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PREFACE

Speaking roughly, cohomology operations are algebraic operations on
the cohomology groups of spaces which commute with the homomorphisms in-
duced by continuous mappings. They are used to decide questions about the
existence of continuous mappings which cannot be settled by examining
cohomology groups aione. '

For example, the extension problem is basic in topology. If spaces
X,Y, a subspace A C X, and a mapping h: A ——> Y are given, then the
problem is to decide whether h 1is extendable to a mapping f: X —> Y.

The problem can be represented by the diagram

/ e fg - h
RN

where g is the inclusion mapping. Passing to cohomology yields an algé-
braic problem

H (X) .

v\ *
g* N \q\) g*q) - h
b N

7 () <—— B (V)
h

If f exists, then o = £ solves the algebraic problem. In general the
algebraic problem is weaker than the geometric problem. However the more
algebraic structure which we can cram into the cohomology groups, and which
¢ must preserve, the more nearly will the algebraic problem approximate
the geometric. For example, ¢ 1s not only an additive homomorphism of
groups, but must be a homomorphism of the ring structures based on the cup

product. Even more, ¢ must commute with all cohomology operations.



In these lectures, we present the reduced power operations (ths

squares Sq° and pth powers P where i =20,1,...,
These are constructed,

and D

e}

is a prim

and their main properties are derived in Chapters ¥,

VII and VIII. These chapters are independent of the others and may be read

first. Chapter I presents the squares axiomatically, all of their main

properties are assumed. In Chapters II, IIT, and IV, further properties

are developed, and the principal applications are made.
i

Chapter VI contains

axioms for the P ( p> 2), and applications of these. Chapter VIII

contains a proof that the squares and pth powers are characterized by some

of the axioms assumed in I and VI. PREFACE .
The method of constructing the reduced powers, given in VII, 1s new CHAPTER T.
and, we believe, more perspicucus. The derivation of Adem's relations in CHAPTFR II.
VIII is considerably simpler than the published version. The uniqueness
- CHAPTER III.
proof of VIII is also simpler. In spite of these improvements, the con-
. . . CHAPTER IV.
struction of the reduced powers and proofs of properties constitute a
lengthy and heavy piece of work. For this reason, we have adopted the axio- CHAPTER V.
matic approach so that the reader will arrive quickly at the easier and more CHAPTER VI.
interesting parts.
CHAPTER VII.

The appendix, due to Epstein, presents purely algebraic proofs of
propositions whose proofs, in the text, are mixed algebraic and geometric. CHAPTER VILI.
The reader should regard these lectures as an introduction to co- APPENDIX:
homology operations. There are a number of important topics which we have

not included and which the reader might well study next. First, there is

an alternate approach to cohomology operations based on the complexes
K(w,n) of Eilenberg-Maclane [Ann. of Math., 58 (1953), 55-106; 60 (1954)
49-139; 60 (1954), 513-555}. This approach has been developed extensively
by H. Cartan [Seminar 195:/55]. A very important application of the squares
has been made by J. F. Adams to the computation of the stable homotopy

groups of spheres [Comment. Math. Helv. 32 (1958), 180-21L]. Finally, we
do not consider secondary cohomology operations. J. F. Adams has used these
most successfully in settling the question of existence of mappings of

spheres of Hopf invariant 1 [Ann. of Math., 72 (1960), 20-104; and Seminar,

H. Cartan 1958/59].

[selc]

o =
>
=
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CHAPTER I.

Axiomatic Development of the Steenrod Algebra @ (2)

In §1, axioms are given for Steenrod squares. (The existence and
uniqueness theorems are postponed to the final chapters.) In §2, the ef-
fect of squares in projective spaces 1s discussed, and it 1s proved that
any suspension of & Hopf map 1s essential. In §3, the algebra of the square:s
@(2) 1s defined and the vector space basis of Adem [1] and Cartan [2] is

obtained. In §&, it 1s shown that the indecomposable elements of the

L
algebra @ (2) are represented by elements of the form Sqe. Some geo-

metric applications of this fact are given. In §5, the Hopf invariant of

SQH

maps _1———> S% is defined. The existence theorem for maps of even

Hopf invariant when n is even, and some non-existence theorems, are given.

Unless otherwise stated, all homology and cohomology groups in
this chapter will have coefficients Zye
§1. Axioms.

We now glve axioms for the squares Sqi- The existence and unique-
ness theorems will be postponed to the final chapters.
1) For all integers 1 >» 0 and q > O, there is a natural transformation
of functors which is a homomorphism

o FMx,A — BN,

Sq R n> 0.

2) 8q° - 1.
3) If dimx = n, 0y o %2,
L) If i3> dimx, Sg7x = O.
5) Cartan formula

k

qu(xy) E: sqtx qu_ly
i=0



2 I. AXIOMS FOR THE ALGEBRA @(%)

We recall that if x ¢ HP(X,A) and 3 € HQ(X,B), then Xy ¢
Hp+q(X,AuB). This is true in general in simplicial cohomology, but some
condition of niceness on the subspaces A and B is necessary in singu-
lar cohomology.

6) Sq1 is the Bockstein homomorphism 8 of the coefficient sequence

0 —>2, —> 2, —>Z,—> 0 .

7) Adem relations., If 0 < a < 2b, then

la/2] /4 4 i a+b-3
-1- ~3gqd
Zj=0 a—ej > Sq Sq

Sq®sqP

The binomial coefficient is, of course, taken mod 2.

The first five axioms imply the last two, as will be proved in the
final chapter

.1 IEMMA. The following two forms of the Cartan formula are
equivalent in the presence of Axiom 1):

saf(xy) = I, sadx . sglly
satx x y) - Zy salx x sel-dy .
PROOF. Iet p: X x Y —> X and q: XxY—> Y be the pro-

Jections. If the first formula holds, then
Sqi(x X ¥) = Sqi<(x x 1) . (1 x y)>

zZy sadtx x 1) L oseld0 <y
Z sad (™) . sl I(q*y)
= Z psa’x . q*seldy
= 2y (sa¥x x 1) . (1 x sqldy
ZJ qux x Sqi'jy .

Let d: X —> X x X be the diagonal. 1If the second formula
holds, then

"

sattxp) = sald*xxy) - d'selx x y)
d*Zﬁ Sqix X Sqi'Jy = Zﬁ Sqix . Sqi'jy .
1.2 TEMMA, Axioms 1), 2) and 5) imply:

"

If 5: HYA) —> HI*'(X,A) is the coboundary map, then
ssqt - sqls .

PROOF. We will show that & is essentially equivalent to a x-

product with & 1-dimensional class. Then the Cartan formula applies to give

§2. PROJECTIVE SPACES 3

the desired result. (This method can be used for any cohomology operation
whose behavicur under x-products is known.
Let Y be the union of X and I x 4, with A CX identified

with {0} x A. ILet B =1[1/2,1]xA CY and Z = X U [0,1/2)xA C Y,
and let A' = {1} x A and A" = B n Z. We then have the following commu-
tative diagram.

B8 = BT x ) = ma) L ®Wargz) — 5 w¥aran

) 5i sl Si sl

E(X,A) 2> B (v, 1) S B (v,40) — B3 (v,a002) 25 53 (840047

The isomorphisms in the lower line are due to homotopy equivalence, the
5 lemma, and excision. In order to prove SSqi = Sqiﬁ on HIA), it
is sufficient to prove it on Hq(A'u Z). Looking at the last square on the
right of the diagram, we see that it is sufficient to prove it on
2 v A,

So we have to prove that SSqi = Sqis where

8: HY(L x &) — B (I x At x 4) .

Let 0 and T be the cochomology classes in HO(1) corresponding to the
points 0 and 1. Iet I. be the generator of H1(I,I);

Starting with &(7 xu) = I x u, and applying the Cartan for-
muls, we obtain

Sals (7 x w) sl (I xw - 8°T x salu - I x sqlu

5(T x Sqiu) = BSqi(T x u) .

[}

Similarly, 5(0 x u) -I x u leads to Sqis(5 X u) = 5Sqi(5 X u) .

§2. Projective Spaces.

let E?(X) denote the reduced cohomology group (mod 2).

2.1. LEMMA. ILet SX denote the suspension of X, and let
s: Hg(X) —_— §ﬁ+1(SX) denote the suspension isomorphism. Then, from
Axioms 1), 2) and s), it follows that sSqfL = Sqls .

FROOF. Iet CX and C'X be two cones on X. Then SX = CX o C'X,
where CX n C'X = X. The suspension isomorphism is defined by the follow-
ing commutative diagram of reduced cohomology groups
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=2x) —8 5 =ty
B = £
Vv
Eq-f—] (CX,X) < eXCiSlCI‘. :—:;C;““ (SX,C 'X)

The twe vertical maps are isomorphisms because CX and C'X are contrac-

tibie. The lemma follows from Axiom 1) and 1.2.

2.2 LEMMA. If X = U§=1Ai, where each Ai is open and contrac-

tible in X, then the product of any k positive-dimensional cohomology

classes of X 1s zero.

PROOF. Since Ai is contractible in X, inclusion induces the

zero homomorphism HI(X) —> Hq(Ai) for g > 0. Hence Hq(X,Ai)——~> HAH(X)

is an epimorphism for each g > 0 and for each i. If uy has positive

dimension and ug e H*(X) for 1+ <1<k, then, for each i, there is

* .
an element vy o€ H (X,Ai) which maps onto u, . Now V1V2 che Vo€

H*(X,U Ai) = 0 and the homomorphism H*(X,U Ai) _— H*(X) maps V,V,...

172
Vi onto u,u,...u

1Us % (Apply the theorem on the invariance of the cup-product

under the inclusion (X;#,...,8) C (X;A1’...,Ak).) The lemma follows.

By 2.2, cup-products are zero in SX.

2.3. THEOREM. The n-fold suspension of the Hopf map &5 —> 82

is essential.

PROOF. ILet X = PQ(C), the complex projective plane. One sees

by Poincaré duality, that if x is the non-zero element of HQ(X), then

x® is the non-zero element of Hu(X)

X 1is constructed by attaching the L-cell eh to 8° by means of

the Hopf map f: 83 —_— 5%, so % is constructed by attaching the
(n+4) -cell s to 8™ . gfs® by means of the map she,  gh3 _—

Sn+2. Now

Sqe(snx) sn(Sq2x) by 2.1
sn(xg) by Axiom 3)
£ 0 since s 1is an isomorphism.
So s 1is the non-zero element of Hn+2(SnX) and Sqe(snx) is

the non-zero element of Hn+u(SnX). Now suppose the map str is

§2. PRUSBULLY

L
g
ik
[4

%3
e

k!

: -, I 2 1
inessentisZ. Thsn K > g2, g et r: S —— §F be this

homotopy esu ree followed Dby the obvicus retraction. Iet u be the
non-zerc element of Hn+2(Sn+2). Then quu = 2. So
2 = r*(ngu) = qu(r*u) = Ssx) 4 o.
This is a contradiction.
We can prove in a similar manner that any suspension of the other
Hopf maps 1s essential.

Axioms 3), L) and 5) enable us to compute Sq° on a part of the

cohomology ring.

2.4, IEMMA. Axioms 2), 3), %) and 5) imply that if dimu = 1,
) k >
then Sqluk = < ? > o

PROOF. The lemma follows from Axioms 2) and &) if k = 0., If

k > 0, then by induction on Kk,

i i - 1 k-1 1 121 k-1
Sqluk = Sql(u.uk 1) Sqou.Sqluk + 8q u.5qg" u
(k-1 k-1 kel _ (k) ki
Km)* i-1>Ju ‘<i>u
2.5. IEMMA. TIf dimu -2 and Squ = Bu = O, then
Sq2i(uk) = < g > 1 ana Sq21+1(uk) = 0.

PROOF. This follows by induction, as in the previous lemma.
This following lemma is extremely useful in calculating binomial
coefficients mod p.
" 1
2.6, IEMMA. Tet p be a prime and let a = Eji—oaip and

o i
b = E: b.p (o € ai’bi < p). Then

< Z > ﬂ:?=o< Zi > mod p.

"

PROCF. < p > . pp=1)...(p-ix1) (0 < 1i<D)
- 1.2...1
= 0 mod p.
D
Therefore, in the polynomial ring Zp[x], we have (1 + }i()p =1 + xF .
i
It follows by induction on 1 that (1 + x)p - 1+ xF¥ . Therefore
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s Zb.pi m b.pi
(" +x® = (1 ex) = 0l (v +x) *
i=90
m 1 by _m §~bi by 1
=1 (1 + xP ) = 1 ) <s>xsp.
i=0 - i=0 s=0
i

- a Zagpe | b .
The fficient of X = X in the usual expansion of (1 + Xx) is

coe
o m by
< a > . But, from the above expansion, we see that it 1s H 120 < > .

The lemma follows.

2.7. IEMMA., If dimu =1, then
Sqi<u2k> -0 if 1=0
= 0 if 14 0,05
e ok

PROOF, This is immediate from 2.4 and 2.6.

§3. Definitions. The Basis of Admissible Monomials.

We now define the Steenrod algebra mod 2, @(2). Iet M = (M)
be a sequence of R-modules, where R 1is a commtative ring and 1 > 0.
Then M is called a graded module. We say the elements of Mi have de-
gree or dimension i. A homomorphism f: A —— B of graded modules is
a sequence of homomorphisms f‘i: Ai ——> Bi. If M and N are graded
modules, we define the graded module M ® N by (M® N)r = Zi Mi ® Nr—i'
A graded R-module A 1is called a graded algebra if there is a homomorphism
9t A®A —> A and a unit element 1 (which is obviously of degree 0).

The algebra is said to be associative if commutativity holds in the diagram,

AARA —281 514

1® ¢ P
v \Y
AoA —2 5 A
Iet B be a graded module. ILet T: A® B —> B® A be the map defined
by T(a®b) = (-1)PHb ®a), where p=dima and q - dim b. We say
the algebra is commutative 1f the diagram

A®A > A®A

G

A

L P e N P e hh Ao A 4 e

is commutative. A homomorphism f: A —> B of algebras, is a homomorphis
of modules, which commutes with the multiplicaticn, i.e., fq:A = ch(f ® ),

and such that f{1) = 1. Iet M be a graded m iule and A & graded algebr
M 1is called an A-module, if there is a map +¥: A ® M —> M, which respect
the unit of A, and such that the following diagram is commutative

AoAgM —BYsaeH
\L(p@‘l \l/*
AgM —Y¥Y 5 M

If B is a graded algebra, then A ® B 1is glven a graded algebra struc-
ture by the miltiplication AeBeAeB 1 81®1 5 r9apBen 280,
A@B. If N is a B-module, then M® N is an A ® B-module by the map-

in, .
png 1T 1

A@B@MeN > AgM@BeoN —¥Y8 V¥, MgN.

_The ground ring R may be regarded as a graded module R, such that

Ri =0 if 1 > 0. We say a graded algebra is sugmented if there is an
algebra homomorphism e: A —> R. Iet M be a graded R-module. Let

M’ be the tensor product of M with itself r times, and let rM =
ym M2 (M0 = R). (M) is called the tensor algebra of M. The multipli-
:algftgn r(M) ® T(M) —> T(M) is induced by the canonical isomorphisms

W g M5 ~ MEFE,

We define @ (2), the Steenrod algebra mod 2, to be the graded
associative algebra generated by the >Sqi, subject to the Adem relations
(§ 1, Axiom 7). In detail, the construction is as fcllows. ILet M be
the graded Z,-module, with M; =~ Z, for all i3> oO. We denote the gen-
erator of Mi by Sqi, so that dim Sqi = 1. ®@(2) is the quotient of
(M) by relations of the form

L sq® ® 5¢° - Zj ( 2:125‘0 59803 g 8’ when a < 2b .
We write SqO =1 in @(2).

Given a sequence of non-negative integers I = (i,,1i,,... ,ik) , k
is called the length of I. We write k = £(I). We define the moment of
T by m(I) = ZX ,si_. A sequence I is called admissible if both

is_122is for k> s > 2, and ik_>_1. We write

1, 1 1
sl - s 'sq’? ... sq K
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I

If I 1is adxmissible, we call 3q admissiblie. We also call Sqo admis-

sible. We shall also speak of the moment of SqI .

3.1, THEOREM. The admissible mconomials form a vector space basis

for @(2).

PROOF, We first show that any inadmissible monomial is the sum of
menomials of smaller moment, and hence that the admissible monomials span
G(2). let I = (ij,..;,ik) be an inadmissible sequence with no zeros.

For some r, n = ir < Qir+ = 2m. B350, by the Adem relations,

1
SqI _ SqNSanquqM _ Zj ijqNSqn*m_JSqJSqM

where xj € 22. It is easy to verify that each monomial on the right has
smaller moment than SqI (separate arguments are needed for the cases

J =0 and J > 0). By induction on the moment, it follows that every
monomial is a sum of admissible monomisals.

We still need to show that the admissible monomials are linearly
independent. Let P be «o-dimensional real projective space. Then H*(P)
is the polynomial ring Zg[u], where dimu = 1. Let P% be the n-fold
Cartesian product of P with itself. Tet W = u x u...x u ¢ HY(P?). The

following proposition will complete the proof of 3.1.

3.2. FPROPOSITION. The mapping @(2) —> H (P, defined by
evaluation on w, sends the admissible monomials of degree < n into

linearly independent elements.

PROOF. The proposition 1s proved by induction on n. For n = 1,
it follows from 2.k,

Suppcse I aISqu = 0, where the sum is taken over admissible

monomials SqI

of a fixed degree q, where g < n. We wish to prove that
a; =0 for each I. This 1s done by a decreasing induction on the length
£(I). Suppose that ap =0 for ¢(I) > m. The above relation takes the
form
(M) z a Squ + a.Sqtw = o0

0(T)=m 2T 9I)¢m 8”4V =
The Kinneth theorem asserts that
ety o Zs 1(P) @ qun—s(Pn—1)

§3. TEFINITIONS. THE BASIS OF ADMISSTBLE MONOMIALS

— Ui =

Iet g dencte the projection into the summans with s = 2%, Tet w

u x w', where W' ¢ Hn-1(Pn_1). Then, by 1.1,

(2) Sq:w = SqI(u xw') = T Sun « SQ_I_JW' )

J<T

where J < I means 0 < Jp £1, for all r. Iet J, be the sequence

(2™, ..,2",2°%) . We assert that
. N 10D <m,
(3) g 3qgw = . 1o3
W x g T if HI) =m .

Recall that, by 2.7, sq’u = 0 unless J has the form (2k'1,2k'2

2 2%

yeen,
. N . m
or 1s such a sequence interspersed with zeros. And Sun = u2

if J = Jm or is obtained from Jm, by interspersing zeros. In the last
case {(J) > m. To prove 3), we refer to 2). If £(I) < m, then J.< T
implies that £(J) <m, and so g Sqiw = 0. If &(I) =m, then
g(Sun X SqI_Jw') =0 unless J =J < I. This proves (3).

If we apply g to (1) and use (3), we find
(1) uem X Zﬂ(I):m aISqI_Jm w' = o0,
It 1s readily verified that, as I ranges over all admissible sequences
of length m and degree g, I - Jm will range over all admissible
sequences of length < m and degree q - 2M1; and the correspondence is
one-to-one. Since m> 1, we have q - 2 g <n-1. So the inductive
hypothesis on n implies that each coefficient in (%) is zero. Thus
ar =0 for £(I) = m.

This completes the proof of the proposition and hence of the

theorem 3.1.

3.3. COROLLARY. The mapping @(2) —> H*(Pn) given by

I .
Sq¢7 ——> Squ is a monomorphism in degrees < n.

BEXERCISE. PFind the basis of admissible monomials for 612.

We ncte that, if I 1is an admissible sequence of length k, then

k-1 k
+

I
deg Sq~ > 2 .o+ 1 =27 -1, 30 that the exercise is a finite problem.
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§4, Indecomposable Elements.

Much of the material in this section is due to Adem [4].

iet A be an assoclative graded algebra. Let A Dbe the ideal
of A consisting of elements of positive degree. The set of decomposable
elements of A is the image under o: A A—> A of A ® A. This image
is a two-sided ideal in A. Q(A) = Ao (A @A) is called the set of

indecomposable elements of A. A 1is called connected 1if AO = R, the

ground ring.

4.1, IEMMA. In a graded connected algebra over a field, any set
B of generators of A, contains a subset B,, whose image in Q(A) forms

a vector space basis. Any such B, 1is minimal and generates A.

PROOF. Any set of generators of A spans Q(A)., Let B, be any
subset of B whose image in Q(A) is a basis. ILet g ¢ A be the element
of smallest degree, which is not in the algebra A' generated by 1 ,B1} .
There is an element g' ¢ A' such that g - g' 1s decomposable. So
g-g co(A®A) and g-g' = Za&f a;, where aj'_,a; e A . But aj'_
and a; are in A'. Therefore g ¢ A', which is a contradiction.

4.2, IEMMA. Sqi 1s decomposable if and only if i is not a

power of 2.
PROOF. Writing the Adem relations in the form

<b;1> 5?0 . ag®sq® o L0 b;l;% > 5®+P-Isqd

a+b is decom-

where 0 < a < 2b, one sees that if <b;1> 1, then Sq

posable. Suppose 1 1s not a power of 2. Then 1 = a + ek, where 0 <

a<2X, Put b=2X Then b -1=14...+ 25" Byo.s (b;‘> = 1.
8o, if i 1s not a power of 2, Sqi is decomposable.
k k. s
Now let 1 = 2X. Suppose sS¢°° = Z§=11 ijqJ. Then, using the
notation of §2 and §3, we have by 2.7,
k+1 k k . .k
u? = S‘q2 W - ij Sun2 = 0.

This is a contradiction and the lemma is proved.
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k
4.3, TEEOREM. The elements Sq2 generate @(2) as an algebra

PROOF. This follows from 4.1 and k&.2.
k
We note that the elements Sq2 do not generate @(2) freely.

In fact, by the Adem relations,
2q.2
5a°sa® - sadsq' - (sq'sdPsq’ .

4.k, THEOREM. Let X be a space and let x2qé 0, where Xx e
i
Hq(X;Zz). Then Sq2 X # 0 for some i such that o < o1 <q.

hi .
PROOF. 0 4 x° = 8q% = ¥ (monomials in Sq2 )x where 2J

IN
fle)

throughout the summation. The theorem follows.

A polynomial ring in one varisble x 1is truncated if M -0 for

some n > 2.

¥
4,5, THEOREM. If H (X;ZQ) is a polynomial ring or a truncated
polynomial ring on a generator Xx of dimension g, and x2 #+ 0, then

q = 2X for some k.

i
PROOF. Since H (X) is a polynomiel ring, HI*2 (X) = 0o for
i
2

s k
0<2t<q. Therefore 8¢ x =0 for o< 2" <q. By bk.h, Sa° x40

for some k such that 0 < 25 < q. So q = 2K,

REMARKS. J. F. Adams has shown [3] that the only possible values
for k are 0,1,2,3. His methods entail a much deeper analysis of the
algebra @(2).

Examples of spaces which satisfy the hypotheses of the theorem are

i) Real projective space of any dimension, with q = 1;

ii) Complex projective space of any dimension, with q = 2;

iii) Quaternionic projective space of any dimension, with g = b;

iv) The Cayley projective plane with, g = 8.

4.6. THEOREM. Iet M be a connected compact 2n-manifold, such
that HI(M) =0 for 1 <q<n, andwith H(M) = Z,. Then n isa

power of 2.,

on-
PROOF. H9(M) = 0 for 1 < q<n, and, if u is the generator
of HYM), u® is the generator of H°™(M). We now apply k.5.
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§5. The Hopf Invariant.

- ~ ~2n- o~ . .

Tes £ g0 — ' (n> 1). Tet X be the adjunction spacs
obtained ty sttaching a 2n-cell e?n to 8¢ by the mapping f. Then
HR(X;ZE ~ Z and Hgn(X;Z) ~ 7, while for other positive dimensions

~

the cohomclogy groups are zero. lLet X ¢ H(X3Z) and 7 ¢ Hgn(X;Z) be
generators. Then x2 = h(f).y for some integer h(f) called the Hopf in-
variant of . It is defined up to sign. A homotopy of f leaves the
homotopy type of X unchanged, and so the Hopf invariant is an invariant
of the homotopy class of f.

Sometimes the double covering 31 _ s is assigned the Hopf

invariant 1. In this case, the adjunction space is the projective plane.

2n-1

5.1. THEOREM. If there exists a map f: S —> s of odd

Hopf invariant, then n 1s a power of 2.

PROOF. Iet =n: H%(X;Z) e H%(X;Ze) be the map induced by the

coefficient homomorphism Z —> Z,. This map is a ring homomorphism.
Hence (nx)2 = 0y, since n{f) = t (mod 2), By 4.5, n is a power
of 2.

REMARKS. i) We easily see that, if n 1s odd, then h(f) =0

for then %2 - -x° and so 2x2 = 0 (integer coefficients).

2

2) The following are the standard maps of Hopf invariant one, and their

adjunction space:

S3 e 82 complex projective plane;
S7 —_> Sl+ quaternionic projective plane;
515 > 58 Cayley projective plane.

5.2, THEOREM. (Hopf [{5]). If n 1s even, there are maps

£ 821 5 8% yith any even Hopf invariant.

PROCF. Iet B3,,3, and 3 be (n-1)-spheres and f: 3, X S, —>8.

We say f has degree (o,p) if fi8, x p, has degree a and flp, x 8,

has degree B, where (pl,pQ) € S1 X 52. The degree of £ ;s independent

of the choice of (pw,pg) .
let E; be the n- cell such that S, = bd By (1 = 1,2). Now

bd(E, x Eg) = (E1 X SQ) U (S1 X E2) is a (2n-1)-sphere and

(E1 %x 8.) 7 (3. » E)) = 8, x B,. Let S' bs the suspension of S. Then

31 = E+ G Z where E+ and B are n-celis and E N E = 3.
- - + -
Give zapring @ 5, X 5, —> 3, we extend f to a mapping

x5, U (8 xE) —>E UE = 8

in such (D)(E; x 8,) CE, and C{£I(S, xE) C B_. C(f) is
a map S

5.2 will follow from two lemmas.

5.3. LEMMA. h(C(f)) = oB.

PROOF. Throughout this proof integral coefficients will be used.
Iet X be the adjunction space (E1 X EQ) Yo (1) S'. The attaching map
C(f) glves rise to amap g: (E, x E,,E; x 5,,8, x Ey) —> (X,E,,E) .
ILet x be a generator of Hn(X;Z). We define x, and x_ to be the in-
verse images of x wunder the isomorphisms Hn(X,E_) —_ HQ(X) and
HYX,E,) —> H'(X) respectively. Now we have a map (X,#,7) —> (X,E,E)

This gives rise to a commtative diagram

B(X) @ B'X) — > HR(X)
VAN N\

| I

HY(X,E,) ® HY(X,E) > BONX,S)

The vertical maps are isomorphisms. Therefore the cup-product X, U X_
has image x° under the map Hen(X,S‘) —_ Hzn(X). We have the following

commutative diagram

*
X)) < = HY(X,E) B> HY(E,x E,,8,x E,)
NS <= B8 ,E)) —> HYE_,8) —&— HY(Ex By,8,x pp)
~ N
6| ~ ~
n-1 * -1
B (8) —&— 17 (8,x pp)
|
z —2%2 = z
By the diagram g*x+ = oW, where L generates Hﬁ(E1X E,,5x Ee)'
By a similar diagram, we see. that g*x_ = pw_, where w_ generates
HYE, x By, B x S,). 5

5
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Let pyt E, xE, —> E; (1 = 1,2). We define the generators

he} * *
X; ¢ H(E;,8;) by pyx; = w, and pyx, = w_ . Now
* *
Vv W_ = DXy v DX, = (X; x 1) v (1 x Xe) = (x; % X2> .
Hence g*x, v g*x_ = aB(x; X X,) and (x; x x,) generates

H™E, x E,,E, x S, v 8, x E))

Now g: (E, x E;,BE; x 8, v 8, x E;) —> (X,8") 1is a relative
homeomorphism and therefore induces an isomorphism of cohomology groups.
So we have the isomorphisms

H(H) <2 BX,81) —Se> B(E, x By,E, x S, u S, x Ey) .
Under these isomorphisms %2 e Hzn(X) corresponds to X _ v X_ e Hen(X,S')
and to aa(x1 X Xe)' Let y be the generator of Hgn(X) which corresponds
to X, x X,. Then x2 - apy.

This proves the lemma.

1

5.%. ILEMMA. There is a mapping f: gt oy gt — s or

type (2,-1), if n is even.

PROOF. If X,y e Sn-1, let D(x) be the eguatorial plane in
Euclidean n-space Rn, having Xx as a pole. ILet f(x,y) be the image of
y under the reflection through D(x). If we represent x and y by
vectors (x1,...,xn) and (y1,...,yn) in Rn, the mapping f is glven

by

fx,y) = y - (22?=1 X¥4) X.
If we fix x = (1,0,...,0), then f(x,y) = (—y1,y2,...,yn).
This map has degree -1. If we fix y = (1,0,...,0), then
£(x,7) = (1 - exfexxy, .., exx) = g(%)
g maps the plane X, = 0 into a point. It is qne-to-one for X, >0
and for x, < 0. g can be factored into s 5 PP 5 s The

first map has degree 2 since n 1s even. The second has degree 1.
Therefore g has degree 2 and the lemma is proved.

We can now complete the proof of 5.2. Let f1: Sn_1 —_— Sn_1 be

any map of degree A and f,: sh-!

— s e any map of degree nu.
Then g = f.(f; x f,) has degree (2i,-p), where f is the map of 5.h.

By 5.3, the Hopf invariant of C(g)is -2au.

§5. THE HOPF INVARIANT 15

REMARE. Suppose we have a real division algebra of finite dimen-
sion n> 1, with a two-sided unit and the m:ltiplication map

m: R" x R? — R,
Let Sn_1 be the sphere with centre at 0, passing through the unit. Then
we have a map
st gp? By gD _{o} B gb! (r = radial projection from 0)

Sn-1

which is of degree (1,1) since contains the unit. By 5.3, we ob-

2n-1

tain a map of Hopf invariant one, S — s™. According to Adams {31,

n=2,4or 8.
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CHAPTER II.

The Dual of the Algebra @& (2)

In §1 it is proved that the Steenrod algebra @& (2) 1is a Hopf alge-
bra. The structure of the dual Hopf algebra 1s obtained in §2. In §3 it
is proved that the algebra ((2) is nilpotent. In §4 the canonical anti-
automorphism ¢ of a Hopf algebra is briefly discussed. In §5 various

constructions with modules over the algebra (@ (2) are described.

§1. The Algebra (@(2) is a Hopf Algebra.

1.1. THECREM. The map of generators
W(sa® - I sl @ st

extends to a homomorphism of algebras v: @(2) —> Q@(2) @ @(2).

PROOF. Iet @ Dbe the free associative algebra generated by the
Sq:L (i > 0). We have an epimorphism o: @ —> @ (writing Q(2) = @),
with kernel generated by the Adem relations. The map + of generators
extends haturally to an algebre homomorphism ¥: @ —> @® @ . We have
to show that ¥ vanishes on ker o.

We have a map of modules
o H(X) @ H(Y) —> H (X x ¥)

given by a(u® v) = u x v. By the Kinneth relations for a field, this
is an isomorphism. Ilet P be «-dimensional real projective space. Let
X =P? <P x...x P. Then, using the notation of Chapter I §3, the evalua-
tion map on w, w: @—> H*(X) , 1s a monomorphism in degrees < n by

I 3.3, Therefore the map wgw: @3 @—> H*(X) ® H*(X) is a monomor-

phism in degrees < n.

16
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We have toe diagram

@za 22¥5 (X)) g H (X)) —%F— E (X x X)
,\ PAS

¥ WX W
a [

> @

We now prove that this diagram is commutative. H*(X) ® H*(X) isan @R @@
module and hence, using the map ¥, 1is an @ -module. Using the isomor-
phism «, this glves H*(X x X) the structure of an @ -module. However,
H*(X x X) has its usual structure as an @& -module via . These two

@ -modules are identical, for

(quk) (u x v) T Sqiu x qu'iv

(2 sat @ sa¥Hu e v))

- oz(_qiqu Lu® V).

Since the two @ -modules are identical, the diagram above is commitative.
Now, if me@® , degm<n, and om = 0, then, since the dia-
gram is commutative and W ® W 1is a monomorphism in dimensions < n, ym = O.

This completes the proof of the theorem.

Let A be an augmented graded algebra over a commutative ring
R with a unit. We say A 1is a Hopf algebras if:
1)  There is a "diagonal map" of algebras
y: A —> A @A;

2) The compositions

A QR
1®V \3
A

A—Y s aeA

coNy A

R A
are both the identity.

We say v 1is assoclative 1f the diagram

Ar——V 5 AgaA
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is commutative. We say v is commutative if the diagram
T

AQA —> A A

R A1

, \ / ¥

A
is commitative. (See I §3 for the definition of T.)

1.,2. THEOREM. @&(2) is a Hopf algebra, with the commutative and

associative diagonal map v of 1.1,

PROOF. The map v is a map of algebras by 1.1. Since @(2)
is connected, we have the unique augmentation e: @(2) —> 22. In the

diagram

all the maps are homomorphisms of algebras. The compositions are both the
identity on the generators of @, and they are therefore the identity on

all of @. Using the fact that ¢ is an algebra homomorphism, we see that
¥ 1s commutative and associative by checking on the generators. This com-

pletes the proof.

Iet A be a Hopf algebra with diagonal map : A ——> A ® A.
Iet M be an A-module. Then M@ M is an A ® A -module. The map
defines an A-module structure on Mg M., Iet m: MM —> M be a

multiplication in M. We say that M 1is an algebra over the Hopf algebra
A

, if m is a homomorphism of A-modules.

1.3, PROPOSITION. If X is any space, H*(X;Ze) is an algebra
over the Hopf algebra @(2).

PROOF. This results immediately from the Cartan formula, since

¥ 1s a homomorphism of algebras.

Iet X be a graded A-module, where A 1is a Hopf algebra over a
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ground ring R, with an associative diagonal map ¥. Iet T(X) be the
tensor algebra of XL over R. It is obvious that the usual multiplication
m: r(X) ® r{X) —> r(X) is an A-homomorphism. Therefore Tr(X) is an
algebra over the Hopf algebra A.

§2. The Structure of the Dual Algebra

If X 1is a graded module over a field R, we say that X is of
finite type if X, is finite dimensional for each n. We define the dual
X* of X, to be the graded module with X, - Hom(X_,R). If X and Y
are of finite type, then we have a canonical isomorphism (X @ Y)"© =
X' ® ¥ defined by (feg(a®b) = (-1)"fa@gb, p-dega, q-= deg g.

If A 1is a Hopf algebra of finite type, with multiplication o
and diagonal ¢, we easily verify that A" is also a Hopf algebra, with
multiplication v and diagonal oF.

For k> o0, let M = Sqf, where I - (2K772K2 . 21y,
Mk is an admissible monomial in @®@. Let £ € G,* be the dual of Mk
with respect to the basis of admissible monomials in @. Then < gk,Mk >
= 1 and < Ee,m> = 0 if m is admissible and m = Mk’ Mk has

degree 2k-1 and therefore k

e has degree 27~ 1.

Iet P be w«-dimensional real projective space. Let x ¢ H1(P;Z2)
be the generator. et P* = PxP ...xP. In Hn(Pn;ZQ) we have
the element x; x X, X...x X,, Wwhere each X; = X. The fol];owing theorem,

together with I 3.3, will enable us to find the structure of (i*.

By induction on n, we shall define x(I) ¢ H (PY) and &(I) « @,

where I = (11,...,in) is a sequence of non-negative integers. If

I = (1), weput x(I) = xel and &(I) = ;. Suppose x(I) and &(I)
are defined when I has length less than n. Now.suppose I = (i1,...,in).
We put x(I) = x(i;) x x(i,...,1) and (D) = &(1,) t(1y,...,1).

2.1. THEOREM. If a ¢ @, then

a(X1 XowoX Xn) = Zﬂ(I)=l’l < E(I),a > X(I)

(The summation is finite, since < ¢(I),a> = 0 unless ¢(I) and «

have the same dimension.)
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FROCEF. ‘Q.’e prove the theorem by induction on n., If o is ad-
missible, then ax = O unless o = M., and ka = ng by I 2.7-
The formula is therefore true for n = ', when « 1s admissible. Since
each element in @ is the sum of admissiblie monomlals, the theorem-is
true fer n = 1.

We now assume the theorem is true for integers less than n. ILet

va = Ziozi’®a;. By 1.3 and 1.1.

' n
%eo.x X)) = Zi ax; x @ (X X.ouX Xn)

1"
- %< £(1),05 > < t(iy,...,1),9 > x(I)
= I gt e E(ig,...,1),% ® o:; > %(I)
= I <E(i)) @ el .., 1) v > x(T)

= Zﬂ(D:n < (D) ,a > x(I).

The last line follows since v* is the multiplication in G*. This com-
pletes the proof of the theorem.

*
We can now find the structure of @ as an algebra.

Let @' be the polynomial algebra over Zg, generated by the
elements L PR Since ¥ 1s commutative, the multiplication v in
*
@* is commutative. So we have a homomorphism of algebras e — a,

defined in the obvious way.

2.2, THEOREM. (Milnor [1]). The map e — @" is an isomor-

phism.

PROOF. We first show that a' —_ a* is an epimorphism.
Suppose < &(I),¢ > = 0 for all choices of I. By 2.1, we then have
ot(x1 XeooX xn) = 0 for all n. But, by I 3.3, this shows that o = 0.
So the annihilator of Im( &,I —_— Ci*) is zero. Therefore G,' _ e
is an epimorphism.

We now show that the map Q' —> @" is an isomorphism by show-
ing that in each dimension the ranks of @' and Q" as vector spaces

1
over Z, are the same. We have only to show that the ranks of @ and a

are the same in each dimension.
i i2 in

We write &1 = &, 'tpc... &, where I = (i;,1p,...,1.,0,...).
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. - T !
£ - - 1
The monomiais ¢ in @ thus correspond in a ons-to-one way with

sequences cf nf!;ﬁ—r.egative integers (1,,i,,...,1_,0,....). The admissible
N :
. = . !
monomials Sg : @ correspond to sequences of integers (i; ,iz', <ydp,0 )
ses

1 T ‘1
where 1 23, i i t
k2 23y, and i, 2 V. It remains only to set up a one-to-one

correspondence between sequences of nen-negative integers I and admissible

&

1
sequences I such that gI and SqI' have the same degree.

let Ik be the sequence which is zero everywhere except for a 1
in the k' place. Iet

M

2k—2

I , s .. 2,1,0,0,,...).

We construct a map from the set of sequences I to the set of sequences

1 N
I by'insisting that I, be sent to Il:: and that the map be additive

(with respect 'to coordinatewise addition). Then if

_ . . N 1 .l ]
I = (11,...,111,0,...) —> I = (11""’in’o”"“')
I I
3 and Sq have the same degree and we have
U s . -
1k V2 1k + 23_1{_'_1 +...+ 28 k in.

ry ry '
Solving for :Lk in terms of ik’ we obtain

Y ! . '

e = g - 2y,
Therefore every admissible sequence I’ is the image of a unique sequence
I of non-negative integers. Thus the correspondence is one-to-one.

This completes the proof of the theorem.
We now find the diagonal in @ .

2.3.THEOREM. (Milnor [1]). The diagonal map o*: @° —> e a”

is given by i
*,  _ sk 2
P = Lo by © 8y

PROOF. Let o,8 ¢ @ . We have to show that
COEA®B> = Ty, ®E,00 8>

That is, we have to show

i
St > = L <l e < e

"

We shall prove this by using 2.1,

Iet x be the generator of H1(P;Z,2). Iet d: P —> PP pe the
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diagonal, where n = 2t. Then
i
x2 = d*(x1 X...X xn)
i
So cz-x2 = a-d*(xl XaooX xn)
= d*a(x] Xoo X X))
= @Iy pyop < €D, > x(D)
n(I)
= Z!(I)=n< §(I),a> X
i1 irl
where n(I) =2 '+...+ 2 if T = (1,,..., in). If we cyclically per-

n(I) .

mite I, we dc not alter < &(I),a> X 1

Since n = 2°, the number
of different sequences, obtainable by cyclic permutation from one particu-
lar sequence I, 1s some power of 2, say 2j(I). If j(I) > o, the
terms in the summation corresponding to cyclic permutations of I will

cancel out mod 2. So we are left with terms for which J(I) = 0. That is,

i
. . i 2
m=1,=1,= ... =1,. For such seguences I, &I = &m and
n(I) = 1 pnerefore
i i m+1
ax® = Zm<g§1 ,a>x2
Ek
Now ZK < &,@ > X = @B-X . by 2.1
= Q+BX
Qi
= o <g,B>X
i m+ i
_ 2 2
= L <t s> < EgB>x
oK
Equating coefficients of x° , we see that
ol
<&, > = Lo < gy ,a> < Eg,B D>
which proves our theorem.
§3. Ideals

Let A Dbe a Hopf algebra of finite type over a field, with diago-
nal y. An ideal M is called a Hopf ideal, if (M) C M® A + A @ M.
If M is a Hopf ideal, then A/M has an induced Hopf algebra structure
(assuming 1 ¢ M). If A" is the dual of A and M' the dusl of A/M,
then MT is the Hopf subalgebra of A* which annihilates M.  Conversely,

ir M* is a Hopf subalgebra of A*, then the dual algebra to M is the

§3. IDEALS

23
motient of A by the Hopf ideal M which annihilates M
~ *
In the algebra @(2)°, 1let M(§1,...,jk,...) be the ideal gen-
grated by the elements gﬁ, where n = 2 k (k = 1,2 Y.

3Syeee

3.1, LEMMA, If jk_1 < jk + 1 for all k, then M is a Hopf

dgdeal.
PROOF * .1 * n K Ei.n n : .
- 9 E = (o gk) = Zi:o Epi ® & if n 1is a power
of 2. By induction on i, Jg-1 £ Jy + 1. Therefore, 1if 1 <k,

J
k, In the term of the summation where i = Kk,

fk—in e M, where n = 2

j J
we have gﬁ e M where n = 2 k. This proves 3.1,

Let M, be the ideal of the sequence (h,h-1,...,1,0,0...). ILet

ﬂh be the Hopf subalgebra of @ which annihilates M. Since G.*/Mh
is finite, so is @,.
) RVaV

3.2.1EMMA. sqb e @y for 1< )

PROCF. The proof is by induction on i. It 1s obvious for i = 0.
We must show that. gigJ. St = o if r = ma.x(1,2h-k+1) and J is
yrbitrary. Now

i i

o*(ef @ t)) . sg (¢f ) . ¥sa

Zy (efsad) (s7sqY)

"

epsat . e7sq°
our induction hypothesis. Now

r

deg gk - r(ek- 1> 2h-k+1(2k_ 1) = 2h+1_ 2h-k+1 h

> 2%,

h i

o 1 - '
o deg Sq = 1 < 27, Therefore giSq = 0. This completes the proof

of the lemma.

j_ R
REMARK. Actually the elements Sq2 (i < h) generate Qh, but
we shall not prove this.

3.3. COROLLARY. @ is the union of the sequence @, (h=1,2,...)
each a finite Hopf subalgebra of @& .
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5.5IEMMA. I k¢ @F, then

gg.SqI=§.Sq‘TifI=eJ

= 0 otherwise.
PROOF. .8t - Vlee ) L osl
= (e @) quI

I

E 2t . ZR+S=I SqR ® qu
Treser (8807 (£5q%)

do not alter (gSqR)(gSqS). Therefore the

terms of the summation cancel mod 2, unless R =

If we interchange R and S, we

5=J, when I = 2J. Now

if x e Z,, then x2 = X. Therefore (gSqJ)2 gSqJ. The lemma follows.

If A is any commutative algebra over 22 and »: A ——> A ig
defined by irx = xe, then » is a map of algebras. Moreover, » com-
mites with maps of algebras. Hence if A is a Hopr algebra, X is a map

of Hopf algebras.

* *
Then x»: @ — @ doubles degrees. » 1is a monomorphism,
since the elements §2I as I variles, are linearly independent.
et »": @ —@Q@ be the dual map. Then A* is an epimorphism

of Hopf algebras. Since » doubles degrees and misses odd degrees, A"

divides even degrees by two and sends elements of odd degree to zero.

3.5. PROPOSITIUN. 1*(sal) - s¢7

= 0

if I =27

otherwise.
The kernel of A* is the ideal generated by Sq1.
PROOF. & . (\*sqD) - ar . s4T

2
. SqI =t . SqJ

= 0

= & if I = 2J
otherwise.

This proves the first part of the proposition,
I

et m= g 1+...+ Sq D ope g sum of admissible monomials. Then,
if Ir = 2Jr for some r, V¥m o is a sum of admissible monomials con-
taining the term Sq Lo So, if Vm = o, Ir is not divisible by 2 for
any r; that is, SqIP has a factor Sqei+1. Now we have the Adem rela-

tion R : N R
1 2 2i-1 2141 2
quql=<:li )Sql+ =Sql+1
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o, ngi*i £ {Sq‘} and therefore m e {Sq‘} i 2 *m oo, So, ker 1¥ ¢
58q13 Cnt tke other hand, since X*Sq1 = 0, we alsoc have (Sq1} C ker 2%,

the proof of the proposition.

If 8y 1s the ideal of @ generated by sqP
e no=27,2,,..,2°, then (x*f% ® —> @ has kernel 3,, and so
; is a Hopf ideal. The map (x*)h is given as follows:

I h

st —> s¢Y if T = 2y

—> 0 otherwise.

induces an isomorphism of Hopf algebras

@/ s, —>a .

PROOF. This follows by induction on h.
EXERCISE. Iet [@,@®) be the ideal of @ generated by all the
Lommitators of - Ba (o, ¢ @). [@,Q@] is a Hopf ideal and Q@/IQ@,Q)

& divided polynomial algebra on one generator; i.e.,

SPE

Eint: Prove the dual proposition in @ )

Sqiqu

§4. The Conjugation ¢

Let A be a connected Hopf algebra over a field with associative

nal ¢ and multiplication ®. We.define a mayy c: A —> A by in-

1 "
tion on dimension. ILet c¢(1) = 1. If X = X Q®1 + % X5 ® X+ 10X,
"
define c¢x = -x - Zi(cxi)xi. Let A' be the opposite Hopf algebra.
®t is, A, = A as a graded vector space, and the multiplication o N

diagonal v' are defined by commutativity of the diagram

A®A

Ag A

For the proof of the following theorem we refer the reader to the
pal chapter of "On the Structure of Hopf Algebras," by Moore and Milnor,

‘appear in Transactions of the A. M. S.




26 II. THE DUAL OF THE AIGERRA @(2) §5. UNSTABLE @ -MODULES 2

' application of Adem relations, we then express the monomial as a sum of
Sl TEEOREH. . The TR e A A ts an tsomorphism Of\HOpf admissible monomials in B(n). Any admissible monomial in B(n) has excess
algebras. If A has either a commitative diagonal or a commutative multi- greater than n and 5o the lemms will follow.
priestion, then s Suppose theﬂ that in the monomial m1Sqime, i>n + deg m,.
The motivation for the definiticn of ¢ 1is as follows. If G is

Applying an Adem relation to either m, or m,, we get a sum of monomials
& compact connected Lie cup and K 1is z field, then G;K) 1is a Hopf t :
P group ’ Bl ) P of the same form. If 1 < 2b, and my, = qum,a, then.
algebra over X with diagonal ¢ induced by the diagonal G — G x G [ ]
1e.b ! 2] f 4y 14b-tg t !
and the multiplication ¢ induced by the multiplication in G. The map w, 3q"8qm, = £ .0 \ 1-2t m; 39 Sqm, .
¢ 1s induced by the map g ——> g"1 of G. We casily see that o¢(c @ 1)y
is induced by the map g —> 1, and that the formula above for o is Row ' v
-t i n + degm = n+degm, + b>n +degm, + t.
therefore satisfied. In this case 4.1 is obvious. . 1+b > > * & My g My 2
1
In @, we have If a<2i, and m = m Sq%, then
1 T, la/2]
S = ; —-1- 1 -
14 qe) ng L ] m;sqasqij . Zt i 1a1 2*@) m, sqo+t tsqtm2 .
c(8q%) = 89 + sg'sg’ - s59°; =

c(Sq3) - Sq3 . Sq'Sqa . qusq1 - Sq28q1; Kow
c(sq") - sqt sa'sad + sq%sq? 4 Sq°sq'sq’ @+i-t>n+degmy+a-trn+degm +t=-n * deg(SqtmE).
= th + 5a7sq"; The lemma follows.
ete. Suppose X 1521’1 @ -module. We say X is an unsteble @ -module
if B(n)Xn = 0 for ell n» 0. This is equivalent to the assertion
$5. Unstsble @ -modules Salx - o ir 1 > dim x. The category of unstable @ -modules and @ -
We define the excess of SqI = Sqik... quL1 to be (ik—gj_k_1) + maps 1s a subcategory of the category of @-modules and @ -maps. This
(1 q-21p o) + .0+ (1,-21,) + 1,. The excess is non-negative for an ad- category is closed if one takes:

" 1) Submodules

missible monomial. Let x ¢ BYX). If Sq¥x 4 o0, then fe<ne

oot 1y, by Axiom 4), I §1. We define B(n) to be the subspace of @ 2) Quotient modules

spanned by all monomials Sq' which can be factored into the form 3) Direct sums
m, Sqimg, where m, and m, are monomials and 1> n + deg m,. It is %) Tensor products over Z,. ) '
obvious that B(n) is & left ideal which annihilates all cohomology classes  Only the last needs proof. If X and Y are @ -modules, then X @ ¥
of dimensions < n. Any admissible monomial of excess greater than n is in is an  (-module through the diagonal map. So

B(n), since the excess is 1 = (g +euns i). sitx ® ¥ = I sax @ Sqi'jy .

If 1> dimx + dim y, then either J>dmx or i-j> dimy, and so

sqt(x & y) = o.
: Let F(n) be the @-module defined by: F(n); is the image of

5.1. LEMMA. B(n) is the vector space spamned by all admissible

monomials of excess greater than n.

PROOF. We shall show that, on applying an Adem relation to a @i, in Q/B(n). Then it is easy to see that F(n) 1is an unstable @ -

menomial in B(n) we obtain & sum of monemials in B(n). By repsated ~-module. F(n) is called the free unstable @ -module on one n-dimensional
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generator. A free unstable Q@-module is the direct sum of free unstable

@ -modules on cne generator.

5.2. PROPOSITION. Any unstable @-module is the quotient of a

free unstable @-module.

PROCF. The proof is the same as the standard proof for modules.

5.3. IEMMA. Iet X be an unstable @-module and 1(X) its

tensor algebra (see end of §1). Ilet D be the ideal of T(X) generated

by all elements of the forms x® 7y - (-1)mr\vr ® x and Sqnx -X®X

(rﬁ =dimy, n=dimx) for all x,y ¢ X. Then D is an @ -1deal. Hence

r(X)/D is an @ -algebra.

PROOF. If 1> 2k and dim x = k, then

sat(sa’x - x @ x) - sqlse’x - Zy sadx @ 8¢t x - 0.

If 1 = 2k,

Sqi(qux - X ® X)
If i< 2k,

= qukSqlSt-SqlS<®Sq13c = quky-y®7>'-

: [i/2] : .
sat(s® - x @ x) - Zt o k;l;é) Sqi+k't8th - ZJ. Selx @ sqt7Ix.

Now 8q7*%Psq®x - 0 1f 14k -t> k4, ie., if 1> 2t. Cancel-

ling mod 2,
0 if 1 is odd

T sq’x @ satIx - ;
si/%x & 5¢/%x  ir 1 1is even.

Sle]
sat(sdf% - xe@x) - o 1f 1 is odd,
sat (s - x @ %) L N o even,
- 2
L G

Also
Sqi(x1 @ X - X, @ %) = I (qux1 ® Sqi’jxg - Sqi'jxe ® qux1)
Finally, we must show that, if r is a relation, and B ¢ I'(X),
then Sql(a r B) is in the ideal.

saltar s - % _; sa . sq®r . sqbs.
hegs+t=1

§5. UNSTABLE @ -MODULES 29

:Since qur iz in the ideal, so is Sql(a r B).

5.%. DEFINITION. If X,r(X) and D are as in 5.3, then the
‘guotient algebra TI'(X)/D 1is denoted by U(X) and is called the free
" 3 -algebra generated by X. Iet M be a free unstable @ -module. Then

(M) is called a completely free @ -algebra.

Let K(G,n) denote the Eilenberg-MacLane complex of the group G
in dimension n. The cohomology H*(K(Ze,n) ;Z,) has been computed by
<. P. Serre, Comment. Math. Helv. 27(1953), 198-232. His result can be
nést&ted} H*(K(Ze,n) ;Zg) is the completely free Q@(2)-algebra on a single

generator of dimension n:
B (K(Z,,n);2,) = U(G/B(n)).

e analogous result holds for H*(K(Zp,n) ;Zp) , using computations of
Cartan, Proc. Nat. Acad. Scil. 4o (195L4), Tok-T0T,
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Embeddings of Spaces in Spheres.

In this chapter, we prove the non-embedding theorems of Thom and
Hopf. Thom's theorem refers to an embedding of a compact space in a sphere,
and Hopf's theorem to anembeddingof an (n-1)-manifold in an n-sphere. In

v
order to meke duality work, we use Cech cohomology throughout this chapter.

§1. Thom's Theoren.

In this section, it is shown that if Y is a proper closed con-
nected subspace of Sn, then

e(sah: B (v;z,) — W iyizy), 150,

is zero. (See II §4 for the definition of c¢.)

1.1, LEMMA. All cup-products in H (S%,Y) are zero.

PROOF. ILet i*: H(S%,Y) —> H'(SY. ILet u,v ¢ H(S,¥Y). Then
Wuv = uvuiw = i*u uv = 0 unless u,v e Hn(Sn,Y). In this case
u v v e NS, Y). But, by duality, H(S?,Y) =~ H (s" -v) = o.

1.2, IEMMA. ILet X be a compact Hausdorff space, and let {Ui],

1 eI, bea family of pairwise disjoint open subsets of X with union TU.

Then the maps
HY(X,X - U)) —> BHYX,X - V)

give a representation of Hq(X,X - U) as adirect sum.

PROOF. Suppose first that I 1is finite. For any subspace Y of

X, let ¥ denote its closure and Y its boundary. ILet V be the dis-

Joint topological union of the spaces I'Ii, and let W CV be the union

of the spaces Ui' Then (V,W) 1is a compact pair.

30

The following diagram

§1. THOM'S THEECREM 3

is cammitative

Ty, 0y > (V,W)
J J
(X,X - Uy) < (X,X - 5}

Moreover, the vertical meps are relative homeomorphisms. We therefore get

& cammtative diagram

B(0,,0;) <—— H(v,W0

N N

|~ |~ .
XX - Up) > H(X,X - ) .

MS in turn gives rise to a commutative diagram

n, BYO,,0) «—=— Hi(V,W)
N A
- -

I, XX - U) — BEx - .

8o the lemma is proved when I 1is finite.

If I is infinite, we obtain the result by the continuity of

Cech theory, taking limits over finite subsets of I.

1.3. IEMMA\A If o 1is any cohomology operation of one variable,
sach that

o: HYX) —> HYX) (0 <qg<n)

then . 9: HYS™Y) —> HY(S™,Y)
oaly axiom 6

is zero. (Note that the

needs to satisfy is naturality with respect to mappings of

spaces. e\] need not be a homomorphism.)

PROOF. For any cohomology operation 6, with image in a positive

&imension, 6(0) = 0. The proof is as follows. ILet X be any space, and

3et P be a point. Then we have the cormmutative diagram

() > H(X)
ls Us
HY(P) > HY(X)
-dnduced by the map X —> P. Since n > 0, HYP) = 0, and so 8(0) =

0, where 0 ¢ HY(X).
So 1.2 shows that we have only to prove 8: HI(s®,s? - u) —>

Bn(sn;sn - Ui) is zero, in order to prove our lemma. Now, we have the
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commutative diagram

Bt 8" - ) 2 B, SE - Uy)

l.* L*
J S
Vv AV

o = H(s®H —2 5 FsH

Since Ui is connected, we have by Alexander duality, Hn_1(Sn - Ui)

and Hn( st - Ui) = 0. Therefore the vertical map on the right of the

)
(o]

diagram is an isomorphism. This proves the lemma.

let U be any neighbourhood of Y. Then there is s connected
subcomplex K of Sn, which is a compact n-manifold with boundary L,
such that KC U and Y C K - L. We can construct K from the simplicial
structure of Sn, by teking a fine subdivision. We can assume K 1is
connected, since Y is connected. The set of such menifolds K, and the
inclusion maps between them form an inverse system with limit Y. There-
fore H'(Y) 1is the direct limit of the groups H'(K).
Iet F be a field. We have the cup-product pairing
HY(X,L;F) ® B P(K:;F) —> HYK,L;F) ~ F.
Lefschetz duality tells us that the induced map
@ BP(K;F) —> Hom (HVP(X,L;F),F)
1s an isomorphism. Iet x e HQ(K;ZQ). We define a homomorphism
VTN, Lz, — HYK,L;Z,) =~ Z,
i i Hq+i .
by the formula y —> Sg'y v x. Iet G'x be the element of (K,ZQ)
such that a(Qix) is the homomorphism. Then
Sqiy vX = ¥ o Qix.

Qb isa homomorphism Qt: Hq(K;Z2) —_— Hg+i(K;22).

1.4, PROPOSITION. QfL c(Sqi) as a homomorphism Hq(K;ZE) —_—

Hq+i(K;ZQ). (See II §4 for the definition of c.)

PROOF. We shall use 22 coefficients throughout this proof.
The proof is by induction on i. Obviously QO = 1. Therefore

o
Q° = c(59%).
definition,

For any x ¢ BY(X) and Y e Hn'q'i(K,L), we have, by
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Ly v (QF + E?;i 2d sqtI 4 sehyx

-

Tl saly v satx sy oo osalx

=SquUX+Z§:

sat(y v % ¢ HYK,L)

: We have the commutative diagram

. i
ik, 1) 59 > HYK,L)
A A

. 1 .
B (8™ 8" - It k) —39 5 B(SP ST - nt K)

The vertical maps are excision isomorphisms. By 1.3, we have

Sq%jy vx) = 0 if 1> 0. Therefore, from the computation above,
S S A
J
= - Zj c(qu) Sqi'j - Sqi by our inductlon hypothesis
= Q(Sqi) by the definition of ¢ .

1.5. THEOREM. If the compact space Y can be embedded in Sn,

then, for each 1 > 0, we have that

~

ol iy — iy

is zero. Equivalently, if a compact space Y 1is such that, for some r
~and 1> 0,
T Py — By

is not zero, then Y 1is not embeddable in Sr+21.

PROOF. Suppose Y can be embedded in st we construct a mani-

. ° .
fold K as described above. ILet y ¢ H'(S",s” - Int K). Then sSqly =

¥° = 0 by I§t Axiom3 and 1.1.

. el )
Bl (x,1) 59 > wl(k,L)
N\ N

We have the commtative diagram

i 1
(s, - e k) — 5 pPi(sh g L e x) .

The vertical maps are excision isomorphisms. Since the lower horizontal

map is zero, so is the upper one.
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let x ¢ B3 (K) and y ¢ H(K,I). Then

yuQix Sqiyux = 0.

By dusality Qix = 0, since the above equation is true for all vy.

1.6. IEMMA, Iet x be a 1-dimensional cohomology class mod 2.

Then Ql% = 0 unless k has the form eh-1; if k = 2h—1, then

h
Qkx = x2 .

PROOF. This is proved by induction on k. It is obvious for
k=0, If k> 0, we have

Q,ls{ +, Q,k_1X2 .

Iet m: H*(X) ® H*(X) —_— H*(X) be the cup-product, and let
v: @(2) —> @(2) ® @(2) bve the diagonal. Then

o - ¥ qQlse®ix

Qk—‘IXQ _ C(qu—1)x2

= m[\y(cqu") . X ® X] by II 1.3

= mi(c x ¢)T¥ qu'1 . X®x] by IT §b

= m[Z cSqi x cqu—i'1. X ® x]

k-1 -1 k-i-1
= ZiOQx.Q x

The summation cancels cut in pairs (mod 2), except for the middle term, if

any. The middle term occurs when 1 = k - 1 - 1, and, by induction, is
=M am ; m R k-1.2
equal to x° . X if i = 2" -1 and is zero otherwise. So Q" 'x =
m+ 1
2

x 1f k= o™l

1 and is zero otherwise. This proves the lemma.

h+1

1.7. THEOREM. If 1 < 2 < n < ™', then real projective n-

space Pn cannot be embedded in a sphere of dimension less than eh” .

h
PROOF. Iet x be the generator of H1(Pn522). Then Q2 “x -

h
x° # 0. By 1.5, the theorem follows.

1.7 was first proved for regular differentiable embeddings by

using Stiefel-Whitney classes.
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§2. Hopf's Thecrem.

Iet M be a closed (n-1)-manifold embedded in st Applying

Alexander duality with coefficients Z, and then with coefficients 7z,

2
‘we find that M is orlentable and that M separates S% into two open
sets with closures A and B such that A v B = 8% By duality no proper
losed subset of M can separate Sn, and so ANB = M. Applying

~duality to A and then to B, we see that

H(A) = Hr(B/)/ = 0 (r > n-1)

~for any ring of coefficients. We have the following theorem due to Hopf.

2,1, THEOREM. Under the above hypotheses, the inclusion 'maps
"1: MCA and J: MCB induce a representation of EY(M) as a direct

Boy = i*ma) + 3 E(B) for 0 < q < n-1.

Here i* and j* are monomorphisms. Using a field of coefficients F,

‘and the identification H'"'(M) - F, cup-products in M give an isomor-

1"19(a) ~ Hom (3EY9N(B),F) for 0 < q < n-1.

PROOF. The first statement follows immediately from the Mayer-
jetoris sequence. Since Hn’1(A) Hn"1(B) = 0, cup-products in
or B with values in dimension (n-1) are zero. The rest of the

theorem follows by Poincaré duality.

2.2, COROLLARY. If n > 2, then real projective n-space cannot
be embedded in S,

2.3. IEMMA. let x ¢ H'(M;Z,) and let r + k=n -1, then

PROOF. Let x = 1'&a+ j'b, where a ¢ H'(A) and b ¢ H(B).

The lemma follows by naturality since () B - o.

Let Q¥ o(s¢X) as in §1. Iet x ¢ H'(A;2,). Suppose the

action of the Steenrod algebra @(2) on H*(B;Ze) is known. Then SqlS(

A8 determined by the following theorem.
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2.L. THECREM. Let s -=n-1 -7 -x end let y e HY(BiZ,),

X € HP(A;ZE); then

i
t

i*qu?( u j*y i*x v ;‘.*Q)% .

PROOF. The theorem is proved by induction on k. It is obvious

for k = 0.
By 2.3, sa¥(1"x v 3¥y) = © if %> 0. So by the Cartan
formala
0 = I, sa"t'x v sy
- Il 1" v @PaF Ry« 1sa’x o Ty
by our induction hy'pot{;esis Y
= 1'% 0 1Y s 10X v 1Ty
by the definition of QX in TT §k.
Therefore 1i'x v j 0%y = 1i*s¢%% v §y.
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CHAPTER IV.

The Cohomology of Classical Groups and Stiefel Manifolds.

In this chapter, we find the cohomology rings of the real, complex
and quaternionic Stiefel manifolds. We also obtain the Pontrjagin rings

h}‘.’ the orthogonal, unitary and symplectic groups and of the special orthogo-
mal and special unitary groups. The method is to obtain a cellular de-
eomposition of the Stiéfel manifolds (following [1] and [2]). We then find
‘the action of the Steenrod algebra @(2)in the cohomology rings of the
real Stiefel manifolds. Using this information, we obtain an upper bound

an the possible number of linearly independent vector fields on a sphere.

§1. Definitions.

Iet F = Fd be the real or complex numbers or the quaternions,
cording as 4 = 1,2 'or- L, Let V = FB be the n-dimensional vectof space

over P, 'consisting of column vectors with entries in PF. We write scalars

on the right. Let u; be the column vector with 1 in the i™ row and

gero elsewhere. Let x = Z; uyX; ¢V, where X, e F and let y =
sy We define the scalar product < X,y > = Z:L iiyi , Wwhere ii

s the conjugate of x;. Then < x,y* > = < X,y>r if » e Fi3 <X, 7+ T2
<X,y > + <X, ¥ 75 <Xy + X,y> = < XY >+ < Xp, ¥ 25 and
x,y> = <{FX> . Weembed F' in F™' by putting the last coordi-

pate equal to zero.

let G(n) be the group of transformations of V which preserve
$calar products. That is, A ¢ G(n) 1if and only if < Ax,Ay > = < X,¥>
for all x,y ¢ V. If A is represented by the n x n-matrix [aij] mul-
tiplying column vectors on the left, then A ¢ G(n) if and only if

ItA - I. G(n) is the orthogonal, unitary or symplectic group according
37



38 IvV. COHOMOLOGY OF CLASSICAL GROUPS

as d

it

1,2 or &, We have an embedding G{n} C G{n + 1) induced by the
embedding FR ¢ P The matrix A e G(n) corresponds to the matrix

e G(n + 1)

We write G(0) = 1I.
The Stiefel manifold G(n,k) is the manifold of left cosets
mmmmLLmewmmbememmmmOfmxpﬁmwn1mwm&'%g

mapping G(n) —> G'(n,k), which selects the last (n-k) columns of a
matrix as the (n-k) vectors of an (n—k) -frame, induces a map G(n,k) —>
G'(n,k) which is obviously onto. If two matrices A and B in G(n)

have the same last (n-k) columns, then A7'B e G(k). Therefore the map
G(n,k} —> @'(n,k) 1is a homeomorphism, and we can identify the two spaces.

Now G'(n,n-1) is the manifold of unit vectors in V. Therefore

1.1. G(n,n-1) is homeomorphic to sd-T oy o g by the map
which selects the last columm of a matrix.

d-1

1.2. Definition of ¢. ILet st be the sphere of unit vectors

in V = F®. Then Sd'1 is the sphere of scalars of unit norm in F. We
construct a mapping

P\ ghd-1  gd-1 -—> G(n)

by letting ¢(x,r) be the transformation which keeps y fixed if < X,y >

= 0, and vhich sends x to XxA. That is

P(X,My = x(A-1) <X,y> +y or
cp(x,x):LJ = xi(x—T)xj + 5ij in matrix notation.
If m<n we have an inclusion &4~ e snd-1 , induced by the

inclusion F& —_— F'. This induces a further inclusion

md-1

2 % Sd-1 N Snd—T % Sd—1

The following diagram is obviously commutative

Smd—1 < Sd-1 - Snd—1 % Sd-1
? o
v v
G(m) ————> G(n)
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1.3. Definition of Q'*q Let Q’n be the quotient space of Snd'1

g9 induced by 9. It is the set of pairs (x,)) ¢ ghd-T o ga-T under
the identifications (x,r) = (xv ,v—1)\-v) where v ¢ 827" ang (x,1) =

{y,1). That these are the only identifications is easily seen by looking
at the fixed point set of ¢(x,2). ILet Q, be & single point. We embed
Qo in Q’n (n> 1) by sending Q, to the equivalence class of (x,1).

If n>m>» 1, we have an embedding Q —> Q,, 1induced by
gd-1 o gd-1 _ gnd-t o gd-1 By the commutativity of the previous disa-

gram, we have another commutative diagram

\ U >

G(m) ——> G(n)
whenever n > m > o.

Q,m is a compact Hausdorff space and so the vertical maps are em-
beddings. We identify Q, Wwith its embedded image in G(n) (n > m).
Under the identification Q, becomes the identity of G(n).

tet E(M Y 1o the ball consisting of all vectors x ¢ P91 C v
= En, with X, Teal -and X, 2 0. Then Xn is determined by KyseessXg e
et f: g(n-nd —> 8" be the inclusion map. Let g: (Ed'l,sd'Q)
e (Sd-1,1) be the usual relative homeomorphism (S"1 = #). Let

n: BT s )
be the composition

gnd-1 _ g(n-1)d g1 fh X8 na-1

> 8" w83 5 g .

Let 37972 o the boundary of g1
1.4, IFMMA. The map hh defines a relative homeomorphism
h : (End'1,Snd—2) _— (Qn, Qn-1) if n » 1. Therefore Q, is a CW com-

plex with a 0-cell Qy, and with an (md-1)-cell for each m such that

1 <dm<n.

PROCF. (fn X 2) gnd-2 consists of points of the form (x,\) «

s0d-1 g3 here x = 0 or ) = 1. Therefore h(s™98) ¢ Qg -

n

) -1
N In any equivalence class ((x,2)) € 879" 4o can choose a representative

{x,)) so that X, is real and X, 2 0. Moreover, if r# 1 and X, >0,
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this representative is unique. This proves that h: (End_1,Snd'2) _—

(Qn,9-1)

The rest of the lemma follows by induction on n.

is a relative homeomorphism.

1.5. DEFINITION. Iet » be the multiplication in G(n). Let

n: G(n) —> G(n,k) Dbe the standard projection. A normal cell of G(n,k)
is a map (or the image of a map) of the form
i,d-1 i d-1
E | .. .Xx ET ——2—54445—£L> Qi Xo oo X Qi — T G(n,k)
1 T
vhere n» i, > i, >...> 1, > k. We denote such a cell by (iT,...,irln,k)

or simply by (i1,...,ir) if this will cause no confusion. The cells of

Qn (other than Qo), described in 1.%, may be identified with the normal

cells (m|n,0) where n > m > 0. We denote such a cell of % by (m).
By u we shall also denote the action of G(n) by left translation
on G(n,k) (n> k> 0).

§2, The Cellular Structure of the Stiefel Manifolds.

In this section we shall prove the following pivotal theorem.

is a CW complex, whose cells are the normal

2.1, THEOREM. G(n,k)

cells (see 1.5) and the 0-cell =(I). The map

' Qn x G(n-1,k) —> G(n,k) (k < n)

is cellular and induces an epimorphism of chain complexes.

Before proving the theorem, we state and prove a corollary.

2.2, COROLLARY. then the induced map
G(m,£) —> G(n,k)
(11,...

(1y,000,1

If m<n and { <k,

is cellular. This map sends the normal cell

,1,Im,8)  to the normal cell (i Sinlnk) if i, > ks to

In,k) if d =1

'R

and i, ,>k>1, = 1> = 0; and

r-1 r-1

degenerately otherwise.

PROOF. This follows immediately from 2.1 and the definition 1.5

of normal cells.
We now begin the proof of 2.1.
nd-1

(@, ) —> (5
(Q,,.,) —=> (G(n,n - 1),G(n - 1,0 - 1)) —> (5740

Let us denote by «: ,un) the composition

§e. TEE CEILULAR STRUCTURE OF THE STIEFEL MANIFOIDS b1

Tere the map on the right is the homeomorphism of 1.1.

2.3, I1EMMA. The map a: (Qn’Qn-1)—__> (Snd_1,un) is a relative
“homeomorphi sm.

. nd-1 - -
PROOF. a: Qn _— S sends ((x,M)1] (x ¢ Snd ‘,x € Sd 1) to
‘ {x - 1)xn +u, by 1.2. The inverse image of u, under o is Q1
;fcr if x(» - 1)in +u, o= ug, then » = 1 or X, = 0.
nd-1 n

Suppose we are given y e S CV = F such that y £ u,. We

23t show that there is exactly one element (x,2) eSnd'1 X Sd'1 with
T,

In the real d-dimensional space F,

x, real and X, > 0, and such that x(a» - 1)Xn = Y-y .

(yn - 1) 1lies in the closed
‘ball bounded by the sphere of scalars of the form -1,

So, projecting from the origin in the real d-

where |r»] = 1.

‘Moreover, (yn -1) £ 0.

dimensional space F, we can solve uniquely the equation xﬁ(x - 1) =

n -V, for x  real, x, >0, Ix =1 and %4 1. EKnowing » and

Xy is determined uniquely for 1 < i < n-1.
y_un; )\,#1.

We have to check that < x,x> = 1.

We now have x(r» - 1)xn

xg real, x| =1 and
On evaluating the scalar pro-

ct of each side of the above equation with itself, we find

- .
: < xX,x > (2 - n - x)xn = 2 -y, - ¥, -
- 2
&iso, we know that xn(x - 1) = (yn - 1) . Hence

.2 .
<XE> (2 - -Xxg = (2-% - Vx;

Bince [r] =1 and r# 1, we have (2 - - X) # 0. Since also, X, £ 0,
deduce that < x,x > = 1.
2.4, PROPOSITION. If n > k > 0, then
wi (@ x G(n - 1,1),Q, ; x G(n - 1,k)) —> (G(n,k),G(n - 1,k) ’

8 a relative homeomorphism and maps Qn x G{n - 1,k) onto G(n,k).

PROOF. The inverse image of G(n - 1,k) is Qn_1 x G(n - 1,k).

© see this, let A ¢ QB € G(n - 1) and suppose ABG(k) C G(n - 1).
Then A ¢ G(n - 1). On projecting into G(n,n - 1),

DG -1 = Q-

v 1s one-to-one on

we see by 2.3 that
Therefore A ¢ Q-

(@, - Q_y) xGn - 1,k

To see this, let
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A, CeQ -Q,, andlet B,D ¢ G(n - 1) eand suppose that ABG(k) =
CDG(K). Then AG(n - 1) = CG(n - 1). On projecting into G(n,n - 1),
we see by 2.3 that A = C. Therefore BG(k) = DG(k).

p maps Q % G(n-1,k) onto G(n,k). To see this, let A e G(n). By 2.3,

there is an element C ¢ Qn such that CG(n - 1) = AG(n - 1). Therefore

there is an element D ¢ G(n - 1) such that A = CD.

nd-1 cv

2.5. LEMMA. let x e S ¥ pe a unit vector, let

1

» e 91 CF be a unit scalar and let A ¢ G(n). Then A o(X,M)A™ =

o(Ax,2). (See 1.2 for definition of ®.)

PROOF. By definition, o(Ax,)) is the transformation which keeps

v fixed if < Ax,y > = © and which sends Ax to Axx. The lemma fol-

lows.

2.6. PROPOSITION. k(Qy X Qp_y) € G(m) for m> 1.

w(Q, x Qm) =

PROOF. We shall reduce the case where m 1s arbitrary to the case

where m = 2. We therefore begin by checking the proposition for m=1

and m = 2.

If m=1, themn Q; = @(1). We see this from 2.4 by putting
n=1 and k= 0. The proposition follows since G(1) = #(Qy x QO) C
n(Q, x Q) ¢ G(1) (recall from 1.3 that Q, 1s the identity element).

If m= 2, then u(Q, x Q) = G(2). We see this from 2.k, by

putting n =2 and k =0, and recalling that Q, = G(1) from the pre-

vious paragraph. 8o

G(2) = u(@, x Q) C r(@Q x Q) € G(2) .

The proposition follows.

Now let x,y ¢ §977 ¢ v F' and let v e 8537V CF be arbi-

trary elements. Then ¢(x,») and o(y,v) are arbltrary elements of Q.

We must show that o(x,Me(y,v) € QQO_1.

Iet W be a 2-dimensional subspace of V containing X and ¥.

Using the inclusion FT C prt!

of §1, we have the sequence

oCWnF ... cWnF" = W

§2. THE CELLULAR gTRUCTURE OF THE STIEFEL MANIFOID3 L3

f vector spaces over F, increasing by at most one dimension at a time.

choose an integer r, 'such that 1 {r<m and Wn F' is 1-dimension-

1

. let Ae¢F(m) map W onto F2 so that A(Wn FY) = F'. Let

= x' eF° and Ay = y' e FZ Then, by 2.5,

Ao(x,Me(y,vA™T = ox",Mely',v) .

Since the proposition is true for m = 2

>

o(x",Mely',v) € Q0

A p(x,Mo(y,MAT = e(x, 2 )e(y,y,)

1271

2d-1

e s CcFe, g, e st CF e ¥ Ve .

Again using

;5, we see that

1

p(x,Me(y,v) = oA X1,X1)¢(A'1y1,v,)

our choice of A, A”'y, e Wn F' ¢ F"'. Therefore

e(x,Mo(y,v) € Q Q4 -
This completes the proof of the proposition.

PROOF of 2.1. We denote 2.1 when n =m by 2.1(m). We shall

ove 2.1 and the following two statements together by induction on n.

2,7(n). Then n(Qi
n the (Z_,(id - 1))-skeleton of G(n,k).

let n2> 1,,...,1,> 0. is contained

e Qir)

2,8(n). T Qn x G(n,k) —> G(n,k) 1is cellular.

When n = k, all the assertions are obvious, for then G(n,k) is

he point =(I). Suppose n > k and that 2.,1(n - 1), 2.7(n - 1) and

8(n - 1) are true,

By 2.8(n - 1), u: Qg X G(n - 1,k) —> G(n - 1,k)
G(n,k) therefore has a CW structure such that the
Qn x G(n - 1,k) —> G(n,k)

1{n-1), the cells of G(n,k)

is cellular.
2.4% and 2.1(n - 1),
D M

is cellular. By 2.4, 1.4 and

other than those in G(n - 1,k), are of

the form w((n) x (i;,...,1,)) where n - 1> 1, >...> i, > k. Now
{n) x (il,...,ir)) =
G(n,k).

1(n) follows.

(n,i1,...,ir) by 1.5, and this is a normal cell

Therefore u 1induces an epimorphism of chain complexes and
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We now prove 2.7(n). By 2.5, if A e G(n), then AQ = QA. % (n > 2) corresponds to the usual embedding of cP?"2 in cp™ .
{ = : j . So, by 2.6 and 2.7(n - 1 we can ) .
Therefore Q;Q QR (o g J < m) o, by 7( ), FROOF. By 1.3, 1f d =1 or 2, Q, is the set of pairs
i i that in the hypotheses of 2.7(n) n = _ _
assume without loss of generality in YD 7(n), A) e 8977y 5871 BB B nder the identifications (v ) = ()
i i i cee Qs caG - 1,k). Therefore b _ _
T > e > A > ke Now w(Qy Q) ¢ Gln -1,k y v e s¥TCF, and (x,1) = (y,1) if 3y e 89 ¢ P, The second

2.7{n - 1), n(Qie . Qir) is contained in the (Z§=2(isd - 1))-skeleton
of G(n - 1,k). By 2.1(n),

W@, x G(n - 1,k) —> G(n,k)

of the lemms follows.

If 4 =1, then for any pair (x,»), if r»# t then » = -1.

£ space Qn therefore reduces to the disjoint union of QO and the set

is cellular. Since Q, has dimension (nd-1), 2.7(n) follows. ) points (x,-1) wunder the identifications (x,-1) = (-x,-1) .

We now prove 2.8(n). Since Q is the identity, w» 1is cellular So, if d =1, Q, consists of two points and so does G(1).

on Qo x G(n,k). By 2.1(n), w» is cellular on Qn x G(n - 1,k). We have : nce Q ca(), Q, - G(1) and (Q1 - Qo% is the matrix (-I) < G(1).

only to check that u 1is cellular on cells of the form (t) x (n,i,,...,1,) 1s matrix has determinant -1. By connectedness, all matrices in

where n» t>0 and n> i, ... > it > k (see 2.1(n)). Now - QO) therefore have determinant -1. (All matrices in O(n) have

w((t) x (n,i;,...,1.)) C =(QQQy ... Q; ) and our assertion follows from erminant +1.) This completes the proof of the lemma.
T

i . . an 2.8.

2.7(n). This completes our proof of 2.1, 2.7 d 8 The boundary of each cell in Qn is algebraically zero. If 4 = 2

4, this follows from 1.4 for dimensional reasons. If d = 1 it fol-

3

§3. The Pontrjagin Rings of the Groups G(n).

¥s from 3.1 and 3.2.

3.1. Throughout the remainder of this chapter, all chain and co- By 2.1 u: Qn x G(n ~ 1,k) —> G(n,k) is an epimorphism of chain

chain complexes and all homology and cohomology groups will be taken with plexes. By induction on n, the boundaries of the cells of G(n,k) are

coefficients R, where R is a commutative ring with a unit if 4 = 2 ebraically zero. Therefore there are no boundaries in G{(n,k) and all

or 4, and R =2, 1if d = 1. ns are cycles.

i i i i 1 rjagin rings of the
The aim of this section is to find the Pontrjagin rings 3.3. DEFINITION. If (i,,...,1,|n,k) is a normal cell (see 1.5),
; i d th lectic ou
orthogonaligroup 0(n), the unitary groups U(n) an ¢ sy group denote its homology class by [i1,...,ir[n,k] or [11""’ir]‘ We

i i = 2 a4 tively). That 1is
Sp(n) (i.e., G(n) 1in the cases d = 1,2 an respectively) ’ mote by (i,,...,i.|n,k} or (i,,...,1.}, the cohomology class of

we want & description of the map B,k) vhich assigns the value 1 to the normsl cell (i,,...,1,) and

H,(G(n) ;R) ® Hy(G(n);R) —> Hy(G(n);R) sr0 to all other cells. We call these homology and cchomology classes

induced by the multiplication G(n) x G(n) > G(n) . 1 classes. We denote the homology class of =(I) by 1. We denote
1, the cohomology class which assigns the value 1 to =(I) and the

MMA =1 isjod il  the point -
3.2. IE - I d » Qp 1s the disjoint union o P e O to all other cells. We call 1 and 71 unit classes.

Qo and the real projective space Pn'}. The embedding of Qn—1 in Qn
T =G

consists of two points, the 1 x 1 matrices I and -I. (Qn - QO) consists

The following lemma is an lmmediate consequence of 2.1.
(n > 2) corresponds to the usual embedding of Pn—2 in PV
3.4, IEMMA. H,(G(n,k);R) is the free R-module on the unit class
entirely of matrices of determinant -1. and on the normal classes [i,,...,i,In,kl. If n<m and k< ¢, we

If d =2, Q, 1is the suspension of the complex projective space e & map G(n,k) —> G(n,?) which sends fi,,...,1.In,k) to

CPn_1, with the two suspension points identified. The embedding of Qn-?
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§4. THE COHOMOLOGY RINGS H*(G(n,k) sR) 47
(1, ’ir‘m’u if 1> 8 to li,,...,1,, lm,2} if d -1 and ty a homotopy which is a_lomeomorphism at each time t. Therefore o has
ip> 221, = 1>k = 0; and to zero otherwise. The map the same degree as hj(z) . Each element of U(n) or Sp(n) has degree 1

?

ket He(Q, x G(n - 1,k)5R) —> Hy(G(n,k);R)

is an epimorphism.

since these groups are connected. If d =1, hj(Z) has degree -1 by 1.4
and 3.2. So 8 has degree (—1)d.

Since the normal cell (i) C Q;, and, by 2.6, Q;Q; = QQ4_4»
we have (i)(1) C Q4Qq_y. If 1> 1, thenby 2.7, QQ;_, is contained
4n the skeleton of G(n) of dimension (2i - 1)d - 2 which is less than

3.5. THEOREM. The Pontrjagin ring of G(n) is the commutative,
agsoclative algebra over R with unit element 1 and generated by the
normal classes [i] of dimension (id - 1), where n > i > 0, subject to :

(id - 1). ‘Therefore [(i][i]l is zero for dimensional reasons, if 1 > 1
the relations .
(11 031
(vl I
(11 [11

i1 =1, then (1)(i) C Q1, which has dimension d - 1. If 4> 1,

(]
[}

(31 (41 ifr 14 j

4 then [11[1] is zero for dimensional reasons.
if =1 :

i
l_.

If 4 =1, then by 3.2 there are twd O-cells, namely the 1 x 1

[}
o

ifi>1ord>n

mitrices I and -I. (1) is the O-cell -~I. Therefore [1][1] = 1
The normal class [i,,1,,...,1 In,0] = [i,] 1,0, 01,0, =

In order to complete the proof of 3.5, it only remains to be shown
PROOF. Iet 1t < Jj < 1i. We have the diagram

pld-1 | gid-1 _v o gid-1  gid-1 8 . pja-1  pid-d

T
orm a free basis for Hy(G(n);R). This follows from 3.4, since the defi-

that the classes 1 and [i,1(i,) ... 1], where n» i, > 1,...> i,>o

mition 1.5 of normal cells shows that

by x by hy x hy [4,004,) ... T3] = [1,,...,1,In,0]
Q x Qj u > G(n) < u Qj x Q4 The mep uw: G(n) x G(n,k} —> G(n,k) gives H,(G(n,k);R) the
structure of a module over Pontrjagin ring H,(G(n) ;R) .
Here y(x,y) = (y,x), h; and h, are the maps of 1.4, u 1is the mul-
~J J 141 (i-1)a d-1 3.6. THEOREM. H,(G(n,k);R) 1is a module over H,(G(n);R) on a
tiplication and 6 is defined as follows. Let E = B x E R
(i-1)a 1d-1 " single generator 1 (n> k> 1). The defining relations for this module
where E () CV = F~ 1is the set of all unit vectors x with '
(i-1)a ., ; R R R
X, real and Xpn > 0. E is invariant under ()}(J) since J < 1. (il 1 = o ifk>»1i>0 if a4 1
Ja-1 (1-1)d a-1
We define e(x,y1,y2), where X ¢ E » ¥y ¢ E and y, « =7, to (111 = o 1P k>1>1 ifd o
-1 X ; : . L
be (x,(hjx) ¥9,¥5) - This definition is meaningful since hjx € Qj CG(l). (111 = 1 iFd o
By 2.5 and the definition of hi’ the diagram is commutatives.
The normal class [i,,1,,...,1.In,k1 = [1,J01,] ... 0101 .
We now find the degree of the maps ¢ and e. If d =2 or &, )

both factors have odd dimension, and so v has degree -1, If 4 =1, we PROOF. This follows immediately from 3.4 and 3.5 .
are working mod 2 and signs don't matter. Also, 6 has degree (-1)d. To

see this, let f: BI%' x T —> B9 pe a contraction of EIT' onto §4. The Cohomology Rings H' (G(n.k):R).

a point z. This gives a homotopy of e We begin this section by reminding the reader. of our assumption 3.V

(X:y1 :ygyt) - (x,(hjf(x,t))'1y1 ;yg)
which shows that e 1is homotopic to the map We shall compute the cohomology ring of G(n,k) by induction on n

- by use of th omorphi Wb
(x,3,,7,) —> (x,hj(z) 1y1 7) d by e monomorphism (see 3.k4)
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- " % _ We prove the theorem by evaluating both sides of the equation on
g H(G(n,k);R) —> H (Q,n x G{n - 1,k);R) where n > k. -

cells of Q, x G(n - 1,k). The value of the left-hand side is calculated
If 4 =1, we write 0(n,k) = G(n,k); if d =2, U(n,k) = G(n,k);

-with the help of 3.5 and 3.6. When evaluating the right hand side, we must
4, 8p(n,k) = G(n,k) .

[
=
Q
tt

~use the sign change < ¢, x ¢,,hy x hy > = (-1P < c,,3; > < ¢y,h, >,

%.1. NOTATION. We extend the notation of 3.3 as follows. Let € Hp(X), hy e %(X), c, € H(Y) and h, e Hq(Y).

i,,...,1, bea set of integers all greater than k, where k > 0 1if
4.3, IEMMA. If d = 2 or 4, cup products of positive dimensional
d-2o0rk, and k> 1 if a=1. Let {i,,...,1,) Dbe the zero cohomolo- _
classes in Q, are zero. If d=1, and n>»a>b> 0, then 1{a} =0

gy class of G(n,k) if i > n for some s such that 1 < s <r, or . .
s - - i and {a}{b} = {a+ Db - 1}.

yeee ’ir] denote the

if 1y = 1y where 1 <'s < t < r. Otherwise let (i,

product of the normal class of G(n,k) obtained on permuting i,,.. 1

i, PROOF. For d = 2 or 4, 1.4 shows that Q. has only odd dimension-

and the sign of the permutation. (Recall that (ir) is a cell of dimension al cohomology. Since the product of two odd dimensional classes is zero,

(i,d - 1), which is odd if d = 2 or 4, while if d =1, our ring is Z the lemma follows for d = 2 or k.

5

Therefore this notation is consistent with the usual convention for sign- When d =1, Q, is the disjoint union of Q, and P by 3.2,

changing.) Curly brackets with a space between them { }, should be inter- Since (a} 1s the generator of w2t (e 3Z5), the formula (a}{b} =

preted as 7. We also use the symbols ({b} and T, where 0 <b < n to fa + b - 1) follows., The unit element in H*(Q,n;Ze) is T + {1}, since

denote the images of these classes under the map H*(G(n) sR) —> H*(Qn;R) . this assigns the value 1 to each O-cellin Q . Therefore

L., IEMMA) ) Iet n> k> 1. Under the monomorphism (see 3.1) (T +0Da) = (o) = fa}l1) .

Phe lemma follows.
we: HY(O(n,1)52,) —> B (Qy x 0(n - 1,6)32,), Phe lemua follows

»*
we have, in the notation of k.1, .4, IEMMA. ILet n» k> 1. In H (0(n,k);Z;), we have

Wby, .. e,bp) = T x (by,...,b.0 + (1} x (by,...,D }

{a} o [b.l,...,b } = f{a,b
r

T ,b} o+

120020y

+ Tf (03] X (B e Dy gDy 500 ,Pp) + I (b, by 8 - 1,,b]

b) Let n> k> 0. Let d =2 or k. Under the monomorphism where a > k and by >k for all 1.

* * * <
w*: H (G(n,k)5R) —> H (Q, x G(n - 1,Kk)5R) , PROOF. The theorem is true for n = k, since then all terms in

we have, in the notation of k.1, the formula are zero (see 4.1). For n > k, it follows by induction on n,

~ . L.2 a) and 4.3.
Wb, eebl) = T ox (by,ee,b) + T (DT D) x ne ) 3 .
Iet A(n,k) be the commutative assoclative algebra on the gener-
x (by,.ea,bs:_4,bs .,b) .
L L ors (b} of dimension b - 1 , where n > b > k, subject to the rela-

PROOF. Without loss of generality, we may assume that n > b, > ... ons (b}{b} = (2b -1} if 2b -1 <n and (pJ{b}) = O If 2b-13 n.

> b, >k, since interchanging two adjacent b's multiplies both sides of .5 THEOREM. Let n > k> 1. Then X (0(n,X);Z,) ~ A(n,k). If

the eguation by -1, and if two of the b's are equal, both sides of the <m and k< ¢, we have a mep O(n,k) > 0(m,f) which induces a map

equation are zero. (0(m,0);2,) —> H*(O(n,k);Ze). Under this map, {b} —> 0 ifb>n

g {b} —> (b} if b < n.
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* x
PROCF. From 3.4, we see that H (O(n,k);Z,) has a vectgr space  50(n) iy o(m) %> O(n,1) and SU(m) L gla) = > T,
basis consisting of the normal classes {bj,...,br) , Wwith n> b, > ...

are both homeomorphisms. The reason for thi $
> b, > k. 4.k shows by induction on vr, that the normsl classes (b}, with his 1s that both in real and in

complex n-space, there is exactly one way of i -1) -
n> k, generate H*(O(n,k);ze). Also from 4.4, we see that ’ J y completing an (n-1)-frame to

an n-frame with determinant \1 - We shall identify 80(n) with O(n,1) and
{b} v (b} = (b,b} + {2b - 1} SU(n) with U(n,1).

o

5.1. THEOREM. The Pontrjagin ring H,(S0(n) ;Z,) 1s the exterior
algebra on the normal classes [b] of H*(O(n,ﬂgzg) (see 3.3).

Referring to our notation 4.1, we see that there is an epimorphism
*
A(n,k) —> H (0(n,k);Z,) .
Suppose we have an element Q ¢ A, whose image in H*(O(n,k) ;ZE)

is zero. Q can be expressed as the sum of terms of the form (b }(b,}... PROOF. The normal cell (1;,...,1,) of 0O(n) consists of matrices

{br}, where n > b; > ... > br > k. By induction on r, we see from 4.k of determinant (-1)r (see 1.4, 1.5 and 3.2). Therefore 30(n), as a sub-

theb space of 0O(n), consists of the normal cells (i i,,) where n> i, >

1r0eeslop

(b} {byd.elb ) = (by,...,b.} + terms like (a a ) +e+>1,.> 0. By 3.5, the normal class of such a cell is [1,101004,101]

r 1 19°°°2%g
with s < r. In Q, if we collect the terms where r is greatest, and -..[i,,1{1]. Therefore by 3.5, the image of H,(80(n);2,) —> H,(0(n);2,)
*o2

apply this formula, we see that Q = 0. is the exterior algebra on the elements [bJ[1] with b > 1.

B (0(n,1)5Z,), [bl[1] becomes [bl, by 3.6.

Mapping into
4.6. LEMMA. If d =2 or &, then in H (G(n,k);R),

(-1)%(a) v (by,..e,by) = (a,b 5.2. THEOREM. Let [bl ¢ H (U(n,1);R) = Hy(SU(n);R) be a nor-

, b,

12

mal class (n > b > 1). The Pontrjagin rin SU ;
wore a5k, st by >k fomall 1. > Jjag g H,(SU(n);R) is the exterior

algebra over R generated by the classes [b)] of dimension 2b - 1.

PROOF. For n = k, the theorem is true since then both sides of
PROQF. By 3.6, we know that H1 (U(n,1);R) = 0. Therefore

the equation are zero. For n > k, it follows by induction using L.2 b) 3
“H (SU(n);R) = 0. The composition

and 4.3, *
P

* * * %
H (U(n,1) ;R) > H (U(n);R) = H'(SU(n) ;R)

Let T(n,k) be the exterior algebra over R, generated by elements

. . .
{b) of dimension bd - 1 (d =2 or ¥), withn> b > k. is the identity. From 4.7, we know that =" (b} = (b} where n >b> 1.

~Therefore 1¥{b} = (b} where n>b> 1. Moreover H (SU(n);R) = O

N )
o . H ~ = 2 b, If N )
L,7. THEOREM. H (G(n,k);R) r(n,k) for d or so 1¥{1) = 0. By 4.6 and induction on r, this shows that i*(bw""br}

n<m and k < {, we have a map G(n,k) —> G(m,¢) which induces a map

: . =0 if b; =1 for some i and that otherwise i*[b1,...,br}

H (G{(m,2);R) —> H (G(n,k);R). Under this map (b} —> 0 if b>n and i

(G(m, £) ;R) (G( {b,,...,br}. The dual map 1,: H,(SU(n);R) —> H,(U(n);R) therefore satis-'

{(b} —> (b} if b < n. — .
< fies 1i,[bl = [bl where n 2b>1. Since i, is a monomorphism of

PROOF. This follows from 4.6 in the same way that 4.5 follows L.k, Pontrjagin rings, the theorem follows.

We now investigate the embedding Sp(n) C U(2n). let V be quater-

§5. The Pontrjagin Rings of 30(n) and SU(n),. nionic n-space and let W be complex 2n-space. Ilet us write every quater-

nion q =

S0(n) and SU(n) are the subgroups of 0O(n) and U(n) respectively, @ +1qy + Ja3 + kq,, where q,,q,,q; and q, are real, as

%

(ql + 1q2) + j(q3 - iqh) . Then a column vector (x1,...,;%) ¢ V becom CE A
, AGEN
&%"\ -

consisting of matrices with determinant 1. The compositions
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a column vector (y1,...,y2n) e W, by writing Xy = J¥pq.q * Vo1 - This
gives an identification of V and W as complex vector spaces. The iden-
tification preserves the sealar product of a vector with itself (but not
with another vector). Therefore every element of Sp(n) preserves scalar
products in W, and we have an embedding Sp(n) —> U(2n). We also have
maps Sp(n) —> V and TU(2n) —> W obtained by taking the last colummn
of a matrix, or, equivalently, by taking the image of the vector (0,...,0,1)

under an element of Sp(n) or U(2n). The dlagram

Sp(n) ——> v
J ¥
U(2n) ——— W
: by-1
is commutative. On identifying unit vectors in V and W with 3 n s

we obtain the following commutative diagram

5.3.

Sp(n) ———> Sp(n,n-1)
I
Shn-1
% I
U(2n) > U(2n,2n-1)

5.4, THEOREM. The embedding Sp(n) —> U(2n) induces an epimor-
phism HE (U(2n);R) —> H (Sp(n);R) given by (2b) —> (b) and (2b - 1)
—> 0, where n>» b > 0. (Recall that {b} has dimension 2b - 1 or

4b - 1, according as it denotes a normal class of U(2n) or Sp(n).)

PROOF. The proof is by inductlion on n. If we take Sp(o) = TU(0)
to be the identity transformation, the theorem is cobviously true.

The following diagram is commutative

Sp(n - 1) ——> U(2n - 2)

b J

Sp(n) ——> U{2n)

Therefore the diagram

H (Sp(n - 1) <—— H (U(en - 2))

N /N

| l
H'(Sp(n)) <——— H' (U(2n)

- follows. From 4.5 and 4.7, we need only know their action in 30(n) =

*them in Qn and thelr behaviour under cross products. By 3.2 if d =2

“©n
[eA}
N
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is commutative. By k.7, the left hand vertical map sends {b} to (b} if
0 <b<n-1 and to zero if b > n-1. Also by 4.7, the right hand vertical
map sends (b} to (b} if 0 < b < 2n-2 and to zero if b > 2n-2. By our

induction hypothesis and the commutativity of the diagram, the theorem is

true for classes (b} « Heb'1(U(2n)), where b ¢ 2n-2, and we have only

to check the theorem for ({en-1} and {2n). For dimensional reasons,

{2n-1} ¢ un_3(U(2n)) goes into the subalgebra of H%(Sp(n)) generated by

elements of the form {m} Hhm_1(Sp(n)) where 0 < m < n. But by 4.7,
this subalgebra is sent monomorphically into H*(Sp(n—1)). By the commuta-

tivity of the above diagram, we see that {2n-1} goes into zero in H*(Sp(n)).

u(en)) in th_1

use 4.7 and the diagram 5.3. Since both (n} ¢ atal

To find the image of (2n} ¢ th-1( (Sp(n)), we

(Sp(n)) and (2n} «

th'1(U(2n)) are images of the fundamental class in Hun'1(Shn_1), {2n)

" is sent to {n} and the theorem is proved.

§6. Cohomology Operations in Stiefel Manifolds.

We can compute cohomology operations in the Stiefel manifolds as

“0{n,1), U(n) and Sp(n). We have the monomorphi sms

p*s H (0(n,1)52,) —> H'(Q x 0(n-1,1);2,)

“and u¥: H (U(n);R) ——> H'(Q x U(n-1,4);R)

By induction on n, we can determine cohomology operations, if we know

>

‘Qn has the homotopy type of scp !y S1, so we need only know the opera-

“tions in CPn_1 and their behaviour under cross products (see I 2.1).

To find the operations in Sp(n) we use 5.% and our knowledge of
their action in U(en). -
The only explicit computation of operations which we shall carry
out, is the effect of Sq:'L on H*(O(n,k);zg) for k> 1.

Using the notation 4.1, we have

6.1. THEOREM. Sq (b} - <b£1>{b+i} in H(0(n,k);Z,)
{n>b> k> 1). The Cartan formula then gives the action on the other

eohomology classes.
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PROOF. Under the monomorphism
wr: B (0(n,k);2,) —> H (@ x 0(n-1,K)37,) ,

the image of {b) is T x {b) + (b} x { }
By I 2.4 and 3.2, Sqi(b} = (ﬁ‘) (b+1-1 and 57 =0

{(see k.2 a)).
if 1 > 0. The theorem follows.

We shall obtain another description of the @ (2)-module structure
in terms of the definitions in II §5.

A stunted projective space P? is the space obtained from the real
r-1

projective n-space ju by collapsing the (r-1)-skeleton P

n

We have a map P Pr' which induces a monomorphism

* n, * I,
B (P152,) —> H (P752,)

Let wg be the non-zero element of HS(P?;ZQ) for r < s < n. Then, by
naturality and I 2.4,
i S . s
S5q7 Wy = (i) LA if s+1<n

and Sqi Wy o= 0 if s+1i>n

By 3.2; if d =1 /o, = P (ny k> 1). The map

v 325 =1 /9 = By 2 k2 1.
Qn-———> O(n,k) 1nduces a map

n-1

We claim that this map is a homeomorphism into. We prove this claim by in-

duction on n. It is true for n = k. Suppose X,y € Qn/Qk have the

same image in O(n,k). By our induction hypothesis we can assume X ¢

Q- Qg

By 2.1, a normal cell (i,,..

Our claim then follows by 2.3.

has dimension greater than

Therefore the 2k-skeleton of 0O(n,k) 1is Pik

.,ir|n,k)
2k if r > 2. if n> 2k.

If n < 2k, the n-skeleton of 0(n,k) is Pi_1

6.2. THEOREM. If k> 1, then H (0(n,k);Z,) is the free @& -

algebra generated by H%(Pi-1;22) (See II 5.4 for the definition.)

PROOF'. Ie£ us take A{n,k) to be the same algebra as the one

defined just before 4.5. The free @(2)-algebra on H*(P§'1;Ze) is iso-

morphic to A(n,k) as an algebrae, if we let w, and {b + 1} correspond

(n>b» k). This is because sq° W= Wy

to a point.

if 2b > n and zero otherwise.
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We have only to check that the structure on  A{n,k) as an @(2)-
‘module, induced by this isomorphism, is the same as the natural structure

. *

on H (O(n,k);Ze). In fact by the Cartan formula, we need only check on

he generators {(b}. UNow

sqt v, = @)"’bu and Sqt(b + 1) = (?) b+ 1+ 1)
unless b + 1 > n, when both equations have zero right hand side. The
theorem follows,

§7. Vector Fields on Spheres.

By a vector field on a sphere s ve mean & continuous field

f tangent vectors, one at each point of s*1. A set of k vectors on

sP"'  are independent if, at each point of %', the k vectors are

linearly independent. TFor each positive integer n, let k(n) be the larg-

est integer such that s

has k(n) independent vector fields. The com-
- plete determination of the function k(n) has been achieved recently by
. F. Adams [3]. Writing n in the form

n = Qha+a(

2s + 1)
where o, and s are integers > 0 and B = 0,1,2,or 3, then
k(n) = 2P+ 8a - 1

Thus k(n) = 0 if n 1is odd; and, for small even n, we have

o]
]

2,&,6,8,10,12,114,16,18,20,22,2&,26,28,30,32,
k(n) = 1:3;1;7; 1, 3, 1, 8) 1, 3, 1, 7,1, 3, 1,9,

The existence of k(n) independent fields was proved by Hurwitz and Radon
i5]. The complete proof of these results is beyond the scope of these
notes. However we shall establish an upper bound on k(n) which is a step

toward the complete result and which gives the least upper bound for n < 16.

7.1 THEOREM.
ihen k(n) < 2™,

(Whitehead and Steenrcd [41.) If n = 2™(2s + 1),

3

In order to prove this theorem, we first prove a lemma.

7.2. IEMMA. Iet n = 2%2s +1). If o< j <2 then

L - ~ol_
B-J 1) = 0 mod 2. Also (n 2m 1) =1

o mod 2 if s> 1.
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FROOF. n - 1 = 2% - 1 4+ g.2™]
S el e 2T g™

Ir 3 =28+ 2t ¢ Em,’ then the coefficient of 2¥ in (n - 1 - j) is
zero, while the coeffiéient of 2% in j is 1. By I 2.6, <n-§—1> =0
mod 2. If J = zm, then the coefficient of 2™ in (n - 2@ -~ 1) is 1.
So (n—§2-1> =1

PROOF of 7.1. Gilven k vectors VgV, which are linearly in-
dependent, we can find an orthonormal basis for the space spanned by v,,...
Ve We simply define by induction wu, = Vi, Uy = projection of vy onto
the space orthogonal to Uy,...,U;_,. We put w; = ui/luil. The same for-

mulas enable us to deduce the existence of a field of k-frames from the
existence of k linearly independent vector flelds on anymanifold with a
Riemannian metric.

The k-frames tangent to a point of g1

C R" (R™ 1s Buclidean
n-space), correspond in a one-to-one way with the (k+1)-frames at the
origin of R%. (We simply use the last vector to specify the point on
Sn'j.) The existence of a field of k-frames on an (n-1)-sphere is the
same as the existence of a cross-section to the fibre bundle

0(n,n-k-1) —> 0(n,n-1) = gn-1
(see 1.1). Actually we do not use the fact that this is a fibre bundle.

Suppose that in contradiction to the theorem there are o linearly
independent fields on Sn_1 and n = Em(QS + 1). Then s > 1. There must

be a cross-section A to the fibre bundle
72 O(n,n—zm-l) —> 0(n,n-1) = Sn_1

Therefore we must have maps

% *
E (0(n,n-1)32,) > ¥ (0(n,n-2"-1);2,) ~2> H (0(n,n-1);2,)

whose composition is the identity. By 4.5 x(n} = (n}. Therefore
»¥{n} = (n}. Now (n) is the only non-zero positive dimensional term
in H'(O(n,n-1):2,) = H(s%';z,). Therefore 2"(b) - o if n> b.

By 6.1 and 7.2

m m
5q® (n-2" - (n-gm-‘>[n> = (n}.
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Erplying x* tc both sides we have a contradiction, which proves the

theorem.
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the group sction).

et C:(K;A) = Homp(K,A) be the complex of equivariant cochains
e K with values in A. A map f: (p,A,K) —> (n,B,1) induces a map
e cl(LB) — cl(xn

wia the composition

CHAPTER V. f# f2
XK—"-L>L~—>B—>A.

Equivariant Cohomology. 34 H:(K;A) be the homology of the complex C:(K;A) .

1.2. LEMMA. CZ(K;A) and HZ(K;A) are contravariant functors from

In §1 we define the equlvariant cohomolo of a chain complex with
§ d & P the category of algebraic triples.

a group action and show that the cohomology group is left fixed by inner

automorphisms of the group. In §2 we give the basic theorem about the con- 1.3. DEFINITION. An asutomorphism of an algebraic triple (p,A,K)

struction of a chain mep with a prescribed acyclic carrier, end we define s amp (p,A,K) —> (p,A,K) with an inverse. The inner sutomorphism of

the cohomology groups of a group. In §3 we define a generalized form of {o,A,K) determined by y € p 1s defined by

-1

the cohomology of a group, in which a topological space also plays a role. f1(a) - 70,.,‘1’ fg(a) = 7 'a, f#(k) = k.

L h ha, e f alternative wa of defining products in i
In §% we show that a number of & the R If = 1is a normal subgroup of p, then an inner automorphsim of (p,A,K)

cohomology groups all lead to the same result. In §5 we find the cohomology : ces an sutomorphism of (x,A,K)
A ; Pt .

£ the 11 and in §6 we consider the restriction map from the
of the cyclle groups n s 8 P We repeat all the definitions in 1.3 in the case of a pair (p,A),

cohomology of the symmetric group to the cohomology, of the cyclic group. ‘by suppressing all mention of K

In §7 we use the transfer to obtain more accurate information concerning . . 3 %
An automorphism of (p,A,K) induces an automorphism of Hp(K;A)

the restriction map. : by 1.2

§1. Chain Complexes with & Group Action.

1.%. IEMMA. An inner automorphism of the algsbraic triple (p,A,K)
1.1. DERFINITIONS. The category of pairs is the category whose

Induces the identity map on HZ(K;A) .
objects are pairs (p,A), where p 1s a group and A 1is a left p-module. :

Amap f: (p,A) —> (n,B) consists of homomorphi sms f‘1: o —> n and PROOF. The induced map is the identity on the cochain level.

i B — h that
2 > A sue 1.5, LEMMA. Iet (p,A,K) be an algebraic triple. ILet n be a

fo(f,(@)b) = a £,(b) normal subgroup of p and let y € p. Let g (x,AK) —> (x,AK) be

for all o € p, b e B . The category of algebraic triples 1s the category the automorphism determined by y. Then the image

whose objects are triples (p,A,K) where o and A are as sbove and K H (K;A) > H:i(K;A)
[+

i il ich f the 1 . A f: AK) —=
is a chain complex on whic p acts from the left nap (0,4,8) > is pointwise invariant under the automorphism g*.

(x,B,L) consists of a map (o,A) —> («,B) in the category of pairs and

a chain map f#: K —> L such that f#(ak) = f1(oz)f#(k) for all « € p PROOF. Iet f: (p,A,K) —> (p,A,K) be the inner sutomorphism

and k € XK. We say that f# and f2 are equivariant (i.e., commute with determined by y. Then by 1.é, the following diagram is commutative

58
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* * 5 :
H(R38) —T—> B (K38) , o K.)
! o
Y \I/ PROCF. We arrange a p-basis for the cells of K - K' in order
*

% * <
HH(K;A) i—> H“(K;A) Bf increasing dimension. We must define ¢ so that ©d = J9. Since

% fx} is acyclic for each 1, we can do this inductively. The second part
Further, 1.4 shows that [ = 1.
©f the lemma follows from the first, since I x K 1is a p-free complex

see 2,1), and we can define a carrier from I x K to L by first pro-
§2., Cohomeclogy of Groups.

i‘ea:ting onto K and then applylng C.
A vegular cell complex K 1is a cell complex with the property that

the closure of each cell is a finite subcomplex homecmorphic to a closed 2.3. IEMMA. Given a group =, We can always construct a =-free

ball. If X is infinite, we give 1t the weak topology — that 1s, a set m; elic simplicial complex W.

is open if and only if its intersection with every finite subcomplex is PROOF. We give = the discrete topology and form the infinite

open, (i.e., XK is a CW complex). ILet K and L Dbe cell complexes. A : ated join
carrier from K to I is a function C which assigns to each cell T € K W o= nwax

a subcomplex C(7) of L such that a face of t 1s sent toa subcomplex Fnis repeated join is a simplicial complex. Taking the join of a complex

of C{7). An acyclic carrier 1s one such that C(7) 1s acyclic for each th a point gives us a contractible space. Any cycle In W must lie in

TeX. let p and x be groups vhich act on X and L respectively & finite repeated join W'. Such a cycle is homologous to zerc in W' x .

(consistently with their cell structures), and let h: p -—> = be a homo- ﬁierefore W is acyclic.

morphism, An equivariant carrier 1s one such that C(atr) = h(a) C(7) We make = act on W as follows: = acts by left multiplication

for all ae o and 7K. Iet o K > L Dbe a chain map: we say each factor = of the join and we extend the action linearly. This

¢ 1is carried by C if (1) 1is a chailn in C(r) for all = € K. ?ction is obvious free and the lemma is proved.

2.1, REMARK. Iet X and L be (W complexes. We give K x L Suppeose we have a homomorphism = —> o and W 1is an acyclic

the product cell structure and the CW topology. The chain complex of ~free complex and V an acyclic p-free complex. Then we have an equi-

K x L. is the tensor product of the chain complex of K and the chain com- wariant acyclic carrier from W to V: for each cell 7 e W, we define

plex of L. If K and L are both regular complexes, then K x L 1s a ; {t) = V. By 2.2 we can find an equivariant chain map W —> V, and

regular complex. (According to Dowker [1], the product topology on K x L &11 such chain maps are equivariantly homotopic.

defines a space which is homotopy equivalent to the CW complex K x L.) Therefore a map of pairs f: (n,A) —> (p,B) as in 1.1 leads to

Iet XK' be a o-subcomplex of & o-free cell complex and suppose map of algebraic triples (=x,A,W) —> (9,B,V) which is determined up to

we have an equivariant chain map K' —> L. Suppose we have an equivariant equivariant homotopy of the chain map W > V. By 1.2 we obtaln a well-

acyclic carrier from K to L which carries ¢lK'. 2fined induced homomorphism
£ H(VB) —> Ho(W;A).
2,2, IEMMA. We can extend ¢ to an equivariant chain map P T

o: K > L carried by C. If 9 and o, are any two such extensions . In the class of =-free acyclic complexes, any two complexes are
carried by C, then there is an equivariant homotopy I ® K —> L between ‘equivariantly homotopy equivalent, and any two equivarient chain maps going

o and o (o acts on I ® K by leaving I fixed and acting as before #rom one such complex to another are equivariantly homotopic. Therefore the
0 1
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groups H;(W;A) , as W varies over the class, are all isomorphic to each
other and the isomorphisms are unique and transitive. We can therefore

identify all these cohomology groups and write H*(K;A) instead of Hz(W;A) .

2.4, IEMMA. H*(n;A) is a contravarisnt functor from the category

of pairs (see 1.1).

§3. Proper maps.

Suppose we have a contlnuous map f: K—> 1L Dbetween two CW com-

plexes. A carrier C for £ 1g a carrier from K to L such that

f(t) C C(1)
rier which assigns to each cell

Every carrier of £ contains the minimal carrier. We say

for all cells T € K. The minimal carrier of f 1is the car-

T € K the smallest subcomplex of L con-

taining f(7).

acts on K, »p acts

£ is proper if the minimal carrier is cyclic. If =«

on L, h: n —> p 1s a homomorphism and f 1s equivariant, then the

minimal carrier is also equivariant.

13
3,1. IEMMA. Let K and L be finite regular cell complexes.

et = act on K and p act on L, let h: = —> p be a homomorphism

and let f: X -—> L be a continuous equivariant map. Then f can be

factored into proper equivariant maps
F—'5>kx — 1 1> 1L

where XK' and 1.' are barycentric subdivisions of K and L.

The first barycentric subdivision of a regular cell complex
Iet

PROCF.
is a simplicial cell complex, as we see by induction on the dimension.

L' be the n™ varycentric subdivision of L for n> 1. et U; be the

open star of the ith vertex Xj of L'. Then [Ui] is an open covering of

of K such that each sim-

1.. We can choose a barycentric subdivision X'

plex T of ¥' 1is contained in a set of the form f"(Ui). Then the mini-

consists of simplexes all of which have Xy as & vertex.

K —> XK'

mal carrier of =

K' —> L' and

Therefore T: is proper. The identity maps

1.' ——> 1 are obviously proper. The maps are all equivariant. This proves

the lemma.

Note that we were able to choose L' to be any barycentric
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ﬁibdivisj.cn of L. Note alsc that any subdivision finer than K' would do

equally well in the place of K'. Lemma 3.1 is true but more difficult to

grove if the words "einite" and "barycentric' are deleted from its statement.

3.2. DEFINITION. The category of geometric triples is defined in

the same way as the category of algebraic triples (see 1.1), except that we

Peplace the chain complex K by a finite regular cell complex K and equi-
wariant chain maps f, by equivariant contlnuous maps. We say a map of

geametric triples (n,A,K) —> (p,B,1) 1is proper if the continuous map

L —> L is proper.

(x,A,K) —> (p,B,1) let

Let f: be a map of geometric triples.

’g be a n-free acyclic complex and V & p-free acyclic complex (these

exist by 2.3). We wish to construct a map

*

£ B (V x LsB) —> H (W x K3A)

where the action of = on W x K 1s the diagonal action — that is

oy, k) =
the action of o

If f 1is proper, let its minimal carrier be C.

weWwWw and k € K — and similarly for

(aw,ak) for all o€ =,

on V x L,

Then we have the
acyclic equivariant carrier from W x K to V x L which assigns V x C(T)
f.o any cell of the form w X T € W x K. By 2.2 this gives us an equivariant
which is determined up to equivariant

chain map f#: WK —> VeL

homotopy. If f 1s not proper we can factorize it into proper maps

(x,A,K) —> (x,A,K') —> (p,B,L') —> (p,B,1)

and define f# as the composition of three chain maps

WK —>WeK —>VeL —> VeL.

For a proper map of geometric triples (n,A,K) —> (p,B,1) we now
have two different constructions of an equivariant chain map W & K —>

¥ ® L. The first is obtained directly and the second is obtained by fac-
torizing into three maps. The results differ by at most an equivariant
homotopy. 1t is easy to see that the definitlon of f# does not depend,
up to equivariant homotopy, on the number of times we subdivide K and L

in 3.1. It easily follows that if

(x,A,K) > (0,B,1) &> (0,C,1)
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are maps of geometric triples and if U is an acyclic eguivariant o-complex,

then g#f#: WeK—> UM is equivariantly homotopic to (gf)#. let-

ting L = I x K, it follows that if h,k: K -—> M are equivariantly
homotopic as continuous maps, then h# and k# are equivariantly homotopic
as chain maps from W® K to Ue® M.
Therefore a map of geometric triples (n,AK) —> (p,B,L)
(n,AW @ K) > (p,B,V @ 1).

2.4 we show that H:(W ® K;A) does not depend on the choice of W. We

gives

rise to a map of algebraic triples As in

have therefore proved

3.3 LEMMA. Hi(w x K;A) is a contravariant functor from the cate-

gory of geometric triples. Induced maps are independent of equivariant

homotopies of the variable K.

3.k If =« is a normal subgroup of o, A 1s a p-module

and K is a finite regular cell complex on which p acts, then p acts

on the geometric triple (x,A,K) by the same formulas as in 1.3. Therefore

o acts on Hi(w x K;A) by 3.3. This action commutes with equivariant maps

of the variable K. If = = p, then p acts trivially on H:(w x K;A)

S

by 1.4. If K has trivial n-action, then the action of 7y € ¢ on

Hi(w %« K;A) can be found by extending the automorphism of (n,A) induced

by o (see 1.3) to a map of the algebraic triple (=,A,W) into itself.

Using the identity map on K, this gives & map of (n,A,W ® K)

which induces the automorphism of Hi(w x K;A).
If K is a point then H (W x K;A) 1s just H (x;A) and 3.3 re-

duces to 2.k,

§4. Products.

let K be a n-free COW complex and I a CW complex on which o

acts, and suppose we have a homomorphism » —> p and a continuous egqui-

variant map f: K —> L. By an increasing induction on the dimension of

the cells which form a =-basis for K, we can construct an equivariant

homotopy I x K —=> L, which starts by being f and ends as a cellular

map. This gives rise to an egquivariant chain map f#: K —> 1, which is

determined up to equivariant homotopy. We can insist that, during the

into itself,
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ctopy, the image of each cell in K stays within the minimal carrier of
Then £, 3is carried by the minimal carrier.
Now © induces a map g: K/x —> L/p. The map f# induces a
,gﬁain map K/x —> L/o. This chain map will do for g# since the equi-

fant homotopy I x K —> L induces a homotopy I x K/x —> L/p which

arts by being g and ends as a cellular map.
Iet K and L be regular cell complexes with group action as above,

iet f Dbe proper. Then we can choose f#: K —> 1L 1in a different

s to that above. We can simply apply 2.2 using the minimal carrier of f.

Bowover our previous choice of f# was also carried by the minimal carrier.
wrefore the two procedures lead to the same result (up to equivariant
Bomotopy) .

Iet W be a n-free regular cell complex and let L = W/x. Iet =«

®ct on W x W by the diagonal action. The diagonal d: W —> Wx W 1is

. equivariant proper map. By the discussion above we have

4.1, LEMMA. Any equivariant diagonal approximation in W induces
‘ehein map L —> I, ® L which is homotopic to a diagonal approximation
.. If W is acyclic, then any equivariant chain mep W —> W@ W

induce a map L —> L ® L. which is homotopic to a diagonal approxi-

et (x,A,M) and (p,B,N) Dbe algebraic triples (see 1.1). Then

: have a triple (r x p,A ® B,M ® N). We have a map

CL(1:8) ® CL(:B) —> C

nxo(M ® N;A ® B)

ned in an obvious way.

froduct pairing

This gives us a cross-product or external -

T (M;A) ® H (N;B) ¥ .
” 3 ® D( 3By ——> H‘KXQ(M®N’A®B)'

Iet W be an acyclic =-free complex and let V Dbe an acyclic

~free complex. Let (x,A,K) and (p,B,L) be geometric triples. Then the

gross-product above gilves us a map
HS (W x K;A) ® H(V x LiB) —> Hy (W x K x V x LiA @ B).
o TXP
the algebraic triples (n x p, A®B, W@ KoV ®L)
X0, ApB, WeVeKel

and

are isomorphic via the map which interchanges
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V and K (with a sign change). Here the action of =« x o ‘on

WK Ve®L is given by

(e,p)(w@kovel) = (owe®ak@sve sl

for all ce n, Bep ,weW, ke K, veV and £ € L. The action of

nxp on WEV®KeL is given by

(g,p)(vwevekel) = (oweBveoaokesl).

Therefore we have an isomorphism between
H:xp(Wx KxVxL;A®@B) and H;Xp(WxVxKx I;A®@B). Sirice WxV 1is
a (nxp)-free acyclic complex, we see that, composing this isomorphism with

the cross-product above, we have introduced a cross-product

(%.2) H (W x K;A) ® HZ(V x L;B) —> H:Xp(w %V x K% LiA ® B)

defined on the functor of 3.3. The image of ue®v is denoted by u x v.

We have a diagonal map of gecmetric triples
d: (x,A®B,K) —> (x x »,A ® B,K x X),

where =n acts on AQ®B in the first triple by the diagonal action.

Hence we have a map (see 3.3)

* *

¥
d: Hﬂxﬂ(WxWxKxK;A®B) —> H (W x K;A @ B)

where axt acts on WxWx KxK by

(2,8) (v,,v,,k,k,) = (av,,8v,,0k,,Bk,)

for all «,p € n, v,,v, € W and Kk, k, € XK. Combining .d* with the cross-

1252
product of k.2, we have the cup-product palring

(4.3) H (W x K;A) @ Hy(W x K;B) —> H (W x K;A ® B).

If « is the trivial group, this is the usual cup-product in K. If K is

a point, then this is the usual cup-product in the cohomology of a group.

k,4h, REMARK., Iet W and L be as in k.1. We can compute cup-

products in L by constructing an equivariant diagonal approximation in

W. This 1s particularly useful when L 1s not a regular cell complex.

§5. The Cyclic Group.

Iet W be the unit sphere the space of infinitely many complex
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2.,0,..4)

12°°°12%n>

Alternatively W may

riables. That is, every point in W has the form (zo,z
where L Z;zg = 1.

e described as the CW complex cobtained by taking the union of the sequence

We give W the weak topology.

s'cgdecsdce....

n be any integer greater than one. Let T: W —> W be the trans-
gmation defined by
T(zo,z1,...) = (XZO,)»Z.l,...)

e2ﬂi/n_ T obviously acts freely and generates a cyclic group

e i =
of order n.

We now construct an equivariant cell decomposition for W, which
wmnkes W a regular cell complex. We do this in the obvious way for S1,
: as to get n O-cells eO,TeO,...,Tn'1eO, and n 1-cells,

‘!,Tev P ,’1‘n_1e1 . Let Be1 = Now we proceed by induction.

s21-41 _ SZr—1

th the set of points

(T~1)eo.

* S1 (where * means join). Here S1 can be identified

(0,...,0,2,0,...) such that z = 1. We con-

)rb)
2r+1

rzr

(2r-1)-skeleton to

struct a cell decomposition for S by taking its

he the cell decomposition for SEr—1 already defined by our induction. We

2r-1 i

2r+1
T €on and we

be of the form S

! * Tle

Iet the 2r-cells of 3 * 'T[‘leO =

Tie

= opal We then

3et the (2r+1)-cells be of the form ger-
Jave n cells in each dimension.
» !

@roup ring of n. Choosing the orientation of the join correctly, we obtain

Iet N=1+T+ ... and A =T -1 be elements in the

BTie
2r Neer—1

. i i
and oT €opui T ae .

2r
pefore the cell complex is n-equivariant and is regular.

et @ = 2 ™ x 79 be an element in the group ring

Z{x x 7).

g W via the map Z(n) —> Z(xn x =)

0 1< K n

7Z{n x n) acts on W ®W in the obvious way. acts on

z(x)

induced by the diagonal = —> = X =#.

5.1. IEMMA. The equivariant mep d: W —> W ® W  defined by
i 1-1
depy = Zijo ©23 ® Cpipy * Lioo ® ®2j41 ® Cpi-2j1
1 .
€21 41 Z3-0 (ezj ® €p3.p341 * 2541 @ Tezi—2j) is & chaln map.
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PROCF. In Z(x x n) we have the relations
TXT - 1X1 = 1xA + AXT
(TxT)Q - 8 = Nx1 - 1xN

11 + T + ... + Tn_1xTn_J =, XN + a(ax1)

IXT + TXT® & ... + T Ty @

Nxt - a(1xa) .

Using these relations the lemma follows by a straightforward calculation.

Let L = W/x. Since W is contractible and covers I n times,

L is an Eilenberg-Maclane space of type K(Z,,1). L has one cell, also

denoted by €4,
Let w,

in each dimension. We have aezr = and e =0

o1 2r+ 1
be the cochain dual to e,. Then Hr(L;Zn) is cyclic of
. . +1e7.
W, Let p: HYL;Z) —> HY (L;Z)) be

the Bockstein operator associated with the exact coefficient

in L.
order n and is generated by

sequence

0 —> %y —> Zp —> Z, —> 0,

5.2,

() ¥

THEOREM. If n isodd, w. = ©

w)*.

BW1 = =W BW2 = 0.

o3
W = = (wg)rw1. If n =2, then

op and w

W, =

2r+1 r

PROOF. Since 662 = ne

17

BW1 . e =

b = —(1/1'1)w1 . de = W, . €., ‘=

2 - 1 1

Therefore BW, = -w,. 3ince 152 = 0, Bw, = O.
By L.4 we can campute cup-products in L by using the diagonal of

5.1, In L we therefore have the induced diagonal approximation

1 i-1
dey; = Zj:o €05 ® Oy p5 * n(n-1)/2 Zj=o e

21+1
= Zj:O €

2341 ® 210304

deEi+1 3 ® ezi_j+1 .

The theorem follows.

5.3. COROLLARY. If n is odd, H*(L;Zn) is the tensor product
of the exterior algebra on w, and the polynomial algebra on BW, = -w

If n=2

0"

, 8w, =w, and H*(L;Z?) is the polynomiasl algebra on w

1

§6. The Symmetric Group.

Throughout this section we assume that p is an odd prime. Let

5(p) ©be the symmetric group of permutations of p symbols. We regard
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S(p) as acting on the finite field Zp‘ let k be a generator of the

Then kp'1 = 1. Let T be the cyclic permu-

= ltiplicative group of Zp

4ation T(i) = i + 1. It is easy to see that any element of 3(p) which
écmnutes with T is a power of T. We define 7y € S(p) by »i = Ki.
hen

YTy (1) = yT(KTE) = 2T 1) = 1+k o= TR
Sc 7T~/'1 = Tk. v 1is an odd permutation as we see by letting 7 act on
0,1,k,...,k°7 1.

Let x be the cyclic group generated by T, and let p be its
normalizer. Then 9y € p. Moreover, p 1is generated by o and T. For
‘suppose « € p and oz‘I‘oz'1 = Tj. Then J = kl for some 1i. Therefore

Y y-iTklyi .

“Fherefore 7'icx commutes with T and is thus a power of T.
be the S(p)-module which is Z

If a

Let Zi)Q) as an abelian group,

b

is even, let Z;q) be

(q)
Zp

and vith action from S(p) as follows.

i’lxa trivial S(p)-module. If q is odd, let S(p) act on by the

Now T is an even permutation.

' )
‘sign of the permutation. Therefore Zéq

48 a trivial =-module and so if K has trivial =x-action

* PACY * ; - " ;
H (W x K;2,%) H O x K2) = H (W/n x K2 .

The following two lemmas will be important in Chapter VII. Iet K

be a finite regular cell complex with trivial =-action.

6.1. IEMMA. Iet g be even, let r > 0 and let ue HI’(K;ZP).
Then Wpy
3F 1= m(p-1)

X 1 € Hii”'(w X K;ZI()q)) is invariant under y € p 4if and only

for some m, and W xu € Hil+r’1(w X K;Zéq)) is

2i-1

for some m. (See 3.4 for the defi-

fnvariant if and only if 1 = m(p-1)

nition of the action of v.)

6.2. IEMMA. Iet q be odd, let r >0 and let u e H (K;Z.).

Then w is invarient under » € p, 1if and only

21
£f i =m(p-1)/2

2i+r Q)
xu e H (WXK,Zp)

23+1-1 o(Q)
for some odd number m, and W,y , X U € H W x K,Zl(jq)

is invariant if and only if i = m(p-1)/2 for some odd number m.

PROOF. Since +y 1is an.odd permutation, the map g: (n,ZI(Jq)) —_—
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(n,zl()@) induced by y, is glven as follows (see 1.3 and 3.4)
gy zéq> - zgﬂ is -1 1f q 1is odd and +1 if q is even;
g, (M = yTy~t - Tk

With W as in §5, we must construct gy: W —> W which is g,-equivari-
1 ¢k=-1 @
= x Zj:o T e

1 < k< p.) We extend g# to

ant. Let 8#621 = kle21 and let gye (In

21+1
these formulas we regard k as an integer,

2i+1°

be a g1—equivariant map. We easily check that g# is a chain map by using

the following formuilas. ILet N and A be the elements of Z(x) described
in §5. Then
g(M) = N and g(a) = T - 1.
let o be an r-cell of K and let u denote a cochain represen-

tative for the class u € H?(K;Zp). Then

g#(wei X u)-(eei X o) gz[(w2i - 8y ezi)(u < o))

= ge[ki(u e o))

ki(u « 0) if gq 1is even
" olid(u - 0) 1f g 1is odd.
Therefore .
# l«:l(wei x u) if g is even
g (w2i X u) = .
—kl(wgi x u) 1if q 4is odd.
Also

g#(wei+1 xu)e(eyy, g x 0) = -n" 8o (W, 1 * 8y8p3,4) (0 - o))

k-1
)

- (DT (B KD - @

r i J
= (-1) gg[wgi+1 .k T ezi+1](u . 0)

= (DT g™ - o)
{ (=T i+,

(_1)r+1 ki+1“4if

q 1is even

q is odd.
Therefore .
k:|.+1(w

_kl+1

x u) if gq 1is even

# 2i+1
g (Wpy,q X 1) Q)
1

(W21+ if q is odd.

For w, x u to be invariant under vy, it is necessary and suffi-

1

cient that g*(wr xu) - (W, xu) = 0. The lemmas follow since k- = 1,

r

if and only if 1i|p-1, .and any non-zero element of Zp has an inverse.
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§7. The Transfer.

In this section, we shall use the same symbol for a cohomology class
and one of its cocycle representatives.

Let = be a subgroup of finite index in p. Iet XK be a p-complex

#nd A a p-module. Then we have the inclusion

1: O (K:A) —> O (KsA)
iﬁducing a map
1 H (KA) —> H (K3A)
We define the trangfer
T O (K3A) —> O (K:h)

as follows: if u e C:(K;A) and ¢ € K, then

) _ -1
Twece = Iy, ofn G - O e,

where o ranges over a set of left coset representatives

if i £ 3.

{ai) — that is
Qiaix = p and oy N ajn = g
the definition of t 1s independent of the choice of coset representatives.
If B e P,

We check immediately that

then

" (wa - ge) = T lau . a£1sc = Tu

1

since, for any fixed #, the set (8'101) is a set of left coset repre-

sentatives for « In p. Therefore Tu € C:(K;A). It is immediate that
is a chain map.

Therefore <t induces a map

3 *
T: Hﬂ(K;A) — Hp(K;A)

which is natural for equivariant maps of

let

p-complexes K.
[p:x] dendte the index of =«

elements in the set

in p — that is, the number of

{ai}.

7.1. LEMMA. The composition

oL (K:A) -2 C(Ks8) 5 ¢ (K3A)

miltiplication by [p:n].

PROOF. If u € C:(K;A), then

™« ¢ = Zi ou . a£1c = [p:n] u.c.

Ziu-c=
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et o be a subgroup of p. Let =z range over a set of represen-

tatives of double cosets ozx of ¢ and = in p. We write I

o, = zrz ' 0 oo, Iet adz be the restriction to =
of the inner automorphism of o induced by 2. Then adZ: 2% —> 0,

%N (z_1cz) and
is

an isomorphism. We also denote by adz the homomorphism

* *
¢ _(K;A) —> C (K;A)
Zﬂ GZ

given by ad,u . ¢ = z{u - z"c) where c¢ € K,

The remainder of this section is not required elgewhere in these

notes.

7.2. IEMMA. The following diagram is commutative

ok (Ks8) —E—> Cl(Ea) —> O (K:R)

o, It,
v T ad
* o Z * .
T, C o(K8) T, Oy (K58)

PROOF. Let y, range over a set of left coset representatives of

o, in o. By Uy

while keeping z fixed. Now

and Zy we shall mean taking unions or sums over Y,,

6 Zn = z(z"szz)x = Z(Zyr):r = zn.
Therefore
ozZN = U}7 ¥, 0, 2% = Uy y,
and so p = UZ ozt = UZ Uy v, %

We easily check that the last is a disjoint union. Hence the elements ¥,2
range over a set of representatives of left cosets of n in op.

Suppose U € C:(K;A) and ¢ € K. Then
; , -1
Zz T, adz(lzu) .c = ZZ Z.y yZ[adZ(lzu) - Y, cl

Zz Zy yzz[izu(z_1y;1c)]

x[u . (yzz)—1c]

ZZ:Y yZ

This proves the lemma.
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Now take o = =, - -1 -
b Then Z:r_srnz nz and ﬂZ=ZTrZ1ﬂ'K. Iet

[p:xl.
7.3. I1EMMA. If p 1s a prime not dividing m, then the composi-

¥ i * *
H (K38) —=> H (K;A) > H (K;A)

"an isomorphism of the p-primary part of H*(K;A) .
P

PROOF. By 7.1, ai = m. Also multiplication by m is an isomor-

*
7.4, LEMMA. let u € H (K;A) and suppose p°u = 0. If ad i _ =
z T

u for all z € p, then u 1is the image under i of some v € H*(K?A)
o 3]

s
eh that p°v = 0. If u 1 the image of some v € H*(K;A) then
o}

;1 ,u = 1 u for all ze€p
z Z

PROOF. Suppose that adZ izn u = i“z u for all z e p. We

1 modulo ps. Then by 7.2

L]

oose m' so that mm!

imu = Z 7t ad, i _u = X T i u

ere the sum ranges over a set of representatives of double cosets
in op.
From the first paragraph of the proof of 7.2, we see that as ¥y
2z
through a set of left coset representatives of = in =«
VA 2
ns through a set of representatives of double cosets nzn, the elements

and z

z form a set of left coset representatives of = in p. Iet m_ = [n:x ]
- i, 1.

£n = I
Z, m, m. Hence

itu = & t_ i u

it
™~
1=
<

by 7.1

erefore, on putting v = tm'u, we obtain the first assertion of the lemma
The second assertion follows directly from the definitions. This

es the lemma.
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7.5. IEMMA., ILet = be a normal subgroup of p, and let p be
prime to [p:x]. Then i is an isomorphism of the p-primary part of

HZ(K;A). If u is in the p-primary part of H,(K;A), it is in the image

* *
of 1i: Hd(K;A) - H%(K;A), if and only if ad, u = u for all 2z € p.

PROOF. This is immediate from 7.3 and T.L.
7.6. IEMMA. TIf m = |p|, then m Hl(p;A) =0 for q > oO.

PROOF. Iet X be a p-free acyclic complex, and let =« = 1. We
apply 7.1 and use the fact that Hq(K;A) =0 1if g > 0. The lemma follows.

7.7. IEMMA. Let = be a Sylow p-subgroup of o (e finite).
Then H%(x;A) is a p-group in positive dimensions and 1i: H#(p;A) JE. S
H%(n;A) maps the p-primary part of H%(p;A) isomorphically onto the sub-

group of those elements u such that adz i S iﬂ u for each 1z € p.
z b4

PROOF, We note that |z} = p° and m [p:n] is prime to P.
By 7.6, pSH*(n;A) = 0 in positive dimensions. So 13 (x;4) is a p-group

for g > 0. The rest of the lemma follows from 7.4 and 7.3.

7.8. PROPOSITION. ILet = be a cyclic group of order B, and let
x be a Sylow p-subgroup of o. Let o Dbe the normalizer of = in op.
Then the moncmorphic images of the p-primary parts of H*(ij) and H*(G;A)
(in positive dimensions) coincide. The image is the subgroup of those

elements of H%(n;A) which are invariant under o.

PROOF. Since |x| = p, we have
anzlrz = 1 if z ¢ o and
x Nz ez = = if z € o.
Therefore iﬂ = 1 x = 0 in positive dimensions, if =z ¢ o. Therefore
z b4

by 7.7 the conditions for an element to be in the p-primary part of
Im(H#(p;A)) are the same as the conditions for it to be in the p-primary
part of Im(H (o;A)). If z € o, then

ady: H (n:8) —> H (m:4)

is the automorphism induced by z”! (see 1.3 and the definition of adz).
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*his proves the proposition.

7.9. LEMMA. Hp(n;A) is isomorphic to the subgroup of invariant
elements of A under =. This isomorphism is natural for maps of (=x,A)

{see 1.1).

PROOF. This follows immediately from the definition of H*(n;A),

gince an acyclic =n-free complex must be connected.

7.10. COROLLARY. If nC p and A 1is a p-module, then the in-
duced map Hp(p;A) —_— Hp(n;A) has an image consisting of those elements

of A vwhich are invariant under o.
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CHAPTER VI.

Axiomatic Development of the Algebra @ (p).

In §t we give the axioms for the Pi. In §2 we define the

Steenrod algebra Q@ (p) and show it is a Hopf algebra. In §3 we obtain

the structure of the dual Hopf algebra. The proofs are very similar to
those in the mod 2 case. In §5 we obtain some results about the homotopy

groups of spheres and in §6 we derive the Wang sequence .

§1. Axioms.
Let p be an odd prime and let
s Hxz) — B Y
B (x:2)) —> HM(x:2)

be the Bockstein coboundary operator assoclated with the exact coefficient

seguernce
0 —> 7 —> 7 — N .
> D > 2 > Zp > 0

We assume as known that p 1s natural for mappings of spaces, that 52 =0
and that
s(xy) = (Bx)y + (-2 x(By) where g = dim x.
We have the following axioms
1) For all integers i >0

and ¢ > O there is a natural transformation

of functors which is a homomorphism

i, . . +21(p-1) /.
Pt Hq<x,zp> > H (%:2)

2) P =1,
3) If dim x = 2k, then Px = xP.
%) If 2k > dim x, then P’x - o.
5) Cartan formula.
Pk(xy) = Z; Pix-Pk_iy .
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£} Adem relations. If a < pb then

papd Z[%ig] (_1)a+t (p-1)(b-t)—1> pa+b-tpt

a-pt

L}

If a <b then

pRgpd _ Z[i£8] (~1y8+t <(p-;1é2—t)> 5 pab-tpt
. Z[éial)/p] (_1)a+t—1 (p-;lé%:?)—1> Pa+b-tB pt

We shall prove the axioms in Chapters VII and VIIT and we shall
show that the other axioms imply Axiom 6). As in Chapter I, we can show

‘that, in the presence of Axiom 1), the Cartan formula above is equivalent

To . .
Pk(x X y) T px x Pk_ly .

¥e can also show that Pi commutes with suspension and with

. I,4. 1+1 R
5: H (A,Zp) —> H (X,A;Zp)

as in I 1.2 and I 2.1. Similarly B85 = -58 and Bs = -8B, where s

is the suspension.

§2. Definition and Properties of Q (p).

We define the Steenrod algebra @(p) to be the graded associative

algebra generated by the elements Pi of degree 21(p-1) and B of de~
gree 1, subject to 52 = 0, the Adem relations and to P® = 1. A monomisl
in @(p) can be written in the form
g50p 1p%T L pkg K
where gy = 0,1 and sy = 1,2,3.... We denote this monomial by PI,
where
I = (80’81’81’SE""’SK’EK’O’O"’)'

+ e, foreach 1> 1.

" A sequence I is called admissible if 141 i

8; > ps

The corresponding PI, and also PO, will be called admissible monomials.

We define the moment of I to be X i(si + si). of I be

‘.the degree of PI,

Let the degree
which we denote by d(I).

2.1. PROPOSITION. Rach element of @(p) is a linear combination

of admissible monomials.
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PROOF. As in I 3.1, we see by a straightforward computation that
the Adem relations express any inadmissible monomial as the sum of monomials

of smaller moment. The proposition then follows by induction on the moment.

We shall investigate @(p)

We first prove some lemmas

by letting it operate on a product of

lens spaces.

2.2. IEMMA. Iet x and y be mod p cohomology classes in any

space such that dim x = 1 and dim y = 2. Then Axioms 2),3),4) and 5)

imply that Pix 0 unless 1 -0 and
ik k k+1(p-1)
Py = (f) ¥
PROOF. For k = 1, the result follows from §1 Axioms 4),3) and

2). For k > 1, it follows by induction on k and the Cartan formula.
2,3. LEMMA. If y is as in 2.2 then Axioms 2),3),4) and 5) imply
1,05 k X K+ 1
that PY(yP ) is y¥ if 1 =0; zero if i 4 0,p%; and y° ir
1 = pk.
PROOF. This follows immediately from 2.2 and I 2.6.
Iet u be a cohomology class of dimension gq. Iet I be a sequence
of the form (30,30,51,31,...,sr,er,o...). Then we have the formulas
Blux v) = BuxVvV + (—1)q u x Bv,
Pk(u xv) = Z plu x PK Ly ,
I -a(J J
PL(uv) Tgogop (-nTI) PKypdy
I q-d(J) K J
P (u x v) ZK+J=I (-1) Phux Pv
Let L and w, e Hi(L;Zp) be as in V §5. Let X = Lx...xL = L7,
Let
W, o= PXXXPXK. ... XXX € H3n(L2n;Zp)
where x = W, and y = “Wy.
2.4 PROPOSITION. The elements PIun are linearly independent,
where I ranges over all admissible sequences (50,31,51,...,51,81,0, L)
of degree < n.
-1 k-2 1 0
PROOF. let J, = (0,p57',0,0%%,...,0,0",0,0%0,...) eand

1

k-1 k-2 1 (6]
Jk (o,p ,0,P yr0e,0,P ,0,Pp,1,0,...).

1l

§2. DEFINITION AND PROPERTIES OF @& (p) 79

I

call that Bx =~y and By = O Px =0

(see V 5.2). Therefore, by 2.3,

number of pairs of adjacent zeros inserted, or
¥ 0 I
= (0,0,...): v  and P’x = Py = o0
unless H is Jk with a number of psirs of zercs inserted, or
Jd k o
P ky = yp and Py = 7.

P there is more than one non-zero €

X. Also by 2.3,

= (0,0,...): We note that PI(xxy) =0

in I.

i
We prove the lemma by induction on n. It is obvious for n = 1,
ce the only moncmials of degree < 1 are P’ and B.

I
un = 0

Suppose 7. aIP (aI 3 Zp), where the sum is taken over
dmissible sequences I of a fixed degree ¢, where q < n. We wish to
rove that each ar =
ength £(I).

Suppose that ar = 0
The Kinneth theorem asserts that

0. This is done by a decreasing induction on the

for £(I) > 2m+1,

HIRLE <3, | B e HY(D) @ HINTSTRAE

et - be the projection onto the factor with s = pm and t = 1, Let
. be the projection onto the factor with s =2 and t = pm .
I I G(L) »J
(1) P u, P (yxxxun_1) = zJ+K¢L=I (-1) PPy x PKX X PLun_1 .

be admissible. We assert that

(8) 1f 1) <

if 4HI) =

h P

"

2m+1, then hmPIun 0, and

2m+1, then I Z.J$ and

. 1
Iun = (‘1)1 ¥ X me X PI Im Un_1»

here 1 = deg (I - J). We also assert that
(3) if 4(I) <2m, then gP'u, = o and
if 4(I) = 2m, then I > J, and
m -
ngIun (-1)i P x x % pl-Jm g5

1 = deg (T - Jm).

To prove (2) and (3), we refer to the first paragraph of this proof.

note that a sequence obtained from J% by inserting zeros has length

ter than 2m+1, and a sequence obtained from Jm by inserting zeros

3 length greater than 2m. Therefore (2) and (3) follow from (1).

We can now apply (2) and (3) to our decreasing induction on  £(I).

3cce ar =0 for £(I) > 2m+1, we see by applying (2) to our relation that
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m i I-Jy
7 x ¥P x ZE(I)=2m+1 (-7 aPm My o= 0.
As I ranges over all admissible sequences of length (2m+1) and degree q,
I- J$ ranges over all admissible sequences of length < 2m and degree
q - 2pm + 1. By our induction on n, we have ap = 0 when £(I) = 2m+1

Now applying (3) to our relation, we see that

ypm'x X X Zﬂ(I):zm (—1)i aIPI'Jm u,_y = O.
As T ranges over all admissible sequences of length 2m and degree q,
I - Jm ranges over all admissible sequences of length < 2m and degree
q - 2pm + 2, By our induction on n, we have ar =0 when £(I) = 2m.
This completes the proof of the proposition.

Combining 2.1 and £,k we obtain
2.5, THEOREM, The admissible monomials form a basis for Q@ (p)

2.6. COROLLARY. The mapping Q(p) —> H%(LZn) given by evalua-

tion on u,, ig a monomorphism in degrees < n.

2,7. THEOREM. Any Pk (k # pi) is decomposable. Therefore @(D)

. i,
is generated by B and PPT (1 =0,1,2,...).

PROCF. Ry the Adem relations, Pa+b is decomposable if a < pb
and <(p’1;b‘1) 4 omod p. Let
a+b = k = k +kD + ...+ kD
where ©0 < k; <p and Kk 0. et b =7p". Then
(p-1)b -1 = (B 1) + (p-2)p"
- - e e DD e (-2

Now

a8 = k-b = kj+kp ...+ Kk, 0" (g DT

Soby I 2.6,
(0 ENED - (EDED e

The theorem follows from I 4.1,

2,8. IEMMA. Let X be any space such that H%(X;Zp) is a poly-

nomial ring on one generator of dimension 2k (possibly truncated by xt =

fvhere t

§2. DEFINITION AND PROPERTIES OF

a(p)

81

> p). Then k has the form Xk = mp? where m divides (p-1).

_ PROOF. By §1 Axiom 3), P = xP £ o. Therefore by 2.7,
Pplx £ 0 for some pi < k. Now dim (Ppix) = 2k + Epi(p—1). Since
Ppix = ax® (ae Zp) for some integer s, we see that
2K + 2pi(p—1) = 2ks. Therefore pi(p—1) = k(s-1). The lemma follows.

for each

sion 2k

an exact

morphism

0 —> BHUK;Z) ® 7

2.9. Theorem. If K 1is a CW complex with a finite n-skeleton

n, and H%(K;Z) is a polynomial ring on one generator of dimen-

(possibly truncated by x?

PROOF. We have a commutative diagram

* v *
C(K;Z) ® 2 ———> C (K;Z)
4 Vv

* . a * .
C(K;2) ® 2y ———> ©C (KsZp)

By the universal coefficient theorem for C*(K;Z) ® Zp,

sequence

P

EQ(K;Z) — HQ(K;ZP) induces an isomorphism

1(K;2) ® 7, = Hq(K;Zp)

gives an isomerphism of rings.

t

dimension 2k (possibly truncated by x = 0, where

we gee from 2.8 for p =3 that k = m3i

2

the lower horizontal map makes the diagram commutative.

t > 3).

where m

240, we see from I 4.5 that k = 2J. Therefore k

2.10 THEOREM. The map of generators w(Pk)
fF® 1 + 1 ® B extends to a map of algebras

v @(p) —> @GP ® a(p

v pt

=0 where t > 3), then k=1 or 2.

where the vertical mep on the right is the coefficient homomorphism, and

we have

*
LN Hq(K;Zp) — Tor(Hq_1(K;Z),Zp) —> o.

. N
‘Since H (K;Z) is free, the third term is zero. Therelfore using the com-

mitative dlagram above, we see that the coefficlent homomorphism

‘Since the coefficient homomorphism is a map of coefficlent rings, this iso-

Therefore H%(K;Zp) is a polynomial ring on one generator X of

Since
1 or 2.

1 or 2.

k-1

P and
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PROCF. We merely substi-

The proof 1s the same as that of II 1.1.
tute L2n for the n-fold Cartesian product of infinite dimensional real

projective space, and substitute U, for w.

2.11. THEOREM.

@ (p) is a Hopf algebra with a commutative and

associative dlagonal map.

PROOF, As in IT 1.2.

§3. The Structure of the Dual Algebra.

Lot @(p)* be the dual of @(p). ( @(p) is of finite type by

2.5.) Then &(p)* is a commutative associative Hopf algebra with an as-
sociative diagonal map. Let &, be the dual of Mk = PJk and let T, be
the dual of Ml'{ = PJL'C in the basis of admissible monomials. (Jk and
Jl'{ are as in 2.4.) Then £y has degree 2(pk— 1) and Ty has degree
2pk— 1. Bince Ty has an odd degree, 'rk2 = 0.
We define

T(0) = & = 1, (1) = Ty for 1> 1,

g(1) = &y, . for 130,

x(0) = X, x(1i) = ypl—1 for 1> 1,

y(1) = yo! for 1> 0,

where x and y are the classes in H*(L;Zp) described before 2.4, Let

I = (i1 TN ,in) pe a sequence of non-negative integers. We define
WD) = (i) ... T(ip € QR
gD = (1) (1) ¢ am”
X(D) - x(L) x...x x(iy) e H (T2
FD = oy xe..x yliy) e B (12,
let g(I) be the minimum number of transpositions needed to transfer all

zeros in I to the right of I.

The following lemma will enable us to determine the structure of

a(p)*‘

3.1. LEMMA. Iet o e @(p). Then

(X, XeooX Xy X Fq XeooX V) = ZI,J(—1)g(I)<"r(I)§(J),Ot > x(I) x y(J)
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- where the summation ranges over terms where I has length n and J has
: length m. (The summation is finite since we get a zero contribution un-
less T(I)e(J) and o have the same degree.)
PROOF. We prove the formula by induction. It is true for
(n,m) = (0,1) or (1,0), since non-zero terms occur only when o = M.

or Mlj{ by 2.2, 2.3 and V 5.2,

Now suppose the lemmsa is true for (o,m-1). Let vyo = ZS aé ® a;.
‘By the Cartan formula
(x(y_l X X ym) = ZS Oé; ¥y % C{;(ye X e oX ym)
Zo,3,50 < DL > <, >3
where J = (j,J")
- Ty TN,y ® o >y(I)
= < E()) @ (TN, va>3(J)
*
= Ty (e()) ® (TN, >y(I)
= I < e(d),o>y()
This proves the lemma for (o,m) .

Suppose the lemma has been proved for {(n-1,m). By the Cartan

formula "
deg ag . "
a(X, Xo.oX Xy X Fq XeooX V) = Zs(—1) al X, x ag(x, x. - .xym)

X Xy X Yy Xe.
T 1,10,0 (7 < x> < (163,05 >x(I) x y(I)
“ where I = (i,I")

= Tgp,p (FDP < D) @ T (INED), o x o > (D) x 3(I)

and y = deg ot's"+g(I')

where & = deg ot‘é + g(I") + deg oté (deg =(I")e(I)).

for the non-zero terms of the sum.

(1)

 We must compute 3 mod 2 Now, if a

term of the sum then
(INe()

have mod 2

have the same degree, and

£(J)

is non-zero, and cxé

and a; have the same degree. Since has even degree, we

5 = deg T(I') + g(I') + deg (i) -deg T(I")

Since the number of non-zero terms in I' 1s congruent mod 2 to deg T(I'),
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we see that 1f 1 = O, correspondence
5 = deg (I') + g(I') = g(I)

If 1 £0 then deg (i) = 1 and & = g(I') = g(I). This proves

that the expression above is the

£ (08D ¢y (D) ® (INET),a> x(I) x y(I) the
Y (=81 ¢ (D@, e > x(I) x ¥(I)

This proves the lemma.

let @' denote the free, graded, commutative algebra over Zp
generated by t,,7y,... and g8, ... As is well known, @' 1is a ten-
sor product coordinates) .
E(TO,T1,...) ®P(§1,§2,...) = (eo,r1,t—:
of an exterior algebra and a polynomial algebra (recall that i has odd “we have sj'_ =
degree and so Ti2 = 0). Since @' 1is free and G,(p)* is commutative, ..
the map of the generators of @' into @ (p)* extends in just one way to *

let Rk be the sequence with zeros everywhere except for !
2k-th place.
(2k+1) -th place.

‘The map from seqguences

i the map already defined on Rk and Qk to be additive

§3. THE STRUCTURE OF THE DUAL ATGEBRA
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between the sequences I and I', preserving the degrees

of the corresponding monomials.

in

Tet Qk be the sequence with zeros everywhere except in
Let
k-1 k-2 1 0
R}'{ = (O)p ;O;p ;"';O’p ,O,p ;O)"')
-1 k-2 1 0
Ql'{ = (O’pk ,0,D y-44,0,0.,0,D ,1,0,...)

I +to sequences I' can now be defined by extending

(with respect to

Then if

Lree Ty 0,e ) —> I = (8h,8,80, 0 h,8y,80,0,.00)
ey and

= (ri + si) + (ri+1 + z-:iH)p1 PR (r'k + ek)pk'1

* Solving for r, in terms of s., we see that
a homomorphism of algebras @' —> G(p) . * -
M Ty v 81 o= 8y 7Py
3.2. THEOREM. The map @' —> Q@ (p) is an isomorphism.
Therefore, given an admissible sequence I', we obtalin a unique sequence
*
PROOF. We first show that Q' —> Q@Q(p) is an epimorphism. I with ey = oor 1 and ry >0, and vice versa. A computation of
Suppose < t(I)&(J),@> = O for all choices of I and J. By 3.1, degrees shows that
, . X
aX; X..oX Xy X ¥y Xeo.X ym) = 0 deg gI = deg oo Zlf rje(pj— 1)+ Zé( sj(ep-]- 1.

for all choices of m and n. But, 2.6 shows that in this case «

Therefore Q' —> G,(p)* is an epimorphism.

We now show that the map @' —> (i(p)* is an ilsomorphism, by 33
showing that in each dimension, the ranks of @' and @ (p)* as vector e
spaces over Zp are the same. We have only to show that the ranks of G
and @ (p) are the same in each degree.

We write gI = T80 e, o1 1181 .gkrk Tkek , where PROGF..
I = (eo,r1,81,...,rk,ek,0;...) and e; = 0 or 1, r. > 0. The %
monomials gI, whic_:h form a basis of @', correspond in a cne-to-one way <o fro
with such sequences I. The admissible monomials PII e @ correspond to < q’*Tk:
sequences of integers I' = (g),3,,...,8,8,0,.. .) where s; > Pbsy . + e
for each 1, and gy = Oor 1. It remaing to set up a one-to-one

This completes the proof of the theorem.

THEOREM. The disgonsl msp ¢ : & — Q" ® @ 1is given
1
* i
© Ey = Tothy®e  end
*, X i
cp’rk = Tk®1+ 420 gi_ig Ti

let o,8 ¢ @ . We have to show that

a® B>

1 N
L<f @t ,amp> and

a® B>

#

1
<t el,e@p>+ <l ;1,008

That is, we have to show

b
(1) < g,oB> = < 2> < gy,6>, and
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1
(2) < T8> = < TpRa>< g8 >+ T ER 0> < 14,80

Iet x and y have the same meaning as in 3.1. In the same way
as in II 2.3, we prove that

i

i a+i
oy® T, < B> yP

i

Now

Kk
I < g8 > yP = opy by 3.1

i
aZ; < tg,B>yP
i i+a
= I, 5 <tf,a><e,p> P .

Equating coefficients of powers of y, we see that (1) holds. It remains
to prove (2). Now

K
< g8 > %+ Iy < 1,08 > yP

apxX by 3.1
i
= al<g,B>x+ L) <Ty,B> 9P ]
a
= < §,,P >< &y, @ DX+ Za < Eg,B < Ty, >yP
i a+i
+ I o< T,B> <R A>T
Equating coefficients of powers of 7y, we obtain (2).

This proves the theorem.

§4. Ideals.

Iet Mk be the ideal of G*' generated by

k k-1
e T et Tha g
Then Mk is a Hopf ideal by 3.3. Therefore G*/Mk is a finite Hopf
algebra. Its dual is a Hopf subalgebra G’k C @. Arguing as in IT 3.2
k-1

(with minor embellishments), we see that B,P1,...,Pp are all elements

of Gk. It follows that

L.1 THEOREM. @ is the union of the sequence Gl{ of finite Hopf

subalgebras.

If A 1is any commutative algebra over Zp and A: A-—> A is
defined by Mx = xp, then A is a map of algebras. Moreover i com-
mutes with maps of algebras. Hence if ‘A 1is a Hopf algebra, *» 1is a

map of Hopf algebras.
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Then »: @ (p) —> @(p)* multiplies degrees by p. The kernel

» 1is the ideal generated by T4,Tq,:---

O’
w2 IEMMA. TIf x e @% and Pl e @, then x°.P1 - x-P 1ir
- pJ, and xP.pY - o otherwise. (Notice that if I = pJ, neither

nor PJ can contain B as a factor.)

PROOF. Without loss of generality, we can suppose X 1s a monomial

E,8p,.-- and Ty, Ty,.... 16T xP.pL /o: then x can contain no
ctor of the form <;, since Tie 0. Therefore X has even dimension.
E
have -
£l - y(x®...e0x- P
= (x® ... ® x)-wPI
J4 J
= T x®...9x0F "o ... PP

where the summation is over all sequences J

1,...,Jp such that

+...+ J = I. 3o
J J
. - 2(xFYH ... xPD .

¥, in some term of the sum, two of the J;'s are not equal, then cyclic

i %Ppt 4 o, I =pJ and xPpt (x PJ)p - x P . This proves

the lemma.

Iet @' be the Hopf subalgebra of @(p) generated by pJ
- 1.2...). Iet »': @(p) —> G@(p) be the map dual to X.

4,3, PROPOSITION. v ig a map of Hopf algebras, which divides
4Qegrees by p. The image df vois @', and its kernel is the ideal
nerated by Pl and B.

if I = pJ

A P = 0 otherwise

PROOF. Using 4.2, we see that we have only to check that the ker-
1 R
1 of 2z is contained in the ideal generated by £ and P . Applying

* . . . . )
formulas for X to a linear combination of admissible monomials, we

k

1
that we have only to prove that P is in the ideal generated by P,
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if k 1is not a multiple of p. By the Adem relations

15b

PP

(=) ((P-1)B=T) pb41 (b + 1)PP*!

Therefore Pk is in the ideal generated by P1 if k 1s not a multiple
of p.

This proposition has been used by Wall [2]) and Novikov [1].

%.&. PROPOSITION. If we abelianize @(p), we obtain a Hopf alge-

bra, which is the tensor product of E(g) , the exterior algebra on 8,

and the divided polynomial ring on P',P°..., i.e

‘o

phpk = (Bk)phik g @),
PROCF. Let I be the ideal generated by all commitators in G (p).
Iet A = Q@/I. Then A and A g A are commutative algebras. Consider

the composition
eYt>aea@—> a@a.

This is an algebra homomorphism into & commutative algebra and is therefore

zero on I. Therefore

WD CaeI+Ig @
and I is a Hopf ideal.
X € (i*

J *

Suppose that ¥ ast’ e A
Iet J =

Therefore A 1is a Hopf algebra. A*
such that

consists of

all elements ¥X 1is symmetric. Therefore Tosby € A",

(a;y € Z). Then X a q>*§J 1s symmetric.
J jo] J

(eo,r“e],...,rk,ak,o,...). We collect terms in q)*gJ of the

form §1n ®t' and t" @ ng, where m end n are maximal. A short
calculation shows that these terms are

I r I3 I‘k €k 1.1

g, e 2n 2L .1 Ty, Where n = Zlf (ry +e;)p
pr, pry

and £ 2 E 1 ® §1m where m = le{ r;.
We note that T (ry + si)pi_1 >z ry, and that we have equality only if
e; = 0 for 1> 1 and r; = 0 for 1> 2,
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J for which T¥X (r, + e,)pi~' 1
In % a;t” we select those terms for w 1 5 v is
mal. By symmetry, we must have €; = 0 for 1> 1 and ry = 0
i> 2. BSuch terms are in the algebra generated by To and £, An

i-1

tion on 211( (ry + ei)p therefore shows that A° 1is the subaglebra

erated by T, and ¢,.

o
Dualizing, we see that A has the structure described in the

pposition.

§5. Homotopy Groups of Spheres.

If G 1is an abelian group, we let Gp be the subgroup of elements
wse orders are powers of the prime p. If G 1s finitely generated then

¢an be expressed as the direct sum

F+2pGp

In this case we can talk of the p-primary part

G =

ere F is a free group.

- an element of G, by which we mean the component in Gp‘

5.1. THEOREM. =,(s%) 1is finite for 1> 3.

3 o] if i< 2p
"i(s)p={zp ir 1. 2p .

f: Sgp —_ S3 represent an element of n?p(83) with a non-zero

imary part and let E be a (2p+1)-cell. Then, if L = s3 ve E,

1

. 301, P+l .
P: H (L,Zp) > H (L,Zp)

1 2
pan isomorphism. (When p = 2, replace P by Sq°, see I 2.3).

COROLLARY . gi+2p o gni+3

gl

5.2. Iet g: be the n-fold suspension

f, and let M Then

P Hn+3iM;zp> —> Bz )

an isomorphism. Therefore

n+3
Kn+2p(s )p £ 0.

PROOF of 5.2+ As p' commutes with suspension, the first part follows.
Sn+3

Ince M is formed by attaching a (2p+n+1)-cell to with the map g,

second part follows by taking f to be the generator of ngp(s3)p.
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In fact the following stronger result can be deduced from 5.1 by

using [3] Chapter XI, Theorem 8.3 and Corollary 13.3.

5.3. COROLLARY. If p is an odd prime, then
n+3 _ 0 if 1 < 2p
e (8 Dp = {z ir 1-ep.

b
The remainder of this section will be concerned with the proof of

5.1. We shall rely heavily on Serre's mod € theory. We refer the reader

to [3]) Chapter X or to [k].
We would 1like to compute the homotopy groups of S3 by applying
But the Hurewicz theorem in dimension n

(83 =~z

the (mod @€ ) Hurewicz theorem.

only applies to spaces that are (nﬂ)—connected (mod €). 3o s

is an obstacle to this program. We therefore construct a space X which

has the same homotopy groups as 83 except that 1r3(X) = 0, and then

apply the Hurewicz theorem to X. The definition of X, which is rather

long, follows.

5.4, DEFINITION. Let = be an abelian group and let n > 2 be

an integer. K(=,n) will denote any space whose homotopy groups are all

zero except for T which is isomorphic to =. Such a gpace is called

an Eilenberg-Maclane space.

5.5 THEOREM. For any abelian group = and any integer n > 2,

there exists a CW-complex which is a K(=,n).

REMARK. We can easily show by obstruction theory that all such

CW-complexes are homotopy equivalent.

PROOF. Iet = be generated by elements Xy with relations r'j
between the x,'s. We take a bouquet of n-spheres, one for each x;. For
each relation

I’j = CZ.IJ. X'I +C¥2j X2 +oeoot Clijm
where each o is an integer, we map an n-sphere into the bouquet with
degree a]j on the n-sphere corresponding to x,, with degree « on the

23

n-sphere corresponding to x, and so on. We attach one (n+1)-cell to the

bouquet for each relation Ty with this map. We now kill successively the
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wotopy groups in dimensions n+1, n+2, etc., by attaching cells of dimen-

ons n+2, n+3, ete.
Computing the nﬂ’l homology group by using the cell structure, we

that Hﬂ ~ =n. By the Hurewicz theorem we have constructed a K(=,n).

5.6, If K is a path-connected topological space with base-point

let PK Dbe the paths in K starting at x and let %K be the loops

K based on x. We have the standard fibration p: PK —> K obtained

The fibre is oK. (See [3]

sending a path in K to 1ts end-point.
Note that PK is contractible. By the homotopy exact
ni(K) ~ ni_1(9K) .

then this shows that 8K is an Eilenberg-

pter III.)

squence for a fibration, d: If X is an Eilenberg-

sclane space of type K(=,n),
Tane space of type K(x,n-1).

et X = K(Z,3) bea CW-complex. Let g3 -—> K. be a map which

esents a generator of n3(K) ~ 7. let p: X —> s> be the fibration

nduced by the standard fibration over K. We have the commutative diagram

X > PK
D D
v v
P —>K

#ere the vertical maps are fibrations with fibre 0K, which is a K(Z,2).

:1:3(X) = 0 and

the homotopy exact sequences of the fibrations,

s on(X) = ni(S3) for i 3.

and apply the Hurewicz theorem (mod €) to X

We now find H,(X)

3

o find the first non-vanishing higher homotopy group (mod €) of 8°. The
ual method of finding the homology of a fibre space is by using a spectral

quence. In this simple case (base space & sphere), the spectral sequence

guces to the Wang sequence.

5,7. THEOREM. Iet X —> g® pe a fibration with fibre F. Then
, have an exact sequence (Wang's s/equence)

wa) — Birsa) 25 5 — B

is a derivation:

re A ig a commitative ring with a unit. Moreover, e

% is, 1f X e Hi(F;A), and 7y e H(F;A), then
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o(xy) = ex-y + (-1){PL xoey,

PROOF. We refer the reader to [5] p. 471 for a proof by spectral
sequences or to the next section of this chapter for a proof not using

spectral sequences.

5.8. LEMMA. If k> 0, then Hek(X;Z) = Zk and

HQK—‘I (X;Z) = o.

PROOF. We have the fibration X ——->‘S.3 with fibre oK which is
a X(z,2).
X(z,2)

Now complex projective space of infinite dimension is also a
and therefore H*(QK) is a polynomial ring on a two-dimensional

generator u. We have the exact sequence (see 5.7)
BN (X;2) —> B (aK;2) 2> w2(ek;2) —> BN (x52)

In order to find H*(X;Z) , Wwe need only find the derivation 6.

Now since X 1is 3-comnnected, Hi(X) = 0 for 1<3 Hence
6u = + 1. Changing the sign of u, we can ensure that 6u = 1. Since
6 1s a derivation, ou' = n u! by induction on n. Therefore

¥(x;2) - o ana EF(iz) -z, .

Iet us first consider the class @ of abelian groups which are
finitely generated. By the (mod €) Hurewicz Theorem, the homotopy groups
of simply connected finite complexes are finitely generated. Therefore
11(83) is finitely generated for all i, and so «i(X) is finitely gen-
erated for all 1.

Hence Hi(X;Z) is finitely generated for all 1i. By

the universal coefficient theorem we deduce the lemma.

We now take the class € of finite abelian groups and deduce from
the lemma that ni(X) ~ ni(S3) is finite for all 1 > 3.

Taking the class € to consist of all finite abelian groups with
we deduce that

3 o
% (8 = {zp

orders prime to p,
ir 1< 2
if 1= 2

This proves the first part of 5.1.

Let f: S2p —_— 83 be as in the statement of 5.1. ILet L be

S3 with & (2p+1)-cell adjoined with the map f. We can extend the map

§5. HOMOTOPY GROUPS OF SPHERES 93

33 —> K(z,3) which ve have been using to a map L —> K(Z,3) since

| o (x(2,3) = o
pipration over K(Z,3).
0 (L,8%) = 0

Tet ¥ —> L Dbe the fibration induced by the standard
By the cell structure of L, we have

for i < 2p+1 and

Z.

3
"2p+1(L’S )

ﬁx'eover the boundary map

3
Roper (Ls8%) —> wpp(S7)

’ 3
ps the generator of the group on the left onto the element of "ep(s )

: ,xépresented by f. By the homotopy exact sequence for (L,S3) we deduce

that
xy (L) = ny (8% for 1< ep,  mpy(Lhy = O

By the same reasoning which gave us the homotopy groups of X in terms of

those of &5, we find that

a(Y) = 0 for 1<k, n (8% = =y (¥) for k<1< ep,
= 0.
"2p{¥p
By the (mod ) Hurewlcz Theorem, Hl(Y;Z.p) = 0 for 0< i< 2p.

5.9. DEFINITION. Suppose wWe have a fibration p: E—> B with

fiber F over b ¢ B. Then we have the maps
5 g (p).

*
#(B,p) &> HYE,F) <
We say X € Hn"1 (F) 1is transgressive if 8x ¢ Im p*. If our coefficients
o’ then a transgressive element 1is mapped into a transgressive
glement by any element of the Steenrod algebra mod p.

We show that in the fibration ¥ —> 1. with fibre 0K, the gen-

is transgressive. From the exact sequences

3-connected we have the diagram

2
erating class u e H (QK;ZP)

(Y,0K) and since Y 1s

'or the pair

=

p
1r3(L,X) <—?*-— 1(3(Y,QK) > ng(QK) ~ 7

=

V2 <) v - A4
H,(L,%) —F— Hy(Y,0K;2) —> Hy(0K;2)

1ﬂk'here the vertical maps are Hurewicz homomorphisms and X 1s the base-poir
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in L. By the universal coefficient theorem, u e HQ(QK;ZP) is trans-
gressive. ILet it correspond to v e H3(L;Zp). By 5.9, Plu = P is

Since Hi(Y;Zp) - o for

5: ng(OK;Zp) _— HQP“(Y,QK;ZP)

transgressive, 0 < i< 2p, the map

R * 1 .
is a monomorphism. Hence suf - p P'v 1is non-zero. Hence P1v

is non-

zero. This completes the proof of 5.1.

§6. The Wang Sequence.

In this section we shall prove 5.7 without using spectral sequences.

We restrict ourselves to fibrations which have the covering homotopy pro-
perty for all spaces (not just for triangulable spaces). (See [3] Chapter
II1.)

6.1 THEOREM. ILet p: E—> X x I be a fibration. Iet Et Dbe

the fibre space over X

obtained by restricting E to X x {t} where

t e I. Then EO and E, are fibre homotopy equivalent fibre spaces over
X.

PROOF. Let p x 1: EO x I —> X x I. Lifting this homotopy to
the identity on E, x {0}, we obtain a map E, x (1} —> E,. BSo we have
& fibre-preserving map f: EO —> E; and similarly a fibre-preserving

map g: E;, —> EO. We must prove that gf 1s fibre homotopy equivalent
to the identity and similarly for fg.

We have the map

pxax it E, xIxI—>Xx{0}xI = XxI

We 1ift this map to E on

E, x ({0} x T vuIx (0} uil1) xI)

’

by the constant lifting on I x {0} and using the constructions described

above on (0} x I and

{1} x I. By the covering homotopy property we can

extend the lifting to EO x I x I. The homotopy between gf and the iden-
tity are found by looking at the lifting restricted to By x I x (13,

This proves the theorem.
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6.2. COROLLARY. Iet f: X' —> X be a map which can be contrac-

to a point X by a homotopy keeping f(p) = x fixed. Suppose we

ge a fibration over X with fibre F over x. Then the induced fibra-

en E' —> X' is fibre homotopy equivalent to the trivial fibration

“x F —> X', The fibre homotopy equivalence maps F, the fibre over D,

¢ F by a map which is homotopic to the identity.

PROOF. We have a map X' x I —> X such that X' x 1 v px I is

t to x. Let E Dbe the induced fibration over X' x I. The corollary

iIiows from 6.1.

Now suppose we have a fibration X —> st By 6.2 if we restrict

fibre space to any proper subspace of Sn, we have a fibration which

fibre homotopy equivalent to the trivial fibration. Iet s E+ v E_

Ere E+ nE = Sn_1. Iet F be the fibre over a base-point x e gh-1,

X+ be the part of the fibre space over E+ and X_. the part over
~ Then we have the commutative dilagram
(B, x F,8" ' F) ——> (X,X) <— (X,F)
! ! b
(®,,8"") > (s7,B) < (s%,%)

ring excision and 6.2 we easily deduce the isomorphisms

- *
H(E,") @ E(F) ~H (B, xF,8"'xF) ~ E(XX) ~ H(XF)

- Hk(X,F) Hk_n(F). Under this isomorphism the cohomology sequence

{X,F) Dbecomes

Hk(x) > Hk(F) RN Hk-nH(F) _ Hk+1(X)

is the Wang sequence. We have yet to prove that 6 is a derivation.

bave the commtative diagram

B<F) o~ BNX) —> Bk P > B (x x F) =~ HY(F)
I3 5 s}
N \v4
Hk+'| (X,F) Hk'”(X,X_) ~ Hk+1 (E+ % F,Sn_lx F) =~ Hk+1—-n(F) .

composition on the top line is the identity by the last sentence in the

tement of 6.2. Hence X ¢ Hk(F) goes to

n-1

UX 60X+ 1 XX e HK(S x F)
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where u generates Hp-1(sn-1).
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Therefore 1f 7y e H*(F), Xy goes to

ux (6x°y + (_1)(n-1)k x8y) + 1 X Xy € H%(S T

This shows that

and

[2]

{31
(4]

[5]

(6]

n-1)k %6

6(xy) = 0x-y + (-1)( y

completes the proof of 5.7.
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CHAPTER VII.

Construction of the Reduced Powers

In §1 we explain how the reduced powers are a fairly natural gen-

ralization of products in cohomology groups. In §2 we define the external

educed power map P in general situation and prove same of its properties.
Tn §3 we specialize to the case of the cyclic group of permutations of p
In §4% we use

In §5

iﬁctors, where p is a prime and the coefficient group ZP'

the transfer to prove some further properties of the reduced powers.

In §6 we define PT and

determine the reduced power of degree zero.
i and prove all the axioms in Chapters VI and I except for the Adem re-

tions, which will be proved in Chapter VIII.

§1. Intuitive Ideas behind the Construction.

Iet K be a finite regular cell complex and let K2 be the n-fold
rtesian product. Let 3(n) be the symmetric group on n elements acting
s permutations of the factors of K%, Iet = Dbe a subgroup of S(n) and
W be a n-free acyclic complex. W x K} is a n-free complex via the
gonal action.

Apart from these definitions, an understanding of this section 1is
logically necessary for the understanding of what follows. In places

s section is deliberately vague.

Tet 1L be another finite regular cell complex. Let u e H*(K)

v € H*(L). Then we have the cross-product u x Vv € H%(K x L). If

~T and d: K-—> K x K is the diagonal we define the cup-product
wuuv = d*(u X V).

g eup-product is called an internal operation since all the cohomology

ses exist in a single space K; the cross-product is called an external
97
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operation. The advantage of the cross-product is that its definition re- In subsequent sections we replace cohomology classes on W X X
18

quires no cholce, even on the cochain level. On the other hand, the cup- y equivariant cohomology classes on W ox KB

product requires a diagonal gpproximation d#: K —> K@ K. Many diffi-

culties experienced with the cup-product in the past arocse from the great §2. Construction

variety of choices of d#, any particular choice glving rise to artificial- X
Iet XK be a finite regular cell complex. Suppose we are glven a

looking formulas. Moreover, the properties of the cup-product such as the . }
g-cocycle u on K with values in an abelian group G. We regard G as

associative and commutative laws follow easily from the corresponding pro- .
a complex with all components Gr = 0 except in dimension zero Gy = G.

perties for the cross-product by applying the diagonal. The properties for ;
#hen we have a chain map u: K —> G vwhich lowers degrees by q. Let

the cross-products themselves are easy to prove.
G"%(q) be the S(n)-complex defined as follows. It is zerc in non-zero

Similarly we shall obtain the (internal) reduced powers as images, n
dimensions and 1s the n-fold tensor product G in dimension zero. We let

under an analogue of the diagonal mapping, of & certain external operation n
o e S(n) act on G by the product of the sign of o and the permutation

P. We shall prove many of the propertiles of the (internal) reduced powers n
of the factors of G if g is odd. If q is even we let « permute the

jal

by proving the corresponding properties for the external operation. n n n
actors of GY with no sign change. Then uw: K —> G (q) 1s an equi-

n n . . .
et W X, ¥ - (Wx XD/« and let J be the composition (which wariant chain map which lowers degrees by ng.

is an embedding) let €: W-—> 7Z be the augmentation on W. Then e ® 1 : W@® £
n n n
K'—> W x K —> W x K > K% is an equivariant chain map (using the dlagonal action on W ® K.

The map W x_ K? ——> W/x is a fibration with fibre K®. Given a cohomolo- herefore the composition

gy class u on K, we have a clags ux ... Xxu On K®., Under suitable We K= ® 1 o g n N Gn(q)

conditions we can extend this class in one and only one way to a class Pu X X 3
an equivariant chain map which lowers degrees by nq. In other words,

in the total space W X % so that P is natural with respect to maps of . . n

ke have an equivariant ng-cocycle on W @ K, which we denote by

the variable K, PO = 0 and
T

* Pu e COHW @ K5 G™(q)).

jJjPU = uUX ... X 4.

We now prove that if we vary u by a cohomology, then Pu varies

For the nth power in the sense of cup-products, we have
an equivariant cohomology.

= d*(u X eo. X W),
2.1. IEMMA. There exists an equivariant map h: I g W —> Mew

th

To define reduced n —~ powers, we replace i by W oxg K* and ux ...xu

N h that h(0 ® w) = " eow and h(i@w = Tn®w, for all w e W.
by Pu. We replace d: K—> K" by
. n PROCOF. h is equivariant on 0 ® W and 7 ® W. We have the equi-
1 x d.Wx“K———>W><ﬂK.

kis
riant acyclic carrier W ® 1%, The lemma follows from V 2.2,

Now W x XK = W/n x K. Hence
2,2, LEMMA., If d - i

(1 x, d)*Pu ¢ H*(W/n %K) . u and v are cohomologous g-cocycles on K with
s in G, then Pu and Pv are cohomologous ng-cocycles in

If we are working with a field of coefficients, we can expand in H*(W/n x K n i
0] K1; g (q))— that is, they are equivariantly cchomologous.

by the Kinneth theorem. The coefficients of the expansion of (1 X d)*Pu

t PROOF. Now u cohomologous to v means that there is a chain homotopy

which lie in H*(K) are the internal reduced n h powers.

u into v, that is a chainmap D: I ® K —> G lowering degrees
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by q, such that D(0 ® ) = u(t) and DT ®T) = v(r) for all T € K. 2,4, REMARK. If n=p and G = Zp and = 1s the subgroup of
By 2.1 we have the following composition of equivariant chain maps ' ) which permutes the factors of K° cyclically, then P is character-

I in 2. = 0.

IeWe® i hel SN eWe & 1ReR1 > e = shuf > (I ® o D S Gn(q). d by the properties in 2.3 and the fact that Fo 0 (This can be proved
the methods of VIII §3.)
The map shuf denotes the shuffling of the two sets of n factors with the -

A et nC pC 3(n) and let V and W be respectively a o-free and
usual sign convention. This composition gives the equivariant homotopy of
z-free acyclic complex.
Pu into Pv which shows they are equlvariantly cohomologous.

The lemmas shows that P induces a map (not a homomorphism in gen- 2,5. IEMMA. The following diagram is commutative

eral) b N Hqu(w x/I\{n;Gn(q))
P: HYK:G) —> H(W @ K56™(Q). /
n ¢ (@ H(K;G) l
-
let w be a o-dimensional cell of W. We have a map j: K& —> P > Hl;lq(V x K67(Q))
W e K defined by j(x) = we®x for all x e K'. If L is another

ere the map on the right is induced as in V 3.3. It follows that P is
finite regular cell complex and f: K —> L 1is a continuous map, then by
dependent of the cholce of W.
V 3.3 the equivariant continuous map M K —> 1P induces a map

PROOF. ILet : W —>7V Dbe an equivariant chain map. The dia-
(" H (W x IH6N@) —> H.( x K567Na). R g i ’

N We
2,3, IEMMA, 1) J Pu is the n-fold cross-product u X ...X U € l e®! n
2,81 R S Y
K60 . v >
v e K* !

2) We have a commtative diagram
H(1;0) —2—> H9wW x 1H6™(Q) s commutative. The lemma follows.
£ l(fn)*
v P . -
K@) ———> H AW x K%6%(Q) .

Iet u e HYK;G) and v e H(L;F) where K and L are finite
lar cell complexes and ¢ and F are abelian groups. We have

€ H;lq(w X Kn;Gn(q)) and Pv € H’f‘(w x LFR (). By V 4.2, we have a

PROOF. 1) follows immediately by the definitions on the cochain ss-product

level of P and of cross-products. Pu x Pv € Uy oo w x K x 1Y ¢P(q) @ FNr))
T X X
We reduce the proof of 2) to the case where f 1 (e} i
v P ) 8€ wher s proper by using e n xXx n acts on WxWxKnan by the formula
V31 and V3.3. Let C be the minimel carrier of f. Then the carrier from
(@,8) (v,,v,,x,5) = (av,,Bv,,0%,587)

' to 1" which sends 9, X ee0 X 0 tO C(a1) X eee xC(on) is an

acyclic equivariant carrier for 7, Therefore, 1if f#: K—> L 1is a

all o,Bp€ xn, V,,V, € W, X € K? and v € 1. We also have

1
chain approximation to f, we canuse 1@ (f#)rl as our equivariant map WXy e Hq’“r(K « L;G ® F) and
i

WK —> We It We ha tative di
@ > W e have a commutative agram P(u xv) € Hn,(tqw) (V x (K x L)n;(G @F)n(q . )

We kKt 281 5 ¢? (f#u>n>Gn(q)

1o (f)" (£p" I
4

e V 1s a n-free acyclic complex.
We have a map of geometric triples

n \]
WeIl_£®1 o (n_ v > &q). (2,06 @ Mg + 1),(K x DH—> (x x 7,6Ma0) ® FYr) K x L
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defined as follows: A,: =

1 > T X %

is such that x1(a) = (a,a) for
all o € =x;

r GHQ) @ FUT) —> (G F)™(q + 1)
is the obvious isomorphism which shuffles the two sets of n variables; the
map (K x L)n — > K* x 1 unshuffles the two sets of n variables. By

V 3.3 we have a map

*

2.6, ILEMMA. X*(Pu % Pv) (_1)n(n-1)qr/2P(u X V).
PROOF. According to 2.5 we may take V to be an arbitrary =-free
acyclic complex. Iet V = W x W with the diagonal action. We have the

commutative diagram of equivariant chain maps

1

DN
Wew @ (Kel)® —F > WeWe K g1l

e®1 ' \l/ ERER1D!

hv4
A
(K ® )™ —t s giR
l’l\ | n_n
(U®V)V J wev

(Ge Mg + r) 2 ¢™q) ® F(1)

where u is (_1)n(n—1)rq/2 times the inverse of Ay. The left side of

the diagram gives P(u x v) and the right side gives Pu x Pv. This proves
the lemma.
§3. Cyclic Reduced Powers.
Now let n = p, a prime, and let G = Zp. Then Gp(q) is isomor-
phic to Zp as an abelian group. 3(p) acts on Zp = Gp(q) by the sign
of the permutation if g is odd, and trivially if q is even. In the no-

(q)
Z D"
be the cyclic group of order p, generated by the

tation of V §6, G¥(q)
Let = C 3(p)

permatation T which sends 1 to (i + 1) mod p. The sign of this permu-

tation is (—1)p'1. Since (—1)p"1 = 1 {(mod p), Z(%) is a trivial

r~module.

M H 00 x W x BT x D6%N9) @ Fr)) —> HL(V x(K x L)P5(¢ 8 B)Na + ).

msction. Then

§3. CYCLIC REDUCED POWERS

3.17. IEMMA. ILet K be a finite regular cell complex with no =-

* ¥*
H (W x K;Zp) ~ H (W= x K,Zp)

and this lsomorphism is natural for maps of K.

Let d:
if 3(p)
duced map

Let f:

PROCF.

acts on KP by permuting its factors.

ce Z(%) is a trivial r-module, we can replace Z(%) by Z..

3.3. ILEMMA.

cnal epproximation.

K —> KP bpe the diagonal mep. Then d is equivariant,

By V 3.3 we have an in-

*

o x ', D) — o x izl

So, if

1€ Hq(K;Zp) , we have by 3.1 and the Kinneth formula

3.2, DEFINITION. d'Pu = I, w, x D
where Wy € Hk(W/n;Zp) are the elements of V 5,2, and this defines

. . PA-~K i,
Dy : Hq(K,Zp) — > H (K5Z)

Rote that we have not yet shown that Dk is a homomorphism.)

K——> L be a continuous map between two finite regular

eell complexes with no group action.

¥*
For each k, D = DI

PROOF. We have df = rPd. Hence the following diagram is com-
tative (by V 3.3)

*
g D. d pq .
BRI x TP52,) ————> BRA(W x LsZy)
(¥ £
D91 o D a* DG
Hﬂ (W x K ;Zp) —_— Hﬂ (W x K;Zp)

1 to the right of this diagram, the lemma follows.

3.4, IEMMA. D.u= uP .

Iet w be a 0-cell of W. Iet d#: K —> K’ be a

We have a commutative diagram
kK 4 swek
1
5 3y

\ L

gp I, We K

103

plying the commutative diagram of 2.3 to the left and the isomorphsims of
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where jx = w @ X. Now
R
Dou = ] (kakkau)
* _%
= jJd Pu
* ¥
= 43 Pu
¥*
= 4 {ux ... xu) by 2.3
= up .

3.5. LEMMA. Iet u e Hq(K;ZP) and let p> 2. If q is even

Dju - 0 unless j = 2m(p-1) or 2m(p-1)- 1 for some non-negative
integer m. If q 1is odd, Dju = 0 unless j = (2m+1)(p-1) or
(em+1)(p-1)- 1 for some non-negative integer m.

PROOF. With notation as in V §6, let 7* be the automorphism of
H*(W X L;Z<%)) induced by 7 € o as inV 3.4, where L is a finite regular
cell complex on which p acts. Let V Dbe a p-free acyclic complex. By

2,5, V 3.3 and V 3.4 we have the commutative dlagram

* *
PV x Kpsz(%)) N K;Z(%)) 2=l BV K;Z(%>)

/ P
F
®(K;Z,) ‘
P K v v v
* . *
Pa 7,

EPL(W x KP;Z(%)) < 5 YW x K;Z(%)) > UV x K;Z(%)).

The lemms follows from V 6.1 and V 6.2.

§4. The Transfer.

We have defined the transfer in V §7. et d : H (W x K¥5z) —>
H (W x KiZj) the map induced by the diagomal d: K -—> KP.

4.1 IEMMA. Tet o+ H(W® Kp;Zp) —> HWe Kp;Zp) denote the

transfer. Then d*T = 0.

PROOF. We have a commutative diagram

* Pz )T ® P,
H (W@ K52 )——> H (W@ K752,

* *

a a
v v

*
* . i * R T * .
By (W @ KiZ) > B (1 8 Kizp) > H (W @ K;2p) .
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Since W is acyclic and H?t(W;Zp) _— HO(W;ZP) is onto,
*
: W 5 —_ H
1 Hi(W e Ksz) —> H'(W 8 KsZp)
is also onto. ByV 7.1 ti* = 0. The lemma follows.

4,2, IEMMA. If = 1s the group of cyclic permutations and
P: Hq(K;Zp) —_— Hpﬁ(w X Kp;Zp) then d'P is a homomorphi sm.

PROOF. Iet u and v be g-cocycles on K. Then P(v+u) - Pu - Pv
is given by the chain map

(u+v)p— uP- P

We KP 285 &P > 7. .

p

According to k.1, we need only show that this cocycle 1s in the image of the
transfer. It will be sufficient to show that (u+v)p- wP- vP  is in the
image of a cocycle under

wo c@szy) —> O (kP2
since £ ® 1 is an equivariant map.

Now (u+v)p— uwP- v 1is the sum of all monomials which contain k
factors u and (p-k) factors v, where 1<k < p-1. Now = permutes
such factors freely. ILet us choose a basis consisting of monomials whose
permitations under = give each monomial exactly once. Iet =z be the sum
of the monomials in the basis. Then 12z = (usv) P- uP- vP. Also z is

a cocycle in ¥® since each monomial is a cocycle. The lemma follows.

4,3, COROLLARY. For each Xk,

D .

. PA-Ko.
x Hq(K,Zp) —> H (K;Zp)

" is a homomorphism.

y,h, IEMMA., If uqu(K;Zp) then Du = o for k> (p-1)q

and D = a u where aq € Zp is a constant which is independent of

(p-1)g* q
u and K.

PROOF. Let X% be the g-skeleton of K., Then
¥ K — &Y

is a moncmorphism for r < q. By 3.3 we can therefore assume that K is

q-dimensional. Let u4 € Hq(sq;Zp) be the class dusl to S, There is a
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map f: K —> 84 such that f*uo = u: we let f(Kg_]) be a point and
map each g-cell of K into s? with degree given by v, a cocycle repre-
sentative for wu. By 3.3 we can assume that X = s and u = Uge The

second part of the lemma follows. If k> (p-1)g, thentthe only possibili-

ty remaining for Dkg to be non-zerc and k > (p-1)a is that k = pa
and g > 0., lLet j: 8 —> s pe the inclusion of a point s in g4,
Then j* is an isomorphism in dimension zero and j*u = O.
IDpu = Dpgi’u by 3.3
= quO
= © by k.3,

This proves the lemma.

%.5, IEMMA, Let g be the Bockstein operator associated with the

exact sequence

0 — — N —> 0.
> Zp > Zpg > Zp >
Then Bd*Pu = 0 for p> 2 or q even.
PROOF. Since sd* = d*B, 4,1 shows that we have only to prove

that pPu 1is in the image of the transfer. ILet v be an integral cochain
on XK represented u € Hg(K;Zp). Then sv = pz where z 1is an inte-
gral (q+1)-cocycle, and =z vrepresents Bu € Hq+1(K;Zp). The cochain vP
is an integral cochain on kP whose cohomology. class we denote by

(vP} ¢ pr(Kp;zp). et e @ 1: W@ K —> K°, Then
BPu = Ble® 1) WP = (e @ 1) BIVPL.

Since T commutes with (e ® 1)*, it will be sufficient to show that

p{vF}) is in the image of T.

"
&

svP

= p I (-1 ¢S g yPST

(]
Lol
A
N
<

o]
=

since either p-1 or g 1is even. Since v 1is a mod p cocycle, ZvP !

is a mod p cocycle. The above argument shows that T(va_1) represents
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B(vp], and the proof of the lemma 1is complete.

4.6, COROLLARY. If p> 2 or g =dimu is even then EDOu = 0

BDot = Doy qW,FDp g = O

PROOF. By 3.2 and 4.5

E(Zk Wy % Dky) = 0
FromV 5.2, B Wy o= 0 and B Vo LY (j > 0). Hence
T s o Vor X Do = Ty o Yerst X Foge™ T Zg 51 Yor X Dogq® = 0

The lemma follows by comparing coefficlents of Wy

y.7. LEMMA. Iet ueHr(K;Zp) and v € HS(L;Zp). If p> 2 then

1 2 K
Dzk(u X V) = (_1)p(p yrs/ Zj=o D2j X DEk—Ej v

k
If p=2, Dluxv) = Zj=0 Dju x Dy_jv.

’

PROOF. The map of geometric triples A used in 2.6, takes the

form
e (0,20, (K x )P — (x x «,Zp,Kp x IP).

We have a commutative diagram of maps of geometric triples

(m,2, (K x DP) 2 (x x 2,8 x )
/N N
a a
d

(n,Z_,K x L) ————J——> (n x n,Z

329 p,K x L)

where d is induced by the diagonal on K x L, d1 by the diagonal on =
and d' by combining the diagonals on K and L.

Tet W be a n-free acyclic complex. Then W x W 1is a (n x n)-
free scyclic complex. From the sbove diagram and V 3.3 we have a commita-

tive dlagram

* o * P Dy .
H (W x (Kx L) ,Zp) < Hopen (W W) x (K x L ),Zp)

a" (@an’”
N/ Y4

% *
H“(W x K x L;Zp) <& Hﬂxﬂ(w x W xKx L,Zp)

According toVbk.2, Pu x Pv 1is an element in the group on the up-

per right of the diagram. We have
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*

*
ann(WxWxKxL;Zp) ~ H(W/ﬂxW/nxKxL;Zp) .

It is easy to see that under this isomorphsim we have by 3.2
* 2(pr-j3)
! Pv = . -1 )
(') (Pu x ) ZJ,!Z (-1) w'j xwlxDjuxDlv

Applying (d1)* to each side of this equation, and using the commutative
diagram, we obtain
* ¥ 2(pr-J)
d Pv) = -1 ; ; .
(Pu x Pv) Zj’yz (-1) ViV xDJuxDﬂv

Also d*P(uxv) = Z‘,k Wy X Dk(uxv) . The lemma follows from 2.6 and V 5.2.

§5. Determination of Dq(p_”.

We know from 4.4 that for each q there is a constant aq € Zp,
such that

Dyp-n® = 3" -

5.1. IEMMA. &, = (-7 al where r = p(p-1)q(q-1)/v.

PROOF. The lemma is proved by induction on ¢. It is true for
q =0 by bk.k,

Ilet ue I-Iq'1 (K;Zp) be non-zero and let v be a generator of
H1(S1;Zp). Then u X Vv € Hq(K X S1;Zp) is non-zero. By k.b Djv = 0
unless Jj = p-1. By 4.7

~1) (q~1
Dyp-ny@x ¥ = (PN Ep o uxpy

(_1)p(p'1)(Q"1)/2 aq_‘]a‘l ('Ll % V) .

Hence a, = (-1)P(P-1)(a-1)/2 8,_18;+ The lemma follows by induction.

In order to complete the determination of D we must find

a(p-1)°
ay . This is done by appealing directly to the definition in the case of

Suppose K 1s a finite regular cell complex and u € Hq(K;Zp) .
Then Zj wj X Dju is represented by the composition

e@d b
Wox Kt wx kP S8, P Wy g

where d# is a diagonal approximation. By V 2.2 any two equivariant chain

maps W@ K——> Kp, carried by the diagonal carrier, are equivariantly

homotopic.,

10
§5. DETERMINATION OF Dq(p_” 9
Hence, in order to find Dp_1 on a 1-dimensional class, we need only
nd an equivariant chain map
“ .
p: W® s —> (sHP
ied by the diagonal carrier. We make S1 into a regular complex by
eaking it into two intervals J1 and J2 such that 631 = A -B and
1
- A - B. Then the fundamental homology class of 8 is J, -J,.
let W be the complex of V §5. We define

(e, ® A) = AP 5 d(e, ®B) = BP

3

q;(ej Q@A) = q;(ej ®B) = 0 for j > O.
fact ¢ is uniquely determined thus far by the carrier. We need only
end the definition of ¢ to an equivariant chain map

o W I —> IF

3I = B - A, and this will give a formula W ® S1 by taking first
I and then J, = I.

We define

olegy ® ) = 1! za®oE™) ™ L. @tm

ere the summation extends over all sequences (¢,p) such that

R . = - 21 -1; and
=0 (a3 + BJ) P ao 60 ai Bi
pleyy,, @I = 1! (1A °B ) ... (IA *IB 7)
re the summation extends over all sequences (o,B) such that
: - - 21 - 2,
=0 (aj + Bj) P . ‘

The problem now is to show that ¢ is a chain map. We do this by
ng & contracting homotopy in 1P. 1et s be the contracting homotopy

sB = I, sI = 0. Then if e: I —> A is

I givenby sA = O,

augnentation
s + 08 = 1 - €.

define a contracting homotopy S in P by the usual formula

- r- -1
5 - se P 4B Tose P P e

38+ 8 = 1P - P

The following formulas will help us to evaluate S. Let C be any
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N FUTT RSNV LR

Yy

- r
chain in I° for some T > 0. Then we easlly see that (iii) the only terms which make & contribution are those which begin

. P - P §9) p-1 ,Tr -r-1
(1) S(A) 0 (11) S(B*) = Zr=o ATTEP +th B. The expression is therefore equal to
k.
(111) s(aKTe) - o (k» o) (iv) S(B'ASI0) - t-1 pr1pt Tl aSic B o B %iip By
> _ - . . . 5 o
Lroo 1)1 8 Ty gy Tin Ll (BIA Jeigp SNy (za ITFIB T ..
’ J =
(t>1, s> 0).
- - a4 By o. B.-P
(a3 (s dm Y )

We shall prove the following formilas :
shere the subscripts k in oy and B, 8&re taken mod 1. By (iv) this is

a) CP(GE:-LH ® I) = S0 8(62i+1 2] ) H
b) gleyy ® D) = 5S¢ 3y ®T) ual to
. . . Bat+l Q. B.-r
¢ ole. @A) = O = Spd(ey ®A) i 1>0 11 B3 gl abpEevly(oa 0t ) 1B
€ 1 -1)! 2(&,&) b -0 21‘:1 Zt=1 (A”IB Y(IA B ...(TIA “IB )
(p(ei®B) = 0 = Sq;a(ei®B) if 1> 0
(1 - 1! ) oley; ® D/L
let o = T -1, where T 1is the element of = which sends 1 to °
i+ 1 (mod p). Then o(ep; ® R
So depg,q @ I) = So(aley ® 1)) Phis proves b). Formala ¢) follows from the definition of .
. Smele, @ 0 From &), b) and c) we s€e that if ¢ is achainin Wa®I and
. Olo Bo C‘1 51 Q. B. : w e Z ' then ee = S0 a0
118 T (ACIBO)(IA 'IB 1)...(IA 'IB )
. 5.2, LEMMA. ¢ is a chain map.
By (iii), terms with g, = 0 make no contribution. If 8; > 0, 1et
1
B, = By-1. Then by (iii) the above expression 1s equal to PROOF. We prove this by induction on the dimension. It is immedi-
. [o B8 o, B a. pd : 1 i i
il s ZB- S 0 (BA °TB %y(1a t1B W..(1atIB D ate in dimension 0. In dimension 1 we have
i
. . 9d(e; ® A) = oale, ® A)
By (iv) this expression is equal to
= ao(e, ®A)
o B (01 B a. Bl 0
. O’ © 1 1
il ZBi 5 o (IAIB ") (IA 1B Y...(IA TIB ) N
This summation extends over all sequences (a,B) such that z (otj + Bj) = -0
p-2i -1 and By > 0. Therefore the expression is equal to o(eyy,q © I). 1180 (e, ® A) = o. BSimilarly pd(e, ® B) = 0 - do(e;® B).
This proves a). %(eo @I = 9 pr;é APIBP-I’-1 - BP - AP = 93(e, ® ).
To prove b) we note that if 1 = 0 then Fhis proves the lemma in dimension 1.
Se dey @ ) = Sp(e, ® B - &, ® A) If aim e 2, then
- s(BP - AP) dpc = dSedc = (1 - S9) e3¢ = @3¢
B T p-r-1 1
- LAIB nce the induction hypothesis tells us that Jpdc = @dd¢c = O. This
= oleg @D . roves the lemma.
B -1 .
et We=1+T4 ...+ ™' If 1> 0 then let m = (p-1)/2 if p> 2.
Sp de,. @ I) = Sol(eyy ;@ I) = SNo(ey; ;@I
P1 21-1 (ep54® ) o3, mMA. &, = (-0%m 1F p> 2. 8y = 1 AT P

it

e/ B o, 8.
(1-1)! SN T (1A °IB 9)...(1a "B
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1
PROCF. Iet u be the cocycle of S which has value 1 on J1 PROOCF. By Wilson's Theorem, (p-1)! = -1. Therefore

and 0 on J,. Then u generates H1(ST;Zp). We have = (pe1)! 1 (p_1) (p+1) (p 1)
= - . = B PR —2— . == PR -

(v _,®D _111)(ep_1 @ (I, -J) = (W YD _qu . (I, -]

o o p-1 * ®p-1/Ppos = 1.2 ... (_p;\)[_ ——(p;)} cee (-2)(-1)
= a
v = @mH® (-n".
and
_ _ P Ihe lemma follows.
(wp_1 ® Dp_1u)(ep_1 54 (J1 JE)) = w cp(ep_1 ® (J1 Jg)).
If p=2 then 6.%., IEMMA. P° = 1.
2 2
e J, - J = J, 7= 3%,
oley ® (7, 2) ! 2 PROOF. Iet dim u = q. Then by 6.1
Th T = 1. -
erefore a, PPu = (-)Tmn Dq(p_1)u
If p> 2, then (p-1) is even and o 0
o o n=m(g" +q)/2. By 5.4, P'u=u.
i{)(ep_1®(J1 'Jz)) = m! (J1 —J2 ). - a
- .5. LEMMA. Cart Formula., If u € K) and v € L th
Therefore a, = m! uP . J1p = (_1)p(p n/e m! This proves the lemma. 6.5 R () () en
k 8 t
P = Z P P .
Combining 5.1 and 5.3 we obtain (u x ) set=k © 2 XSV
PROCF.
5.4 THEOREM. Let q > 0 and let u € HY K;Z)). Then Dy yyu = . . -
- s L 'y -I-
8q4 where a, = 1 if p=-2 and Plux Prvo= (=1)7(md) Dig-298) (p-1)" ¥ P(r-2t) (p-1)7
By = (_1)mq(q+1)/2(m!)q if p> 2. ere n -5+t +mla® +q+ r° +rl/2. Therefore
s, t n -r-q
Loy ol Tgppa U X BV = (GTD TR Bg e i Digozg) (p-1)Y X Prr-2t) (p-1)7
§6. The Reduced Powers PT an . —r-
59 (_1)mrq +n(m!) r-q D(x’+q-2k)(p—1)(u X V)
6.1. DEFINITION. Let X be fini ‘
T a nite regular cell complex and let by L.7, b. and 3.5.
u e Hq(K;Zp). If p>» 2, let m= (p-1)/2. wWe define 2
mrg + n = k+ ml{r + @)% + (r + @) 1/2. The lemma follows by 6.1.

Py - (—1)1"\‘\‘(m!)Cl D u
' (a-21) (p-1) 6.6. IEMMA. TIf dimu = 2k, then Pu = uP.

where r = 1 + m(q® + @)/2. If D=2, we define

. PROOF. PXu = (-1)%m) ™%X D u
S¢7u = Dy _ju . 0
re T = k+ m(bk° + 2k)/2 = k(m + 1) mod 2. By 6.3
Restricting ourselves for the moment (in VIII §2 the restrictions
mH ¥ = (X g p.

are removed) to the absolute cohomology of finite regular cell complexes we

have lemma follows from 3.%4.

1 Combining the lemmas we obtain 6.2.

6.2, THEOREM. The P satisfy all the axioms in VI §1 (except

Restricting ourselves for the moment (in VIII §2 the restrictions
for the Adem relations which will be proved in Chapter VIII).

 removed) to absolute cohomology of finite regular cell complexes we have
We divide the proof into a number of lemmas.

&£.7. THECREM. The Sqi satisfy the axioms of I §1 (except for the

6.3. IEMMA. (mD)° = (-1™ med p.
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Adem relations which we prove in Chapter VIII).

PROOF. The proof of Axioms 1)-5) is very similar to the proof of
6.2, except that we do not have to worry about coefficients in Zp. We

have only to prove that B8 = Sq1. Now if dim u = 2q then by L.6

Sq1u = ng_Tu = BDEqu = BSqOu = BuU.

CHAPTER VIII.

In order to complete the proof of the theorem we prove the following lemma.

6.8. IEMMA, If p =2 let R be a sum of compositions of the The Relations of Adem and The Unigqueness Theorem.

form B8 or 54 (1 =0,1,2,...). If p is an odd prime, let R be a :
4 . i .
sum of compositions of cohomology operations of the form B or Pt Iet In §1 we shall prove that the operations Pt and Sq- defined

nj be a sequence of integers strictly increasing with j, and let Ru = © in Chapter VII satisfy the Adem relations. In §2 we shall show how to ex-

for any cohomology class of dimension n.. Then Ru 1is zero for all coho- 4end the domain of definition of the reduced powers so that they operate in
J

mology classes. 1ative cohomology and in the Cech and singular theories. In §3 we prove

£hat the reduced powers are uniquely determined by the first five axioms.
PROOF. Iet R Dbe zero on classes of dimension r. We shall prove :

. 1,a0,
that Ru = 0 for all classes of dimension (r-1). Iet v e H(S ,ZP) §1. The Adem Relations.

be the generator. Then the only cohomology operation, amongst those in the s >
0 o] Iet S(p°) be the symmetric group on P elements, namely the
statement of the lemmsa, which is non-zero is the identity (P~ or Sg7). . . . X
ardered pairs (i,)) with 1,7 € Zp’ arranged in a matrix with (i,3) in

By the Cartan formula th . . -
the ith row and column. ILet of{i,j) = (1 + 1,5) and let B(i,J) =

R{uxv) = Ruxv. ;
{1, + 1), Then op = Ba, o generates a cyelic subgroup = of order

Since dim (u x V) =¥, We have R = ? and hence Ru - 0. This f generates a cyclic subgroup e of order p, and o = WX p is

the lemma and al mpletes the proof of 6.7. . 2
proves mme. & 30 comp s proof o 7 subgroup of S(pg) of order D-.

et W be a n-free acyclic complex and let o act on W through
BIBLIOGRAPHY 7
he isomorphism sending g into «. Then WoW is a (nxp)-free

{1]. N. E. Steenrod, Products of cocycles and extensions of mappings,

Ann. of Math 48 (1947), pp. 290-320 mcyclic complex by letbing = act on the fipst factor and p on the second.
Piooe Lo Lol > . = - . 3

1ot 22 dencte the S(p°)-module which is Z, as an abelian
(21, , Homology groups of symmetric groups and reduced power P P

operations, Proc. Nat. Acad. Sci. USA., 39 (1953), pp. 213-223 oup, and where a permutation acts by its sign if q 1s odd and trivially

2
(0. _, Cohomology operations derived from the symmetric group, nerwise. Let R Dbe any subgroup of S(p°). Let V be an R-free

Comment. Math. Helv., 31 (1957), pp. 195-218. ciic complex. By VII §2 we have a map

[4]. Emery Thomas, The generalized Pontrjagin cohomology operations and o' Hq(K;Zp) 5 H?;q(v N er;z;q)

rings with divided powers, Memoirs Amer. Math. Soc., 27 (1957).

).

R is a subgroup of o, then Zéq) is a trivial R-module, since

ther p =2 or R contains only even permutations.

- W with = acting and let W2 =W with o acting. The:
115
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an action of =n x p On w1 X (w2 x KPP can be defined by
(a,B)(x x (¥, x z1) X.ooX (yp X zp)) =
= X X (Bya“)x Bza“)) XX (Bya(p) X Bza(p))

for
all a€ n, P€ p, X€ w1, yy € W, z; € iy (we regard both =« and
o as groups of cyclic permutations of p elements). We define an action

of nxp on W1 xwgpx (Kp)p by

(a,B) (x % Ty XeooX yp X By XeeuX zp) =

= OX X Bya“) Xoo WX Bya(p) X Bza“) X oX Bza(p)

where the variables have the same meaning as in the previous equation.

P <
Now W, x Wy~ 1s a (n x p)-free acyclic complex. Therefore we have

the isomorphisms
H* W p2 *
axp (W1 X W, x K ;Zp) ~ Hﬂxp(w1 X Wep X (Kp)pszp)
*
~ H (W, x(Wy x Kp)p;zp)
*
) ~ H (W, x (W, x pKp)P;zp) ,
where = X p acts on ¥ - (Kp)p by
(a,B)(z, X... =
» , 1 X zp) Bza“) XoooeX Bza(p)
We therefore have an isomorphism
* ¥
. PVP, * e
dpr H (W, x (W, x KOP2) —> B (0, x W, x ¥ 52
which is induced by the diagonal d;: we —_ ng.

1.1. LEMMA. The followlng diagram is commutative

P4 (x; P q D. a*
B (K Z) > B x KPi7) — > BP0, /ox32,)
2 A\V4

' 7
2 v (d,) 2 v *
P D d s gp°
B AW x W ox KP 52) <= B AW, (Wpx KDY P 3) SR LW (1, /oK) P52)

*

\’/ (an”® \I/ d3* \l/ (axa)”

2 * 2 *
P . ! 2
H q(w1/ﬂxW2/pr,Zp) << wP Q(wT/ﬂx(wzonp) 4 S Q(w1 /"XWQ/DXK;ZP)

2
where d4d': K —> Kp d: K—>Kp

b

and d3: W, x K —> (W, x EP)P  are diagonals.
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PROCF. The commitativity of the lower two squares follows since
maps of cohomology groups are induced by continuous maps which commute.

upper right hand square commuites because of VII 2.3. The upper left

snd square commutes on the cochain level.

REMARK. To be quite rigorous one should point out that P was only

afined on finite regular cell complexes (Chapter VII §2), while W, X, i

certainly not finite, and may not be regular. We can ensure that

%, ¥’ is regular by replacing W, by its first derived. To make
X, kP finite, we insist that W, should have a finite n-skeleton for

h n (for example the complex of v §5), and then replace W, by its

skeleton for some 'n much larger than peq.

By the Kinneth theorem we can write

*
1 ' = 2 .
(') P'lu = Zj,kwj X kaDJ,ku
1.2, COROLLARY. Zj,k Wy X Wy X Dj,ku = Zj Wy X Dj(zl Wy % Dyu).
* * *
PROOF. From 1.1 we see that (avy P = (dp X d) pd P.

1.3. IEMMA. If uqu(K;Zp), then

D u (_1)jk+P(P-1)C1/2 Dk ju .

3,k

PROOF. Iet € S(p°) be the element such that M(1,3) = (J,1)

t x* denote the asutomorphisms induced by *» on the cohomology level

V 3.4). Iet V be an S(pz)—free acyclic complex. ILet o = x X o.
en by VII2.5,V3.3and V 3.4 we have the commutative diagram

*
B a2 ) — 2> 9 (s 288
* [+ P o P
(a")y P N A
KsZp)\ ‘ ‘
(a’F 2 vy A ®) s # @ x k)
Sty S(p2) %

« order to determine the upper map x*, we have by V 3.4 to construct &

map

x#:W®w—>W®w
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IS = A and
such that #a B #

#5 = ax# where o generates = and acts

on the first factor and B generates p and acts on the second factor.

Such a map is given by
M @) = (<D, 8 v))

where dim v, = J

therefore it is a permutation with sign

and dim Vy = k. Now A transposes s P x p matrix and

(-1PE-17/2 gy,

Iy (w X Wy X D ku) is represented by the (mxp) -equivariant cocycle

Ay @1 V. ®Ww, ®D, ,u p(p-1)g/2
WxWxE—t— Sswewek —do kZ kM z, =l > 7.
This cocycle is equal to
Jk+p(p-1)q/2
(-1) W ® wj ® Dj,ku .

By the commutative diagram the lemma follows.

The proof of the Adem relations will be slightly simplified by the
following conventions.

1.4, CONVENTTON,

€ H?<x;zp>

if r <0 or

qu

r .
"y =0 ;
(J) J<o

and pJ

(g) =1 ir

r > 0; W, is zero if r < 0;

All summations run from -« tO 4w unless otherwise stated.

By V 5.2 and I 2.4we have quwr = (?)w and this now holds for

r+]

all integers r and j. By V 5.2 and VI 2.2 we have
J _ r
P Vor = (j)wer+2j(p—1)’
By V5.2 BPjWer = 0. By the Cartan formula, V 5.2 and VI 2.2,
ij =

2r-1 (r51) w2r+2j(p—1)—1

J _ _(r1
and pP Wor- - ( 3 )w2r+2j(p—1)‘

1.5. THEOREM. The Sq defined in VII 6.1 satisfy the Adem rela-
tions.
PROOF. If dim u = ¢, we have
* i
dPu = Zl Vg X Squ.

By 1.2, 1.4 and the Cartan formula we have

are zero for j < 0.
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k i
(d')*P'u = Zi,k Voq-k X Sq (Wq_i x SgTu)
q-1 . k-Jgqdy .
= z“i,k,j( 3 ) Voq-k X Vgoi.g X 547 °%Q
q-i k+f-1-q iu .
2q-k,2q-2% = Iy (q—£+i) ! Sq
2q-k,2q-2% = DPog-e,2q-k*,

k+ {

1§

-r-q Sqru .

Zr (q k+r

z‘:I. (q-ﬂ+l qu”l—i-q squ

22 _ 1 + ¢ and let ¢ = ¢ + c¢. The non-negative integers
and ¢ are now arbltrary. Then .
i if ifdc by t.hand I 2.6,
q-i 2 -1+(c i) {O i i
q-l+i) ( 1 if 1 = c.
s
- -r 2°-14+c-r . X X
(q%r{ = %—er) = ( k-2r ) since ( vy ) ( x-y )

The binomial coefficient just examined is zero

By I 2.6 this bi-

y suppose that k < 2c.
Therefore it is zero unless ¢ - r > 0.

c-r-1

k-er) for

Ling in (1) we have that if k < 25,2
k k+c-r

n (2) sq° sq®u - %, k_gr) 8q sq .

wed.

ess 2r < k.

s s
ital coefficlent 1s equal to >k and r > 0. Substi

and dimu = q 2%-1 4+ ¢,

By VII 6.8 the theorem is

THEOREM. The P*

1.6 defined in VII 6.1 satisfy the Adem rela-

By VIT 3.5, VII k.4 and VII 6.1, we have, writing 2m = p-!

(mp) "d(nymlaD /2,

PROCF.

v(q) =

. s i 1 .
(@ @R = LT Wigopyon X Pu v DT V(g agyen X B

1.2 we have

% Phu)

i+k
T 1 (1)

v . ok
pQ)v (@) (d") P'u Y(pg-2k)em X P (w(q—Ei)2m

k i
v g g (-nTE X PrV(g_p1)em-1 X PPV

N Zk,i('1)1+k

+

w(pq-2k)2m
K 1
V(pg-ek)em-1 X PP V(g ag)om X )

e i
x BP(VW(o o1yomoq X BF u).

i+k N
k1017 ¥(pg-2l 2m-1
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By the Cartan formula and 1.4 we have
(q-2r)m (q 2r)m . X X
k i (g-21) _ = k- since ( ) ( _)
P - g-21)m k- i mq-k+r, pr X
(W(q-Qi) om x P u) Zj ( J )w(q—2i+2j)2m x P J Py v v
i (oot (P-1(p-1) (o))
P . -21)m- k-3 .ol - pr
(V(g-ei)em X BPTR) Z; ( 3 )w(q_gi+2j)2m_1 x PX7J gptu
Kk 1 . suppose that k < pc. The binomial coefficient just examined is zero
8P (w(q—2i)2m x Pru) = 2 <<q'2.l)m>w R x BPk'j Pl ; it 1 1 1
J J (gq-2i+2j)2m 3 ess pr < k. Therefore it is zero unless r < ¢. ByI2.6 this binomial
L s , (p- 1)(c—r)—1 s
k 1 (q- - . efficient is equal to ) for p° > k and r > 0.
P _ - g-21)m-1 k= 2
P (qptyany X PP = =2y (107 J¥(q-erezgyen ¥ P sl s
Substituting in (4) we have that if p~ > k < pc and dimu = q =
-21)m-1 -3 i -1
- % ((q j) )W(q-ei+2j)2m-1 x 8P¥d gply | t+...4p° )+ 2¢ then
. k.c _ r+k /(p-1)(c-r)-1 c+k-r .r
Therefore 1f & = pg-2k and b = g-2i+2j, and the summations range PPu = Zr(_1) ( k - pr ) P Pua.
over 1,]J,k, we have VII 6.8 the lemma is proved.
1 _ _yivk(g-2iym\ k-7 o1
(D v(pa)v(a) D28.m,2bmu = Zi,;j,k( 1) ( j >P Y Pl 1.9. IEMMA. The second Adem relation is satisfied.
(2) v(Pa)v(Q) Doy oy U Zi,j’k(-ni*k ((q-é‘%)m-‘)pk-j sply ; PROOF. et a = (pg - 2k) and b = (pg - 20). By 1.3, (2)
{3) we have
(3) D _1y1+k  ((q-2i)m k-j o1
v(pa)v(q) 2am-1, 2bm™ Zi,j,k( 1) ( j ) sp¥=d ply 5 (1) brkemaed ((q_gi)m_1> pk-ma-1+8 gpl
1 mg+i-£
o . _1yi+k (q-2::.)m—1 k- j i r+l+1 -2r)m f-mq-r+k or
Ze 5 k(1) ( 5 ) P¥J sply =TT <(%q+i)-¢ pp- AT PPy
i
Now v(Qq) = 1 {(mod p) by VII 6.3 and therefore v(pg) v(q) has + (-1)1’”Z (q-2r)m—1) pl-ma-r+k sP u
R r mg+r-k :
an lnverse.
q = Eps + 2c and let £ = c¢ + mg. The integers s,c and k are
1.8, IEMMA. h i i i 3 .
The first Adem relation is satisfied. arbitrary. Then
: -1
. = - (q-21)m- (p-1) (14...+p°"") + (p-1)(e-1)
PROOF. Iet a = pg-2k and b = pg - 20, By 1.2 and (1) we qmq— +1) ( i-c )
have
Lek((qezl)m ok I 0 ig i#c by I2.6 and 1.k
s .o (-1)1t 1 -mq+£-1 ~ = 1 i - c
(%) 1 (-1) (mqm)P B
Lemg((g-2rym\ £~ k-
(-1yFriamaia pl-ma+k-r (g-2r)m _ ((g-2r)m (p—1)(p ver -r)
I ( mq—k+r) b ( mg-k+p = k-pr ( )
s-1
et g =2(1 +...+ p°7') + 2c and let ¢ = c + mg. The integers s,c
and k are now arbitrary. Then suppose that k < pc. The binomial coefficient just examined is zero
(g-21)m ((p-1)(1+ .. ) + (p-1)(c- i)) ss pr < k. Therefore it is zero unless r ¢ c. ByI2.6 this binomial
-2 -
ma-ted (1 c) icient is equal to ((p 1)(c r)) for p° >k and > 0. We also
- 0 if 1 4c by I 2.6and 1.k
1 if 1 = c.
(q-2r)m—1) a ((q 2rim-1 ) ((p—1)(p +C- r)-1)
mq ~K+1 - k-pr-1 - pr -
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This binomial coefficient is zero unless pr < k. Therefore it is zero H*(L CA) > H%(L c)
> - ’ :

unless ¢ < r. Byl2.6 this binomial coefficient is equal to
These constructions and isomorphisms are natural for meppings of

((p—1>(c-r)

*
k-pr-1 (K,A). Since we have defined F on H (L,c), we obtain F on

K,A) .

=1
) for p°>k and r> o,

Substituting in (5) we have that if p° > k < pc and dim u = q =
2p® 4+ 2¢  then Tt is immediate to check that all the axioms listed in I §1 and

PKBPC §1 follows from the axioms for absolute cohomology. This proves the
u

Zr(_1)r+k ((p—LZég—r)) BPc+k—r PPy

prem.

+

Zr<_1)r+k+1 ((p-1)(c-r)-1) Pc+k—r I

k-pr-t BPu We now have Sqi and Pi defined on cohomology groups of pairs

By VII 6.8the lemma is proved. ) where K is a finite regular cell complex and L is a subcomplex.

o.2. THEOREM. a) There is & unique definition of Sqb and Pl

§2. Extensions to Other Cohomology Theories. ‘the singular cohomology groups of an arbitrary pair of spaces, which

We now extend the definitions of Pi and sqi 80 that they operate ncides with the definition on finite regular cell complexes.

on relative cohomology groups. There is a unique definition of Sqi and PT on the Cech cohomology

0g of an arbitrary palr of spaces, which coincides with the definition

2.1. THEQREM. If F 1is a cohomology operation defi
gy op! efined for abso- y given on finite regular cell complexes.

lut i
ute cohomology groups, then there is one and only one cohomology operation The extensions in both a) and b) satisfy all the axioms in I $1

defined on both absolute and relative cohomology groups, which coincides ¥I §

‘ 1.
with F on absolute cohomology. Furthermore these extensions to the rela-
i PROOF. We shall leave the reader to check that the axioms are

i

and Pl satisfy all the
sfied whenever we extend the definitions of Sql or P.

tlve groups of the reduced power operations Sq

axioms (see I §1 and VI §1).

We first extend the definition to pairs (X,L) where L 1s an

PROOF. If a € K we have a commutative diagram .
&r inite regular cell complex and L & subcomplex. Now HQ(K,L;ZP) is

o —> H(K,a;8) —> HYK;G) —> B(a;6) —> o arally isomorphic to Hom (Hq(K,L),Z ). Therefore H%(K,L;Zp) is the

F F
v v

0 —> H'(K,a;G") —> H'(KiG') —> H(a;6') —> o

erse limit of the groups H%(Ka,La;Zp) vhere K, and L, vary over

finite subcomplexes of X and L. Since the reduced powers are natural
s gives a unique definition on H%(K,L;Zp). A centinuous map from one

By diagram chasing we obtain a unique definition for F: Hq(K,&;G) _— of infinite complexes to another pair maps finite subcomplexes into
H'(K,2;G'). The definition is natural for maps of pairs where the second sets of finite subcomplexes. It follows that sql and P! are natural
space is a point or is empty. the category of pairs (K,L) where K is a (finite or infinite) regular
Let (K,A) be a palr of spaces. Let L be K with the cone on complex and L 1is a subcomplex.
A attached. By excision we have an isomorphism Now we extend the definition to pairs (X,L) where K 1s a CW com-

H*(L,CA) —_ H#(K,A). x and L =& subcomplex. According to J. H. C. Whitehead (see [2]), the

X . . R . R 1e . This
Iet c¢ be the cone-polnt of CA. By the five lemma we have an 1somorphism (X,1)  1s homotopy equivalent to & pair of simpliclal complexes
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i

obviously gives a unique and natural definition for P:'L or Sq on

*
H (X,L).
We now give the definition on H*(X,Y), the singular cohomology

of an arbitrary pair X,Y. Let SX and SY be the geometric realisations

of the singular complexes of the spaces X and Y (see [2]). Then we
have a singular homotopy equivalence h: (SX,8Y) —> (X,Y). Moreover
this map is natural for maps of pairs (X,Y). Since (8X,5Y) 1is a pair

of CW complexes, we have defined Pl and Sqi in H*( 3X,5Y). Since
n': HY(X,Y) —> BY(X,s7)

is an isomorphism, this gives a unique and natural extension of Pi and

Sq:L to singular cohomology groups. This proves the first part of the

theorem.
We now extend Sqi and Pi to Cech cohomology.
(X,Y)

The Cech coho-
mology groups of a pair
of (X,Y)

are obtained by ordering the open coverings
according to whether one covering refines another, taking the
nerves of the coverings, and then taking the direct limit of the cohomology
groups of the nerves. Since we have introduced Sqi and Pi into the
cohomology structure of the nerve of each covering, and Sqi and Pi are
natural, this defines Sqi and Pi uniquely on H*(X,Y). It is easy to
see that Sqi and Pi are natural with respect to continuous maps of
(X,Y).

pairs This completes the proof of the theorem.

§3. The Uniqueness Theorem.

In this section we shall prove that the Sqi and the Pl are
uniquely determined by the axioms 1)-5) in I §1 and 1)-5) in VI §1. We
shall do this by investigating the cyclic product of spaces. We shall use

Zp as coefficients throughout this section.

3.1. Then K 1is

homotopically equivalent to the chain complex which is isomorphic to H*(K)

IEMMA. Iet X be a chain complex over Zp.

as a graded module and has zero boundary.

PROOF. Let Bq be the boundaries in K and let D. be a subspace

q

of K Then K 1is isomorphic to the

q which 1s complementary to the cycles.

complex which is Hq(K) + Bq + Dq in dimension ¢, and whose boundary

§3. THE UNIQUENESS THEOREM

and maps D iscmorphically onto B

a
herefore K is the direct sum of the chain complexes

perator is zero on Hq(K) + Bq q-1°

H and (B + D).

+ D has the contracting homotopy s which is defined to be & map into

and such that s: is the inverse

, which is zero on Dq Bq —> D

q+1
to X by letting s(H) = 0. Iet

if the boundary. We extend s

K ——> H be the projection and let r: H——=> K be the injection.

% uA = 1 and A = 1 by the homotopy s. This proves the lemma.

Iet K and L be chain complexes. Iet = be the cyclic group of

der p acting by cyclic permutations on K’ and IP. Iet W be a -

pee acyclic complex and let = act on W® K° and W ® ILP by the

onal action.

3.2. IEMMA, If f,g: K —> L are chain homotopic, then

192,19 WokK — WeolP

e equivariantly homotopic.

R . P
PROOF. By VII2.1 there is an equivariant map h: I @W — I @W

ich that h(T@w) = 0P ®@w and Wiew = TP @w. Ilet

I ® K—> L be the chain homotopy between f and g. Then we have

Ehe equivariant chain maps N
|

' D
~ 1
TeWekl 5 Poyegrk’ Z>we (TeRP 1 5 ygiP .

fhe composition is the required equivariant chain homotopy.

3.3. COROLLARY. If f: K —> L is a homotopy equivalence, then

: ® P is an equivariant homotopy equivalence.
P * D equi-
From 3.1 and 3.3, we see that W@ K and W® H (K) are eq
jantly homotopy equivalent. Therefore Homﬁ(w ® K° ,Z.) 1s homotopy
ivalent to Hom (W @ K (KP,2).

We choose a direct sum splitting of H*(K) into components Ai’

o
h isomorphic to Zp. Then H*(K) = Zi=1 A;. 30
Y 0 P
H(OS = I, &7 + Z,(x) ®B
whe: B = I R R . A ® ... ® A .
Here 115123"'5]‘p’11<lp i, ip

¥he action of = on Aip is by cyclic permutation and on Zp(ﬂ) ® B by
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the usual action on Zp(n) and the identity on B. 8o, if H(K) is of
finite type,
Hom (W ® H*(K)p,Zp) ~ I, Hom (W ® Aip,Zp) + Hom (W @ Z,(x) @ B, Zp)
We then obtain immediately
3.4, IEMMA. Iet K be a finite regular cell complex. Then,
writing (W x KP)/x Wox, kP,
* p N * p *
HWe k) ~ I HW/«eA") + H(We7Z(x) @B)
Let W/ x K be embedded in W x_ K by the diagonal map
d: K—> KP,
*
3.5. REMARK. For any palr of spaces (X,A), H*(X), H (A) and

* * . R
H (X,A) are modules over H (X) in an obvious way. DMoreover it is easy

to see that the maps in the cohomology sequence are consistent with the

module structure. If we have amap X —> Y,

of (X,A) gets an H ()

*
The cohomology sequence of (W X Kp,W/n' x K) is a module over H (=)

via the projection W x_ K® —> W/x. The action of a class

ue€ H*(vr) = H*(W/ﬂ)

is multiplication by u x 1p, where 1

on K.

We have the maps

w(r) L BPUW x, &) 2> BPU/x x ) .

3.6. PROPOSITION. The image of 4" 1is the

by the image of 4 P.

PROOF. By VII 4.1 it will be sufficient to show that H:(W X Kp;Zp)

is the sum of Im v, where =
erated by Im P.
1) H(W®Z(r) ®B) C Int

2) H (W= o AP

We see from 3.4 that we need only show

and

is generated as an H*(n) -module by the element
Puy,

where uy is dual to a generator of Ai'

then the cohomology sequence

*
structure via the induced map H*(Y) —> H (X).

is the unit class (or augmentation)

g (x) -module generated

is the transfer, and the H' (n)-module gen-

maps

1eZp to

all other elements of «

:induced by wv.

the transfer of a cocycle in W ® Z (r) ® B.
we Z(n) ® B.
that

image under .
This proves 1).

The H (=) -structure on H (W x ¥P)
v x 1P

is a module over H*(:r)

gider Ai as a subspace of XK
gpace to Ai in Kq'

Hote that j -

SI‘
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PROOF of 1). Iet a:

Iet v

Zy —> Zp(n)
Zp(ﬂ) > Zp

be the map which sends
1€ nx
. send 1 € =« to1eZps.nd

to zero. A induces s map

*
Ao

¥*
C(We 2z (x) @Bz) —> c' (W ;
D Zy (We 2z, eB8;2)

“An equivariant c i i
1* ochain of Wg Zp(rr) ® B 1is determined by its image under

We also have a map

*_ * . *
vi: C(Wg zp ®B,Zp) —> C(We® zp<1r) ®B;Zp)

, 1t follows that 1%,* . 1,

Since va = 1
We must show that any equivariant cocycle u in W ® Z (n) ® B is
Now v x u is a cocycle on
T S s T 0

n is determined by its

- From the definition of «t, 1t follows that A*ty* . 1

PROOF of 2). ILet C = Hom(Ai,Z )

and let u; generate C

4.

is given by cup-products with elements
* *

Therefore H (W @ AF) ~ H'(x) @ c,P

1 P
x u, P,

where v e (n) (see 3.5).

generated by Now as in 3.1 we can con~

for some gq. Iet Lq be a complementary

We can represent u; as a cochain by insisting that

= 0, Now Pu:L 1s defined by the composition
P
W@Kp E®1 N Kp (ui) S 7
- D
hich 1s equal to 1 D
® (ui) . Therefore 1 @ uip = Pui . This proves 2)
~and the proposition follows.
We now define a graded module § - (s} where T C i (W/z x K)
defined by the formula
st b

0 <3< (p-)r/p Wi/ @ Bk .
= pJ - (p-1)J < (p-1)(r-3).

3.7. IEMMA. s5:

N
H(W/x x K) —> B (W x, K°,W/x % K)

monomorphically.,
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129

PROOF. By the cohomology exact seugence, we need only show that

*
PROOF. wy . T'(1 x hu) is given by (see p. 67 for definition of N)
s n Im ¥ - o, By 3.6 we need only show that st n {H*(n) -module gen-

=D, w.®h
* . B>kl oW e kP 1B sy g P 18N oy o yp 17 op U o5
erated by Tm AP} = 0 . Now d'Pu = quli’(;” w, x Dju by VII 3.2 and P
e composition of the first two maps is equivariantly homotopic to the
VII 4,4, By V 5.2 and VII 5.4 . .
) entity by V 2,2, Therefore LI T'(1 x h'u) is represented by
v dPuo= Wi (p-1) X 30 * other terms.

But k + q(p-1) > (p-1)q which proves the lemma.

iq..,
WP (S wijeuhN . o

h#u: ¥° — > 7 be written as u' + u"where u' = 0 on X d u" =
We now define a modified transfer +t! such that the following P q et =0 on

g+ Then u" 1s invariant since Ky 1is fixed under =. Therefore
diagram is commutative.

0. Therefore Wy . T (1 % h*u) is represented by

B (W x KP) — > H' (W x_ &P, W x_ K
b T

W K _L:]_).JM> 7 .
¥ °
T J 1
“ % 1'3/ Now u IKd = ulK. Therefore a(wj x u) 1is given by
H(WxﬁK) a+j v.gu"
W KP (-1) Ja S W Kp 3
P - By E— Zp'

Tet KP be subdivided so that the triangulation is invariant under = and

has the diagonal as a subcomplex (subdivide K to get a simplicial complex = 0®1+1®03 andwe can leave cut 9@ 1 since wy isa

and then take the Cartesian product of the triangulation as defined in [3] cycle. Therefore o5(wy x u) 1s represented by

p. 67). Since H*(w x KF)y = H*(Kp), we can represent any cohomology class k (—1)Q+j(wj @uM(1 ®23d) = (_1)j(wj ® su") .
D i P
of Wx K by e®@u where u is a cocycls on K. If we W and su" = 5(h#u - u') = -su!' since u is a cocycle. Therefore
o€ Kp, we define .
sv; xw = (wy xou)(-n*T .
(e @ (v ® o) = Zcxe« e(ow) ulac)
) Zae,( e (w) u(ao) We must show that for 1 &ven or p = 2, -y ® u'N and
*
3 ® du' have the seme class in H (W X, Kp,w/n x K). It is sufficient to
If oe€K; then oo = o for all @ € = and 80 that these two cocycles have the same value on every relative cycle in
e . (wo®o) = pe(w ule) = 0. X Kp,w/:t x K). Such a relative cycle has the form

Therefore 7T'(e ® u) € C*(W X Kp,w x K;). This defines the modified trans- g+i
T d I3~ e.® c. .
j=0 73 “n Tg-j+1i
fer.

. ho) R . . q+1
Tet h: KP —> K be the projection onto the first factor. Let B(Zj=o €5 ® Cq_j.1

5 H*(W/n: x K) —> H*(w X, Kp,w/ﬂ x K). efore for J even or p =2

Recall from 3.5 that & is a homomorphism of H*(n) -modules. Iet u € Hq(K). -e, ®_ 3dc

3-1 @ OCq_juisr * Nej_q ®p Cq_giq e WO Ky ©

xu) = Wa.: o T'(1 X h*u) efore

3.8. IEMMA. -8(w 21

2i-1

Ney, +,4 —0cC, 4.+, .€K;,
If p-=e, B(wy x 1) LTl x Hu) dmded 4=+t - d

Vi

since u' = 0 on Kd we have for 1 even or p = 2
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q+i _ _
(wi ® u N)(Zj=O e; ® °q—j+i) = u Ncq = u acq+1
- 114
= (-1)%*(su )CQ+1
_ g+1
= =gy @8u ) (I &5 ®cyg,4) -

3.9. THEOREM. For a fixed odd prime p,

Pi

the axioms 1 through 5

of VI §1 characterige the operatims

Bl

(1 = 0,1,2...). Precisely, 1f

(i = 0,1,2...) 1is any sequence of cohomology operations satisfying

Bt pi.

LR |

these axioms then, for each i,

PROOF. From the axioms we deduce that
(1) 8Pt = P's as in I t.2.
(2) Piw1 = 0 from VI 2.2 and so Pi(w1u) w1Piu by the

Cartan formula.

(3) Zli{=o('1)iwei(p-1) Pl - Z?:o('1)iw2i(p-1)+2 Pl
* Zg;é(‘{)iwe(i+1)(p—1)+e pk-t-T
=V, . Pku .
(4) By 3.7, &: H'(W/x x K —> E*'(Wx_ ¥,W/r x K) maps
g° monomorphically.
(5) By 3.8, -8{wy;_ 4 x u) = Wog - TH(1 % h%u).
et 5y = Zik=0('1)iw'2i(p-1)+1 % P¥ Iy € B (W/x x K). We recall that

5 1s an H*(n)-homomorphism by 3.5. We see that

o7 = I o(-D vy oy s0r P,
= leio(—ﬂi Vo1 (p-1) Pk_i(s(w1u)) by (1) and (2)
- T o1 Ny oy PR, 11 x 1MW) by (5)
- —w2Pk (1 x K'w) by (3)
If g =dimu=12s or 2s+1, weput k = s+1. Then 2k > g and dim
(1 % h%u) = q, so PKT'(1 X h%u) = 0 and sy = 0.
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Suppose sh satisfy the same axioms as (?1). Then we can define
by replacing Pi with Bi. As above 8y' = 0. Therefore
1 ~i+1 i+t
8(Zf_o(-1) Voi(p-1)+1 % (PP BT ) - s(y - 90 = 0.
term 1 = s + 1 is omitted since P° -B° - 1 -1 - 0. Now
(ry -7") = 2i(p-1) +1+qg+2(s -1+ 1)(p-1)
= 2(s+ 1) (p~-1) +q+1
{ 2(s + )p if g = 28 + 1
) 2(s + )p -1 if g = 2s.
srefore (p - 1) dim (v - v") /p
{2(s+1)(p-1) = 23(p - 1) + 2(p - 1) if q = 23+1
(s + 1)(p-1) - (p-1/p
=2s(p-1)+2(p-1) -(p-1)/p if q = es.
refore (p - 1) dim (v - y")/p > 2i(p - 1) +1 = dim Vot1(p-1)+1 °
efore (7—7')€Sr where r = dim (y - y'). Since s{(y - #') = 0,
shows that vy - ' = 0. Therefore pu Blu for o <1<k, If

u

(i =0

» Kk then 21> 2k > dimu and Py = Blu -

3.10.

homology operations satisfying these axioms then, for each 1,

0. The theorem 1s proved.

THEOREM. The axioms 1 through 5 characterize the operations

,1,2...). Precisely if R* (i = 0,1,2...) is any sequence of

i

rt - st

q-.

PROOF. From the axioms we deduce
(n aSqi = Sqia as in I 1.2,
k k-1 R’ k-1 K-1 k-i-1
(2) 21:0 vy Sq (wu) = Zi:o Wi, 54T Tu o+ Zi=0 Wyo 54 u
= W, Sun.
(3) s: HY(W/¢x x K) —> Hr+1(w X Kp, W/x x K) meps S° mono-
morphically by 3.7.
() (1 xw = w, T'(1xhu by 3.8
let y = 2§=o Wy X qu_l u € H*(W/n x K.
cgll that 5 1is an H*(n)—homomorphism by 3.5. Therefore
k -
8y = Zi=0 Wy 8(1 x qu iu)

Z?:o Wy 5qu'i(1 x u)
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*
If q=dimu, ve put k = a+1. Then Sa%t'(1 x W'w) =

define ' by replacing Sql with R*. As sbove &y' = O.
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k-1

k
= Zi:o Wy Sq s(1 x u)

= Z?:O Wy qu_i(w11'(1 X h%u))
= W

1 quT'(1 X h%u)

0 and so
Suppose {Ri] satisfy the same axioms as (Sql}. Then we can

Therefore

6(2%=O Wi X (511 - g1y s(y - 7') = 0.

Now dim (y - ') = 2q + 1 and 1< a< (2q+1) /2. Hence oy - 7' € af.
Therefore ¢ - ! = 0 Dby 3.7. Therefore Sqiu = Riu for 0 <1<k
If 1> k then Sqiu Riu = 0. So the theorem is proved.

[1]

{2]

(3]
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APPENDIX

Algebraic Derivations of Certain Properties of

The Steenrod Algebra

@ , the Steenrod algebra mod p, has been defined in VI §2 (in I
for p = 2) in a purely algebraic manner as the free associative algebra

over Zp generated by the elements pl

of degree 2i(p-1)

modulo the ideal generated by

and B of

ree 1 (for p = 2 by Sqi of degree 1)

A PO- 1 (Sqo- 1 if p = 2) and the Adem relations. The theorem proved

appendix (Theorem 2) is purely algebraic both in hypothesis and con-
It was proved in Chapters I, II and VI by allowing @ +to

on the cohomology groups of certain spaces. The proof to be given

e will be purely algebraic. The only new step is an ldentity between

omial coefficients mod p which was proved by D. E. Cohen [1] in a paper
2 the Adem relations.

Let P(g],ge,...) be the polynomial algebra over Zp on generators

of degree 2(pi- 1) (of degree PLI if p=2). Let E(TO,T1,..J

on generators T. zpi— 1.

i
We shall define a diagonal

the exterior algebra over Zp of degree

H - PQE (H=P if p = 2).

H—> H® H which will make H & Hopf algebra. In doing so we are

e to choose Yy on the generators &y and Ty and then Yy will be
gquely determined. Iet
i o i
vty = Ly eh g @ty and vy = el s+ Iy th ;e

following lemma is easily verified.

ILEMMA 1. is associative. H 1is a commutative associative Hopf

¥u

bra with an associative diagonal. H 1is of finite type.

From now on we shall give no special discussion of the case p = 2,

ice this can be obtained by replacing Pi with Sqi and suppressing all
133
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arguments involving B or Ty . Zp form a commitative ring. A power series whose constant coefficient

We define a homomorphism of algebras non-zero has a unique inverse under multiplication. Iet f be the

ment of the ring given by

_ P-1_ yPyc+d c{p-1)+1
by letting n7(P1) be the dusl of ¢, 7 and n(8) the dusl of 7, in the £t = (O + %) YT/ + 1)

basis of admissible monomials. lemma will be proved by expanding f(t) in two different ways.

If we apply the binomial theorem to the numerator of f(t) we obtain:

THEOREM 2. The map 7 induces an epimorphism @ —> H which
sends no non-zero sum of admissible monomisls to zero. () = Zj ( c-gd )(—1)3 tpj(1 + 1:)(d’j)(p‘1)'1

Theorem 2 has the following corollary. nce ¢ - pj < pl(d - §) the expansion of (1 + t) (@-H{p-1-1 511 con-
t° P only if < d, in which case the coefficient of £ PJ ig

-3) (p=1)

THEOREM 3. &) 1 induces an isomorphism @ —> E. @ has a
'1) . Therefore the coefficient of t° in f(%) is

basis consisting of the admissible monomials. e-pj
b) @ is a Hopf algebra with diagonal given by
. oy _nyd e+ Y ((d-3) (p-1) 1
¥(PY) =Z§P3®P13and ¥We) = B®1+1®B. z (1) <J)( c-pj )
¢) H 1is the Hopf algebra dual to @. On the other hand (1 + £)® = 1 4+t and so
] p-1_ P _ _ p-1
PROOF of THEOREM 3. As in VI 2.1 we see that the admissible (1« %) v ! £+ 1)
monomials span ®@. They are linearly independent by Theorem 2. Part a) herefore
of the theorem follows. Part b) is proved by showing that Pt = (1 - t(1 + t)p—1)c+d/(1 . t)C(p-T)H
*aeh) = Za(eh) (Pr7d)  ana J( ce+d \,.J (3-¢) (p=1) -1
o M = 1 ® - zj (-1) ( : )tJ“ s 0 p-1)-
: (j-c)(p-1)-1 :
o (B = Me) @1+ 1 @ (B, we expand (1 + t)VITCNP-T -1 ye obtain & term of the form t°7J  oniy
where oy is the multiplication in H. Part c¢) is trivial. J<e. Let heoy be the coefficient of this term. Then the coeffi-

c
We shall now prove Theorem 2. The first step is to show that ent of t7 in f(t) 1s

is zero on B° and on the Adem relations. It is easy to see that Zj (-1y3 Mooj ( cgd ) , s

n(ae) = 0, since if x 1is a monomial in H, then
Ao = 1 eand the lemma will follow if M = 0 for k> 0.
2
< n(B),x> = < alB) x (B ,¥yx > = O
’ TH e = (-(p-1Nk - N(-(p-Dk -2 ....(-(p-Dk -1 -k + 1)
by lnspection of the formula for VX In order to see that 1n maps each k!

Adem relation to zero we need a lemma. ( Pk )
+
- k

o if k>0 by T 2.6.

[}

LEMMA k. (Cohen {1]) if 0 < c < pd then

PROPOSITION 5. The homomorphism 1 Q@ ——> H* sends each Adem

(2) = oz 0o (58PPI moa p,
c-pJ lation to zero.

PROOF. The formal power series in a variable t with coefficients
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PROOF. BSuppose x ¢ H 1is a monomial then % this becomes - Q 7‘(Ppb—TPb) . Now

o B _ o g -
PP7,x> = <P P S > n(Ppb 1Pb) = 2(R(pb-1,b)) = o .
This is zero unless X = g‘?gg and (for dimensional reasons) proves the proposition.
a+B = 3+ k{p+ 1). Then :
ap 3k o 6 ; Kk GORCLLARY 6. =n induces a homomorphism of algebras n: @& —> H.
<P efeE > = <PYe PR (s, @ vt @) (D @ ey

As in VI 4.2 we can set up a one-to-one correspondence between

< p% ® PB, zm (Igr'l)glrmpk@ §1j+k-m>

( aépk)

ces I = (o, 15 1,...,ik,ek,o,...) with e, = O or 1 and

= 0,1,2,... and admissible sequences I' = (e

07i1:81)‘"Jikvlek)oy"-)

the equations

let R(a,b) = -PapP . 5, (- yari ((b -1) (p- 1)—1) pa+b-ipl
a-pi i, = 11', - p;Lll,_H - L.

- i - gq 11 i' e
Then R(a,b) = 0 in @ if a < ib. Now 1 R(a,b) could only be non PI' - B 0 P 1 551 Plk B k and let

. J . . : ; €
zero on monomials of the form £y e, where a + b = J + k(p+1) and its EI Toso 5111 1151 - Eklk T,
value on such monomials is T T

£ and P have the same degree. We order the set of sequences
a+b-k 1 a+if(b- 1N -N\/a k 1 . s ;
—< + a—é)f: )> £ Iy (-1) +(¢ l) (p ) )( ;Eb (I—J;)k) lexicographically from the right.

By Iemma 4 with 4 = b -k, ¢ = a-pk and jJ = i -k, this expres- LEMMA 7. < PI',gJ > is zero for I <J and +1 for I = J.
sion is zero mod p. J

PROOF. We prove this by induction on the degree of t“. It is
We now have to show that if a < pb, then n sends the following

in degree 0.
expression to zero

1). The last non-zero element of I' 1is il'{ . Iet M' be the

(1) - PRepP .z, (-nyari((b- ;)pll’ 1Y) p p2+0-1 quence I' with 1. replaced by 0. We have
L3, (_1)a+i<(b-i)(li>~:)-1\) pa+b-i o o 1y = 1, and M = (eg,iy,8q, 0,1y + Piy,ep ,0...)
a-pi-
. k=1, M = (g,0,...).)
Iet Q e H be dual to T, € H. Then " T M i J
<P "> = <P @P 2Vt > By our induction hypothesis we need

a a a-1 i
(2) n(P7 8- B8F) = Qn(F) take into account terms of the form (@ §1k where L < M in the

To see this we note that n(PaB) ,n(BPa) and Q n(Pa'1) are zero except on sion of ngJ. Inspecting the formula for ¥y e see that

1
monomials of the form g?w’o and g? 111, and on these monomials the PI ,§J > = 0 unless J and I have the same length and jk < ik'

identity (2) 1is easy to check. e J > I, we can assume that jk = 1, end that J and I have the
If a < pb then the expression (1) is sent to zero by 1, as we e length. Therefore in the expansion of ngJ we need only take into
: Ty
see on using (2) and 1(R(a,b)) = 0 and g(R(a-1,b)) = 0. If a = pb ount the term gL ® &, where
then (1) Dbecomes I, = (50’j1’51""’jk—1 . pjk’Ek-WO"")
a b a b ’
-P* B8P + 8PP . k=1, L = (54,0,...).)

L>M and we have L = M if and only if J = I . By our induction
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hypothesls the lemma follows in this case.
Case 2). The last non-zero term of I' 1is €y Let M' be the sequence

I' with €y replaced by zero. Then

Moo= (eg,i e, g8 51 + 1,0,..0).
(If k=0, M = (0,0,...).)
Now
<pPl'e? s o <M ppup? >

By our induction hypothesis we need only take into account terms of the form 7§

gL ® T, where L < M in the expansion of ngJ. Inspecting the formula

for VH we see that < PI',gJ > = 0 unless J and I have the same

length (and so By = Ep = 1). We assume that J and I have the same

length. Then in the expansion of ngJ we need only take into account the
L

term & x T where

L = (50’j1’51""’jk-1’8k-1’jk+ 1,0,000)
(If k=0, L = (0,0,...).)

So L>M and we have L = M 1f and only 1f J = I. The lemma follows.

We now show that 1 1s an epimorphism. On each degree there are

only a finite number of monomials §J By a decreasing induction on J,

and using Lemma 7, the image of 1 is seen to contain the dual of gJ.

!
Moreover n does not send the sum of admissible monomials T xiPll to
zero, as we see by applylng ILemma 7 to the term for which Ii is greatest.

This proves Theorem 2.
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