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Introduction

In [18], the second author introduced a mixed Hodge structure on the
cohomology of the Milnor fibre of an isolated hypersurface singularity. (For the
definition of a mixed Hodge structure, cf. [17, Sect. 3.4].) The weight filtration is
essentially the “monodromy weight filtration™ [18, Sect. 4] and thus simplifies the
Jordan normal form of the unipotent part of the monodromy. The significance of
the Hodge filtration, however, is not so clear, and its description seems difficult to
use. This paper gives another description of the Hodge filtration which we hope is
easier to understand and apply. Its definition does not use resolution of
singularities. Instead it relies on the theory of holonomic @-modules in one
variable with regular singularities.

This paper arose from conversations at the 1980 Arbeitstagung in Bonn, where
Varchenko’s conjectured Hodge filtration [22] had been discussed in Brieskorn’s
seminar. We have since learned that Varchenko obtained similar results to those in
this paper in the summer and autumn of 1980 [23-25].

In Sect. 1 the Milnor fibration is embedded in a family of smooth projective
bypersurfaces. The Hodge theory of a smooth projective hypersurface is explained
in the fashion of Brylinski [2] in Sect. 2. In Sect. 3 we recall the description of the
Gauss-Manin system from [8]. Our new formula for the Hodge filtration is
explained in Sects. 4, 5. In Sect. 6 we prove that it gives the same result as [18]. We
Prove a “Thom-Sebastiani” formula for the Hodge filtration in Sect. 7 which leads
toa proof of conjecture (5.4) of [18]. In Sect. 8 we show how to prove Varchenko’s
tesult about the Jordan normal forms of multiplication by f in the Jacobian ring of
[ and the logarithm of the unipotent monodormy of f with our method. In the
last chapter the mixed Hodge structure is calculated for two examples:

XP+yi+ 2 taxyz,p  +q t+r i<l a%0
and

ax’+yS+xty, aeC.



642 J. Scherk and J. H. M. Steenbrink

Lastly we would like to point out that the formula for the Hodge filtration
given here fits together very well with what Brylinski conjectures should be the
Hodge filtration on an arbitrary holonomic 2-module with regular singularities.

1. The Milnor Fibration

Suppose f is a holomorphic function defined on some open neighborhood of 0 in
C"*? with £(0)=0. Assume that 0 is an isolated critical point of f. By making a
holomorphic change of coordinates, if necessary, we can arrange that f is a
polynomial of arbitrary large degree d, such that .

(i) the closure Y, of £~ '(0) in P"*!(C) has only 0 as a singular point, and

(ii) for |¢| sufficiently small, t %0, the fibre Y,=closure of f ~*(¢) in IP"* {(C) is
smooth [1, Sect. 1.1].

If we choose a sufficiently small open ball B around 0 in €"**, then there exists
a small open disc S around 0 in € such that

f:f"YSH)NB—S

is a C* fibre bundle, where S'=8\{0}. Let X=f"'(S)nB, X'=f"'(S)nB.
Without loss of generality we may assume that ¥, is smooth for t€§’. Let

F(2gs s Zs 1) =204 1S CofZns1s - ZnlZnt 1) -
Define YCP**Y(C) x S by
Y={(z,0)|F(2)—tz3. =0} ={(z, )|z ¥;}.

Let : Y-S be the projection onto the second factor and Y'=n"1(8). Thenr:Y’
—§'is also a C* fibre bundle, and we can regard f: X'—S’ as being embedded
fibre-wise in 7: Y'—8’. Let X,=f~(¢), te§.

For any ¢ € §’ we have an action of n,(S", ) on H*(X,, €) and H*(Y,, €). A closed
path which starts at ¢ and travels once around 0 in a counterclockwise direction
represents a gencrator of 7, (S, t). Thus it determines automorphisms t of H*(Y, €)
and ¢ of H"(X,, ), called the monodromy of =, respectively, of f.

We have natural inclusions i: X - Y, i,: X,~» Y, and r,: ¥,- Y for t §". These
give us the following commutative diagram [18, Sect. 4] whose rows are exact:

0— H(Y)—> HY(Y) -4 HY(X)

L
0—> HY(Y)— HY(Y)— H'(X)
Let H = R*f,€Cy.= \J HY(X,)and H}.= R"1,Cy. Then HY. and H}. carrythe
teS’

structure of flat complex vector bundles on §’. Thus they have canonical flat
connections, both of which will be denoted by &, and called the Gauss-Manit
connection. The inclusion i : X — Y determines a horizontal map i* : Hy.— Hy- L¢!
O.(H%) and 04.(HY.) denote the corresponding sheaves of germs of holomorphi¢
sections.

We are interested in extensions of 0. (H%) and O(H%.) to locally free sheaves
of Os-modules. Such extensions always exist, and all possible extensions are
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divided into meromorphy classes. Two extensions % and %" are said to belong to
the same meromorphy class if there exist a, b€ Z such that

L CLCEE.

From geometry one obtains several extensions of O5.(H% ) and Us.(H%.) which
all belong to the same meromorphy class [ 1,4, 3, 13, 17, etc.]. This class of lattices is
characterised by the property that the Gauss-Manin connection has regular
singularities with respect to them [3, Chap. II, Théoréme 1.19]. For example, if
Y- Yis a resolution of = with singular fibre E, a divisor with normal crossings on Y,
and Y% S is the induced map, the sheaf R"7,Q; (logE) is an extension of
0s(H%.), which is characterised by the properties

(i) 0, has a simple pole on it, and

(if) the residue Resy(0,) has its eigenvalues in the interval [0, 1).

For our purposes it is more convenient to work with the locally free extension
&y of Os.(Hy), satisfying

(i) &, has a simple pole on %y, and

(i) Resy(d,) has its eigenvalues on #y/t%y in the interval (—1, 0].

The analogous extension of O (H%) will be denoted by &,. The restriction
map i* extends to a horizontal morphism

* oLy

As in [18, (2.12)] one extends o and t to the stalks ¥y , and Zy . It is on
Zx o/t¥x.o that our Hodge filtration will first appear. It will measure the
behaviour of a section of #y as t tends to 0. In Sect.5 we shall explain how
Ly o/tLy, o is isomorphic to the cohomology of the “canonical” fibre of the Milnor
fibration. As Pham showed to us, the best way to describe our filtration is to use
the formalism of 2-modules.

2. Hodge Theory of Smooth Hypersurfaces

In this section we recall the description of the cohomology of a smooth projective
hypersurface in terms of “couches multiples” following Brylinski [2, Sect. 3]. For a
complex manifold X we let 9, denote the sheaf of germs of holomorphic
differential operators on X. Suppose that V is a complex submanifold of
codimension one in an (n+ 1)-dimensional complex manifold W. Let

Byyw= Hy(Op)=On(* V)0,

where @, (» V) is the sheaf of germs of meromorphic functions on W with only
Poles along V. The sheaf @,y acts on Oy (* V) and hence By is 2 Zy-module. If
$=8,, 5, ..., 5, are local coordinates on W such that V is given by s=0, and d(s) is
the class of s~ in By w, then

Biyyw=Dw- 5(3)=9W/(@W s+ 1§1 Dw 5sj> .
A local section of By, can then be expressed as
x=3.6,010(s)
I
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with g, local sections of Oy, Define the de Rham complex of By by
DR (B[V]W) =Qp ®owB[V]W
with differential
d(@@Pé(s)=do@®Pi(s)+ 3, ds; A w®@0; Pi(s)
i=0
[8, p. 138] for we Qyy, Pe Dy, Let i: V— W be the inclusion mapping. Following
[8, p. 139], define a map
by
a(w)= (0’ Ads)®6(s), we Q%, k=0,

where o’ € Q% and i*(w)=w. Then a is well defined and, as Pham shows, it is a
quasi-isomorphism.

Now By has a naturalfiltration given as follows. We put B}, =0ifj <0and
we let By =0x((i+1)V)/Oy if j20. We give Q;;[—1] the trivial filtration
(“filtration béte”): F*(22, [ — 1]) is the complex with zero on the mt place for m<k
and Q' if m2k. Remark that a is compatible with these filtrations.

(2.1) Lemma. The map a is a filtered quasi-isomorphism.
Proof. We have the following commutative diagram of complexes with exact rows
0— Quy—QplogV)——=—i 2, [-1] —0
|
0—> Qi Q4 (x ¥)——> DR (Byyyw) —0.

Here Q,,(log V) is the sheaf of germs of holomorphic forms w on W — ¥ for which @
and dw have simple poles along V, and b is the inclusion map. The map c is the
canonical map from Qj,(* V) to Qy(* V)/Q;, and is expressed in terms of &(s) by

skt k!

If we filter Qy(* V) by pole order the way DR (Byyy) was filtered above, then ¢ Will
be filtration-preserving. The induced filtration on 2}, (log V) is the trivial filtration,
and b becomes a filtered quasi-isomorphism [3, p. 80]. So a is a filtered quast-
isomorphism too.

Thus

1yt
c(w)=( . 0®o(), welfy, jkz0.

H'(W,DR(By,y)=H ~'(V,2))=H " \(V, ).

If V is a projective variety the induced filtration on H'(W, DR (Byw)) corresponds
to the Hodge filtration on ¥, with indices shifted by 1.

3. Gauss-Manin Systems

We now return to the families of hypersurfaces f: X —S and n: Y —S. The sheaves
O (H%) and O (H%) with their Gauss-Manin connections are 2-modules. In
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this section we shall recapitulate the definition of the Gauss-Manin systems of f
and 7 given in [8, p. 153ff.]. These are Zg-modules which extend @ (HY%.) and
05 (HY) over S. We shall also see how the Hodge filtration on 05.(Hy) extends.

The graphs of f and of = in X xS and Y x§ respectively are smooth
hypersurfaces. So we have

Biryyxs= ”%graphn](@l/XS)=@YXS[(n"t)_ Oy «s

and
Biixxs=H faraph 1Ox x5) = Ox x s[(f =) 11/ Ox x5

=58 0= (Fxesl =0+ F, Des04£0)).

where 8;=0/0x; and f;=0f/éx; [8, p. 129].
Now form the relative de Rham complexes of these two modules, €.g.
DRrel(B[f]X x8) =85 sls®0x x sB[fIX x§
with differential

d(@®PS(f — ) =do@PS(f — 1) + iodx,.m(aajpa(f—t)
ji=

for m, P local sections of 2% g5, k=0, and Dy s respectively [8, p. 145]. This
complex can be thought of as the complex of relative forms on X x S with poles
along the graph of f modulo forms without poles. Clearly it is a complex of
Ps-modules.

The Gauss-Manin systems sy and #; of f and = respectively are defined by

Hy=R"" lpx, DR, i(Bpx x sh Ay =R"" 1P)'. DR, (Biry xs)>

where py: X x S—S and py: Yx S—S are the projections.

We can simplify this description more. Let j=idy x 7 be the inclusion of Y as
the graph of in Y x S. As the complex DR \(Bpyy «s) is supported on the graph of
7, one obtains

Ay=R"" lﬂ*(i- ! DR, (B xs))
and similarly for #%. Now it follows from [8, p. 159] that
j™t DR, (Biyy xs) =2y [D]

{polynomials in the indeterminate D with coefficients in the complex £y) as
Ps-complexes. Here the differential d in the complex Qy[D] is given by 4,0, D")
=¥,dw,D'— 3, df A wD'*! and the isomorphism is given by the correspondence

i Al @ _ i'w
o-D —-H?,([n_t:l) = [(n_t)i+1]'

The 7~ 19g-action on Q;[D] is given by
0, oD'=wD'*?,
t-wD'=foD'—iwD'~".
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As a consequence
Hy=R""n,[D],
Hy=R""1fQ:[D].

We define a filtration F on Q,[D] (the Hodge filtration) by

k
Frok=1QeIp]= @Q‘;-D'.

Then F' is a decreasing filtration by subcomplexes and 0, maps F? to FP~*,
Moreover Q;[D]=1limF? (inductive limit for p— — o0). By restriction we obtain
the Hodge filtration for 2,[D]. We let

FP i, =image of R** ' 7 (FFQ;[D]) in 5,
FPo#y =image of R"*! f (FPQ4[D]) in .
(32) Lemma. 5, =limR"* 'z (F?Q;[D]).

Proof. Because n is a proper mapping, formation of Rn, commutes with inductive
limits (compare R. Godement: Théorie des Faisceaux, p. 194. Paris: Hermann
1964).

Corollary. Let V be a Stein open subset of S and let ¥ be a suitable Stein covering of
n~Y(V). Then if C(%,Qy[D]) denotes the single complex of %4(V)-modules,
obtained from the Cech double complex of % with values in Qy[D], then

H(V)=H""'(C'(%,2%[D)).

Indeed, because F*Q[D] is a coherent @y-module for all k, p, we get by
Cartan’s Theorem B that :

HYU,F*Q[D))=0, (9>0)
for all UCY open and Stein. Hence for each k:
I(V,R* " (FQy[D]))=H"" (C (%, F*Q;[D1)) .

Ifeach U in the nerve of % has only a finite number of connected components, then
for these U one has

(3.1)

limI'(U, F*4[D])=I'(U, [D])

(on each connected component the order of a section of Q2[D] is bounded by
analytic continuation) so we can take inductive limits to get

Hy(V)=limI'(V,R** ' (F*Q; [D]))=lim H"* (C"(%, F*Qy [D]))
=H"* '(imC" (%, F*Qy[D]) = H"* ' (C'(%, ;[ D)
as required.
Observe that Cartan’s Theorem B does not hold in general for quasi-coherent
sheaves (this was pointed out to us by M. Saito). As a consequence the reasoning il

[8, p. 143]is not correct. Hence we need a different argument to get a similar result
for 3t )
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(3.3) Lemma. X, = f,(Q%"'[D]/df,(23[D]).
Proof. Write K= Q3 [D]. We have the first spectral sequence of hypercohomology
E¥*=Rif (K?) = RP* (K.

If Cartan’s Theorem B would hold for K?, then E{? would be zero for ¢ >0 and the
desired isomorphism would follow easily from this. As this is not true, we proceed
in the following way. As Ef?=0 for p>n+1 we obtain a natural map (edge
homomorphism)

E;+ 1,0 _ .%pn+ l(f*K -)_)Rn+ 1f*(K) =E:o+ 1 .
The cohomology sheaves of the complex K “satisfy:
H(K)=0 for i+l,n+1;
H'(K)=f"'05 and #"*(K’) has support in the singularity x
(see [8, pp. 159-161]). The same properties hold for the subcomplexes F'K" for
i<0.Let Q'=K'/F°K" Then it follows that #*(Q')=0forin+ 1 and #"* 1(Q")
has support in x. These properties also hold for its subcomplexes
FiQ'=FK'[F°K" (i<0). Hence R'f,(Q")=0 for i+n+1 and R**1£,(Q’) has
support in x with stalk H"*(Q,), as follows from the second spectral sequence of

hypercohomology. Again the same holds for F'Q’, i<0. The coherence of
F°K*(p20) implies that the sequence

0— f(F°K)— f(K)— £,0—0
is exact. We obtain the commutative diagram with exact rows
O-—)f”“" l(f*FOVK‘) ~—>,7f”+ l(f* K')*—ﬂ}f'ﬁ l(f*Q)“-’()

A R ¢
0 R £ (FOK )R £ (KR £ (@) 0.

The map « is an isomorphism because of the coherence of all F°K?. So to prove
that B is an isomorphism it suffices to show that y is an isomorphism.

Because each F'Q” is locally free, f,Q" =lim f, F'Q". Both source and target of y
have support in 0e § and

K feQ o= " (i [ F'Q Yo =Lim ™ (£, F'Q)o
=lim(R"* £, FiQ") o =lim H** }(F'Q})
=H"*"(limF'Q.)=H"*1(Q,)=R"* ' £,0)o -

This concludes the proof.

Let H'=df A ([ 2/df Ad(f, 25 YCH" = f, 5 Y/df Ad(f, 2% 1), These are
modules studied by Brieskorn [1]. By a result of Sebastiani [28] H' and H” are
locally free ©-modules of rank , the Milnor number of f. Moreover H’/H’ has
dimension . ]

i 'ljhe map o~ [w] embeds H” into # [8, p. 160] with image F"#. With
this identification we have that oH=H".
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(3.4) Lemma. F?3, =0} PF"#5 for p<n.

Proof. This is clear for p=n. We prove by induction on k that 0,F" %,
=F*"*~15  The inclusions C are obvious. Take ne F*~1#: then n=n,D?
+1,-D with noe H”. Then 1,D=0{w,D) for some w,eH’ so y=0,w with
w=woD+n,D e F"#,. This settles the case k=0. The induction step is similar.

(3.5) Proposition. % is a coherent Ds-module and 0, is invertible on it.
Proof. The submodules F?3#; form a good filtration of A%, as
DYFPHy = FP ™"y

and each FP#, =37 "PH” is a locally free Os-module. Moreover each quotient
F?P/FP*1(p<n) is an isomorphic copy of H”/H’ via the mapping &} ?, so the
associated graded module gr % is a coherent gr%s-module. By [8, Ex. 8.2.0,
p. 81] this implies that 5 is @s-coherent. The invertibility of 9, follows easily from
the fact that the map d,: H'— H" is bijective.

Recall [8, 11.7] that a germ of @¢-module at 0 is called regular singular if it is
generated as a Z-module by a coherent Og-submodule which is stable under 0.
Brieskorn has shown that H”[t~!] with its obvious Zg-structure is regular
singular [1]. Moreover H” [t~ *] can be identified with the localisation #y , of #5
at 0:

Hy,=Hx®osOs[t™']

b
with the action &, - (a®b)=(0,0)®b+a® %T

Therefore ¥y, is regular singular. This implies that # is itself regular
singular [8, 11.7.3]. )

Next we show that the restrictions of # and 4 to the punctured disc §’
coincide with the sheaves O5.(HY%.) and Og.(HY) respectively. Observe that

Os(Hy)=R"f,Cx B¢, 05 =R"f(f ' Os),
where we denote by f also its restriction to X’. Because f has no critical point on

X, the complex Q5 [D] is quasi-isomorphic to f~'0s[—1] (i.e. the complex
which has f ~10;. at place 1 and zero elsewhere), hence

Hys=R"" £, Qx [D]=R"f(f "' 0s)

as required. The same argument works for 5.
We have two Hodge filtrations on #},s : one from the filtration F of (3.1) and

the other from the Hodge filtrations on the fibres of n: FPH"(Y,, €)= @ H"""(%);

rep
this provides a filtration of ¢’5.(HY.) by holomorphic subbundles. Again these tw0
filtrations coincide. This can be proved as follows. First observe that the Hodge
filtration on H™(Y)) is obtained from the trivial filtration of £;, (see Sect.2). A
relative version of this tells us that FP05.(H}.) =R, (0  £2;.,s') Where g, denotes
the trivial filtration. Cup product with dn produces a morphism of complexes

Ry~ 2y [D1[1]
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such that ¢ ,Qy. s is mapped to FPQy* ' [D]. If we grade each side for its filtration
we obtain the map

Qs> Pog-prt

r>0

and the differential in the right-hand side is reduced to cup product with —dn.
This implies that we have a filtered quasi-isomorphism between (Qy./5, ) and
@y [D1[1], F). Hence R*n, (0 ,Qys) =R 0 (FPQy. [ D) = F* #ys..

(3.6) Lemma. 5 is Dg-coherent.

Proof. The trivial filtration on Qy [ D] is a filtration by n ™ ! @s-subcomplexes, hence
the first spectral sequence of hypercohomology

E}'=R'n, QY[D] = R**n,Q/[D]
is a spectral sequence of Zg-modules. The E{*s are Ds-coherent, as
Rin Q4 [D]=R'7, QX ® 0, Ds
and each Rm, Q¥ is Og-coherent because x is proper.

(3.7) Proposition. The restriction mapping i*: Og(H%)—0s(H%') extends in a
natural way to a homomorphism of 2s-modules

i*: > Hy
whose kernel and cokernel are Og-coherent.

Proof. The existence of i* follows immediately from the description of #; and #
with Cech double complexes; in fact, for any complex I' of sheaves on Y one has a
morphism of double complexes

CUy, 1) >C (U, T)

which induces the restriction mapping on the hypercohomology groups, and is
compatible with additional structures on I" like a Z¢-action. On S’ the mapping i*
comes from a horizontal mapping between H}. and H%., so ker(i*) and coker (i*)
are coherent Og-modules on §’. As they are Zg-coherent, it suffices to show that
their stalks at O e § are 05 ,-modules of finite type.

By the proper base change theorem

Jfy,o =H"" 1(Yo’ Q}[D]wo) >
From the second spectral sequence of hypercohomology
ER=H(Y,, #(1") = H* (Yo, ')

(I'a complex of sheaves on Y,, # stands for cohomology sheaf) we obtain the
Commutative diagram with exact rows

H'(Y,, 0s,o)‘—"9fy,o—"”x,o""*H"+ I(YZ)’ @s,o)

N

H"(X,, (Ds,o)“"é"?x,o—N*=9f)(,o—*1'1"+ 1(Xy, 0s,0)
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because #(Qy[D])=0fori=1,n+1and #'(Q;[D])y, is the constant sheaf with
fibre O ,. This shows that i* can be considered as an edge homomorphism in the
spectral sequence. The stalk of ker(i*) at 0 is then a quotient of H"(Y,, 0 )
= H"(Y,, C)® ¢¥s, o which is a free O ;-module of finite rank. Hence ker(i*) is of
finite type. Similarly, coker(i*) is an 05 o-submodule of a free O ,-module of finite
rank, hence it is also free of finite type.

(3.8) Corollary. 3 is regular singular.

4, The Canonical Lattice

In this section we show how to embed the canonical extension &y of Og.(H%) (cf
Sect. 1) in the Gauss-Manin system ##%. Let us first summarize the facts we know
about 3%
(i) # is a coherent Zg-module and its restriction to S’ is a locally free

Og-module of rank p, the Milnor number of f;

(i) oFy is regular singular at 0;

(iii) the operator 0, is invertible on H# ,.

It happens to be the case that such 2g-modules have been classified. For aeC
and ge N let

M= DD (t0,— a)l.

Then by [8, p. 107] there exist a;e € and ¢;e N, j=1,...,k with a;+ —1, =2, ...
and an isomorphism of Z¢-modules

k
(41) MO L).yfx )
=

J

The numbers a; which occur have the property that exp(—2ia;) is an eigenvalue
of the monodromy operator ¢ with a Jordan block of size g;. By the monodromy
theorem the a; are rational numbers. In fact we can arrange that —1<a;<0.

For aeC we define
C,= U Ker(td,—ay Coty 0.
r>0

(4.2) Lemma. For every a the space C, has finite dimension and C,=0 if
exp(—2mia) is not an eigenvalue of o.

Proof. It clearly suffices to show these properties for each of the summands in the
left-hand side of (4.1) separately. Hence fix be @, b+ —1, —2,... and geN. Let
M = 457 with the canonical generator u corresponding to the class of 1.

Put B=C - u®C - Nu@®...®C- N*"'u where N =1td,—b. One easily checks
that the natural mapping from B to .# is injective. For ke Z we let A}, =05 " 0, kl?
C.#. 1t is easy to prove that # =u.#,, NM,=0, H,C.H, if and only ifizj
M,=0""*M,. Moreover Mo=BO.M, so M=0""BOM,.,, for all k. The
operator N acts on each .#, and on .#,/.#, . , =0, *B it acts with eigenvalue —K;
more precisely: (N +k)?=0 on .#,/.#, . . We determine the intersection of C, with
A. Let ve C,n.#, v+0. Then (t3,—a)v=0 for some r>0. Choose k such thal
ve #, but v¢.#, .. Because N acts on .#,/.#,., with eigenvalue —k and
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(N+b—a)v=0 we have that a=b+k. A similar argument shows that C,,,
n.# =0, *B. The monodromy operator of .# acts with eigenvalue exp(— 2nib) so
b—ac Z if and only if exp(—2nia) is an eigenvalue of the same operator.

(4.3) Definition. A filtration V on #y , is defined as follows: we let V, 5 , be the
05, o-submodule generated by all subspaces C, with b2 a and we let V., .2 , be
the submodule generated by all C, with b>a.

It follows immediately from Lemma (4.2) that for every a:

Va%X,O =Ca(’B V>a‘#X,0'

Remark that V,5#y , is a free Og o-module for a> —1, because the Os-torsion part
is contained in 3. C,.

as—1
(4.4) Definition. Welet £y C #x be the Os-submodule which coincides with 3¢, on
S/ and With gx'o = V> —l‘#X,O‘
Then t ¥y, o=0, 'Ly, 0=V o Hx,oand ¥y isa free Os-module of rank u. Hence

Ly oltLx, 0= (—B C, and td, acts on this space with eigenvalues ae(—1,0].
—1<aso0

Thus Zy is indeed the canonical extension of 05 (HY.).
Thefiltration Vinduces also a filtration on £ o/t%y o, which we denote by the
same symbol. It is on

Gry(ZLx, o/tLx,0) = B 1@<0 C,

that our Hodge filtration will first appear. Recall that C,=V,/V, .. We let
4.5) F?C,=[F’nV,+ V., /V.,=image of &; PH"nV,in C,
and

FU(&x o/t¥x.0)= (—B FrC,.

<az0

Here F" is the filtration on # , from (3.3).

Remark. The filtration V as defined above is the same as the order filtration

associated to the “microlocal asymptotical expansion”, considered by Pham [9,
p.274].

Example. Let fe C[z,, ..., 2,] be quasihomogeneous with weights wg, ..., w,,i.e. f
is a linear combination of monomials z7...z7 with Z w;m;= 1. Suppose that f

has an isolated singularity at 0 and let {z"|me A4} bc a monomial basis for the
Artinian ring C(zo, ..., 2,)/(0f 020, ..., Of {02,). Put wp=2"dzo A o Az /(f =)
Then {w,|me A4} is an O-basis of H" Moreover

té,0,,=(a(m)— 1) w,,,

where a(m) = z wim;+1), hence w, € Cypm-1- Let k(m)=—[—a(m)] and

M= 0f™a,, Then Py o is generated by all n,, me A. The resulting Hodge
filtration on @ € - #,, Ly, o/t ¥y, is the same as the one given in [19].
meA
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(4.6) Definition. We let £y C #; be given by £, =(i*) "1 %y, where i* : # > H, is
as in (3.7). Because ker(i*) is Os-coherent, % is then indeed isomorphic to the
canonical extension of O.(H%.).

5. The Canonical Milnor Fibre

In this section we explain how our filtration F appears on the cohomology of the
canonical fibre X of the Milnor fibration.

Let e: U— S’ be a universal covering of §”. Set X, =X x5 U. Then X is the
total space of a differentiable fibre bundle over the contractible space U; so for any
se S8’ we have a diffeomorphism X ,—> X, x U and for all ue U the natural
inclusion

ju : }(e(u)“))(oo’ju(x)= (x7 u)

is a homotopy equivalence.

In this way the space H*(X,C) is naturally isomorphic to the space of
multivalued horizontal sections of H%. over §’, i.e. to the space of constant sections
of e*HY%. over U. Write the monodromy ¢ as g =00,=0,0, With ¢, semi-simple
and o, unipotent. Let N =loggo,. There is a natural action of ¢ on H*(X ,, €). So let
HY(X ,,T),, —1<ax0, be the eigenspace of ¢, for the eigenvalue exp(—2zia).
Thus

H'X,,C)= P H'X,.C),.

-132g0
We define an isomorphism
D Py oftLx o H'(X ., C)
by mapping the summand C, to the summand HY(X ,,C), via the map
vt~ exp(N logt/2mi)v.

To show that C, is mapped indeed to H*(X,,C), use the fact that
Nv= —27i(td,— a)v for ve C, [3, p. 53]. The inverse mapping is given by

wi—t exp(— N logt/2mi)w .
Define the filtration ¥ on H(X ., C) by
FPH'(X ., €)= PF*( Ly oftZLx,0)-

We define the space Y, in a similar way, and interpret its cohomology H"(Y,,, C)as
the space of multivalued horizontal sections of @g.(H}). Again we have the
restriction map

i*. HY(Y,,C)-»H"(X ,,C).
On H"(Y,,,C) we have the limit Hodge filtration Fg of Schmid [15], and on

H"(X ., C) the Hodge filtration Fg, defined by the second author [18]. It is our
purpose to show that Fg,=F", but we will use Fg to prove this,

We first recapitulate the construction of Fg. For u € U, we identify H( Ye(u?) with
H"(Y,) via the homotopy equivalence y+(y, u) (this amounts to evaluation ©
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horizontal sections of e*H}. at ue U). The holomorphically varying Hodge
filtration on the fibres of 7: Y’'— 8’ gives us a holomorphic mapping from U to a
suitable flag manifold of H'(Y,,, €): ur—F,\,,. Let us take for U the subset of € given
by Im(u) > c for some ¢ € R and e(u) =exp(2niu). Clearly under our identifications
Fius1y=1" 'F 4 Where 1 is the monodromy operator on H"(Y,,, C). By abuse of
notation we also let N denote logt, According to Schmid’s results, the limit
lim exp(Nu)F,, exists: this is the limit Hodge filtration Fj,

Imu— ©

It was observed by the first author [16] that the map i* is surjective provided
that the degree of f is sufficiently large. As a given isolated hypersurface singularity
can always be represented by a polynomial germ of arbitrary large degree, it may
be assumed that i* is surjective. But then Fyg, is just the image of Fgunder i*, due to
the fact that i* is a morphism of mixed Hodge structures and hence strictly
compatible with the Hodge filtrations.

An isomorphism
¥: %Ly o/tZy, o> H'(Y,, C)

is defined in a similar way as @, and such that i* - ¥ = ¢ o i*. The space F§ certainly
contains Y(y+tLy, o) for ye FPay oLy, o. Hence to prove the inclusion

(5.1) FPHY(X ,C)CFg,
it suffices to show that, if d=degf is sufficiently large, one has the equality
(5.2) FP oy =i*FPoHy.

For, let us assume this and let [x] € FPC,, —1 <a £0, be represented by x € FP#% o
nV,. Then we may choose ye FPi#; o with i*(y)=x. As x€ Ly 0, YEZY 0
NFPH#y o so Y(y+tFy o) € FE Hence ®([x])=S([i*y])=i*P(y+tLy,o) €i*F§
CF%. We make (5.2) precise as follows:

(5.3) Lemma. Suppose that d=degf is so big that there exist Q,,...,
0,€05 o[ 20, .-+ 2,] of degree <d—n—2 such that the forms w;=Q;dzoA ...
Adz,J(f —1), i€l,...,u generate F"#y o as an Ogy-module. Then F°H#y o
=i*FP 5 o o

"
Proof. Let x € FP# . Then x =0 "Px’ for some x’€ F"3#y o. Write X'= 3. g,0;
i=1
with g;€ O ¢, i=1, ..., p. As degQ;<d—n—2 the forms w; extend to forms #; on
P"*1 x § with a pole of order 1 along Y, so x"=i*(y)) with y'= ;1 g € F'Hy o

Then x =@ Px’' =~ P(i*y)=i*0" " P(y) e i*FP#; o. We conclude that F?5#y o
Ci*FP3, ,. The converse inclusion follows from (3.3) and the proof of (3.7).
The converse of (5.1) will be proved in the next section.

6.

In this section we will prove that
FPHY(X ., C)=F%

forall p e Z. Observe that this trivially holds for p>n: in that case F” =0 as F§ = 0
and FPCFp. Note however, that F&=H"(X,,€) but that the equality
F=pgyx @) is not at all obvious (and yet unproven); it is equivalent to the
Statement that £y ,CO"H".
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Our proof is similar to Varchenko’s proof that his asymptotic Hodge filtration
induces the same filtration on Gr,, H*(X ,,, €) where W is the weight filtration [sec
the proof of (6.5)]. The basic tool is the following

(6.1) Lemma. For be Q let us define S(b) to be the image of F"#y oV, under the
canonical map V,—V,/V.,=C,, and let d(b)=dimS(b)—dimS(b—1). (This is a
non-negative number as d; ' : S(b—1)—>S(b) is injective.) Then

2 bd(b)=(n—1)u/2.

Proof. See [25, Lemma 1.4].

(6.2) Lemma. With notations as in (6.1), writeb=a+n—p wherepe Z, — 1 <a<0.
Then d(b)=dimGriC,.

Proof. The space S(b) is mapped isomorphically to F?C, by ¢; P. Hence d(b)
=dimF?C,—dim F?*'C,=dim Gr;C,.
Write u=p'+ 4" with ¢'=dimCy, p"= 3 dimC,.

—1<a<0
(6.3) Lemma. ¥ dimFP>(n+3)pu/2+(n+2)u’/2.
p=0

Proof.

Y dimf’= ¥ ¥ Y dimGriC,

p=0 —1<az0p=04q=p

n p
> ¥ Y dimGriC,

—1<a£0p=04=0

Y Y (p+1)dimGrEC,

—-1<ag0 p=0

T X (p+1)dimGriC,

—1<as0 p=n

> ¥ (n+14+a)dim GriC,

—1<as0 psn

- > ¥ (a+n—p)dimGriC,

—1<as0p=<n

=@+Dat T adimC,— 3 bd(b)

—-1<a<

I

v

If

use complex conjugation on H(X,,€) to see that dimC,=dimC_, , for
~1<a<0so ¥ adimC,={ X (a——l—a)dimCa=—p”/2]

~1<a<0 —1<a<0
2+ Du—p2—m—Du2=m+)p 2+ +2)p'/2.

(6.4) Our next step will be to show that equality holds in (6.3) if we replace F’ by
F;. Then we may conclude that dim F? =dim Fg, for p=0, ...,n, so F?=F§ for
p=0,1,...,n. As F4,= H"(X ,€) and F" is a decreasing filtration, this implies that
in fact FP=F% for all peZ.

The desired equality is based on a symmetry between the Hodge numbers of
the mixed Hodge structure (H*(X ,,), Fs,, W). With the help of the fact that the map
i*: HY(Y,)—»H"(X ,,) is surjective this admits an easy proof, so we will give it here.



Cohomology of the Milnor Fibre 655

(6.5) The main facts we need are the following. Consider the mapN =logz, on
H"(Y,,) where 1, is the unipotent part of the monodromy. Then N"*' =0 hence
there exists a unique filtration

O)CWoCW, C...C Wy, i CW,, =H(Y,,)

with the properties that N maps W, to W,_, and the induced mappings
N W o/ Woir— 1 2 W,_,/W,_,._, are isomorphisms. The filtration W is called the
weight filtration of N with center n. Moreover N maps F% to FZ~! and the triple
(H"(Y,), Fg, W)is a mixed Hodge structure. As N shifts the Hodge filtration by —1
and the weight filtration by — 2 it is a morphism of mixed Hodge structures of type
(—1, —1). The semisimple part 7, of the monodromy preserves both Fg and W.
Consequently we get a splitting of the mixed Hodge structure:

Hn(Yoo) =H"(ch)1 @H"(Yoo)¢ 1>

where the subscript refers to the eigenvalues of the action of 7, on the
corresponding subspace. Consider the exact sequence

" L HY(X)—0.

0 H"(Yo)—— H(Y,,)

This is an exact sequence of mixed Hodge structures [18, p. 543] and by the in-
variant cycle theorem the image of sp coincides with ker(t — I) =ker(N)nH"(Y, ),
[17, (5.12)].
Thus we get a complete description of the induced weight filtration on H*(X )
and its relation to the induced morphism N:
—on HY(X ), =H%Y )+, W is the weight filtration of N centered at
n as belore;
- however, on HY(X ), = H"(Y,),/ker(N),, W is the weight filtration of N
centered at n+ 1. The proof of this miracle is an easy exercise.
The Hodge numbers of (H*(X ), Fg,, W) are given by

h=dimGrp, G}, H'(X ,);

we have an obvious decomposition h??= h2?+ h5,. Moreover dimGrf, = ¥ h™.
q

We have a double symmetry between these Hodge numbers:
— due to complex conjugation on Gr},, we get h{?=h{" and h¥, =h¥,;
~ due to the isomorphism N?*4~": Gr2Gr¥, ,—— Gr; *Gr},_,_,(p+q2n)
on the eigenvalue + 1 part we obtain:
B = e
and similarly (taking care of the shift in indices)

h{q____hq+l—q,n+1—p.

(66) Lemma. 3 dimF2,=(n-+3)i/2+(n+2)’/2.
p=0

Proof, The computation is done in [25, Sect. 3.1]. This finishes the proof that our
Hodge filtration coincides with Fg,.
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7. Monodromy and Multiplication by f

In this section we apply our main result to give a simple proof of a result of
Varchenko [24] (cf. also [14]). We assume that f has an isolated singularity at
0eC"*!. We let

Qf=ch:}1'o/df/\Q::n+lyo ’

a space which has dimension g, the Milnor number of £, and which we identify with
F"5#y o/0; 'F" 5y o by the correspondence [w]—[w/(f —1)].

As an O o-subquotient module of £y o, the latter module inherits the filtration
V. It is given explicitly by

V,(E" St /0 F b 0) = [VaF" Ho o+ 0 F" 5 01/0,  F" o .

We also denote by V the corresponding filtration of Q.

Remark that f- V,0/CV, .0’ as fo=twfor we F"#; o and tV, CV, . forall
b. Hence multiplication by f induces a graded endomorphism of degree one of
Gr¥@’, denoted by {f}.

(7.1) Theorem (Varchenko). The maps {f} and N =logo,€ End H'(X ,,, C) have
the same Jordan normal form.

Proof. The map N is a morphism of mixed Hodge structures of type (—1, —1).
Hence all powers of N are strictly compatible with the filtration F (with the
appropriate shift). This implies the existence of a splitting of the Hodge filtration,
i.e. a graduation of H"(X ., €) which has F as its associate filtration, such that N
becomes a graded morphism of degree — 1. In particular one concludes that N and
its induced endomorphism GrpN of degree —1 of GryH*(X ,,, C) have the same
Jordan normal form.
We have a canonical isomorphism

GI'FH"(XOO, C): @ GI'FC,,
0

—-1<ag

and the corresponding endomorphisms N, ,: GriC,—»Grf~'C, are given by
N, (%)= —2mi(t0,~a)x = —2mitd, x mod F”.

On the other hand it is immediately seen that for be Q, b=n—p+awithpeZ
and —1<a<0, the map

(?;'_p: I/IIHFn‘#X,O_’Va/I/;a: Cu
induces an isomorphism from Gr} Q’ to GrZC,, and the diagram

14 {f}
Gy @/ —"— Gry, 07
= a;'—P > a;n——p+1

GriC, s G2~ 1C,
commutes up to the factor —2ni. Hence {f} and GrN have the same Jordan typ¢-

(7.2) Remark. Suppose that the function f is non-degenerate with respect to its
Newton diagram [5]. Then one has the so-called Newton filtration on Qurti o It
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has been proved by Saito [12] that the filtration on @/, induced by this Newton
filtration coincides with the V-filtration with indices shifted by 1.

(7.3) The singularity spectrum. For be @ we have the number d(b)=dimGr2C,
=dimGr} Q' wherepe Z, — 1 <a<£0(6.2). The spectrum of the singularity f is the
unordered sequence {b,, ...,b,} in which the number b occurs with multiplicity
d(b). These numbers have ﬁrst been considered in [18, (5.3)] in connection with the
Thom-Sebastiani problem for the mixed Hodge structure (see the next section).
Their importance for deformation theory has been first emphasized by Arnol’d
[30], see also [31]. The most important properties of the spectrum are the
following:

(i) range: d(b)+0 implies that —1<b<n;

(i) symmetry: d(n—1—b)=d(b); this can be deduced from the results in
Sect. 6.

(i) additivity: for polynomials f E(E[xo, cesXpls 9€C[yg, -, Y] With iso-
lated singularities at O the spectrum of f + g is obtamed as {q+b;+1} wherea, b;
run over the spectrum of f and g respectively. This is due to Varchenko (25,
Theorem 7.3]) and is a consequence of the Thom-Sebastiani result which we prove
in Sect. 8.

(iv) semicontinuity : refine the notation d(b) as follows when f is variable too:
let d(b; £, 0) denote d(b) for the germ of the function f at 0. Suppose that we have a
deformation f; of f, and critical points x,, ..., x, of f; which approach the critical
point 0 of f;, as ¢ tends to 0 and which have the same critical value. Then one has for
every ae R the inequality

r

X X o dbifox)s X dbifo,0).

i=1a<b<a+l a<b=a+1

This has been proved by Varchenko for deformations of low weight of
quasihomogeneous functions [27] and by the second author in general [20].

8.

The goal of this section is to prove a “Sebastiani-Thom” formula for the Hodge
filtration,

Let feC[xg, ..., X,], € C[Vps ..., Yml, both with an isolated singularity at the
origin. Denote by X7, and X*, the corresponding “canonical Milnor fibres” and o ,
o, the monodromy operators.

Then f+geCxg,...» Xy Vos -+ Vm] also has an isolated singularity at the
origin, and X/ has the homotopy type of the join of X7 and X% . Hence

8.1) H Y xI*e C)x H'(XY,O)® H"(X5%,T).
Moreover
Orig=0,80, (cf.[29]).
Our formula for the Hodge filtration is as follows.
(8.2) Theorem.

Fan+m+1(X{°+g’C)t= @ 3 FiH"(X{;,C)a®chHm(Xg°°’c)b
a+

Scitj=k

T FHYX.,C),QFH" (X%, C),.

a+b=c—1i+j=k~1
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The proof of this result uses the idea of Malgrange’s proof of the Thom-
Sebastiani result [6, p. 424]. Let

R=C{{07 )} = {2 0,37 eCILo 1] X ot/ eC{r}}

bethering of microdifferential operators with constant coefficients,andlet L= R[3,]
beits quotient field. Then according to [7], Proposition 2.5 H} is a free R-module of
rankp,and 5#y, o =H® RL This is most convenlently checked by considering a
decomposition of Hx,0asin (4.1}

(8.3) Lemma. Let be@Q, b+ —1, —2,... and let qu. Let u,, be the class of 1in
MY =D o/ Ds o(t0,—Db)?T 1. Then {(ta —bYu,|j=0,...,q} is an L-basis of .#%".

Proof. First suppose ¢=0. Thus td,u, =bu,. It follows that
o, =b—r+k)...b—r+ 1) *u,

for r20, k>0. Any we D5 ou, may be written
w= ¥ a/(t)0u,
r=0

with ag, ..., 4, € Os o. If we write a(t)= 3 a,t*, then substituting for £*0;, we
obtain k=0

- (ﬁ ak,(b—r+k)...(b—r+1)6{“"ub+ao,6{ub).
r=0

Clearly ): a,(b—r+k)...(b—r+1)0*eR; so #5°=L- u, In general

k=r+1
MEY Ds, o(t0,— b)Y uy = MFT " .

Arguing by induction, we find that u,, ..., (t6,— b)"u, is a basis of .#%2.
For notational convenience, let us write 5, %, V, C{ instead of #; 1,00 L0
etc.

(8.4) Corollary. 5#; is an L-vectorspace of dimension p, and each Vi #; is a free
R-submodule of rank u,.

Notice that #%‘®,.#§" becomes a Ds o-module if we let
8.5) t(u®v)=tu@uv+u®tv,uc M5%ve M5".
Thus

Ot (u®v)=0,tu@v+u®o,tv

and

38.6) (@t—a—1—b—1uRv= i (f) (Bt —a—1Yu®@,t—b—1)Jv.

Now (8.5) makes #,®; ¢, into a D5 o-module too. We want to show that itis
isomorphic to 5, ,.
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(8.7) Lemma. There is a natural isomorphism
r®rHg—Hpy .
Proof. One defines « as follows. Consider the map
Ko:HyxHyj—H},,

given by xo(x, y) =x A y. One checks immediately that x, is well-defined and that
Ko(07 'x, y) =Ko(x, 8; 'y). Thus x, is R-bilinear and defines a homomorphism as
above. Computing modulo é; !, one obtains the multiplication map

a:{x}ﬁjf69tq:{y}ﬁlg_§qj{x’y}/Jf+y

which is bijective (J stands for the Jacobian ideal, i.e. the ideal generated by the
partial derivatives of the corresponding function). So x is an isomorphism.
Moreover it is O o-linear.

It clearly extends to an isomorphism of ¥ ,-modules

K:'yff®lf9@'ﬁgff+y'

Our next step is the computation of C/ ¢ in terms of the spaces C/ and C{. Observe
that C{ = U ker(dt—a—1)as d,t=td,+ 1. Using formula (8.6) one deduces that,

if xeCf and yeCy, then x®ye CL{f, . Using the relation §,C/=C/_; and a
d1mens1on count one obtains:
(88) Lemma. C{*'= & CI@C_,_,.

-13as0

Proof. The right-hand side injects into C/*9; moreover one has

> dimc{+g=#f+g=”f'ﬂg
-1<cg0
and
Y dimCf-dimC?_,_,

~1<¢c£0 —1<as0

= Y dimC{. p dimC{=p, p,
-1<ag0 -g—2<bf—a—-1
hence the lemma follows.
It is clear from the above that the isomorphism

K:H Q@ H = H sy

does not map &, ®@rZ, lsomorphlcally to %,., However, one can write
L QpLy=A DR where  is the R-submodule generated by
A= CIRCt
a+b@—1 a® b
—-1<a,bs0
and 4 is generated over R by

B= P Cied.
a+bs-1
—-1<a,bs0
Letuswrite (/= @ Cfanduse C?, C/*9ina similar way. Then the reasoning
~1<ag0

above shows that C/ @ C? = A@® B while C/*9=0d,x(4)@x(B); moreover Ly, is
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the R-module generated by C/+9. More generally x(VY® (V)= V3% ,. From
this one deduces that

K(Fi%®RFj%)=Fi+j+l%+g
We now proceed to the proof of Theorem (8.2). Let
Fra= @ ¥ FCI®FCicA

a+b>-1 i+j=k
—1<a,b=0
and

'F*B= (—B Yy F'Cf®F’C”CB
_al-l-bfb 101+J =k—

We write "F*=0x(FcA)@x('F*B)CC/*9. To prove the theorem we must show
that ‘F*=F*C/™ for all k. To achieve this, we first prove that 'F*C F*C/*? and

n+tm+1 n+m+1

then that Z dim'F*= Z dim F*C/*4, (This is the same line of proof as

Varchenko’ s 1n [25, Sect. 7])

TakexeF'C,{,yeF’C —1<a,b£0.Suppose that a+ b> — 1. We must show
that 9,x(x®y) € F**/CJ [{. By the definition of F", there exist x" e HY, y'& H such
that x—0" x’eV{,, y—0" Iy’ e V¢,. Then

Ox(x®y)— o1 (' @y) =0, [k((x— 8] T'X)®Y)
+x@ X @—0r Iy e b, [k(VL. @V +x(VI®VE)ICO VIt =Vl
Hence 6{x®y) e FI*IC/}£. In a similar way one shows that, if a+b< — 1, then
k(x®y)e Fi*i*1Clts, |, As a consequence, 'F*C F*C/*9.

To prove the dimension statement, put k¥, , =dimGriCJ and similarly for 1 ;.
Then due to the double symmetry between Hodge numbers (6.5) we obtain that

(8.9) W =hiiy o i a%0, b, g=hil 5
Thus
nt+m+1 n+tm+1
S dim'Ft= ¥ (k+1)dim’F}/F*+1
k=0 k=0

= T Y+j+DHA .+ > T (+j+2)hy h,

~1<a+bs01i,j <a+b<1i,j

To use the symmetries of (8.9) we must dlstmgulsh several cases, according t0
whether a, b are zero or not etc. We obtain that our sum is equal to

n+m+ DY H B+ in+m+3) T R,

wherein ¥’ we take the summation over all i, j, a, bwitha+b=0or — 1 and in P
we take the i, j, a, b with a+b=+0, —1. Thus

zhfa gb—'”j‘+g and E”hfa qb )uf+g

So our desired equality follows from (6.6), applied to f+g.
Next we indicate, how one can prove Con;ecture (5.4) from [18], using
Theorem (8.2). We will formulate a more precise result.
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Consider the category consisting of mixed Hodge structures together with an
automorphism of finite order. We define the join of two such objects (U, 7,) and
(V;v,) as (U *V, y,®7,) where

() (UrV)z=Uz®.V;.
(i) For ae(~1,0] write U¢= & U, where U,=Ker(y,—e~2"®). For

-13250

V¢ one has a similar decomposition. Define thefiltration Won (U * V)¢ =U® (Ve
by
WU V)= DT WURWY,

ab i,j
with summation over all i,j such that
i+j=k if a=b=0
i+j=k—~2 if a+b=-1
i+j=k—1 else.
(iii) The Hodge filtration F on (U * V), is given by
FrU*V)= @kz; F*U,®(F'V,
with summation over k, I such that
k+l=p if a+b>-1,
k+i=p—1 if a+b=s-1.
We omit the proof that (U * V, W, F) is again a mixed Hodge structure: this is

straightforward but tedious. The reader who likes such computations may amuse
himself by checking the associativity of the join product.

(8.10) Example. Let V be the trivial Hodge structure on @, purely of type (0, 0),
=—1. Then V*V=Q(—1) with trivial action, purely of type (1, 1). More
generally: for any U one has (U *V)* V=U(—1).

(8.11) Theorem. Let f and g be as before. Let U ; be the pair consisting of the mixed
Hodge structure on H (XY, C) together with the automorphism o, of finite order.
Define U, and U, , in a similar way. Then

Uf+agUf*Uy‘

Proof. By virtue of the Sebastiani-Thom theorem and Theorem (8.2) we only must
check that the weight filtration is the right one. According to (6.5) this filtration is
completely determined by N,=logs,. Let L(N) denote the monodromy weight
ﬁ}lltration of the nilpotent endomorphism N, centered at 0. Then the problem is to
show that

L(Nf+y)k = .+Z " L(Nf)i®L(N9)J' :
i+j=
The Thom-Sebastiani result implies that
ol®di=al*?

hence

Nf+g=Nf®1+1®Ng‘
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Choose representations ¢ and ¢’ of the Lie algebra sl, such that
00 ,{00
o(i o) e(ig)-m

1 0
Let H= ( 0 — 1) € sl,. Then the structure theory of representations of sl, shows

that L(N ), is generated by the elements u such that g(H)u=cu and c<k.Ina
similar way L(N,) and L(N . ) are determined by the actions of ¢'(H) and

o"(H): =o(H)®1+1®¢'(H)

respectively.
Finally it is easily checked that the eigenspace of ¢”(H) for the eigenvalue k is
generated by elements u®v which satisfy o(H)u=ru, ¢'(H)v=sv with r+s=k.
From this the theorem follows. [

Let
hzq(f) = dlmc GI{-GI';V_,_ qH"(X{o’ C)a 3

be the Hodge numbers of f. A formal consequence of Theorem (8.11) is
(8.12) Corollary.h?%(f+g)=2 X HI(f) WE(g) withsummation over alla, b, i,j.7.

a,b i, jr,s

s such that a+b—ceZ and:
a=c¢ or b=c = it+r=p,j+s=q;

afc and b=c;
c=0,a+b=—1 = it+tr=p—1,j+s=q—-1;
c*0,a+b=c = i—i:r=p,j+s=q—1;
a+b=c—1 = i+r=p—1,j+s=¢q.

(8.13) Remark. A special case of Theorem (8.11) is the so-called inductive structure
of the cohomology of Fermat varieties, discovered by Shioda [16] and applied by
him to verify the Hodge conjecture for those. In fact, this inductive structure needs
only the corresponding result for weighted homogeneous polynomials, which 1s
already implicit in [19].
(8.14) Remark. It can easily be deduced from the proof of Theorem (8.2) that th_e
map k induces an isomorphism between Q®Q? and Q/*¢ and that under this
identification

GilQ/*'= @ Grl0’®GryQ’.

at+b=c—1

In particular, the spectrum numbers of f +gare of the forma+b + 1, wherea and b
run over the spectrum numbers of f and g respectively.

9, Examples

(9.1) Let f(x,y,z)=xP+ ¥ +2 +axyz,a+0,p~ ' +q~ ' +r 1< 1. Then f defincs
a cusp singularity of type T, ,. Following the method described in [13], one finds
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that a basis of %, consists of the forms
w, 10,0, 0,x®, ..., x* o,
oy, ...,00" w,0z0,...,07 o,

where w=[dx A dy A dz/(f —t)]. Except for a few small values of p, ¢, and r, 14, has
the following form on C:

10,(t0,0) =0; za,(a,xfw)=’“7pa,xfw for j=1,..,p—1;

tﬁ,(a,ij)=1——;i y'w for j=1,...,9—1;

t@,((?,z"w)=]—:—':6,z"w for j=1,..,r—1.

Therefore w generates F2C/ and F1C/ = C/. The definition of the weight filtration
shows that W, = W, is generated by all base vectors different from w and W, =C/.

(9.2) Let g(x, y)=ax®+y°+x*y, aeC. Let o=[dx Ady/(g—1t)]. Then the forms
ytw, 0xy’m, 0,x%y*w, 8x*w, dxytw, 8x%y3w, w, 8, x°w, 8,x*y*w, yo, xw, 8 x5w,
Yo, xyo, x*0, y*e, xy e, x*yo, x* give a basis of £, over R and of C? over C.
With respect to this basis, —24¢0, has the following matrix:

23 0 0
22 0
.. 210

19 0
..... 18 0
....... 17 0
........ 15 0 0
.......... 14 0
........... 13 0
............. 11 0
.............. 10 0
................ 9 0
................. 7 0
................... 6 0
.................... 50
...................... 30

20
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The dots indicate entries which depend on the parameter a and may be non-zero,
For a=0 they all vanish, because then f is quasi-homogeneous. It follows that
F'C? is generated by

w, yo, X0, Y0, xyo, x*o, y3w, xy*o, x2yo, x*e .

Since the matrix above is diagonalizable all the basis elements lie in W, except for
x3w which first appears in W, =C".

This example illustrates the fact, that spectrum numbers remain constant
under deformations with constant Milnor number [26]. It was also studied in [21,
Sect. 117, in connection with another filtration which is discontinuous with respect
to the parameter a and is related to the zeroes of the Bernstein polynomial.
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