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ANNALS OF MATHEMATICS 
Vol. 44, No. 4, October, 1943 

HOMOLOGY WITH LOCAL COEFFICIENTS 

By N. E. STEENROD 

(Received January 26, 1942) 

1. Introduction 
In a recent paper [16] the author has had occasion to introduce and use what 

he believed to be a new type of homology theory, and he named it homology with 
local coefficients. It proved to be the natural and full generalization of the Whit- 
ney notion of locally isomorphic complexes [18]. Whitney, in turn, credits the 
source of his idea to de Rham's homology groups of the second kind in a non- 
orientable manifold [13]. It has since come to the author's attention that 
homology with local coefficients is equivalent in a complex to Reidemeister's 
Uberdeckung [10]. 

Since this new homology theory (which includes the old) seems to have such 
wide applicability, a complete review of the older theory is needed to determine 
to what extent and in what form its theorems generalize. The object of this 
paper is to make such a survey. The general conclusion is that all major 
parts of the older theory do extend to the new. In addition the newer theory 
fills in several gaps in the old. The most noteworthy of these is a full duality 
and intersection theory in a non-orientable manifold (?14). 

For the sake of completeness, some of the results of Reidemeister have been 
included. The new approach and new definitions make for easier and more 
intuitive proofs. They lead also to results not obtained by Reidemeister. The 
most important is a proof of the topological invariance of all the homology 
groups obtained.' In addition developments are given of the subjects of multi- 
plications of cycles and cocycles, chain mappings, continuous cycles, and Cech 
cycles. 

Part I contains an abstract development of systems of local groups in a space 
entirely apart from their applications to homology. Any fibre bundle over a 
base space R [18] determines many such systems in R (one for each homology 
group, homotopy group, etc., of the fibre). These are invariants of the bundle. 
They should prove to be of some help in classifying fibre bundles. 

Part II, which contains the extended homology theory, presupposes on the 
part of the reader a knowledge of the classical theory such as can be found in the 
books of Lefschetz [7] and Alexandroff-Hopf [1]. 

I. LOCAL GROUPS IN A SPACE 

2. Notations 
We shall be dealing throughout with an arewise connected topological space 

R. For any point x of R, let Fx be the fundamental (Poincar6) group of R with 

1 It is not determined however whether or not the combinatorial invariant called "tor- 
sion" by Reidemeister [9] and its generalizations by Franz [41 and de Rham [141 are true 
topological invariants. 
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HOMOLOGY WITH LOCAL COEFFICIENTS 611 

x as initial and terminal point. If A is a curve from x to y, the class of curves 
from x to y homotopic to A with end points fixed we shall denote by a symbol 
such as axz. Its inverse is denoted by ax-y or avx. The elements of Fx are 
abbreviated ax , Ox, etc. The class acx determines an isomorphism Fx- F- 

(denoted by ax,) defined by ax,(Ox) = ayx~xa,. In keeping with this notation, 
the product aCY3x means the element of Fx obtained by traversing first a curve 
of the class ax then one of Oxz. As is well known, the combination of two iso- 
morphisms yz (ax (,yx)) is the isomorphism (aOy11) ((y-z). 

3. Local groups 

We shall say that we have a system of local groups (rings) in the space R if (1) 
for each point x, there is given a group (ring) Gx, (2) for each class of paths ar, 
there is given a group (ring) isomorphism Gx --+ G (denoted by a,), and (3) the 
result of the isomorphism a, followed by Oy, is the isomorphism corresponding 
to the path axyO~z - 

It follows from the transitivity condition (3) that the identity path from x to 
x is the identity transformation in Gx . A further consequence is that the inverse 
of the isomorphisrn a, is ayx . By (2), a closed path ax e Fx determines an 
automorphism of Gx. From (3) it follows that Fx is a group of automorphisms 
of Gx. The invariant subgroup of Fx acting as the identity on Gx is denoted 
Fx. Since, by (3), 

axv(Ox(ayx('9))) = (ayx=xaxy)(g), g e Gy, 

it follows that 

(3.1) axy(Ox(g)) = [axy(O,)J(axv(g)), eGx. 

We shall say that the system [Gx is simple if every Fx = Fx. If this happens 
for one x, it will be true for all. If EGO} is simple, the isomorphism a, is inde- 
pendent of the path from x to y. Choosing a fixed point o as origin, we find that 
each Gx is uniquely isomorphic to Go . Thus the local system consists of one Go 
and as many copies of Go as there are points x z# 0. 

Two systems fGx1, { HT are said to be isomorphic if, for each x, there is an 
isomorphism 4, of Gx onto Hx such that 

Oy(a~xy(g)) = ax~y(Ot:(g)), 9 e GzG. 

We shall deal only with properties of systems which are invariant under isomorph- 
isms. In each case the proof of invariance is trivial and will be omitted. 

It was proved in ?2 that the collection {Fx} is a system of local groups. It 
is simple if and only if it is abelian. 

In some instances a system {G1, will consist of topological groups. The 
isomorphisms a, will then be continuous. In the following pages we shall 
omit continuity considerations whenever such are reasonably obvious. 

We shall consistently attempt to reduce the study of a system to the study of 
what occurs at one point of R. As a first step we have 
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612 N. E. STEENROD 

THEOREM 1. If G is a group (ring), o a point of R, and V' a homomorphism of 
F0 into the group of automorphisms of G, then there is one and only one system 
I G.} of local groups (rings) in R such that Go is a copy of G and the operations of 
F0 in G, are those determined by V,. 

For each point x E R, choose a class of paths Xox, choosing Xo, = identity. 
Let Gx be a group (ring) isomorphic to G. Associate this isomorphism with Xx0. 
If axy is a path, we attach to it the isomorphism Gx -+ G, defined by 

axy(g) = ?o[(XoxaxyXyo)(X20(9)) 

The second operation is the automorphism of G attached to X0oaxyXyo e Fo by A1. 
Since ,6 is a homomorphism, the transitivity condition (3) holds. 

If {GQ} is a local system, and 4 an isomorphism of G' into Go such that ao= 
4.a for a e Fo, map G'- Gx with the operation ox(g') = Xox(0(Xxo(g'))). It is 
easily verified that {fx} establishes an isomorphism between {Gig and {Gxl. 
This proves the uniqueness and completes the theorem. 

4. Automorphisms 

Let {Gx}, {A:} be two systems of local groups, and suppose that A is a group 
of automorphisms of Gx in such a way that, for any a, X we have 

(4.1) axy (a(g)) = ax, (a)(axy (g)), a E A:, g e G,. 

Then {AxI is called a system of local automorphisms of GE}. By (3.1), it follows 
that {FZ} is such a system for any {Goj. 

Let A' be the subgroup of Ax acting as the identity on G,. By (4.1), {Al} 
is a system of local groups. It follows that, under the natural isomorphisms 
Ax/A1 -* AJIA1 induced by Ax -* Ay, {Ax/1A } is a system of local automorph- 
isms of { Gx} . 

If A is a group, and, for each x, A is a group of automorphisms of Gx such that 

(4.2) ax,(a(g)) = a(axy(g)), a e A, g e , 

we shall call A a group of uniform automorphisms of {Gx . If a system {Ax} 
of local automorphisms is simple, then any one of its groups is, in a natural way, 
a group of uniform automorphisms of IGx}. If Fx or Fx/F1 is abelian, we have 
such a group of uniform automorphisms for any G., . 

As in Theorem 1, complete knowledge of a system of automorphisms is obtain- 
able from knowledge of what occurs at a single point. 

THEOREM 2. Let A be a group of automorphisns of G with only the identity 
acting as such in G (i.e. A' = 1). Let o be a point of R, and let Fo be represented 
as a group of automorphisms of G in such a way that the automorphism a(a(a'1(g))) 
of G is in A for every a e Fo, a e A. Then there is one and only one system {Ax} 
of local autoniorphisms of {Gx} such that the collection (Fo , Go, Ao) is isomorphic 
to (Fo, G, A). 'Ax) is simple and therefore A is a group of uniform automorph- 
isms of IG } if and only if the automorphisms of F0 and A in G commute. 

By Theorem 1, the system {Gx} is completely determined. By assumption 
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HOMOLOGY WITH LOCAL COEFFICIENTS 613 

the automorphism aaa-' is a unique element of A. Thus each oa determines an 
automorphism of A, and F0 is a group of such. By Theorem 1, the system {Ax} 
of local groups is completely determined. For a E A , g E G., we choose a path 
aox and define 

a(g) = aoz(acx(a)(azo(g))). 

Clearly (4.1) will hold once we have proved the right side to be independent of 
aox . This is shown as follows. 

9xo(aox(axa)(a o(g)))) = (aoxz) (a>o(a) (azo(g))) 

= [(aozf3>) (azo(a)) (aozB3) i] ((aox2fo) (azo(g))) 

= 0-o (a) (Oxo(g)). 

5. Operator rings 

If G is an additive abelian group, the set H of all homomorphisms of G into 
itself forms a ring under the operations 

(a + b)(g) = a(g) + b(g), (ab)(g) = a(b(g)), a, 6e H, g e G. 

A group A of automorphisms of G forms a multiplicative subgroup of H. It 
generates a subring A* of H with unit = identity. If the symbol a(g) be abbre- 
viated by ag, this multiplication of g E G by the scalar a E A* obeys the usual 
laws: (a + b)g = ag + bg, (ab)g = a(bg), 1g = g, Og = 0, a(g + g') = ag + ag'. 
One may therefore speak of linear combinations, linear independence, and bases 
in G relative to A. 

We shall say that the system {Ax} is a system of operator rings for the abelian 
system {Gx} if, for each x, Ax is a ring of operators for G, and for each path 

axy, we have 

a.(ag) = ac,(a)ax(g), a E Ax, g e G.G. 

The analogue of Theorem 2 is proved with only slight modifications. If a system 
of operator rings is simple, we are led naturally to the concept of a uniform opera- 
tor ring for { GZ} . 

For any { Gx }, the system { F* } of group rings of { Fx } is a system of operator 
rings. If Fx or Fx/F1 is abelian, the group ring of F0 or factor ring thereof is a 
uniform operator ring for {G. }. 

6. Dual systems 

Two abelian systems Qx}, {[Hx of local groups form a pair with respect to a 
third {KZ } if, for each x, Gx and Hx form a pair with respect to Kx (i.e. a multi- 
plication gh = k is given which is linear in each factor) in such a way that, for 
each path ax, we have a.11(gh) = axy(g)axzv(h). Analogous to Theorem 1, we have 

THEOREM 3. Let G, H form a pair with respect to K, and let F0 be realized as a 
group of automorphisms of each of G, H, K in such a way that a(gh) = a(g)a(h) 
for a E F0, g e G, h e H. Then there is one and only one set of systems {Gxo, IHx , 
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614 N. E. STEENROD 

{K:} such that the first two form a pair with respect to the third, and Go, Ho, 
K0 and the automorphisins F0 form a set isomorphic to the given G, HI, K, F0. 

By Theorem 1, there are unique systems { CG }, {H !, { K1 corresponding to 
G, H, K and the operations of F0 in these groups. In the construction of all 
three systems let us use the same collection of paths NX, (see proof of Theorem 1). 
Under the isomorphism of GC, H1, K., with G, H, K attached to 02 the multi- 
plication in the latter groups carries over into a multiplication in the former. 
The relation a1,,(gh) = ac,,(g)a,.,(h) for g E GC , h f H. is proved by using the 
property a(g'h') = a(g')a(h') of the closed path a = Xo2a1~,Xvo where g', h' corre- 
spond to g, h under X01. Any other allowable product which agrees with the 
constructed product in GC, Ho will likewise agree in G., Hz since both products 
are invariant under the translation along X10- 

Of particular interest is the case of character groups. 
THEOREM 4. IJf K = real numbers mod 1, G = a discrete, or compact, or locally 

compact separable group, and Fo is realized in two arbitrary ways as a group of 
automorphisms of Ko and GC respectively, then F0 can be realized in one and only 
one way as a group of automorphisms of the character group H of G satisfying 
a(gh) = a(g)a(h). Thus to given systems {I K-,, Gx} is attached a unique system 
IH } of character groups. 

The character a(h) is defined to be the one with the value a(a'-(g)h) on any g. 
The remainder of the theorem is readily verified. 

It is to be noted that K admits but one non-trivial automorphism, namely: 
k - k. Thus there are as many character systems of a given system { Gx 
as there are factor groups of F0 of order 2. If it should be desirable to have a 
unique character system, it would be natural to choose {'K} to be simple. 

7. Local groups under mappings 

Let R, R' be two arewise connected spaces and 0 a continuous map R' - RI. 
Let F, F' be their fundamental groups relative to base points o, o' such that 
(o') = o. If {IZI is a system of local groups in R, then 0 induces in R' a system 

{G } as follows. The group G' is chosen isomorphic to G. where x = 
The isonmorphism is denoted by O. The path a,, in R' maps G' isomorphically 
on G' according to the rule 

(7.1) aYz(g) = ( (avz) (9())), g eG- 

The transitivity condition is immediately verified. 
The existence of the induced system is apparent in view of Theorem 1 and the 

fact that the homomorphism F' -, F realizes F' as a group of automorphisms 
of Go. 

The induced system has numerous properties which we list without proofs. 
(a) If {GI} is simple, so is {Gv}. 
(b). {G"} is simple if and only if F' is mapped by O on the subgroup F1 of F 

leaving Go fixed. 
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(c). If {GX}, G HX} are paired relative to {K.}, then likewise the induced 
svstems in R'. 

(d). If {AZ} is a system of local automorphisms or operator rings for {Gx}, 
then likewise the induced systems in R'. 

(e). If A is a group of uniform automorphisms or a uniform operator ring for 
{G.}, it is also one for the induced system. 

It follows from (b) that, if R' is the covering space of R corresponding to the 
subgroup F' of F, the induced system is simple. Thus any system in R can be 
considered as the continuous image of a simple system in some covering space. 

It is natural to inquire under what circumstances a given system in R' is 
induced by one in R. For this it is necessary and sufficient that (1) the kernel 
F' of the homomorphism F' -+ F shall act as the identity on G',, and (2) the map 
of the subgroup FP/FP of F into the group of automorphisms of G', shall admit 
a homomorphic extension to F. 

8. Special local groups 
Because of their importance in the work of Reidemeister, we shall discuss 

certain local systems based on the fundamental group F of R. 
Let F' be an invariant subgroup of F, and let {f = F/F1. Let 9' be an abelian 

group. Let G be the set of functions from 'Fto 1AJ. If two such functions are 
added by adding functional values at each element of 9X, G becomes an abelian 
group. A function f e G is called a restricted function if f(a) = 0 except for a 
finite number of a E 'F. The restricted functions form a subgroup G' of G. 
The structure of G (G') can be described as the unrestricted (restricted) direct 
sum of as many copies of ( as there are elements of SF. If g} = integers and 
F' = 1, then G' is the ordinary group ring of F. 

If (tj is a ring, we define a multiplication of two functions f, g e G' by 

f X g(a) = Epf(af-')g(f), a, / e 

Since the functions in G' are restricted, the sum is finite; thus G' is a ring. If 
= integers, this product is the usual one in the group ring. 
The group F can be realized in three natural ways as a group of automorphisms 

of the groups G, G'. For any -y E F, we define three operations on a function 
fEG (G') by 

Lyf(a) = f(f'a), Ryf(a) = f(ay), Tyf(a) = f(J'a-y), a eb. 

Then Lzf, RJf and T7zf are in G (G'), and are called the left translation, right 
translation, and transform of f by y, respectively. It is easy to verify that Lz, 
RI, T, are automorphisms of G (G'), and that LyLa = Lya, RyRa = Rya, and 
7'js = T'a . The subgroup acting as the identity for both L and R is F'. 

In the case that ,j and therefore G' is a ring, the left and right translations 
are not ring automorphisms. However the transforms are: 7Y'(f X g) = 

(tyfow) X (Tfrg)w 
It follows front Theorem 1 that, corresponding to each of the three ways that 
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616 N. E. STEENROD 

F can act on G (G'), we have a system of local groups. These we denote by 
{G.', {G.', {Gf , and similarly for G'. The last of these, {G-T7, is a system of 
local rings, whenever ( is a ring. 

Since 9 is associative, LRIf = ROLzf. Therefore, by Theorem 2, the left 
translations form a group of uniform automorphisms of { G-- , and likewise for 
the right translations of {G' . Then, as in ?5, the group ring of F is a ring of 
uniform operators for these systems. 

Under the autornorphism q of G (G') defined by Of(a) = f(a&'), we have 
4L~f = RqOf. Therefore, by means of 4), an isomorphism exists between {GL} 
and { GR. 

In the work of Reidemeister on hornotopy chains, S = integers, F' = 1, so 
that G' is the group ring of F. The coefficients of the homotopy chains belong 
to the local groups { G'RI (these are not rings), and the ring of uniform operators 
is likewise G' where left translations are used. This distinction between the two 
usages of the group ring of F is necessary for a comprehension of the subject 
of homotopy chains. 

II. THE COMBINATORIAL THEORY 

9. Chains with local coefficients 

Let IG-} be a system of local abelian groups in a space R which is decomposed 
into a cell complex2 K. A q-cell of K is denoted by a', incidence by a < a', and 
incidence numbers by [o-': ao]. We suppose as usual that 

(9.1) E l q-2 q-=][0 q-. O 

In each cell a we choose a representative point x(a) and abbreviate the symbol 
G.(,) by GQ. A q-chain of K is a function3 f attaching to each oriented q-cell a 
an element f(u) E G, with the property f(- a) = - f(o). Chains are added by 
adding functional values. They then form a group isomorphic to the direct 
sum of the groups G, for all q-cells a. 

If a' < a, we may choose a path in the closure of a joining x(a) to x(u') and 
obtain therefrom an isomorphism G, -+ G,, which is denoted by hat, . In order 
that hat, shall be independent of the path, we postulate that the closure of each 
cell is simply connected. A second consequence of this and the transitivity 
condition is 

(9.2) hq' aqhq'j = 

2 For the sake of simplicity we suppose K is finite and closed. The extension of the 
subsequent results to relative complexes, open complexes, and to the finite and infinite 
chains of locally-finite complexes will be obvious. 

3We shall abide by the functional notation throughout. This will prove to be as con- 
venient as the classical linear form notation. We abandon the latter since it has algebraic 
implications more prejudicial than suggestive in the present discussion. 
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By means of the isomorphisms h, we can define the boundary af and co- 
boundary 5f of a q-chain f: 

af(ao-1) = ZEn [oq-' O*qIhcT-lcTQ(f(O*q)), 

(9.3) fo)= 6A0, q+l) = a2[-q: oq+1]ha-sar 2a 2+ i(f (o-q) 

The sums extend over the q-cells which (a) have -q-1 as a face, (b) are faces of 
oq+. These new functions are q- 1 and (q + 1)-chains respectively. It 
follows from (9.1) and (9.2) that aaf = 0, baf = 0. Therefore cycles, bounding 
cycles, homology and cohomology groups can be defined as usual. 

A special convention for 0-cycles is necessary. We shall agree that any 0- 
chain is a 0-cycle. Note that the Kronecker index (i.e. the sum of the coeffi- 
cients of a 0-chain) has no meaning unless the system {GX} is simple.4 

Finally it is to be remarked that we obtain a completely isomorphic situation 
if we choose new representatives y(o) in each a. The isomorphism is established 
by means of a path x(a) to y(u) in a for each o. 

10. Automorphisms of chains 

Let A be a group of uniform automorphisms or a ring of uniform operators of 
{Go}. For any chain f and a e A, define (af)(u) = af(u) for each o. Then 
af is a chain, and A appears as a group of automorphisms or a ring of oper- 
ators of the group of q-chains for each q. 

Since the operations of A commute with translations of the G, along paths, it 
follows that the operations of A on the chains commute with a and 6. Therefore 
A appears as an automorphism group or ring of operators of the groups of cycles, 
cocycles, boundaries, coboundaries, and consequently of the homology and 
cohomology groups. 

11. Multiplication of chains 

It should be noted that a cycle with local coefficients is locally a cycle in the 
ordinary sense; for, in any simply connected open set U (e.g. the star of a vertex), 
isomorphisms of the local groups can be set up with a fixed group (using paths 
in U) in such a way as to transform each chain with local coefficients into an 
ordinary chain mod (K - U) so that the boundary relations are preserved. It 
follows that any operation on ordinary chains which is a sum of local operations 
can be carried over to chains with local coefficients. We have seen that this is 
true of the boundary operator. We shall see that this is also true of products of 
cocycles, products of cycles and cocycles, and intersections of cycles. The 
linking number like the Kronecker index is not of this category. 

4Classical homology with a single coefficient group G is isomorphic to homology with 
coefficients in the simple system of local groups determined by G. 
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618 N. E. STEENROD 

In a comprehensive paper of Whitney on products [17], it is proved that, corre- 
sponding to cells 4l X s, ao +q in K, there is an integer '"r"I such that 

(rI) if aiP, aq are not both faces of 
o-'+', 

then "rkI' = 0, 
(r2) for all p, q, i, j, k, 

vM r P+q:. P+q+llpq is = E r [0. P0+llP+lq 0jt1~ . q+1]P'q-1]FiM Z em a = >Zm [ 'a ] rk + ( ) m Z a 

(I3) for all q and j, Es 0qrj = 1. 
Although the last two conditions appear not to be local in nature, they are so 
by virtue of the first. 

Let { G-,} be a system of local rings with units. If fp and fP are p and q-chains 
respectively with coefficients in {G.,}, we define their cup product to be the 
(p + q)-chain 

(11 .1) ds u as aim ) = ij am[hpk i (f (oiP))][hk q:^(f (oat))]. (11.1) k = 

Here we heve abbreviated the isomorphism of the local group of uaP on that of 
kp+q by h?P+q;. The sum extends over the faces oa, as of 0'+qk The 

relations 

(Pl) fp u fr is zero on any oP+q which has not both a face in fP and a face in f, 
(P2) 6(fP uf) = afp u fq + (- 1) PfP U af 
(P3) I u f = i, 

follow from the relations (F), the transitivity of the h's (9.2), and the preserva- 
tion of the products in G. under an h. In (P3), I is the 0-cocycle which attaches 
to each vertex V the unit of G, . Since h is a ring isomorphism, it preserves the 
unit; therefore A1 = 0. It follows just as in Whitney [17] that a product is 
definable for the cohomology classes with the usual properties. The associative 
law and the commutation rule for the special products in a simplicial complex 
are given local proofs. Once invariance under subdivision has been established 
(see ?16), the same laws will hold in a general complex. 

For the cap product, we shall suppose that {G.,}, {H-,} are paired with respect 
to {Lx}. Given a q-cochain fq (coef. {G,}) and a (p + q)-chain gp+p (coef. 
{H_), we define their cap product to be the p-chain 

(11.2) fn gP+qP(?(P) = jk Pqrm [hmtl(f (o q))][hpkp+q(gp+q(ofp+q))] 

with coefficients in {L-,}. The sum extends over those j, k for which 0', a(q 
are faces of oUp+q. Just as before, we obtain 

(Q1) fr n gp+q is zero on any a' which with no aq of fq is a face of a ap+q of gp+q 

(Q2) a(fr n g9+q) = (- 1)p n gp+q + fq n agp+q. 

In order to obtain an analogue of (I3), we shall take the special case where 
{L:} = {[Hx} and {GX-} is a system of operator rings for {HX } (see ?5). Then 
the 0-cocycle I is defined, and we have (QM) I n p = go. 
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Under the same assumption, it can be shown that 

(fq u fi) n g 
+q- if n (fi n gp 2 )r 

for cocycles f, f and a cycle gP+q+r. 
The uniqueness of the products in the following sense can be proved. Sup- 

pose 'pr is another set of rFs for which the relations (r) hold. Corresponding 
to the two sets of rFs is the Whitney operation A (Theorem 8, [17]). Let 
PqAV be the coefficient of ok? + in the product o? A al+. Define fA gP+q with 
equations analogous to (11.2) using A in place of r. Then the Whitney relations 
(R) (loc. cit.) with chains in place of cells can be proved to hold. It follows 
that the two sets of P's determine the same products among the homology and 
cohomology classes. 

12. Duality 

Let L be the group of real numbers mod 1, and let {L-,} be the corresponding 
simple system in K. Let {G-,} and { HTh} be character systems of one another 
with respect to L-, . Since { Lo is simple, a 0-cycle f0 with coefficients in { Lo} 
may be regarded as a 0-cycle with coefficients in L. It possesses therefore a 
Kronecker index (= the sum of its coefficients) which we denote by (f). As 
usual (U) = 0 is equivalent to fo 0 0. The scalar product of a q-cochain f, 
coef. {GXI and a q-chain gq coef. {H.} is defined to be the Kronecker index of 
their cap product: 

(12.1) = (fQ n gq) in L. 

If fQ and gQ are zero except on a single a, then, by 1'3 , fg is the productfq(a)gq(a). 
Therefore, due to the linearity, the scalar product of arbitrary f2, gQ is the sum of 
products of corresponding coefficients. It follows that the groups of q-cochains 
and q-chains are character groups of one another. 

For any q-cochain f' and (q + 1)-chain g'+' we obtain from Q2 that 

(12.2) f Q. gp+l = Pf a g"l 

It follows now in the usual way (see Whitney [17]) that the qth cohomnology 
group coef. {Gzl and the qth homology group coef. {Ha } are character groups 
with the scalar product as the multiplication. 

13. Intersection in an orientable manifold 

Let K be an orientable simplicial n-manifold and let K* be its dual. Denote 
by Pa the cell of K* dual to the oriented simplex a of K relative to a fixed choice 
of the fundamental n-cycle Z' with integer coefficients. Let {G-} be a system of 
local groups to be used as coefficients in both K and K*. Let the coefficient 
groups of a and 9a be the group G. where x is their common point. Then for 
any chain f of K (cochain f* of K*), the equation 

(13.1) f*(Oa) = f(a) 
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defines its dual cochain (chain) of K* (K) of the complementary dimension. This 
isomorphism between the two groups of chains has, as usual, the property 

(13.2) (Of)* = ( 1)"bf*, q = dimension of f. 

It follows that the qth homology group coef. {GX} and the (n - q)tll cohomology 
group coef. {Go,} are 2somorphic. 

In case {Go} is a system of local rings, we have as in ?11 a multiplication 
defined for the cochains of K*. The isomorphisms just established between the 
chains of K and cochains of K* enable us to carry over the product in K* into 
an intersection in K. We define the intersection of two chains fi , f2 of K to be the 
dual of the cup product of their duals: 

(13.3) flOf2 = (fl uf . 

(Compare Whitney [17], p. 422, formula (19.9)). It follows that a system of 
local rings in an orientable manifold determines an intersection ring of cycles iso- 
morphic to the ring of cocycles (same coefficients) under the operation of dual. 

As is well known, the ring of integers is a ring of operators for any group G 
which commute with any automorphism of G. The ring of integers is therefore 
a uniform operator ring (?5) for any {Gal. The equation (11.1) may be in- 
terpreted as defining the cup product of a cochain fP with (simple) integer coeffi- 
cients and a cochainf with local coefficients { G., . The relations (P) still hold, 
and these together with the associative law lead to the conclusion that the 
cohomology ring with simple integer coefficients constitutes a ring of operators for 
the cohornology groups coef. {Gal}. 

The dual of this last result is that the intersection ring of an orientable manifold 
with simple integer coefficients is a ring of operators for the homology groups coef. 
{Ga . 

14. Intersection in a non-orientable manifold 
In a non-orientable manifold K there is no n-cycle with simple integer coeffi- 

cients. One cannot therefore determine the orientation of 93a uniformly over K 
so that (13.2) holds. A customary device is to use integers mod 2 as coefficients 
so as to restore the basic n-cycle and escape orientation difficulties. The 
resulting duality and intersection theory is a bit weak due to the inadequacy of 
the coefficients. A more ingenious device has been used by de Rham [13]. 
We shall see that a suitable use of local coefficients permits a full development 
of De Rham's notion and leads to a complete and satisfying duality and inter- 
section theory in a non-orientable manifold. 

Since K is non-orientable, the elements of its fundamental group F divide into 
two classes according as they do or do not preserve orientation. Those which 
do form an invariant subgroup F1 of index 2. Let T be the group of integers. 
For each integer t E T and ae F, let a(t) be +t or - t according as a is or is not in 
FP. In this way F is a group of automorphisms of T. Let { T' be the corre- 
sponding system of local groups given by Theorem 1. We shall say that chains 
with coefficients in I Tf I have twisted integer coefficients. 
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Let G be an abelian group and let F be represented as a group of automorph- 
isms of G. Let G be the direct sum of two copies of G (i.e. the group of pairs 
(91, 92)). Identify G with the subgroup of elements of the form (g, 0), and call 
G the real part of G. The subgroup G' of elements of the form (0, g) we call the 
imaginary part of G. The product of (gl, 92) with the complex number a + ib 
(a, b are integers) is defined by 

(14.1) (a + ib)(gi, g2) = (ag1 - bg2, ag2+ bglq). 

It follows immediately that the complex integers form a ring of operators for the 
group G, and that each element of C can be written uniquely in the form gi + 
iq2 (91 ,92 real). If we set 

(14.2) (g9 + ig2) = {(g) + ia (g2) if a e Fl, 

the automorphisms of F in G are extended to G. For any complex integer a + ib, 
define a(a + ib) = a + ib according as a is or is not in F1. Let T be the ring 
of complex integers, and let { IT, be the system of local rings corresponding to 
T and these automorphisms. It follows that { lU} is a system of operator rings 
for the system { 6x I corresponding to G and the automorphisms (14.2) (see ?5). 
We refer to { GO } as the complex extension of { Gx }. 

If G is a ring, and the elements of F are ring automorphisms, we define a 
product in G in the usual wvay: (gq , g2) (g , g2) = (gig- g2q2, q2l + gig') 
The equations (14.2) define ring automorphisms of G. Furthermore the ele- 
ments of T associate and commute with the multiplications in G. Thus {G } 
is a system of local rings with {I xI as a system of operator rings. 

We shall use { GOI and { Tx } as coefficients for chains of K and cochains of K*. 
The group of n-cycles of K coef. { Tx} is infinite cyclic. A generator is con- 
structed as follows. Choose an oriented n-cell a and let Zn(0_) = ?i in T, 
(because of a(i) = ?i, the sign of i has only a local significance). If I 0r' I is 
any other n-cell, choose a path a of it-cells from a- to a-' I (successive cells having 
an (n - 1)-face in common). The path a determines an orientation a-' of 
( a-' I concordant with that of o-. Now define Zr(o-r) = a(Z'(o-)). In words: the 
orientation and coefficient of or' are determined by translating along a path a 
both the orientation and coefficient of a-. Translating along a second path f 
will either produce the same orientation and the same coefficient or reverse the 
sign of both according as ad-1 is or is not in FP. Thus the chain Zn is inde- 
pendent of the paths chosen in its construction. It is a cycle since, in any 
simply connected domain, it is a cycle. The usual argument shows that any 
n-cycle of K coef. { Tx is an integral multiple of ZV. Thus the fundamental 
n-cycle of K has pure imaginary coefficients (or equally well, twisted integer 
coefficients). 

If e is an oriented simply-connected neighborhood in K, Zn(e) will be the 
coefficient Zn (a-) of an n-cell a- in e oriented concordantly with e. Corresponding 
to a q-cell a e K and an oriented neighborhood e of o-, there is in the usual way a 
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unique orientation of the dual cell 0DST in K*. If f is any q-chain of K coef. 
{ O}, we define its dual to be the (n - q)-cochain f* in K* coef. { GOI defined by 

(14.3) P(qde) = -fA()Z (f). 

It is to be understood that f (a) is in G, and Z'(E) is in TX where x is the point 
common to u and ?IPo. Since reversing the orientation of e changes the sign of 
both sides of (14.3), if* is independent of the choices of the E's. The dual of a 
chain f* in K* is given by 

(14.4) f**(of) = f*(9I"0)Zf(E). 

Since Z'(e)Z'(e) = -1, we have that any chain is the dual of its dual. The 
dual of Z' is the unit 0-cocycle I. The dual of a real (imaginary) chain is 
imaginary (real). The formula (13.2) now follows for the dual in a non-orient- 
able manifold; for it is a statement of local properties, and (14.3), (14.4) differ 
from (13.1) locally by a constant factor. As in ?13, it follows that the qth homol- 
ogy group coef. { Gx} and the (n - q)th cohoomology group coef. {IG } are iso- 
morphic. Using (13.3) to define the intersection, we obtain a homology ring 
isomorphic to the cohomnology ring whenever the coef. { Gx} form a system of 
local rings. In any case, the homology ring coef. ITtxI forms a ring of operators 
for the homology groups coef. { GO x. 

Since G is the direct sum of its real and imaginary part, any chain is uniquely 
a sum of a real chain and an imaginary chain. The operations a and a preserve 
the property of being real or imaginary. Therefore the homology and co- 
homology groups decompose into direct sums of their real and imaginary parts. 
Since passing to the dual interchanges real and imaginary, we obtain the following 
results. The qth homology group coef. {Gx} (coef. fGx ) is isomorphic to the 
(n - q)th cohomology group coef. {G } (coef. {Gx}). The homology classes coef. 
{G } (i.e. the imaginary ones) form a ring isomorphic to the cohomology ring coef. 
G{x}. The intersection of two real cycles is imaginary. The intersection of a real 

and an imaginary cycle is real. 
It is to be noted that the results of this section apply to an orientable mani- 

fold. The absence of orientation reversing paths in no wise invalidates the 
constructions. We have in this way a single theory including both types of 
manifolds. 

The classical approach to intersection is to define directly the intersection of a 
p-chain f of K with a q-chain g of K* to be a chain of the subdivision of K. We 
may do this here as follows. If a is a p-simplex, u' an (n - q)-face of uf and e 
an oriented neighborhood of u, define o0DE0o' relative to e in the usual way. Then 
define the intersection chain fog to have on ?ooPEo' the value -f(o)g(To')Z'(E). 

15. The Poincare duality 

If we assume that { Gx , { Hx are character systems of one another with respect 
to the simple system {Lx} of mod 1 groups, we may combine the results of ?12 
with those of ?13 and ?14 to obtain: The qth homology group of the manifold K 
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coef. {GXJ (coef. {G_ 
1 ) and the (n- q)th homology group coef. {H'} (coef. {H } ) 

are character groups of one another; the multiplication is determined by the scalar 
product (f* n g) where f is a q-chain of K and g is an (n - q)-chain of K*. 

The results simplify in the orientable case if we note that {Go} and {Go} are 
isomorphic, as also are {Hz} and {G'}. In the non-orientable case, the results 
simplify if we note that {H'} ({Hx}) is the character system of {G,} ({G'}) 
with respect to the system {L') of twisted mod 1 groups associated with the 
simple system {Lz}. 

Before leaving the subject of duality, let us observe that the notion of local 
coefficients has nothing to add to the duality theorem of Alexander. A vital 
step in the argument of Alexander is the following: A cycle in the closed set R 
in the n-sphere Sn is a cycle in Sn and is therefore the boundary of a chain in Sn. 
Such a statement is valid only if the system of local coefficients used in R is part 
of a system in Sn; as Sn is simply-connected (n > 1), the system of local coeffi- 
cients must be simple. 

16. Chain mapping and subdivision 

A chain transformation is a homomorphism of the groups of chains of one 
complex on those of another which commutes with the boundary or coboundary 
operator or interchanges them (as in the case of the dual). This definition has 
meaning of course when local coefficients are used. All that we need to deter- 
mine here is that chain transformation "S" with local coefficients exist in the 
usual circumstances. 

Let a cell mapping K' -* K be given which preserves the relation of incidence. 
Let { Go } be a system of local coefficients in K, and let { G I be the induced system 
in K' (see ?7). If a' -a u, there is an attached isomorphism Gal - G, . A chain 
of K' which is zero except on a single o-' we call an elementary chain. Let f' be 
an elementary chain and f'(o-') ? 0. If the image o- of a-' has a lower dimension, 
we define the image f of f' to be zero. If a-, a-' have the same dimension, the 
image f of f' is zero except on a-, and f(a) is the image of f'(o-') under the iso- 
morphism G, -* G,. An arbitrary chain of K' is uniquely a sum of elementary 
chains. Its image is defined as the sum of the images of its elementary parts. 
The resulting chain mapping we denote by r. The inverse cochain mapping A 
attaches to an elementary chain of K the sum of the elementary chains of K' 
mapped into it by r; we then extend a' preserving linearity. That r (r') com- 
mutes with a (8) is proved by first establishing it in the usual way for elementary 
chains (of course (7.1) is used), and then applying the linearity of a (3). 

It is necessary to use in K' the induced system {GQJ in order that r, T' shall 
exist in all dimensions. This is seen as follows. Let V' be a vertex of K' and 
V its image. Assuming T, H defined for the elementary chains of V, V1, we ar- 
rive at an isomorphism G-' -* Gv. Therefore { GJ is the system induced by 
Go over the 0-dimensional part of K'. Suppose this is known for the q-dimen- 

sional part of K'. Any closed (q + 1)-cell is simply-connected, there is there- 
fore just one system of local groups defined over it which agrees with a given 
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system on its boundary, and that one is simple. We conclude that the given 
system and the induced system agree on each closed (q + 1)-cell, and finally over 
the whole of K'. 

If K' is a subdivision of the simplicial complex K, we then have two systems 
in K': the given system {G,} for K, and the system {G'} induced by the map 
K' -i K defined by mapping each vertex of K' into a vertex of the simplex of K 
containing it. The two systems are isomorphic. The isomorphism is set up by 
using the line segments which join each point to its image point. The proof of 
the invariance under subdivision of the groups of K and their multiplications 
may now be completed in the standard way (see for example [17]). 

17. Continuous cycles 
Let { Ga I be a system of local groups in a space R. A continuous chain in R 

is a collection composed of a complex K, a continuous map 4 of K in R, and a 
chain Z in K with local coefficients in the system {Go} induced by 4 and {G2 }. 
If Z is a cycle, the collection (K, q, Z) is called a continuous cycle. The boundary 
of (K, 0, Z) is (K, q, aZ). Two continuous chains (Ki, qi, Zi) (i = 1, 2) are 
added by forming the abstract sum K1 + K2, defining q5 = 4i on Ki, and adding 
ZI to Z2 . Two continuous cycles are homologous if there exists a chain (K, X), Z) 
such that K D K, and K2, 4)= q i on Ki, and AZ = Z1- Z2 . The cycles of a 
fixed dimension divide up into homology classes. Two classes are added by 
adding representative elements. In this way we define the homology groups of 
R based on continuous cycles with local coefficients {G.,}. That they are 
topological invariants of R and the system {G I is an immediate consequence of 
the definition. 

If R is the space of a complex, these groups of R are isomorphic to those of K 
with the same local coefficients. The identity map q5l of K attaches to a chain 
Z of K the continuous chain (K, 01, Z) of R. This chain mapping commutes 
with a, and therefore induces homomorphisms of the groups of K into those of 
P. That these are isomorphisms follows from the lemma: If (K', X, Z') is a 
chain with boundary of the form (K, 01i, Z), then there is a chain Z, of K such 
that a Z1 = Z, and the difference (K', O, Z') + (K, 4s , - Z1) bounds a continuous 
chain in R. The lemma is proved in the usual way by using the simplicial 
approximation theorem to construct a map of the product complex K' X I 
(I = (0, 1)) into R. The needed chain is found in K' X I with local coefficients 
in the induced system. 

18. Cech cycles 
The only difficulty in the way of extending local coefficients to Cech cycles is 

that of constructing a system of local groups in the nerve K of a finite open 
covering when such a system is given in R. It is clear that the former must be 
chosen so as to induce the given system in R under the natural map R -* K. 
If R is sufficiently complicated, it is possible to construct in R a local system 
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which is not induced by a local system in any nerve.5 Therefore we are forced 
to restrict ourselves to a system { G.} induced in R by a system { Go } in a fixed 
nerve K0. We then admit only those coverings which are refinements of K0, 
and we use in them the local groups induced by their natural projections into 
K0. With this modification, the definitions of the Cech homology and cohomol- 
ogy groups and their multiplications proceed as before. 

If R is the space of a complex K, a local system in R is one in K = K0. Using 
invariance under subdivision, one proves in the customary way (see [15], ?9) 
that the groups of K and the Cech groups of R are isomorphic, and the isomor- 
phisms preserve the multiplications. We are thus led to a proof that the homol- 
ogy theory (coef. tG6}) of a complex K is a topological invariant of the space 
K with the local groups EGG}. 

19. tberdeckung 
In a complex K choose a reference point o (preferably a vertex), and for each 

cell a let a,, be a path in K from o to a point x(r) in a. If a' < a, let a,,,' be a 
path in the closure of a from x(u) to x(u'). The closed path aOaCCYOa,-1 is abbre- 
viated by Yao' As elements of the fundamental group F of K (origin o), the 
ly 's have the property 

(19.1) = for a" < a' < a. 

By means of the a's, we map isomorphically the chains of K with local coef. 
JG.} into ordinary chains with coefficients in G0 as follows. The transform f 
of the chain f with local coefficients is defined by f(u) a-7'(f ()). By means 
of this isomorphism, we define operators a, 8 for chains f by: f= b, e = f. 
From (9.3) we obtain 

}(f)- EOu': uf]^y~'(f(u)), Ad < u, 
(19.2) bf(o") = Z[o:o"]yff't(J(o)) u < a-" 

Thus the system of ordinary chains (coef. G,) with the special operators a, a are 
isomorphic to the system of chains with local coef. OGxE with the ordinary 
operators a, &. They determine therefore isomorphic homology groups. It is 
a corollary that the homology groups determined by c, 3 are independent of 
the choices of the &'s. 

The system f, 5, 8 just described is called an Uberdeckung of K by Reidemeister 
[10; 11]. An advantage of this approach is that it lends itself more readily to a 
computation of the homology groups. One may attempt to simplify the inci- 
dence matrices [u': u]yO' , with elements in the group ring of F, by the usual 
methods of transforming bases and consolidation (see W. Franz [2]). 

This is the case if R is not locally simply-connected, and if JGX, is the system (G' l 
of local group rings of ?8. 
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20. Zero and 1-dimensional groups 

If the fundamental group F of K and the operations of F in Go are given, then 
one may compute the 0 and 1-dimensional homology groups without further 
knowledge of K. Choose a basis a,, * - *, ah of F and a basis r1, * - *, r8 for the 
relations in F (each r is a product of a's representing the unit). Construct a 
2-complex K' consisting of one vertex o', one edge for each ai (likewise denoted 
by as) with both end-points at o', and, for each ri, a 2-cell Ei whose boundary 
is the product ri of the a's. Clearly F is also the fundamental group of K'. 
The operations of F in Go determine local coefficients in K' leading to 0 and 
1-dimensional homology and cohomology groups which we shall prove isomorphic 
to those of K. By the duality of ?12, it suffices to prove this for the homology 
groups. 

Define a map 0 of K' into K so that 0(o') = o, 0(ai) represents as , and 0 is 
continuous. It is readily seen that a map 4' of a complex K" in K is homotopic 
to a map 1' which, on the 1-dimensional part K" of K", can be expressed as a 
product 04" of 0 and a map if" of K',' in K' which maps each vertex into o' and 
each edge into a product of a's. Thus every continuous 0 and 1-cycle is homol- 
ogous to one of the form (K', X, Z) (see ?17). It is a further consequence that 
the 0-cycle Z bounds in K' if (K', X, Z) bounds in K. This shows that the 0th 
homology groups of K anrd-K' are isomorphic. To prove the same for the 1- 
dimensional groups, we must show that a homology relation in K of the form 
a(E, i', f(E) = g) = (K', 0, Z), where E is a 2-cell and /'(ME) is a product r of 
the a's, is a consequence of the relations in K'. Let E be regarded as a hemi- 
sphere of a 2-sphere S2 and let E' be the other hemisphere. The map t" of the 
equator in K' extends to a continuous map A/" of E' in K'; for the product r is 
expressible in terms of the ri. The map JP' of E and 4,6" of E' define a map 
4' of 82 in K, and thereby a 2-cycle (S2, Jp', f(E) = f(- E) = g). Thus a (E', 
Ap', f(E') = g) = (K', 0, Z), and Vp' factors into 44". 

Using the above results we may describe the 0-dimensional groups quite easily. 
Let G' be the subgroup of elements of Go which are fixed under every auto- 
morphism a e F. The oth cohomology group of K is isomorphic to the group Go. 
Let G"' be the subgroup of elements of Go expressible in the form Ei(ai(gi) - gi) 
where ai e F, gi e Go. The oth homology group of K is isomorphic to the differ- 
ence group Go - Go . 

It is worth noting that a continuous image of an n-sphere (n > 1) in K deter- 
mines a group of spherical i-cycles for any local coefficients; for the sphere is 
simply connected. However these cycles may or may not bound according to 
the structure of the system of local groups. Consider, as an example, the pro- 
jective plane P2 and the double covering of it by the 2-sphere S2. With twisted 
integer coefficients (?14), the 2-cycles on P2 form an infinite cyclic group and are 
nonbounding. The even multiples of the generator are images of the 2-cycles 
on S2 with integer coefficients. Yet with simple integer coefficients in P2, the 
mage of every 2-cycle on S2 is bounding (algebraically zero). 

THE UNIVERSITY OF MICHIGAN 
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