexes 
FiQ'=FiK'/F~ (i<0). Hence Ri f , (Q ") =0  for i # n + l  and Rn+lf,(Q ") has 
support in x with stalk H" + ~(Q~,), as follows from the second spectral sequence of 
hypercohomology. Again the same holds for FiQ ", i<0. The coherence of 
F~ > 0) implies that the sequence 

0 , f , (F~ f , ( K ' ) - - *  f ,Q"  , 0 

is exact. We obtain the commutative diagram with exact rows 

O--o,,W "+ l ( f ,F~  --o.lrt v"+ ' ( f ,  K ' ) - - -~~ "+ ' ( f ,Q ' ) -~O 

l l' l' 
0 ,R "+ l f , (F~  ,R =+'f,(Q') ,0.  

The map a is an isomorphism because of the coherence of all F~ p. So to prove 
that fl is an isomorphism it suffices to show that 7 is an isomorphism. 

Because each FIQ ~' is locally free, f ,Q" = l im f ,  F~Q'. Both source and target of~ 
have support in 0 r S and 

oft ~ t ( f . Q ' ) o  = ogt o"+ l ( l J /n f ,  F 'Q ' )o  = limoW "+ ~(f,F'Q')o 
= lira (11" + 1 f ,  FiQ')o = limH "+ I(FiQ;) 

= H "  + ' (lim F iQ~,) = H n + t (Q; , )  = ( R "  + i f ,  Q - ) o .  

This concludes the proof. 
Let H '=  d f  ^ ( f ,  fgx)/df ^ d (f ,  fgx- 1) C H" = f,t-Px + t /d f  ^ d(f ,  gPx- 1). These are 

modules studied by Brieskorn [1]. By a result of Sebastiani [28] H" and H" are 
locally free d)s-modules of rank #, the Milnor number of f. Moreover H"/H' has 
dimension g. 

The map o~-*[to] embeds H" into oWx [8, p. 160] with image PX'x .  With 
this identification we have that O,H'= H". 
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(3.4) Lemma. FPX'x = aT-PF'd/rx for p <- n. 

Proof. This is clear for p=n.  We prove by induction on k that d,F~-k~ x 
=F'-k-ld,~ex . The inclusions C are obvious. Take rleF~-ld/rx: then r/=~/1 D2 
+t/o. D with r/o el l" .  Then r/oD=ar(~ooD ) for some 090 ~ H" so ~/=dtco with 
o~ = cooD+thD ~ F ' ~ x  . This settles the case k= 0. The induction step is similar. 

(3.5) Proposition. ,,~ax is a coherent ~s-module and ~3 t is invertible on it. 

Proof. The submodules FP~x form a good filtration of ~x, as 

~(sr) FP fft~ = F p -ra~a x 

and each FP~x=t3~-PH" is a locally free d~s-module. Moreover each quotient 
n - - p  FP/FP+I(p<n) is an isomorphic copy of H"/H" via the mapping d~ , so the 

associated graded module grFoaffx is a coherent gr~s-module. By [8, Ex. 8.2.0, 
p. 811 this implies that ,Crux is ~s-coherent. The invertibility of ~, follows easily from 
the fact that the map Ot:H'--,H" is bijective. 

Recall [8, 11.7] that a germ of ~s-module at 0 is called regular singular if it is 
generated as a ~s-module by a coherent d~s-submodule which is stable under t~ r 

Brieskorn has shown that H " [ t - t l  with its obvious ~s-Structure is regular 
singular [11. Moreover H" [ t -  11 can be identified with the localisation ~x,~0 of~x 
at 0: 

db 
with the action O,. (a| = (Ota)| + a|  -d-f" 

Therefore ~x,tt~ is regular singular. This implies that ~ x  is itself regular 
singular [8, 11.7.31, 

Next we show that the restrictions of ~ x  and ~ r  to the punctured disc S' 
coincide with the sheaves r ,) and r respectively. Observe that 

(gs,(n},) = R" f.ff'~x,|162 (gs, = R" f , ( f -  1r 

where we denote by f also its restriction to X'. Because f has no critical point on 
X', the complex g2x,[D ] is quasi-isomorphic to f - ~ s , [ - 1 ]  (i.e. the complex 
which has f- ld~ s, at place 1 and zero elsewhere), hence 

a~fxls, = R ~ +' f . ax ,  [01 = R ~ f . ( f - 1  ~s,) 

as required. The same argument works for ~r .  
We have two Hodge filtrations on ~rls': one from the filtration F of(3.1) and 

the other from the Hodge filtrations on the filSres ofrr: FPH~(Y~, IE) = (~  H"'-'(Y,); 
r~_p 

this provides a filtration of d~s,(/-Pr,) by holomorphic subbundles. Again these two 
filtrations coincide. This can be proved as follows. First observe that the Hodge 
filtration on H"(Yt) is obtained from the trivial filtration of fir (see Sect. 2). A 
relative version of this tells us that F~s , (H} , )=  R'n.(tr ~_ pf2~,/s, ) where tr~ denotes 
the trivial filtration. Cup product with d~t produces a morphism of complexes 

a},/s,-~a~, [o1 [1] 
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such that r is mapped to FPg21, + 1 [D]. If we grade each side for its filtration 
we obtain the map 

n~,,,s, ~ @ of,. +'. D'- 
r>O 

and the differential in the right-hand side is reduced to cup product with -dlr .  
This implies that we have a filtered quasi-isomorphism between (f21,,/s, , tr_>_) and 
(f2 r , I'D] [ 1 ], f ) .  Hence R"zr.(a_> pg2"r,/s, ) = R" + 1 zc.(FPt2i,, [D]) = FPdt~rls , . 

(3.6) Lemma. Je~y is ~s-coherent. 

Proof. The trivial filtration on f2~ [D] is a filtration by it- l~s-subcomplexes , hence 
the first spectral sequence of hypercohomology 

E~=Rqn,f2~ED] ~ RP+qn.gr[D] 

is a spectral sequence of ~s-modules. The E~'s  are ~s-coherent, as 

Rqrc. f2{, [/9] = Rarc.t2{,| s 

and each Rqzc.t2~, is (gs-coherent because zc is proper. 

(3.7) Proposition. The restriction mapping i*: (gs,(H~,)~(~s,(Hnx,) extends in a 
natural way to a homomorphism of  ~s-rnodules 

i* : ~r--'  ~ x  

whose kernel and cokernel are t~s-coherent. 

Proof. The existence of i* follows immediately from the description of ~ r  and ~ x  
with t~ech double complexes; in fact, for any complex I" of sheaves on Y one has a 
morphism of double complexes 

C'(q/~,, I') ~ C "(a-//x, I') 

which induces the restriction mapping on the hypercohomology groups, and is 
compatible with additional structures on I" like a ~s-action. On S' the mapping i* 
comes from a horizontal mapping between H~, and H~,, so ker(i*) and coker (i*) 
are coherent (gs-modules on S'. As they are ~s-coherent, it suffices to show that 
their stalks at 0 e S are ~s, o -modules of finite type. 

By the proper base change theorem 

~r ,o  = H"+ l(Yo, Qr [D]lro), 

From the second spectral sequence of hypercohomology 

E ~ = H ~ ( V o , ~ ( r ) )  ~ w+q(Yo, r ) 

(1 a complex of sheaves on Yo, ~ '  stands for cohomology sheaf) we obtain the 
commutative diagram with exact rows 

H"(Yo, dgs.o)---*gf'r,o---~J/~ 'H"+ I(Yo, ~?s,o) 

1 l" I l 
H"(Xo, ~s, o)---*~x, o - ~ x .  o ---~H" + l(Xo' (gs, o) 
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,because ,,ugh(f2 i, [D]) = 0 for i 4: 1, n + 1 and ~f't(g2i, [D])lr o is the constant sheaf with 
fibre Os. o. This shows that i* can be considered as an edge homomorphism in the 
spectral sequence. The stalk of ker(i*) at 0 is then a quotient of H"(Yo, e)s,o) 
= H"(Yo, C)|162 o which is a free d~s,o-module of finite rank. Hence ker(i*) is of 
finite type. Similarly, coker(i*) is an d~s, o-submodule of a free 60s, o-module of finite 
rank, hence it is also free of finite type. 

(3.8) Corollary. ~ r  is reoular sinoular. 

4. The Canonical Lattice 

In this section we show how to embed the canonical extension L#x of (gs,(H"x,) (cf. 
Sect. 1) in the Gauss-Manin system At' x. Let us first summarize the facts we know 
about af:x: 

(i) A:x is a coherent ~s-module and its restriction to S' is a locally free 
dgs,-module of rank p, the Milnor number of f ;  

(ii) 9g: x is regular singular at 0; 
(iii) the operator 0t is invertible on alex, o. 
It happens to be the case that such ~s-modules have been classified. For a ~ t12 

and q ~ N let 

. I I  ~' ~ = ~ s / ~ s "  ( t O , -  a )  q . 

Then by [8, p. 107] there exist a~ s IE and qj ~ lq, j = 1, ..., k with aj + - 1, - 2,... 
and an isomorphism of ~s-modules 

k 

(4.1) j_~ .Ag"J' ~J ~ ~u �9 

The numbers aj which occur have the property that e x p ( -  2~iaj) is an eigenvalue 
of the monodromy operator ~ with a Jordan block of size qr By the monodromy 
theorem the aj are rational numbers. In fact we can arrange that - 1 < a i_-< 0. 

For  a ~ C we define 

Ca = U Ker(tOt-a)" C ~fx, o. 
r > 0  

(4.2) Lemma. For every a the space Ca has finite dimension and C~=0 /f 
exp(-2nia) is not an eioenvalue of a. 

Proof It clearly suffices to show these properties for each of the summands in the 
left-hand side of (4.1) separately. Hence fix b ~ ,  b 4= - 1 ,  - 2 ,  ... and q ~ lq. Let 
oct =./t 'g 'q with the canonical generator u corresponding to the class of 1. 

Put  B=tE .u~IE. Nu~...@IE. Nq-Xu where N=tOt-b. One easily checks 
that the natural mapping from B to ~ '  is injective. For  k ~ Z we let "r (-gS, O" O[ kB 
C.~t'. It is easy to prove that ~r n~Clk=O, ,M~C~t) if and only if i>__j, 
.ll~=O~-'Mk. Moreover r162 so ,llk=O~'kB@~lCk+l for all k. The 
operator N acts on each Jr' k and on .,r + t ----- 0t- kB it acts with eigenvalue - k; 
more precisely: (N + k) ~ = 0 on ,4/k/./t'~ + t. We determine the intersection of Ca with 
.r162 Let veCoC~Jt, v~O. Then (tOt-ayv=O for some r > 0 .  Choose k such that 
v ~.4/~ but Vr Because N acts on ,/t'JJCk+l with eigenvalue - k  and 
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(N + b -a ) r v  = 0 we have that a = b + k. A similar argument shows that Cb+k 
C~ag = Oi-kB. The monodromy operator o f . / / ac t s  with eigenvalue exp(-2nib) so 
b - a ~  Z if and only if e x p ( -  2zcia) is an eigenvalue of the same operator. 

(4.3) Definition. A filtration V on ~x ,o  is defined as follows: we let V~x, 0 be the 
Os, 0-submodule generated by all subspaces C~ with b > a and we let V> Jt~x,o be 
the submodule generated by all Cb with b > a. 

It follows immediately from Lemma (4.2) that for every a: 

VaX'X,O=CaO V>aX~X,O �9 

Remark that V~oWx, o is a free ~Ps,o-module for a > - 1, because the d?s-torsion part 
is contained in ~ C~. 

a - -  < - - 1  

(4.4) Definition. We let -Wx C ~ x  be the ~s-submodule which coincides with oW x on 
S' and with --q'x, o = V> _ l o'~,~ o . 

Then t.Wx, o = ~;- l ~ x ,  o = V> ooWx, o and Lax is a free (gs-module of rank/~. Hence 
s o/t=Wx, o = _ l@a0-. Co and td, acts on this space with eigenvalues a e ( -  1,0]. 

Thus h~ is indeed the canonical extension of (gs,(H~x,). 
The filtration Vinduces also a filtration on ~ x ,  o/ t~x,  o, which we denote by the 

same symbol. It is on 

Grv(Lex, o/ t~x ,  o) = _ ,@< o Ca 

that our Hodge filtration will first appear. Recall that C , ~  VUV>a. We let 

Fv C a = 1- Fv c~ V~ + V> j /  V> a = image of ~ - V H" c~ Va in Ca (4.5) 

and 

FP(~x,o/t.~'x.o) = _ ~ 0  ~_ o FPCo . 

Here F" is the filtration on ~r o from (3.3). 

Remark. The filtration V as defined above is the same as the order filtration 
associated to the "microlocal asymptotical expansion", considered by Pham I-9, 
p. 274]. 

Example. Let f ~ IE [Zo, ..., z.] be quasihomogeneous with weights Wo . . . . .  w., i.e. f 

is a linear combination of monomials z'~~ with ~ wimi = 1. Suppose that f 
i = 0  

has an isolated singularity at 0 and let {z ' lm ~ A} be a monomial basis for the 
Artinian ring IE [Zo, ..., z.]/(~f/~zo . . . . .  Of/~z.). Put co., = zmdzo ̂ . . .  ^ d z . / ( f - t ) .  
Then {cornlm ~ A} is an d?s-basis of H". Moreover 

t~tO~rn = (a(m) - 1) tOrn, 

n 

where a(m)= Z wi(mt+l),  hence tO,,~Co~ml-r Let k ( m ) = - 1 - - a ( m ) ]  and 
l = 0  

tlm=dtk~rn)to,~. Then L, ex. 0 is generated by all r/m, m e A .  The resulting Hodge 

filtration on ~ ~E.rtrn ~ LPx, o / t~x .o  is the same as the one given in 1"19]. 
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(4.6) Definition. We let .W r C ~ r  be given by s r = (i*)- t ~x ,  where i* : ~ r  ~ x  ~s 
as in (3.7). Because ker(i*) is t~s-coherent, .s r is then indeed isomorphic to the 
canonical extension of e)s,(H~,, ). 

5. The Canonical Milnor Fibre 

In this section we explain how our filtration F appears on the cohomology of the 
canonical fibre Xo0 of the Milnor fibration. 

Let e: U--,S' be a universal covering of S'. Set X oo = X x s' U. Then X~ is the 
total space ofa  differentiable fibre bundle over the contractible space U; so for any 
s~S" we have a diffeomorphism X o o ~ X s x  U and for all u~ U the natural 
inclusion 

Ju : X~(u~-* X~o,Ju(x)= (x, u) 

is a homotopy equivalence. 
In this way the space H*(X~,(E) is naturally isomorphic to the space of 

multivalued horizontal sections of H~x, over S', i.e. to the space of constant sections 
of e*H~c, over U. Write the monodromy a as o = ~rstr u = outr, with as semi-simple 
and tr~ unipotent. Let N = logau. There is a natural action of ~r on H"(X ~, (E). So let 
H'(Xoo, IF,),, - 1 < a < O, be the eigenspace of ~-, for the eigenvalue e x p ( -  2nia). 
Thus 

n~(xoo, ~ )  = _ l@<~_ ~ I-l~(Xoo, (E)~ . 

We define an isomorphism 

: ~x,  o/tLex, o--'H~(X~, ~) 

by mapping the summand Ca to the summand H'(X~o,~)~ via the map 

v ~  t -  ~ exp (N log t/2~zi) o. 

To show that Ca is mapped indeed to H~(X| use the fact that 
N v =  -2rc i ( td t -a )v  for v E C~ [3, p. 53]. The inverse mapping is given by 

w ~ t ~ exp ( -- N 1 o g t/2zi) w.  

Define the filtration F on H*(X | ff~) by 

FP H"( X o~, IF,) = ~ FP( ~ex, o/t.Wx, o). 

We define the space Y| in a similar way, and interpret its cohomology H"(Y| ~) as 
the space of multivalued horizontal sections of t~s,(H~, ). Again we have the 
restriction map 

i*:H~(Y~,  C)~H~(X~,  C). 

On H'(Y| we have the limit Hodge filtration Fs of Schmid [15], and on 
/-P'(X| the Hodge filtration Fst defined by the second author [18]. It is our 
purpose to show that F s t  = F ,  but we will use Fs to prove this. 

if H n Y. with We first recapitulate th~ construction of Fs. For  u e U, we ident" y (,(~)) " 
Hn(Y| via the homotopy equivalence y~--~(.v, u) (this amounts to evaluation o~ 
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horizontal sections of e*H~., at u~ U). The holomorphically varying Hodge 
filtration on the fibres of n: Y ' ~ S '  gives us a holomorphic mapping from U to a 
suitable flag manifold of H"(Y~o, r  u ~Feiu~- Let us take for U the subset oftE given 
by Ira(u) > c for some c e R and e(u) = exp(2rtiu). Clearly under our identifications 
F~u+ 1)= z-1F~u~ where z is the monodromy operator on H"(Yo~, C). By abuse of 
notation we also let N denote logT,. According to Schmid's results, the limit 

lim exp(Nu)F'~r exists: this is the limit Hodge filtration Fs. 
imu"*  o0 

It was observed by the first author [16] that the map i* is surjective provided 
that the degree o f f  is sufficiently large. As a given isolated hypersurface singularity 
can always be represented by a polynomial germ of arbitrary large degree, it may 
be assumed that i* is surjective. But then Fst is just the image of Fs under i*, due to 
the fact that i* is a morphism of mixed Hodge structures and hence strictly 
compatible with the Hodge filtrations. 

An isomorphism 
7" : ~q~r, o/ t ~r ,  o ~ H"( Y~ , IF.) 

is defined in a similar way as q~, and such that i* o 7' = # o i*. The space F~ certainly 
contains ~(y + t~r ,o)  for y e FP.Cgr, on~r .o .  Hence to prove the inclusion 

(5.1) FPH"(X~, IF.) C F~t 

it suffices to show that, if d = d e g f  is sufficiently large, one has the equality 

(5.2) FP ~ x  = i* FP ~ r  . 

For, let us assume this and let Ix] e FPCo, - 1 < a < O, be represented by x ~ FP~x,o 
nV~. Then we may choose y~FP~y ,o  with i*(y)=x. As x ~ x , o ,  Y e ~ r , o  
c~FP~r, o so 7Jfy + t~r ,o)  ~ F~. Hence ~/i([x]) = ~([i*y]) = i* 7"(,v + t~r .  o) ~ i*F~ 
(F~t. We make (5.2) precise as follows: 

[5.3) Lemma. Suppose that d = d e g f  is so big that there exist QI . . . . .  
Q~e(gs,o[Z o . . . . .  z.] of degree < d - n - 2  such that the forms o~i=Qidzo^ ... 
^ d z . / ( f - t ) ,  i e l  . . . . .  I~ generate F"~x,o as an (~s,o-module. Then FPaUCx,o 
= i*FP~r, o. 

g 

Proof. Let x~Ft'.JC~x, o. Then x=d'~-Px ' for some x'~F".ggx,o. Write x '=  ~ g~o~ 
i = 1  

with ~ ~ Os, o, i =  1, . . . ,#. As d e g Q ~ < d - n - 2  the forms o~ extend to forms t h on 
l ~"§ x S  with a pole of order 1 along Y, so x'=i*(y') with y '=  ~ #~thzF"~r.o �9 

i = l  

Then x=d~-px'=O~-l'(i*y3=i*O~-~(y3ei*FP~r, o. We conclude that F ~ x , o  
~ i * F ~ r .  o. The converse inclusion follows from (3.3) and the proof of (3.7). 

The converse of (5.1) will be proved in the next section. 

6. 

In this section we will prove that 

FPH"(X ~, IF.) = F~t 

for all p r I .  Observe that this trivially holds for p > n: in that case F ~ = 0 as Fgt = 0 
and FP(F~r Note however, that F~ but that the equality 
F~ is not at all obvious (and yet unproven); it is equivalent to the 
statement that ~x .  o C ~'~H". 
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Our proof is similar to Varchenko's proof that his asymptotic Hodge filtration 
induces the same filtration on GrwH"(X~, C) where W is the weight filtration [see 
the proof of (6.5)1. The basic tool is the following 

(6.1) Lemma. For b E Q let us define S(b) to be the image of F"~x,oc~Vb under the 
canonical map Vb~ VjV>b = Cb, and let d(b) = dimS(b) - d i m S ( b -  l). (This is a 
non-negative number as 8 t  1 : S ( b -  1)-~S(b) is injective. ) Then 

~. bd(b) < ( n -  l)/~/2. 
b 

Proof. See [25, Lemma 1.4]. 

(6.2) Lemma. With notations as in (6.1), write b = a + n - p where p e Z,  - 1 < a < O. 
Then d(b) = dimGr~C~. 

Proof The space S(b) is mapped isomorphically to F~Co by d~-P. Hence d(b) 
= dim F~  dim F p + 1C~ = dim Gr~ C~ 

Write ju =/~'+ #" with #' = dim Co, #" = ~ dim Co. 
- - l < a < 0  

(6.3) Lemma. ~ dimFP>(n+3)l~'/2+(n+2)lz"/2. 
p = 0  

Proof 

dimFP= ~ ~ ~ dimGr~C~ 
p=O -l<a_--<O p = 0 q = p  

P 
= ~ ~. ~ dimGr~C, 

- l < a < O  p = 0 q = 0  

= ~ ~ (ib + 1) dim G r i t .  
- l < a - - < 0  p = O  

> E E (P+ 1)dimGr~Ca 
- l < a ~ 0  p<n 

= Y. Z (n + 1 + a) dim Gr~Co 
- 1 < a _ 0  p~n 

- ~. Y. ( a + n - p ) d i m G r ~ C ~  
- l < a < O p < n  

= ( n +  1)#+ ~ a d i m C , -  ~..bd(b) 
- l < a < 0  b 

use complex conjugation on II"(X~, IE) to see that dim C, = dim C_ 1-, for 

- -  1 < a < 0 so -l<.<oY a dim C, = �89 - 1 <.<0~ ( a -  1 - a) dim Co = - ~u"/2] 

>- (n + 1 ) ~ -  #"/2 - ( n -  1/#/2 = (n + 3)t~'/2 + (n + 2)ju"/2. 

(6.4) Our next step will be to show that equality holds in (6.3) if we replace F" by 
Fsr Then we may conclude that dimF~ for p=0,  ..., n, so Fr=F~t for 
p = O, 1, .... n. As F~st = H"(X| •) and F" is a decreasing filtration, this implies that 
in fact F p = F~t for all p ~ Z. 

The desired equality is based on a symmetry between the Hodge numbers of 
the mixed Hodge structure (H'(X| Fst, W). With the help of the fact that the map 
i* : I-P'(Y~)--,,tP(X,~) is surjective this admits an easy proof, so we will give it here. 
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(6.5) The main facts we need are the following. Consider the mapN=log% on 
H"(Y| where % is the unipotent part of the monodromy. Then N"+I=  0 hence 
there exists a unique filtration 

(O)C WoC W1C... C W2,-1C W2,= H"(Y~o) 

with the properties that N maps W~ to W~_ 2 and the induced mappings 
N'" W. /W. ~ W~_,/W~_,_ 1 are isomorphisms. The filtration W is called the �9 n + r /  n + r - 1  

weight filtration of N with center n. Moreover N maps F~ to F~- t and the triple 
(H"(Y| Fs, W) is a mixed Hodge structure. As N shifts the Hodge filtration by - 1 
and the weight filtration by - 2 it is a morphism of mixed Hodge structures of type 
( -  i, - 1). The semisimple part % of the monodromy preserves both Fs and W. 

Consequently we get a splitting of the mixed Hodge structure: 

H"(Y,) = H"(roo)~ ~H"(Yoo), l , 

where the subscript refers to the eigenvalues of the action of % on the 
corresponding subspace. Consider the exact sequence 

O~H"(Yo) ~P ,H"(Yoo) '* ,H"(Xo~)~O. 

This is an exact sequence of mixed Hodge structures 1-18, p. 543] and by the in- 
variant cycle theorem the image of sp coincides with ker(~ - I ) =  ker(N)nH"(Yoo)l 
[17, (5.12)]�9 

Thus we get a complete description of the induced weight filtration on H"(X~) 
and its relation to the induced morphism N: 

- on H"(XJ , I=H"(Y |  W is the weight filtration of N centered at 
n as before; 

- however, on H"(X~)t =H"(Yoo)t/ker(N)l, W is the weight filtration of N 
centered at n + 1. The proof of this miracle is an easy exercise. 

The Hodge numbers of (H"(Xoo), Fst, W) are given by 

h pq = dim Gr~s Gr~+ qH~(X~) ; 

we have an obvious decomposition h pq = ,,tl'w T" h vq, 1. Moreover dim Grist = ~ h pq. 
q 

We have a double symmetry between these Hodge numbers: 
t i t  I l P q  - -  l ~ q P  - due to complex conjugation on Grp+q we get ,.t - - t  and h~l = h~gl; 
p w ~ ,G~-~Gr~._p_~(p+q>=n) - due to the isomorphism N p + q-": GrrGrp + q 

on the eigenvalue 4:1 part we obtain: 

and similarly (taking care of the shift in indices) 

h{q=hnl+ l-a,n+ l-p.  

n 

(6.6) 1-emma. 5~ dimF~t=(n+ 3)#'/2 +(n+ 2)#"/2. 
p = 0  

Proof The computation is done in 125, Sect. 3.1]. This finishes the proof that our 
Hodge filtration coincides with Fsr 
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7. Monodromy and Multiplication by f 

In this section we apply our main result to give a simple proof  of a result of 
Varchenko [24] (cf. also [14]). We assume that f has an isolated singularity at 
0 E ~" + t. We let 

f n + l  n 
Q = f i r .  + ,, o / d f  A 0 r  + ,, o ,  

a space which has dimension #, the Milnor number off ,  and which we identify with 
F . ~ x  ,o/Oi- tF.:,Ugx, o by the correspondence [co] ~ [ ro / ( f -  t)]. 

As an ~s, o-subquofient module of.Wx, o, the latter module inherits the filtration 
V. It is given explicitly by 

V~(V%,Vfx, o/Ot - ' F ' ~ x .  o) = [ V~nF"Jfx, o + 0~- 'F"gx,  o]/O;- ' F ' g x ,  o. 

We also denote by V the corresponding filtration of Q[. 
Remark that f .  V~Q y c Vb + ~Qf as fro = to  for co ~ F"~x,  o and t V~ C lib + t for all 

b. Hence multiplication by f induces a graded endomorphism of degree one of 
GrVQ :, denoted by {f}. 

(7.1) Theorem (Varchenko). The maps {f} and N =logo'u ~ EndH"(X|162 hare 
the same Jordan normal form. 

Proof. The map N is a morphism of mixed Hodge structures of type ( -  1, - 1). 
Hence all powers of N are strictly compatible with the filtration F (with the 
appropriate shift). This implies the existence of a splitting of the Hodge filtration, 
i.e. a graduation of H'(Xoo, r which has F as its associate filtration, such that N 
becomes a graded morphism of degree - 1. In particular one concludes that N and 
its induced endomorphism GrFN of degree - 1  of GreH"(X| r have the same 
Jordan normal form. 

We have a canonical isomorphism 

GreH"(Xo~, 112) = _ t <(~___ o GrFC~ 

and the corresponding endomorphisms Np.a: G r ~ C , ~ G r ~ - I C ,  are given by 
Nl,,.(x ) = -- 27ti( tOt-- a) x -- -- 21ri t~9 t x m o d F  p. 

On the other hand it is immediately seen that for b ~ ~ ,  b = n -  p + a with p e Z 
and - 1 < a s 0, the map 

V c F" x.o VdV>a=Co 
induces an isomorphism from GrVQ: to Gr~C., and the diagram 

Gr~ Qf  tr~ , GrV+ l Qf 

Gr~,C~ ~v,,,. , Gr~_~C ~ 

commutes up to the factor - 2hi. Hence {f} and G r i N  have the same Jordan type. 

(7.2) Remark. Suppose that the function f is non-degenerate with respect to its 
Newton diagram [5]. Then one has the so-called Newton filtration on t'~c,, ,,o. It 
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has been proved by Saito [12] that the filtration on QI, induced by this Newton 
filtration coincides with the V-filtration with indices shifted by 1. 

(7.3) The singularity spectrum. For b e Q we have the number d(b)= dim Gr~C, 
= dimGrVQ y where p e Z, - 1 < a < 0 (6.2). The spectrum of the singularity f is the 
unordered sequence {b~ . . . .  , bu} in which the number b occurs with multiplicity 
d(b). These numbers have first been considered in [18, (5.3)] in connection with the 
Thom-Sebastiani problem for the mixed Hodge structure (see the next section). 
Their importance for deformation theory has been first emphasized by Arnol'd 
[30], see also [31]. The most important properties of the spectrum are the 
following: 

(i) range: d(b) 4:0 implies that - 1 < b < n; 
(ii) symmetry: d ( n - l - b ) = d ( b ) ;  this can be deduced from the results in 

Sect. 6. 
(iii) additivity: for polynomials f E C [x0 . . . .  , x,], O e C [Yo, ..., Y,,] with iso- 

lated singularities at 0 the spectrum of f + O is obtained as {a~ + bj + 1 } where a~, bj 
run over the spectrum of f and O respectivel3~. This is due to Varchenko ([25, 
Theorem 7.3]) and is a consequence of the Thom-Sebastiani result which we prove 
in Sect. 8. 

(iv) semicontinuity: refine the notation d(b) as follows when f is variable too: 
let d(b; f,  0) denote d(b) for the germ of the function f at 0. Suppose that we have a 
deformation f~ offo and critical points x~ . . . . .  x, o f f  which approach the critical 
point 0 offo as t tends to 0 and which have the same critical value. Then one has for 
every a ~ 1~ the inequality 

~ d(b;f.x,)<= E d(b;fo, O). 
i = 1  a < b < a +  l a < b < a +  l 

This has been proved by Varchenko for deformations of low weight of 
quasihomogeneous functions [27] and by the second author in general [20]. 

, 

The goal of this section is to prove a "Sebastiani-Thom" formula for the Hodge 
filtration. 

Let f ~ C [Xo . . . .  , x,], g ~ 112 [Yo . . . . .  y,,], both with an isolated singularity at the 
origin. Denote by X{ and XL the corresponding "canonical Milnor fibres" and a I, 
% the monodromy operators. 

Then f + g e C[Xo, ..., x,, Yo, -.., Ym] also has an isolated singularity at the 
origin, and X{ +g has the homotopy type of the join of X{ and XL. Hence 

(8.1) /./,, +,,,+ t (~r + g ,~ ,  n f n 0 __ ,__~ , C ) = H  (X~ ,~) |  (X~,lI~). 

Moreover 

ff f +o=af(~ff o (cf. [29]). 

Our formula for the Hodge filtration is as follows. 

(8.2) Theorem. 
F~H. +m + lt y f  + g ~ - FiH"(X~, IF.).| ~)b 

a+b~=c I ~ FiH"(X~' f)a|162 f)b" 
= - i + j = k -  1 
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The proof of this result uses the idea of Malgrange's proof of the Thorn- 
Sebastiani result [6, p. 424]. Let 

R=C{(Ot ' }}={v~=oapOi- '~C[[Ot~]]  v=~,oavt'/P'~C{t}} 

be the ring ofmicrodifferential operators with constant coefficients, and let L = R E0,] 
be its quotient field. Then according to [7], Proposition 2.5 H~ is a free R-module of 
rank#i and ~xs .  o = H~| RL. This is most conveniently checked by considering a 
decomposition of ~gxt.o as in (4.1): 

(8.3) Lemma. Let b e Q, b 4: - 1, - 2, . . .  and let q ~ N .  Let ub be the class of  1 in 
j/~o,q=~s,o/~s,o(tO _b)q+ 1. Then {(tO,--b)~ublj=O . . . . .  q} is an L-basis of  V#bO 'q. 

Proof. First suppose q = 0. Thus tOtub = bub. It follows that 

tkd~ub = (b - r + k)... (b - r + 1) 0~- kU b 

for r ~ 0, k > 0. Any w e ~s, 0ub may be written 

w= ~ a,(t)O~u b 
� 9  

with ao . . . . .  a, ,er If we write a�9 ~ ak,?, then substituting for k �9 t dr, we 
obtain k = o 

w=�9149  ) �9 

Clearly ~ a k , ( b - r + k ) . . . ( b - r +  l)g[---keR; so J t '~ '~ . ub. In general 
k = r +  I 

Jlbo' q/ ~s, o( tet-- b) q uo = ~r q-1. 

Arguing by induction, we find that ub . . . . .  (tOt-b)quv is a basis of J/Cbo'~. 
For notational convenience, let us write ~y,  Aey, Vb y, C~ instead of ~x~, o, Sexy. 0 

etc. 

(8.4) Corollary. ~ y  is an L-vectorspace of  dimension fly and each VbY ;,egy is a free 
R-submodule of rank #r" 

Notice that ,ua, q~ ,ub,�9 ~-,,o ,~L~'-,0 becomes a ~s,o-module if we let 

(8.5) t (u |  tu |  + u|  u ~ ,1"[~ "q, v ~ .Jlbo '' . 

Thus 

and 

Ott(u| = gttu| 4- u |  gttv 

(8.6) (g t t - -a - - l - -b - -1 ) ku |  ~, (g , t -a -1 )Ju |  
j=O 

Now (8.5) makes ~ " s |  into a ~s,o-module too. We want to show that it is 
isomorphic to "~s+g" 
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(8.7) Lemma. There is a natural isomorphism 

�9 ,,t t t  /p 
~c. H:|  ~ H :  + o . 

Proof. One defines ~: as follows. Consider the map 

K o "H'~ x H ~ H ' ~ +  o 

given by ~o(X, Y) = x ^ y. One checks immediately that ro is well-defined and that 
r0(O~ ~x, y) = to(X, Or- ly). Thus ~o is R-bilinear and defines a homomorphism as 
above. Computing modulo 0;-1, one obtains the multiplication map 

r {x} /d f  | r C {Y}/Jo-'~ff~ {X, y } / J f  + o 

which is bijective (J stands for the Jacobian ideal, i.e. the ideal generated by the 
partial derivatives of the corresponding function). So ~ is an isomorphism. 
Moreover it is r o -linear. 

It deafly extends to an isomorphism of ~s,o-modules 

Our next step is the computation of C: +g in terms of the spaces C~: and C~. Observe 
that C~: = ~ ker(O:- a- I) 4 as 8,t = tO, + I. Using formula (8.6) one deduces that, 

q>O 
if x e C~: and y~ C~, then x| e C~:++g+ r Using the relation ~tC~:=C~:-i and a 
dimension count one obtains: 

(8.8) Lemma. C~+g= ~ C~| 
- l < a _ < O  

Proof. The right-hand side injects into C:+g; moreover one has 

d imC~+g=#z+g=#y '#g  
- l < c ~ g O  

and 
~. dim C~- dim Cg _, _ 1 

- 1 < r  - - l < a < O  

= ~ dim C~. ~ dim Cg = # : .  #g 
- l < a ~ _ O  - a - 2 < b < - a - 1  

hence the lemma follows. 
It is clear from the above that the isomorphism 

does not map .LPI| 0 isomorphically to -~I+a" However, one can write 
-~:| ~ g ~  where ~r is the R-submodule generated by 

.4= .+b@-i C | 
- l < a , b _ O  

and :~ is generated over R by 

B= C. | Cb. 
a +  i = -  

- l < a , b ~ O  

Let us write C:  = _ 1 <(~. <o C. I and use C g, C s+~ in a similar way. Then the reasoning 

above shows that C I ~ C  g = AI~B while C I+g = O,r(A)@~(B); moreover ~I+o  is 
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the R-module generated by C f+~. More generally r(Vf| Vf+-~+ 1. From 
this one deduces that 

r ( F i ~ f  | RF~g,~) = F' + j + 1  ~ f  +g" 

We now proceed to the proof  of Theorem (8.2). Let 

"FkA= a+ (~-~ 1 Y'~ FiCfa| 
- i + j = k  

- l < a , b _ < O  

and 

"FkB= ,,+b(~ 1 ~" FiC~|  
- i + j = k - 1  

- 1  < a , b < O  

We write "F k = ~tx(TkA)@~( 'FkB)C C s+~. To prove the theorem we must show 
that "F k = FkC f+g for all k. To achieve this, we first prove that 'FkC FkC f+g and 

n + m + l  n + m + l  

then that Z d im 'Fk= ~ dimFkC y+9. (This is the same line of proof as 
k = O  k = O  

Varchenko's in [25, Sect. 7].) 
Take x ~ UC~,  y ~ F~C~, - 1 < a, b <-_ O. Suppose that a + b > - 1. We must show 

that d~x(x| !~i+J{~f,,,...,,a+b. + g By the definition of F ' ,  there exist x 'E H~, y '~  H~ such 
a - - i  t that x - O  t x ~ Vf~, y -O~ ' -Jy '  ~ Vg>b. Then 

~9,~c(x| - ~7 + "+ 1 -~- J(x' |  = ~,[~((x - ~7-'xO| 

+x(aT- ix , |174  v f+g vf+a 
~ t ' > a + b + l  =" � 9  

Hence 0t(x| In a similar way one shows that, if a + b__< - 1 ,  then 
x ( x |  ~Fi+j+lr~f+~.~o +b + 1- As a consequence, "FkcF~C/+g. 

To prove the dimension statement, pttt h~.~ = dimGr~C f and similarly for h~.b. 
Then due to the double symmetry between Hodge numbers (6.5) we obtain that 

(8.9) h~r,,,=h"f -f-, t -o  if a4=O,h if,o-,,f,o-i'+l-i 

Thus 

n + m +  1 n + m +  1 

Z dim'Fk= E ( k + l ) d i m ' F k / " F k + l  
k = 0  k = O  

= ~, ~ , ( i+ j+l )h~ ,ah~ ,b+ ~, ~ , ( i+j+2)h~,ah~,b.  
- l < a + b _ _ _ O i , j  - 2 < a + b < l  i , j  

To use the symmetries of (8.9) we must distinguish several cases, according to 
whether a, b are zero or not etc. We obtain that our sum is equal to 

�89 ah~ b+ 1 " ' " �9 , 2(n+m+3)Y' .  hy, a~,b, 

where in Y'.' we take the summation over all i,j, a, b with a + b = 0 or - 1 and in ~" 
we take the i, j, a, b with a + b 4= 0, - 1. Thus 

Z t / 4 i  ~ j  P ~-'~a k i  ~,j - -  , , a  
,,f.a,J.g,b=~f+g and z.., , ~ f ,  a l ~ ' g , b - I . ~ f + o  �9 

So our  desired equality follows from (6.6), applied to f + g. 
Next we indicate, how one can prove Conjecture (5.4) from [18], using 

Theorem (8.2). We will formulate a more precise result. 
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Consider the category consisting of mixed Hodge structures together with an 
automorphism of finite order. We define the join of two such objects (U, 7,) and 
(V,, rv) as (U * V, y,| where 

(i) (U * lOz = Uz| 
(ii) For a ~ ( -  1, 0] write Ur = ( ~  U, where U, = Ker(7 . -  e-  Z,la). For 

- l < a - - < O  

Vc one has a similar decomposition. Define the filtration W on (U * V)c = U c | r V c 
by 

W~(U �9 V) = @ Z W,U,| W~V~ 
a,b i,j 

with summation over all i,j such that 

i+j=k if a=b=O 

i + j = k - 2  if a + b = - I  

i + j  = k -  I else. 

(iii) The Hodge filtration F on (U * V)r is given by 

FP(U * V)= (~  Z Fku,|162 
a,b k,! 

with summation over k, ! such that 

k + l = p  if a + b > - l ,  

k + l = p - 1  if a + b < - l .  

We omit the proof that (U * V, W, F) is again a mixed Hodge structure: this is 
straightforward but tedious. The reader who likes such computations may amuse 
himself by checking the associativity of the join product. 

(8.10) Example. Let V be the trivial Hodge structure on ~ ,  purely of type (0, 0), 
~ = -  1. Then V* V = ~ ( - 1 )  with trivial action, purely of type (1, 1). More 
generally: for any U one has (U * V) * V= U ( -  1). 

(8.1 l) Theorem. Let f and g be as before. Let U f be the pair consisting of the mixed 
Hodge structure on Hn(X~, C) together with the automorphism as of finite order. 
Define U a and U f+g in a similar way. Then 

Uf+~ ~- Uf* U o �9 

Proof. By virtue of the Sebastiani-Thom theorem and Theorem (8.2) we only must 
check that the weight filtration is the right one. According to (6.5) this filtration is 
completely determined by Nr Let L(N) denote the monodromy weight 
filtration of the nilpotent endomorphism N, centered at 0. Then the problem is to 
show that 

L(Nf+,)k= ]~ L(Nf)i| �9 
i+j=lc 

The Thom-Sebastiani result implies that 

hence 

Nf+g=Nf |  1 + 1 | 
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Choose representations Q and Q' of the Lie algebra ~12 such that 

0(0100)=  
L e t H =  ( :  _01)~ ~12. Then the structure theory of representations of~I2 shows 

that L(NI)k  is generated by the elements u such that ~(H)u=cu  and c < k .  In a 
similar way L(Ng) and L(NI+g ) are determined by the actions of Q'(H) and 

O"(n) : = Q(H)| 1 + 1 |  

respectively. 
Finally it is easily checked that the eigenspace of a"(H) for the eigenvalue k is 

generated by elements u |  which satisfy Q(H)u = ru, Q'(I-I)v = so with r + s= k. 
From this the theorem follows. [] 

Let 
= dim e GrrGrp + qH (X~, C)a , h~q(f) �9 p w , ~" 

be the Hodge numbers o f f  A formal consequence of Theorem (8.11) is 

(8.12) Corollary. h~'~(f + g) = ~, ~, h~( f )  h~(g) with summation over all a, b, i,j, r, 
a,b i , j , r ,s  

s such that a + b -  c E Z and: 

a = c  or b = c  -~ i + r = p , j + s = q ;  

a4:c and b4:c ; 

c = O , a + b = - I  ~ i + r = p - l , j + s = q - 1 ;  

c4:0, a + b = c  :r i + r = p , j + s = q - 1 ;  

a + b = c - 1  =~ i + r = p - l , j + s = q .  

(8.13) Remark. A special case of Theorem (8.11) is the so-called inductive structure 
of the cohomology of Fermat varieties, discovered by Shioda [ 16] and applied by 
him to verify the Hedge conjecture for those. In fact, this inductive structure needs 
only the corresponding result for weighted homogeneous polynomials, which is 
already implicit in [19]. 

(8.14) Remark. It can easily be deduced from the proof of Theorem (8.2) that the 
map x induces an isomorphism between Q~| and Qy+a and that under this 
identification 

Gr~Qf +9= a + b =(~c_ 1 Gr~ QS| v Qg. 

In particular, the spectrum numbers o f f  + g are of the form a + b + 1, where a and b 
run over the spectrum numbers of f and g respectively. 

9. Examples 
(9.1) Let f (x, y, z) = x p + yq + z" + axyz,  a ~ 0, p - 1 + q - t + r -  1 < 1. Then f defines 
a cusp singularity of type Tp, ~,,. Following the method described in [13], one finds 
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that a basis of  .~ :  consists of  the forms 

co, tOtto , a~x~o, ..., Otx v-  10~ , 

8tyo~ . . . . .  Oty ~ -  1 0 ,  OtZ(D, ... , ~tZ r-  1(.0, 

where co = [dx  ^ dy  ^ d z / ( f -  t)]. Except for a few small values of  p, q, and r, tot has 

the following form on C/ :  

tOt(tOra~)=O; tOt(Otx~co)= j - p  Otx~o for j =  1 , . . . , p -  1; 
P 

tOt(O j o g )  = ~ - ~  aty/co for j = 1 . . . . .  q -  1 ; 

tOr(O:Jo) = ~ - [  O:JoJ for j = 1 . . . . .  r -  1 t 

Therefore co generates F2 C / a n d  F1 C / =  C: .  The definition of  the weight filtration 
shows that  W2 = W3 is generated by all base vectors different from ~o and W4 = C:. 

(9.2) Let g(x, y) = ax 5 + j,6 + x4 y, a ~ ~E. Let a~ = [ dx ^ dy/(g - t)]. Then the forms 
~ty4c.o, Otxy3m, (~tx2y2(.O, ~tX~'tO, 0 t x y 4 ( D ,  t~tx2ya(D, (D, OtxS(D, t~tx2y4tD, y(D, XfD, OtX6Oj, 
y2t0, x y ~ ,  X2a~, yaaJ, xy2m, x2y~o, XaO give a basis of  L, gg over R and of C o over ~ .  
With respect to this basis, -24 tOt  has the following matrix: 

/23 0 0 

22 0 

�9 21 0 

. . . .  1 9 0  

. . . . .  18 0 

. . . . . . .  17 0 

. . . . . . . .  15 0 r 

. . . . . . . . . .  1 4 0  

. . . . . . . . . . .  13 0 

. . . . . . . . . . . . .  11 0 

. . . . . . . . . . . . . .  1 0 0  

. . . . . . . . . . . . . . . .  9 0  

. . . . . . . . . . . . . . . . .  7 0 

. . . . . . . . . . . . . . . . . . .  6 0 

. . . . . . . . . . . . . . . . . . . .  5 0 

. . . . . . . . . . . . . . . . . . . . . .  3 0 

. . . . . . . . . . . . . . . . . . . . . .  2 0 

1 0  �9 . , . ~ ~ , . . ~ . . . . . . . . . . . . . . .  
/ 

�9 ~ ~ ~ �9 . . . .  ~ . . . . . . . . . . . . . . . .  0 / 
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The  dots  indicate entries which depend on  the parameter  a and may  be non-zero. 
Fo r  a =  0 they all vanish, because then f is quas i -homogeneous .  I t  follows thal 
F1C g is generated by 

60, y(.D, X(D, y2fD, xy(.D, X2(.D, y3tO, xy2to, xZyto, X30~. 

Since the matr ix  above  is diagonal izable  all the basis elements lie in Wt except for 
x3co which first appears  in I4/2 = C a. 

This example illustrates the fact, tha t  spectrum numbers  remain constant 
under  deformat ions  with cons tant  Mi lnor  number  [26]. I t  was also studied in [21, 
Sect. 11], in connect ion  with another  filtration which is d iscont inuous with respect 
to the pa ramete r  a and is related to the zeroes of  the Bernstein polynomial.  
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